Mathematical and numerical modelling of dispersion-managed solitons, autosolitons and self-similar optical pulses

Boscolo, Sonia A. (2002). Mathematical and numerical modelling of dispersion-managed solitons, autosolitons and self-similar optical pulses. PhD thesis, Aston University.

[img]
Preview
PDF (Mathematical and numerical modelling of dispersion-managed solitons)
19Mb

Abstract

This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.

Item Type:Thesis (PhD)
Additional Information:Department: Engineering and Applied Science If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Uncontrolled Keywords:dispersion-managed, perturbation approach, autosoliton transmission, fibre systems, speed transmission system, optimisation, nonlinear optics, perturbation theory for optical solitons, optical fibre communication systems, all·optical passive regeneration, self·similar phenomena in optics
ID Code:7997
Deposited By:Mr. Peresi Zigiriza
Deposited On:30 Jun 2010 12:04
Last Modified:20 Feb 2014 09:47

Repository Staff Only: item control page