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ABSTRACT
Today, the data available to tackle many scientific challenges
is vast in quantity and diverse in nature. The exploration of
heterogeneous information spaces requires suitable mining
algorithms as well as effective visual interfaces. Most exist-
ing systems concentrate either on mining algorithms or on
visualization techniques. Though visual methods developed
in information visualization have been helpful, for improved
understanding of a complex large high-dimensional dataset,
there is a need for an effective projection of such a dataset
onto a lower-dimension (2D or 3D) manifold. This paper
introduces a flexible visual data mining framework which
combines advanced projection algorithms developed in the
machine learning domain and visual techniques developed
in the information visualization domain. The framework
follows Shneiderman’s mantra to provide an effective user
interface. The advantage of such an interface is that the
user is directly involved in the data mining process. We
integrate principled projection methods, such as Genera-
tive Topographic Mapping (GTM) and Hierarchical GTM
(HGTM), with powerful visual techniques, such as magni-
fication factors, directional curvatures, parallel coordinates,
billboarding, and user interaction facilities, to provide an
integrated visual data mining framework. Results on a real
life high-dimensional dataset from the chemoinformatics do-
main are also reported and discussed. Projection results of
GTM are analytically compared with the projection results
from other traditional projection methods, and it is also
shown that the HGTM algorithm provides additional value
for large datasets. The computational complexity of these
algorithms is discussed to demonstrate their suitability for
the visual data mining framework.
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The wide availability of ever-growing data sets from dif-
ferent domains has created a need for effective knowledge
discovery and data mining. For data mining to be effective,
it is important to include the domain expert in the data ex-
ploration process and combine the flexibility, creativity, and
general knowledge of the domain expert with automated ma-
chine learning algorithms to obtain useful results [17]. The
principal purpose of visual data exploration is to present the
data in a visual form provided with interactive exploration
facilities, allowing the domain expert to get insight into the
data, draw conclusions, and understand the structure of the
data. Exploration of complex information spaces is an im-
portant research topic in many fields, including computer
graphics, data mining, pattern recognition, and other ar-
eas of statistics, as well as database management and data
warehousing.

Visual techniques on their own cannot entirely replace
analytic nonvisual mining algorithms to represent a large
high-dimensional dataset in a meaningful way. Rather, it
is useful to combine multiple methods from different do-
mains for effective data exploration [20] [41] [14]. Recently,
the core research in visual data mining has focused on com-
bination of visual and nonvisual techniques as well as on
integrating the user in the exploration process. Integrating
visual and nonvisual methods in order to support a variety
of exploration tasks, such as identifying patterns in large un-
structured heterogeneous information or identifying clusters
or studying data in different clusters in detail etc., requires
sophisticated machine learning algorithms, visual methods,
and interaction techniques.

Ankerst [1] classified visual data mining approaches into
three categories. Methods of the first group apply visual
methods independently of data mining algorithms. The sec-
ond group uses visual methods in order to represent patterns
and results from mining algorithms graphically. The third
category tightly integrates both mining algorithms and vi-
sual methods in such a way that intermediate steps of the
mining algorithms can be visualized and further guided by
the domain expert. This tight integration allows users to
control and steer the mining process directly based on the
given visual feedback. The approach we present here, be-
longs to the third category where we introduce tight integra-
tion between principled projection algorithms and powerful
information visualization techniques.

Shneiderman’s mantra of “Overview first, zoom and filter,
details-on-demand” [30] nicely summarizes the design phi-
losophy of modern information visualization systems. First,



the user needs to get an overview of the data. In the second
stage, the user identifies interesting patterns and focuses on
one or more of them. Finally, to analyze patterns in de-
tail, the user needs to drill down and access details of the
data. Information visualization technology may be used for
all three steps of the data exploration process [20].

For a complex large high-dimensional dataset, where clear
clustering is difficult or inappropriate, grouping of data points
in soft clusters and then using visual aids to explore it fur-
ther can reveal insight that may prove useful in data min-
ing [36]. Principled projection of high-dimensional data
on a lower-dimension space is an important step to ob-
tain an effective grouping and clustering of a complex high-
dimensional dataset [10]. Here, we use the term projection to
mean any method of mapping data into a lower-dimensional
space in such a way that the projected data keeps most
of the topographic properties (i.e. ‘structure’) and makes
it easier for the users to interpret the data to gain useful
information from it. As mentioned by Ferreira et. al. [10],
traditional projection methods such as Principle Component
Analysis (PCA) [4], Factor Analysis [13], Multidimensional
Scaling [42], Sammon’s mapping [29], Self-Organizing Map
(SOM) [18], and FastMap [12] are all used in the knowledge
discovery and data mining domain [15] [37] [38] [19].

For many real life large high-dimensional datasets, the
Generative Topographic Mapping (GTM) [8], a principled
projection algorithm, provides better projections than those
obtained from traditional methods, such as PCA, Sammon’s
mapping, and SOM [5] [26]. Moreover, since the GTM pro-
vides a probabilistic representation of the projection mani-
fold, it is possible to analytically describe (local) geometric
properties anywhere on the manifold. For example, we can
calculate the local magnification factors [6], which describe
how small regions in the visualization space are stretched
or compressed when mapped to the data space. Note that
it is not possible to obtain magnification factors for PCA
and Sammon’s mapping. For the SOM, the magnification
factors can only be approximated [7]. It is also possible in
the GTM to calculate analytically the local directional cur-
vatures of the projection manifold to provide the user with
a facility for monitoring the amount of folding and neigh-
borhood preservation in the projection manifold [34]. The
details of how these geometric properties of manifold can be
used during visual data mining are presented in Section 3.1.

Moreover, it has been argued that a single two-dimensional
projection, even if it is non-linear, is not usually sufficient
to capture all of the interesting aspects of a large high-
dimensional datasets. Hierarchical extensions of visualiza-
tion methods allow the user to “drill down” into the data;
each plot covers a smaller region and it is therefore eas-
ier to discern the structure of the data. Hierarchical GTM
(HGTM) is a hierarchical visualization system which allows
the user to explore interesting regions in more detail [35].

The work presented here describes a flexible framework
for visual data mining which combines principled projection
algorithms developed in the machine learning domain and
visual techniques developed in the information visualization
domain to achieve a better understanding of the information
(data) space. The framework follows Shneiderman’s mantra
to provide an effective user interface (a software tool). The
advantage of such an interface is that the user is directly in-
volved in the data mining process taking advantage of pow-
erful and principled machine learning algorithms.

The results presented, on a real life dataset from the
chemoinformatics domain, clearly show that this interface
provides a useful platform for visual data mining of large
high-dimensional datasets. Projection results of GTM are
analytically compared with projection results from other
methods traditionally used in the visual data mining do-
main. Using the hierarchical data visualization output, the
tool also supports the development of new mixture of local
experts models [25].

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of GTM and HGTM. The
main information visualization and interaction techniques
applied are described in Section 3. The integrated visual
data mining framework we propose is discussed in Section 4.
The experiments are presented in Section 5. In Section 6, we
discuss computational costs for the projection algorithms.
Finally, we draw the main conclusions in Section 7.

2. PROJECTION ALGORITHMS
This section provides a short overview of the projection

algorithms we use.

2.1 Generative Topographic Mapping (GTM)
The GTM models a probability distribution in the (ob-

servable) high-dimensional data space, D = <D, by means
of low-dimensional latent, or hidden, variables [8]. The data
is visualized in the latent space, H ⊂ <L.

Figure 1: Schematic representation of the GTM
model.

As demonstrated in Figure 1 (adapted from [8]), we cover
the latent space, H, with an array of K latent space centers,
xi ∈ H, i = 1, 2, ..., K. The non-linear GTM transformation,
f : H ⇒ D, from the latent space to the data space is defined
using an RBF network. To this end, we cover the latent
space with a set of M − 1 fixed non-linear basis functions
(here we use Gaussian functions of the same width σ), φ :
H ⇒ <, j = 1, 2, ..., M − 1, centred on a regular grid in the
latent space. Given a point x ∈ H in the latent space, its
image under the map f is

f(x) = Wφ(x), (1)

where W is a D×M matrix of weight parameters and φ(x) =
(φ1(x), ..., φM (x))T .

The GTM creates a generative probabilistic model in the
data space by placing a radially symmetric Gaussian with
zero mean and inverse variance β around images, under f ,
of the latent space centres xi ∈ H, i = 1, 2, ..., K. We re-
fer to the Gaussian density associated with the center xi



by P (t | xi,W, β). Defining a uniform prior over xi, the
density model in the data space provided by the GTM is
P (t |W, β) = 1

K

PK
i=1 P (t | xi,W, β).

For the purpose of data visualization, we use Bayes’ theo-
rem to invert the transformation f from the latent space H
to the data space D. The posterior distribution on H, given
a data point tn ∈ D, is a sum of delta functions centred at
centres xi, with coefficients equal to the posterior probabil-
ity Ri,n that the i-th Gaussian (corresponding to the latent
space center xi) generated tn [8],

Ri,n =
P (tn | xi,W, β)PK

j=1 P (tn | xj ,W, β)
. (2)

The latent space representation of the point tn, i.e. the
projection of tn, is taken to be the mean,

PK
i=1 Rinxi of the

posterior distribution on H. The parameters of the GTM
(weights W and inverse variance β) are learned from data
using an Expectation Maximization (EM) algorithm [4].

The f–image of the latent space H, Ω = f(H) = {f(x) ∈
<D | x ∈ H}, forms a smooth L-dimensional manifold in
the data space. We refer to the manifold Ω as the projection
manifold of the GTM.

2.2 Hierarchical GTM (HGTM)
The hierarchical GTM (HGTM) arranges a set of GTMs

and their corresponding plots in a tree structure T [33]. An
example HGTM structure is shown in Figure 2.

Figure 2: An example structure for HGTM.

The Root of the hierarchy is at level 1, i.e. Level(Root) =
1. Children of a model N with Level(N ) = ` are at level
` + 1, i.e. Level(M) = ` + 1, for all M ∈ Children(N ).
Each model M in the hierarchy, except for Root, has an
associated parent-conditional mixture coefficient, or prior
π(M | Parent(M)). The priors are non-negative and satisfy
the consistency condition:

P
M∈Children(N ) π(M | N ) = 1.

Unconditional priors for the models are recursively calcu-
lated as follows: π(Root) = 1, and for all other models

π(M) =

Level(M)Y
i=2

π(Path(M)i | Path(M)i−1), (3)

where Path(M) = (Root, ...,M) is the N -tuple (N = Level(M))
of nodes defining the path in T from Root to M.

The distribution given by the hierarchical model is a mix-
ture of leaf models of T ,

P (t | T ) =
X

M∈Leaves(T )

π(M)P (t | M). (4)

We obtain a soft segmentation of the input space from the
HGTM model.

Non-leaf models not only play a role in the process of
creating the hierarchical model, but in the context of data
visualization can be useful for determining the relationship
between related subplots in the hierarchy.

The HGTM is trained using the EM algorithm to max-
imize its likelihood with respect to the data sample ς =
{t1, t2, ..., tN}. Training of a hierarchy of GTMs proceeds
in a recursive fashion. Visualization and interaction is pro-
vided to the domain experts during the intermediate steps
of training an HGTM model. A detailed description of user
interaction and construction of HGTM models is provided
in section 4.

3. VISUAL TECHNIQUES
There is a large number of visual techniques developed in

the information visualization domain which can be used for
visualizing data or results. In addition to standard 2D/3D
graphs, there is a number of more sophisticated visualization
techniques. Keim [17] provided an informative overview of
different classes of information visualization techniques. In
addition to the usual facilities such as zoom, rotate, etc., the
following specialized information visualization aids support
exploration of the projection obtained from the principled
machine learning algorithms to create a powerful visual data
mining framework.

3.1 Magnification Factors and Directional Cu-
rvatures

One of the main advantages of using GTM–based mod-
els is that it is possible to analytically calculate the Mag-
nification Factors (MF) [6] and the Directional Curvature
(DC) [34] of the GTM projection manifold. MFs of a GTM
projection manifold, Ω, are calculated as the determinant of
the Jacobian of the GTM map f [6]. Magnification factor
plots are used to observe the amount of stretching in a GTM
manifold at different parts of the latent space, which helps in
understanding the data space, outlier detection, and cluster
separation. Tiňo et. al. [34] derived a closed-form formula
for directional curvatures of the GTM projection manifold,
Ω, for a latent space point x ∈ H and a directional vector
h ∈ H. Directional curvature plots allow the user to observe
the direction and amount of folding in the GTM manifold.
This can help the user detect regions where the GTM man-
ifold does not fit the data well. It is possible that groups
of data points far apart when projected onto the projection
manifold are close together in the data space due to high
folding in the manifold. This neighborhood preservation in
the data space can be spotted with a strong curvature band
on the corresponding directional curvature plot.

The magnification factor is represented by color shading
in the projection manifold (e.g., see Figure 4(c)). The lighter
the color, the more stretch in the projection manifold. The
direction of folding in the projection manifold plot is pre-
sented using a small line for each part of the projection
manifold in the directional curvature plots (e.g., see Fig-
ure 4(d)). The length and the shade of the background
color represents the magnitude of folding. The longer the



line and the lighter the background color, higher the folding
(curvature).

3.2 Local Parallel Coordinates
The parallel coordinates technique [16] maps the D dimen-

sional data space onto two display dimensions by using D
equidistant axes which are parallel to one of the display axes.
It displays each multi-dimensional data point as a polygo-
nal line which intersects the horizontal dimension axes at
the position corresponding to the data value for the corre-
sponding dimension.

Instead of displaying parallel coordinates for all the data
points together, which is impractical for a large dataset, we
provide an interactive facility to let the user select a point
on the projection manifold and display parallel coordinates
for the n nearest neighbors of that selected point. Figure
3(a) displays an example of parallel coordinates used on a
GTM projection: when the user clicks on a point in the
projection (upper plot), the data space visualization graph
shows a color coded plot of normalized property values for a
group of points close in the projection space. We call this a
local parallel coordinates technique. This facility has proved
very useful for the domain experts at Pfizer1 to understand
large high-dimensional datasets. Using this facility, the user
can study properties of a high-dimensional data point in the
data space while working with the lower-dimensional latent
(projection) space. A detailed example discussing how local
parallel coordinates are used to explore a projection mani-
fold is presented in Section 5.2.

3.3 Billboarding
For many real-life datasets which have a natural repre-

sentation, e.g. chemical compound structure, handwritten
digit recognition, face recognition, galaxy classification, etc.,
using this natural representation of data points in the pro-
jection is more useful to understand the data compared with
data represented by labelled and/or colored dots.

Here the term ‘billboarding’ means visualizing a natural
representation of a data point in the form of an image, in
such a way that the image always faces the viewer (even in
3D). A chemical compound structure or a hand written digit
image is certainly more user-friendly than a dot.

Partiview [22] is an interactive 3D visualization tool sup-
porting a billboarding facility, primarily created for astronomy-
related applications. But recently it has been successfully
used for visualizing the output of some machine learning
algorithms [31].

The number of pictures that can be displayed at a time de-
pends on how much graphics memory is present. Figure 3(b)
presents a close up of the points visualized for the MNIST
database [21] using Laplacian eigenmaps [3]. Billboarding
presentation of images of the handwritten digits provides
us an intuitive visualization and can help us to identify why
certain data points are misclassified (e.g., notice that in Fig-
ure 3(b), images of 7s and 9s on the top left corner of the
plot are quite similar). Partiview also provides many use-
ful interaction facilities, such as 3D zooming and traversal,
selective plotting of classes, properties displace, etc. [22].

4. THE INTEGRATED VISUAL DATA MIN-
ING FRAMEWORK

1Pfizer Global Research and Development, Kent, UK.

The integrated visual data mining framework combines
principled projection algorithms, discussed in Section 2, and
visual techniques, discussed in Section 3, to achieve a better
understanding of the data space. It follows Shneiderman’s
mantra [30],“Overview first, zoom and filter, details on de-
mand”, to develop an effective interface.

To support the ‘overview first’ stage of Shneiderman’s
mantra, output of the projection algorithms and basic visu-
alization aids such as highlight, rotate, etc., are provided for
exploring a large high-dimensional dataset. For the second
stage, ‘zoom and filter’, visualization aids such as zooming,
filtering interesting regions on the projection manifold with
the use of magnification factor and directional curvatures
plots, etc., are provided. This allows the user to identify
and concentrate on interesting subsets of the projection we
obtained in the first stage. The third stage, ‘details-on-
demand’, is supported using local parallel coordinates and
billboarding. Integration with other visualization tool is also
possible at various stages.

Moreover, a single two-dimensional projection, even if it
is non-linear, is not usually sufficient to capture all of the
interesting aspects of a large high-dimensional data sets. A
hierarchical system which allows user to interactively drill
down in the projection can be useful.

Interactive visual methods support the construction of
HGTM models and allow the user to explore interactively
interesting regions in more detail. Visual aids described in
Section 3 are provided at each stage of the HGTM model
development. First, a base (Root) GTM is trained and used
to visualize the data. Then the user identifies interesting
regions on the visualization plot that they would like to ex-
plore in greater detail. In particular, the user chooses a col-
lection of points, ci ∈ H, by clicking on the projection plot.
The “regions of interest” given by these points (centres) are
then transformed into the data space as Voronoi compart-
ments [2] defined by the mapped points fRoot(ci) ∈ D, where
fRoot is the map of the Root GTM. The child GTMs are
initiated by local PCA in the corresponding Voronoi com-
partments.

After training the child GTMs and seeing the lower level
visualization plots, the user may decide to proceed further
and model in greater detail some portions of the lower level
plots, etc. Thus, HGTM allows domain experts to segment
the input space interactively using data visualization.

When the dataset is very large, the higher-level projection
plots may be cluttered and confused (with densely clustered
and overlapping projections). This makes it difficult for the
user to select locations for submodels at the next level. In
such cases, an alternative semi-automatic submodel initial-
ization algorithm [28], based on minimum message length
(MML) criteria, which decides both the number of submod-
els and their location can be used for higher-level projections
of the visualization hierarchy and then the domain expert
can take control to guide the lower-level projections.

We have developed an interactive software tool that sup-
ports this framework [24]. The interface is developed in
Matlab2 using the Netlab [27] toolbox. The tool sup-
ports other projection methods, such as PCA, Sammon’s
mapping, and SOM. The interface has proved useful for do-
main experts to understand and mine large high-dimensional

2 c©The MathWorks Inc., http://www.mathworks.com/



(a) The projection interface and the local parallel coor-
dinates.

(b) Billboarding example.

Figure 3: Information visualization facilities.

datasets.
Visualization is a valuable tool for exploring and under-

standing data, but in many applications the fundamental
task is one of prediction. It has been argued that a sin-
gle global classification/regression model can rarely capture
the full variability of a huge multi-dimensional dataset. In-
stead, local models, each focused on a separate area of input
space (a cluster), often work better since the mapping in dif-
ferent areas may vary. The tool also supports the guided
mixture of local experts model, which uses the soft seg-
mentation obtained using probabilistic hierarchical visual-
ization algorithms, such as HGTM, to formulate the guided
local mixture of experts model [25]. Thus the visual mining
framework is not just a visual exploration tool but also sup-
ports guided modelling where the domain expert is closely
involved.

5. EXPERIMENTS
Experiments were carried out on a real-life dataset from

the pharmaceutical domain. A typical challenge in the early
stages of the drug discovery process is to understand and
explore large datasets containing High Throughput Screen-

ing (HTS) results (biological activity) alongside some whole-
molecular properties [11]. A chemist/biologist is interested
in studying and exploring clusters of active compounds to
understand the data and make informed decisions for fu-
ture screens. The chemoinformatics dataset provided by the
chemist at Pfizer is described in Section 5.1. The results are
discussed in Section 5.2.

5.1 The Dataset
The chemoinformatics dataset, we used, is composed of

23,600 compounds having biological activity data for five
different biological targets and 11 whole-molecular physic-
ochemical properties. Thus, the dataset has, in total, 16
variables (dimensions) in the data space and we want to
effectively visualize it on a 2-dimensional manifold.

Out of these five biological targets, two are peptidergic G-
Protein coupled receptor (GPCR) targets, two are aminergic
GPCR targets, and one is a kinase target. The four GPCR
targets are of related receptor types whilst the kinase is a
completely unrelated enzyme target class. Table 1 lists the
label information and distribution of compounds in different
labels.

In addition to the biological activity values, 11 whole–



Table 1: Label information and compound distribu-
tion across labels.
Label Description Marker Compounds

Not active in any screen • 21540
Active for peptidergic type1 + 236
Active for peptidergic type2 ∗ 362
Active for aminergic type1 2 100
Active for aminergic type2 4 818
Active for kinase 3 412
Active for more than 1 screen ◦ 132

Table 2: Molecular physicochemical properties.
AlogP

Molecular solubility

Number of atoms

Number of bonds

Number of Hydrogens

Number of ring bonds

Number of rotatable ring bonds

Number of Hydrogen acceptors

Number of Hydrogen donors

Molecular polar surface area

Molecular weight

molecule physiochemical properties were included for each
compound in the dataset. Table 2 lists the physicochemical
properties used.

Since different input variables in the dataset have different
ranges, before the development of visualization models we
apply a linear transformation (Z-score transformation) to
have similar ranges for all variables. Each variable is treated
independently and is rescaled as follows:

µi =
1

N

NX
n=1

xi
n (5)

σi
2 =

1

N − 1

NX
n=1

(xi
n − µi)

2, (6)

where n = 1, ..., N indexes the patterns, and µi and σi
2

represent mean and variance of variable i respectively. Then
the values are scaled by

x̃n
i =

xi
n − µi

σi
. (7)

where x̃n
i is the scaled value of variable i for the pattern n.

Histograms of variables after the scaling show approximately
normal distributions (the plot is not included in the paper
due to the space constraint).

50% of the dataset was used as the training set and the
remaining 50% was used as the test set.

5.2 Results
Figure 4(a) shows the projection using the Neuroscale [23],

a novel neural network implementation of Sammon’s map-
ping, algorithm. The projection in Figure 4(a) is like a blob
and does not help us to understand the ‘structure’ of data in
data space. GTM visualization results are shown in Figure
4(b). The GTM plot shows clear clusters for the compounds

active for different targets. The GTM visualization is cer-
tainly more informative than the visualization results ob-
tained from PCA, Sammon’s mapping, and SOM (PCA and
SOM projection results are similar to those for the Sam-
mon’s mapping. They are not shown here because of the
space constraint).

Though visually we can easily observe the effectiveness
of GTM projection on this dataset, it is useful to get an
analytical measurement of the separation between different
data classes in the projections. To obtain such a measure-
ment, first we fit a Gaussian mixture model (GMM) [4] on
each class in the projection space and then we calculate
the Kullback-Leibler (KL) [9] divergence between the fitted
GMMs as below:

KL(pa, pb) =
X

x

pa(x) log
pa(x)

pb(x)
, (8)

where pa and pb are the GMMs for classes a and b respec-
tively.

The higher the value of KL divergence, the greater the
separation between classes. Table 3 presents the sum of the
entries in the KL divergence matrix for different visualiza-
tion model outputs. GTM projection has a much higher KL
divergence matrix sum, which is evidence for better separa-
tion using GTM.

Table 3: KL divergence matrix sum for different
projection models.

Visualization model KL divergence matrix sum

PCA 33.63
Neuroscale 56.34
SOM 56.37
GTM 127.42

Once the GTM projection is obtained, the user can study
the dataset in more detail using different interactive visual
aids. The corresponding magnification factor (MF) and di-
rectional curvature (DC) plots of the GTM projection man-
ifold (Figure 4(b)) are presented in Figure 4(c) and Fig-
ure 4(d) respectively. Using the MF plot displayed in Figure
4(c), we observe the stretching in the data space. For ex-
ample, higher value of MF in the bottom-right corner of the
MF plot shows that compounds active for peptidergic type 2
target (marked as ∗) are clustered far away from the bulk of
the data. Visual inspection of the direction lines and back-
ground color in the DC plot presented in 4(d) can help the
user to understand the curvature directions and magnitude
of the folding in the projection manifold.

Magnification factor and directional curvature plots are
also useful for making decisions about number and the posi-
tions of the centers for GTM subplots during the training of
an HGTM model. For example, the lighter bands at the bot-
tom right corner in the directional curvature plot (see 4(d))
reveals a huge folding in the projection manifold to cover the
data space. This helps us to understand that there could be
a cluster there even though the data points are not marked
(labeled) differently. Magnification factors and directional
curvatures plots are mainly used to understand projection
space and data space in detail. But if the data are not col-
ored (labeled) (for example if we do the analysis on a virtual
compound library), magnification factor and directional cur-



(a) Neuroscale projection. (b) GTM projection.

(c) Magnification Factors for the GTM projec-
tion.

(d) Directional Curvatures for the GTM projec-
tion.

Figure 4: Neuroscale and GTM projections for the chemoinformatics dataset with MF and DC plots for the
GTM projection. Legend information for (a) and (b) is given in Table 1.

vature plots can be used to observe clusters in the projection
and data space.

Local parallel coordinate plots help us to observe varia-
tions in the patterns in different regions of a projection plot.
Figure 5 shows how patterns of physicochemical properties
vary in different regions of the GTM projection. A careful
study with the parallel coordinate technique reveals inter-
esting structures in the projection space. It can be observed
that the active compounds for different targets are nicely
clustered. Close study with the help of local parallel coor-
dinate technique reveals that the compounds marked as ‘◦’,
present in the clusters for peptidergic type 1 and peptidergic
type 2, are the active compounds for both of the peptidergic
targets. That is in line with the fact that some compounds
are active for both of the peptidergic targets.

Billboarding is an effective way to display chemical com-
pound structures in the projection manifold. Because of the

confidentiality agreement with Pfizer, we are not able pro-
duce billboarding results on the chemoinformatics dataset.

The HGTM visualization results are presented in Figure
6. Active compounds can be seen in different clusters in
the root GTM. The deeper level plots clearly separate inter-
esting local regions. At each level, the magnification factor
plots, directional curvature plots, parallel coordinates, and
the basic visual exploration facilities are used to make de-
cisions about where to place the center of a subplot for the
next level.

6. COMPUTATIONAL COST
Although the rapid development of high-performance com-

puting has to some extent altered our perception of compu-
tational complexity, this issue cannot be ignored in a visual
data mining framework where user interaction is important.

The computational cost for PCA scales as linear, O(N), in



Figure 5: Local parallel coordinates demonstrating variations in the patterns in different regions of the GTM
projection (plot 4(d)). Legend information is given in Table 1.

Figure 6: HGTM projection of the chemoinformatics dataset. Legend information is given in Table 1.



the number of data points (N). Neuroscale suffers from the
fact that the computational demands grow with the square
of the number of data points, O(N2). This is because each
evaluation of the Stress error requires the computation of
N(N−1)/2 inter-point distances. In practice, for large data
sets, it is common to apply an initial clustering phase to
the data set (using for example the K-means algorithm), to
generate a set of K prototype vectors (where K � N). Neu-
roscale can then be applied to these prototype vectors at a
much reduced computational cost. Here we used Neuroscale
with the fast shadow targets training algorithm [32].

The distance calculation between data points and mix-
ture components of reference vectors, respectively, is iden-
tical in SOM and GTM training algorithms. Updating the
parameters in SOM training depends on the neighborhood
function. In the experiments presented here it was contin-
uous on the latent space so the parameter updating scales
as O(L2ND + L2), where L is the number of grid points in
the SOM map and D is the dimension of the data space.
When updating parameters, the GTM requires a matrix in-
version of an M×M matrix, where M is the number of basis
functions, followed by a set of matrix multiplications. The
matrix inversion scales as O(M3), while the matrix multipli-
cations scales as O(LND)3, where L is the number of grid
points in the GTM latent space.

Table 4 shows the time taken to train different projec-
tion models on the training set using an Intel Pentium 4 -
2.4GHz machine with 2GB of RAM. The implementation of
the algorithms in C/C++ instead of Matlab can further
improve the speed.

Table 4: Training time for different projection mod-
els (N = 11800, 20 iterations).

The model Time (seconds) Architecture

PCA 1 -
Neuroscale 546 -
SOM 36 L = 256
GTM 42 L = 256, M = 64

Once the models are trained, the computational cost to
project data for the subsequent test set scales as linear,
O(N), in the number of data points (N) in the test set.

7. CONCLUSIONS
To understand a large high-dimensional dataset, close in-

tegration of principled projection methods and information
visualization techniques are useful to develop an effective vi-
sual data mining framework. The interface developed using
this framework and following Shneiderman’s mantra for de-
sign provided us with a useful tool for visual data mining of
large high-dimensional datasets.

Traditional projection algorithms used in data mining do-
main, such as PCA, Neuroscale, and SOM, are not pow-
erful enough for a good projection for many real life sci-
entific problem where one has to deal with a complex high-
dimensional dataset. The GTM algorithm, a principled pro-
jection algorithm, has provided a better projection (in terms

3To be exact, the matrix multiplications scales as O(LMD+
LND), but normally the number of data points, N , exceeds
the number of basis functions, M .

of cluster separation) than the projection obtained from the
traditional methods, such as PCA, Neuroscale, and SOM.
For the chemoinformatics dataset analysed here, the KL di-
vergence matrix sum results presented in Table 3 clearly
show the effectiveness of the strong class grouping we obtain.
With the use of interactive visual aids provided during the
projection output, we not only can characterize hit popula-
tions from different target classes (i.e. peptidergic GPCRs
vs. aminergic GPCRs vs. kinases) but can also understand
areas of overlap.

Magnification factor and directional curvature plots of
GTM helped to provide a better understanding of the pro-
jection manifold and its fitting on data in the data space.
The local parallel coordinates technique proved to be a use-
ful tool to understand data points in interesting regions of
the projection manifold more in detail. Since the struc-
ture of compounds is very important in drug discovery, bill-
boarding could be a useful feature for the domain experts
(chemists and screening scientists) at Pfizer to visualize chem-
ical structures in the projection manifold.

HGTM models are useful to explore clusters and inter-
esting local regions in details in a large dataset. Note that
this results are only for 11,800 compounds. The number of
compounds one has to consider during the drug discovery
process is enormous; in such situations, a single GTM pro-
jection can look cluttered but a well trained HGTM model
could be very useful to provide a better grouping.

The computational cost to train a GTM algorithm is ac-
ceptable for inclusion in the visual data mining framework.
The GTM and HGTM algorithms are scalable so having a
large number of data points during training, however, causes
no difficulty beyond increased computational cost.

The interface we developed supports powerful machine
learning algorithms and information visualization techniques.
The interface is also flexible enough to let a user export data
points from selected region on a projection manifold and an-
alyze them further using industry standard data mining tool
such as PipeLine Pilot [39] and SpotFire [40].

In the future we plan to develop data visualization using
GTM with simultaneous feature selection and model selec-
tion for unsupervised learning problems.
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