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Healthy brain functioning depends on efficient communication of information between brain 
regions, forming complex networks. By quantifying synchronisation between brain regions, a 
functionally connected brain network can be articulated. In neurodevelopmental disorders, 
where diagnosis is based on measures of behaviour and tasks, a measure of the underlying 
biological mechanisms holds promise as a potential clinical tool. Graph theory provides a 
tool for investigating the neural correlates of neuropsychiatric disorders, where there is 
disruption of efficient communication within and between brain networks. This research 
aimed to use recent conceptualisation of graph theory, along with measures of behaviour 
and cognitive functioning, to increase understanding of the neurobiological risk factors of 
atypical development. Using magnetoencephalography to investigate frequency-specific 
temporal dynamics at rest, the research aimed to identify potential biological markers 
derived from sensor-level whole-brain functional connectivity. Whilst graph theory has 
proved valuable for insight into network efficiency, its application is hampered by two 
limitations. First, its measures have hardly been validated in MEG studies, and second, 
graph measures have been shown to depend on methodological assumptions that restrict 
direct network comparisons. The first experimental study (Chapter 3) addressed the first 
limitation by examining the reproducibility of graph-based functional connectivity and network 
parameters in healthy adult volunteers. Subsequent chapters addressed the second 
limitation through adapted minimum spanning tree (a network analysis approach that allows 
for unbiased group comparisons) along with graph network tools that had been shown in 
Chapter 3 to be highly reproducible. Network topologies were modelled in healthy 
development (Chapter 4), and atypical neurodevelopment (Chapters 5 and 6). The results 
provided support to the proposition that measures of network organisation, derived from 
sensor-space MEG data, offer insights helping to unravel the biological basis of typical brain 
maturation and neurodevelopmental conditions, with the possibility of future clinical utility. 
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SI Similarities 

SL synchronisation likelihood 

TBR Theta/beta ratio 

TDC Typically developing controls 

TRF Teacher’s Report Form 

TRT Test-retest reliability 

tSSS Temporal Signal Space Separation 

VCI Vocabulary 

VCI Verbal Comprehension 

WASI Wechsler Abbreviated Scale of Intelligence 

WISC-IVuk  Wechsler Intelligence Scale for Children-Fourth UK Edition 

YSR Youth Self-Report 

λ/lambda Normalised characteristic path length 

γ/gamma Normalised clustering coefficient 

σ/sigma Small-world index/small-worldness 
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1. Introduction to neurodevelopment and brain 

function 

 

1.1. Introduction 

 

The neurobiological underpinnings of neurodevelopmental disorders remain largely elusive, 

despite much scientific research attention (Konrad & Eickhoff, 2010). Early neuroimaging 

studies sought to localise brain abnormalities in discrete brain regions (Castellanos et al., 

1994; Hynd et al., 1991; Pineda et al., 2002; Semrud-Clikeman et al., 1994). However, there 

is a growing consensus that correlation patterns in distributed regions (i.e. functional 

connectivity) during spontaneous neural fluctuations (rest-state) may characterise 

abnormalities in brain function (Boersma et al., 2011; Brookes et al., 2011; van den Heuvel, 

Stam, Boersma, & Hulshoff Pol, 2008). Network analysis provides a sophisticated approach 

to characterise and visually represent the organisation of functional brain networks. Using 

this approach, studies such as those by Babiloni et al. (2002), Bonavita et al. (2011), Bos et 

al. (2014), and Hardmeier et al. (2012), have reported altered abnormalities in network 

topology in various clinical populations. In addition, the reported alterations often highly 

correlate with symptom severity, and measures of behavioural and cognitive functioning. 

Network analysis therefore offers a computationally powerful and biologically significant tool 

to investigate resting-state network organisation in neurodevelopmental conditions, typically 

those characterised by behaviour and cognitive problems, proving a means of gaining 

important insights into underlying neurobiological pathophysiological mechanisms.  

 

This introductory chapter begins with a description of the biological underpinnings of 

neurodevelopmental disorders. This then follows a general discussion of the two disorders 

investigated in this thesis, namely attention-deficit/hyperactivity disorder (ADHD), and 

dyslexia. In addition, there is a critical examination of current neuroimaging practices, their 

strengths, and limitations. Lastly, a preliminary description of the general aims of the thesis 

and brief outlines of each chapter are presented.  

 

1.1.1. Neurodevelopmental disorders 

 

The changes in cognitive and behavioural patterns observed in infancy demonstrate that the 

specific development of the brain is very important (Fatemi et al., 2009; Rice & Barone, 

2000). Hence, the observed lack of an age-appropriate behavioural function illustrates an 
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alteration in early brain development (Casey, Giegg, & Thomas, 2000; Hoff, van den Heuvel, 

Bender, Kerbergen, & De Varies, 2013; Kolb & Gibb, 2011; Kolb, Mychasiuk, & Gibb, 2014), 

thought to occur during neuronal migration (Richlan, Kronbichler, & Wimmer, 2013) and 

typically denoted by macroscopic structural changes and myelination (Paus et al., 1999). 

These processes have critical time windows, beginning in utero and in the child’s first years 

of life (Kolb et al., 2014). During this time critical and important molecular processes occur, 

which if rendered inefficient or disrupted, potentially result in subsequent atypical brain 

organisation (Rice & Barone, 2000). 

 

Neuroimaging studies have revealed that children with neurodevelopmental disorders 

experience either accelerated (Heather et al., 2012) or reduced (Eckert et al., 2003; Krain & 

Castellanos, 2006; Seidman et al., 2011) brain growth during their childhood. Abnormal brain 

structures reflect delayed or pathologically prolonged myelination (Rice & Barone, 2000). In 

a healthy infant brain, increasing myelination is reflected in white matter volume increases 

(Giedd et al., 1999). This enables the rapid transfer of information in neural systems and has 

been implicated in higher order behavioural and cognitive functioning (Deoni, Dean, 

O’Muircheartaigh, Dirk, & Jerskey, 2012; Deoni et al., 2011; Giedd et al., 1999). 

Neuroimaging data in studies of neurodevelopmental disorders has revealed disrupted 

myelination and changes in axons (Herbert et al., 2004; Zikopoulous & Barbas, 2010). 

Several accounts have been put forward to explain these disruptions to brain anatomy and 

myelination. These include environmental variables, such as prenatal viral infections (Libbey, 

sweeten, McMahon, & Fujinami, 2005), and activities of genes associated with myelination 

e.g. myelin proteolipid protein (Plpl) (Fatemi et al., 2009). 

 

The rapid myelination and macroscopic anatomical changes that take place in infancy make 

this period a time of considerable vulnerability to various distinctive susceptibilities (Perry, 

2008; Deoni et al., 2011). Neurodevelopmental disorders are believed to be the outcome of 

abnormality in or inefficiency of these processes (Ashtari et al., 2005; Szpir, 2006). 

Neurodevelopmental disorders include conditions such as autistic spectrum disorders, 

ADHD, learning disabilities, and foetal alcohol syndrome.  

 

These disorders are estimated to affect approximately 3-4 % of all children in England 

(Department for Work & Pensions, 2012) and are associated with a multitude of symptoms, 

which are often persist into adulthood (Asherson, Kuntsi, & Taylor, 2005). Developmental 

disorders often constrain the child’s ability to develop along typical trajectories (Reynolds & 

Goldstein, 1999; Szpir, 2006). The high rate of symptom overlap in many 

neurodevelopmental disorders means that these children are at a high risk of meeting the 
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diagnostic criteria of one or more neurodevelopmental conditions (Jensen et al., 2001; 

Kronenberger & Dunn, 2003).  

 

Further still, studies show that children with developmental disorders have higher rates of 

mental illness (Jensen et al., 2001; Magnuson & Constantino, 2012), drug addiction 

(Biederman, 2005; Cunha et al., 2013), and are more likely to commit crimes as adults 

(Macdonald, 2010; Tannock, 1998). As a result, the adverse effects associated with 

documented impairments in developmental disorders have enormous social, emotional, 

mental, and financial implications for families and society in general (Department for Work & 

Pensions, 2012; Macdonald, 2010). Behavioural and cognitive deficits associated with  these 

conditions include increased levels of arousal, impulsiveness, difficulties with attention, 

hyperactivity, intellectual disability, aggression, inhibition, sensory abnormalities, anxiety, 

and limited social abilities (Germano, Gagliano, & Curatolo, 2010; Purvis, & Tannock, 2000). 

 

1.1.2. Attention deficit/hyperactivity disorder (ADHD): a complex phenotype 

 

This thesis focuses on ADHD, the most common, and probably the most controversial 

neurodevelopmental condition of childhood (Acosta, Arcos-Burgos & Muenke, 2004; APA, 

2000; Konrad & Eickhoff, 2010; Wallis, 2010). ADHD is characterised by persistent age-

inappropriate levels of inattention and/or hyperactivity-impulsivity that are more frequent than 

is usually expected in typically age-matched peers (Franzen et al., 2013). Although it was 

once suggested that many children outgrow its symptoms (Faraone, Biederman, & Mick, 

2006), an increasing number of studies have revealed that ADHD symptoms persist into 

adulthood (Barkley, 2002; Hulme & Snowling, 2009; Mannuzza et al., 1993; Simon et al., 

2009).  

 

ADHD affects approximately 8% of all school-age children worldwide (Farone, Sergeant, 

Gillberg, & Biederman, 2003). Furthermore, this condition affects up to 50% of the child 

psychiatric population (Cantwell, 1996). ADHD is associated with psychological skill deficits 

that put those affected at risk of further impairments in social functioning (Frazier et al., 

2007; Wang et al, 2013), academic achievement (Klein Wendling, Huettner, Ruder, & Peper 

2006; Simon et al., 2009), and restricted overall quality of life (Mannuzz et a., 1993).  

 

A diagnosis of ADHD is based on developmentally age-inappropriate symptoms of 

inattention, and/or impulsivity and motor restlessness. As a result, three ADHD subtypes 

exist, namely predominantly inattentive subtype (ADHD-I), hyperactive/impulsive subtype 

(ADHD-H), and ADHD combined subtype (ADHD-C). It should be noted that the validity and 
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usefulness of the three subtypes is highly contested (Baeyen, Roeyers, & Walle, 2006; King 

& Young, 1982; Milich, Balentine, & Lynam, 2001).  

 

To warrant a diagnosis of ADHD, age-inappropriate symptoms must be present before the 

age of seven, pervasive in more than one setting of the child’s life, and associated with 

psychological, social, and educational impairments (APA, 2000). ADHD symptoms are 

typically managed with stimulant drugs, including Concerta, Medikinet, and Equasym. Most 

ADHD medications contain the active ingredient methylphenidate, a dopamine agonist that 

blocks dopamine transporters, and improves dopamine brain function (Swanson & Volkow, 

2009; Wang et al., 2013; Volkow et al., 2001). Note, however, that despite being one of the 

most extensively studied disorders of childhood (Wallis, 2010), ADHD remains a highly 

controversial condition. Debates centre on discrepancies regarding the hallmark for 

diagnosis, formal guidelines for assessment, the causes of ADHD, its treatment, and on the 

accuracy of prevalence rates (Band & Scheres, 2005; Foy & Earls, 2005; Greenhill, 1998).  

 

Earlier clinical work in ADHD mainly focused on neuropsychological abilities (See Barkley, 

1997, for a review). Dominant theories emphasized the role of executive functions, 

associated with one’s ability to inhibit and control impulses. Using a battery of 

neuropsychological tasks, researchers assessed various executive dysfunctions including 

mental/cognitive flexibility, planning, and working memory. As a result, several 

developmental impairments were proposed as fundamental problems underlying ADHD. The 

dominant cognitive theory of the core impairments underlying the symptoms involved an 

executive function deficit (Pennington & Ozonoff, 1996; Tannock, 1998; Wilding, 2005). This 

theory gained support from data revealing difficulties with self-managing demands, making 

ADHD a cognitive disorder, with developmental impairments of executive functions. 

 

However, although the model of executive function impairment is still widely acknowledged, 

a large body of work has demonstrated that impaired executive functions characterise other 

neurodevelopmental and psychiatric conditions (Band & Scheres, 2005; Cunha et al., 2013; 

Wilding, 2005). Another limitation of this theory concerns the commonly applied 

neuropsychological assessments used to measure the ability to engage in mental and 

executive functions. According to Band and Scheres (2005), these measures load highly on 

several latent cognitive components, and as a result do not represent pure measures of 

mental function. Instead, Band and Scheres (2005) proposed that to gain further insight into 

individual differences between those with ADHD and controls, researchers have to delineate 

the different components of cognition. Interestingly, data from Avisar and Shalev (2011), 
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Lemiere et al. (2010), and Manly et al. (2001), who used this approach, contradicted earlier 

reports of impaired sustained attention in ADHD. Explaining this result, Manly et al. (2001) 

hypothesized that observed individual differences between those with ADHD and controls 

depend solely on whether the measured variable is speed or accuracy.  

 

Elsewhere, data from other studies suggested that response inhibition was the primary 

deficit in ADHD (Barkley, 1997; Desman, Petermann, & Hampel, 2008), and that this was 

independent of cognitive task demands (Wodka et al., 2007). Working memory and set 

shifting have also been implicated in ADHD (Rohlf et al., 2012). The most consistently 

replicated feature of ADHD is intra-individual/within-subject variability in task reaction time 

(Castellanos & Tannock, 2002; Klein et al., 2006; MacDonald, Nyberg, & Bäckman, 2006). 

According to this theory, behaviour problems observed in children with ADHD are more 

characteristic of inconsistency rather than incompetence.  

 

Note however that none of the above listed dysfunctions is unique to ADHD. Whether it is 

sustained attention (Avisar & Shalev, 2011), working memory (Rohlf et al., 2012), inhibition 

(Barkley, 1997; Desman et al., 2008), or within-subject variability (Castellanos & Tannock, 

2002), it appears that poor performance on tasks designed to assess vigilance does not 

necessarily imply core ADHD specific cognitive problems. This has meant that despite the 

identification of several cognitive deficit theories, none of these has had a substantial effect 

on explaining the etiology of ADHD, meaning that the exact set of causes underlying ADHD 

remain ambiguous (Avisar & Shalev, 2011).  

 

Recent years have witnessed a shift in focus from neuropsychological dysfunction 

(Pennington & Ozonoff, 1996) to a focus on the role of brain anomalies (Castellanos & 

Acosta, 2004; Castellanos et al., 2008). Symptom similarity between children with ADHD 

and patients with neurological disorders prompted Mates (1980) to hypothesise that ADHD 

was a brain disorder, mainly affecting the prefrontal cortex (Seidman, 2006). Mates (1980) 

explained that documented lesions in both animals and humans were often associated with 

restless, reckless, and disruptive behaviour. As a result, of this association, the search for 

possible biological brain-markers in relation to ADHD has been prominent, as this would 

further the understanding of the condition and eradicate the reliance on subjective practices 

in identifying those with ADHD. In addition, if it is identified a brain-marker has the potential 

to allow early diagnosis in those at risk as well as helping provide appropriate treatment 

(Wallis, 2010).  
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Developments in various imaging techniques have enabled researchers to investigate this 

possibility. Building on findings from cognitive models, neuroimaging studies have 

consistently reported reduced activity of the prefrontal cortex (Bedard et al., 2014), ventral 

striatal (Scheres, Milham, Knutson, & Castellanos, 2007) and anterior cingulate (Bush et al., 

1999) during neuropsychological tasks designed to test vigilance and mental flexibility.  

 

1.1.2.1. The ADHD brain 

 

Interest in the role of the brain, particularly the prefrontal cortex, in relation to ADHD is very 

high. The prefrontal cortex has been widely researched, due to its involvement in the 

therapeutic actions of psychostimulants (Schmeichel, Zemlan, & Berridge, 2013). Studies 

showing that pharmacological interventions lead to the activation of dopaminergic and the 

noradrenergic neurotransmission (Schmeichel et al., 2013), have provided crucial support to 

the idea that ADHD is the result of brain anomalies. Data from Berridge et al. (2006) and 

Volkow et al. (2001) revealed that Methylphenidate, a commonly prescribed drug 

intervention, reduced the level of open dopamine receptors, significantly increasing 

extracellular dopamine levels. These neurotransmission effects on cortical dopamine have 

been hypothesised as improving prefrontal cortex-dependent cognitive functions such as 

attention and working memory (Berridge et al., 2006; Engert & Pruessner, 2008; Schmeichel 

et al., 2013).  

 

Further still, substantial evidence from both animal and human studies has suggested that 

prefrontal cortices, specifically the dorsolateral prefrontal cortex (DLPFC), are critical for 

executive functions and attention (Forbes, Poore, Krueger, Barbey, Solomon, & Grafma, 

2014; Fuster, 1997). Interestingly, the DLPFC is the slowest region to develop (Giedd & 

Rapoport, 2010). In lesion patients, DLPFC damage has been associated with impaired 

executive function, deficits in verbal, and spatial knowledge (Barbey, Koenigs, & Grafman, 

2013), and higher personality expressions of neuroticism and conscientiousness (Forbes et 

al., 2014).  

 

Whilst such findings provide crucial insights into the potential neural correlates of abilities 

and of cognitive and behavioural problems, such associations are too broad and in many 

cases not unique to a specific disorder. This is why despite remarkable progress in 

understanding the involvement of the DLPFC in executive functions, and in behavioural 

competencies in ADHD, efforts to establish the exact relationship between these factors has 

mainly yielded ambiguous results (Avisar & Shalev, 2011). Inconsistency in these studies on 

ADHD probably arises from two key factors.  
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The first issue hindering the identification of a clear link between underlying 

neuropsychological deficits and brain abnormalities in ADHD relates to the use of 

neuropsychological assessments. Many have questioned the appropriateness of task-based 

neuroimaging studies, often applied to assess cognitive functions in clinical psychology 

(Band & Scheres, 2005; Wilding, 2005). This is because the core behaviour problems 

experienced in ADHD, such as impulsivity and inattention behaviour, make it highly 

challenging to follow instructions and remain motivated in the face of cognitive stress 

(Wodka et al., 2007). This means that individuals with ADHD are disadvantaged on many 

neuropsychological tests, and as a result, poor performance and corresponding brain 

abnormalities may reflect group differences and not genuine neural correlates.  

 

The second issue hindering the identification of a clear link between underlying 

neuropsychological deficits and brain abnormalities relates to the fact that ADHD is a highly 

comorbid disorder (Biederman et al., 1993; Geller et al., 2004; Germano, et al., 2010; 

Wahlstedt, Thorell, & Bohlin, 2009). As a result, documented symptoms are often not 

heterogeneous (Avisar & Shalev, 2011; Band & Scheres, 2005; Wahlstedt & Bohlin, 2010). 

Of all neurodevelopmental disorders, ADHD co-occurs most commonly with dyslexia 

(Kronenberger & Dunn, 2003). This disability is characterised by difficulties in reading, 

despite normal intelligence. The phonological processing module of dyslexia suggests that 

those with the condition have specific difficulties in single word reading, fluency and 

comprehension (Siedman, 2006). Genetic and environmental factors play key roles in the 

aetiology of these developmental disorders. Generally, the standard protocol for 

characterising and diagnosing both conditions is based on behavioural and cognitive 

measures. However, emerging data from neuroimaging studies has shown potential in 

differentiating between children with ADHD and dyslexia (Barry et al., 2009; Clarke et al., 

2002). As will be discussed later, the research for this thesis aimed to overcome these two 

key limitations. 

 

1.2.3. Disrupted brain network architecture of resting-state neural fluctuations 

 

While the neuroimaging field was previously dominated by convergent studies seeking to 

identify localised abnormalities in distinct brain regions based on task performance, there is 

now a growing consensus that brain activity is not restricted to task-driven activations. 

Several studies have demonstrated that the brain remains active, even during spontaneous/ 

awake or passive mind wandering (Bonavita et al., 2011; Laufs, Krakow, Sterzer, Eger, 

Beyerle, & Salek-Haddadi, 2003; Mazoyer et al., 2001; Raichle et al., 2001). The scientific 

enthusiasm for investigating spontaneous neural fluctuations at rest (‘resting-state’) has 
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primarily been attributed to the discovery of a group of brain regions that remain active 

during passive states (Raichle et al., 2001). These regions form what is known as the default 

mode network (DMN) comprising the medial prefrontal cortex, the precuneus 

cortices/posterior cingulate and the mediolateral inferior parietal cortices (Konrad & Eickoff, 

2010).  

 

The advantage of resting-state paradigms over task-based research designs is that the 

demands of task performance, such as sustained attention, motivation, and training, are 

avoided (Fox & Greicius, 2010). According to Smith and Smith (2004), such factors affect the 

performance of children with developmental disorders, consequently masking their true 

abilities. In healthy participants, regions of the default mode network are strongly 

interconnected and typically remain active during wakeful rest compared to task 

performance (Fox & Raichle, 2007; Greicius & Menon, 2004). The opposite trend has been 

observed in several psychiatric populations. 

 

In light of these findings, recent years have witnessed a shift in focus. This is from the idea 

of the brain as an entity split into discrete brain regions, to viewing the brain as a complex 

network of functionally connected systems (Douw et al., 2008), that can be studied both 

during wakeful and rest periods (Stam Jones, Nolte, Breakspear, & Schelten, 2007a). In 

viewing the brain as a complex network system, researchers have relied on the knowledge 

that within the nervous system, neural population couplings result in systems of locally 

specialised (segregated) clusters and globally integrated networks. According to the ‘brain 

network system’ approach, normal brain functioning (e.g. perceptions, cognition, and 

emotions) requires the integration of functionally specialised but widely distributed brain 

areas (Bullmore, & Sporns, 2009; Douw et al., 2011; Stam & Reijneveld, 2007). The network 

approach therefore offers the best current option for evaluating brain function in both typical 

and clinical populations.  

 

Convergent data from neuroimaging studies has identified functional alterations in neural 

networks in ADHD, especially the frontostriatal pathways (Ashtari et al., 2005). Interestingly, 

in ADHD, the development of white matter pathways, connecting prefrontal and parieto-

occipital areas with the striatum and the cerebellum, have been shown to be abnormal 

(Liston, Cohen, Teslovich, Levenson, & Casey, 2011; Silk Vance, Rinehart, Bradshaw, & 

Cunningham, 2009a).  

 

Developmentally, the processes occurring during the early years of life result in network 

organisations that ensure optimal information processing and subsequent function (Fair et 
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al., 2007; Perry, 2008). During development, in addition to migration, neurons also 

differentiate and connect with other neurons, to form specialised communities (Huttenlocher. 

1979). In typical development, behaviour and cognitive functioning maturity coincide with the 

development of network organisation (Chen, Mui, Gross, & Beaulieu, 2013b; Reijneveld, 

Ponten, & Berendse, 2007). Researchers have proposed that cognition, whether typical or 

impaired, can only be fully understood with a knowledge of the brain’s spatial organisation 

(i.e. its topology) (Bos et al., 2014; de Haan, Mott, van Straaten, Scheltens, & Stam, 2012; 

Tewarie et al., 2014). Investigating disrupted network topology/architecture of the resting 

brain, in disorders characterised by disabilities in cognition, intellectual ability and 

behavioural immaturity, is therefore of high relevance. 

 

1.2.4. Graph theoretical analysis  

 

Graph theory has provided a sophisticated computational tool to characterise and visually 

represent network organisation of brain fluctuations (Schwarz & McGonigle, 2011; Sporns, 

Chialvo, Kaiser, Hilgetag, 2004; Tewarie et al., 2014). Often credited to the work of Euler, 

graph theory is a branch of mathematics concerned with the study of abstract network 

structures. Using mathematical representations, a graph visually articulates a complex brain 

as a set of regions (nodes) linked together, with the fewest possible connections (edges) 

(See Figure 1.1) (Bullmore & Sporns, 2009; Stam et al., 2007a).  

 

 
 

A representation of the brain modelled as a network consisting of distributed regions (nodes) 
and their connections (edges). Figure adapted from (Bassett, 

http://online.kitp.ucsb.edu/online/brain-m11/bassett/pdf/Bassett_Brain11_KITP.pdf, 
http://web.med.unsw.edu.au/bcw08). 

 

 

Figure 1. 1 Graphical representation of complex large-scale 
networks 
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Studies applying graph theory have gained insight into how the properties of brain network 

topology are able to ensure efficient organisation in a typical brain. According to researchers 

such as Bullmore and Sporns (2009), and Fair et al. (2008), cognitive functions are 

supported by rapid integration of information processing across segregated brain regions. 

The mechanisms of segregation of local brain regions and integration of spatially discrete 

regions (Bullmore & Sporns, 2009) are respectively assessed using two dominant network 

metrics. These are known as the clustering coefficient (a measure of the degree of node-

neighbourhood connectedness), and the characteristic path length (a measure of how well a 

network is connected) (Stam et al., 2014). Clustering coefficient reflects local network 

connectivity (i.e. densely connected local neighbouring clusters) while characteristic path 

length reflects global network connectivity.  

 

The optimal organisation of high local clustering and short path lengths form what has now 

come to be described as the small-world network and has been demonstrated in many 

biological systems (Watts & Strogatz, 1998; Bullmore & Sporns, 2009; Bullmore & Sporns, 

2012). This topology is considered optimal for functioning because the high number of short 

distance connections is coupled with fewer more specialised long-range connections in a 

cost effective manner (Bullmore & Sporns, 2009; Stam & Reijneveld, 2007; Stam & van 

Straaten, 2012). Stam (2004), who revealed that functional brain networks in healthy adults 

were characterised by small-world properties, reported the first application of graph theory. 

Studies have since revealed that during typical development processes network topology 

shifts from a random network topology, that is characterised by larger numbers of paths with 

equal probability of connecting any two nodes in a network, to a more small-world 

organisation (Boomsma, & de Geus, 2008; Fair et al., 2009; Smit, Stam, Posthuma, 

Boersma et al., 2011; Wu et al., 2012).  

 

Changes in network topology are sensitive to genetic factors (Smit, 2013), cognitive abilities 

(van den Heuvel, Stam, Kahn, & Pol, 2009), gender (Gong et al., 2009), and sleep (Verweij 

et al., 2014). Clinically relevant, studies have revealed that the small-world topology is 

disrupted/disconnected by disease, damage, or atypical development. This is known as the 

‘disconnection hypothesis’ (Breakspear et al., 2003; Friston, 1998). Abnormal or altered 

network topology has been reported in schizophrenia (Friston, 1998; Micheloyannis, 2012), 

Alzheimer’s disease (Tijms et al., 2013), autism (Peters et al., 2013), severe reading 

difficulties (Vourkas et al., 2011), late-life depression (Ajilore, Lamar, Leow, Zhang, Yang, & 

Kumar, 2014), and fragile X syndrome (van der Molen, Stam, & van der Molen, 2014). In 

addition, disrupted small-world architecture in psychiatric conditions is often associated with 

behaviour problems, cognitive deficits, and symptom severity (Stam et al., 2014). As a result, 
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disturbances in functional networks, specifically of small-world organisation, have been 

proposed as the underlying pathophysiological mechanisms of documented clinical problems 

in psychiatry (Schwarz & McGonigle, 2011).  

 

1.2.4.1. Possible biological mechanism underlying graph network topology 

 

As stated earlier, brain networks with a small-world topology ensure optimal information 

processing based on an optimal balance between segregation and integration. 

Neuroimaging studies have revealed that the relationships between local and global 

structures illustrate individual differences in underlying physiological mechanisms (Jann et 

al., 2012), such as white matter tracts (Vaessen et al., 2011; Kim et al., 2011). The strongest 

support for the hypothesis that graph-based measures of network integration/path length 

reflect structural white matter abnormalities with altered distant fibre bundles has mainly 

come from diffusion tensor imaging (DTI) studies. With DTI, researchers have been able to 

quantify white matter structure through fibre tractography. Combining DTI and graph theory, 

Vaessen et al. (2011) revealed associations between white matter network abnormalities 

and deficits in cognitive function in epilepsy. This study also revealed that patients with 

severe cognitive impairments had significantly lower clustering and higher path lengths 

compared to typical controls and patients with little or no cognitive impairment. Using similar 

methodological procedures, Kim et al. (2011), showed that among cannabis users, 

individuals with less optimal global network organisation scored significantly higher on 

schizotypal and impulsive personality characteristics. Interestingly the study conducted by 

Vaessen et al. (2011) revealed that in epilepsy white matter organization disruption and not 

white matter volume correlated with symptom severity. 

 

The above studies suggest that altered network organisation reflects physiological 

processes that increase vulnerability to cognitive and behaviour problems. More importantly, 

Vaessen et al. (2011) allude to the idea that functional connectivity (i.e. the temporal 

correlation between the sub-components of different brain regions) is sensitive to cognitive 

ability, regardless of anatomical basis (i.e. white matter volume).  

 

1.2.4.2. Limitations of graph theory  

 

Application of classical graph theoretical network analysis has increased insight into 

functional network organisation, in modelling development, mental state (i.e. rest vs. 

cognitive engagement), and disease-related changes at both local and global time-scales. 
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However, its application relies on assumptions that have been shown to display bias 

between subject network comparisons (van Wijk, Stam, & Daffertshofer, 2010). These 

include the network size (i.e. the number of nodes in networks), the sparsity of the network 

(i.e. the percentage of existing links/connections) and average degree (i.e. the number of 

links per node) (Boersma et al., 2013b; Tewarie et al., 2014; van Dellen et al., 2013; vanWijk 

et al., 2010). These factors often vary between individuals. For instance densities have been 

shown to change with development (Gong et al., 2009; Otte et al., 2015), which according to 

Otte et al. reflects reduced white matter integrity. (See Chapter 2 for a detailed discussion of 

other limitations of graph theory). As a result, these limitations make network comparison 

challenging. In fact Stam et al. (2014) argues that not controlling for these factors explains 

why some studies applying graph theoretical analysis for those with Alzheimer’s’ disease 

report pathological increases of clustering coefficient and path length while others reveal the 

opposite trends as reported by Tijms et al. (2013).  

 

To minimise dependence on the percentage of available connections in conventional graph 

measures, researchers normalize graph metrics using surrogate/random networks (see 

Chapter 2, section 2.7.1., for a detailed account of normalisation). In so doing, the 

dependency of network measures (predominantly clustering and path length), on edge 

weighting, and on global functional coupling is minimised (van Dellen et al., 2014). However, 

normalisation does not fully eliminate the problem, and may in fact introduce other biases 

(See Tewarie et al., 2014; van Wijk et al., 2010, for a review).  

 

1.2.5. Minimum spanning tree 

 

An alternative approach of visually articulating and comparing brain networks of different 

groups is to construct a subgraph that connects all nodes in the original weighted (i.e. fully 

connected) graph without forming any circles or loops and is independent of average 

functional coupling strength (van Dellen et al., 2013). Such a subgraph is known as a 

spanning tree. The minimum spanning tree (MST) is the least total weight of possible 

spanning trees in the original graph (Boersma et al., 2013). As a subset of the strongest 

connections in the original network, an MST forms the ‘critical backbone’ of information 

processing of a weighted graph (Tewarie et al., 2014; van Dellen et al., 2013), which enables 

direct network comparisons between groups. 

 

As is the case for graph-based network topology, minimum spanning tree analysis results in 

two extreme topologies, namely a path and a star (Stam et al., 2014, see Chapter 2, section 

2.7.2., for a thorough discussion). These topologies are characterised using several metrics. 
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Note, however, that although MST comprises the strongest connections in the original graph 

(Otte et al., 2015), most of its metrics are highly correlated; and would therefore benefit from 

fewer but more independent measures (Stam et al., 2014). Currently evidence is lacking 

regarding the most robust measures. For this reason, the selection of the MST measures in 

chapters 4, 5, and 6 were informed by the other only high temporal resolution study 

(Boersma et al., 2013b) to apply MST to investigate age-related changes in networks. These 

authors showed that MST metrics, diameter (i.e. largest path between any two nodes of the 

tree), leaf number (i.e. the number of tree nodes forming exactly one connection to another 

tree), eccentricity (i.e. the longest distance between node i and any other tree node in the 

MST), and hierarchy (a measure of the optimal balance between integration and overload of 

central nodes), were sensitive to developmental changes in network organisation. These 

measures can be used to characterise network organisation in the context of the two 

extreme tree topologies (Stam et al., 2014).  

 

As a result, studies exploring changes in functional networks will focus on these measures. 

According to Stam et al. (2014), the leaf number is an especially important measure because 

it determines the extent to which a tree is more chainlike or more star-like. For Otte et al. 

(2015), the lower the eccentricity, the more central a node is, in a tree. Hence, increased 

eccentricity means increased shortest path length between nodes, which suggests a less 

integrated and efficient topology. It has been proposed that higher clustering and longer path 

length possibly reflect larger diameter, eccentricity, and lower leaf number (Stam et al., 

2014). The researchers hypothesise that it is likely that a more regular network (i.e. high 

clustering and high shortest path length) corresponds to more chain-like trees, while 

networks that are more random correspond to more star-like trees. MST measures have 

been shown to be able to capture longitudinal age-related network changes (Boersma et al., 

2013b) and pathology (Tewarie et al., 2014; van Dellen et al., 2013).  

 

1.2.5.1 Possible biological mechanisms underlying MST network topology 

 

Can changes in minimum spanning tree be interpreted in the context of neural structure and 

function? According to Wu et al. (2006), minimum spanning trees represent ‘super highways’ 

and ‘peripheral roads’ in neural networks (Stam et al., 2014). Support for the argument that 

minimum spanning tree represents the most important or core shortest paths in neural 

networks (Olde Dubbelink et al., 2014; Otte et al., 2015; Tewarie et al., 2014), comes from 

recent reports of associations between MST metrics and symptom severity in clinical 

populations. MST metrics are associated with network alterations in shortest path length, 

which Otte et al. attributed to changes in white matter integrity. Hence, in 
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neurodevelopmental disorders where abnormal myelination has been reported, it makes 

sense to use MST to understand network topology. Equally, in healthy participants, slow 

myelination in older age may underlie changes in network topology that may in turn explain 

documented cognitive decline.  

 

It is important to note however, that despite being, bias-free, minimum spanning tree network 

analysis is a relatively new approach and not much is known about what its measures imply 

in relation to conventional graph analysis (Stam et al., 2014). In addition, because of 

discarding weighted connections that form loops/circles in the original graphs, it is 

challenging to assess local network efficiency such as clustering, using MST metrics (Stam 

et al., 2014; Tewarie et al., 2014). This means that minimum spanning tree network analysis 

applied on its own would not improve understanding of local network topology. This, and the 

fact that more is known about the link between conventional graph theoretical measures and 

cognitive functioning, as well as behavioural functioning, is the main reason why the studies 

in Chapters 4, 5, and 6 applied both conventional normalized graph-based measures and 

minimum spanning tree metrics to characterise network architecture.  

 

In this thesis, brain activity was investigated using the Magnetoencephalography (MEG) 

technique. Due to its excellent temporal resolution, this technique offers direct measurement 

of neural activity with millisecond time precision (Stam & Reijneveld, 2007), hence providing 

a technique well suited for investigating neural fluctuations in real time. (Nolte & Marzetti, 

2014). According to Boersma et al. (2013a) recorded brain oscillations are understood to 

derive from synchronisation of neural networks in the brain underlying sensors. MEG is used 

routinely in mapping brain functions associated with motor, visual, and auditory cognitive 

functioning. Compared to EEG, another non-invasive direct technique to measure ongoing 

brain activity and with excellent time resolution (Nolte & Marzetti, 2014), MEG has better 

spatial resolution and considerably reduced participant preparation time, making it suitable 

for paediatric and clinical neuroimaging.  

 

1.2.6. Aims and questions addressed by this thesis 

 

In sum, this thesis attempts to answer four questions. First, are conventional graph 

theoretical network measures stable/reproducible across repeated testing processes 

(Chapter 3)? Second, are graph and minimum spanning tree measures sensitive to changes 

in network organisation in relation to development in typical individuals (Chapter 4)? Third, if 

they are sensitive to changes during typical development, could they be applied to analyse 

brain network topology in ADHD (Chapter 5)? Fourth, as previously discussed, comorbidity 



27 
 

with dyslexia strongly suggests shared neurodevelopmental-related influences. Hence, the 

work reported in Chapter 6 investigated whether ADHD and dyslexia are characterised by 

co-shared abnormalities in functional networks. Alongside these core questions, elements of 

the study also assess the relationship between functional network organisation and cognitive 

and behavioural problems.  

 

It is argued that the addition of a passive measure of brain function alongside current 

standard methods for assessing ADHD and dyslexia has the potential to: 

 

1. Enhance diagnosis by providing a more objective measure for assessment alongside 

current measures; 

2. Improve the evaluation of severity in regard to the behavioural and cognitive 

phenotypes; 

3. Provide possible biological markers, which could be used for identifying those at risk, 

monitoring progress, and exploring the implications of pharmacological intervention; 

4. Facilitate an understanding of the underlying pathophysiological mechanisms of 

documented problems. 

 

1.2.6.1. Brief summaries of thesis main studies  

 

Using cross-sectional analysis, this thesis seeks to explore whether it is possible to 

meaningfully interpret network measures obtained from resting-state data, to understand 

network changes in relation to development, and to understand substantive disruptions 

indicative of network changes in atypical neurodevelopment, specifically ADHD and dyslexia, 

the two neurodevelopmental disorders that occur more frequently than is expected by 

chance during childhood. 

 

Chapter 2: General methodology  

 

This chapter provides a summary and description of the tools applied in this thesis including 

measures of cognitive ability, of behavioural problems, and those of rest-state brain function. 

This chapter also provides a justification for the application of two different network analyses. 
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Chapter 3 ( Experimental study 1): Reproducibility of graph network measures of functional 

brain networks  

 

Increased application of graph theory in clinical populations has proved a computationally 

powerful and biologically meaningful tool for characterising disease states as well as 

providing novel insights into underlying biological processes. However, despite increased 

application, reproducibility of graph metrics has received very little attention and until 

recently, remained to be evaluated in MEG resting-state studies. A necessary task, in 

ensuring the continued application of graph metrics of brain functional network organisation 

in clinical populations, is therefore to demonstrate that such measures have sufficiently good 

reproducibility on repeated testing. Demonstrating satisfactory reproducibility of these 

measures would help validate their clinical potential to assist understanding of underlying 

pathophysiological mechanisms. The aim of this study was therefore to examine the test-

retest reproducibility of functional connectivity and network parameters using a repeated 

testing approach. Note that the metric reproducibility of MST measures was not assessed in 

this study. Unlike graph-based measures, MSTs are mathematically quantified to reflect the 

more important network properties, and as a result can withstand connectivity noise and 

potential dependence on network size (Tewarie et al., 2014).  

 

Chapter 4 (Experimental study 2)  

 

There is a growing consensus that cognition is associated with functional organisation of 

brain networks. Given that disruption of brain organisation is understood to underlie 

developmental disorders such as ADHD and dyslexia, it is crucial to gain insight into how 

typical brain organisation develops in typical participants. To achieve this, this chapter 

estimated whole-brain functional brain connectivity across development, first in children and 

adults and later across a broad age-range. Then using graph theoretical analysis and 

minimum spanning tree, organisation of functional networks was mapped and compared 

across different age groups.  

 

Chapter 5 (Experimental study 3)  

 

It is becoming increasingly clear that a key feature of neurodevelopmental conditions is the 

profound alterations in the pattern of local and/or global functional connections in complex 

brain neural systems (Chen et al., 2013b). Neurobiological correlates of ADHD remain 

largely elusive. Data from various studies has suggested that ADHD is associated with 

altered function of spatially distinct brain networks. However, with a focus typically on pre-
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defined regions, the disruption of whole-brain functional network organisation remains poorly 

understood. Using graph theory and MST, this study seeks to characterise complex brain 

network organisation in a clinical medicated sample of children and teenagers with ADHD 

and age matched with typically developing controls. This study also explores behaviour and 

brain correlations as well as brain and cognitive correlations to highlight the effect of 

disruption on normal brain organisation. 

 

Chapter 6 (Experimental study 4)  

 

Among neurodevelopmental disorders, ADHD co-occurs most frequently than expected by 

chance with dyslexia, sometimes resulting in ambiguity when behaviourally diagnosed 

(Gualtieri & Johnson, 2005). The study presented in Chapter 6 sets out to investigate 

whether resting-state MEG functional brain network measures could distinguish between the 

two neurodevelopmental disorders using conventional graph theory and MST to characterise 

underlying functional brain networks. 

 

Chapter 7 (final discussion) 

 

This general discussion reframes the significance of studies carried out for this thesis, 

discussing whether hypotheses were confirmed or rejected. This leads on to a critical review 

of how general knowledge in the field has changed by the addition of data from studies 

reported in Chapters 3, 4, 5, and 6. Lastly, interpretation of results leads on to an outline 

contextualising findings in relation to the general neurodevelopment field.  
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2. General Methods  

 

2.1. Chapter summary 

 

This chapter provides a description of the methods employed and described in Chapters 3, 

4, 5 and 6. These involved experiments with typical adults, typically developing control, and 

children with diagnoses of attention-deficit/hyperactivity disorder (ADHD) and those with 

developmental dyslexia. Measures used and described include psychometric assessments, 

behaviour measures, and the magnetoencephalography (MEG) imaging technique. 

 

2.2. Ethical considerations 

 

For the study with healthy adults (REC # 452), typically developing children (REC # 408), 

and children with developmental dyslexia (REC # 375) all protocols were reviewed and 

approved by the Research Ethics Committee (REC) at Aston University. In addition, a 

protocol and risk assessment, sanctioned by the National Health Service (NHS) and 

approved by the National Research Ethics Service (NRES) Committee East Midlands-

Nottingham-1 (REC #: 12/EM/0282) was implemented for the study involving children with 

ADHD.  

 

All participants (aged over 18) provided their written informed consent or assent (aged under 

18) prior to participating in study procedures. Participants were advised on their rights to 

withdraw from the research at any stage and assured that their decision would be respected. 

Participants were also given an oral debriefing after each test procedure, to provide 

assurance as to their not feeling distress or discomfort. The researchers involved in data 

collection had previously undergone training in administering first aid at work, obtained a 

‘Criminal Records Bureau Enhanced Disclosure’ for working with children and vulnerable 

adults as well as undertaking the NHS Good Clinical Practice (GCP) training course.  

 

All information collected from the assessments was kept in a coded form and transferred to a 

password-protected computer system, in line with the University and NHS Codes of 

Confidentiality. 
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2.3. Participant recruitment 

 

2.3.1. Healthy adult volunteers 

 

Typical participants with no history of neurological problems were recruited into the study 

from the student and staff population at Aston University over a period of two years. This 

was done through advertisements in the university newsletter, and the psychology 

undergraduate ‘Research Participation Scheme (SONA) website. See Chapter 3 for the 

inclusion and exclusion criteria. 

 

2.3.2. Control group (i.e. typically developing children) 

 

Presumed typically developing children were recruited into the study over a period of two 

years through advertisements in the Aston University newsletter and the Think-Tank 

Birmingham Science Museum. All children attended mainstream schools in and around the 

Birmingham area in the West Midlands. Children received an Amazon voucher for their 

participation. Families were reimbursed for travel expenses. See Chapter 4 for the inclusion 

and exclusion criteria. 

 

2.3.3. Children with a diagnosis of ADHD 

 

Children fulfilling Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) 

(American Psychiatric Association, 2000) criteria for ADHD were identified through 

specialised clinics for Child and Adolescent Mental Health Services (CAMHS) based at the 

Worcestershire Health and Care NHS Trust covering the neighbouring county of 

Worcestershire (See Figure 2.1 for the identification and referral pipeline). It is important to 

emphasize that unless otherwise stated, all references to the DSM in this thesis refer to the 

DSM-IV-TR (APA, 2000) and not the DSM-V (APA, 2013). This is because the DSM-IV-TR 

was the most widely accepted manual used by clinicians and researchers at the time of 

recruitment. ADHD diagnosis criteria followed clinical guidelines set out by the National 

Institute for Health and Clinical Excellence (NICE, 2008). According to the NICE guidelines, 

a diagnosis is established following a comprehensive clinical and psychosocial assessment 

of the child. This should involve a discussion about the child’s behaviour and symptoms in 

different settings, a semi-structured interview with the child’s parents regarding the child’s full 

developmental and mental functioning history, and finally assessing the child’s behaviour 

symptom profiles using Conners' rating scales (ACRS) (Conners, 1985) with the parent 
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and/or teacher. On the Conners' Parent Rating Scale-Revised (Conners, Sitarenios, Parker, 

& Epstein, 1998), subscale scores > 1.5 (standard deviation) above the mean score of a 

child's normed age and gender are used to identify those with age-inappropriate behavioural 

problems (Silk, Vance, Rinehart, Bradshaw, & Cunninghton, 2009a).  

 

 

 
 
An illustration of the referral guidelines outlining the inclusion and exclusion criteria followed 

by clinicians. 
 

2.3.4. Children with developmental dyslexia  

 

Children with developmental dyslexia were an opportunistic sample recruited by the 

research associate (Dr. Gascoyne) from the Dyslexia and Developmental Assessment Unit 

(DDAU) at the Aston Brain Centre. The children were part of a separate cross-sectional 

study investigating genetic links associated with literacy difficulties, predominantly dyslexia. 

Diagnosis was confirmed by educational psychologists providing a range of cognitive and 

literacy assessments with the purpose of determining eligibility for special education. 

Following the assessment, families were approached by the research associate to explore 

Figure 2. 1 Identification and subsequent referral of children with ADHD by 
clinicians to the Aston Brain Centre 
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the prospect of participating in the study. It was strongly emphasised that declining to 

participate would have no implication for the family’s current or future relationship with the 

clinic. Those interested were offered a scheduled visit to the centre. Consent, withdrawal, 

data protection, and confidentiality issues were discussed with the families prior to their visit. 

See Chapter 6 for inclusion and exclusion criteria. 

 

2.3.4.1. Contraindications for the Magnetoencephalography (MEG) imaging 

technique 

 

Exclusion questionnaires were used to identify and confirm whether potential participants 

had any permanent metallic foreign bodies or illness, current or previous that would put them 

at risk in relation to the technique. None of the exclusion criteria outlined in the initial 

screening forms was met by any prospective participant. 

 

2.4. Cognitive measures 

 

To provide a better understanding of differences in brain functioning between clinical and 

non-clinical groups, it is useful to examine the relationship between brain measures and 

measures of behaviour and cognitive functioning. 

 

Cognitive abilities were assessed using subtests of age-appropriate Wechsler Intelligence 

Scales. The Wechsler Intelligence Scale for Children 4th UK (WISC-IVUK; Wechsler, 2003) 

was administered for children aged between 6 years 0 months and 16 years. For those over 

16 years, the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999) was 

administered. The Wechsler scales are normed tests of general intellectual functioning, 

routinely administered to identify: (1) those with significantly high intellectual abilities and (2) 

those with functional and cognitive impairments, in both clinical and community samples.  

 

In this thesis, cognitive abilities were assessed in children by using a battery of two or four 

subtests assessing both verbal and non-verbal skills. Verbal ability was assessed using the 

similarities (SI; a measure of verbal reasoning), and vocabulary (VC; a measure of word and 

verbal formation knowledge) subtests. Non-verbal performance was assessed using the 

matrix reasoning (MR; a measure of fluid reasoning) and/or block design (BD; a measure of 

the ability to analyse and create abstract visual representations) subtests. SI and MR were 

used as core measures, particularly when a child was not willing or able to complete the 

entire battery of the tests. When administered, WISC intelligence tests result in three types 
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of scores namely, raw, scaled, and full scale intelligence quotient (IQ). Full scale IQ was not 

an option in studies presented in this thesis as only sub-tests were administered. According 

to Flanagan and Kaufman (2009), by itself, the raw score is meaningless because it cannot 

be referenced to the general population.  

 

To interpret one’s performance on a sub-test, in the context of the general population, 

particularly relative to age-matched peers, raw scores are often converted to standard 

scores. For studies in this these, scaled scores (mean = 10 and standard deviation = 3) were 

reported as the standard scores. All four subtests have been found to correlate highly with 

the Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) domains in 

both full IQ (Strauss, Sherman, & Spreen, 2006; Wechsler, 2004) and FSIQ-4 measures 

(Axelrod, 2007). Note however, that as part of their psychological and cognitive functioning 

assessment, children with developmental dyslexia would have completed an age-

appropriate full scale IQ test, (FSIQ) administered by an educational psychologist using the 

WISC-IVUK (Wechsler, 2003). Hence, to avoid repetitive testing, their SI, VC, BD, and MR 

subtest scores were obtained from their FSIQ, for comparison.  

 

2.5. Behavioural functioning measures  

 

Psychosocial adaptive and maladaptive behaviours were assessed using the Achenbach 

System of Empirically Based Assessment (ASEBA; www.aseba.org) measures. Developed 

in the 1960s by Achenbach, the ASEBA scales are empirically based questionnaires that 

assess a spectrum of competencies, problems, and adaptive functioning in children, 

adolescents and adults, in community (Frigerio et al., 2009) and clinically based populations 

(McClendon et al ., 2011). The validity of the ASEBA scales across diverse societies is well 

established, as is the association with DSM-oriented diagnostic categories (DSM-IV-TR). 

(See, Achenbach & Rescorla, 2003; Ivanova et al., 2014, for a review).  

 

The scales describe behaviour within the past six months. Items on these questionnaires are 

scored: 2 ‘very true’, 1 ‘somewhat true’, and 0 ‘not true’ of the subject. Based on a subject’s 

behavioural profile (derived from raw, T score and percentile scores), it is possible to 

determine the extent to which one’s behaviour deviates from normal functioning (i.e. whether 

they fall into normal, borderline or clinical range).  

 

For the experimental research described in Chapters 4, 5, and 6, age-appropriate ASEBA 

scales were administered to assess behavioural functioning. For typically developing 

controls and those with ADHD, the Child Behavior Checklist for ages 6 to 18 years (CBCL/6-
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18; Achenbach, 1991) was completed by a guardian (usually the mother), on behalf of the 

child, whilst the parents/guardians of children with developmental dyslexia completed the 

Brief Problem Monitor for ages 6-18 years (BPM-P/6-18; Achenbach, McConaughy, Ivanova, 

& Rescorla, 2011). In typical adults, the Adult Self-Report for ages 18-59 (ASR/18-59; 

Achenbach & Rescorla, 2003) was administered (See Chapter 4 for a detailed discussion of 

the ASR scale) 

 

Whilst the ASEBA scales generate several behavioural problems, the focus in this thesis 

was on the attention and the two key behavioural problem domains, identified through the 

internalising and externalising scales. The internalised behaviour functioning scores are 

associated with inward problems (i.e. towards the self), while the internalised scores relate to 

outward problems (i.e. towards others). On the ASEBA questionnaires, the internalising 

scale summarises scores from anxiety/depression, withdrawn/depressed, and somatic 

complaints subscales, while the externalising problems scale is associated with aggressive 

behaviour and rule breaking problems (Achenbach, 1991; Achenbach & Rescorla, 2003). 

When assessed, a T-score ≥ 63 is considered to be within the clinically significant range for 

possible functional impairments (Achenbach, 1991; Geller et al., 2004).  

 

2.6. Magnetoencephalography (MEG) 

 

 

Figure 2. 2 The Elekta Neuromag Triux Magnetoencephalography system 
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The first attempts to measure magnetic fields outside the human scalp were conducted in 

1968 by Cohen, who applied a copper wire induction coil to detect the very weak magnetic 

fields, in a magnetically shielded room (Vrba & Robinson, 2001). Following several 

developments, modern MEG systems are now able to register magnetic fields generated by 

electrical activity in the brain during neuronal firing, using Superconducting Quantum 

Interference Devices (SQUIDS) (Vrba & Robinson, 2001; Johnson, Schwindt, & Weisend, 

2013). These are located close to the scalp and are cooled by liquid helium, which at the 

extremely low temperatures ensures low impedance and the subsequent detection of 

magnetic currents. The Elekta-Neuromag TRIUK whole head MEG system (See Figure 2.2), 

used in the research for this thesis, comprises 306 sensors arranged in groups of three, 

namely two orthogonal planar gradiometers and one magnetometer. Together these result in 

204 gradiometers and 102 magnetometer sensors that are highly sensitive, with the ability to 

acquire measurements from both deep and superficial source locations. Whilst gradiometers 

detect the difference in magnetic fields using two counter-wound coils, magnetometer 

sensors register magnetic fields using a single pick-up coil (Henson, Mouchlianitis, & Friston, 

2009). Unless otherwise stated, the MEG signals used for all experimental studies in this 

thesis refer to those acquired from the magnetometer sensors. The consequence of only 

considering magnetometers was that this strategy significantly reduced both the time and 

computational memory requirements imposed by considering all 306 sensors in estimating 

network synchronisation and topological measures. This strategy has previously been 

adopted by studies investigating sensor-level functional activity using the 306-channel 

Vecktorview MEG system. For instance, Deuker et al. (2009) only considered planar 

gradiometers to examine functional network parameters while Jin et al. (2011) focused on 

magnetometers. Despite focusing on different types of sensors, the studies reported similar 

reproducibility patterns of functional network. However, as will be discussed in Chapter 7, 

filtering out data from gradiometers is likely to have consequences on estimated 

synchronisation. 

 

2.6.1. Suppression of interferences and artifacts from MEG recordings 

 

The MEG system is equipped with an option for interference suppression known as internal 

active shielding (IAS), which was used in all studies reported in this thesis. IAS inside the 

magnetically shielded room allows signals from within the helmet sphere to be subtracted 

from those inside the room. As a result, signals/artefacts originating from outside the helmet 

are automatically suppressed. In addition, the system also utilised the online movement 

tracking tool, known as continuous MaxMove. This helped track participants’ head 

movements during data acquisition, which was later compensated for in off-line processing. 
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Additional off-line processing was carried out using the MaxFilter software. 

 

2.6.2. Maxfilter 

 

Maxfilter is a vital pre-processing step for Elekta data acquired using maxshield (MaxfilterTM 

user’s guide, version 2.2, 2010), to ensure the removal of artefacts/noise originating from 

outside of the sensor array. The Maxfilter program implements both the Signal Space 

Separation’ (SSS) and the temporal extension of the SSS method (tSSS) which separate 

magnetic signals coming from within the sensor array/the brain from those originating 

outside of the sensor array/the brain (Taulu & Kajola, 2005). tSSS is capable of suppressing 

interference coming from both outside the brain and from very close to the sphere/inside the 

sensors (e.g. heartbeats and/or eye-blinks) (Taulu & Simola, 2006; Vrba & Robinson, 2001). 

Hence, in the research for this thesis head movement correction and tSSS were carried out 

on all continuous MEG recordings. A combination of both has been shown to effectively 

remove any disturbances associated with head movement and artefacts (Nenonen et al., 

2010), which is particularly important for MEG data acquired from children, whose smaller 

head sizes may allow for more movement while inside the MEG helmet (Wehner, 

Hamalainen, Mody, & Ahlfors, 2008). 

 

2.6.3. Acquiring MEG resting-state data  

 

Resting-state (RS) is defined as an unconstrained passive condition, free from active tasks 

(Jin, Jeong, Seol, Kwon, & Chung, 2013). For this thesis, MEG recordings were acquired 

while participants sat in a reclining chair with their head inside the MEG helmet during eyes-

closed (EC) and eyes-open (EO) resting conditions. During the EC rest, participants were 

instructed to sit quietly and not think of anything in particular whilst during EO they were 

instructed to look at a white cross mark projected centrally on a black screen and refrain 

from too much blinking and movement.  

 

2.6.4. Estimating functional connectivity from MEG resting-state data 

 

Measuring the electrical potential generated by a single neuron along the scalp is impossible 

because the potential is too small to be picked up by this technique. Because of this, MEG 

recordings index neural activity of large synchronised neural populations on the order of sub-

millisecond temporal resolution (Miller, 2013). Synchronisation of brain areas is crucial for 

network communication and cognition (Gross et al., 2006). The high temporal resolution of 
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MEG provides a well-suited technique for the study of such synchronisation in resting-state 

networks (RSNs). The brain, like other complex networks, strives to ensure a balance 

between local specialisation and global integration. An optimal balance between these two 

has been shown to facilitate dynamic information flow in the brain, often regarded as 

essential for cognition (Douw et al., 2011). 

 

To determine if brain units are functionally connected (coupled/communicating), statistical 

interdependences/correlations between brain regions or sensor/electrode pairs must be 

computed (See David, Cosmelli, & Friston, 2004; Murias, Pievani, de Haan, & Wu, 2011; 

Tsiaras et al., 2011, for detailed reviews). Statistical interdependences are derived from 

measures/estimates of functional connectivity between spatially distinct but functionally 

connected neural units. In other words, correlations between different spatial 

regions/sensors provide estimates of functional connectedness. Based on measures of 

functional connectivity, several networks have been identified in neuroscience. Of these, the 

most widely studied and described network is the Default Mode Network (DMN).  

 

Initially identified in a meta-analysis, the DMN encompasses brain regions that are typically 

more active during rest than during active task performance (Raichle et al., 2001). Due to its 

high spatial resolution, functional magnetic resonance imaging (fMRI) brain imaging 

technique was initially favoured as a more appropriate method of identifying resting state 

networks such as the DMN. This technique measures changes in blood oxygenation or 

blood flow as a proxy indicator of neural activity. However, the popularity of fMRI in 

measuring spatially distinct temporal interdependencies between blood-oxygenation-level-

dependent (BOLD) signals is confounded by its inability to capture electrophysiological 

neural activity with real time precision (i.e. low temporal resolution) (Brookes et al., 2011). 

This is the primary reason why MEG has gained considerable attention in recent years as a 

very sensitive (temporally) functional brain imaging technique (Miller, 2013). As stated 

earlier, unlike the fMRI imaging tool, which measures indirect neural activity, MEG registers 

magnetic fields generated by genuine electrical signals within neuronal populations 

(Hamalainen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993) in real time. In addition, several 

researchers (Brookes et al., 2001; de Pasquale et al., 2010; van Dellen et al., 2013) have 

been able to successfully reproduce fMRI RSNs using the MEG brain imaging technique. 

 

Statistical interdependences analysed in the later chapters presented in this thesis were 

estimated from sensor-level data. Note however that sensor level MEG data are vulnerable 

to the effects of volume conduction (Hillebrand & Stam, 2014) as well as the mixing of 

signals originating from spatially distinct neural units. Both concerns potentially result in 
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erroneous estimates that could underestimate or overestimate functional connectivity 

(Cohen, 2014; Hillebrand & Stam, 2014). Although these issues can be solved through the 

projection of signals to source-level, some such as Brookes, Woolrich, and Barnes (2012), 

Hillebrand and Stam (2014), and Hillebrand et al. (2012), stress that this is not a 

straightforward solution. Given that the voxels in source space are not independent, leakage 

between them is highly possible, which according to Brookes et al. (2012) can consequently 

lead to erroneous connectivity estimates.  

 

A more direct solution to respond to the effects of these issues is the use of functional 

connectivity estimates that are insensitive to spurious interactions (Hillebrand & Stam, 2014). 

Volume conduction and spurious correlations in pairwise sensors result from two sensors 

detecting magnetic flux from the same source. This occurs with zero phase lags or radius 

(Cohen, 2014). Hence, to eliminate the effects of volume conduction, it is essential to discard 

zero-phase-lag correlations. Several phase-based measures have been developed to avoid 

distributions that centre around zero-phase-lag (See Cohen, 2014; David et al, 2004; Niso et 

al., 2013, for a review). Such phase measures are based on distributed phase differences 

between two sensors (or electrodes in EEG). These measures require fewer assumptions, 

and as such are suitable for exploratory analysis where fewer analytical hypotheses are 

needed (Cohen, 2014).  

 

In the research for this thesis, the phase lag index (Stam, Nolte, & Daffertshofer, 2007b) a 

linear and non-linear measure (Vourkas et al., 2011) was chosen to estimate functional 

connectivity. This is because not only is it insensitive to confounds associated with recording 

magnetic fields from the scalp, but it has also been shown to be sensitive to real changes in 

synchronisation in several clinical populations (Stam et al., 2007b). Studies comparing 

phase lag index to measures such as synchronisation likelihood have found that this 

measure is less affected by volume conduction and performs better than previous functional 

connectivity estimates (Hillebrand & Stam, 2014).  

 

2.7 Network analysis of functional brain connectivity 

 

The notion that a network can be represented as a graph consisting of spatially discrete 

units linked together by connections has been around since the 18th century. However, its 

application in neuroscience is in its early stages. Graph theoretical analysis is a branch of 

mathematics in which complex network systems are visually represented as a graph.  

A graph in this context consists of sets of discrete nodes/vertices connected by lines/edges 

(See Figure 2.3 below). 
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Figure 2. 3 An illustration of the concepts of graph theory 
A mathematical representation of a complex network system as a graph consisting of sets of 

vertices/nodes (circles) connected together by paths/edges. 
 

Graph theoretical analysis has helped researchers understand the global and local 

characteristics of networks (Rubinov & Sporns, 2010; Stam & Reijneveld, 2007). Graph 

theory is often credited to Euler’s research, in which he demonstrated that it was not 

possible to walk around the city of Konigsberg, crossing each of the seven bridges exactly 

once, and return to the starting point (Figure 2.4). This was known as the ‘Konigsberg Bridge 

problem’. By reconstructing the city and representing it as a graph consisting of a set of 

discrete elements/regions (i.e. node/vertex) connected together by links (i.e. edges), Euler 

showed that to cross the seven bridges without retracing one’s steps, every region 

(vertex/node) had to have an even degree (i.e. links/connections coming in and out of a 

region/node). However Figure 2.4, shows that the graph had four nodes of odd degrees, (i.e. 

a = 5, b = 3, c = 3 and d = 3), making it 4 vertices of odd degrees. Hence, the degrees in the 

‘Konigsberg Bridge problem’ were not drawable; and therefore it was not possible to cross 

each bridge once and return to the starting point.  
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Figure 2. 4 The ‘Konigsberg Bridge Problem’ 
Representation of the 18th century city of Konigsberg showing A) seven bridges (i.e. 1-7) and 

the river between the landmasses. Figure B) shows Euler’s graphical representation 
illustrated as a collection of four nodes (circles a-d) linked together by connections/edges 

(grey lines). 
 

2.7.1. Modern network science 

 

The field of graph theory has provided a powerful tool for understanding network behaviour 

in biological and social systems (Telesford, Burdette, & Laurienti, 2013). Following Watts and 

Strogatz’s (1998) publication, it was recognised that all dynamically complex and efficient 

networks share certain common properties. Until this time, not much was known about the 

behaviour of highly dynamic systems. These inherent common properties form a pattern of 

network organisation known as the so-called ‘small-world’ (Watts & Strogatz, 1998). Several 

studies have shown that the brain can be conceived of as a small world network (SWN; 

Frantzidis et al., 2014; Supekar, Musen, & Menon, 2009; Wang, Zuo, & He, 2010). These 

networks have highly clustered short (local) connections and fewer long (global) connections 

or shorter path lengths (Watts & Strogatz, 1998). Dense clustering/wiring at the local level 

ensures efficient information processing in specialised structures, whilst short path lengths 

between nodes ensure more efficient global information processing. It is therefore possible 

to apply graph theory analysis to characterise and visually represent functional network. One 

is also able to determine whether organisation in functional connections resembles that of a 

small-world topology. It is understood that the more efficient functional brain connections are 

the more the brain networks will resemble a small-world organisation (Figure 2.5B).  

 

To determine network efficiency the studies reported in this thesis used two fundamental 

measures: clustering coefficient (C) and path length (L) as measures of the local and global 

connections. It was predicted that younger children and those with developmental disorders 

would show connectivity patterns that deviated from a SWN. C is related to the spatial 
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property of a node in a network neighbourhood (Stam, 2012). Based on the measures of C 

and L, the SWN lies between two extremes, namely regular and random networks (Figure 

2.5).  

 

 

Figure 2. 5 Graph metric network topologies 
Figure 2.5 A) and C): illustrate the two extreme levels of organisation namely regular and 

random respectively; and B), the small world organisation. A small-world network is 
characterised by low L and high C, ensuring optimal information transfer within complex 

networks (Watts & Strogatz, 1998). 
 

Computationally, clustering coefficient as a measure of functional segregation within a 

network, representing local connectedness (Rubinov & Sporns 2010) or the brain’s ability to 

carry out specialised processing in closely interconnected clusters/modules (e.g. brain 

regions or sets of sensors). In modern network science, a node (vertex) forms a 

neighbourhood consisting of other nodes that are closely connected to it by an edge (Figure 

2.3). The clustering coefficient of a node (small circles) is the degree to which other nodes in 

the neighbourhood are also connected to each other (Watts & Strogatz, 1998). For example 

in Figure. 2.3 the clustering coefficient of any node (small circles) is the degree to which all 

other nodes in a neighbourhood are connected to each other. The average clustering of a 

network therefore represents a measure of how well a network is able to efficiently process 

information in specialized structures (Cohen, 2014; Liang et al., 2012).  

 

Path length (L) on the other hand represents the global connectedness by quantifying the 

degree to which a brain network is able to efficiently transfer information between discrete 

specialised brain areas (Rubinov & Sporns, 2010). The average of the shortest distances 

from one node to another node is known as the characteristic path length (Watts & Strogatz, 

1998). The average path length of a node i in a network therefore denotes the minimum 

number of edges linking two nodes (Liang et al., 2012; Niu et al., 2013). A low path length 

value suggests that very few pathways are required to get from one node to any other node 

in a network (Stam & Reijneveld, 2007).  
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It has been suggested that in a connected brain, discrete elements functionally segregate to 

facilitate specialised functions like vision and language, while higher functions depend on the 

integration of information from local clusters (Douw et al., 2011; Koyama et al., 2011). 

Hence, it is highly likely that disrupted local clustering and global inefficiency are most likely 

to be linked to the deficits reported in a given clinical population. It is becoming increasingly 

clear that a key feature of developmental disorders is an alteration of the normal pattern in 

functional brain networks, specifically disrupted clustering (local structures) and/or path 

lengths (global network structures) (Ahmadlou, Adeli, & Adeli, 2012; Bos et al., 2014; 

Itahashi et al., 2014). Several imaging studies employing graph theory have shown 

abnormalities in resting-state brain networks in children with autism, fragile X, reading 

difficulties and ADHD (Ahmadlou et al., 2012; Tsiaras et al., 2011; van der Molen, Stam, & 

van der Molen, 2014). For example, network visualisation in children with ADHD, revealed a 

significant decrease in path length and higher clustering coefficient in those with a diagnosis, 

compared with controls (Ahmadlou et al., 2012). This is consistent with the notion of 

disrupted or delayed organisation of brain networks. Such results suggest that graph 

theoretical network metrics are suited for investigation potential biomarkers for 

developmental conditions. 

 

It should however be noted that several researchers have stated that the application of 

graph theory relies on assumptions that may impede network comparisons between 

subjects. Given that individual networks vary in size (i.e. number of nodes), and density (i.e. 

number of connections in a network; Olde Dubbelink et al., 2013; van der Molen et al., 2014) 

of the connected network, a normalisation approach is required (van Dellen et al., 2013) to 

ensure the application of metrics that are independent of global coupling strength (Boersma 

et al., 2012). In this thesis normalisation was computed using the BrainWave software. 

Briefly, clustering coefficient (CW) and path length (LW) were compared to metrics derived 

from 50 surrogate networks (i.e. Cw-s and LW-s respectively). These were based on Erdos-

Renyi’s random graph model that involves randomly re-shuffling the edge weights in real 

networks (see Erdos & Renyi, 1960, for a review).  
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Figure 2. 6 Representation of graph theoretical analysis computation pipeline 
A represents MEG time series for magnetometer sensors in frequency-filtered bands. B 

represents the 102 x 102 (Chapter 3) or 97 X 95 (Chapters 4, 5, & 6 association matrix of 
cross-correlations between nodes (magnetometer sensors) estimated using phase lag Index. 

C represents a weighted network with magnetometers represented as vertices/nodes and 
PLI values as path lengths/edge weights or connections. From this CW, and LW, were 

computed and later normalized to generate normalised CW (gamma), and LW (lambda). 
 

Subsequently, the surrogate networks have the same number of nodes, edges, and degree 

that are similar to as the original networks (Liang et al., 2012). Although random networks do 

not represent real complex networks (van der Molen et al., 2014), they provide baseline 

network models for comparison (Bullmore & Sporns, 2009). For this reason, the main 

findings within each study primarily address network changes corresponding to normalised 

metrics. The normalised clustering coefficient (gamma) and path length (lambda) were 

defined as the ratio of CW/CW-s and LW/LW-s respectively (Figure 2.6). The SWN index was 

then represented by the ratio of gamma and lambda. Computationally, a network was 

defined as having small world properties if gamma (CW/CW-s) > 1 and lambda (LW/LW-s) ≈ 1 

(Humphries & Gurney, 2008).  

 

However, while graph theoretical analysis of brain network provides good insight into 

potential neural markers of brain functions, its application relies heavily on network size, i.e. 

number of connections (nodes) and average degree (average number of connections at 

each individual node within a network) (Hillebrand & Stam, 2014), that is not entirely 

resolved by normalisation (see van Wijk, Stam, & Daffertshofer 2010) for a detailed 

discussion). These variables have been shown to differ between people, as a result of either 

development, or pathology (Gong et al., 2009). 
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2.7.2. Minimum spanning tree 

 

Minimum spanning tree analysis provides a more computationally sound solution to the 

problem of network comparison (Stam et al., 2014). In a connected, weighted and undirected 

graph G, a spanning tree is a subgraph of G containing all G’s vertices connected together 

without circles/loops (Boersma et al., 2013; Olde Dubbelink et al., 2013; van Steen, 2010). A 

minimum spanning tree is therefore a spanning tree of minimum total weight among several 

spanning tress. For a thorough review of minimum spanning tree methods, see Jackson and 

Read (2010), and Mares (2008). Given that, this type of network analysis connects all nodes 

without cycles its networks will have an identical number of connections. Hence, unlike 

classical graph theory, minimum spanning tree analysis offers a bias-free characterisation of 

the network topology, both within and across studies, as only important connections are 

taken into account (van Diessen, Otte, Braun, Stam, & Jansen, 2014).  

 

In this thesis, for each participant’s weighted graph G, minimum spanning tree was 

computed using formulas implemented in BrainWave, using Kruskal’s algorithm (Kruskal, 

1956). Constructed trees consisted of 97 nodes and 98 edges. Briefly, to run the Kruskal 

algorithm on a connected graph of weighted edges, the algorithm first sorts all edge weights 

(connectivity values) in ascending order, and then constructs a tree, starting with the 

smallest/minimum edge/weight between two nodes (in this study that would be the smallest 

phase lag Index value) (Figure 2.7). This is repeated until all edges are connected in a 

subgraph (edges = n-1) without cycles/loops. During tree construction, if the addition of an 

edge results in a cycle or loop, then that edge is excluded (see Jackson & Read, 2010; 

Kruskal, 1956; Mores, 2008, for a detailed review of this algorithm). 

 

 

 
Figure 2.7 is an illustration of A) connected and undirected graph, and B) a minimum 

spanning tree/ sub-graph that connects all nodes/vertices without loops, using Kruskal’s 
algorithm. 

Figure 2. 7 Constructing a minimum spanning tree using Kruskal’s algorithm 
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Similarly to networks derived from graph theoretical analysis, the topology of a network 

derived from minimum spanning tree analysis must ensure efficient communication between 

all vertices (Olde Dubbelink et al., 2013). Minimum spanning tree networks are on a 

continuum between two extreme network topologies: namely the path-like/decentralised and 

star-like/centralised topology (Figure 2.8). Similar to graph representation, spanning trees 

sub-graph representations have leaf nodes and edges between nodes (Stam et al., 2014). 

The nodes in the path-like or decentralised configuration are connected on a single line path 

to two other nodes, except the two nodes (leaves) at either end of the tree, that have only 

link or degree = 1 (i.e. black circles in Figure 2.8 topology A) (Olde Dubbelink et al., 2013; 

Stam et al., 2014). In contrast, the star-like or centralised topology represents a configuration 

in which only one central node exists, on to which all other nodes are connected with one 

link (Olde Dubbelink et al., 2013; Stam et al., 2014). Changes in tree topology are therefore 

interpreted as either an alteration towards a more line-like topology (i.e. less integrated) or a 

more star-like topology (more integrated) (Stam et al., 2014).  

 

 

Figure 2. 8 The two extreme minimum spanning tree topologies 
Figure A) is a line-like configuration with few tree leaves and a long diameter. With the 
exception of the nodes, two at either end (black circles); all nodes in a path shape are 

connected to two other nodes. Those with one link are known as leaf nodes (Stam et al., 
2014). Figure B) is a star-like topology with several leaves and a moderate diameter. 
Topology alters with increasing leaf number, and as such, there exist moderate tree 

configurations besides the two extremes. 

The two extreme topologies are characterised using several metrics. Note however that, as 

explained in Chapter 1, many of the minimum spanning tree measures are highly correlated, 

and hence can be substituted by fewer more independent measures (Stam et al., 2014). For 

studies reported in this thesis, dynamic patterns of minimum spanning trees were assessed 
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using four metrics whose formulas are implemented in the BrainWave software. These 

measures were selected because they have previously (Boersma et al., 2013) been shown 

to be sensitive to age-related changes in functional networks in typically developing children. 

These included: 

1. Diameter is a measure of the longest shortest path or distance between any two 

nodes of an MST (Boersma et al., 2013; Stam et al., 2014; Tewarie et al., 2014). It 

has been proposed that a small diameter is a key feature for ensuring efficient 

communication between nodes of a tree (Tewarie et al., 2014). This corresponds to a 

star-like topology. This has a lower bound of 2, and an upper bound of M = N – 1. M 

corresponds to the number of paths in a tree (Otte et al., 2015). In a star-like or 

centralized network configuration with a diameter of 2, there is a risk that the central 

node might become overloaded because it has a betweenness centrality (i.e. ratio of 

number of shortest paths passing through a particular and total number of paths in 

the tree) of 1 (Boersma et al., 2013; Olde Dubbelink et al., 2013). Hence, for optimal 

efficiency, tree topology should strive for an equilibrium/balance between a reduced 

diameter and avoidance of overload. This trade-off is captured by the tree minimum 

spanning tree hierarchy (TH) measure (Boersma et al., 2013). 

2. Tree hierarchy provides a measure of the optimal balance between integration and 

overload of central nodes (Otte et al., 2015; Tewarie et al., 2014). According to van 

Dellen et al., 2013, this metric assess whether tree topology has an efficient 

organisation to ensure optimal transfer of information between nodes in the least 

possible paths without overloading the central node. Such a topology has a star-like 

structure. This is calculated using the formula (Boersma et al., 2012) 

 

Equation 1 Computing network hierarchical organisation 

max2MBC

L
TH   

where L is leaf number, M the number of vertices and the BCmax is the maximum 

value of betweenness centrality (BC). The BC of a reference node is defined as the 

fraction of all the shortest paths between any two node pairs passing through the 

reference node, divided by the total number of paths between the two node pairs) 

(Olde Dubbelink et al., 2013). To determine the balance between a small diameter 

and overloading of central nodes (i.e. nodes with a high value of BC) the 

denominator MBCmax is multiplied by 2 to guarantee that TH ranges between 0 and 1 

(Boersma et al., 2013; Tewarie et al., 2014). As a result, an optimal tree topology will 

combine short distances and prevent overloading of central nodes. The optimal tree 
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configuration is a combination of short distances and decreased overload of central 

nodes (Otte et al., 2015), corresponding to values around 0.5 (Tewarie et al., 2014). 

3. Eccentricity is a measure of the centrality of a node in a tree (Stam et al., 2014), 

quantifying the longest distance between node i and any other tree node (Olde 

Dubbelink et al., 2013; Stam et al., 2014; van Dellen et al., 2013). This measure will 

be low if node i is central in the minimum spanning tree (Boersma et al., 2013; Stam 

et al., 2014), suggesting a more star-like topology.  

4. Leaf number is defined as the number of nodes (leaves) on the tree. It is used to 

assess sub-graph topology and network efficiency. Leaf number has a low bound of 

2 and an upper bound of n-1 (n being the number of vertices) (Otte et al., 2015). As a 

result, for any given tree, the leaf number corresponds to number of leaves, divided 

by the possible maximum number of leaves, in line with the size of the tree (Boersma 

et al., 2013). According to Stam et al. (2014), a star-like topology corresponds more 

to shorter diameter, low eccentricity, higher leaf number, and BC. When leaf number 

increases, diameter decreases (van Dellen et al., 2013). 

 

Recently several studies were able to demonstrate the sensitivity of minimum spanning tree 

measures in neurodevelopment and pathology (Boersma et al., 2013; Demuri & Fraschini, 

2013; Otte et al., 2015; Schoen; Chang, Lee, Bob, & Mashour, 2011; van Diessen et al., 

2014). However, as a network computation tool, this type of network analysis is a relatively 

new approach and not much is known about the functional role of its measures or according 

to van Dellen et al. (2013), what they tell us about disrupted electrodynamic networks.  

 

Secondly, minimum spanning tree measures are primarily concerned with global 

organisation (van Dellen et al., 2013) within a network, and not local structures. This means 

that it remains challenging to probe for local/short range connection disruptions as 

underlying markers of under or atypical development, as has been demonstrated in several 

imaging studies (Ahmadlou et al., 2012; Tsiaras et al., 2011; van der Molen et al., 2014) 

using graph theoretical analysis. For these reasons, the research presented in this thesis 

applied both classical graph theoretical measures and minimum spanning to provide a new 

structure for investigating large-scale functional organisation. 
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2.7.2.1. Network analysis: functional connectivity and graph-based 

computations 

 

All network-related analysis was computed with the BrainWave v0.9.76 package, a freely 

available open-source software package developed by Stam 

(http://home.kpn.nl/stam7883/brainwave.html), for multivariate analysis application with 

EEG/MEG and RS time-series. This application offers a platform for Fast Fourier Transform 

(FFT)/power analysis, estimating functional connections (using measures such as 

Coherence, Imaginary Coherence, Phase Coherence, Phase Lag Index, and 

Synchronisation Likelihood), spectral analysis (with measures including eigenvector 

centrality, eigenratio spectral gap, and algebraic connectivity) and network analysis using 

both graph theoretical analysis and minimum spanning tree. Figure 2.9 illustrates the general 

procedures involved in computation of graph theory and minimum spanning tree network 

parameters. The formulas of measures used in this thesis are implemented in the 

BrainWave software. Network parameters were computed based on single epochs rather 

than averages over the four epochs (See Tewarie et al., 2014 for the rationale for this 

approach). 

 

 

 

 

 

 

 

 

http://home.kpn.nl/stam7883/brainwave.html
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Figure 2. 9 Illustration of graph-based networks and minimum spanning tree sub-
graphs 

Schematic illustration of network analysis using B) classical graph theory, and C) minimum 
spanning tree, based on weighted connectivity metrics derived from functional connectivity 
estimates in A). The association matrix in B) represents all weights in the original matrix, 
while MST captures a sub-section of connections in the original matrix. From these a full 
connected graph G and loop-less subgraph G are generated respectively. In B), classical 

network parameters are subsequently assessed while in C), Kruskal’s algorithm is applied to 
contrast trees with no circles for subsequent computation of minimum spanning tree 

measures. 
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3. Investigation of the reproducibility of functional 

connectivity and graph-based network metrics in 

healthy adults 

 

3.1. Chapter Summary 

 

The application of graph theoretical analysis (GTA) in functional neuroimaging data has 

provided a useful tool for characterising the organisation of brain networks. To validate the 

clinical potential of graph theory in order to improve the understanding of the aetiology of 

pathology and its diagnosis, however, requires an assessment of the reproducibility of graph 

theoretical measures. The primary aim of this study was to evaluate the reproducibility of 

functional networks derived from resting-state MEG time-series as recorded in typical adult 

volunteers in a repeated measures design. Results revealed significant differences in 

functional connectivity and graph measures in relation to resting-state, frequency band, and 

metric order. Results in the current study suggest that reproducibility of eyes-open, high 

frequency beta band, and small-world index functional networks are comparatively low. 

Network measures during eyes-closed showed good-to-excellent reproducibility. This is 

important for continued investigation of alterations in resting-state functional network. This 

element of the study provided a template for selecting satisfactorily robust processing 

approaches for further investigation of functional brain networks as potential clinical 

biomarkers, as described in subsequent chapters in this thesis. Given that network 

measures have been reported as markers of cognitive impairment, personality traits, 

intelligence, and typical development, the good reproducibility revealed in the current study 

is encouraging for future studies exploring the effects of pathology on the organisation of 

brain networks.  
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3.2. Introduction 

 

It is now generally agreed that cognitive functions rely on an optimal balance between local 

specialisation and global integration of the information processes in the brain (Dimitriadis, 

Laskaris, Simos, Micheloyyannis, & Fletcher, 2013; Douw et al., 2011; Stam, Nolte & 

Daffertshofer, 2007b; van den Heuvel, Stam, Kahn, & Pol, 2009). This agreement stems from 

an understanding of the brain as a complex system of highly dynamic and interacting 

networks. The increased application of graph theoretical analysis to characterise brain 

architecture in neuroimaging time-series has offered a tool to systematically explore the 

underlying dynamics of functional networks (Braun et al., 2012; Wang et al., 2011). As a 

result, there is increasing interest in the implication of graph measures in relation to both 

atypical and atypical brain function (Jin, Seol, Kim, & Chung, 2011). In quantifying the local 

and global properties of network topology, graph theory has been fundamental in identifying 

both widely and locally distributed network alterations associated with psychopathology. 

 

Graph metrics in functional networks are derived from various neuroimaging time-series by 

estimating the relationship/correlation between spatially distinct neural units (Deuker et al., 

2009). The correlations (estimated using various measures e.g. coherence, phase lag index) 

can be between brain regions of interest (ROIs)/voxels for source space (e.g. in functional 

magnetic resonance imaging: fMRI) computations or they can be between 

sensors/electrodes in magnetoencephalography/electroencephalography (M/EEG), for 

sensor-space computations. Computed correlations are used to generate a functional 

connectivity/association matrix. A threshold can be applied to a matrix to generate a binary 

adjacency matrix of edge values set to 0 (i.e. connectivity values < applied threshold) or 

edge values of 1 (i.e. connectivity values > than applied threshold) (Schwarz & McGonigle, 

2011). Alternatively, no threshold is applied and all the original information is retained in a 

correlation matrix. The former approach results in an unweighted matrix while the latter is a 

weighted matrix, both of which can be represented as a graph (Deuker et al., 2009). 

 

Various graph theoretical measures have been used to characterise network architecture. 

These include clustering coefficient, path length, small world index, modularity and degree 

(See Bassett, Brown, Deshpande, Carlson, & Grafton, 2011; Boccaletti, Latora, Moreno, 

Chavez, & Hwang, 2006; He & Evans, 2010; Stam, de Haan, & Daffertshofer, 2009, for a 

review). Graph metrics have been shown to reflect pathology (Rombouts, Barkhof, Goekoop, 

Stam, & Scheltens, 2005), age-related changes in typical development (Boersma et al., 

2011; Micheloyannis et al., 2009; Wu, Sato, Qi, Kawashima, & Fukuda, 2013), the effects of 

pharmacological intervention (Kelly et al., 2009), changes in spontaneous brain states 
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(Braun et al., 2012; Itahashi et al., 2014), and task performance differences between 

individuals (Deuker et al., 2009). For example, clustering coefficient and modularity have 

been shown to be reduced in autism (Peters et al., 2013; Rudie et al., 2013), while increased 

path length has been reported in patients with fragile X disease (van der Molen, Stam, van 

der Molen, 2014), and patients with Alzheimer’s disease (Stam, Jones, Nolte, Breakspear, & 

Scheltens, 2007a). In tandem with reports of altered resting-state functional connections, 

research has revelled associations with behavioural and cognitive functioning, suggesting 

that network topological properties (local and global) may underlie documented impairments 

in social, cognitive, and behavioural domains in pathology (Itahashi et al., 2014). This implies 

that brain functional network measures may function as useful biomarkers for investigating 

brain abnormalities (Vaessen et al., 2010), atypical development, ageing, and longitudinal 

monitoring of disorder progression. 

 

There is now a general consensus among researchers that the continued application of 

graph theoretical analysis first requires reproducibility assessment, on repeated testing of 

the same individuals (Braun et al., 2012; Deuker et al., 2009; Jin et al., 2011; Niu et al., 

2013; Telesford, Burdette, & Laurienti, 2013). The aim of this study was to evaluate the inter-

session reproducibility of functional connectivity and graph-based network measures in 

typical adults. Prior to this, this chapter first reviewed those high temporal resolution studies 

that have previously evaluated reproducibility of functional connectivity and network 

variables. 

 

3.2.1. Reproducibility of resting-state brain functional connectivity and 

network measures 

 

Given that resting-state spontaneous fluctuations in brain activity are unconstrained, one 

could argue that such intrinsic brain activity is challenging to reproduce on repeated testing 

(Jin et al., 2011). As a result of such fluctuations graph measures derived from resting-state 

data may not be very robust. What is more, according to Damoiseaux et al. (2006) and more 

recently Diaz et al. (2013), there exist approximately ten patterns/dimensions of resting-

states. Diaz et al (2013) explains that these patterns relate to various cognitive phenotypes. 

In addition, it also appears that graph-based network parameters can be altered by factors 

that can be hard to measure in participants. For instance, Verweij et al. (2014) recently 

revealed altered graph theoretical parameters (i.e. decreased local integration) in the 

prefrontal cortical areas were less efficient following sleep deprivation. Hence, a necessary 

first step in validating the application of graph metrics of functional network topology in 
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clinical populations is to demonstrate that such measures are sufficiently reproducible in 

test-retest investigations involving the same individuals. There is evidence to consider that 

resting-state functional connectivity might be highly reproducible across repeated testing. 

Data reported by Smit, Stam, Posthuma, Boomsma, and de Geus (2008) revealed that 

network features of small-world networks are highly heritable.  

 

Over the years, several studies have demonstrated sufficiently good reproducibility for graph 

metrics derived from task-based paradigms (Atri et al., 2011; Caceres, Hall, Zelaya, 

Williams, & Mehta, 2009; Clement & Belleville, 2009; Putcha et al., 2011; Teleford et al., 

2010; Wei, Yoo, Dickey, Zou, Guttmann, & Panych, 2004). However, despite the increased 

application of graph theoretical parameters in resting-state investigations there have been 

very few attempts in electrophysiology M/EEG studies to quantify the test-retest 

reproducibility of network measures during resting-states. Given that these techniques have 

high temporal resolution, they make it possible to study network interactions that are 

cognitively meaningful, because measured activity is at real time resolution.  

 

To the best of the author’s knowledge, to date only three high temporal resolution studies are 

reported to have investigated the reproducibility of network metric at rest. Of these two were 

derived from resting-state MEG data (Deuker et al., 2009; Jin et al., 2011) and one using 

resting-state EEG (Hardmeier et al., 2014a). Collectively, these studies and several fMRI 

studies (Braun et al., 2012; Liang et al., 2012; Liao et al., 2013; Schwarz & McGonigle, 2011; 

Wang et al., 2011; Weber et al., 2013), have generally reported poor-to-moderate 

reproducibility.  

 

A consistent finding from all the above studies is that the reproducibility of graph-based 

network metrics is highly dependent on several pre-processing strategies. These include the 

type of resting paradigm (i.e. eyes-closed vs. eyes-open), measure used to estimate 

functional connectivity, the frequency range (slow vs. fast oscillations), and type of network 

(i.e. weighted or unweighted), (See Table 1 for a summary of reproducibility results using 

M/EEG studies)  

 

3.2.2. Previous studies investigating graph metric reproducibility of brain 

functional networks  

 

The first study to evaluate the inter-session reproducibility of functional networks was 

conducted by Deuker et al. (2009). Using MEG, the researchers assessed graph metric 
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reproducibility for global network parameters (See Table 3.1 for a full summary of the graph 

metrics investigated) that were estimated using mutual information in sensor-level eyes-open 

rest and during an n-back memory task. Deuker et al. (2009) reported good test-retest 

reproducibility for first-order network parameters (i.e. measures computed from one property 

e.g. clustering coefficient), low frequencies, and task-based networks at a 6-8 week test-

retest interval. In contrast, the test-retest reproducibility of eyes-open rest, high frequency 

beta and gamma band, and second-order network parameters (i.e. measures computed 

from more than one property e.g. normalised clustering coefficient and small-world index) 

was considerably lower. 

 

Although very informative, this study has limitations that constrain the generalisability of the 

reported results. First, the study by Deuker et al. (2009) primarily focused on task-based 

functional networks, and as a result mainly reported on reproducibility estimates associated 

with n-back task performance. Second, functional network measures were derived binary 

unweighted networks, meaning that a threshold was applied. The application of thresholds to 

association matrices in network science is not fully understood, and several researchers 

remain sceptical about its application (Rubinov & Sporns, 2010; van den Heuvel, Stam, 

Boersma, & Hulshoff Pol, 2008; Wang et al., 2011). Given that there is no standard protocol 

for selecting an appropriate threshold, researchers use a range of arbitrary values to 

transform association matrices into adjacency binary matrices (aij) (Achard & Bullmore, 

2007; Braun et al., 2012: Hardmeier et al., 2014a; Liang et al., 2012; Schwarz & McGonigle, 

2011; Weber et al., 2013). For some, a binary threshold (rc) can be set as a single cut-off 

threshold value that is applied to all networks as -1<rc<1 (Achard, Salvador, Whitcher, 

Suckling, & Bullmore, 2006; Schwarz & McGonigle, 2011). For others, a threshold is set for 

each network, depending on different topological properties (Braun et al., 2012; Liao et al., 

2013; Telesford et al., 2013). The former, results in similar graphs for each subject, while in 

the latter approach, the graphs generated differ from each other (Schwarz & McGonigle 

2011; Wang et al., 2011). A recent study by Braun et al. (2012) showed that reproducibility 

varies depending on whether they were computed from weighted or unweighted networks. 

This suggests that the results reported by Deuker et al. (2009) may not apply to those where 

weighted graphs are studies 

 

A final limitation of the MEG study by Deuker et al. (2009) is that resting-state was only 

recorded during eyes-open rest. It has been proposed that topological network organisation 

is distinguishable based on whether one’s eyes are open or closed (Jin et al., 2011; Jin, 

Jeong, Lee, Jeon, & Chung, 2014; Jin, Jeong, Seol, Kwon, & Chung, 2013; Xu et al., 2014). 

What's more, Deuker et al. (2009) too acknowledged this and concluded by hypothesising 
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that functional network metrics derived from eyes-closed could yield higher reproducibility. 

The researchers explained that the lower reproducibility of metrics derived from eyes-open 

functional networks could be related to the signal-to-noise ratio in the eyes-open state being 

negatively affected by alpha suppression and eye movements during data acquisition.  

 

Also using mutual information as a measure of functional connectivity, the second and only 

other MEG study conducted by Jin et al. (2011) found that reproducibility was fair-to-

moderate for weighted nodal centrality measures at a two week test-retest interval in sensor-

level data. In addition, reproducibility was lower in eyes-closed and gamma frequency band 

compared to eyes-open rest. Similar to Deuker et al. (2009), data from Jin et al. (2011) found 

that network reproducibility was influenced by resting condition, the choice of graph metric, 

and frequency band. Both studies reported lower reproducibility of gamma band networks. A 

major limitation of the study by Jin et al. was that the researchers only focused on nodal 

centrality measures.  

 

The most recent study to investigate reproducibility of network metric was conducted by 

Hardmeier et al. (2014a). Using eyes-closed resting EEG time series, the researchers 

investigated the long-term (at one and two years) graph metric reproducibility of weighted 

networks using a measure of functional connectivity that are insensitive to the effects of 

volume conduction. Generally, reproducibility was low for high frequency beta and the small-

world index.  
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Table 3. 1 Summary of previous M/EEG studies investigating the reproducibility of 
functional connectivity and graph measures 

Study Modality RS 

paradigm 

FC measure Findings 

Deuker 

et al. 2009 

MEG Eyes-open 

(EO) rest and 

n-back task 

Mutual information 

(MI) 

(binary/unweighted 

networks) 

 Good test-retest(TRT) for 

n-back task, first-order 

measures and low 

frequencies 

 Lesser TRT for EO rest, 

higher frequency beta and 

gamma, and second-order 

measures 

Jin 

et al. 2011 

MEG Eyes-open 

and eyes-

closed (EC) 

rest 

Mutual information 

(weighted 

networks) 

 Fair-to-moderate TRT for 

nodal centrality measures 

and EO 

 Lesser TRT for EC, and 

higher frequency gamma 

Hardmeier 

et al. 

2014a 

EEG Eyes-closed 

rest 

Phase lag index 

(PLI) and weighted 

phase lag index 

(wPLI) (weighted 

networks) 

 High long-term TRT for 

global wPLI and 

corresponding graph 

measures 

 Low-to-moderate TRT for 

PLI and graph measures 

 Lesser TRT for beta and 

small-world index 

A summary of M/EEG studies investigating graph metric reproducibility of functional brain 
networks.  
 

Unlike research in the M/EEG community, several fMRI studies have been conducted to 

evaluate the reproducibility of functional networks across repeated testing. Using fMRI, Liang 

et al. (2012) found slight differences in topological parameters derived from weighted and 

binary networks. Pearson correlated metrics, in the absence of global signal regression, 

were highly reproducible. In addition, frequency-dependent analysis revealed higher 

reproducibility for higher frequency (slow 4:0.027-0.073 Hz) networks compared to lower 

frequency (slow 5:0.01-0.027 Hz) networks. Also using fMRI, Wang et al. (2011), 

investigated both the short-term (< 1 hour) and long-term (> 5 months) reproducibility of 

global and local network metrics of functional networks derived from resting-state. The 
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researchers found that metrics in weighted networks yielded higher test-retest reproducibility 

compared to binarised networks. Nodal degree network parametric was least affected by the 

approach. These results are consistent with findings reported by Schwarz and McGonigle 

(2011), who also investigated network reproducibility using resting-state fMRI. 

 

The final resting-state fMRI study discussed was conducted by Braun et al. (2012). The 

researchers investigated the influence of frequency-range and global regression pre-

processing on graph metric reproducibility. The researchers reported a higher reproducibility 

of broader frequency band (0.008-0.15 Hz) networks compared to standard frequency bands 

(0.04-0.08). In addition, unlike the MEG data reported by Braun et al. (2012), and Deuker et 

al. (2009) reported a higher reproducibility of second-order measures compared to first order 

measures. The researchers discussed the likelihood that the higher reproducibility of 

second-order network properties was attributable to the fact that these measures reflect 

properties of brain function that could be more reliably explored using fMRI. However, this 

has not been replicated by other researchers. For a review of more fMRI studies 

investigating graph metric reproducibility, see Telesford et al. (2013). 

 

Overall, fMRI studies graph metric reproducibility suggest that global signal regression is 

associated with higher reproducible network parameters (Telesford et al., 2013), and that the 

application of partial correlations to investigate network parameters result in lower 

reproducibility compared to using Pearson’s correlation coefficient, because variance is 

reduced. In contrast, due to contrasting methodological considerations in the M/EEG studies, 

it is challenging to draw clear concrete conclusions. 

 

The current study 

 

In the general framework of this thesis, this chapter functioned as a preliminary study to 

investigate graph metric reproducibility of functional weighted networks.. This study aimed to 

inform the choice of processing steps and graph measures acceptable for use with typically 

developing participants and atypical paediatric populations. As discussed earlier (See 

section 3.2.2), the first study (Deuker et al., 2009) mainly focused on global metrics 

associated with task performance in binary networks. The second study (Jin et al., 2011), 

concentrated on nodal centrality measures in local weighted networks during eyes-closed 

and eyes-open states. The most recent (Hardmeier et al., 2014a) mainly focused on long-

term measures in global weighted network parameters during eyes-closed. All studies were 

estimated at a sensor-level.  
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Due to low spatial resolution, it is likely that MEG signals picked up at sensors may originate 

from the same source (de Pasquale et al., 2012). Consequently, this may result in spurious 

connectivity estimates between nearby sensors (Stam et al., 2009). The exclusion of zero-

lags often associated with volume conduction provides a solution to this issue (Stam et al., 

2007b). As a result, sensor space computations benefit from applying a measure of 

functional connectivity that is insensitive to zero-lags, something that a measure such as 

mutual information, as employed by Deuker et al. (2009) and Jin et al. (2011) is not able to 

do. While networks reported in Hardmeier et al. (2014a) were computed using such a 

measure, this study only reported on the reproducibility of eyes-closed only and did not 

consider the reproducibility of network metrics in the gamma band.  

 

Hence the current study aimed to evaluate the reproducibility of functional network 

organisation parameters by overcoming the limitations of previous studies. This involved an 

investigation of graph metric reproducibility for global weighted functional brain networks 

derived from both eyes-closed and eyes-open resting data based on a measure of functional 

connectivity that is insensitive to the effects of volume conduction. 

 

Hypotheses 

 

1. It was predicted that functional networks derived from eyes-closed rest would reveal 

higher reproducibility compared to eyes-open rest. 

2. Generally higher reproducibility would be observed in low frequency (theta and 

alpha) bands compared to high frequency beta and gamma. According to Bassett 

and Bullmore (2006), Deuker et al. (2009), and Honey, Kotter, Breakspear, & Sporns 

(2007), low frequency oscillation bands are more anatomically constrained. Hence, it 

was hypothesised that these systems were more likely to be robust over repeated 

measurements compared to dynamic systems in high frequency bands. 

3. Finally, it was also predicted that second-order measures (e.g. normalised 

characteristic path length and small-world index) would yield lower reproducibility 

compared to first-order graph metrics. This is because first order measures are 

derived from one property, and thus avoid the added variance introduced in second-

order metrics that are quantified from more than one property (Deuker et al., 2009). 
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3.3. Materials and Methods 

 

3.3.1. Participants 

 

The Aston University Ethics Committee reviewed and approved the study protocol (REC 

Reference: 452). All participants gave their written informed consent prior to the experiment. 

Testing sessions were two to six weeks apart. The sample was recruited from the student 

and staff population at Aston University (See Table 2 for demographic characteristics). All 

participants had normal or corrected to normal vision. Initially thirty adults were recruited into 

the study. However, ten subjects were excluded from further analysis, for the following 

reasons. Six failed to complete the two recordings, one was receiving medication for a major 

mental illness at the time of the second scan, one had a diagnosis of developmental dyslexia 

(self-reported on a behaviour problems questionnaire), and excessive artefactual MEG 

signals in two participants meant it was not possible to attain clean epochs. The final sample 

consisted of twenty adults eligible to participate in the study and with no major psychiatric or 

neurological disorders.  

 

3.3.2. MEG data acquisition  

 

Magnetic fields were recorded inside a magnetically shielded room using a 306-channel 

whole head MEG system (Vector View, Elekta Neuromag Oy, Helsinki, Finland). The 

sampling rate was 1 kHz and data were recorded at a 0.1 Hz high pass filter and a 300 Hz 

low pass filter. Prior to MEG data acquisition, five head position indicator coils were attached 

to the head of each participant: three on the forehead and one behind each of the ears. 

Subsequently, anatomical landmarks and further head points (~400) across the entire head 

were digitised using a ‘Polhemus sensor’ (Henson, Mouchlianitis, & Friston, 2009). Head 

position was tracked continuously during data acquisition, and corrected to a standard 

position in Maxfilter (Elekta Neuromag). Only data from magnetometer sensors are reported 

in this thesis. 

 

Resting-state MEG was recorded on two repeated occasions while participants were seated 

comfortably in a reclining chair. During the eyes-open resting-state, participants were 

instructed to relax, and keep their gaze fixed on a white cross mark projected centrally on a 

black screen. During eyes-closed, participants were asked to relax but remain awake. Eye 

(excessive blinking) and body movements were discouraged. Each resting paradigm lasted 

approximately two minutes. All MEG recordings were scheduled in the morning at the same 
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time, to take into account subject circadian rhythms, as advised by Deuker et al. (2009).  

 

3.3.3. Data pre-processing 

 

Noise and artefact suppression of MEG data was achieved with the temporal signal-space 

separation (tSSS: Taulu & Hari, 2009), with movement compensation implemented in the 

MaxFilter software (Elekta Neuromag). Following this, the data were inspected visually for 

several artefacts, including eye-blinks, muscle activity, excess movement, and for saturated 

channels, using the Graph software (Elekta Neuromag). This enabled a comparison of raw 

and MaxFiltered data alongside each other, helping to determine the performance of tSSS in 

magnetoencephalographic artefact suppression. Following the application of tSSS and the 

visual inspection of data, segmentation was undertaken with the SplitScreen software (Van 

Dyck, Elekta Neuromag). Care was taken to ensure that selected epochs contained no 

residual artefacts, resulting from eye-blinks, excessive muscle activity, slow eye movements, 

or system and technical related issues such as trapped flux ‘pop-corn noise’. Eight non-

overlapping artefact-free epochs (four eyes-closed and four eyes-open) of 4096 samples 

(4.096 seconds) were selected at the beginning of each continuous MEG resting-state 

condition when participants were most alert (Jin, Jeong, Lee, Jeon, & Chung, 2014). Data 

from Hardmeier et al. (2014b) previously found that short four second epochs yielded higher 

reproducibility compared to long epochs of the same duration. Finally, for each participant, 8 

epochs of 4 seconds were converted into plain ASCII files and imported in the BrainWave 

software package (Stam: http://home.kpn.nl/stam7883/brainwave.html). All subsequent 

analysis including band-pass filtering, FFT power analysis, estimation of functional 

connectivity, and graph theoretical measures were computed using formulas implemented in 

BrainWave. The package has been used successfully in several studies looking at network 

analysis of time series derived primarily from resting-state MEG and EEG data (Hardmeier et 

al., 2012; van der Molen et al., 2014). Note that all results refer to average phase lag index 

matrices. No regional analysis was conducted, as it is not clear whether graph-based 

measures in small networks carry meaningful information (van Wijk, Stam, & Daffertshofer, 

2010).  

 

Estimating FC using PLI  

 

The phase lag index (PLI) (Stam et al., 2007b), was used as the measure of functional 

connectivity/coupling strength in band-filtered time-series, corresponding to standard 

frequency ranges theta (4-8 Hz), lower or alpha1 (8-10 Hz), upper or alpha2 (10-13), beta 
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(13-30 Hz) and gamma (30-45 Hz). The phase lag index is a measure of the asymmetry of 

the distribution of phase differences between two instantaneous signals (Stam et al., 2007b). 

Spurious connectivity arises from two electrodes/sensors measuring activity from the same 

source. When this occurs, the instantaneous phases of the two time-series phase lag around 

zero or π (mod π) (Hardmeier et al., 2014a). The higher the asymmetry, the more likely that 

one signal is leading or lagging compared to another signal. Consequently, correlation 

interdependencies estimated using PLI are less likely to be affected by the influence of 

common sources or volume conduction. In other words, phase lag index was developed as a 

measure that is insensitive to volume conduction specifically because it avoids zero phase 

lags, which in turn avoid spurious connectivity due to volume conduction (as discussed in 

Cohen, 2014; Niso et al., 2013 and Stam et al., 2007b). Comparing coherence and 

imaginary coherence to phase lag index Stam et al. (2007b) showed that the two former 

measures were strongly influenced by spurious correlations due to common sources. In 

addition, the phase lag index measure has been shown to perform well in estimating real 

changes in synchronisation, and is often used to estimate coupling information in both 

clinical and non-clinical populations (See Peraza, Asghar, Green, Halliday, 2012; van der 

Molen et al., 2014; van Straaten et al., 2014). When computed, phase lag index values 

range between 0 ≤ phase lag index ≤ 1. A zero value represents no coupling or coupling with 

a phase difference centred around zero or π, while a value of one represents phase 

differences of non-spurious interactions, generated from an asymmetric distribution that is 

different from zero (mod π). (The computational review of phase lag index is beyond the 

scope of this thesis. See Stam et al., 2007 for a detailed discussion of phase lag index 

computation). Instantaneous phase synchronisation between the time series was based on 

the Hilbert transformation. 

 

Global network construction 

 

Graph measures were computed from individual network nodes (magnetometer sensors) 

and average network measures per epoch for each participant in the frequency bands of 

interest for the two resting conditions. To overcome the limitations associated with using 

arbitrary thresholds, all original weights in the connectivity matrix were retained. Constructed 

graphs consisted of a set of 102 nodes (i.e. 102 magnetometer sensors) connected by 

weighted edge (i.e. phase lag index values, where wij undirected weights represented 

connections between any two nodes i and j) (Stam et al., 2009). For each network, weighted 

clustering coefficient (CW), weighted characteristic path length (LW), normalized CW (gamma: 

γ), normalized LW (lambda: λ), and the small-world index (sigma: σ) were computed 

according to formulas implemented in BrainWave. For the formulas and mathematical 
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definitions of these measures see Hardmeier et al. (2014), Humphries and Gurney (2008). 

Latora and Marchiori (2001), Nui et al. (2013), Rubinov and Sporns (2010), Stam et al. 

(2009) van der Molen et al. (2014), and Watts and Strogatz (1998). 

 

Together these measures represent network parameters of functional integration (LW, & 

lambda), measures of functional segregation (CW, & gamma, see Figure 3.1 for an 

illustration), and network efficiency (the small-world index). Calculation of graph metrics can 

be based either on a single graph property or on more than one graph property (Jin et al., 

2011). As explained earlier, metrics computed using the former are known as first-order 

metrics while the latter are second-order metrics. Hence, first order metrics in this study are 

global PLI, CW, and LW while second second-order metrics are normalised clustering, 

normalised characteristic path length, and the small-world index. 

 

Figure 3. 1 Visual illustration of the core graph theoretical measures 
The core graph-based network measures i.e. measures of integration and segregation. The 
two big circles represent clusters with more within module connections (local) than between-

module (global) connections. A high number of triangles in a network suggest high 
segregation in a network, which is assessed using clustering coefficient. Network weights 
(grey, blue, and green links) reflect global efficiency, assessed using path length. Figure 

adapted from Rubinov and Sporns (2010). 
 

Weighted clustering coefficient (CW) is a measure of functional segregation that 

represents local connectedness (Rubinov & Sporns, 2010). It relates to the brain’s ability for 

specialised processing in closely interconnected clusters/sub-graphs (e.g. brain regions or 

sets of sensors). Hence a network with a high average clustering coefficient represents a 

network of densely connected local clusters. By definition, CW of a node (small circles) is the 

degree to which other nodes in a neighbourhood are also connected to each other (Watts & 

Strogatz, 1998). In Figure 3.1, CW of any node (small circles), such as the ones linked 

together with blue lines, would be the degree to which all other nodes with blue edges are 
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also connected to each other in that neighbourhood. Mean CW is therefore the global 

estimate of local network connectivity (Hardmeier et al., 2014; Liang et al., 2012).  

 

Weighted short path length (LW) represents global connectedness (Hardmeier et al., 

2014). The metric quantifies the degree of the brain’s ability to rapidly and efficiently 

integrate highly specialised information in spatially discrete brain regions (Rubinov & Sporns, 

2010). In other words, this metric Lij is concerned with estimating how efficiently a network is 

connected (Liang et al., 2012; Nui et al., 2013). In Figure 3.1, the route marked by green 

edges is an example of the most efficient route connecting nodes in the two modules (i.e. 

sub-graphs). LW can be thought of as routes by which information flows. The average of the 

shortest distances from one node to another node is known as the characteristic path length 

(Watts and Strogatz, 1998). In a network, (See Figure 3.1) any path will consist of two or 

more edges with differing weights. Hence, a network with low characteristic path length 

would be characterised by system of short distance connections between nodes (Supekar, 

Musen, & Menon, 2009). The average of all path lengths is the global measure of a 

network’s functional integration. 

 

As explained in Chapter 2, individual differences in network size, and edge weights (van der 

Molen et al., 2014) mean that computed networks often vary, making network comparison 

between subjects challenging. A graph theoretical approach-based solution to this problem is 

to compute graph measures that are independent of network size. This process is known as 

normalisation. In the current study, normalised measures were calculated using formulas in 

BrainWave. Below is a description of the computation. 

 

Normalisation 

 

In BrainWave, surrogate/random networks were constructed, based on Erdos and Renyi’s 

random graph model (See Erdos & Renyi, 1960, for a review). This involves a re-shuffling of 

the original network, where size is not affected but the structure is affected. (Hardmeier et 

al., 2014). From the surrogate network, new measures of CW (i.e. CW-s) and LW (LW-s) are 

computed. (See Figure 2.6, Chapter 2 for an illustration of this process.) Computationally, 

normalised CW (gamma) is defined as the ratio of CW in a real network and CW in a 

comparable surrogate network (CW-s), while normalised LW (lambda) is defined as the ratio 

of LW in a real network and LW in a comparable random network (LW-s).  

 

A network is said to have small world properties if normalised gamma (i.e. CW/CW-s) > 1 and 

lambda (i.e. LW/LW-s) ≈ 1 (Humphries & Gurney, 2008). As explained in Chapter 2, section 
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2.7.1., compared to a random network, a network with a small-world topology has higher 

clustering (gamma > 1) and approximately low path lengths (lambda ≈ 1) (Liang et al., 2012). 

A network can have small world properties and not have an overall small-world configuration. 

To formally assess if network topology has a small-world configuration, also known as sigma, 

the ratio of gamma and lambda must be > 1 (Humphries & Gurney, 2008). Graph measures 

of the four epochs per subject in each frequency band of interest during eyes-open and 

eyes-closed rest were averaged for all further computations.  

 

Reproducibility of functional network parameters 

 

To determine reproducibility of functional connectivity and graph-based network measures, 

the current study and those reviewed thus far use the intraclass correlation coefficient (ICC) 

(Shrout & Fleiss, 1979) as a tool for determining reproducibility in repeat study designs. It 

quantifies the degree of between-subject variability compared to total variability. ICC is 

typically used to compute inter-rater reproducibility estimates, i.e. how consistent raters are, 

relative to one another, as they measure a given outcome. When estimating reproducibility 

on repeated measurements (i.e. session 1 and session 2), ICC computation assumes that if 

a measure is estimating a given phenomenon in the same group of people, then its 

performance on repeated testing should be reproducible. It is computed using different 

models that focus on the source of variability in population samples, raters and estimated 

measurements (See McGraw & Wong, 1996; Shrout & Fleiss, 1979 for a review) . ICC is 

similar to the Pearson correlation, because both measures try to establish whether variables 

are linear in their relationship to one another. However, Pearson correlation cannot 

determine how consistent measures are relative to one another, as far as agreement in the 

measurement is concerned, which is, however, possible with intraclass correlation 

computation. 

 

For each resting condition, frequency band, and metric, average test-retest estimates were 

computed across the two recordings using the intraclass correlation coefficient (ICC: Short & 

Fleiss, 1979). ICC has widely been used to assess test-retest graph metric reproducibility in 

neuroimaging studies (Deuker et al., 2009; Jin et al., 2011; Niu et al., 2013). In this study, 

ICC values for absolute agreement measurements were computed using a two-way random 

effect model (2,1), which assess how consistent the two raters are, relative to each other on 

average, from person to person. ICC values were calculated using the equation shown as 

Equation 3. 1 below (Shrout & Fleiss, 1979): 
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Equation 3.2 ICC computation 

ICC (2, 1) = ((MSs – Mse) / (MSs + (k -1)MSe)) 

 

where k represents number of repeated measurements ( i.e. two test recordings), while the 

MSs and MSe represent between-subject and within-subject variance respectively. Mean and 

variance values were calculated for each metric. In line with previous studies, test-retest 

estimates were categorised as poor if ICC values were ˂ 0.4, moderate if ICC was 0.4 - 0.6, 

good if ICC was 0.6 to 0.75, and excellent if iCC was 0.75 to 1 (Hardmeier et al., 2014a; Liao 

et al., 2013; Niu et al., 2013; Sampat et al., 2006; Telesford et al., 2013). ICC values > 0.4 

are generally considered to be sufficiently reproducable (Faria et al 2012). See Figure 3.3 for 

an illustration of the ICC computation pipeline. 

 

Figure 3. 2 Intraclass correlation computations across MEG data recordings 
An overview of ICC computation (based on Deuker et al., 2009) of functional networks. No 
threshold was applied, hence computed graph metrics were based on weighted phase lag 

index matrices estimated during both recording sessions. Functional connectivity and graph 
metric reproducibility was assessed using the ICC intraclass correlation coefficient, 

computed for each metric between the two sessions. 
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3.4. Results 

 

Table 3. 2 Demographic characteristics 

 Typical adults (M ± SD) 

N 20 

Age (years) 30±7 

Gender (F:M) 13:7 

Handedness (R:L) 15:5 

Years of education 15±5 

Days between scans 2-6 weeks 

Demographic characteristics of participants presented as mean ± standard deviation. Key: M 
= mean; SD = standard deviation; N = number of participants; F: M = females: males; R: L = 
right: left. 

3.4.1. Coupling strength between sessions in eyes-closed and eyes-open 

resting conditions 

 

Figure 3.3 displays mean coupling strength (i.e. average phase lag index) at each frequency 

band for eyes-closed and eyes-open resting conditions. Mixed ANOVA models (drawn from 

SPSS version 21), were used to investigate average phase lag index differences between 

the two sessions at each frequency band, with frequency as within-subjects factor and test 

session (1st and 2nd), as a between-subjects factor. These were computed separately for 

eyes-closed (Figure 3.3A) and eyes-open (Figure 3.3B) resting networks. With the exception 

of the theta band in the eyes-closed resting-state, results revealed that global coupling 

strength in both resting conditions decreased as the frequency bands increased. Results 

were significant at p > .05, and effect size estimates were reported as partial eta-squared 

values (
2

p ). 

 

Eyes-closed resting-state:  

 

For the eyes-closed condition (Figure 3.3A), Mauchly’s test indicated that the assumption of 

sphericity had been violated (X2(9) = 81.09, p < .01,) therefore degrees of freedom were 

corrected using Huynh-Feldt estimates of sphericity (ε = .61). A significant main effect of 

frequency band, F(2.45, 93.05) = 339.24, p < .01, (
2

p ) = .90, but not for session, F(1, 38) = 

.71, p > .05, (
2

p ) = .02 was observed. No significant interaction between frequency band 

and session was found F(2.45, 93.05) = .19, p > .05), (
2

p ) = .01.  
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Eyes-open resting-state 

 

For eyes-open rest (Figure 3.3B), Mauchly’s test similarly indicated that the assumption of 

sphericity had been violated (X2(9) = 24.28, p< .05, therefore, degrees of freedom were 

corrected using Huynh-Feldt estimates of sphericity (ε = .90). A significant main effect of 

frequency band, F(3.60, 136.68) = 920.51, p < .01, (
2

p ) = .96, but not for session F(1, 38) = 

1.64, p > .05, (
2

p ) = .04 was observed. No significant interaction between frequency band 

and session was observed F(3.60, 136.68) = .91, p > .05) (
2

p ) = .02.  

 

Together the results reported above found that average coupling strength varied as a 

function of frequency band, but not session, in both resting conditions. In addition, from the 

visual representation of these results, presented below, it is clear that coupling strength 

remained much the same across testing sessions.  

 

 
 

 
 
 
Figure 3.3 represents average coupling information across five frequency bands in A) eyes-
closed rest and B) eyes-open resting during the first and second recording sessions. Error 
bars are ± 2 SE, standard error. Note, * p < .05. Statistically, average coupling strength 
varied as a function of frequency, range p < .05, but not session, for both resting conditions. 
 

 

Figure 3. 3 Average phase lag index in different frequency bands across the two repeated 
MEG recordings  
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Figure 3.3 reveals that coupling strength generally decreased as frequency bands increased. 

According to Jin et al. (2011) this trend suggests that coupling information in low frequency 

bands is potentially stronger compared to higher frequency bands. The observation of 

increased functional coupling during the eyes-closed condition for lower and upper alpha 

bands is not consistent with the results reported by Jin et al. (2011). However, this 

observation is in line with prior literature (Xu et al., 2014), suggesting that neuronal activity is 

modulated by visual attention, often demonstrated when participants close and open their 

eyes. During eye-open, desynchronization of alpha band rhythm occurs, while when eyes 

are closed, alpha band rhythm is generated. The main observation from the current study 

was that reproducibility of network functional networks are greatly influenced by processing 

choices. This is crucial as it helped in identifying the most robust processing choices of 

functional networks in subsequent chapters.  

 

3.4.2. Formal assessment of functional brain network parameters test-retest 

reproducibility  

 

The reproducibility of FC global network parameters was evaluated using the intraclass 

correlation coefficient (ICC) (Shrout& Fleiss, 1979). The results are presented in Table 3.3 

and Figure 3.4. Generally, metric reproducibility varied from moderate to excellent 

reproducibility, depending on resting condition, frequency band, and type of graph measure. 

Unless otherwise stated, results are reported as means ± SD. In accordance with previous 

studies (Braun et al., 2012; Deuker et al., 2009; and Zhang et al., 2011), negative ICC 

estimates were set to zero (i.e. not reproducible). It has been argued that negative ICC 

estimates occur when within-participant variance is greater than between-participant 

variance (Deuker et al., 2009), a situation that researchers consider unusual (Jin et al., 

2011). Nevertheless for all statistical purposes ICC values with negative estimates were set 

to zero. However, negative ICCs are displayed in Table 3.3 and Figure 3.4 for mere visual 

articulation. In Table 3.3, results show that test-retest reproducibility of functional connectivity 

and graph measures ranged from 0 to 0.98 (M = 0.41, SD = 0.33). The most robust measure 

was mean global phase lag index, in the gamma frequency band network of eyes-closed 

condition: for a single measure the ICC = .96 (95% CI = 090-0.98; F = 47.2, p < 0.01), and 

for average ICC = .98 (95% CI = .95, .99). Mean global phase lag index was also highly 

robust in the eyes-open condition: for a single measure, ICC = .93 (95% CI = .83-.97; F = 

26.3, p< 0.01) and for average ICC = .96 (95% CI = .91-.99). Generally, eyes-closed 

condition, functional connectivity (phase lag index) low frequencies, and graph-based first-

order measures showed sufficiently good reproducibility (Figure 3.4). In contrast eyes-open, 
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second-order graph measures and high frequency beta showed lesser test-retest 

reproducibility. 

 

 



71 
 

Table 3. 3 ICC values for eyes-closed (EC) and eyes-open (EO) rest across the five frequency bands 

  

Phase lag index Cw Lw Normalized Cw Normalized Lw Small-world index 

EC Theta .74* (.32, .90) .79** (.46, .92) .72* (.27, .89) .78** (.43, .91) .67* (.14, .87) -.12 (-2.11, .57) 

 

Alpha1 .51 (-.29, .81) .54 (-.20, .82) .64 (.06, .86) .55 (-.19, .82) .43 (-.51, .78) -.02 (-1.81, .61) 

 Alpha 2 .79** (.45, .92) .79** (.45, .92) .81** (.52, 93) .47 (-.40, .79) .50 (-.33, .80) .34 (-.77, .74) 

 

Beta .26 (-.99, .71) .09 (-1.48, .65) .42 (-.54, .77) .01 (-1.73, .62) -1.21 (-5.79, .18) .33 (-.78, .74) 

 

Gamma .98** (.95, .99) .97** (.94, .99) .96** (.90, .98) .12 (-1.39, .66) .36 (-0.70, .75) -.42 (-3.05, .46) 

EO Theta -.41 (-3.02, .47) -.31 (-2.71, .50) -.23 (-2.46, .53) .51 (-.30, .81) -.03 (-1.84, .61) .17 (-1.26, .68) 

 

Alpha1 -.22 (-2.42, .54) -.04 (-1.87, .60) -.06 (-1.92, .60) -.04 (-1.88, .66) .51 (-.28, .81) -.45 (-3.13, .45) 

 Alpha 2 -.05 (-1.89, .60) .12 (-1.40, .66) .01 (-1.72, .62) .50 (-.32, .81) .71* (.26, .89) .51 (-.28, .81) 

 

Beta .41 (-.57, .77) .26 (-1.00, .71) .53 (-.24, .82) -.28 (-2.62, .51) -.93 (-4.76, .28) .47 (-.40, .79) 

 

Gamma .96** (.91, .99) .95** (.87, .98) .93** (.81, .97) .32 (-.81, .74) .48 (-.38, .80) .22 (-1.10, .70) 

Mean global ICC estimates for global network metrics across frequency bands in EC, eyes-closed, and EO, eyes-open resting conditions. 
Mean ICC values are mean and 95% confidence intervals estimated from bootstrapping. When averaged together, ICC estimates of the six 
metrics and global PLI ranged from 0 to 0.98 (M= 0.346 ± 0.325 (SD)). ICC estimates with negative values were set to zero. ICC ˂ 0.4 indicates 
low reproducibility, 0.4-0.6 fair, 0.6-0.75 good, and >0.75 excellent reproducibility. * indicates ICC estimates that meet the criterion for 
sufficiently good reproducibility and ** those with excellent reliability. ICC values > 0.4 are generally considered to be sufficiently reproducible 
(Faria et al., 2012).
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Figure 3.4 represents mean ICC estimates across frequency bands in the eyes-closed (top 

figure) and eyes-open (bottom figure) resting conditions. Generally, graph measures, 
particularly in the eyes-closed condition, show sufficient good (> 0.5) to excellent 

reproducibility (> 0.75). Second-order metrics (i.e. normalised clustering, normalised path 
length, and small world index) yielded lower ICC scores. As explained earlier (Section 3.3.6), 

negative ICCs are considered to be theoretically unusual by most and normally excluded 
from formal ICC calculations. These values are plotted in Figure 3.4, for visual a visual 

illustration purpose only. 
 

Results in Table 3.3 and Figure 3.4 reveals that test-retest reproducibility varied across 

different graph measures. As stated earlier, first-order measures represent metrics that were 

computed from a single graph property (i.e. phase lag index, clustering coefficient and 

Figure 3. 4 Mean ICC values in resting-state conditions across the five frequency 
bands 
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characteristic path length), while second-order metrics represent graph measures derived 

from more than one property (i.e. normalised clustering, normalised path length and the 

small-world index. The former are second-order because they are ratios of measures 

computed in the original and surrogate networks. Results in Table 3.3 and Figure 3.4 reveal 

a very interesting pattern. It appears that functional connectivity and graph-based network 

measures were those most affected by rest-state dependent properties. To elaborate, during 

eyes-closed, beta band and small-world index tended to be the least reproducible compared 

to first-order measures and other frequency bands. During eyes-open, by contrast, first-order 

measures and low frequency theta, and alpha1 tended to show lower reproducibility 

compared to higher frequency beta and gamma and second-order measures. As a result of 

this observation, all further computations were conducted separately for the two resting 

conditions. 

 

First-order vs. second order test-retest reproducibility during eyes-closed and eyes-open rest 

 

Eyes-closed rest: Using a 1-way repeated ANOVA, results for the eyes-closed rest condition 

revealed a significant effect of metric order (i.e. whether the graph metric was computed as a 

first or second-order metric) (F(1.05, 4.19) = 9.13, p < .05, (
2

p ) = .70 (Sphericity not 

assumed). Comparisons found that the ICC scores for global functional connectivity F(1, 4) = 

8.18, p = .046, and first-order metrics F(1, 4) = 10.40, p = .032, were significantly higher than 

second-order metrics. 

 

Eyes-open rest: Note however that the main effect of order-metric within the eyes-open 

condition was not significant (F(1.00, 4.02) = .01, p > .05, (
2

p ) = .002 (sphericity not 

assumed). Taken together for both resting conditions, the test-retest reproducibility of 

functional connectivity and graph measures was highly dependent on the order of the 

measure. The results suggested that these effects were more pronounced for the eyes-

closed resting condition, in which comparisons revealed that second-order measures were 

comparatively less reproducible than functional connectivity, clustering coefficient, and path 

length. 

 

Frequency band-dependent test-retest reproducibility estimates in eyes-closed and eyes-

open rest 

 

Eyes-closed: The choice of frequency band did influence reproducibility (See Figure 3.4). A 

repeated ANOVA for eyes-closed revealed a significant main effect of frequency band 
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(F(3.37, 16.84) = 4.30, p < .05, (
2

p ) = .46 (sphericity not assumed). Although comparisons 

revealed no significant differences between the ICC scores for different frequencies, a trend 

for higher reproducibility of gamma band measures compared to beta was observed F(1, 5) 

= 4.47, p = .09, (
2

p ) = .47. 

 

Eyes-open: Similarly a repeated ANOVA of frequency bands within the eyes-open revealed a 

significant main effect of frequency band (F(4, 20) = 3.45, p < .05, (
2

p ) = .41 (sphericity 

assumed). Comparisons revealed that network measures within the gamma band, were 

significantly higher than those for theta (F(1, 5) = 6.73, p = .049, (
2

p ) = .57), lower alpha 

(F(1, 5) = 9.54, p = .027, (
2

p ) = .66) and beta band (F(1, 5) = 7.51, p = .041, (
2

p ) = .60), but 

not for alpha2 (F(1, 5) = 1.72, p = .25, (
2

p ) = .26). In summary, the results for both resting 

conditions found that the test-retest reproducibility of network measures varied across 

frequency bands. The extent of these differences was more pronounced for the eyes-open 

condition than for eyes-closed. In the former state, the ICC scores for measures in gamma 

was significantly higher than all other frequencies except for alpha2 band. 

 

3.5. Discussion  

 

The aim of this study was to investigate the reproducibility of functional connectivity and 

graph-based measures derived from weighted phase lag index functional connectivity 

matrices of resting-state MEG data. This is necessary because low reproducibility potentially 

undermines the clinical relevance and statistical power of network measures in applied 

neuroscience.  

 

As discussed earlier, to the best of the author’s knowledge, three non-invasive high temporal 

resolution studies have previously investigated the reproducibility of network measures. 

Using MEG and mutual information as a measure of functional connectivity both Deuker et 

al. (2009) and Jin et al. (2011) explored test-retest measures. Investigating global measures, 

Deuker et al. reported higher reproducibility for the n-back task memory task, first-order 

measures and low frequencies. In contrast, eyes-open rest, second-order measures and 

high frequency beta and gamma revealed comparably low ICC scores. The study by Jin et 

al. reported moderate ICC scores for of eyes-open for centrality measures. Generally, the 

reproducibility for eyes-closed and higher frequency gamma was lower by comparison. Most 

recently, using EEG and phase lag index as a measure of functional connectivity, Hardmeier 
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et al. (2014a) reported lower reproducibility for beta band and small-world index during eyes-

closed rest. 

 

In the current study, generally small-world index, and eyes-open rest yielded lower ICC 

scores compared to other network measures and eyes-closed rest respectively. Overall, 

though, with the exception of beta band and the small-world index, many network measures, 

particularly first-order measures during eyes-closed, yielded moderate-to-excellent ICC 

scores. These results supported all proposed hypotheses during eyes-closed but not eyes-

open rest. Unless otherwise noted, due to poor, and at times negative ICC scores (See 

Figure 3.4) of network measures during eyes-open, the discussion below mainly focused on 

reproducibility of network measures derived from eyes-closed rest data 

 

The higher reproducibility of measures during eyes-closed rest compared to eyes-open 

contradicts the findings reported by Jin et al. (2011), the only high temporal resolution study 

to have considered both eyes-open and eyes-closed conditions. In addition, during eyes-

closed rest, second-order measures revealed lower ICC scores, compared to first-order 

network measures. This observation supports findings reported by Deuker et al. (2009), 

Hardmeier et al. (2014), and Jin et al. (2011). Interestingly, for first-order measures, results in 

Table 4 and Figure 3.4 revealed that the highest inter-session test-retest reproducibility was 

for the gamma band, a frequency that previous studies have shown to be the least 

reproducible. Finally, in the current study, beta band and second-order measures, particularly 

the small-world index, yielded poor-to-moderate ICC scores for eyes-closed rest. This is 

consistent with Deuker et al. and Hardmeier et al. These results are explained in detail 

below. 

 

Reproducibility of functional coupling and graph-based network measures  

 

With the exception of beta band and small-world index, network graph metrics were 

sufficiently reproducible on two repeated occasions. Results reported in the current study 

suggested that underlying mechanisms in networks during eyes-closed rest reconfigure with 

little variance compared to those during eyes-open state. Marx et al (2003) and Xu et al. 

(2014) have previously explained that underlying functional network configurations often 

correspond to the external environment, typically modulated by direction of attention. Hence 

the observation of higher reproducibility during eyes-closed is most likely to be associated 

with this type of rest being experimentally a more controlled state compared to eyes-open 

rest. Furthermore, it has previously been proposed that the low ICC scores for network 

measures during the eyes-open condition could be the result of the signal-to-noise ratio 
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being negatively affected by alpha suppression and by eye movements such as blinking 

during eyes-open rest (Deuker et al., 2009). 

 

Metric-order based reproducibility 

 

Within eyes-closed, second-order measures yielded showed lower IC scores in higher 

frequency beta and gamma bands. It has been proposed that the low reproducibility of 

second-order metrics is most likely to be explained by increased ‘variance’ associated with 

being computed from more than one graph metric property (Deuker et al., 2009). Moreover, 

with the exception of the beta band, the reproducibility of the small-world index, a measure 

computed from four properties, was lower than that for normalised measures, which are 

computed from two network properties. Increased variance is therefore a plausible 

explanation.  

 

Frequency-dependent test-retest reproducibility 

 

Considering all the network measures explored, low frequency oscillations generally 

revealed higher reproducibility. Previous studies have reported network topology differences 

in low and fast neural oscillations (Deuker et al., 2009; Jin et al., 2011; Liang et al., 2012), 

which are often associated with cognition. Explaining the higher reproducibility of low 

frequencies, Bassett and Bullmore (2006), and Honey et al. (2007) proposed that low 

frequency band networks are more anatomically constrained. From a physiological function 

standpoint, this implies that network measures in dynamically less reconfiguring systems will 

be more robust across repeated measurements (Deuker et al., 2009). In addition, de 

Pasquale et al. (2010) proposed that fast oscillations in brain networks are less stable and 

more sensitive to network reorganisation due to their involvement in mental activities. It has 

been proposed that dynamically reconfiguring systems in beta and gamma frequencies help 

sustain higher cognitive functions and perceptions (Deuker et al. 2009). These arguments 

are in line with those of Engel and Fries (2010), who proposed that fast rhythms represent 

states of increased arousal. It therefore appears that compared to low frequencies, the 

underlying mechanisms within beta band networks are highly susceptible to re-

configurations. 

 

It is not clear why the network reproducibility of network measures in the beta band in both 

the current study and a previous task-based study (Deuker et al., 2009) was significantly 

lower. In considering the potential functional role of different frequencies, beta band 

oscillations remain to be understood (Engel & Fries, 2010). The authors proposed that 
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coupling in beta band is involved in maintaining current states, both sensory-motor and 

cognitive. Alongside this, studies have shown that correlations between regions/nodes of 

default mode networks (Brookes et al., 2011; de Pasquale et al., 2012) and motor networks 

(Brookes et al., 2011) are in fact strongest in the beta band. Elsewhere, Bassett et al. (2009) 

has argued that beta band activity and not gamma band activity is important for the co-

ordinating properties of functional connections. This is supported by results in Figure 3.4 of 

the current study that showed that beta oscillation for long-distance functional connections 

(i.e. first-order path-length) was generally higher compared to other network measures within 

this frequency.  

 

Comparing results in the current study with previous sensor-level literature 

 

The discrepancy in results between the current study (with regards to the reproducibility of 

the different resting-states, and high frequency gamma) and studies by Deuker et al. (2009), 

Hardmeier et al. (2014), Jin et al. (2011), may be associated with methodological 

differences, including the type of resting state investigated, the frequencies considered, 

measure used to estimate functional couplings, and network properties explored.  

 

First, both Deuker et al. (2009) and Jin et al. (2011) used mutual information to estimate 

functional connectivity, while the current study applied the phase lag index to estimate 

network functional connectivity. It is possible that the two measures of functional connectivity 

quantify different aspects of coupling information (Hardmeier et al., 2014a). A recent review 

exploring the effects of processing approaches on network reproducibility, mostly in fMRI 

data, found that network topologies varied depending on the measure applied to estimate 

functional connectivity (Telesford et al., 2013).  

 

Second, Deuker et al. (2009) investigated the reproducibility of global metrics, derived from 

binary networks. Although they are often used in the fMRI community, the generation of 

unweighted binary graphs, as discussed earlier, is not fully understood (Stam and 

Reijneveld, 2007; Schwarz and McGonigle, 2011). The lack of standardized thresholds often 

prompts researchers to use arbitrary values to generate edges of 0 and 1 values. This may 

explain why a comparison of graph metric reproducibility derived from both 

binary/unweighted and weighted networks (Wang et al., 2011) showed higher reproducibility 

for metrics computed from weighted networks. This is most likely to be due to weighted 

networks being better representations of ‘real networks’ because they retain all the original 

information in the correlation matrices, compared to unweighted binary networks (Jin et al., 

2011; Schwarz & McGonigle, 2011; Stam & Reijneveld, 2007). 
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Third, although the study by Jin et al (2011) explored graph metric reproducibility of weighted 

networks, like the current study, Jin et al. focused on nodal centrality measures and not 

global network metrics. Currently there is no study that has attempted to investigate the 

reproducibility of nodal centrality measures. As such, it is not clear which measures (i.e. 

nodal centrality or global measures) are more robust. Hence, the differences in results 

possibly arise from differences in topological properties evaluated in the two studies. For 

future purposes, the reproducibility of the two types would need to be investigated. 

 

Finally, the low ICC scores for beta band in eyes-closed rest are consistent with Hardmeier 

et al. (2014). However, higher reproducibility of gamma, especially for first-order metrics, 

contradicts Deuker et al. A more likely explanation of higher gamma band reproducibility 

probably lies with the methodological inconsistencies discussed above. Although the study 

by Hardmeier et al. (2014), which applied a similar measure of functional connectivity, could 

shed light on this argument, the researchers did not investigate gamma band reproducibility. 

The authors explained that this frequency is highly sensitive to muscle artefacts. While this is 

a possibility (See Muthukumaraswamy, 2013 for a review), and according to Whitham et al. 

(2007, 2008) may at times also spread into the beta band, Muthukumaraswamy (2013), 

explains that ‘steady-like’ paradigms (much like the ones explored in the current study), are 

not as affected by muscle artefact harmonics in high frequencies, as the task-based 

paradigms. Therefor while the results contradict those reported by Jin et al. and Deuker et al, 

it is maintained that these differences are related to methodological approaches. 

 

Methodological considerations 

 

The results reported in the current study were all computed at sensor-level. This limits the 

certainty with which one is able to identify the sources of the spontaneous functional activity 

associated with different resting conditions and frequency bands. In addition, whilst the 

intraclass correlation coefficient is the standard statistical method for assessing test-retest 

reproducibility in network science, according to Telesford et al. (2013), this measure is 

dependent on population homogeneity. Hence, it is possible that outliers in functional 

network data from some participants may have affected overall observed inter-session 

reproducibility. Future studies would benefit from comparing performance of the intraclass 

correlation coefficient with other test-retest reproducibility statistics that are not dependent 

on the distribution such as the coefficient of variation (CoV), and Bland-Altman plots. 

 

Another limitation concerns the use of phase lag index to estimate functional coupling. This 

measure is insensitive to the effects of volume conduction that arise from excluding 
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instantaneous zero-lag contributions. However, zero phase lag connectivity does exist in the 

brain, and may reflect either volume conduction, or true phase lag brain connectivity 

(Chawla, Friston, & Lumer, 2001). As a result, there is a possibility that using phase lag 

index to estimate functional coupling has the effect of potentially excluding real brain 

connectivity.  

 

Finally, participants’ resting-states, both before and during test sessions, were not taken into 

consideration. According to both Damoiseaux et al. (2006), and Diaz et al. (2013) resting-

state is characterised by several dimensions (e.g. sleepiness, comfort, and somatic 

awareness), that are associated with cognition. Hence, it possible that a change in some of 

these dimensions in some or all individuals during the second recording session e.g. sleep 

deprivation, may have affected overall reproducibility of networks measures. Future studies 

will benefit from documenting participants’ resting-state profiles (i.e. thoughts and feelings) 

before and after experiments, using self-report scales such as the Amsterdam Resting-State 

Questionnaire (ARSQ), a newly developed scale (Diaz et al., 2013, 2014). 

 

3.6 Conclusion  

 

In conclusion, this study was the first MEG study to investigate the reproducibility of 

functional connectivity and graph measures, based on phase lag index weighted matrices 

derived from resting-state MEG data. Results revealed that at the sensor-level, estimated 

reproducibility is influenced by resting-state, frequency band, and graph metric that is being 

investigated. The results reported offered support for the continued application of eyes-

closed resting-state graph-based network analysis, compared to eyes-open rest. Nearly all 

metrics (except small-world index, and beta band) evaluated in the eyes-closed condition, 

out-performed those in the eyes-open condition. This study therefore provided a quantified 

template, albeit with some acknowledged limitations, for the validation of graph theoretical 

network parameters, helping support their application as potential clinical biomarkers in 

subsequent chapters of this thesis, and applied neuroscience in general.  
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4. Developmental changes in the resting-state 

functional organisation of large-scale networks at 

the whole-brain level: a cross-sectional study 

 

4.1. Chapter summary 

 

Efficient information processing within and between specialised, but spatially distributed 

functional brain regions underpins the successful development of higher cognitive functions 

(Douw et al., 2011). In the present study, adopting a cross-sectional sampling approach, 

functional brain organisation was characterised using network analysis; and this was 

compared between children (aged 7-13 years) and adults (aged 20-35 years), as well as 

across a broad age range (7-57 years).  

 

A comparison of network properties revealed that whilst children and adults showed small-

world organisation at the global level, there were differences in network organisation 

properties. The effects of developmental changes in functional large-scale networks were 

found primarily in the beta and gamma bands. First, children’s brains showed over-

connectivity of whole-brain functional coupling and normalised characteristic path length. 

Second, leaf number and hierarchical organisation were significantly decreased in adults 

compared to children, within the gamma band.  

 

Overall, the results from graph theoretical analysis and minimum spanning tree analysis 

suggest a shift during development from a random network organisation towards a more 

structured, hierarchical, and line-like network organisation in higher frequency beta and 

gamma oscillatory activity, that are indicative, with the development of more efficient 

integrated information processing in spatially distributed networks. Given that higher 

oscillatory frequencies appear to reveal age-related changes in functional network topology, 

they potentially hold promise as biological markers of progressive functional refinement and 

network integration through the process of development. 
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4.2. Introduction 

 

4.2.1. Brain development during childhood and adolescence 

 

Neuroimaging studies of the developing brain (Paus, Keshavan, & Giedd, 2008; Sowell, 

Thompson, Tessner, & Toga, 2001; Whitford et al., 2007) have been fundamental in 

understanding the maturation of the structure and function of the brain during childhood and 

adolescence. These studies have provided evidence to suggest that during childhood and 

adolescence changes in both the structure and function of brain regions are vital for the 

normal development of intellectual abilities, and for physical and behavioural maturation 

(Paus et al., 1999; Nagy, Westerberg, & Klingberg, 2005; Raz et al., 2005; Uhlhaas, 

Haenschel, Nikolic, & Singer, 2009). Majority of the studies investigating human brain 

maturation have mainly focused on structure-related changes occurring from childhood 

through to later life. Documented age-related changes include an overall brain volume 

reduction, changes in individual brain region volumes, an increase in total white matter 

volume, and a regional reduction in grey matter (Giedd et al., 1999; Paus et al., 1999; Sowell 

et al., 2003). It is generally agreed that human brain maturation-related changes in grey and 

white matter reflect two fundamental maturational processes: namely, myelination of axons 

and synaptic pruning (Huttenlocher, 1979; Paus et al., 2000, 2008; Sowell et al., 2001). 

 

Developmental changes in grey and white matter volumes serve different functions (Paus et 

al., 2008). Decreased grey matter tissue is understood to result from natural elimination of 

excess synapses and neuropil (Purves & Lichtman, 1980), while increases in white matter 

volume are believed to index the ongoing myelination of spatial regional connections in the 

cortex (van Baal, Boosma, & de Geus, 2001). Myelin increases the speed of neuronal 

signalling. The general conclusion has been that changes in white and grey matter 

correspond with cellular maturation transitions from synaptic over-production to pruning at 

the neuronal level. (van Baal et al., 2001; Thatcher, 1994). Increases in white matter volume 

throughout childhood and adolescence underlie the greater connectivity reported in these 

groups (Giedd & Rapoport, 2010). Myelination and dendritic arborisation are additive and 

increase levels of white matter; synaptic pruning and apoptosis are subtractive and reduce 

levels of grey matter. 

 

It is, however, important to highlight the fact that functional magnetic resonance imaging 

(fMRI) studies, such as those discussed above, have largely focused on developmental 

changes within structural brain regions. The results in such studies do not provide 
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information about how brain regions interact. This limitation has meant that the underlying 

neural dynamics of brain function remain largely unknown (Finn et al., 2014). 

 

The high temporal resolution of magnetoencephalography (MEG) and 

electroencephalography (EEG) are currently well suited to methodologies for investigating 

the neural underpinnings of brain interactions. The discovery of strong correlations in brain 

regions during resting-states or task-free states (i.e. rest) (Raichle et al., 2001) has provided 

a powerful tool for investigating functional brain relationships through development, 

particularly in very young children and in older participants, as this minimises reliance upon 

active compliance, and task training demands (Fair et al., 2009). 

 

Researchers have reported positive associations between cognition and efficient functional 

network organisation using resting-state paradigms (Douw et al., 2011). Recently, concepts 

from graph theory have been used to characterise functional networks derived from resting-

state M/EEG (Bassett & Bullmore, 2006; Douw et al., 2011). Graph theoretical studies of 

brain development typically demonstrate a shift from a random organisational pattern 

towards a more structured network (i.e. more small world-like) as the human brain matures 

(Boersma et al., 2011; Fair et al., 2009; Smit et al., 2012; Wu et al., 2012). Altered or 

abnormal functional organisation has been linked to atypical development (Ahmadlou et al., 

2012; Bos et al., 2014). As a result, it has been proposed that changes in the functional 

organisation of brain networks, such as a decrease in short-range connections, might more 

accurately reflect changes in cognitive abilities through the process of development (de 

Haan et al., 2012).  

 

Disruption to the typical brain organisation has been proposed as underlying several 

developmental conditions, including attention deficit/hyperactivity disorder (Giedd & 

Rapoport, 2010) and developmental dyslexia (Finn et al., 2014): the two conditions 

investigated and reported on in chapters 5, and 6. Hence, to gain an insight into how the 

normal brain organisation develops, it is crucial to estimate functional brain connectivity and 

to characterise whole-brain organisation through the process of development. Brain network 

investigation of neurobiological changes occurring during development is fundamental to 

developing an improved understanding of atypical neural development and the emergence 

of psychopathology. 

 

Surprisingly, studies of functional connectivity networks derived from resting-state functional 

magnetic resonance imaging (fMRI) data (Fair et al., 2008; Meunier, Achard, Morcom, & 

Bullmore, 2009; Supekar, Musen, & Menon, 2009) found no significant differences (between 
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children, typically 7 to 9 years, and adults ~ 19 and 31 years) in age-related changes in 

clustering, path length, or small-worldness. According to Boersma et al. (2009), structural 

imaging modalities measure brain activity at slow time scales, and as such are only able to 

capture gross changes in underlying structural networks, excluding more subtle 

developmental neuronal mechanisms that influence functional networks that are understood 

to be more sensitive to high resolution techniques.  

 

As discussed earlier the first high temporal resolution imaging study was conducted by 

Micheloyannis et al. (2009), who investigated patterns of functional networks using resting-

state EEG. Using synchronization likelihood (SL) to map functional connectivity and later to 

characterise network organisation, in children (8-12 years) and adults (21-26 years), the 

authors reported significantly higher synchronisation, and local clustering in children’s brains 

in high frequencies in the beta and gamma band. The second study was conducted by 

Boersma et al. (2011). This longitudinal resting-state functional connectivity EEG study 

explored age-related network changes in children, first at age 5 and again at 7 years. The 

authors reported significantly decreased synchronisation and increased characteristic path 

length across all frequency bands, as well as increased clustering in the alpha band from 5 

to 7 years. The results suggest that interaction within functional network undergoes changes 

that parallel development. The authors discuss the view that these changes suggest a 

formation of more mature network topologies that represents the normative trajectory of 

development from 5 to 7 years. It has been proposed that such changes are associated with 

decreases in grey matter volume, and reflect a pruning of cell bodies and synaptic 

connections (Huttenlocher, 1979; Paus et al., 2008; van Baal et al, 2001). These studies 

show a general trend towards decreased local clustering/segregation (Otte et al., 2015) and 

increased average shortest long-range connections/integration with development (Fair et al., 

2009) typically in comparison samples of children (~7-14) and adults (~20-30).  

 

Methodological issues in these studies 

 

The results from these two studies however cannot be considered conclusive in the context 

of normative development from childhood to adulthood. This is because whilst Boersma et 

al. conducted a longitudinal study, it was primarily of developmental changes in large-scale 

networks in children aged 5 to 7 years. This may explain the observation of significant 

differences in global synchronisation and clustering across all frequency bands. EEG 

oscillations in young children age 5 and 7 are unlikely to correspond to later development. In 

contrast, the developmental study by Micheloyannis et al. focused on age- related changes 

in children and young adults, addressing both rest and task-based network organisation. 
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However, this study has two major limitations. These are first, that the measure used to 

estimate functional connectivity (i.e. synchronisation likelihood) is sensitive to cross-talk in 

neighbouring nodes, which many (Brookes, Woolrich, & Barnes, 2012; Hillebrand & Stam, 

2014; Stam et al., 2007b) believe is a major problem in sensor-level (i.e. node/electrode 

level) data (See Chapter 2, section 2.6.4, for a detailed discussion of this problem). Second, 

the developmental changes in network organisation were reported using non-normalised 

graph measures, which have been shown to display bias between subject network 

comparisons (van Wijk, Stam, & Daffertshofer, 2010).  

 

Non-normalised graph-based network measures are highly dependent on the number of 

nodes in a network and the network density (.e. the number of connections in a network, 

Stam et al., 2014; van Dellen et al., 2013), which have been shown to differ between 

participants. For instance, densities have been shown to change considerably with 

development (Gong et al., 2009). Hence, in childhood, where over-connectivity is prominent, 

results based on non-normalised clustering are likely to also show higher clustering. 

Therefore, normalisation of these measures is required (van Wijk et al., 2010). However 

although they are commonly used and reported on, normalisation metrics as alternative 

measures do not completely solve the problem (see van Wijk et al., 2010 for a discussion). 

 

A solution to the problem of the above issues is to use the minimum spanning tree (Boersma 

et al., 2013; Olde Dubberlink et al., 2013; Stam et al., 2014). In a weighted and undirected 

graph G, a spanning tree is defined as a sub-graph G (i.e. tree) of loop-less connected 

vertices of G(Figure 6, Chapter 2) (Mares, 2008; Olde Dubbelink et al., 2013). A minimum 

spanning tree therefore is a spanning tree of a minimum total weight among several 

spanning trees (van Steen, 2010). A full discussion of minimum spanning tree is outside the 

scope of this chapter (for a comprehensive discussion of minimum spanning tree, including 

history, application and formulas, see Jackson & Read, 2010; Mares, 2008). Given that a 

minimum spanning tree connects all nodes without cycles (Figure 5, Chapter 2), obtained 

networks have an identical number of connections, facilitating unbiased comparison of 

functional brain networks, because only important connections are taken into account (van 

Diessen, Otte, Braun, Stam, & Jansen, 2014). As a computation tool, the application of 

minimum spanning tree analysis has proved useful in capturing group and state-based 

functional as well as the structural organisation of brain network activity. (Boersma et al., 

2013; Demuru & Fraschini, 2013; Otte et al., 2015; Schoen et al., 2011; van Diessen et al., 

2014).  
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Like graph theoretical analysis, measures obtained using minimum spanning tree analysis 

are useful in modelling sub-graph organisation (i.e. tree topology). Using different imaging 

techniques, data have been found to exhibit characteristics that are associated with efficient 

information processing. In a spanning tree sub-graph representation of weighted brain 

networks, tree node (leaves) correspond to a brain region, while the edge parallels the 

functional connectivity between brain regions. As discussed in Chapter 2, while describing 

spanning minimum spanning tree general characteristics, spanning trees exhibit organisation 

properties that can be interpreted as either line-like, star-like or as intermediate between 

these two extreme topologies (Tewarie et al., 2014, See Chapter 2, section 2.7.2., for a 

graphical representation of these topologies). A line-like minimum spanning tree topology is 

understood to correspond to a more regular network, whilst a star-like network corresponds 

to a random network configuration (Stam et al., 2014). 

 

Recently, in the first, and so far unique, high temporal resolution study using EEG, Boersma 

et al. (2013) characterised the age-related changes of the whole-brain network topological 

organisation. Using data previously reported by Boersma et al. (2011), the researchers 

reported a significantly increased minimum spanning tree diameter (i.e. the longest distance 

connecting any two nodes on a tree), and eccentricity (importance of a node), decreased 

leaf number (number of nodes with links), and hierarchy (measure of hierarchy organisation 

of a tree) within the alpha band across development (i.e. longitudinally from 5 to 7 years).  

 

The authors propose that the above results suggest a shift with development towards a more 

elongated, decentralised, or line-like network topology. This study demonstrates that 

minimum spanning tree analysis, an unbiased application for characterising complex 

networks, is able to capture and discriminate between age-related changes in underlying 

neural networks. Given that minimum spanning tree measures are mainly concerned with 

global network topological organisation, the normal developmental topological trajectory 

would be expected to correspond to the results reported on an age-related reorganisation of 

long-distance functional connections. Furthermore, in the context of neurodevelopment, 

given that the minimum spanning tree is concerned with core weighted functional 

connections it is likely that with development, higher frequencies are likely to be crucial in 

terms of complex organisation of whole-brain connectivity, given their role in higher order 

cognitive functions.  

 

It is, however, important to highlight that although weighted connections are bias-free, and 

the fact that weighted connections in the original network that result in loops during tree 

construction are discarded, the direct quantification of local organisation using minimum 
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spanning network analysis is challenging (Tewarie et al., 2014). This means that on its own, 

the application of minimum spanning tree analysis to characterise the functional organisation 

of large-scale brain networks is limited in giving information about the local organisation of 

large-scale networks.  

 

In addition, minimum spanning tree analysis is a relatively novel approach; and not much is 

known about what its measures imply in terms of neurodevelopment. This, and the fact that 

more is known about the link between conventional graph theoretical measures and 

cognitive functioning, as well as behavioural functioning, explains why the studies in 

Chapters 4, 5, and 6 used minimum spanning tree metrics along with conventional or 

classical graph theoretical measures.  

 

Planned analysis 

 

Note that although 57 participants were recruited for this study, the age distribution was not 

homogeneous. Results in Figure 4.4 revealed that there were very few participants in the 

age-ranges 16 to 19 and 37-57. Hence to obtain insights into age-related changes in 

organisation of functional networks, networks were initially constructed for two age ranges 

(7-13 and 20-30 years), based on previous studies (Fair et al., 2009; Micheloyannis et al., 

2009; Smit et al., 2012; Otte et al., 2015). The two age-ranges were chosen because these 

clusters had sufficient number of participants compared to other age-ranges. To then assess 

the longitudinal developmental changes, functional connectivity and network parameters 

were assessed linearly across a broad age-range.  

 

Hypotheses 

 

1. Children will show a more random topological organisation of functional networks 

compared to adults. 

2. Local clustering (i.e. short-range/local functional connections), will be significantly 

greater in children, while long-distance functional connections will be greater in 

adults. 

3. More decentralised line-like minimum spanning tree topology will be present in 

adults, corresponding to a shift towards less random and more efficient network 

configuration. 

4. Efficiency in information processing in short and long-distance functional connections 

will correlate with broad measures of behavioural problems 
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5. Children will show a less efficient hierarchical topological organisation compared to 

adults  

 

4.3. Method 

 

4.3.1 Participants 

 

Typically, developing children and adolescents were recruited through advertisements 

placed in the Aston University newsletter and Think-Tank Birmingham Science Museum, and 

they received an Amazon voucher for their participation. This sample was recruited as 

gender and chronological age (CA) matched controls, for comparison to children with a 

diagnosis of ADHD (Chapter 5) and those with learning difficulties (Chapter 6).The inclusion 

criteria for children were their ability to assent to testing, age between 7:0-17 years, and 

attendance in a mainstream educational school. 

 

The adult sample was recruited from the student and staff population at Aston University 

through advertisements in the University newsletter, and through the undergraduate 

‘Research Participation Schema’. Students were awarded course credits for their 

participation. The inclusion criteria for healthy adults were the ability to consent to testing, no 

history of neurological impairment, and being aged between 18-59 years. All participants, 

children and adults, had normal or corrected to normal vision.  

 

31 children and 41 adult subjects participated in the two elements of this study. Nine children 

and seven adults were excluded from further analysis due to: (1) disclosure of a diagnosis of 

dyslexia (i.e. three children and one adult), ADHD (one adult), stated on the behaviour 

functioning questionnaires; and (2) excessive artifacts in MEG signal, resulting in a failure to 

identify at least four artefact-free MEG epochs (six children and five adults). Subsequently, 

the final sample consisted of 56 participants, comprising 22 children aged between 7 and 17 

years (M = 11.8, SD = 3.2; 2 left, 20 right handed: and 11 boys, 11 girls); and 34 adults aged 

between 18 and 57 years (M = 34.2, SD = 1.9; 8 left, 26 right handed; and 15 males and 19 

females). 

 

4.3.2. MEG recording protocol 

 

Data were acquired continuously using procedures described in Chapter 3. Briefly, MEG 

recordings were acquired during resting-state (RS) conditions. For the eyes-open (EO) state, 
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subjects were instructed to keep their eye gaze fixed on a white cross projected centrally on 

a black screen and to try not to blink excessively. During the eyes-closed (EC) RS, they 

were asked to rest quietly with their eyes closed and to try not to move for the duration of the 

scans. Note that all data reported in this study refer to MEG time-series acquired only during 

EC, as nearly all graph metrics derived from the EO state (See Chapter 3, Figure 3.4) 

yielded lower ICC scores ).  

 

Due to system-based mechanical and electrical issues, including trapped flux, and damage, 

five sensors were disabled during MEG recordings for ten participants. Given the 

documented restriction in comparing networks of varying numbers of nodes (Stam et al., 

2014), five sensors, roughly corresponding to those that were damaged, were excluded from 

all further analysis for all participants. Hence, unless otherwise stated, all networks 

presented in this study were constructed from 97 nodes (i.e. magnetometer sensors), 

represented by the data from spatially separate magnetometers).  

 

4.3.3. Data pre-processing 

 

Pre-processing steps are described in Chapter 3. Briefly, noise and artefact suppression was 

achieved with the temporal signal-space separation (tSSS) Taulu & Hari, 2009), with 

movement compensation implemented in the MaxFilter software (Elekta Neuromag). 

Following the MaxFilter process and a visual inspection of data, four artefact-free epochs (10 

s, 4096 samples) were obtained and segmented for each subject, in line with Douw et al. 

(2011).They were converted to ASCII files for further computation using the BrainWave 

software (Stam; http://home.kpn.nl/stam7883/brainwave.html) version 0.9.116. All further 

computation was estimated per epoch and frequency band. Results from each epoch in 

different frequency bands were subsequently averaged for each person, and later for each 

age group (for the first planned analysis) and entire sample (for the second planned 

analysis). 

 

Spectral power 

 

Raw MEG signals were converted into the frequency domain using a Fast Fourier 

Transformation (FFT) implemented in the BrainWave software (Resolution: 1/4=0.25 Hz). 

For each epoch, mean frequency-based power was computed for each scalp magnetometer. 

PLI measures, graph and tree network metrics were computed per epoch and subsequently 

averaged per subject within frequency bands of interest. 

 

http://home.kpn.nl/stam7883/brainwave.html
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Estimating functional connectivity (FC) using Phase Lag Index PLI) 

 

Cross-correlations in classic frequency bands were digitally filtered offline in the commonly 

adopted ranges of theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-13 Hz), beta (13-

30 Hz), and gamma (30-45 Hz), in line with both software recommendations and previous 

studies (Dimitriadis et al., 2013; Micheloyannis et al. 2009). The alpha frequency was 

evaluated in the two commonly applied sub-bands of lower alpha/alpha1 and upper 

alpha/alpha2. This differentiation is in line with studies that show different neural activity in 

the two sub-bands (Klimesch, 1999). The FC between MEG time series was estimated using 

the phase lag index (PLI), an FC measure that insensitive to the confounding effects of 

volume conduction (Stam et al., 2007b) compared to traditional FC measures such as 

coherence and synchronisation likelihood (see Chapter 3 for a description of PLI 

computation). 

 

Graph theoretical network analysis 

 

All network analysis, including FFT, FC, and network computations were performed using 

the BrainWave package. In computed networks, magnetometer sensors represent nodes 

while associations (estimated using PLI) between the sensors form the links/edges. This 

resulted in a 97 x 97 connectivity matrix for each epoch and frequency range. To enable 

independent network comparison across studies, graph measures derived from the original 

networks were compared to the average of 50 random networks, a process known as 

normalisation (see Chapter 2, section 2.7.1., for a detailed review), as previously described 

by Stam et al. (2009). For this reason (as set out in Chapter 2) the main graph-based 

findings reported in this thesis were those relating to normalised clustering coefficient 

(gamma) and path length (lambda), that correspond to short-range (local) and long-distance 

(global) functional connections respectively. 

 

Minimum spanning tree network analysis 

 

Using the BrainWave software, for each participant’s graph (consisting of 97 nodes), a 

minimum spanning tree (for each epoch and frequency band of interest) was computed 

using Kruskal’s algorithm (Kruskal, 1956) (See Chapter 2, section 2.7.2., for a discussion of 

Kruskal’s algorithm). Researchers including van Dellen et al. (2013), Boersma et al. (2013), 

and Tewarie et al. (2014) have previously described this procedure. Minimum spanning tree 

topology was quantified with four metrics including eccentricity, diameter, hierarchy, and tree 

number. These are discussed in detail in Chapter 2, section 2.7.2.  
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Statistical analysis 

 

All statistical analysis was computed using SPSS version 21. Most measures reported in the 

study had non-normal distributions (Kolmogorov-Smirnov test, p<.05). Transformations using 

both log and square root did not sufficiently improve data distribution. Subsequently, non-

parametric analyses and specific Mann-Whitney tests statistical analyses were performed to 

compare network differences between children and adults. For the analysis comparing large-

scale functional networks across a broad age range, Spearman’s rank correlation 

coefficients (rs) were computed in assessing the relationship between network parameters 

and development. Spearman’s rank correlation coefficients were also used to assess 

relationships between network parameters and behavioural measures. All analyses were 

computed separately for each frequency band. 

 

4.4. Results  

 

4.4.1. Network analysis 1: the organisation and development of functional 

brain networks in neurotypical children and adults 

 

All analysis computed in this first part of the study explored age-related changes in the 

topological organisation of functional brain networks in children (aged 7-13 years) and adults 

(aged 20-35 years). Results in Table 4.1 illustrates the demographic characteristics for two 

age-groups, i.e. children (age range 7-13, M = 10.5, SD = 2.1 years: 7 boys and 10 girls) and 

adults (age range 20-35 years, M = 26.7 SD = 3.8 years: 6 males and 13 females). To 

measure cognitive and behaviour functioning, assessments, age-appropriate group of 

Wechsler scales and the Achenbach System of Empirically Based Assessment (ASEBA) 

questionnaires was administered. The former was used to derive verbal and performance 

ability, while the latter was used derive measures of attention, internalized, and externalised 

behaviour functioning. (See Chapter 2 for a description of the standard procedure for 

administering both psychometric and adaptive behaviour assessments). Psychometric test 

scores were converted to scaled scores to standardise the data across normed age groups 

(M = 10, SD = 3), as per the standard recommendations of Wechsler instructions. Similarly, 

adaptive behaviour scores were converted to standard T scores, based on norms of gender, 

age, and type of informant. T scores < 65 are considered to be in the normal range 

(Achenbach, McConaughy, & Rescorla, 2011). 
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Psychometric assessments were only administered to children and not adults. As stated in 

Chapter 2, in instances where the child was not able to complete all four subtests (i.e. 

similarities, vocabulary, matrix reasoning, and block design), the similarities, and matrix 

reasoning subtest were administered. For the behaviour test assessment, the focus was on 

the three behaviour problem scores: namely, attention, internalising and externalising. The 

internalising problems summarise the scores of the anxious/depression, 

withdrawn/depressed and somatic complaints scores, while the internalised problems 

summarise scores of the aggressive and rule-breaking behaviour problems.  

 

Psychometric data were available for 14 of the 17 child participants for the core subscales of 

verbal (i.e. similarities) and performance abilities (i.e. matrix reasoning), while behaviour 

data were available for 16 of the 17 children, and 17 of the 19 adults. All the children scored 

in the average range of verbal and performance reasoning scales, with scores in the range 

of the normative averages for standardised samples. Similarly, on the behaviour problem 

scales, child and adult subjects had low scores.  

 

However, subjects with T scores ≥ 63 were not excluded from further analysis. This was 

because community studies often demonstrate the presence of clinical symptoms in healthy 

individuals especially when behaviour is assessed using a dimensional construct (Mazefsky, 

Anderson, Conner, & Minshew, 2011; Hutchison et al., 2013; Tan, Dedrick, & Marfo, 2007). 

T-scores for both children and adults were very low (i.e. closer to 50 and 65), indicating low 

levels of behaviour problems. In the current study, only the relationship with the behaviour 

checklists was investigated. This is because these were acquired from both adults and 

children. See Chapter 5 for the correlations between cognitive ability and network topological 

organisation.  
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Table 4. 1 Demographic characteristics 

Measure Children (7-13) Adults (20-35)  

Mean (SD) Mean (SD) p 

N 17 19  

Gender (M:F) 7:10 6:13  

Age in years 10.5 (2.1)  26.7 (3.8)   

Handedness (R:L) 16:1 14:5  

Years of education 9 (2)  23 (2):  

Verbal IQ (SI) 12.7 (2.6) NA  

Non-verbal IQ (MR) 11.2 (2.1) NA  

Int problems 50.1 (7.6) 52.2 (10.1) NS 

Ext problems 45.9 (9.1) 46.4 (10.3) NS 

Att problems 53.0 (3.8) 53.5 (4.0) NS 

Participant demographic characteristics for the children vs. adult subjects. Key; M = male; F 
= female; SI = similarities; MR = matrix reasoning; NA = not applicable; NS = not significant; 
Int = internalising; and Ext = externalising, and Att = attention. IQ scores were not available 
for 3 children, due to difficulties encountered during the experiment, including children 
displaying physical signs of tiredness, or simply refusing to participate. 

 

4.4.1.1. Developmental changes in whole-brain functional connectivity network  

 

Results of whole-brain functional connectivity Figure 4.3 Illustrates the untransformed mean 

global functional coupling (phase-lag-index) in children and adults. Mann-Whitney tests were 

used to investigate age-related changes in network measures (Table 2). Medians (Mdn) and 

Cohen’s d effect sizes were reported. Adults showed a decrease in mean phase-lag-index 

(See Figure 4.2) in the beta band (Mdn = .09), z = -2.33, p = .019, d = .62. No differences 

were observed in any other frequency range.  
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Table 4. 2 Group differences in global whole-brain functional coupling (assessed 
using the phase lag index) across frequency bands of interest 

 Children 

n = 17 

Adults 

n =19 

p 

Theta .16[.05, .17] .16[.15, .17] NS 

Alpha1 .25[.23, .26] .24[.23, .25] NS 

Alpha2 .19[.19, .20] .20[.19, .21] NS 

Beta .10[.10, .09] .09[.08, .08] * 

Gamma .09[.09, .09] .09[.09, .09] NS 

The results of Mann-Whitney U- test, *p < .05, used to assess the mean phase-lag-index 
values for each frequency band. Values are medians with Bca bootstrap 95% confidence 
intervals (CIs) in square brackets. Significant differences were observed for the beta band 
and no other frequency range. Key, NS = not significant. 

 

For age-related changes in global topological functional coupling strength, the results in 

Table 2 reveal statistically stronger whole brain functional connectivity in children compared 

to adults, for the beta band. A visual articulation of the results in Table 4.2 is presented in 

Figure 4.1. 
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Figure 4. 1 Mean group differences in whole-brain functional connectivity 
Mean group differences in global functional coupling strength estimated using the phase lag 
index, across different frequency bands of interest, in children and adults during eyes-close 

rest. Results reveal significantly decreased global functional coupling in the beta band in 
adults. Error bars are ± 2 standard error. * p < .05. 

 

4.4.1.2. Age-related changes in the global topological organisation of 

functional networks: a graph theoretical and minimum spanning tree network 

analysis 

 

As discussed in Chapter 2, non-normalised graph theoretical analysis-based measures (i.e. 

clustering and path length) do not provide genuine estimates of network measures. As a 

result, only computations using normalised graph-based measures and the minimum 

spanning tree network were reported. All networks, including those of children, revealed 

small-worldness, suggesting a non-random functional organisation, which does not support 

the hypothesis made about networks in children in the current study. The results in Table 4. 

3 revealed that normalised characteristic path length (lambda) was significantly high in 

children (Mdn = 1.03), z = -2.06, p = .04, d = .54)), compared to adults within the beta band. 

No other statistically significant graph-based results were observed. For minimum spanning 

tree analysis, results within the gamma band revealed significantly higher leaf number (Mdn 
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= 0.54), z = -2.01, p = .04, d = .30)), as well as a higher hierarchy in children (Mdn = 0.40), z 

= -1.97, p = .05, d = .78)), compared to adults, (See Table 4.3).
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Table 4. 3 Results of weighted graph theory and minimum spanning tree network analysis 

  Theta Mdn [95% CI] Alpha1 Mdn [95% CI] Alpha2 Mdn [95% CI] Beta Mdn [95% CI] Gamma Mdn [95% CI] 

Gamma 

Children 1.05 [1.05, 1.05] 1.08 [1.07, 1.08] 1.06 [1.05, 1.07] 1.05 [1.05, 1.06] 1.04 [1.04, 1.05] 

Adults 1.05 [1.05, 1.05] 1.07 [1.06, 1.08] 1.06 [1.05, 1.07] 1.05 [1.05, 1.05] 1.04 [1.03, 1.05] 

P NS NS NS NS NS 

Lambda 

Children 1.03 [1.02, 1.03] 1.05 [1.05, 1.06] 1.04 [1.03, 1.05] 1.04 [1.03, 1.04] 1.02 [1.01, 1.03] 

Adults 1.03 [1.03, 1.03] 1.04 [1.04, 1.04] 1.04 [1.03, 1.04] 1.03 [1.02, 1.03] 1.02 [1.02, 1.03] 

P NS NS NS * NS 

 
Children 1.02 [1.02, 1.02] 1.03 [1.02, 1.03] 1.02 [1.02, 1.02] 1.02 [1.02, 1.02] 1.02 [1.02, 1.03] 

Sigma Adults 1.02 [1.02, 1.02] 1.03 [1.03, 1.03] 1.02 [1.03, 1.03] 1.02 [1.02, 1.03] 1.02 [1.02, 1.02] 

 
P 

 
NS 

 
NS 

 
NS 

 
NS 

 
NS 

Eccentricity 

Children 0.14 [.13, .14] 0.13 [.13, .14] 0.14 [.13, .14] 0.13 [.12, .13] 0.14 [.13, .14] 

Adults 0.14 [.13, .14] 0.13 [.13, .14] 0.13 [.13, .14] 0.13 [.13, .14] 0.14 [.13, .14] 

P NS NS NS NS NS 

Diameter 

Children 0.19 [.18, .19] 0.18 [.17, .18] 0.18 [.18, .19] 0.17 [.17, .18] 0.19 [.17, .19] 

Adults 0.18 [.17, .19] 0.18 [.17, .18] 0.18 [.17, .19] 0.18 [.17, .18] 0.18 [.18, .19] 

P NS NS NS NS NS 

Leaf Number 

Children 0.54 [.53, .55] 0.58 [.57, .60] 0.55 [.53, .55] 0.54 [.53, .55] 0.54 [.53, .54] 

Adults 0.55 [.55, .56] 0.57 [.56, .57] 0.55 [.54, .58] 0.54 [.54, .54] 0.52 [.52, .54] 

P NS NS NS NS * 

Hierarchy 

Children 0.38 [.38, .39] 0.4 [.40, .4]1 0.39 [.38, .40] 0.38 [.37, .39] 0.38 [.38, .39] 

Adults 0.39 [.38, .39] 0.41 .40, .41] 0.4 [.40, .41] 0.38 [.38, .40] 0.37 [.36, .38] 

P NS NS NS NS * 

Functional network (assessed using graph measures) and sub-network (assessed using minimum spanning tree measures) medians and Bca 
bootstrap 95% CIs (represented in square brackets). Group differences were assessed with non-parametric testing (Mann-Whitney U-test, *p< 
.05). Key: NS: not significant, gamma: normalised clustering coefficient, lambda: normalised characteristic path length, and sigma: small-world 
index. Networks in both children and adults revealed small-world topology. Normalised path length (lambda) was significantly different between 
the two groups, as was minimum spanning tree leaf number and hierarchy.
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Significant graph theoretical-based measures and minimum spanning tree results in Table 4.3 are visually represented in Figure 4.2. Both types 

of network analysis were highly influenced by development-related changes in high frequency beta and gamma respectively. Development 

significantly reduced the long shortest paths between any two nodes (lambda), number of leaves, and hierarchy of trees.  

 

 

Figure 4. 2 Comparison of network topology measures for children and adults 
Age-related changes in the network topological organisation of functional brain networks using A) graph-based normalised path length, B) 

minimum spanning tree leaf number, and C) hierarchy. Only significantly altered network measures across frequency bands of interest were 
represented. Error bars are +/- 2 standard error. Age-related network topological organisation significantly differed in the high frequency beta 

and gamma band. *p < .05. 
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Relationships between age-related changes in the topological organisation of functional 

networks and adaptive behaviour checklist 

 

Findings from Table 4.1 showed that there was no statistically significant difference between 

children and adults for attention, internalising, and behaviour problem scores. Hence 

frequency-based investigations of correlations between functional networks and dimension-

based measures of adaptive and problem behaviours were computed across the entire 

sample cohort, using a Bonferroni corrected α of .0024 (.05/21 corrections) as a means of 

minimising Type 1 errors. No statistically significant correlations were observed between 

network measures and behaviour problem scores for the theta and alpha1 band.  
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Table 4. 4 Correlations between network measures and adaptive behaviour for children vs. adults 
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Spearman’s rank correlation coefficients (rs) for network measures and adaptive behaviour in frequency bands of interest. Key, Att = attention, 
Int = Internalising, and Ext = Externalising, = normalised clustering, lambda = normalised path length, and small-world = small-world index. *p 
<.05, **p <.0024 (Bonferroni-corrected α value).
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For upper alpha and beta bands, the minimum spanning tree leaf number showed significant 

moderate negative correlations with externalising problem scores (rs = -.40 [-.65, .03], p = 

.04, see Figure 4.3, top left scatter plot) and attention (rs= -.42 [-.69, -.11], p = .02, see 

Figure 4.3, top right scatter plot) respectively. For the high frequency gamma band, graph-

based small-world index and minimum spanning tree leaf number showed significant weak 

positive correlations with externalising (rs= .35 [-.01, .61], p = .05, see Figure 4.3, bottom left 

scatter plot) and attention (rs= .37 [.02, .67], p = .03, see Figure 4.3, bottom right scatter plot) 

respectively. These relationships were not statistically significant at the Bonferroni-corrected 

α level of .0024.  

 

 

 
 

Spearman’s correlations was statistically significant at *p<.05 but not at the Bonferroni-
corrected α level of .0024. Top scatter plots correlations represent relations for the upper 

alpha and beta bands while the bottom scatter plots show relationships for the higher 
gamma band. 

Figure 4. 3 Correlations between age-related functional network topological 
organisation and adaptive measure checklist 
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4.4.2. Analysis 2: organisation and development of large-scale functional brain 

networks across a broad age range  

 

As stated earlier (See section on methodological issues in these studies, Aim 1) the second 

part of the analysis presented in the current study investigated functional brain networks 

related to normal ageing in a larger sample of 56 participants, aged 7 to 57 years (See Table 

4. 5 for the demographic data).  

 

  

Table 4. 5 Demographic data for the entire sample with adaptive behaviour scores 

Measure n = 56 

Mean (SD) 

Gender (M:F) 26:30 

Age in years  25.9 (14.2) 

Handedness (R:L) 46:10 

Attention problems 53.4 (4.3) 

Internalised problems 49 (9.2) 

Externalised problems 45.1 (9.7) 

The demographic characteristics of the entire sample including children, teenagers, and 
adults. Key M:F = male:female, R:L = right:left. 

 

4.4.2.1. Relationship between global functional network connectivity and 

healthy ageing 

 

To investigate the effect of healthy ageing on whole brain functional coupling, Spearman’s 

rank correlation coefficients were computed with age as a continuous variable. See Table 

4.6 for the correlations between phase-lag-index (i.e. the measure of functional connectivity) 

across the frequency bands of interest. No significant relationship was observed between 

global functional connectivity and typical ageing. 
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Table 4. 6 Correlations between global functional connectivity and typical 
development 

 Theta Alpha1 Alpha2 Beta Gamma 

     

Mean Phase-lag-index .13 (.35) .13 (.36) -.11 (.42) -.24 (.07) -.13 (.36) 

Results are Spearman’s rank correlation coefficients (rs), and *p<.05, across the frequency 
bands of interest. Global network functional connectivity showed a trend towards a weak 
negative correlation with ageing within the beta band. 

 

Results in Table 4. 6 revealed a trend towards a weak negative correlation between global 

functional connectivity and typical ageing for the beta band (rs = -.24 [-.49, .05], p = .07, see 

Figure 4.4). This relationship was not significant at the α level of .05. 

 

Spearman’s rank correlation coefficient showed a weak trend towards a negative 
relationship between typical ageing and global functional connectivity. 

Figure 4. 4 Correlations between typical ageing and beta band whole-brain functional 
connectivity 
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4.4.2.2. Relationship between changes in functional network topological 

organisation and healthy ageing 

 

Associations between development and network architecture parameters were assessed 

with Spearman’s bivariate correlation coefficients. Analysis was performed separately for 

each of the five frequency bands at a Bonferroni-corrected α value of .0071 to minimise 

Type 1 errors (Table 4.7). Within the beta band, normalised characteristic path length 

showed a significant weak negative correlation with age (rs = -.32 [-.54, -.06], p = .02, see 

Figure 4.5). Also within the beta band, the small-world index showed a significant weak 

positive correlation with age (rs = .35 [.12, .56], p = .01, see Figure 4.5). However, these 

correlations were not statistically significant at the Bonferroni-corrected α level of .0071. 
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Table 4. 7 Correlations between network/tree topological organisation and development across frequency bands of interest 
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Spearman’s rank correlation coefficients (rs) *p<.05, **p<.0071 (Bonferroni-corrected α value). Value are correlation and significance level. Key, 
gamma = normalised clustering, lambda = normalised path length, and small-world = small-world index.
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Spearman’s rank correlations were statistically significant at p<.05 for both measures. 
However, both correlations were not statistically significant at the Bonferroni-corrected α 

level of .0071. 
 

Correlation with adaptive behaviour scores across development in five frequency bands 

 

Behaviour data were available for 45 of the 56 participants, justifying a correlation analysis of 

relationships between behaviour checklist and functional network topological parameters. 

For each frequency band, correlation computations were assessed on attention, and 

internalising and externalising behaviour problem scores, across the entire cohort and using 

a Bonferroni corrected α of .0024. For the lower alpha band, hierarchical organisation 

showed a weak positive correlation with attention problems scores (rs = .34 [.06, .57], p = 

.02, Figure 4.6, top left). Within the upper alpha, leaf number showed weak negative 

correlations with internalising (rs = -.34 [-.06, -.04], p = .02, see Figure 4.5, top middle) and 

externalising (rs = -.30 [-.57, .00], p = .05, Figure 4.6, top right). Finally the beta band showed 

a weak and moderate negative correlation with normalised clustering coefficient (rs =-.32 [-

.60, -.04], p = .03, Figure 4.6, bottom left) and leaf number (rs = -.40 [-.64, -.08], p = .01, 

Figure 4.6, bottom right) respectively. However, these correlations were not statistically 

significant at the Bonferroni-corrected α level of .0024. 

Figure 4. 5 Correlations between age and beta band-based network architecture 
parameters  
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Table 4. 8 Correlations between network measures and adaptive behaviour across the entire sample in frequency bands of interest 
(n

 =
 4

5
) 
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Spearman’s rank correlation coefficients (rs) for network measures and adaptive behaviour in frequency bands of interest. *p <.05, **p <.0024 
(Bonferroni-corrected α value). Behaviour problems are Att = attention, Int = Internalising, and Ext = Externalising, while normalised graph 
measures included gamma = normalised clustering, lambda = normalised path length, and small-world = small-world index.
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Spearman’s rank correlations were statistically significant at p<.05 but not at the Bonferroni-corrected α level of .0024. 

Figure 4. 6 Correlations between adaptive behaviour and network architecture measures across development  
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4.5. Discussion 

 

To the knowledge of the author, this is the first study to use graph theoretical measures 

along with minimum spanning tree analysis to investigate age-related changes in the 

functional organisation of large-scale brain networks. The effect of development was 

primarily found in the higher frequency beta and gamma bands. Generally, development 

significantly reduced the wiring distance between any two nodes in a network, the number of 

leaves and the hierarchical structure. It is however important to note that the effect of 

development disappeared when networks were explored across the broad age range. This 

was most likely to have been as a consequence of cross-sectional sampling and the 

diversity of changes occurring within different age-ranges. 

 

Developmental changes in complex large-scale whole-brain functional networks  

 

For the children vs. adults, analysis, the non-parametric Mann-Whitney test revealed 

significantly increased whole brain functional coupling strength in young children in the beta 

band (See Figure 4.1). Across a broad age-range (7-57 years), the Spearman's rank 

correlation revealed a weak negative relationship between whole brain functional coupling 

strength and neurotypical ageing (See Figure 4.4). Both results suggest that whole brain 

coupling strength decreased across development. This is consistent with results reported in 

the only other high temporal resolution study covering roughly the same age ranges as the 

current study, conducted by Micheloyannis et al. (2009).  

 

Across a broad age-range, correlations in the beta band revealed a weak negative 

relationship between whole-brain functional connectivity and development. A closer visual 

inspection of these results (See Figure 4.4), revealed a correlation pattern of a U-curve 

shaped developmental trajectory. From ~ 37 years, the results suggest that whole-brain 

functional connectivity was no longer decreasing linearly. 

 

Typically, with development, the formation of more localised functional connections parallels 

a reduction in global connectivity (Supekar et al., 2009). From the present study, it is 

proposed that increased whole-brain functional connectivity in childhood may operate as a 

compensatory mechanism, allowing for more wiring in higher frequencies that is necessary 

for cognitive experiences and challenges. Specifically, children may require higher global 

brain synchronisation to compensate for the less ‘optimal’ long-range connections, whose 

role in the high frequency beta band may be crucial to develop cognitive abilities.  
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Network organisation characterisation using graph theoretical analysis 

 

With regard to children vs. adults groups, the Mann-Whitney test revealed that development 

significantly reduced the shortest distances between any two nodes (i.e. normalised 

characteristic path length). Similarly, across a broad age-range (7-57 years), the Spearman's 

rank correlation revealed a weak negative correlation between the shortest distances 

between any two nodes (lambda) and development (See Figure 4.5). In addition, 

Spearman's rank correlation revealed a weak positive correlation between small-world 

network topology and development (See Figure 4.5). However, these correlations were not 

statistically significant when a strict α level was applied. In the context of small-world network 

topology, information processing in short and long-distance functional connections is 

regarded as being ‘economical’ because it is achieved at minimum wiring cost, while still 

sustaining dynamic and complex processing (Bassett & Bullmore, 2006).  

 

To recap, a network with high average clustering coefficient is perceived to be characterised 

by dense connected local network clusters, while one with low characteristic path length 

corresponds to short long-range distances between any two nodes in a network (Supekar et 

al., 2009; Bullmore, & Sporns, 2009). Together these two mechanisms support high 

specialisation (i.e. information processing in local network connectivity) and global 

integration (i.e. information processing in global network connectivity) (Bassett & Bullmore, 

2006).  

 

Discussion 

 

Results in the current study therefore suggested that early childhood is associated with high 

levels of information processing within long-distance functional connections. Information 

processing in these connections is responsible for network integration of spatially distributed, 

but functionally linked brain regions. However, in the context of a small-world brain networks, 

topology is characterised by dense local clustering of neighbouring connections (in 

regions/nodes) and efficient path lengths between distant connections that results from 

fewer, but optimal longest paths between nodes (Bassett & Bullmore, 2006). According to 

Otte et al. (2015), higher shortest path length between any possible pair of nodes, (such as 

that observed in children in the beta band) suggests a less integrated and less efficient 

topology. The results reported in this study hence confirm that at sensor/node level, the 

organisation of brain functional networks in adults were more efficient in providing better 

support for distributed or integrated information processing. In other words, the results reflect 

a shift from a random network topology towards a more refined functionally efficient 
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organisation along with typical brain maturation. The results supported the hypothesis stating 

that with development, more structured and stronger long-range connections would be 

formed.  

 

Biologically, it has been suggested that age-related changes in short and long-distance 

functional connections are highly influenced by synaptic pruning and myelination of axonal 

fibre tracks through the process of development (Kuhn, 2006; Hagmann et al., 2010; 

Whitford et al., 2007). Increased network performance is often linked to underlying neuronal 

migrations of white matter axonal myelination corresponding to axonal conduction (Thatcher 

et al., 1986) and to grey matter atrophy throughout development (Whitford et al., 2007). With 

maturation, the brain eliminates connections that are not used, while preserving and 

strengthening those connections associated with efficient information transfer (Wu et al., 

2012). This is believed to result in a reduction of local connections in parallel with the 

formation of more specialised long-distance links (Boersma et al., 2011; Supekar et al., 

2009). In the current study design, it was expected that the topological organisation of 

functional networks in children would be less efficiently organised. The significantly short 

average path length in adults suggests that within typical neurodevelopment, whole-brain 

over-connectivity in childhood is followed by synaptic pruning, resulting in more specialised 

but stronger and fewer long-distance functional connections.  

 

Network organisation characterisation using Minimum spanning tree analysis  

 

To test the hypothesis of increased network efficiency, while controlling for network 

comparison bias, minimum spanning tree analysis was applied to resting-state weighted 

matrices. Significant results were only found in the analysis investigating network topology in 

children vs. adults. Using Mann-Whitney tests, results were confined in the gamma band, 

where through development, the minimum spanning tree network topology of children was 

characterised by significantly lower leaf number and tree hierarchy (See Figure 4.2).  

 

Discussion 

 

As is the case with networks derived from graph theoretical analysis, the tree topological 

organisation too, must ensure efficient communication between all vertices (Olde Dubbelink 

et al., 2013). The results in the current study revealed a shift towards a more line-like 

organisation with development. Development from mid-childhood to adulthood was 

characterised by a significant reduction in the number of leaves and hierarchy. A shift 

towards a more line-like or decentralised topology is believed to reflect the weakening of 
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dense local connectivity in neighbouring nodes (Boersma et al., 2013). The authors discuss 

the view that such a topology represents increased cost-effective processing in long-

distance connections (i.e. short path length between distantly connected nodes), that 

corresponds to a shift towards a more ordered/structured network configuration. Several 

studies have previously demonstrated that the standard hallmark of typical functional 

networks is the formation or development of fewer specialised distant connections and a 

weakening of local connections (Boersma et al., 2011; Fair et al., 2009; Smit et al., 2012; Wu 

et al., 2012). Hence, the minimum spanning tree results observed in the current study 

appear to confirm findings in classical network metrics. The functional role of these 

observations in a frequency specific context is discussed at a later stage.  

 

Minimum spanning tree results discussed in the current study are partly consistent with 

Boersma et al. (2013), albeit in a different frequency band. The authors reported significantly 

increased diameter, eccentricity, and decreased leaf number and hierarchy in the alpha 

band, in relation to development from 5 to age 7. It is however important to note that the 

study conducted by Boersma et al. (2013), investigated developmental changes in very 

young children at 5 and again at 7 years. It should also be emphasised that unlike the 

current study, Boersma et al. studied networks in unconventional frequency ranges (i.e. 

theta: 4-6 Hz, alpha: 6-11 Hz, and beta: 11-25). The alpha band reported by these authors 

was averaged between theta and alpha, which may have increased the power within which 

minimum spanning trees were later constructed. In addition, this study revealed changes in 

eccentricity and diameters in relation to development. Such changes were not observed in 

the current study. It is likely that these two measures are not changing in the age-range 

studied here.  

 

The role of higher frequency beta and gamma band neural synchrony in the development of 

functional networks  

 

Several studies have shown that different frequency oscillations in large-scale networks 

reflect different brain connections (Siegel et al., 2012; Uhlhaas et al., 2006, 2008; von Stein 

& Sarnthein, 2000). In the current study, all significant age-related network changes, using 

both graph and minimum spanning tree analysis, were observed in high frequency beta and 

gamma bands. Researchers have highlighted that beta oscillations are crucial for optimal 

network performance in development, both during rest (Micheloyannis et al., 2009; Schafer 

et al., 2014) and during task performance (Siegel et al., 2012). These oscillations are crucial 

for the coordination of large-scale neural activity (Uhlhaas et al., 2008), which would explain 
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why long-distance functional connections were significantly more efficient in adults in the 

beta band. 

 

Furthermore, data from Micheloyannis et al. (2009) revealed that within the beta band, 

healthy adults whose networks were characterised by lower whole brain synchronisation, 

and short average path length between distant electrodes/nodes, performed more efficiently 

on a cognitive task. Beta oscillations are traditionally associated with several cognitive skills, 

most prominently attention control (Schnitzler & Gross, 2005). Therefore, in the current 

study, where differences between the two groups were more sensitive in the beta band, they 

appear to demonstrate cognitively immature systems in children compared to adults.   

 

With respect to minimum spanning tree analysis, the results presented in the current study 

suggest a shift towards a more line-like topology in the gamma band in adults, which has 

been interpreted as an indication of fewer long distance interactions across development in 

the gamma band. Gamma oscillatory activity has been implicated in top-down attention 

(Siegel et al., 2012) and high cognitive abilities (van den Heuvel et al., 2009). In task-based 

studies, gamma neural oscillations often shown to be associated with high-level information 

processing. Hence, it is reasonable to propose that a more decentralised network 

configuration or line-like topology corresponds to highly distributed information processing 

within such a topology, which may explain higher cognitive skills in neurotypical adults, as 

such functional connections reflect global network integration efficiency. 

 

Relationship between topological organisation of functional brain networks and behaviour 

measures 

 

There is increasing evidence to suggest development plays a crucial role in the re-

configuration of functional networks, with more optimal topological organisation linked to 

cognitive and behavioural functions. Given that in this study cognitive ability was only 

assessed in children, its relationship with network measures was not addressed in this 

Chapter. See Chapter 5 for such computations. In the current part of the study, Spearman’s 

bivariate correlation tests were carried out to explore the relationship between network 

measures and adaptive behaviour scales (i.e. attention, internalised, and externalised 

problems) in each frequency band.  

 

However, as presented in the discussion, all reported correlations between network 

parameters and behavioural problems scales were not confirmed when a strict α level of 

.0024 was applied. In addition, the correlations were largely weak, with very few reaching 
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moderate strength. In brief, analyses of children and adults (See Figure 4.3) and across a 

broad age range (See Figure 4.6), in upper alpha and beta bands, showed moderately 

negative correlations between leaf number and externalising as well as attention. Visual 

representations in Figure 4.4 show that with the exception of one subject, all participants 

scored well under the clinical boundary. It is possible that lack of evidence in the current 

study to strongly demonstrate that network parameters coincide with behaviour measures is 

attributable to the fact that only healthy participants were studied. 

 

Limitations  

 

Caution must be exercised when interpreting some of the results presented in the current 

study. First, results reported in this study only represented neurophysiological changes at 

node/sensor level during development, and not neuroanatomical structural estimations. As a 

result, no direct conclusion can be drawn regarding the underlying sources of reported 

neurophysiological age-related changes. 

 

 Second, it is also worth addressing the implication of the frequency band weightings 

employed in the current study. Selecting appropriate frequency band (especially with respect 

to the alpha band) remains a challenge in neurophysiological studies, especially in studies 

involving children. Researchers, such as Boersma et al. (2011; 2013) have previously opted 

to average low frequencies together among children, arguing that splitting low frequencies 

(especially alpha) into sub-bands splits low frequencies at crucial peak points, which may 

bias observed results.  

 

A third limitation concerns the application of minimum spanning tree analysis. By discarding 

connections that form loops, this analysis provides a robust and more conservative strategy 

for network analysis (Otte et al., 2015), however, because this type of analysis is primarily 

concerned with ‘core’ connection edges (Stam et al., 2014), it is likely that valuable 

information about network topology is lost. Then again, using simulations Stam et al. (2014) 

recently demonstrated that minimum spanning tree analysis is as sensitive as conventional 

graph-based measures to changes in network topology.  

 

Fourth, unlike graph theoretical analysis, minimum spanning tree analysis is a relatively 

novel approach to neuroscience, and as such, its usefulness in providing applicable 

interpretations with respect to neurodevelopment remains to be established (Stam et al., 

2014). Further empirical studies are needed for better understanding of the relationship 

between tree topological changes and underlying functional networks derived from classical 
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graph-theoretical analysis. Fifth, associations between classical graph theory-based network 

metrics and minimum spanning tree results remain difficult to explain. For instance the study 

by Boersma et al. (2013) suggested that high clustering and longer path length correspond 

to line-like minimum spanning tree topology, while low clustering and short path length 

correspond to a minimum spanning tree topology of short diameters and high leaf number.  

 

In contrast, the study by Olde Dubbelink et al. (2013) found that lower clustering and shorter 

path length were associated with a more line-like minimum spanning tree topology. The 

discrepancy in these two studies concerning the relationship between classical graph 

theoretical analysis-based network measures and minimum spanning tree suggests that 

caution must be exercised when making neural functional links between the two types of 

network analysis. Sixth, the current study is cross-sectional in design and could potentially 

have failed to capture subtle changes in neural networks associated with processes of 

typical development. Hence, future research would benefit from longitudinal studies as a 

means of understanding the developmental trajectories of functional networks. Related to 

study design is also the question of sample size. The small number of participants in certain 

age-clusters in the current study resulted in a much more focused sample of children (7-13 

years) and adults (20-35 years). As a result, the contribution of this study is limited regarding 

the nature of progressive changes occurring in functional networks during adolescence or 

beyond 36 years. 

 

4.6. Conclusion  

 

The use of classical graph theory analysis, alongside minimum spanning tree measures to 

characterise topological organisation of functional networks, provided new insights into the 

effect that development has on the complex brain. Tree-based measures were equally highly 

influenced by development as classical metrics in neurotypical children and adults. Results 

in the current study generally suggest that development is associated with refinement/re-

organisation of wiring distance (including integration, hierarchical organisation, and network 

leaves) in large-scale whole-brain networks in higher frequencies. The results suggest a shift 

towards more effectively preserved and stronger long-range connections in adulthood, which 

is associated with stronger information processing in long-range nodes in adults compared 

to children.  

 

It is proposed that the results reported in the current study suggest that neural activity in the 

higher frequency oscillatory beta and gamma band may serve as an important biological 

marker of brain development and efficiency. It appears that synchrony in these frequencies 
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is important in the reorganisation of cortical connections throughout development, 

particularly between childhood and adulthood. In line with the results discussed, it is 

proposed that atypical developmental may potentially hinder the progressive maturity of 

functional integration, resulting in less efficient information processing in the global 

integration-based functional connections that are responsible for network integration often 

implicated in age-appropriate and controlled cognition.  

 

To conclude, this part of the study demonstrated that the application of minimum spanning 

tree analysis to characterise large-scale whole-brain functional network was able to 

successfully support other results derived from classical graph-based network analysis, and 

was crucially able to capture developmental changes in network organisation between 

children and adults, This provides practical and scholarly backing for minimum spanning tree 

as a suitable tool for investigating network organisation along with classical graph-based 

network analysis. 
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5. Altered whole-brain resting-state functional 

connectivity and network topology in attention-

deficit/hyperactivity disorder (ADHD) children and 

adolescents  

 

5.1. Chapter summary 

 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioural 

disorders in children and has been shown to persist into adulthood. Abnormalities in 

underlying brain systems have been implicated as the likely cause of behaviour and 

cognitive impairments. Given the burden, that ADHD imposes on those affected, and on 

families, and society, a better understanding of its causes, and clarification of underlying 

neural-biological mechanisms is of significant importance in applied neuroscience. Biological 

descriptions might be useful as potential predictor variables for ADHD. In the current study, 

the topological organisation of large-scale whole-brain functional brain networks was 

investigated in children with ADHD and controls, using graph theory and minimum spanning 

tree (MST) analysis of eyes-closed sensor-level resting-state MEG data.  

 

In the beta band and in no other frequency, lower whole-brain functional connectivity, 

normalised clustering coefficient, characteristic path length, higher eccentricity, and diameter 

were observed in children with ADHD compared to controls. Furthermore, in the ADHD 

group, the lower path length in the beta band was associated with poorer scores on verbal 

performance, while higher eccentricity and diameter in the beta and gamma band, was 

associated with poorer non-verbal performance. Finally, higher scores on the small-

worldness index in the beta band was associated with poorer non-verbal performance 

scores as well as higher attention problem scores.  

 

Large-scale functional networks in children with ADHD revealed a less local efficiency (i.e. 

normalised clustering coefficient) integrated (lower normalised path length), line-like tree 

topology (i.e. higher diameter, and eccentricity) in the beta band as compared to normal 

controls. At a neural level, the results offer support to the idea that the transfer of information 

in large-scale functional brain networks in children with ADHD is less efficient in the beta 

band. Reported associations between network parameters and cognition/behaviour 
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functioning suggest that these measures hold promise as potential markers of cognitive and 

behaviour impairments as reported in children with ADHD. 

 

5.2. Introduction 

 

Regarded as one of the most complex neurodevelopmental disorders (Cao et al., 2012), 

attention-deficit/hyperactivity disorder (ADHD) is characterised by developmentally 

inappropriate inattention, impulsivity, and motor restlessness (Barkley, 1990). Studies of 

neuroimaging (Sripada, Kessler & Angstadt, 2014; Wilson et al., 2011; Wong, & Stevens, 

2012), neuropsychological (Wong & Stevens, 2012; Xia, Foxe, Sroubek, Branch, & Li, 2014) 

and neurochemical (Berridge et al., 2006; Volkow et al., 2001) have generally implicated 

differences in cortical and subcortical brain systems as the neural basis of ADHD-related 

impairments. The transfer of information in cortical and sub-cortical networks occurring 

between grey matter regions takes place via systems of white matter tracts (Murias, 

Swanason, & Srinivasan, 2007). Reports of reduced white matter volume in children with 

ADHD (Silk, Vance, Rinehart, Bradshaw, & Cunninghton, 2009b) offer support to the 

suggestion that it is the impaired interactions and not specific brain regions that underlie 

ADHD (Murias et al., 2007).  

 

Despite overwhelming theoretical support for a neural basis of ADHD (See Castellanos et 

al., 2002; Krain & Castellanos, 2006; Sripada et al., 2014, for a review), the standard 

assessment and subsequent diagnosis of ADHD is based on structured diagnostic 

interviews and Conner’s questionnaires (Hulme & Snowling, 2009). These are used to help 

to determine whether the child meets the criteria or may alternatively have a condition other 

than ADHD that may explain reported symptoms (Goldman et al., 1998). However, this way 

of assessing children’s competencies and behavioural problems can be compromised by 

assessor bias (Biederman et al., 1993; Geller et al., 2004; Piper, Gary, Raber, & Birkett, 

2014) often resulting from serious misconceptions. As a result, misdiagnosis of unaffected 

children as well as over-medication is common in children with ADHD (Pennington, 2009).  

 

The application of empirically based instruments free from such bias offers a solution to this 

issue (Biederman et al., 1993). The current study undertook the use of task-independent 

measures of brain function to investigate whole-brain functional connections along with 

commonly applied measures of behaviour and cognitive functioning. If identified, biological 

risk markers could help in the identification of at-risk children at an earlier age. This could 

mean early assessment, diagnosis, and implementation of interventions children with ADHD. 
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Data from structural magnetic resonance imaging studies have shown consistent 

abnormalities in the frontostriatal network (Ashtari et al., 2005; Silk et al., 2009b, also see 

Bush, Valera, & Seidman, 2005; Cubillo, Halari, Smith, Taylor & Rubla, 2011, for a review). 

The pathways of the frontostriatal circuit connects regions in the frontal lobe (including 

dorsolateral prefrontal areas, dorsal anterior cingulate) with the basal ganglia (striatum) 

through the thalamus. The observations of reductions in total brain volume of frontal cortex 

(Bush et al., 1999; Mackie et al., 2007; Seidman et al., 2011) and the striatum (Silk et al., 

2009a) have prompted some (Mostofsky, Cooper, Kates, Denckla, & Kaufmann, 2002; Silk 

et al., 2009a; Valera, Faraone, Murrary, & Seidma, 2007) to propose that underlying clinical 

symptoms, as well as cognitive impairments, may represent abnormalities of the frontal lobe 

and stratum.  

 

Evidence for this view (i.e. abnormalities of the frontal lobe) comes primarily from task-based 

neuroimaging studies. For instance data from Franzen et al. (2013), and Murias et al. (2007), 

have previously revealed lower connectivity between brain regions forming the frontostriatal 

circuit during cognitive task performance. Note however that task-based findings in 

neuroimaging provide no clear distinction regarding the functional interactions between brain 

regions. Therefore, as it stands, a clear and complete picture of the neural underpinnings of 

ADHD remain largely unavailable (Bush et al., 2005). A solution to this is to study the 

interactions between spatially discrete brain regions. This strategy provides a powerful tool 

for examining differences in brain regions, where similar patterns of activations relate to 

functional roles (van den Heuvel & Hulshoff Pol, 2010). 

 

Evidence for altered functional interactions in ADHD 

 

Data from diffusion MRI tractography studies such as Ashtari et al. (2005) and Silk et al. 

(2007b) have offered support to the suggestion that reduced functional connectivity is likely 

to be associated with significant reductions in structural white matter integrity across major 

tracts in children and adolescents with ADHD. For instance, the study by Silk et al. (2009b) 

reported white-matter abnormalities in several distinct local clusters within left fronto-

temporal regions, as well as in right parietal-occipital regions, which the authors attributed to 

deceased branching in white-matter pathways.  

 

However the primary focus of many ADHD functional connectivity studies has been to 

investigate the strength of functional connectivity between specific regions (Cao et al., 2013; 

Cocchi et al., 2012) and/or connectivity between networks chosen a priori, typically the 

default mode network (Franzen et al., 2013; Tomasi & Volkow, 2012; Wilson et al., 2011). 
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Each study reported altered connectivity strength. However, the results reported from such 

studies have yielded inconsistent conclusions.  

 

For instance, Castellanos et al. (2008), Wilson et al. (2011), and Uddin et al. (2008), 

reported ‘hypoconnectivity’ (i.e. lower connectivity strength) between medial prefrontal cortex 

regions and the posterior cingulate precuneus cortices of the default mode network in those 

with ADHD compared to controls. In contrast, data reported by Tian et al. (2008) revealed 

that compared to controls, those with ADHD showed ‘hyperconnectivity’ (i.e. greater 

connectivity strength) in several regions, one of which was the bilateral thalamus. Functional 

connectivity between the thalamus and posterior cingulate cortex in the default mode 

network were recently reported to be weaker in neurotypical participants who were more 

conscious of the present state (Wang et al., 2014). Hence, the increased activity reported by 

Tian et al. (2008) is not consistent with previous reports of decreased coupling strength in 

regions forming the default mode network. Therefore, based on previous functional 

connectivity studies, no concrete conclusions regarding underlying neural mechanisms can 

be drawn.  

 

By not focusing on specific regions, the present study hoped to provide information about the 

pathophysiological mechanisms of brain networks at a global scale, which is appropriate in 

ADHD since this disorder is highly heterogeneous. Using graph theory, and MST measures 

would inform the state and pattern of local and global structures in children with ADHD. A 

reported loss of efficiency is likely to affect how well brain networks in children with ADHD 

exchange information, in both local and global network structures, which in turn may underlie 

help explain behavioural and cognitive impairments.  

 

To summarise, despite an increasing number of ADHD studies choosing to investigate 

functional connectivity and in some cases using resting-state paradigms (Franzen et al., 

2013; Rubia et al., 2009; Tian et al., 2008; Wison et al., 2011; Wong & Stevens, 2012; Xia et 

al., 2014), the majority often chose to focus on connections between specific regions and/or 

networks that based on previous literature derived from task-based findings.  

 

Aims of the current study in respect of ADHD 

 

1. To provide a more comprehensive profile of connectivity patterns in children with 

ADHD and in age-matched controls, this study investigated whole-brain resting-state 

functional connectivity, using conventional graph theoretical analysis and a novel 

unbiased approach of characterising networks.  
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2. Furthermore, to better understand any differences in whole-brain functional networks 

between controls and children with ADHD, the relationship was examined between 

local/global network efficiency and functional measures of behaviour problem rating 

scales and of cognitive ability.  

 

Hypotheses 

 

1. Whole-brain functional connectivity analysis in children with ADHD will reveal 

increased whole-brain theta functional connectivity, as well as decreased beta 

coupling strength. This hypothesis is based on consistent reports from resting-state 

EEG studies in children with ADHD of increased theta power (Chabot & Serfontein, 

1996; Lazzaro et al., 1998, 1999; Matsuura et al., 1993) and decreased beta power 

(Mann, Lubar, Zimmerman, Miller, & Muenchen, 1992; Matsuura et al., 1993). 

2. Network parameters will reveal a loss of local and global efficiency in the theta and 

beta band in children with ADHD.  

3. Less global and local network efficiency will be associated with worse intellectual and 

behavioural functioning  

 

5.3. Method 

 

5.3.1. Participants 

 

The Study Protocol (including this specific element) was reviewed and approved by the 

ethical review committee of Aston University and by the NHS. Language-appropriate 

informed assent and consent forms were signed by all participating children and 

parents/guardians in line with the Aston University Ethics Committee.  

 

Children with a diagnosis of ADHD were recruited with the help of clinicians working within 

the Child and Adolescent Mental Health Services (CAMHS) at the Worcestershire Health 

and Care NHS Trust. All 14 children (aged between 7- 17 years) referred, had undergone 

structured clinical diagnostic interview assessments and received a diagnosis of ADHD, with 

associated deficits of attention, and/or hyperactivity/impulsivity, prior to their referral to the 

Aston Brain Centre by a clinical psychologist/ psychologist (See Figure 5.1, Chapter 2 for the 

referral pathway).  
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The inclusion criteria for children with ADHD included an ability to assent, the child being 

aged between 7:0 and 17:11 years and having a primary diagnosis of ADHD confirmed by 

an ADHD specialist. The exclusion criteria were the child being outside the age-range, 

having a primary diagnosis of a major psychiatric disorder or of other disorders such as brain 

damage that would preclude a primary diagnosis of ADHD, or a history of substance abuse. 

Given that this was a clinical sample, at the time of the study all (but two) ADHD children 

were on medication aimed at relieving ADHD symptoms. 

 

Prescribed medication in the clinical sample of ADHD children fell into two broad categories: 

those containing the active ingredient methylphenidate (i.e. Concerta XL, Equasym XL, and 

Medikinet XL), and atomoxetine (i.e. Strattera) (See Table 5.1, for medication descriptions). 

The former are central nervous system (CNS) stimulant drugs while the latter is a non-

stimulant, selective noradrenalin reuptake inhibitor (Volkow et al., 2001). More than half (i.e. 

seven children) of children with ADHD indicated sleep-related problems on the Achenbach 

System of Empirically Based Assessment) (ASEBA) questionnaire. Three children were 

receiving Circadin (melatonin) medication. Circadin contains melatonin a hormone produced 

by the pineal gland, and is associated with normal control of circadian rhythms, specifically 

sleep.  

 

Two children with a diagnosis of ADHD were excluded from further analysis: one due to 

excessive artefacts in data, and the other due to overlapping learning difficulties (data for the 

latter participant was added to the comorbid groups. See Chapter 6). The final sample 

consisted of 12 children with ADHD and 21 age-matched typically developing controls. The 

sample of typically developing controls has been described in Chapter 4. All participants had 

normal or corrected to normal vision and no history of epilepsy or other neurological 

abnormalities. Using the ASEBA form, parents were asked to disclose whether or not the 

child in question had received a diagnosis of any other neurodevelopmental disorder. All 

participants volunteering for the study received Amazon vouchers as compensation for their 

participation.  

 

Participant matching 

 

Children with ADHD were assigned at least one chronological age (CA) matched control. In 

cases where this was not possible, an older CA child was allocated 
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5.3.2. MEG recording 

 

MEG recordings were acquired during resting-state conditions. Procedures have been 

described in Chapters 3 and 4. Briefly, children were instructed to remain still, relax, and 

await instructions of when to close and open their eyes. Resting-state paradigms lasted 

approximately two minutes or as long as the child was willing to sit in the magnetically 

shielded room.  

 

5.3.3. MEG data pre-processing 

 

Continuous MEG recordings were max-filtered and visually inspected, similar to the 

procedures described in Chapter 4. For younger children, extra care was taken to visually 

inspect epochs of the eyes-closed rest condition for eye-blinks in sensors corresponding to 

the occipital regions. For each child, four epochs of eyes-closed were converted to ASCII 

files of 4096 samples and exported into the BrainWave software package v0.9.76 for all 

further computations. These were conducted separately for each frequency band including, 

theta (4-8 Hz), lower alpha/alpha1 (8-10 Hz), upper alpha/alpha2 (10-13 Hz), beta (13-30 

Hz), and gamma (30-45 Hz) frequency bands. See Chapter 2 for a discussion of the 

computation sequence.  

 

The phase lag index measure was used to estimate functional coupling between pairs of 

magnetometers in five frequency bands. No threshold was applied to matrices, hence 

network parameters, using both graph theory and minimum spanning trees, were 

constructed from weighted graphs. As was reported in previous chapters, graph measures 

were normalised to control for the effect of varying network size with random surrogate 

networks. In the light of findings in Chapter 3 regarding graph metric reproducibility, data 

presented in this study are primarily concerned with eyes-closed task-independent brain 

activity. 

 

Statistical analysis  

 

All statistical analysis was computed with SPSS (version 20). Given that the distributions of 

most measures did not meet the assumptions of normality prior to and after log 

transformations, group differences were assessed using non-parametric tests. Mann-

Whitney U-tests for independent samples were applied to assess group differences in 

network measures. Associations between network measures and intellectual/behavioural 
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performance were assessed using Spearman’s rank correlation coefficients (rs). Unless 

otherwise stated, significance levels of α < .05, with the Cohen’s d effect sizes were 

reported. The trends described correspond to α level of >.05 ≤ .10. 

 

Participant characteristics 

 

Cognitive abilities: Clinically, the relationship between ADHD and IQ has been of interest to 

researchers, with low IQ being associated with poor treatment (Buitelaar, Van der Gaag, 

Swaab-Barneveld, & Kuiper, 1995), and negative long-term outcomes (Hechtman, 1999; 

Wallander, 1988). Data from Kuntsi et al. (2004) revealed that the ADHD symptoms and 

lower intelligence abilities covaried in children. The aetiology of the association/co-

occurrence of ADHD and lower IQ has genetic origins (Kuntsi et al., 2004), that may be 

reflected in the level of functional network efficiency. 

 

To investigate in the current study whether ADHD is associated with IQ deficits, verbal and 

non-verbal intellectual abilities were assessed using a battery of either two and/or four age-

appropriate Wechsler intelligence subtests: namely, similarities (SI), vocabulary (VC), matrix 

reasoning (MR) and block design (BD). For children aged between 6 years 0 months and 16 

years, the Wechsler Intelligence Scale for Children 4th UK Ed (WISC-IVUK) (Wechsler, 2003) 

was administered, while for those over 16 years, the Wechsler Abbreviated Scale of 

Intelligence (WASI) (Wechsler, 1999) was administered. As stated earlier, SI and MR were 

the core verbal and non-verbal subtests, while VC and BD were supplementary measures, 

obtained if the child was willing and able to participate. As a result, only the SI and MR 

scores are reported as these were obtained from almost all children.  

 

Behaviour maturity: ADHD manifests itself as a childhood disorder with differences from 

norms in behaviour. As a result, diagnosis is typically based on age-appropriate maturity. In 

this study, the Child Behaviour Checklist/6-18 (CBCL/6-18) (Achenbach, 1991) 

questionnaires was completed by parents to assess various behavioural, emotional, and 

social problems in children and adolescents. The CBCL/6-18 is part of the Achenbach 

System of Empirically Based Assessment (ASEBA). Although the questionnaires cover 

several behaviour problem areas, the current study focused on attention behaviour and the 

two broad problem subscales of internalised problems (encompassing, 

withdrawn/depressed, somatic complaints and anxious/depressed scales) and externalised 

problems (encompassing delinquent and aggressive behaviour). Scores were reported using 

population standardised T scores (M = 50, SD = 10). Hence, a score of ≥ 63 is 1.5 SD above 

the mean, suggesting a high risk of maladaptive behaviour 
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5.4. Results  

 

Demographic data in Table 1 revealed poorer performance on verbal and non-verbal 

intellectual assessments compared to age-matched controls. In addition, children with ADHD 

were reported by their guardians to have more attention, internalising and externalising 

problem behaviours than did controls.  

 

Table 5.1 also displays results of theta, beta, and theta/beta power. These are reported 

because one of the most consistent findings in ADHD literature is elevated slow wave 

(predominately theta power) and decreased fast wave (i.e. beta power) (Chabot & 

Serfontein, 1996; Clarke, Barry, McCarthy, & Selikowitz, 2002; Mann, Lubar, Zimmerman, 

Miller, & Muenchen, 1992). What is more, the theta/beta ratio (TBR) has been found to be 

elevated in those with ADHD (Arns et al., 2013; Clarke, Barry, McCarthy, & Selikowitz, 2001) 

and often regarded as discriminatory feature distinguishing those with ADHD from controls 

(Arns, Conners, & Kraemer, 2013; Ogrim, Kropotov, & Hested, 2012). Although not 

significant, the results in Table 5.1, showed trends in children with ADHD towards an 

elevated power of slow wave theta, an increased theta/beta ratio, and a decreased power of 

fast wave beta.  
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Table 5. 1 Demongraphic data including intellectual, behaviour, and oscillatory 
activity characteristics for children with ADHD and typically developing controls 
(TDC) 

 ADHD  

(n=12) 

TDC  

(n = 21) 

 

 

 

 M ± SD M ± SD p  

Age (years) 12.4 ± 3.5 11.6 ± 3.1 NS  

Gender (M:F) 10:1 10:11   

Hand (L:R) 2:10 2:19   

SI 8.3± 2.3  12.7 ± 2.5  ** ADHD Medication (n) 

MR 9.1 ± 2.4  11.3 ± 1.9  ** Equasym XL (2) 

Att 78.5 ± 10.36 52.4 ± 3.6 ** Concerta XL (2) 

Int 65.8 ± 11.02 48.5 ± 8.0 ** Strattera (2) 

Ext 70.3± 8.6 44.5 ± 8.9 ** Medikinet XL (1) 

Theta power (θ) .20 ± .03 .19 ± .03 NS Concerta XL & Circadin (1) 

Beta power (β) .19 ± .05 .20 ± .04 NS Unmedicated (2) 

θ/β ratio 1.12 ± .36 1.00 ± .35 NS Strattera, Concerta XL, Circadin (2) 

Demographic data for the two groups. Key: M = mean; SD = standard deviation; MR = matrix 
reasoning subtest; SI = similarities subtest; Att = Attention, Int = internalised; Ext = 
externalised, θ/β = theta/beta ratio power and NS = not significant. IQ scores are 
standardised scaled scores (M = 10, SD = 3), while ASEBA problem measures scores are 
age, gender, informant, and society normed T scores (M = 50, SD = 10). Group differences 
were assessed using non-parametric Mann-Whitney U- tests: * p < .05, **p < .01.  

 

5.4.1. Mean whole-brain functional brain networks in controls and in children 

with ADHD  

 

Whole brain functional connectivity was computed by averaging all pair-wise phase-lag-

index values across all magnetometers. Mean whole-brain functional connectivity in the beta 

band for children diagnosed with ADHD (Mdn = .09) was significantly lower than in the 

control group (Mdn = .10), (U = 62.00, z = -2.39, p < .05, d = -.92). Non-significant trends in 

the opposite direction were observed in the lower alpha band (p = .80). No other clear 

differences were found in other frequency bands (See Table 5.2 and Figure 5.1, for whole-

brain functional connectivity in other frequencies). 

 

 

 

 



126 
 

 

 

 

Mean group phase lag index averaged over magnetometer sensors in frequency bands of 
interest. Mean PLI was significantly lower in children with ADHD, compared to TDC, in the 
beta band. No other significant differences were found in other frequency bands. Error bars 
are ± 2 SE, standard error. * p < .05. Key: ADHD= Attention-deficit/hyperactivity disorder; 

TDC = typically developing controls. 

 

5.4.2. Group differences in short and long-distance functional connections 

 

Although results in Chapter 3 revealed that non-normalised first-order metrics (i.e. CW and 

LW) were highly robust, these metrics do not represent ‘pure’ measures of network topology 

(Stam et al., 2009) as discussed in Chapter 3. Briefly, this is because they are more likely to 

be affected by changes in the average coupling strength (i.e. average phase lag index), 

(Boersma et al., 2012), whereby lower average coupling strength results in decreased CW, 

but longer LW, regardless of network structure (Stam et al., 2009). Placed in the context of 

ADHD, where Figure 5.1 revealed significantly lower average coupling strength in the beta, 

this would mean that CW would be lower and this would be coupled with higher LW in children 

with ADHD compared to TDC. This was in fact confirmed for the beta band (See Appendix 

A.1). For this reason, as with Chapter 4, reported main findings concern normalised classical 

metrics and minimum spanning tree network measures. 

 

Figure 5. 1 Mean whole-brain functional connectivity 
differences across frequency bands  
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Both groups showed small-worldness in all frequency bands (i.e. an optimal balance 

between segregation and integration in functional brain network), which is formally 

demonstrated by values that were > 1 (Sporns et al., 2004; Watts & Strogatz, 1998). 

However, local and long-distance functional connections were significantly lower in the beta 

band in children with ADHD compared to controls (See Table 5.1 for results of other network 

parameters). 

 

Normalised clustering coefficient (gamma) was significantly lower in the beta band in 

children with ADHD (Mdn = .1.0) compared to TDC (Mdn = 1.06), U = 64.50, z = -2.30, p < 

05, d = -.85 (See Figure 5.3A). Also in the beta band, the normalised characteristic path 

length (lambda) was significantly lower in children with ADHD (Mdn = 1.03) compared to 

TDC (Mdn = 1.04), U = 41.50, z = -3.14, p < .01, d = -1.10 (see Figure 5.3B).  
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Table 5. 2 Group differences in global functional connectivity and network topological organisation 

  Theta p Alpha1 p Alpha2 p Beta p Gamma p 

Mean PLI ADHD 

TDC 

.16 [.16, .16] 

.16 [.16, .16] 

NS .24 [.23, .27] 

.24 [.23, .25] 

NS .21 [.20, .23] 

.20 [.20, .21] 

NS .09 [.08, .10] 

.09 [.09, .10] 

* .09 [.09, .10] 

.09 [.09, .10] 

NS 

Gamma ADHD 

TDC 

1.06 [1.05, 1.07] 

1.05 [1.05, 1.06] 

NS 1.08 [1.07, 1.08] 

1.07 [1.06, 1.08] 

NS 1.07 [1.05, 1.08] 

1.06 [1.05, 1.07] 

NS 1.04[1.04, 1.05] 

1.06 [1.05, 1.06] 

* 1.04 [1.04, 1.05] 

1.04 [1.04, 1.04] 

NS 

Lambda ADHD 

TDC 

1.04 [1.03, 1.04] 

1.03 [1.03, 1.03] 

NS 1.04 [1.03, 1.07] 

1.05 [1.04, 1.06] 

NS 1.04 [1.03, 1.06] 

1.04 [1.04, 1.05] 

NS 1.03 [1.02, 1.03] 

1.04 [1.03, 1.04] 

** 1.02 [1.02, 1.03] 

1.02 [1.01, 1.03] 

NS 

Small-world ADHD 

TDC 

1.02 [1.01, 1.02] 

1.02 [1.02,1.03] 

NS 1.03 [1.01, 1.04] 

1.02 [1.02, 1.03] 

NS 1.02 [1.01,1.03] 

1.02 [1.01, 1.02] 

NS 1.02 [1.02, 1.03] 

1.02 [1.01, 1.03] 

NS 1.02 [1.01, 1.03] 

1.02 [1.01, 1.03] 

NS 

Eccentricity ADHD 

TDC 

.14 [.13, .15] 

.14 [.13, .14] 

NS .13 [.13, .14] 

.13 [.13, .14] 

NS .13 [.12, .14] 

.13 [.13, .14] 

NS .13 [.13, .14] 

.13 [.12, .13] 

* .14 [.13, .14] 

.14 [.13, .15] 

NS 

Diameter ADHD 

TDC 

.18 [.17, .20] 

.18 [.17,.19] 

NS .17 [.16, .19] 

.18 [.17, .18] 

NS .17 [.16, .19] 

.18 [.17, .20] 

NS .18[.17, .19] 

.17 [.17, .18] 

* .18 [.17, .20] 

.19 [.17, .20] 

NS 

Hierarchy ADHD 

TDC 

.39 [.37, .42] 

.38 [.38, .39] 

NS .41 [.40, .43] 

.40 [.40, .41] 

NS .41 [.40, .42] 

.39 [.38, .40] 

NS .38 [.37, .40] 

.38 [.38, .39] 

NS .38 [.37, .40] 

.38 [.37, .39] 

NS 

Leaf number ADHD 

TDC 

.56 [.54, .57] 

.54 [.53, .56] 

NS .58 [.56, .60] 

.57 [.56, .60] 

NS .57 [.55, .60] 

.55 [.55, .57] 

NS .55 [.54, .56] 

.54 [.53, .55] 

NS .54 [.51, .55] 

.53 [.53, .54] 

NS 

Whole-brain functional connectivity and network parameters derived from both classic network metrics and minimum spanning tree measures. 
Results are displayed as medians and bootstrap 95% CIs (in square brackets). Group differences were assessed with non-parametric testing 
(Mann-Whitney U-test, *p< .05, ** p < .01. Differences between the two groups were found in the beta band and no other frequency. 
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Mean group differences in A) normalized weighted clustering coefficient and B) path length. 
Significant results were found for the beta band and no other frequency range. * p < .05, ** p 
< .01. Error bars are ± 2 SE. Networks in both groups showed small-world organisation, an 

index for optimal local and global connectivity. 

 

Group differences in minimum spanning tree (MST) measures  

 

Similar to classic network metrics, significant differences in MST measures were observed in 

the beta band and in no other frequency (See Table 5.2 for the results of other measures). 

From the four measures assessed, significant group differences were found for MST 

diameter and eccentricity (Table 5.2, Figure 5.3), which showed that these measures were 

significantly higher in children with ADHD. Eccentricity in the ADHD (Mdn = .13) was 

significantly higher compared to TDC (Mdn = .13), U = 61.00, z = -2.43, p < .01, d =.10). In 

addition, MST diameter in children diagnosed with ADHD (Mdn = .18) was significantly 

higher than in typically developing children (Mdn = .17), U = 67.00, z = -2.21, p < .05, d = 

.67.  

 

 

Figure 5. 2 Mean group difference in normalised short-range and long distance 
connections in children with ADHD and TDC 
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Graphs of group differences in A) eccentricity, and B) diameter over frequency bands 
derived from MST. Significant group differences were only observed in the beta band and in 

no other frequency range. Error bars are ± 2 SE. * p < .05. 

 

To what extent can the significant classic network metrics and minimum spanning tree 

measures in the beta band predict group membership? 

 

Planned analysis: discriminatory analysis was used to determine group membership, (i.e. 

TDC or ADHD), based on normalised classic or graph-based measures and minimum 

spanning tree metrics that were significantly different between these two groups (i.e. 

normalised clustering coefficient, normalised path length, eccentricity, and diameter). This 

analysis is used as follow-up to multivariate analysis of variance (MANOVA) or as a mean 

test for predicting membership of groups based on several predictive variables. Predictive 

analysis (e.g. regression or multivariate analysis of variance) often relies on groupings to try 

and predict differences among single or multiple variables (Morgan, Vaske, Gliner, & 

Harmon, 2003). In contrast, the aim of the present study was to try to predict membership in 

a group using two types of network analysis. Therefore, statistical analysis using a 

discriminant function offered an appropriate strategy to investigate whether the predictor 

variables of normalised clustering coefficient, normalised path length, eccentricity, and 

diameter within the beta band would allocate children into the appropriate group (i.e. TDC or 

ADHD).  

 

 

Figure 5. 3 Mean group differences in MST eccentricity and diameter, in children with 
ADHD and TDC 
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Graph-theoretical analysis predictors (i.e. normalised clustering coefficient, normalised path 

length) in the beta band: 

 

Discriminant analysis revealed one discriminant function that significantly differentiated the 

groups. This was Wilks’ Lambda (λ) = .78, X2(2) = 7.44, p = .02. Correlations between 

outcomes and the discriminant function revealed that classic network metrics for short and 

long-distance functional connections loaded fairy highly. Long-distance functional 

connections loaded more highly onto the function (r = .98) compared to short-range 

connections (r = .79). Overall, cross-validated classification revealed that 66.7% of children 

were appropriately classified. Specifically, the function using the GTA predictors correctly 

predicted 33.30% of children with ADHD and 85.7% of TDC.  

 

Minimum spanning tree predictors (i.e. eccentricity and diameter) in the beta band:  

 

The second discriminant analysis was computed using the MST predictors to predict 

whether a child was a control or had a diagnosis of ADHD. Analysis revealed one 

discriminant function that significantly differentiated the groups, Wilks’ Lambda (λ) = .81, 

X2(2) = 6.25, p = .04. Correlations between outcomes and the discriminant function revealed 

that MST measures loaded fairy highly. Eccentricity loaded more highly onto the function (r = 

.83) compared to diameter (r = .67). Finally, cross-validated classification revealed that 

66.7% of children were appropriately classified. Specifically, the function correctly predicted 

41.70% of children with ADHD and 81.00% of TDC. In other words, the predictor function 

was better at identifying TDC group membership. 

 

Relationship between network characteristics and cognitive abilities for each frequency band 

  

The finding that verbal and non-verbal reasoning abilities were significantly different between 

groups (See Table 5.1) justified investigating the relationship between cognitive abilities and 

network parameters independently for each group. The correlations between network 

measures and cognitive abilities that were significant at a level of .05, albeit not statistically 

significant at the Bonferroni-corrected α level, are visually articulated in Figure 5.4. Although, 

these were observed in the ADHD group, Figure 5.4 displays relationships across the entire 

sample cohort of children. 
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Network correlation with cognitive abilities in the ADHD group 

 

No significant correlations between network measures and cognitive abilities (See Table 5.3) 

were observed in the theta, lower or upper alpha bands.  

 

In the beta band, eccentricity showed a strong negative correlation with non-verbal 

reasoning (rs = -.63 [-.95, .10], p = .027). Similarly, diameter showed a strong negative 

relationship with non-verbal reasoning (rs = -.72 [-.97, .02], p = .008). The results in the beta 

band also revealed trends towards moderate negative correlations between small-worldness 

and non-verbal reasoning (rs = -.53 [-.89, .23], p =.076), as well as between diameter and 

verbal reasoning (rs = -.57 [-.93, .13], p = .052). Finally path length in the beta band showed 

a trend towards a moderate positive correlation with verbal reasoning (rs = .55 [.21, .77], p 

=.064). None of the correlation coefficients listed above was statistically significant at the 

more strict Bonferroni-corrected α level of .001. 

 

In the gamma band, eccentricity showed a strong negative correlation with non-verbal 

reasoning (rs = -.75 [-.93, -.30], p = .005). A similar trend was observed between diameter 

and non-verbal reasoning (rs = -.76 [-.98, -.03], p = .005). In contrast, leaf number showed a 

moderate positive relationship with non-verbal reasoning (rs = .53 [.07, .87], p = .075). 

Similar to correlations for the beta band, the relationships listed above were also not 

statistically significant at the Bonferroni-corrected α level. 

 

Network correlation with cognitive abilities in the control group 

 

No correlations or trends were observed between network parameters and cognitive ability in 

the lower alpha, beta, or gamma bands (See 4 Table). The correlations observed in the theta 

and upper alpha bands were moderate, although not statistically significant at the 

Bonferroni-corrected α level of .001.  

 

In the theta band hierarchy showed a moderate positive correlation with verbal reasoning (rs 

= .44 [-.03, .75], p = .069), while in the upper alpha band a positive relationship between leaf 

number and non-verbal reasoning was observed (rs = .52 [-.02, .86], p = .02). 
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Table 5. 3 Correlations between network measures and cognitive abilities for children with ADHD 
(n

 =
 1

2
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Spearman’) rank correlation coefficients (rs) for network measures and cognitive abilities in each frequency bands. Key: SI = similarities (i.e. 
verbal skills), MR = matrix reasoning (i.e. non-verbal skills), network metric gamma = normalised clustering coefficient, lambda = normalised 
characteristic path length, and small-world = small-world index. *p <.05, ** p < .01, ***p <.0024 (Bonferroni-corrected α value). 
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Table 5. 4 Correlations between network measures and cognitive abilities for typically developing children 
(n

 =
 2

1
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Spearman’s rank correlation coefficients (rs) for network measures and cognitive abilities in each frequency bands. *p <.05, p <.01, ***p <.0024 
(Bonferroni-corrected α value). Key: SI = similarities (i.e. verbal skills), MR = matrix reasoning (i.e. non-verbal skills), network metric gamma = 
normalised clustering coefficient, lambda = normalised characteristic path length, and small-world = small-world index 
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Correlations between non-verbal reasoning ability and MST network parameters in beta (top) 
and gamma band (bottom). These represent only the correlations that showed strong (rs > 

.6) relationships. The solid line is the fit-line for the entire sample cohort. 

 

Relationship between network characteristics and behaviour measures for each frequency 

band  

 

In Table 5.1, ADHD children were shown to have more problem behaviours than controls for 

the three behaviour measures, allowing for independent investigations of the groups. 

Consideration of such a relationship in healthy participants, described in Chapter 4, revealed 

Figure 5. 4 Correlation coefficients between network organisation measures and 
individual verbal and non-verabl performance variations, in controls, and children with 

ADHD 
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mostly weak relationships. Hence, the computation focus in this section focused on the 

ADHD group. No significant correlation was observed for any frequency band between 

network parameters and behaviour measures in children with ADHD (See Table. 5.5). 

 

In the lower alpha, path length showed a moderate trend towards a positive correlation with 

attention (rs = .50 [-.21, .95], .p = .10). A similar trend was observed for the correlation 

between small-worldness and attention (rs = .50 [-.08, .86], .p = .096) in the beta band. 

Finally in the gamma band, the clustering coefficient showed a trend towards a positive 

correlation with externalised behaviours (rs = -.53 [-.91, .15], .p = .08). 
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Table 5. 5 Correlations between network measures and behaviour problems for children with ADHD 
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Spearman’s rank correlation coefficients (rs) for network measures and adaptive behaviour for each frequency band. No significant correlations 
were observed. Key: Att = attention, Int = Internalising, and Ext = Externalising, metric gamma = normalised clustering, metric lambda = 
normalised path length, and small-world = small-world index. *p <.05, **p < .01, and **p <.0024 (Bonferroni-corrected α value). 
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5.5. Discussion 

 

To the best of the author’s knowledge, this study is the first to describe the functional 

network organisation in ADHD using minimum spanning tree. Furthermore, this is first study 

to investigate changes in the large-scale whole-brain functional organisation of resting-state 

MEG, using normalised conventional graph metrics. Applying both network analysis 

strategies in the present study revealed differences in network organisation between the two 

groups that were confined in the beta band. In this frequency, lower normalised clustering 

coefficient, shorter normalised path length, larger diameter, and higher eccentricity were 

characteristic of functional networks in the ADHD cohort. Furthermore, higher eccentricity 

and diameter, and decreased path length in the beta band were associated with poorer non-

verbal reasoning performance in children with ADHD.  

 

Whole-brain functional connectivity  

 

In children with ADHD, the results confirmed the prediction of altered whole-brain functional 

connectivity in the beta band, but not in the theta band. The results revealed significantly 

lower beta band coupling strength when compared to age-matched controls (See Figure 

5.1). Substantially decreased activity in the beta band is in line with previous resting-state 

EEG studies (Clarke et al., 2002; Mann et al, 1992; Matsuura et al., 1993). In structural 

networks, long-distance connectivity is related to low frequencies, while short-range 

connectivity is related to synchronisation of fast beta and gamma frequencies (Ahmadlou et 

al., 2011; von Stein et al., 2000; von Stein & Sarnthein, 2000). Therefore the observation (in 

relation to controls) of lower whole-brain connectivity coupling strength in the ADHD group is 

an indication of a lower level high beta band oscillation functioning, which could in turn 

suggest that information processing in local neighbourhood clusters in ADHD is disrupted. 

Placed in the context of previous studies investigating network-specific connections, the 

results observed allude to a ‘hypo connectivity’ of whole-brain structures in ADHD. 

 

Functional network organisation using conventional graph theoretical measures  

 

Both children with ADHD and controls showed small-world organisation, a measure of the 

optimal balance between high clustering and short path length (i.e. normalized clustering > 1 

and normalised path length ≈ 1) (See Figure 5.2). The finding of preserved small-world 

topology is in line with previous studies, in which data have shown the small-world topology 

to be resilient in relation to both age-related (Fair et al, 2009; Supekar et al., 2009) and 

pathology-related network alterations (Cao et al., 2012; Xia et al., 2014). The preservation of 
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this topology may be attributed to the fact that it has a stronger biological basis compared to 

other measure. Moreover, data reported by Smit et al. (2008) revealed a strong genetic 

basis for features of small-worldness in pairs of dizygotic and identical or monozygotic twins. 

Furthermore, the fact that small-world networks have also been reported in non-biological 

systems (See Latora & Marchiori, 2001, for a review), prompts the suggestion that higher 

clustering and cost-effective global processing in small-world networks, is fundamental to 

information exchange in any complex dynamic system.  

 

However, the results in the present study revealed differences between the two groups in the 

local and global topological organisation of functional networks in the beta band (See Figure 

5.2). Functional brain networks in children with ADHD were characterised by lower 

normalised clustering coefficient and normalised path lengths, suggesting lower levels of 

local integration along with a loss of global connectivity efficiency in the beta band. Studies 

in medicated children and adolescents previously found that ADHD was associated with 

reductions at both the global and regional level (Batty et al., 2010; Carmona et al., 2005). 

This may explain the reduced whole-brain functional connectivity coupling observed in 

children with ADHD in the current study. The process of such mechanisms remains 

unknown. That said, some (El-Sayed et al., 2003; Shaw et al., 2007; Sripada et al, 2014) 

have attributed such changes to a delay in cortical maturation, predominantly in the 

prefrontal regions.  

 

The current study results suggest that compared with age-matched controls, the functional 

brain network topology of children with ADHD indicates a deviation towards a more random 

topological organisation. Compared to the ‘small-world’, random networks lack an optimal 

balance between segregation and efficient global information exchange. The graph- 

theoretical results reported in this study are not in line with a previous EEG study that 

investigated among other things, whole-brain connectivity using graph analysis in medicated 

ADHD children at sensor-level (Ahmadlou et al., 2011).  

 

Focussing on the both hemispheres as well as the organisation of whole-brain coupling 

strength, Ahmadlou et al. (2011) did not observe any differences in whole-brain beta band 

functional connectivity. Instead, the authors reported altered clustering and path length in the 

left hemisphere in the delta band. The differences between these results and those reported 

in the present study could be explained by methodological differences. First, different 

measures were used to estimate functional connectivity coupling. The authors applied the 

fuzzy synchronisation likelihood (See Ahmadlou & Adeli, 2011, for a discussion of this 

measure), while functional connectivity in the current study was based on phase lag index. 
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As discussed in Chapter 3 (see Discussion), different estimates of functional connectivity 

have been reported to generate different conclusions (i.e. measures that sensitive to the 

effects of field spread and common sources are likely to revealed higher coupling strength, 

because zero-lags are not excluded from estimated functional connectivity). Furthermore, 

although fuzzy synchronisation quantifies both linear and non-linear synchronisations, this 

measure is sensitive to the effects of volume conduction.  

 

Second, unlike the current study, Ahmadlou et al. (2011), reported changes in network 

structure using non-normalised clustering and path length. Changes in these measures are 

influenced by average connectivity strength (Stam et al., 2007), and as a result are unlikely 

to represent genuine differences in network comparisons. As a result, reported findings 

using such measures are challenging to interpret when bias arising from differences in 

network structure and density in two different populations is not addressed (see results in 

Figures 5.1, 5.2 and Appendix A.1 for an illustration).  

 

Comparison of findings in the current study with other previous ADHD neuroimaging studies, 

is challenging, because not only do these studies examine functional connectivity and 

network organisation in task-dependent activities (Murias et al., 2007; Rubia et al., 2009; Xia 

et al., 2014), they also often focus on network differences in specific regions or networks that 

are determined a priori (Franzen et al., 2013; Sripada et al., 2014; Wilson et al., 2011; Wong 

& Stevens, 2012). Reported network efficiency is therefore regional or network-specific.  

 

However, despite the differences in methodology, the results in the current study seemed to 

mirror some of those reported in earlier task-based studies. For instance, decreased local 

efficiency reported in those with ADHD is consistent with data reported by Xia et al. (2014) in 

the visual attention networks, while less global efficiency observed in the present study 

closely aligns with previously reported lower global integrity of the default mode network 

(Uddin et al., 2008; Wilson et al., 2011).  

 

Functional network organisation using minimum spanning tree (MST) 

 

Results in the present study revealed that beta band MSTs differed in the beta band 

between the two groups. The global measures of eccentricity and diameter were statistically 

significantly higher in children with ADHD (See Figure 5.3), indicating a loss or disruption of 

global efficiency of brain networks in the beta band. As a measure of centrality, eccentricity 

corresponds to nodal importance or efficiency. Therefore, higher eccentricity is an indication 

of a lower level of nodal importance (Old Dubberlink et al., 2014). Hence, the findings in the 
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current study suggest that in children with ADHD nodal efficiency was lower in the beta 

band.  

 

Furthermore, as previously stated, efficient communication between vertices requires a star-

like topology, corresponding to both the maximum number of leaves and the shortest 

average path length. The observation of larger diameter in the current study, which is a 

measure of the longest distance connecting any two nodes on a tree, therefore suggests a 

shift towards a path or line-like topology in children with ADHD. Collectively MST eccentricity 

and diameter results suggest that in the beta band, the topology of functional networks in 

children with ADHD corresponds to a more line-like topology, which according to Boersma et 

al (2012) indicates a shift to a more regular, less global integrated network.  

 

Beta neural oscillations in ADHD  

 

Given that all significant contrasts in network topological organisation between controls and 

those with ADHD were observed in the beta band, the current study offers support to the 

suggestion that network parameters in this frequency offer more sensitive measures capable 

of capturing network structure differences in typical and atypical neurodevelopment. 

Discriminant analysis also revealed that these measures were able to significantly 

differentiate the groups. However cross-validated classification revealed that in the beta 

band controls were much likely to be appropriately classified than were children with ADHD. 

This observation makes intuitive sense especially when considering the highly complex and 

heterogeneous nature of ADHD. That said the discriminant analysis results must be 

interpreted with caution. Given that the sample sizes were not equal, one may argue that 

cross-validated classification power of the reported predictors may have favoured the group 

with more participants. That said, ability of discriminatory specificity reported in this study is 

an interesting observation, that future studies could consider exploring further.  

 

Differences in beta neural oscillations of resting-state in ADHD (compared with controls) 

have previously been reported in EEG studies by researchers such as Arns et al. (2013), 

and Clarke et al. (2001), who have proposed that abnormalities in beta oscillatory activity 

play a key role in the pathophysiology of this condition. In neurotypical development, beta 

activity is less frequent in children compared to adults. However for some children with 

ADHD beta has been reported to be elevated, while in others it has been shown to shown to 

be reduced (Synder & Hall, 2006).  
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Association between functional brain network organisation and measures of behaviour and 

cognitive abilities 

 

For a better understanding of any differences between the two groups in the current study, 

the relationship was assessed between network measures for each frequency band and 

measures of behaviour and cognitive functioning. Exploratory analysis of the relationship 

between functional brain connectivity and measures of behaviour, as well as cognition, 

revealed that overall decreased global efficiency (i.e. normalised path length, eccentricity, 

and diameter) was associated with poorer cognitive abilities and increased severity of 

attention and behaviour problems in ADHD.  

 

Relationships between network measures and cognitive abilities  

 

In the ADHD group, associations between network measures and cognitive abilities were 

observed in the beta and gamma band. Interestingly, although not significant, the trends 

reported in controls revealed similar patterns to those in children with ADHD, providing 

further support for the view that network parameters contain important neurobiological 

information and that the efficiency of network organisation plays a crucial role in cognition.  

 

Lower non-verbal performance scores were associated in the ADHD cohort with higher beta 

and gamma band eccentricity, and diameter. As stated earlier, in an optimal network 

topology, eccentricity is low if the node is central in a tree (Boersma et al., 2013b). Higher 

eccentricity corresponds to a higher shortest path length/distance between pairs of nodes in 

a tree, which suggests a shift towards a less integrated and efficient tree topology (Otte et 

al., 2015). Loss of integration is the result of nodes becoming less central in a network 

(Tewarie et al., 2014), which in the current study was found to be associated with poorer 

cognitive abilities. The association between loss of centrality and poorer cognition was 

recently reported by Tewarie et al. (2014), who applied MST to investigate brain networks in 

early relapsing remitting multiple sclerosis patients.  

 

Another interesting finding, though not statistically significant, in both controls and children 

with ADHD, was that beta and upper alpha bands showed trends towards a positive 

correlation between leaf number and non-verbal performance. As stated earlier, the 

maximum number of leaves is one of the requirements for the most efficient exchange of 

information in a star-like topology. Therefore, results revealing that increased leaf number 

was associated with better non-verbal performance offer support for the proposition that 
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increased global efficiency is a likely marker of reported cognitive impairments in typical and 

atypical populations.  

 

In addition, in the present study decreased path length, a measure of global connectedness 

of a network in the beta band, was associated with poorer verbal performance. The results 

are in line with previous neuroimaging studies (Song et al., 2008; van den Heuvel et al., 

2009). Data from these studies previously revealed that in healthy participants more 

efficiently connected functional brains at a global scale showed higher levels of intellectual 

performance. In addition, the results observed in the current study, are also in line with a 

recent study by Olde Dubberlink et al. (2014) investigating brain network topology in those 

with Parkinson’s disease, albeit in a different frequency band. The researchers revealed that 

decreased path length was associated with poorer performance on a cognition assessment 

scale. The difference in frequency band of the observed relationships is likely to be attributed 

to the different roles that slow and fast frequency oscillations play in the two conditions. (I.e. 

ADHD and Parkinson’s) 

 

However as with an earlier resting-state functional MRI study in healthy adults (van den 

Heuvel et al., 2009), results in the current study revealed no correlation, or trend, between 

normalised clustering coefficient and intellectual performance. This suggests that intellectual 

abilities may possibly not be related to the efficiency of information transfer in local network 

clusters.  

 

None of the associations reported between network measures and behaviour functioning 

was significant (See Table 5.5). However, some behaviour associations with network 

efficiency appeared to align with those observed in relation to cognitive performance. For 

instance, in children with ADHD, in addition to increased beta band small-worldness being 

associated with poorer non-verbal performance scores, topology in these networks was also 

associated with higher attention behaviour problem scores. Biological networks, like many 

other efficient systems, tend to operate in a manner that ensures optimal information 

processing at a low cost (Stam, 2004). In the light of the small-world association with non-

verbal performance and attention problem behaviour, the results observed in the current 

study suggest a role for high frequency small-worldness in maintaining normal functioning of 

behaviour and cognitive abilities, which are crucial for age-appropriate development. Small-

worldness may therefore provide a potential clinical marker of behaviour and cognitive 

impairments in children with ADHD. 
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Evidence from pervious structural studies has implicated atypical developmental maturation 

such as white matter integrity, processes as the likely cause of behaviour problems in 

children with ADHD. For instance, a structural neuroimaging study of boys with the ADHD-

hyperactivity subtype (Semrud-Clikeman et al., 2000) reported a negative association 

between white matter volumes and higher CBCL externalising scores, while Castellanos et 

al. (2001) reported that small white matter volumes in girls with ADHD was associated with 

higher CBCL anxiety-depression scores. Together the two studies appear to suggest that 

underlying neuronal processing such as myelination of axons connecting brain regions 

involved in local and global network communication seems to affect the behaviour 

functioning in individuals.  

 

Finally, an intriguing finding in the present study was that oscillations play important but 

distinct roles in the associations between network topology and cognition and behaviour 

functioning. For example, in the beta band decreased path length was associated with 

poorer verbal performance. On the other hand, with regard to behaviour, decreased gamma 

band clustering and upper alpha path length were associated with fewer attention behaviour 

problems. 

 

Limitations 

 

Whilst this study demonstrates the potential for use of network analysis techniques in 

sensor-level resting-state MEG and contributes to our understanding of specific 

neurobiological functions in ADHD, the findings reported may not be generalisable to the 

wider ADHD population. Given the small sample of ADHD children (n = 12), it was not 

possible to investigate the effects of symptom sub-types on network topology. Although the 

decision to investigate children with ADHD as a single cohort in not in line with convergent 

reports of there being symptom-related subtypes, it is worth mentioning that many in the field 

(Baeyen et al., 2006; King & Young, 1982; Milich, Balentine, & Lynam, 2001) have 

questioned the validity of DSM-IV oriented ADHD subtypes. In addition, concerning gender, 

the current ADHD sample was very homogeneous (11 male and 1 female). Although ADHD 

is three times more likely to affect boys than girls (McGrath & Peterson, 2009), future studies 

using equal gender samples could provide better insights as to whether gender is associated 

with network topology.  

 

Furthermore, due to the small sample in the current study, developmental effects were not 

considered. Future studies would benefit greatly from investigating network measures in 

different age groups. This is because an age-dependent decline in ADHD-related symptoms 
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has been proposed (Faraone, Biederman, & Mick, 2006; Goldman, Genel, Bezman, & 

Slanetz, 1998), leading some to suggest that ADHD is a childhood condition of 

developmental delay (Lara et al., 2009). Although the mechanisms of such a decline remain 

unknown, future studies would benefit from comparing those with ADHD with both age-

matched and younger controls, to help determine whether changes in neural functional 

networks are the result of delay or of deviant neural mechanisms. 

 

Another limitation concerns the issue that children with ADHD were not treatment-naive. 

Although the standard protocol would be to investigate brain function in treatment-naive 

participants (Cao et al., 2012; Cocchi et al., 2012; Wilson et al., 2011), in reality, the majority 

of those diagnosed as having ADHD are typically prescribed psycho-stimulant drugs 

(Meltzer et al., 2003) that have been shown to have a response rate of approximately 70% 

(Goldman et al., 1998). It therefore makes practical sense to investigate network topology in 

medicated children. As a matter of fact some EEG studies (Lubar et al., 1999; Swartwood et 

al., 1998) investigating the effects of Methylphenidate, a commonly prescribed stimulant, 

reported no clear changes in global coherence, a measure of frequency, following treatment 

administration in children. This aligns with a large morphological study conducted by 

Castellanos et al. (2002) involving 152 children and adolescents. These researchers too 

found no significant differences between medicated and drug-naive participants. However, 

others such as Tomasi and Volkow (2012) have speculated that medication may normalise 

short-range functional connections. Hence, the results reported in the current study might 

have been partially influenced by increased levels of drug-related dopamine. Future studies 

in drug-naive children would help elucidate the role of medication, especially because some 

like Rubia et al. (2009), and Wong and Stevens (2012) have proposed that medication-

related improvement in connectivity in children with ADHD is related to improved working 

memory that is attributed to significantly increased extracellular dopamine levels (Volkow et 

al., 2001).  

 

5.6. Conclusion 

 

The findings of lower beta band normalised clustering coefficient, decreased normalised 

path length, larger diameter, and increased eccentricity in children with ADHD confirmed 

predicted alterations in this range. The results suggest an overall degree of loss (i.e. a 

reduction) of local and global efficiency of functional brain networks in the beta band. 

Interestingly, the present study demonstrated that changes in network topology were 

associated with levels of cognitive and behaviour functioning. These findings need further 
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research in a larger ADHD cohort to clarify the role of network analysis and its association 

with clinical phenotypes.  

 

Given that it is now generally agreed that ADHD has primarily a biological basis (Murias, et 

al., 2007; Wilson et al., 2011; Sripada et al, 2014), future resting-state MEG studies, using 

network analysis, would provide an opportunity to further the knowledge of potential 

neurobiological risk factors that would in turn aid in the identification of more specific 

diagnostic markers. Defining the characteristics of whole brain topology, as was the case in 

the present study, is the first step in developing novel biological markers possibly for 

underlying symptoms that lead to impairment in children with ADHD.  
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6. Graph theoretical analysis of MEG resting-state 

functional connectivity networks: a differential study 

of resting-state functional connectivity in dyslexia, 

ADHD, and typically developing children 

 

6.1. Chapter summary 

 

This study investigated whole-brain connectivity strength and network organisation 

differences between two groups of children and adolescents with ADHD and dyslexia and 

typically developing controls as well as those with comorbid conditions. Using eyes-closed 

resting-state MEG data, connectivity strength, and network parameters were quantified using 

graph theory analysis and minimum spanning tree. 

 

The dyslexic readers showed elevated whole-brain connectivity in the theta band compared 

to the three groups, commonly reported in the dyslexia literature. Compared with controls, 

the clinical groups with a single neurodevelopmental diagnosis demonstrated lower 

clustering coefficient, path length, and higher eccentricity, and diameter in beta band activity, 

suggesting similar underlying pathophysiological mechanisms in the two behaviourally 

different condition. Interestingly, compared to the two ‘pure’ clinical groups, those with 

comorbid condition, demonstrated network efficiency disruptions that revealed a trend in the 

opposite direction. This preliminary suggests different underlying pathophysiological 

mechanism in those with ‘pure’ vs. comorbid developmental conditions. Correlation analyses 

provided further support for the crucial role of network communication efficiency in high 

frequency beta and gamma network topology in cognitive and behavioural functioning  

 

Results were in agreement with the proposition that impaired local and global efficiency are 

characteristic features of atypical development. Given association with measures of 

cognitive and behaviour functioning, reported network changes appear to reflect clinically 

relevant biological metrics, that hold promise as markers of impaired functions in atypical 

neurodevelopment.  
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6.2. Introduction 

 

Attention-deficit/hyperactivity disorder (ADHD) and dyslexia are two of the most prevalent 

neurodevelopmental disorders (Boarda, Willcutt, & Pennington, 2012). Developmental 

disorders are typically conceptualised as products of interactions between genetic and 

environmental risk factors (Hulme & Snowling, 2009). 

 

Although they are typically viewed as separate neurodevelopmental disorders, ADHD and 

dyslexia co-occur more often than is expected by chance in childhood, with co-morbidity 

estimates of between 25-40% (Pennington, Willcutt, & Rhee, 2005; Willcutt & Pennington, 

2000). Coined by Feinstein (1970), the term comorbidity refers to the co-occurrence of two 

or more different conditions in the same individual.  

 

Recent years have witnessed an upsurge of interest in the co-occurrence of the two 

developmental disorders (See Boada, Wilcutt, & Pennington, 2012; Semrud-Clikeman et al., 

1992, for a review). As a result, it is now well acknowledged that ‘pure’ neurodevelopmental 

disorders are rare and that co-morbidity is frequent (Hulme & Snowling, 2009). With respect 

to specific documented difficulties, behaviourally, ADHD and dyslexia are slightly different 

disorders. Whilst ADHD is characterised by developmentally inappropriate symptoms of 

inattention, and/or impulsivity/hyperactivity (DSM-IV-TR, 2000; Franzen et al., 2013; Konrad 

& Eickoff, 2010), dyslexia, is viewed as a specific learning disability characterised by 

problems related to word recognition, decoding, and spelling, despite normal intelligence, 

schooling and motivation (Knivsberg et al., 1999; Kraus, 2012; Pennington, Van Orden, 

Smith, Green, & Haith, 1990). For those with ADHD, the difficulties experienced typically, 

result from a deficit in regulatory control processes (Barkley 1990; Douglas, 1983), while for 

most (Boada et al., 2012; Goswami, 2011; Stanovich, 1988; Svensson & Jacobsson, 2006) 

dyslexia is the result of a deficit in underlying phonological processing.  

 

Another factor differentiating children with ADHD from those with dyslexia is performance on 

achievement tests (e.g. intelligence tests). Individuals with ADHD typically underperform, 

leading many to suggest that key factors such as intellectual abilities may co-vary with 

ADHD (Kuntsi et al. (2004). In contrast, children with dyslexia are often reported to have 

normal intelligence (Pennington et al., 1990) despite having reading-related problems. 

The difficulties in regulatory or control processes in ADHD, such as impulsiveness (Faraone 

& Biederman, 2005; Matza, Paramore, & Prasad, 2005) and the difficulties associated with a 

lack of phonemic awareness (such as reading accuracy) in dyslexia (Bruck, 1990; Maughan 
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& Hagell, 1996; Svensson & Jacobsson, 2006), persist into adulthood. Given the lifelong 

burdens imposed on individuals and society, it is important to understand the causes of 

these two highly comorbid conditions and develop more effective interventions that 

effectively address their underlying causes (Konrad & Eickhoff, 2010; Macdonald, 2010) and 

help in the early identification of at-risk individuals.  

The co-occurrence of ADHD and dyslexia can be classified as heterotypic comorbidity (i.e. 

co-occurrence in two different diagnostic groups: see Angold, Costello, & Erkanli, 1999). It is 

known that behaviourally the two conditions are different. Furthermore, although it is true 

that one can identify those affected using phonological (dyslexia) or inattention-

hyperactivity/impulsivity scores (ADHD), this does not tell us why the conditions occur. But if 

one were to find that there is a difference in terms of brain function in the two conditions, 

then a biological metric could help discriminate or connect the underlying pahophysiolgical 

mechanisms in those with ADHD and dyslexia. This would be a significant means of 

indicating something regarding the underlying causes. 

 

Magnetic resonance imaging (MRI) studies have revealed that the brains of children and 

adolescents with ADHD (Castellanos et al., 1996; Mackie et al., 2007; Seidman et al., 2011) 

and those with dyslexia (Brown et al., 2011; Eckert et al., 2003; Eliez et al., 2000) show 

significant differences when compared to typically developing age-matched controls. For 

some, reported differences are region-specific (See Bush, 2010 ; Richlan, 2012, for reviews 

of dyslexia and ADHD respectively), while for others (Franzen et al., 2013; Schurz, Wimmer, 

Richlan, Ludersdorfer, Klack, & Kronbichler, 2014) it is the circuits involving several regions 

that are believed to underlie reported abnormalities (Beaulieu et al., 2005; Bush 2010; 

Klingberg et al., 2000).  

 

Further support for a neurobiological basis of ADHD and dyslexia comes from studies that 

have revealed grey and white matter abnormalities in these children (Ashtari et al. 2005; 

Richlan, Kronbichler, & Wimmer, 2013; Silk et al., 2009b). In children and adolescents with 

ADHD, reductions in white and grey matter have been reported in both right and left 

hemispheres, typically in the right frontal cortex (Ashtari et al., 2005; Silk et al., 2007b). A 

study by Overmeyer et al. (2001) investigating cortical abnormalities in children with ADHD 

and controls reported reductions in both grey and white matter. Grey matter differences were 

observed in regions including the right frontal and cingulate gyrus. Observed white matter 

reductions were reported predominantly in the left hemisphere.  

 

In dyslexia, like ADHD, different levels in both white and grey matter have also been 
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reported (Eliez et al., 2000; Vinckenbosch, Robichon, & Eliez, 2005). An MRI study by Brown 

et al. (2001) investigating neural correlates of dyslexia revealed decreases in grey matter in 

dyslexic male subjects, predominantly in the left temporal lobe, temporo-parieto-occipital 

junction (implicated in high-level reading and comprehension functions, including visuo-

spatial recognition, symbol processing, writing, language, working memory and reading De 

Benedictis et al., 2014), as well as in the frontal lobe, cerebellum, and thalamus. Reduction 

in all but the bilaterally temporo-parieto-occipital (TPO) junction has been reported in ADHD 

by researchers such as Mostofsky et al. (2002).  

 

The changes in spatially distributed grey and white matter may result from a defective 

structure and functioning of myelin sheath in the brain, including atrophy (Overmeyer et al., 

2001) and/or deceased branching in white-matter pathways (Silk et al., 2009b). It is believed 

that white matter tracks determine the strength of communication between brain areas 

involved in several high-level functioning information processing elements. It is likely that 

their alteration disrupts the efficiency of information processing in widely distributed cortical 

areas. Observed morphologic alterations in distributed brain regions have been proposed as 

the underlying mechanisms contributing to the reported deficits associated with the two 

conditions (See Bush, 2010; Eckert et al., 2005; Richlan, 2010, for reviews on both 

developmental disorders).  

 

To demonstrate the association between brain structure and functioning, several studies 

have examined the relationship between brain volumes and measures of functioning and 

cognitive ability. As discussed in Chapter 5, in ADHD, researchers have previously reported 

associations between smaller white matter volumes and higher externalising behaviour 

problems in ADHD boys (Semrud-Clikeman et al., 2000), and anxiety-depression in girls with 

ADHD  (Castellanos et al., 2002).  

 

In dyslexia, individual differences in reading ability have been shown to correlate with white 

matter structure, measured using DTI in both adults (Klingberg et al., 2000) and children 

(Deutsh et al., 2005). Using DTI to examine integrity of white matter in adults with poor 

reading abilities, Klingberg et al. (2000) revealed an association between decreased 

temporo-parietal white matter structure levels (measured using anisotropy) and reading 

difficulty. A similar trend was observed in children, i.e. lower anisotropy was associated with 

poorer performance scores on reading, spelling, and rapid naming (Deutsh et al., 2005). 

With regard to grey matter, a recent meta-analysis (Richlan et al., 2013) revealed that 

reduced grey matter volume in dyslexic readers was prominent in the reading-related 

regions of right superior temporal gyrus and left superior temporal sulcus. 
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Although the standard protocols for diagnosing and characterising ADHD and dyslexia 

involves the use of behavioural and cognitive measures, converging evidence from several 

neuroimaging studies such as those discussed above points to a neurobiological basis of 

ADHD (Mostofsky et al., 2002; Overmeyer et al., 2001) and dyslexia (Eliez, Rumsey, Giedd, 

Schmitt, Patwardh, & Reiss, 2000; Klingberg et al., 2000). However, despite several imaging 

neuroscience studies, the underlying pathophysiological neural mechanisms and pattern of 

brain-related abnormalities in these conditions remain largely unknown. 

 

An alternative strategy to investigate the neural underpinnings of developmental disorders, 

coinciding with emerging conceptualizations of neuropsychiatric conditions (such as 

schizophrenia, autism, and Alzheimer’s schizophrenia) has emerged in neuroscience. This 

has shifted the focus from specific regional brain abnormalities to a conceptualization of 

neuropsychiatric disorders occurring as a result of dysfunctions/disconnections in distributed 

network organizations (Konrad & Eickhoff, 2010). Viewed this way, the ‘brain systems’ 

approach considers functions (e.g. cognitive and behavioural) as emerging from an 

interaction of specialised brain regions (Konrad & Eickhoff, 2010; Richlan, Kronbicherler, & 

Wimmer, 2009; Schurz et al., 2014).  

 

For this reason, quantifying brain connectivity has become a crucial means of gaining further 

insight into brain function. The present study aimed to investigate functional connectivity 

during task-independent states in subjects with two of the most common 

neurodevelopmental conditions. The question being explored is whether the two conditions 

differ qualitatively from each other or simply diverge within a uni-dimensional pattern.  

 

Recent advances in network science, specifically, graph theory; have permitted the 

characterisation of topological properties of complex networks. Using these approaches 

researchers have shown that network configurations in children with ADHD (Ahmadlou et al., 

2011; Cao et al., 2012) and dyslexia (Dimitriadis et al., 2013; Gonzalez et al., 2015) are 

characterised by less local information processing and global integration. However, as 

discussed in Chapter 5, the majority of functional imaging studies of people with both 

developmental disorders have tended to use task-based activation paradigms to reveal 

dysfunctions of brain interactions that are associated with various functions including 

cognition and attention. These studies are based on the assumption that developmental 

conditions result from disconnections between regions supporting crucial networks, typically 

the default mode.  
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With respect to this strategy, dyslexia studies have suggested that reported difficulties 

represent a disconnection syndrome, involving altered communication in local and/or global 

efficiency (i.e. short and long-range functional connections) (See Paulesu et al., 1996; 

Richlan et al., 2009; Richlan, 2012; Schurz, et al., 2014; Vourkas et al., 2011, for a review).  

 

Using whole-brain sensor-level MEG data and phase lag index to estimate functional 

connectivity, Vourkas et al. (2011) examined task-based (i.e. pseudo-word reading and letter-

sound naming tasks) brain network connections in children with severe reading difficulties 

and in controls. Using graph theory concepts, the authors found that children with severe 

reading difficulties showed significantly lower local clustering in the alpha (8-13 Hz) range 

and lower global efficiency in both the alpha and gamma (20-30 Hz) range, suggesting a 

less organised network. The study provided evidence that short and long-range functional 

connections are altered in children with severe reading difficulties. This study also reported 

significant correlations between graph measures and reading ability.  

 

Recently, and alternatively focussing on specific regions and networks in the left 

hemisphere, the study by Schurz et al. (2014) reported lower connectivity in dyslexic readers 

between the left posterior temporal areas and left inferior frontal gyrus. Lower connectivity 

was observed during both task performance and rest. However, the authors also reported 

higher connectivity in reading-based areas and those of the default mode network 

particularly the precuneus, when compared to children without impaired reading.  

 

The brain connectivity-function relationship in ADHD was discussed in Chapter 5 of this 

thesis (See Introduction). Briefly, the evidence in relation to ADHD has been inconsistent. 

For instance, as noted in Chapter 5, Castellanos et al. (2008) reported lower functional 

connectivity between the anterior cingulated cortex and regions of the default mode network 

such as the precuneus, while Tian et al. (2008) reported higher resting connectivity in 

sensory cortices, believed to be crucial for attention deficits in ADHD. As explained in 

Chapter 5, previous neuroimaging studies have two major limitations. Either they focus on 

task-based activations or rely on pre-defined regions or networks chosen based on a priori 

literature.  

 

In the current study, these limitations were addressed by examining whole-brain interactions 

as correlates of dyslexia and ADHD, using a task independent paradigm. The study 

specifically aimed to investigate whether the application of network analysis derived from 

resting-state MEG data could differentiate children with dyslexia from controls and from 

those with ADHD. A secondary task was to determine whether network measures could 
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predict cognitive/behavioural functioning in dyslexics, those with ADHD, and controls. 

 

Aim 

 

The study focused on a task-independent functional network level of explanation to examine 

whether there is a difference, in terms of over network connectivity vs. under network 

connectivity, as a potential metric to discriminate between children with ADHD and those 

with dyslexia, for both in relation to neurotypical controls. Understanding the role of task-

independent brain network measures has the potential to shed light upon the 

neurodevelopmental mechanisms involved and how these changes present themselves in 

the two conditions, ultimately affecting the symptom profile of these children. 

 

Hypothesis  

 

1. Whole brain resting-state theta connectivity strength will be increased in dyslexic 

readers compared to controls and those with ADHD. 

2. Resting-state functional network parameters will discriminate controls from those with 

dyslexia. 

3. Disrupted network parameters will mirror those observed in ADHD but not comorbid 

conditions. 

4. There will be correlations between MEG disrupted network measures and 

cognitive/behavioural functioning. Higher global efficiency will be associated with 

better cognitive performance.  

 

6.3. Methods 

 

6.3.1. Participants 

 

Four groups of children aged between 7 and 17 years participated in the current study. 

These included typically developing children (previously described in Chapter 4 & 5), those 

with a diagnosis of ADHD (described in Chapter 5), those with dyslexia, and those with 

comorbid conditions.  

 

The 16 children with developmental dyslexia were an opportunistic sample recruited by a 

research associate from the Dyslexia and Developmental Assessment Unit (DDAU) at the 

Aston Brain Centre. The children were part of a separate cross-sectional study investigating 
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genetic links associated with literacy difficulties, predominantly developmental dyslexia. 

Diagnosis was confirmed by educational psychologists undertaking a range of cognitive and 

literacy assessments with the purpose of determining eligibility for special education. 

Following the assessments, families were approached by the research associate to explore 

the prospect of participating in a neuroimaging study. It was strongly emphasised that 

declining to participate would have no implication for the family’s current or future 

relationship with the clinic. Those interested were offered a scheduled visit to the centre. 

Consent, withdrawal, data protection, and confidentiality issues were discussed with the 

families prior to their visit. All children had received their diagnoses based on their 

performance on a battery of oral, fluency, and word reading efficiency tests. 

 

Inclusion criteria included the ability to provide assent, the child being aged between 7:0 and 

17:11 years, and having a diagnosis of reading difficulties confirmed by an educational 

psychologist. The exclusion criteria included children being outside the age-range, a primary 

diagnosis of a major psychiatric disorder or neurologic disease, a history of substance abuse 

and children whose parents/guardians did not consent to their taking part.  

 

Due to significantly higher scores in whole brain connectivity strength in the beta band, three 

of the sixteen children with developmental dyslexia were excluded from this group and 

placed into the comorbid condition group. See Chapter 5 and 6 for sampling information for 

the controls, and for children with ADHD respectively.  

 

The fourth group classified as the comorbid condition group, comprised children who had 

initially been recruited in the two clinical groups. The comorbid group comprised six children 

between the ages of 7 and 16 years. Of these, two had ADHD and dyslexia (un-medicated), 

one had dyslexia and developmental co-ordination disorder (dyspraxia, affecting motor 

coordination in children), and finally there were three children, who were initially recruited as 

dyslexic readers. Compared to the dyslexia group, these three children scored very highly on 

some of the network analysis measures (> 3 SD). Rather than exclude them completely they 

were included in the comorbid condition. Developmental disorders are more often present 

with comorbid conditions. See Table 6.1 for the demographic data. Each child in the clinic 

group was matched with at least one control.  

 

Procedure  

With the exception of children with dyslexia, who had to return to the Aston Brain Centre for 

this study following earlier confirmation of a diagnosis, all testing for the other groups was 

done in one session often lasting up to 3 hours.  
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6.3.2. MEG data acquisition 

 

MEG recordings were carried out in corroboration with another researcher. MEG recordings 

were acquired during resting-state conditions (in a procedure similar to that described in 

previous chapters). The data reported are only about eyes-closed resting state, in line with 

the evidence from Chapter 3 showing that networks in state have higher reproducibility 

across repeated measurements compared to the eyes-open state. 

 

6.3.3. MEG data pre-processing 

 

Continuous resting-state data were MaxFiltered and visually inspected following the 

procedures described in Chapter 3.  

 

Intellectual and behavioural assessments  

 

As described in Chapter 5, behavioural functioning in children with ADHD and controls was 

assessed using the CBCL/6-18 behaviour questionnaire (Achenbach et al., 2011, see 

Chapter 5, Method section for a discussion of the CBCL questionnaire). Behavioural 

functioning in children with dyslexia was examined as part of their full psychological 

assessments during their clinical visits. This was done using a brief version of the CBCL/6-

18, known as the Brief Problem Monitor. The Brief Problem Monitor for ages 6-18 (BPM/6-

18, Achenbach et al., 2011) that was adapted for children with dyslexia, is part of the 

Achenbach System of Empirically Based Assessment (ASEBA; www.aseba.org) 

questionnaires. It offers an abbreviated questionnaire comprising of attention, internalising, 

externalising, and total problems sub-scales. These are derived from the CBCL/6-18; 

Teachers’ Report Form (TRF), and Youth Self-Report (YSR) (Manual for the ASEBA Brief 

Problem Monitor, 2011). It consists of 19 items that take approximately two minutes to 

complete (Manual for the ASEBA Brief Problem Monitor, 2011), and has been shown to have 

high test-retest consistency (r = 0.73-0.82).  

 

Compared to other brief assessment instruments such as the 12-item Brief Problem 

Checklist (BPC: Chorpita et al., 2010), the BPM offers additional items to assess attention 

(Piper, Gray, Raber, & Birkett, 2014). As with the CBCL, the BPM item questionnaire has 

been standardised separately for gender, age group, informant (i.e. parent, teacher, or child) 

and society. Standardised T scores > 65 (i.e. 93rd percentile) are noted as being high enough 

to raise concern (Manual for the ASEBA Brief Problem Monitor, 2011).  
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To avoid repeated testing, children’s scores of attention internalised and externalised 

behavioural functioning were derived from this scale. As was the case in previous chapters, 

only the attention, internalised and externalised problem scores were considered. These 

scores were compared to those derived from the CBCL/6-18 in controls and in children with 

ADHD. In controls, internalised and externalised behavioural functioning scores were 

available for 20 of the 21 participants, while for the dyslexia group, behaviour data on the 

three measures were available for 11 of the 13 participants.  

 

Cognitive abilities  

 

Procedures for IQ assessments were described in chapter 5. All children with dyslexia 

completed age-appropriate Full Scale IQs, as part of their clinical assessments, 

administered by an educational psychologist using the WISC-IVUK (Wechsler, 2003). 

However, only their SI and MR scores are reported in the current study. As previously stated 

in Chapter 2, section 2.4., children with developmental dyslexia had received full IQ 

assessments as part of their evaluation during their earlier visit to the centre. These children 

were therefore not tested again. Their scaled scores on the SI and MR subtests were used, 

as it was considered unlikely that cognitive ability would have changed by the time of the 

current study tests.  

 

Statistics  

 

SPSS 20.0 package for Windows was used to compute all statistical analyses. Assessing 

the normality of network metrics using the Kolmogorov-Smirnov test showed a non-normal 

distribution. Hence, the non-parametric Kruskal-Wallis H test was used, and where 

appropriate this was followed by Mann-Whitney U-tests for pairwise comparisons, with the 

Bonferroni correction.  

 

Unless otherwise noted, all planned post-hoc testing concerned comparisons between: first, 

the dyslexia group and the controls and, second, the ADHD group and the dyslexia group. 

No contrasted comparisons were computed with the comorbid conditions group. Because of 

the varied profiles in the comorbid group, no consistent and informed decision on 

appropriate network measures could be made.  

 

Correlations between network measures and cognitive ability, as well as behavioural 

measures were computed using Spearman’s rank correlation coefficient. All statistical 
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analysis was computed separately for each frequency band. Due to multiple correlations, 

only rs values with p <.01 were reported.  

 

6.4. Results 

 

For the ADHD group, data on cognitive abilities were available for all participants. For the 

dyslexia group verbal performance scores were available for 11 of the 13 participants, while 

non-verbal scores were available for 12 of the 13 participants. For children in the comorbid 

condition group, non-verbal performance scores were available for 3 of the 6 participants, 

while no verbal scores were available for this group. For this reason, computations were 

primarily assessed in relation to controls, those with ADHD and children with dyslexia. 

 

Data in Table 6.1 showed group differences in measures of behavioural and cognitive 

functioning across the three groups. Planned post-hoc testing (Bonferroni-corrected α level 

of .025) indicated that cognitive abilities between the control group children and those with 

dyslexia were not significantly different for verbal (SI: scaled scores: U = 98.0, p = .49), or 

non-verbal performance (MR: scaled scores: U = 79.0, p = .08). In addition, comparisons 

between children with dyslexia and those with ADHD revealed significantly lower verbal (U = 

20.0, p = .004), but not non-verbal performance (U = 43.5, p = .10) in children with ADHD. 

 

For measures of behavioural functioning, comparisons revealed that the dyslexia children 

were reported to have more internalised problems than controls (U = 35.0, p = .001) and a 

trend towards higher attention (U = 68.0, p = .08) and externalised problems (U = 60.5, p = 

.04), though these were not statistically significant at the corrected α level of .025. 

 

In the comparisons between children with ADHD and those with dyslexia, the results showed 

that those with dyslexia were reported to have significantly less attention (U = 8.5, p < .001) 

and externalised behaviour problems (U = 10.0, p < .001). However differences in reported 

internalised behaviour problems were not statistically different between these two groups (U 

= 47.5, p = .27). 
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Table 6. 1 Demographic characteristics 

 ADHD  

(n = 12) 

TDC  

(n = 21) 

Dyslexia 

(n = 13) 

P Comorbid conditions 

(n = 6)  

 M ± SD  M ± SD  M ± SD   

Age (years) 12.4 ± 3.5 11.6 ± 3.1 12.5 ± 3.3  12.1 ± 1.5 

Gender (M/F) 10:1 10:11 9:4  4:2 

Hand (L/R) 2:10 2:19 1:13  0:6 

SI 8.3± 2.3 12.7 ± 2.5  11.8 ± 2.9 * NA 

MR 9.1 ± 2.4 11.3 ± 1.9  9.9 ± 2.1 * 10.3 ± 4.9 

Att 78.5 ± 10.36 52.4 ± 3.6 58.7 ± 8.9 * 67.2 ± 11.7 

Int 65.8 ± 11.02 48.5 ± 8.0 60.6 ± 9.2 * 61.0 ± 6.6 

Ext 70.3± 8.6 44.5 ± 8.9 51.55 ± 7.3 * 60.7 ± 12.9 

Values are M ± SD. *p<.05 (Kruskal-Wallis H test). Intellectual ability denoted population 
standardized scaled scores (M = 10, SD = 3), while measures of behaviour functioning were 
T scores (M = 50, SD = 10). Key: Att = attention; Int = internalised; Ext = externalised; SI = 
similarities; MR = matrix reasoning, M/F = male/female, L/R = left/right, TDC = typically 
developing controls; NA = not applicable. 
 

6.4.1. Whole-brain functional connectivity between the groups 

 

As described in the previous experimental chapters, whole-brain functional connectivity was 

assessed using the phase-lag-index for each frequency band, for eyes-closed resting-state 

data. Kruskal-Wallis H tests revealed that whole-brain coupling strength was statistically 

significant in slow (theta) and fast (beta) oscillatory networks in the four groups (See Table 

6.1 for mean rank scores). Results are discussed in detail below. 

 

Theta band whole-brain functional connectivity 

 

The Kruskal-Wallis H test showed that there was a statistically significant difference in mean 

phase lag index values between the four groups in the theta band, (H(3) = 10.88, p <. 05, 

see Figure 6.1). Planned post-hoc contrasts, using Mann-Whitney U-tests (Bonferroni-

corrected α level of .025), revealed that the children with dyslexia group showed significantly 

higher mean whole-brain functional connectivity compared with controls (U = 51.00, z = -

3.03, p < .025, d = -1.26), and with children with ADHD (U = 28.50, z = -2.69, p < .025, d = -

1.17, see Table 6.2 for mean rank scores). The results revealed increased whole brain 

connectivity in the theta band in children with dyslexia compared to controls and children 

with ADHD. In addition, although this was not initially considered in planned analysis, the 

results in Figure 6.1 revealed that global coupling in dyslexia was also higher compared to 
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the comorbid group. 

 

Beta band functional connectivity  

 

The Kruskal-Wallis H test showed that there was a statistically significant difference in mean 

phase lag index values between the four groups in the beta band, (H(3) = 8.70, p <. 05, see 

Figure 6.1). The planned analysis of contrasts revealed no significant differences in 

functional connectivity in the beta band, when children with dyslexia were compared with 

controls (U = 132.50, z = -.14, ns, d = -.11). However post-hoc comparison between the two 

clinical groups revealed a trend towards lower whole brain functional connectivity in children 

with ADHD compared to those with dyslexia, (U = 43.00, z = -1.91, p = .06, d = -.87, 

although this was not statistically significant. See Table 6.2 for mean rank scores). Across all 

four groups, whole-brain functional connectivity was lower in the beta band in those with 

ADHD compared to the remainder of the groups.  

 

Table 6. 2 Mean rank phase lag index values for the four groups for each frequency 
band 

 Groups Theta  Alpha1  Alpha2  Beta  Gamma  

   p  p  p  p  p 

M
e

a
n

 P
L

I ADHD  

Dyslexia 

CC 

TDC 

22.63 

38.50 

22.17 

22.52 

 

 

* 

25.58 

24.23 

31.75 

26.93 

 

 

NS 

30.79 

28.42 

21.33 

24.33 

 

 

NS 

16.08 

28.58 

36.17 

28.40 

 

 

* 

28.17 

23.23 

33.58 

25.55 

 

 

NS 

Values are mean rank scores of different groups for each frequency band. Kruskal-Wallis H 
tests (*p <.05, **p <.01) showed that there were statistically significant differences in mean 
phase lag index scores between the four groups in the theta and beta band. Key: PLI = 
phase lag index, ADHD = attention-deficit/hyperactivity disorder, CC = comorbid controls, 
TDC = typically developing controls, and NS = not significant. 
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Average whole-brain connectivity strength for each frequency band. Kruskal-Wallis H test (*p 
<.05) revealed there were significant differences in mean phase lag values between the four 

groups in the theta and beta band. Error bars are ± 2 SE, standard error. Key: TDC = 
typically developing controls, ADHD = attention-deficit/hyperactivity disorder. 

 

6.4.2. Characterising functional network organisation using graph theoretical 

analysis  

 

All participants demonstrated small-world network properties (i.e. normalised clustering and 

path length values were > 1) across all frequency bands. Differences in network topological 

organisation in the four groups were assessed independently for each frequency band using 

Kruskal-Wallis H tests. The tests revealed statistically significant differences in the beta and 

no other frequency band (See Table 6.3). The results are discussed in detail below. These 

results only concern network measures for which group differences were observed. For a 

complete representation of the results in other frequencies, see Table 6.3 and Figure 6.2. 

 

Beta band normalised clustering coefficient (i.e. short-range functional connections) 

 

A Kruskal-Wallis H test showed that there was a statistically significant difference in 

clustering between the four groups in the beta band, (H(3) = 11.03, p <.05, see Figure 6.2). 

Figure 6. 1 Mean group differences in whole-brain functional 
connectivity  
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Comparisons revealed that the clustering coefficient values in children with dyslexia were not 

significantly different from those in the controls (U = 94.00, z = -1.51, ns, d = .28) or children 

with ADHD (U = 60.50, z = -.95, ns, d = -.05). See Table 6.3 for mean rank scores.  

 

Beta band normalised characteristic path length (i.e. long-distance functional connections) 

 

A Kruskal-Wallis test showed that there was a statistically significant difference in path length 

between the four groups in the beta band (H(3) = 15.54, p <.01, see Figure 6.2). The results 

from pairwise comparisons revealed a trend towards a lower path length in children with 

dyslexia compared to controls (U = 80.50, z = -1.99, p = .05, d = .41), though this was not 

statistically significant at the corrected α level. No statistically significant difference were 

observed in normalised path length between the dyslexics group and those with ADHD (U = 

64.00, z = -.76, ns, d = -.59). See Table 6.3 for mean rank scores.  

 

Mean rank scores in Table 6.3 and results in Figure 6.2 suggest a non-significant but 

constant trend in the beta band towards decreased normalised clustering coefficient and 

path length in ADHD and dyslexia compared to controls. However, in comorbid conditions, 

these trends changed in the opposite direction when compared to controls. In other words, 

the results suggested that disruptions in short and long-distance functional connection 

followed a similar trend for those with ADHD and dyslexia but not in those with comorbid 

conditions. 

 

Though this was not statistically significant (α level of 0.5), the Kruskal-Wallis H test also 

revealed a trend towards differences in small-worldness between the four groups in the 

gamma band, (H(3) = 6.68, p = .083, see Appendix A.1). 
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Table 6. 3 Mean rank scores from Kruskal-Wallis H tests for differences in graph 
theoretical analysis network parameters 

 
Groups Theta  Alpha1  Alpha2  Beta  Gamma  

 
  p  p  p  p  p 

G
a

m
m

a
 

ADHD  

Dyslexia 

CC 

TDC 

31.25 

24.27 

23.25 

26.10 

 

 

NS 

28.00 

24.62 

25.08 

27.21 

 

 

NS 

31.50 

25.00 

17.08 

27.26 

 

 

NS 

17.92 

22.42 

40.58 

29.90 

 

 

* 

28.33 

23.96 

33.42 

25.05 

 

 

NS 

L
a
m

b
d

a
 

ADHD 

Dyslexia 

CC 

TDC 

33.25 

28.15 

22.50 

22.76 

 

 

NS 

26.71 

26.50 

24.33 

27.00 

 

 

NS 

29.08 

24.27 

19.92 

28.29 

 

 

NS 

15.79 

21.19 

40.83 

31.81 

 

 

** 

29.71 

24.04 

23.42 

27.07 

 

 

NS 

S
M

W
 

ADHD 

Dyslexia 

CC 

TDC 

25.04 

19.27 

33.58 

29.79 

 

 

NS 

27.71 

25.46 

28.75 

25.81 

 

 

NS 

29.92 

28.77 

27.58 

24.55 

 

 

NS 

30.88 

24.73 

27.33 

24.86 

 

 

NS 

22.46 

23.35 

40.58 

26.74 

 

 

NS 

Values are mean rank scores of different groups for each frequency band. Kruskal-Wallis H 
tests (*p <.05, **p <.01) showed that there were statistically significant differences in mean 
clustering and path length between the four groups in the beta band. Key: gamma = 
normalised clustering coefficient, lambda = normalised characteristic path length, SWN = 
small worldness, ADHD = attention-deficit/hyperactivity disorder, CC = comorbid controls, 
TDC = typically developing controls and NS = not significant. 
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Topological functional networks in A) short-range connections and B) long-distance 
connections. Kruskal-Wallis H tests (*p <.05) revealed there were significant differences in 
the local and global efficiency between the four groups in the beta band. Error bars are ± 2 

SE, standard error. Key: ADHD = attention-deficit/hyperactivity disorder, and TDC = typically 
developing controls. 

 

6.4.3. Characterising functional network organisation using minimum 

spanning tree metrics 

 

Differences in network topological organisation in the four groups were assessed 

independently for each frequency band using Kruskal-Wallis H tests. As with graph 

theoretical analysis, significant findings were observed in the beta and in no other frequency 

band (See Table 6.4). However, though it was not statistically significant (α level of .05), a 

Kruskal-Wallis H test revealed a trend towards differences in eccentricity between the four 

groups in the upper alpha band, (H(3) = 6.31, p = .097).  

 

The results are discussed in detail below. Only those metrics in which significant group 

differences were observed are discussed. For a complete representation of results in other 

frequencies, see Table 6.4 and Figure 6.4. 

 

MST beta band eccentricity 

 

A Kruskal-Wallis H test revealed that there was a statistically significant difference in MST 

Figure 6. 2 Group differeneces in topological network organisation across frequency 
bands, using graph theoretical analysis  
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eccentricity between the four groups in the beta band, (H(3) = 11.4, p =.01, see Figure 6.3A). 

Pairwise comparisons showed that eccentricity was significantly higher in children with 

dyslexia compared to controls (U = 65.5, z = -2.52, p < .025, d = -.93). However, when 

compared with the ADHD group, eccentricity in the dyslexia group was not statistically 

different (U = 66.00, z = -.65, ns, d = -.30). See Table 6.4 for mean rank scores 

 

MST beta band diameter 

 

A Kruskal-Wallis H test showed that there was a statistically significant difference in MST 

diameter between the four groups in the beta band, (H(3) = 8.50, p <.05 (Figure 6.3B). 

Pairwise comparisons with adjusted p-value revealed a trend towards higher diameter in the 

dyslexia group when compared to the controls, (U = 79.00, z = -2.04, p = .04, d = -.71), 

although this was not statistically significant at the Bonferroni corrected α level. No 

statistically significant differences were observed in a post-hoc comparison of diameter in 

children with dyslexia and those with ADHD (U = 70.00, z = -.44, ns, d = -.19). See Table 6.4 

for mean rank scores 

 

MST beta band hierarchy 

 

A Kruskal-Wallis H test showed that there was a statistically significant difference in 

hierarchical structures between the four groups in the beta band, (H(3) = 10.80, p <.05, 

Figure 6.3C). Pairwise comparisons, with adjusted p-value, showed that hierarchical 

organisation in children with dyslexia was significantly higher when compared with controls 

(U = 41.00, z = -3.39, p<.025, d = -1.43) and showed a trend towards higher values when 

compared with those with ADHD (U = 39.00, z = -2.12, p = .04, d = -.80). See Table 6.4 for 

mean rank scores 
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Table 6. 4 Mean rank scores from Kruskal-Wallis H tests for differences in minimum 
spanning tree network parameters 

 
Groups Theta  Alpha1  Alpha2  Beta  Gamma  

 
  p  p  p  p  p 

E
c

c
e

n
tr

ic
it

y
 ADHD 

Dyslexia 

CC 

TDC 

26.63 

26.04 

28.75 

26.07 

 

 

NS 

27.71 

26.00 

23.92 

26.86 

 

 

NS 

18.50 

33.15 

30.50 

25.81 

 

 

NS 

33.04 

34.58 

18.75 

19.98 

 

 

** 

28.04 

23.31 

27.50 

27.31 

 

 

NS 

D
ia

m
e

te
r 

ADHD 

Dyslexia 

CC 

TDC 

26.45 

25.53 

29.08 

26.33 

 

 

NS 

27.67 

24.73 

23.33 

27.83 

 

 

NS 

18.00 

31.35 

31.25 

27.00 

 

 

NS 

32.46 

33.15 

18.92 

21.14 

 

 

* 

27.08 

23.04 

27.00 

28.18 

 

 

NS 

H
ie

ra
rc

h
y
 ADHD 

Dyslexia 

CC 

TDC 

28.67 

30.73 

24.17 

23.31 

 

 

NS 

28.96 

26.46 

28.83 

24.45 

 

 

NS 

30.33 

30.38 

23.83 

22.67 

 

 

NS 

23.33 

38.31 

24.83 

21.48 

 

 

* 

25.50 

27.35 

31.00 

25.26 

 

 

NS 

L
e
a

f 

n
u

m
b

e
r 

ADHD 

Dyslexia 

CC 

TDC 

29.63 

28.77 

24.17 

23.98 

 

 

NS 

26.17 

28.19 

28.50 

25.07 

 

 

NS 

31.71 

28.54 

20.83 

23.88 

 

 

NS 

23.71 

34.42 

23.17 

24.14 

 

 

NS 

26.25 

28.12 

27.58 

25.33 

 

 

NS 

Values are mean rank scores of different groups for each frequency band. Kruskal-Wallis H 
tests (*p <.05, **p <.01) showed that there were statistically significant differences in 
eccentricity, diameter, and hierarchical structures, between the four groups in the beta band. 
Key: ADHD = attention-deficit/hyperactivity disorder, CC = comorbid conditions, and TDC = 
typically developing controls. NS = not significant. 
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Topological functional networks in relation to A) eccentricity and B) diameter, and C) hierarchical structure. Kruskal-Wallis H tests (*p <.05, *p 
<.01) revealed there were significant differences in the beta band in these three topology parameters between the four groups. Error bars are ± 

2 SE, standard error. Key: ADHD = attention-deficit/hyperactivity disorder, and TDC = typically developing controls.

Figure 6. 3 Group differences in topological organisation across frequency bands using minimum spaning tree 
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Network correlation with cognitive abilities in the ADHD group 

 

The association between network organization and functioning was only considered in the 

control, ADHD and dyslexia groups. Those with comorbid conditions were not investigated 

because, as stated earlier (See Results), data on cognitive abilities were not available for 

most children in this group. 

 

Despite results in Table 6.1 showing that there were statistically significant differences in 

verbal and non-verbal performance scores between the three groups, the planned 

comparisons indicated the following results. There was no significant difference in verbal or 

non-verbal performance scores between controls and those with dyslexia. Children with 

ADHD revealed a significantly lower verbal but not non-verbal performance when compared 

to those with dyslexia. Observations of lack of significant differences in relation to some of 

the planned comparisons warranted the further investigation of correlations between 

cognitive abilities and network measures across the groups (i.e. controls, ADHD, and 

children with dyslexia). These were computed for each frequency band. 

 

Significant correlations and trends were observed in the beta and gamma bands. However, 

none of the correlation coefficients discussed was statistically significant when a stricter 

Bonferroni-corrected α level of .001 was applied. Correlations that were significant at the 

standard α level of .05 are displayed in Figure 6.5 (See Table 6.5 for a complete list of 

results). Reported results denote Spearman’s rank correlation coefficient (rs), 95% bootstrap 

confidence intervals (in square brackets) and significance level. 

 

Beta band 

 

Non-verbal performance scores were positively associated with path length (rs = -.30 [.01, 

.55], p = .05, see Figure 6.4), and negatively with eccentricity (rs = -.37 [-.63, -.03], p = .014, 

see Figure 6.5B) and diameter (rs = -.38 [-.64, -.04], p = .01, see Figure 6.5D). Also, a trend 

towards a negative correlation between non-verbal reasoning and small-worldness (rs = -.26 

[-.56, .04], p = .09) was observed. 

 

Verbal performance scores were negatively correlated with eccentricity (rs = -.47 [-.65, -.22], 

p = .001, see Figure 6.5A) and diameter (rs = -.43 [-.62, -.16], p = .004, see Figure 6.5C), 

and revealed trends towards positive correlations with the clustering coefficient (rs = .30 [.00, 

.54], p = .06) and path length (rs = 28 [-.03, .56], p = .06).  
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Gamma band 

 

In the gamma band, verbal reasoning showed a trend towards a negative correlation with 

path length (rs = -.27 [-.56, .07], p = .08) and a trend towards a positive correlation with small 

worldness (rs = .29 [-.03, .54], p = .06). 
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Table 6. 5 Associations between network organisation and cognitive functioning in controls, children with dyslexia, and those with 
ADHD 
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Spearman’s rank correlation coefficients (rs) for network measures and cognitive performance scores in each frequency band. Key: SI = 
similarities (i.e. verbal skills), MR = matrix reasoning (i.e. non-verbal skills), network metric gamma = normalised clustering coefficient, lambda 
= normalised characteristic path length, and small-world = small-world index. *p <.05, **p < .01, and ***p <.0024 (Bonferroni-corrected). 
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The correlation between normalised characteristic path length and non-verbal scores 

revealed that poorer non-verbal performance was associated with decreased global 

efficiency. See Figure 6.4 below. 

 

 
 

Figure 6. 4 Association between beta band normalised path length and variations in 
non-verbal performance scores in controls, children with dyslexia and those with 

ADHD 
A positive association (p<.05) is seen between normalised path length and non-verbal 

performance, though this is not statistically significant at the Bonferroni corrected α level. 
The solid line is the fit-line for scores across the sample cohorts of controls, children with 
ADHD and those with dyslexia. Key: ADHD = attention-deficit/hyperactivity disorder, and 

TDC = typically developing controls 
 

Spearman’s rank correlation coefficient shows negative associations between minimum 

spanning tree diameter/eccentricity and cognitive performance scores. In other words, 

poorer verbal and non-verbal performance was associated with increased beta band 

eccentricity and diameter. See Figure 6.5 below. 
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Beta band positive eccentricity associations (p<.05) are seen with A) verbal performance, 
and B) non verbal-performance as well as positive associations of diameter with A) verbal 

and B) non-verbal performance. Results in Figure 6.5 were not statistically significant at the 
Bonferroni corrected α level. The solid line is the fit-line for correlations across the sample 

cohorts of controls, children with ADHD and those with dyslexia. Key: attention-
deficit/hyperactivity disorder, and TDC = typically developing controls. 

Figure 6. 5 Association between beta band network organisation measures and variations 
in cognitive performance scores in controls, children with dyslexia and those with ADHD 



172 
 

Association between network topology and measures of attention, and internalised and 

externalised behavioural functioning 

 

Although earlier in this Chapter, Table 1, results, revealed significant differences between 

groups, planned comparisons in the present study found no significant differences on the 

internalised behaviour scores between children with ADHD and those with dyslexia. 

Comparisons between controls and children with dyslexia revealed trends for higher scores 

of those with dyslexia, although these were not significant when a corrected α level was 

applied. Again, these results justified the further investigation of the relationship between 

network topology and measures of behaviour functioning, across the ADHD group, and the 

controls,  

 

Significant results and trends were observed in the beta band and in no other frequency, 

(See Table 6.6 for correlation results in the other frequency bands). Only the correlations that 

were significant at the α level of .05 are displayed in Figure 6.5. 

 

Beta band  

 

Computed correlations revealed that characteristic path length was negatively associated 

with attention (rs = -.44 [-.64, -.20], p <.003, see Figure 6.6A), internalised, (rs = -.54 [-.71, -

.32], p < .0024, the corrected α level, see Figure 6.6B), and externalised behaviour 

functioning, (rs = -.37 [-.61, -.09], p = .013, see Figure 6.6C).  

 

Also in the beta band, externalised behaviour functioning was associated with diameter, (rs = 

.32 [.01, .58], p = .04, see Figure 6.7A) and eccentricity, (rs = .32 [-.01, .15], p = .04, see 

Figure 6.7B). Though they were not statistically significant at the α level of .05, results 

revealed trends towards a negative correlation between beta band normalised clustering 

coefficient and attention (rs = -.30 [-.59, .06], p = .053), as well as internalised (rs = -.30 [-.57, 

.04], p = .053) behaviour scores.  

 

Beta band small worldness also showed trends towards positive correlations with 

internalised (rs = .29 [-.04, .55], p = .06) and externalised (rs = .26 [-.08, 56], p = .09) 

behaviour problems. Finally, beta band eccentricity showed a positive trend toward a 

correlation with internalised behaviour problems (rs = .26 [-.05, .51], p = .10). 
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Table 6. 6 Correlations between network measures and behaviour problems in controls, children with dyslexiaand those with ADHD, 

across frequency bands 
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Spearman’s rank correlation coefficients (rs) for network measures and measures of behaviour functioning for each frequency band. Key: Att = 
attention, Int = Internalising, and Ext = Externalising behaviour, metric gamma = normalised clustering, metric lambda = normalised path length, 
and small-world = small-world index. *p <.05, **p < .01, and ***p <.0024 (Bonferroni-corrected α value). 
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The correlation between normalised characteristic path length and non-verbal scores revealed that poorer non-verbal performance was 

associated with decreased global efficiency. See Figure below. 

 

 
 
 
 

All associations (p<.05) were observed in the beta band. Associations between graph-based normalised characteristic path length and 
behaviour functioning of A) attention, B) internalised, and C) externalised behaviour were revealed as negative relationships. The solid line is 

the fit-line across the sample cohorts of controls, children with ADHD and those with dyslexia. Key: ADHD =attention-deficit/hyperactivity 
disorder, and TDC = typically developing control.

Figure 6. 6 Correlations coefficients between beta band graph-based network orgnaisation and measures of behavioural functioning 
variations in controls, children with dyslexia and those with ADHD 
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All associations (p<.05) were observed in the beta band for externalised behaviour 
functioning and no other measures. The solid line is the fit-line across the sample cohorts of 

controls, children with ADHD and those with dyslexia. Key: ADHD = attention-
deficit/hyperactivity disorder, and TDC = typically developing controls. 

 

6.5. Discussion 

 

The utility of a diagnostic measure relies highly on its ability to distinguish between those 

affected and those who are not. In ADHD and dyslexia, two highly co-occurring conditions, 

the diagnostic measures have been conceptualised as unifying explanations of reported 

difficulties. For instance, it has been assumed that higher scores on attention measures (in 

relation to cut-off points for normal functioning) help to diagnose ADHD as well as providing 

a unifying account of deficit. However, these measures do not tell us why the problems occur 

in the first instance.  

 

ADHD and dyslexia are behaviourally conceptualised, highly heritable, and multifactorial with 

regard to causes, underlying neural substrates and poor academic outcomes. Although it is 

generally believed that regardless of reported reading problems, children with dyslexia have 

normal intelligence in relation to age-matched peers (Knivsberg et al., 1999; Kraus, 2012; 

Pennington et al, 1990). Boada et al. (2012) maintains that those with dyslexia are likely to 

differ from non-dyslexic readers in other language-associated features such as vocabulary 

level and working memory. The authors suggest that reported under-activations or over-

Figure 6. 7 Correlations between beta band minimum spanning tree network 
organisation and measures of behavioural functioning variations in controls, children 

with dyslexia and those with ADHD 
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activations may therefore to some extent reflect the influence of such characteristics 

regardless of whether the task is explicitly assesses reading ability. Similarly Koyama et al. 

(2010) has pointed out that there is a lack agreement regarding the optimal task for 

sufficiently characterising functional connectivity strength underlying reading. Similar 

problems have been discussed with regard to ADHD and neuroimaging studies (See 

Chapter 5, Introduction). 

 

To understand the two conditions, a more appropriate measure would need to avoid such 

uncertainties. The exploratory analysis conducted in this study aimed to identify features of 

functional network topological organisation that in analysis of sensor-level resting data would 

be able to capture the similarities and/or differences in typically developing controls and 

children with developmental conditions. The secondary aim was to test the hypothesis of 

possible associations between network variables and cognitive/behavioural functioning.  

 

Generally, the results revealed that the application of graph theory, along with minimum 

spanning tree analysis, is able to capture the differences in functional brain network 

organisation in controls and in children with dyslexia as well as in those with heterogeneous 

atypical neurodevelopmental disorders. Both common and different network variables were 

observed in the two clinical conditions (i.e. ADHD and dyslexia).  

 

Observed alterations in network organisation in those with ADHD and with dyslexia, when 

compared to controls, generally followed a similar trend. In contrast, when significant group 

differences were observed, network changes in children with comorbid conditions often 

revealed differences in an opposite direction compared to ADHD and dyslexia. This suggests 

that different underlying mechanisms in those with more complex heterogeneous profiles 

may be at play. The implications are discussed in detail below. 

 

Whole brain functional connectivity 

 

The Kruskal-Wallis H test revealed significant group differences in the theta and beta bands 

functional connectivity. Post-hoc comparison results showed that the main finding was of 

differences in the theta band. 

 

With regard to whole-brain functional connectivity, a key finding in the current study was that 

children with dyslexia revealed significantly higher connectivity strength in the theta band 

compared to all the other groups (Figure 6.1). This suggests that as a potential biomarker, 

whole-brain coupling strength in the theta band could possibly be adopted in distinguishing 
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those with dyslexia. In typical development, it is well documented that a progressive 

decrease in low frequency oscillations (i.e. delta, theta, and lower alpha) occurs with age 

(Gasser et al., 1988; Matousek & Petersen, 1973). The results in the current study therefore 

offer support for the proposition that higher whole brain connectivity in dyslexia may be an 

indicator of possible immaturity of brain development in the theta band. In brain networks, it 

is believed that long-distance connectivity is related to synchronisation of low frequencies 

(von Stein et al., 2000; von Stein & Sarnthein, 2000). Increased theta band activity therefore 

suggests that in dyslexia there is less efficient information processing in long-distance 

connections. 

 

Furthermore, increased theta functional connectivity in dyslexia can be interpreted as 

representing altered neuronal oscillatory dynamics, resulting from disrupted neuronal 

maturation, which has been attributed in poor readers to a delay or maturation lag 

(Stanovich, 1988). Studies of children with dyslexia have proposed that theta functional 

connectivity may function as a potential marker of altered linguistic processing in dyslexia, 

an interpretation previously alluded to by EEG studies (Klimesch, 1999; Spironelli, Penolazzi, 

Vio, & Angrilli, 2006) of frequency activity during phonological reading tasks in dyslexic 

readers.  

 

As was the case in Chapter 5, the results of increased whole-brain functional connectivity in 

dyslexia are difficult to reconcile with previous functional imaging studies conducted with 

dyslexic readers. Most studies (Cao et al., 2008; Richlan et al., 2010; Schurz et al., 2013) 

have focussed on task-based functional coupling, between discrete brain regions, and 

hemisphere. Results from such studies have suggested disrupted functional coupling in 

dyslexic readers. This is typically in the left hemisphere reading networks, including coupling 

between temporal-parietal (thought to be crucial for grapheme-to-phoneme conversion 

mechanism in the brain), occipital-temporal (believed to be involved in whole-word 

recognition), and frontal regions (See Richlan, 2012, for a review). More specifically, 

reported findings often reveal lower level functioning or under-activation of temporal-parietal 

and occipital-temporal regions. However, according to Boada et al. (2012), frontal related 

areas show both under connectivity and over connectivity.  

 

In task-based brain activation studies (Coomes, Janelle, Duley, & Conway, 2005; Rippon & 

Brunswick, 1998; Spironelli et al., 2006, 2008), alterations in region-specific theta activity are 

believed to index specific reading-related abilities. Specifically, increased theta power in 

frontal regions (specifically the anterior cingulate cortex) has been associated with increased 

information processing, better ability in focussing one’s attention required for increased task 
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demands (Gevins, Simth, McEvoy, & Yu, 1997). In non-dyslexic readers, lack of increased 

theta has been reported to be associated with superior performance on language-related 

tasks (Coombers et al., 2005).  

 

Local and global graph-based network efficiency 

 

For local and global network efficiency, despite there being a statistically significant 

difference between the four groups in the beta band, no significant differences were found 

when children with dyslexia were compared in post-hoc analysis to controls or to those with 

ADHD. However, a consistent trend in the beta band was that both ADHD and dyslexic 

participants showed lower normalised clustering coefficient (a measure of local segregation 

processing) and normalised path length (a measure of integration, Figure 6.2), indicating that 

network organisation (viewed in the Watts & Strogatz’s small-worldness model), in both 

groups resembled that of a random organisation in the beta band.  

 

In those with dyslexia, reduced local and global efficiency determined using graph concepts 

was reported in previous studies (Beaulieu et al., 2005; Steinbrink et al., 2008; Vourkas et al. 

2011). Focussing on task-based brain activations in sensor-level MEG data, Vourkas et al. 

(2011) reported significantly lower global and local network efficiency in alpha and gamma 

frequencies in children with reading difficulties, compared to controls. However, by averaging 

over standard frequency ranges, Vourkas et al. (2011) reported the 20-30 Hz range as a 

gamma band. Therefore, their results on task-based reduced local and global efficiency in 

the 20-30 Hz range are broadly consistent with lower network variables levels found in the 

current study in the beta band, which corresponded to the traditional 13-30 Hz range.  

 

As noted in Chapter 5, significant lower local and global efficiency in children with ADHD 

when compared to controls provides evidence supporting the proposition of a disconnection 

syndrome in the beta band hypothesised about ADHD. The finding of a similar pattern in the 

current study in those with dyslexia points towards a similar possibility in those with dyslexia, 

but to a lesser extent. Overall (although to a smaller extent in the dyslexia group compared 

to ADHD), the results of topological organisation analysis using clustering and path length 

measures, suggest an immature or altered organisation of neuronal networks involved in 

beta oscillatory activity.  

 

In typical adults (as discussed in Chapter 4, see Discussion) shorter path lengths in brain 

networks corresponded to efficient information transfer (See Figure 4.5). Although the 

shorter path lengths observed in those with ADHD and dyslexia in the current study would 
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appear to contradict the results of the discussion in Chapter 4, it is important to bear in mind 

that in neurotypical adults, shorter average long-range connections result from progressive 

but efficient pruning (Fair et al., 2008). Hence, it was proposed that the lower path length 

observed in ADHD and dyslexia groups is likely to be pathological and indicative of immature 

neuronal activity that subsequently underlies less efficient information transfer in brain 

networks. Evidence about altered neuro processes comes from several neuroimaging 

studies.  

 

Given that it is now generally agreed that reading requires the interaction between spatially 

distinct brain regions (Schurz et al., 2014), reports of reduced grey and/or white matter 

abnormalities (typically reduction) during reading-related tasks (often although not always in 

the left hemisphere network, see Richlan et al., 2013, for a review), suggest local as well as 

global brain network alterations. From the associations between structural and functional 

relationships this would suggest that results reported in this study in large-scale brain 

networks align with previous reports of altered brain information processing.  

 

Global network efficiency: minimum spanning tree 

 

Besides clustering coefficient and path length, MST network variables too demonstrated 

sensitivity to network structure that was restricted to the beta and found in no other 

frequency range. Tree eccentricity, which corresponds to node centrality, was significantly 

higher in children with dyslexia compared to controls (Figure 6.3A), indicating increasing 

shortest paths between nodes in this population. As discussed in previous chapters this 

suggests a less integrated and efficient network topology (Otte et al. 2015). Higher 

eccentricity corresponds to a loss of nodal importance in networks. With regard to MST 

diameter (a measure of the largest distance between any two nodes in a tree), post-hoc 

analysis revealed a trend towards higher diameter in dyslexics compared to controls, but not 

when compared to those with ADHD (Figure 6.3B). Finally, for hierarchical structure, post-

hoc comparisons revealed higher beta band hierarchy in children with dyslexia compared to 

controls, and a trend towards higher values when compared with those with ADHD. 

 

As stated before, reconciling the MST findings in the present study with previous reports is 

challenging. To the best of the author’s knowledge, only one attempt has been made to 

investigate network topology using MST in people with dyslexia (reported in a poster paper 

recently presented at a conference by Gonzalez et al., 2015). In relation to ADHD, no such 

attempt has apparently been made. The results reported by Gonzalez et al. (2015), are of 

interest for interpretation of the current results due the similarities in methodologies. First, as 
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with the current study, functional connectivity in EEG investigations conducted by the 

authors were estimated using the phase lag index. Second, MST network parameters were 

derived from sensor-level data in frequency ranges similar to those reported here. The MST 

results reported by Gonzalez et al. (2015) are consistent with those in the current study, 

albeit in a difference frequency range (i.e. the theta band). The researchers reported higher 

eccentricity and diameter as well as higher leaf number in dyslexic readers compared to 

controls. Of particular interest, the MST values of reported abnormalities in both groups 

consistently lay within similar ranges.  

 

The difference in the frequency range may be explained by the age of children studied. 

Gonzalez et al. (2015) investigated network analysis in very young dyslexic readers (i.e. 

average age 8.46 years) while the current study considered children aged 7 to 17 years. 

Research on typical development may help explain the differences. As already noted, during 

normal development a progressive decline in low frequency oscillations takes place. In 

younger children, higher frequencies are under-developed. Therefore, it is proposed that the 

inconsistency in the frequency range of reported change is likely to be explained by a 

developmental effect. For both ADHD and dyslexia, a maturational lag hypothesis has been 

proposed (See Lara et al., 2009, and Stanovich, 1988, for a review). It is likely that 

abnormalities in the theta activity in those with dyslexia undergo some form of catch-up 

growth with development, meaning that abnormalities in low frequencies will therefore be 

less readily detected in older children. Although the issue was not directly considered in the 

current study, results reported in Chapter 4 (despite being in a different frequency range) 

pointed to a developmental effect in both whole-brain connectivity (See Figure 4.4) and 

global network efficiency (See Figure 4.5). 

 

Overall, it is likely that altered short-range and long-distance connections, possibly resulting 

from early brain development, play a role in the development of neurodevelopmental 

disorders. However, it appears MST measures (often referred to as the super highway 

measures) were more sensitive to changes in dyslexia than in ADHD. It is therefore tempting 

to speculate that although both conditions revealed less graph-based network efficiency, 

MST measures conveyed more predictive information in the dyslexia group. This could 

indicate that underlying network alterations in dyslexia are more specific in comparison to 

ADHD. Put differently, it is proposed on a preliminary basis that ADHD is associated with 

more widely distributed large scale network abnormalities, while dyslexia corresponds to less 

widely distributed more specific abnormalities, which are more reliably detected by more 

conservative network measures such as those offered by MST. The reported alteration in 

network communication may be related with slow myelination of the white matter tracts 
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underlying crucial networks.  

 

The association between brain network organisation and measures of cognitive abilities 

 

The association between network organisation and functioning was considered across the 

groups (i.e. controls, ADHD, and dyslexia). Correlations and trends (though not statistically 

significant when a stricter Bonferroni-corrected α level of .001 was applied) were observed in 

the beta and gamma bands. As predicted, higher global efficiency was associated with better 

performance on non-verbal subtests in the beta band (Figure 6.4). In contrast, higher 

diameter and eccentricity in the beta band were associated with poorer performance on 

verbal and non-verbal performance scores across the three groups (Figure 6.5). Overall, the 

results suggest that altered global efficiency (lower path, higher eccentricity, and higher 

diameter) in the beta band is crucial for cognitive abilities.  

 

In children with reading difficulties, higher global efficiency has previously been shown to be 

associated with better reading abilities (Dimitriadis et al., 2013). Also in investigating altered 

temporal correlations in sensor-level resting-state MEG data, the researchers observed that 

altered long-range temporal efficiency in lower alpha and beta frequency bands was 

associated with poor reading scores (assessed using word Attack and letter-word 

identification subtest scores) in children experiencing reading difficulties. The majority of 

previous studies investigating the brain-behaviour relationship have focused on specific 

regional abnormalities. For instance, an fMRI study by Koyama et al. (2011) investigated the 

brain-behaviour relationship in specific regions; therefore, their results cannot be applied in 

this study. Schurz et al. (2014) took a similar approach. 

 

Given that diameter corresponds to the largest distance between any two nodes, while 

eccentricity is related to node centrality, the negative association between these metrics with 

verbal and non-verbal performance in the beta band suggests that the line-like, less 

integrated network configuration in the beta band plays a crucial role in cognitive abilities. 

This association in the beta band can be explained by the fact that beta power is associated 

with higher cognitive abilities. 

 

The Association between brain network organisation and measures of behaviour functioning  

 

Computations focussed on controls, dyslexics, and children with ADHD. Studies investigating 

the association between brain function and behaviour functioning are scarce in relation to 

dyslexia. Given that the core difficulties often relate to reading, measures of reading 
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competence often take priority. However the results in Table 6.1 revealed that among 

children with dyslexia, scores on measures of attention, internalised and externalised 

behaviour problems were higher than for controls Significant associations between network 

variables and measures of behaviour functioning were observed in the beta band and in no 

other frequency range.  

 

Lower normalised characteristic path length in the beta band was associated with higher 

scores of attention (Figure 6.6A), internalised (Figure 6.6B), and externalised (Figure 6.6C) 

behaviour problems. Conversely, higher scores of externalised behaviour problems were 

associated with higher beta band diameters (Figure 6.7A) and eccentricity (Figure 6.7B).  

 

Comorbid conditions  

 

Initial Kruskal-Wallis H tests assessing group differences across the four groups revealed 

significant differences in whole-brain functional connectivity (in the theta and beta bands) 

and network variables (in the beta band). Planned post-hoc comparison did not investigate 

comorbid conditions due to the high heterogeneity of the group. With the exception of 

functional connectivity in the theta band and hierarchical structure in the beta band, there 

was a consistent trend for all other network variables (where significant group effects were 

reported using the Kruskal-Wallis H tests, including clustering, path length, eccentricity and 

diameter) of dissimilar (in relation to ADHD ad dyslexia) local and global communication 

disruptions. In other words, children with comorbid conditions showed differences in the 

opposite direction compared to the two clinical groups (i.e. ADHD and dyslexics), providing 

evidence to the proposition that network topological disruptions in the beta band are able to 

identify and discriminate different underlying pathophysiological mechanism in those with 

single vs. comorbid developmental conditions. The pattern of local and global disruptions 

demonstrated in this thesis in local and global topologies suggest a disruption of the optimal 

small-world and a shift towards a more regular topology. However, given that the sample of 

children in the comorbid group was very diverse, it is not possible to reach any conclusions 

as to why networks in those with comorbid conditions would present with disruptions 

reported in the current study. 

 

As stated earlier, pure childhood developmental conditions are rare (Hulme & Snowling, 

2009), meaning that the likelihood is high that a child with one condition will also meet the 

diagnostic criteria for another. Due to a substantial degree of missing data, the associations 

between cognitive/behaviour functioning and network variables were not assessed in the 

comorbid group. However, given that their scores on the attention, internalised and 
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externalised behaviour functioning measures were similar to those in the ADHD group, it is 

likely that similar patterns to those observed in Figure 6.6 and 6.7 would have characterised 

the association between behaviour functioning and network topology in this comorbid group. 

 

Methodological considerations  

 

A major methodological limitation of this study is that no reading competence scores were 

reported. Understanding the association between brain interactions and reading scores 

would further the debate regarding the role of frequency-based brain connections in relation 

to reading. However this study was primarily concerned with the clinical application and 

relevance of task-independent measures of brain activity, i.e. whether such measures have 

any biologically relevant information.  

 

Viewed this way, it was acceptable to rely on standard measures of behavioural and 

cognitive functioning and examine their relationship with brain measures. However, that 

means that it is not possible to state with certainty whether altered network topology of itself 

may enable the identification of those with dyslexia in different groups. Despite this, using 

task-independent measures, the present study demonstrated that it is possible to identify 

network variables that point to immature brain network parameters in neurodevelopmental 

conditions in the absence of specific behaviour measures.  

 

Another study limitation concerns the fact that due to small population samples, the effect of 

development (young vs. older children), and of gender on changes in network topological 

organisation was not assessed. However, despite the small sample sizes, significant effects 

were reported, supporting the hypothesis that atypical neurodevelopment-related difficulties 

may be caused by underlying alterations in network communication.  

 

6.6. Conclusion 

 

This study was thought to be the first to investigate potential similarities and differences in 

resting-state functional connectivity and the brain-behaviour correlations simultaneously, in 

two highly co-occurring neurodevelopmental disorders. Results revealed that graph analysis 

and MST are sensitive to disruptions in network topology in children with 

neurodevelopmental conditions in relation to controls. With the exception of theta band 

connectivity strength which was significantly higher in dyslexic readers compared to all the 

other groups, results in this study appear to support to proposition that high co-occurrence of 

ADHD with dyslexia, may be the result of similar underlying pathophysiological mechanisms. 
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Hence, as it stands, it appears that network analysis holds promise as the key to unlocking 

the ambiguity of why two behaviourally different conditions co-occur more often than is 

expected by chance. Further research with larger sample sizes are required to confirm the 

results reported in this study. 
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7. General discussion 

 

7.1. Aims and findings  

 

Healthy brain functioning depends on the efficient communication and integration of 

information between brain regions, forming complex networks. Communication in brain 

networks is based on the synchronisation of neuronal activity. As a result, by quantifying 

synchronisation between brain regions, a connected brain network can be analysed 

(discussed in Chapter 1 & 2). Recent developments in neuroscience, especially where graph 

theory is concerned, have proved useful for investigating the neural correlates of some 

neuropsychiatric disorders. In these disorders, behavioural and cognitive problems 

experienced have been attributed to disrupted communication within and between brain 

networks. In atypical development, where conventional diagnosis relies on measures of 

behavioural and cognitive functioning, a biological means of quantifying possible neuro-risk 

factors would hold promise as a clinical tool.  

 

Using magnetoencephalography (MEG) to investigate frequency-specific temporal dynamics 

in subjects at rest, the research presented in this thesis mainly sought to identify potential 

biological markers derived from sensor-level recordings of whole-brain functional 

connectivity. Such markers could go on to provide a basis for an objective and quantifiable 

metric of neurobiological risk factors of great importance in neurodevelopmental disorders. If 

identified and validated, such markers would hold promise as a more objective measure for 

use in diagnosis alongside conventional approaches, to identify those at risk and helping 

determine responses to treatment. However before this later task could be accomplished, 

two major issues would have to be addressed. 

 

First, to validate the clinical potential of graph theory as a means of improving understanding 

of the aetiology of neurodevelopmental disorders and their diagnoses would require an 

assessment of the test-retest reproducibility of graph theoretical metrics. The first 

experimental study (Chapter 3) therefore sought to validate the method by examining the 

reproducibility of graph-based functional connectivity and network parameters in healthy 

adult volunteers, using a repeated measures design. Results revealed that the reproducibility 

of functional connectivity and network variables was dependent on resting-state (i.e. eyes-

open vs. eyes-closed), frequency band, and metric order (i.e. first vs. second order). Eyes-

open conditions, higher frequency beta band, and small-world index revealed comparatively 

low test-retest reproducibility. Generally, network measures derived from eyes-closed rest 
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conditions showed good-to-excellent reproducibility. For this reason, subsequent 

experimental chapters examined network efficiency in eyes-closed rest conditions. 

 

Second, graph measures have been shown to depend on several methodological 

assumptions that bias network comparisons. Whilst solutions such as normalisation and the 

application of thresholds to generate a binary graph are typically applied as alternatives, a 

recently developed approach (i.e. minimum spanning tree) offers a computationally more 

objective solution. MST avoids the application of thresholds, as well as of normalisation 

processes involving random surrogate networks, that often lead to biases in network 

analysis and subsequent comparison across participants (Boersma et al., 2012; van Wijk et 

al., 2010). Subsequent chapters in this thesis therefore applied graph theoretical analysis, 

along with minimum spanning tree (a network analysis approach that allows for unbiased 

comparisons) to model network topologies.  

 

However, prior to investigating possible changes that occur within brain networks in atypical 

development, research in the second experimental study (Chapter 4) focused on age-related 

changes in functional networks during typical development. This is because understanding 

the pattern of distributed brain networks in typical controls (i.e. in relation to what is occurring 

in a neurotypical brain) would help put into perspective the findings for those with atypical 

developmental conditions. In this study, adopting a cross-sectional sampling approach, 

functional brain organisation was characterised using network analysis; first comparing 

children (7-13 years) to adults (20-35 years), and then across a broad age range (7-57 

years). The effects of developmental changes in functional large-scale networks were found 

primarily in high frequency beta and gamma bands. 

 

First, children’s brains showed over-connectivity of whole-brain coupling strength and 

increased normalised characteristic path length. It was proposed that over-connectivity in the 

beta band functions as a compensatory mechanism, whilst increased path length indicated a 

less optimal balance between local and global brain network communication in younger 

children. Second, in the gamma band, children revealed higher leaf number and hierarchical 

organisation compared to adults. Across a broad age-range, functional connectivity and 

normalised path length decreased with development, to reach the lowest level at 27 years. 

Minimum spanning trees metrics were not sensitive to developmental changes in network 

topology across the broad range. This is likely to be a result of complex changes occurring in 

the different age-clusters. In Chapter 5, functional network topology was investigated in 

those with ADHD, in relation to typically developing controls. In the beta band and in no 

other frequency, lower whole-brain functional connectivity, normalised clustering coefficients, 
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characteristic path length, and higher eccentricity and diameter were observed in children 

with ADHD, compared to controls. Furthermore, in the ADHD group, the lower path length in 

the beta band was associated with poorer scores on verbal performance, while higher 

eccentricity and diameter in the beta and gamma bands were associated with poorer non-

verbal cognition. The results indicated a reduction in local and global communication in the 

beta band in the brains of children with ADHD. These reported associations between 

network measures and measures of cognitive functioning provide support for the clinical 

relevance of network analysis of functional organisation for those with ADHD. 

 

Finally, supplementing earlier investigation of functional network topology, it is the case that 

that ‘pure’ neurodevelopmental disorders are the exception rather than the rule in childhood 

conditions. For this reason in experimental study 4 (Chapter 6) local and global network 

communications was investigated in ADHD and dyslexia, two of the most prevalent 

neurodevelopmental disorders. The analysis in this chapter also considered children with 

comorbid conditions. With regard to whole-brain connectivity strength, the results revealed 

that functional coupling in the theta band can detect and discriminate differences in whole-

brain connectivity between both controls and dyslexic readers, and those with ADHD and 

dyslexic readers. A difference was observed between the groups in beta band normalised 

clustering and path length. However although among those with ADHD and dyslexia, 

clustering coefficients and path length were lower in the beta band compared to controls, the 

difference in relation to dyslexic readers, when compared to the controls or those with 

ADHD, was not statistically significant. Interestingly, the comorbid group showed dissimilar 

local and global communication disruptions suggesting that graph-based network analysis in 

the beta band can discriminate different underlying pathophysiological mechanism only in 

those with single vs. comorbid developmental conditions.  

 

Using MST, results showed less integrated network configurations in the beta band in 

dyslexic readers compared to controls (i.e. higher eccentricity and hierarchy). Similar trends 

(but to a lesser extent) were observed in those with ADHD. Post-hoc results revealed that 

those with dyslexia did not differ from those with ADHD. In children with comorbid conditions, 

MST eccentricity and hierarchy decreased in an opposite trend from that for those with a 

single neurodevelopmental disorder. Overall, with regard to ADHD and dyslexia, the results 

suggest that whilst graph theoretical measures and MST global network measures are able 

to detect disruptions in underlying network communication, these metrics were not able to 

discriminate the different disruptions underlying possible neurobiological risk factors, as 

revealed by the post-hoc comparisons.  
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Correlations were computed to assess the association between network measures and 

performance, on verbal and non-verbal sub-tests across the groups (i.e. identified ADHD, 

dyslexia, and comorbid conditions). Associations (although not significant when a stricter 

Bonferroni-corrected α level of .001 was applied) were observed in the beta and gamma 

bands. As predicted, in the beta band higher global efficiency was associated with better 

performance on non-verbal subtests. In contrast, higher diameter and eccentricity in the beta 

band were associated with poorer performance on verbal and non-verbal performance 

scores, across the three groups. Overall, the results suggest that altered global efficiency 

(lower path, higher eccentricity, and higher diameter) in the beta band is crucial for cognitive 

abilities. Similarly, associations between network efficiency and behavioural functioning 

across the three groups (i.e. ADHD, dyslexia, and controls) revealed that lower normalised 

characteristic path length in the beta band was associated with higher scores of attention, 

and internalised, and externalised behaviour problems. Conversely, higher scores of 

externalised behaviour problems were associated with higher beta band diameters and 

eccentricity, providing further evidence for the clinical consequence of altered functional 

network organisation. 

 

The results offer support to the proposition that measures of network organisation derived 

from sensor-space MEG data offer qualified and informative insights in helping to identify 

underlying pathophysiological mechanisms in both typical and atypical development. These 

results are summarised in Table 7.1. 
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Table 7. 1 Results summarised in relation to chapter-based findings 

Chapters Findings 

3  Eyes-open, higher frequency beta band and small-world index revealed comparatively low test-retest reproducibility  

4  Increase of whole-brain functional connectivity in the beta band in children (7-13 years) compared to adults (20-35 years) 

 Longer normalised path length, increased leaf number and hierarchy, restricted to the beta band in children compared to adults 

 Across a broad age range (7-57 years), decreased whole-brain connectivity and normalised path length was found, which 
decreased to reach lowest level at ~ 27 years and increased from 37 years  

5  Decrease of whole-brain functional connectivity in the beta band in children with ADHD compared to age-matched controls 

 Decrease of normalised clustering coefficient and normalised path length confined to the beta band in children with ADHD 

 Increased eccentricity and diameter in children with ADHD, confined to the beta band 

 Discriminatory analysis, using the normalised clustering and path length predictors, correctly predicted 33.30% of children with 
ADHD and 85.7% of controls 

 Discriminatory analysis, using the normalised clustering and path length predictors, correctly predicted 41.70% of children with 
ADHD and 81.00% of controls, suggesting that network analysis using the two approaches is able to detect and discriminate 
differences in potential underlying pathophysiological mechanisms 

 A positive association was found between beta band normalised path length and performance scores on verbal subtest 

 A negative association was observed between beta and gamma band eccentricity and diameter and performance scores on the 
non-verbal sub-tests 

6  Whilst generally ADHD and dyslexia showed similar functional network disruptions, dyslexic readers revealed significantly 
elevated theta connectivity strength compared to all other groups 

 Increased eccentricity and hierarchy, confined to the beta band, was found in children with dyslexia, when compared to controls 

 Children with comorbid conditions showed dissimilar functional network disruptions in the beta band, suggesting that network 
analysis was able to discriminate between children with a diagnosis of one neurodevelopmental disorder and those with 
comorbid conditions 

 Higher global efficiency was associated with better performance on non-verbal subtests in the beta band 

 Increased diameter and eccentricity in the beta band were associated with poorer performance on verbal and non-verbal 
performance tests across the three groups 

 Lower normalised characteristic path length in the beta band was associated with higher scores of attention, and internalised, 
and externalised behaviour problems 

 Higher scores on externalised behaviour problems were associated with higher beta band diameter and eccentricity  
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7.2. General discussion 

 

The main aim of the research presented in this thesis was to investigate possible 

neurobiological risk markers that could provide objective and quantifiable metrics for 

identifying and discriminating characteristics of functional brain networks in those with typical 

and atypical development. To this end, MEG, a child-friendly and non-invasive imaging 

technique, was used to record intrinsic brain activity during task-independent conditions. 

Graph theory analysis was applied to investigate the effects of typical and atypical 

development on the organisation of complex functional brain networks. The main findings 

from each experimental chapter are presented schematically in Table 7.1.  

 

7.2.1. Test-retest reproducibility of whole brain connectivity strength and 

network organisation parameters  

 

In the context of the research reported in this thesis, this study provided a template for 

selecting satisfactorily robust processing approaches for the further investigation of 

functional brain networks as potential clinical biomarkers. Studies investigating the clinical 

utility of graph measures typically report altered network disruption in data derived from 

eyes-closed rest conditions. However, previous research (Jin et al., 2013; Xu et al., 2014) 

has provided evidence suggesting the possibility of different topological organisations of 

brain networks in relation to eyes-closed vs. eyes open conditions. According to Xu et al. 

(2014), the opening and closing of one’s eyes is essential for directing attention to 

processing the external vs. the internal world. Using fMRI, and comparing both conditions, 

the authors reported higher global but lower local network efficiency in eyes-closed vs. eyes-

open conditions. In contrast, an MEG study conducted by Jin et al. (2013) reported 

enhanced global efficiency in the theta and alpha bands in the eyes-open state compared to 

the eyes-closed state. Together, these studies would appear to suggest that the topological 

organisation of brain networks is highly volatile, i.e. dynamically switching, in response to the 

information processing corresponding to the opening, and closing one one’s eyes. This 

volatility has not been thoroughly considered in previous non-invasive high temporal 

resolution studies investigating intrinsic brain activity. 

 

To the best of the author’s knowledge, only three non-invasive high temporal resolution 

studies have investigated the reproducibility of network measures. In addition, of these only 
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one (Jin et al., 2011) considered the reliability of network measures in both eyes-open and 

eyes-closed conditions. This study reported fair-to-moderate reliability. However, Jin et al. 

(2011) focussed on nodal centrality measures. Hence, these findings cannot be directly 

applied to the results in Chapter 3, as this study focussed on global network measures. 

Therefore, to the best of the author’s knowledge, this is the first MEG study to consider 

reliability in both states. Graph theoretical measures in eyes-closed rest conditions were 

significantly more reproducible than those derived from eyes-open resting states. As a result, 

all subsequent network computations were concerned with changes in large scale networks 

derived from eyes-close rest state. The results were not consistent with Jin et al. (2011). The 

differences in reported results are most likely to be a consequence of the metrics 

investigated.  

 

Given that network measures have been reported as markers of cognitive impairment, 

personality traits, intelligence, and age, good reproducibility revealed in Chapter 3 is 

encouraging for future high temporal resolution studies exploring the effects of pathology on 

the functional organisation of the brain networks. However, a surprise (but consistent with 

previous studies, i.e. Deuker et al., 2009; Jin et al., 2011) finding in this study was the low 

reproducibility of beta band network and small-world index. This is surprising because small-

world organisation in the clinical studies (Cao et al., 2012; Supekar et al., 2009) is often 

found to be preserved. With regard to the beta band, this frequency reflects one of the 

largest induced changes one can expect. Activity in beta changes moment-by-moment. One 

may therefore expect that during rest (i.e. state free from cognitive demands), network 

measures in this range would be more reproducible. This was not the case. It appears that 

within the beta band, network measures are changeable.  

 

It is however conceivable that within an individual any measures will not be reliable. We 

know this because one person’s beta is not always the same. Hence, aspects like cognitive 

states that change beta will most likely fluctuate throughout the day and in relation to events. 

It is likely that we have something that is not individually reliable, but that does not mean that 

if we were to sample from the same individual at another point in time the measures in this 

band would not be useful for the understanding of something clinically relevant.  
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7.2.2. Functional network topology in typical development 

 

Neuroimaging studies of the developing brain (Gong et al., 2009; Hagmann et al., 2010; 

Paus et al., 2008;) have been fundamental in understanding the maturation of the structure 

and function of the brain during childhood and adolescence. These studies have provided 

evidence to suggest that during childhood and adolescence changes in brain structure are 

vital for the normal development of functions such as intellectual abilities (Nagy et al., 2005; 

Raz et al., 2005). Majority of the studies investigating human brain maturation have however 

mainly focused on structure-related changes occurring from childhood through to later life.  

 

Structural studies such as Fair et al. (2008) that have investigated age-related changes 

using graph theory concepts, observed no difference in local or global changes. However 

according to van Wijk et al. (2010), unlike structural connections, functional connections are 

likely to develop at a more increased rate, meaning that they are better candidates for 

providing information on topological organisation in brain networks underlying brain function 

during development. Efficient information processing within and between specialised but 

spatially distributed functional brain regions underpins the successful development of higher 

cognitive functions (Douw et al., 2011). 

 

When compared to adults (aged 20-35), whole-brain connectivity strength, normalised path 

length, leaf number and hierarchy in children (aged 7-13) were significantly higher in the 

beta band. With regard to whole-brain connectivity, these results suggested that in 

childhood, networks are highly connected and as children develop, these connections are 

reduced. Across a broad age range (7-57 years), a decrease in whole-brain connectivity 

strength during development was observed (Figure 4.4). The decrease appeared to reach 

their lowest level at ~ 27 years followed by an increase of connectivity strength during aging.  

 

The second main finding from this study was increased global connectivity, as indicated by 

higher normalised path length, leaf number, and hierarchy in children (aged 7-13). The 

results are aligned with convergent data from structural imaging studies that reported 

increased long-distance connectivity during development (Fair et al., 2008; Giedd et al., 

2009; Srinivasan, 1999) as well as with Boersma et al. (2013), and Micheloyannis et al. 

(2009) who investigated network organization using EEG.  
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It has been suggested that age-related changes in short and long-distance functional 

connections are highly influenced by synaptic pruning and myelination of axonal fibre tracks 

through the process of development (Kuhn, 2006; Paus et al., 2008; Whitford et al., 2007). 

Increased network performance is often linked to underlying neuronal migrations of white 

matter myelination, corresponding to axonal conduction (Thatcher et al., 1986) and to grey 

matter atrophy throughout development (Whitford et al., 2007). With maturation, the brain 

eliminates connections that are not used, while preserving and strengthening those 

connections associated with efficient information transfer (Wu et al., 2012). This is believed 

to result in a reduction of local connections, in parallel with the formation of more specialised 

long-distance nodes (Boersma et al., 2011; Supekar et al., 2009). In the current study 

design, it was expected that the topological organisation of functional networks in children 

would be less efficiently organised. The significantly short average path length in adults 

suggests that within typical neurodevelopment, whole-brain over-connectivity in childhood is 

followed by synaptic pruning, resulting in more specialised but stronger and fewer long-

distance functional connections.  

 

Overall, the results from graph theory analysis and minimum spanning tree analysis suggest 

a shift, during typical development, from a random network organisation towards a more 

structured, hierarchical, and line-like network organisation, and in higher frequency beta and 

gamma oscillatory activity that is indicative, of more efficient integrated information 

processing in spatially distributed networks. Given that higher oscillatory frequencies appear 

to reveal age-related changes in functional network topology, they may hold promise as 

biological markers of progressive functional refinement and network integration through the 

process of development. These results thus add to informative insights regarding 

developmental changes in functional network organisation changes in typical development.  

 

7.2.3. Atypical development 

 

Atypical development of large-scale brain functional networks was investigated in two 

behaviourally different but highly co-occurring conditions, namely ADHD and dyslexia. A 

comorbid group was also considered, albeit with less focus. 
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ADHD 

 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioral 

disorders in children and has been shown to persist into adulthood. Abnormalities in 

underlying brain systems have been implicated as the likely cause of behaviour and 

cognitive impairments. In this study, the topological organisation of large-scale whole-brain 

functional brain networks was investigated in children with ADHD and with controls, using 

graph theory and minimum spanning tree (MST) analysis of eyes-closed sensor-level 

resting-state MEG data. The results reported in this thesis lend further support to the current 

consensus because they show that lower levels of local and global efficiency are present in 

such (medicated) cohorts. 

 

In Chapter 4, the observation in typically developing children of higher beta band path 

lengths was suggested as a compensatory mechanism, while lower path lengths in children 

with ADHD (reported in Chapter 5) was suggested as indicating a disruption in global 

network efficiency. Although this appears somewhat contradictory, the finding of a negative 

relationship between path length and performance on a cognitive abilities sub-test does 

provide evidence that what is occurring in children is a pattern of neurotypical immaturity of 

brain networks in the beta band, while what occurs for those with ADHD, represents a 

deviation from typical network functioning in the beta band. 

 

Overall, large-scale functional networks in children with ADHD revealed less local efficiency 

(i.e. normalised clustering coefficient), information integration (lower normalised path length), 

line-like tree topology (i.e. higher diameter, and eccentricity) in the beta band, as compared 

to normal controls. At a neural level, the results offer support to the idea that the transfer of 

information in large-scale functional brain networks in children with ADHD is less efficient in 

the beta band. The findings are consistent with altered functional connectivity and network 

topology in other neurodevelopmental and neuropsychiatric conditions that affect 

behavioural and cognitive functioning, such as autism, schizophrenia, and fragile X. It is 

therefore tempting to speculate that ADHD is a disconnection syndrome. Disruption of 

distributed functional brain networks may therefore be a crucial feature in ADHD. As a result, 

network-based descriptions might be useful as potential predictor variables in identifying 

those with ADHD. The rate at which information is processed in long distance connections is 

less efficient in networks of children with such developmental conditions.  
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Associations between network parameters and cognitive/behaviour functioning in the ADHD 

cohort suggest that network measures could prove useful as potential markers for 

understanding the underlying mechanisms of impairments. ADHD is the most common 

comorbidity among those with intellectual disability (Buckley et al., 2006), with scores on the 

Wechsler intellectual subtests measures of Digit-Symbol Coding, Arithmetic, Block Design, 

Digit Span, shown to discriminate those with ADHD from normal controls (Goodwin et al., 

2011; Gudjonsson et al., 2009; Quinlan, 2001). The ability of IQ to co-segregate with ADHD 

in families, their affected and non-affected (Rommelse et al., 2008) siblings suggests a 

possible altered functional pathophysiological mechanism in those with low intellectual 

performance. Furthermore, such findings have also been observed in the unaffected siblings 

(Rommelse et al., 2008) of children with ADHD. Although this was not examined in the 

current study, Goodwin et al. (2011) have previously reported a relationship between 

intellectual performance and ADHD symptoms. Therefore the finding in the present study, 

that higher beta band small-worldness was not only associated with lower non-verbal 

reasoning levels, but was also associated with higher scores in relation to the attention 

behaviour problems, suggests that the relationship between non-verbal reasoning and 

ADHD-related attention problems could possibly be caused by disruption or interference 

within small world network organisation in the beta band.  

 

Dyslexia 

 

Dyslexia is a specific learning disability, characterised by problems related to word 

recognition, decoding, and spelling problems, despite subjects having normal intelligence, 

schooling, and motivation (Knivsberg et al., 1999; Kraus, 2012; Pennington et al, 1990). 

Reading-related problems are believed to be the result of a deficit in underlying phonological 

processing (Boada et al., 2012; Goswami, 2011; Stanovich, 1988; Svensson & Jacobsson, 

2006). Although the two conditions are behaviourally different, ADHD and dyslexia co-occur 

more often than is expected by chance in childhood, with co-morbidity estimates of between 

25-40% (Pennington et al., 2005; Willcutt & Pennington, 2000). Biologically similar brain 

regions have been implicated as underlying symptom phenotypes.  

 

Although the standard procedures for diagnosing and characterising ADHD and dyslexia 

involves the use of behavioural and cognitive measures, converging evidence from several 

neuroimaging studies discussed above points to a neurobiological basis of ADHD 
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(Mostofsky et al., 2002; Overmeyer et al., 2001) and dyslexia (Eliez, Rumsey, Giedd, 

Schmitt, Patwardh, & Reiss, 2000; Klingberg et al., 2000). Magnetic resonance imaging 

(MRI) studies have revealed that the brains of children and adolescents with ADHD 

(Castellanos et al., 1996; Mackie et al., 2007; Seidman et al., 2011) and those with dyslexia 

(Eliez et al., 2000; Brown et al., 2011; Eckert et al., 2003) show significant differences when 

compared to typically developing age-matched controls. Further support for a 

neurobiological basis of ADHD and dyslexia comes from studies that have revealed grey and 

white matter abnormalities in these children (Ashtari et al. 2005; Richlan, Kronbichler, & 

Wimmer, 2013; Silk et al. 2009b). 

 

The study presented in Chapter 6 aimed to determine whether metrics, such as over- 

network connectivity vs. under-network connectivity, could identify as well as discriminate 

between (dyslexic readers and controls, and dyslexic readers and those with ADHD. Whole 

brain connectivity strength was significantly increased in the theta band in dyslexic readers, 

compared to controls and those with ADHD. This suggested that, as a potential biomarker, 

whole-brain coupling strength in the theta band could possibly be adopted in distinguishing 

those with dyslexia from ADHD and controls. In typical development, it is well documented 

that progressive decreases in low frequency oscillations (i.e. delta, theta, and lower alpha) 

occur with age (Gasser et al., 1988; Matousek & Petersen, 1973). The results in the current 

study therefore offer support for the proposition that higher whole brain connectivity strength 

in those with dyslexia in the theta band may be an indicator of possible immaturity of brain 

development. Furthermore, in brain networks it is believed that long-distance connectivity is 

related to synchronisation of low frequencies (von Stein et al., 2000; von Stein & Sarnthein, 

2000). Increased theta band activity therefore suggests less efficient information processing 

in long-distance connections in those with dyslexia.  

 

With regard to local and global communication, network analysis was able to identify 

disruptions in communication efficiency. Interestingly, despite being behaviourally dissimilar, 

dyslexic readers showed similar functional network disruptions to those observed with 

ADHD, whenever a group difference was observed. These disruptions were confined to the 

beta band and included lower cluster coefficient, path length, and higher eccentricity, 

diameter, and hierarchy. However, post-hoc computations were not able to sufficiently 

discriminate differences in underlying pathophysiological mechanisms between the two 

conditions.  
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When compared to controls, dyslexic readers showed higher eccentricity and hierarchy in 

the beta band. The results are consistent with a task-based study by Vourkas et al. (2011), 

who also reported significantly lower global and local network efficiency in children with 

reading difficulties compared to controls. However, the disruptions in this study were 

observed in the alpha and gamma bands. It is however important to point out that Vourkas et 

al. (2011) focussed on gamma, but their gamma frequency band (i.e. 20-30 Hz), would 

traditionally be considered as beta band. Therefore, it would appear that the results reported 

in Chapter 6 are consistent with Vourkas et al. (2011).  

 

The four groups that were considered in Chapter 6 were children with comorbid conditions. 

As stated earlier, ‘pure’ neurodevelopmental disorders are the exception in childhood 

conditions. Typically, the likelihood of a child with one developmental condition also meeting 

the criteria for another is relatively high. Therefore, a secondary aim was to examine 

functional topology in these children. However this group was highly heterogeneous, and as 

a result post-hoc computations were not justified Moreover in instances where the Kruskal-

Wallis H test revealed a group difference, children with comorbid conditions showed 

functional network disruption levels dissimilar from the two clinical groups. This suggests that 

graph analysis and MST not only hold promise as potential metrics for detecting 

comorbidities, but that these measures appear to be able to discriminate different 

pathophysiological mechanisms underlying comorbities in relation to ‘pure’ developmental 

comorbities.  

 

Overall, it is likely that reduced short-range and long-distance connections, possibly resulting 

from early brain development, play a role in the development of neurodevelopmental 

disorders. However, it appears that while both graph measures and MST are able to detect 

different underlying physiological mechanisms in controls, compared to those with dyslexia 

and those with ADHD, these measures were not able to discriminate between the two 

clinical populations. With the exception of whole-brain connectivity, the results reported in 

this study, would suggest that functional network topologies in those with ADHD and in 

dyslexic readers show similar disruptions, primarily confined to the beta band. With regards 

to comorbidities, further research with a large sample is necessary. 



198 
 
 

 

 

7.2.4. Associations between network parameters and measures of cognitive 

and behavioural functioning in controls, dyslexic reader and children with 

ADHD 

 

Computations of correlations between functional network topology and measures of 

behavioural and cognitive functioning revealed significant relationships alluding at a 

possibility for the clinical applicability of altered functional network organisation. Higher 

global efficiency was associated with better performance on non-verbal subtests in the beta 

band. In contrast, higher diameter and eccentricity in the beta band were associated with 

poorer performance on verbal and non-verbal performance scores, across the three groups. 

Overall, the results suggested that altered global efficiency (lower path, higher eccentricity, 

and diameter) in the beta band might play a crucial in cognitive and behavioural functioning. 

Previously studies have demonstrated that disrupted or low global efficiency is associated 

with poor reading scores in dyslexic readers (Dimitriadis et al., 2013). Interestingly, in typical 

controls, results revealed that lower scores on verbal and non-verbal performance were 

associated with less efficient global communication. 

 

7.3. Methodological considerations and future possibilities 

 

Relevance of acquired data 

 

Data reported in this thesis were computed at sensor-level. Recordings of synchronized 

oscillatory activity acquired at sensor level are likely to be contaminated by volume 

conduction as well as muscle artifacts, which according to (Uhlhaas et al., 2008) can 

potentially mimic neural synchrony. Given the nature of electromagnetic fields, the accurate 

mapping of MEG sensor-level data (recorded from the scalp) into underlying structures 

remains biased (Henson et al., 2009). In this thesis, care was taken to use a measure of 

connectivity that was not sensitive to the effects of volume conduction and signal spread. 

The phase lag index (PLI; Stam et al., 2007b), assesses level of asymmetry of the 

distribution in spontaneous phase differences of two signals and has been reported to be 

insensitive to the effects of common sources and volume conduction. However, PLI might 

failure to capture genuine connectivity at zero phase difference that researchers such as 

Chawla et al. (2001) believe to exist in the brain. 
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However, although care was taken to ensure that functional connectivity was estimated 

using a measure that is insensitive to the effects of volume conduction and signal spread, 

findings are spatially unspecific with regard to the underlying sources of observed activity. 

Sensor-level analysis is difficult to interpret because it is not clear where observed 

oscillations are generated. However, this is not to say that sensor-level work is less 

meaningful. Sensor-level remains a powerful means of understanding brain activations, 

which in several studies (Boersma et al., 2013; Hardmeier et al., 2014; Olde Dubberlink et 

al., 2014) continues to provide biologically meaningful insights into the organisation of brain 

networks. Furthermore, the research presented in this thesis hoped to demonstrate the 

potential of network analysis as a promising tool for future clinical utility. This was 

successfully demonstrated, within stated parameters. Of course, there is no denying that 

source-level analysis in needed for more concrete conclusions regarding the relationship 

between electrophysiology and anatomy. For this reason, future studies will benefit from 

adapting computational strategies reported in this thesis at source-level. 

 

Network size with regard to computed nodes 

 

All computed networks in this research were derived from data from magnetometer sensors. 

The consequence of only using magnetometers was that this strategy significantly reduced 

both the time and computational memory requirements imposed by considering all 306 

sensors in estimating network synchronisation and topological measures. This strategy has 

previously been adopted by studies investigating sensor-level functional activity using the 

306-channel Vecktorview MEG system. For instance, Deuker et al. (2009) only considered 

using planar gradiometers to examine functional network parameters while Jin et al. (2011) 

focused on magnetometers. Despite focusing on different sensor types, the studies revealed 

similar test-retest reliability patterns in relation to functional networks. However filtering out 

data from gradiometers is likely to have consequences on estimated synchronisation. 

Tsiaras et al. (2011) has previously discussed the likelihood that processing strategies that 

filter out data is likely to exclude connectivity-related information. The 306-channel system is 

arranged in such a manner that each location consists of two planar gradiometers and one 

magnetometer. There is a possibility that short-distance connections were filtered out. Future 

studies would therefore benefit from examining whether network measures derived from 

gradiometers and/or magnetometers differ from those derived when both magnetometers 

and gradiometers are considered together. 
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Network comparison in network analysis 

 

With the exception of Chapter 3, only normalised graph metrics and MST results were 

reported. Although both quantify network topology, metrics based on graph theory consider 

all connections in the original network, while MST measures capture the most important 

connections in the original network, thereby ensuring an unbiased network comparison. The 

primary rationale for using minimum spanning tree analysis in this thesis was the fact that 

tree-topology measures are independent of many of the computational aspects such as 

average degree, and density that are likely to affect computed network parameters and bias 

network comparison. In addition, whilst MST measures are sensitive to network size (Otte et 

al., 2015), normalisation of these measures is not needed if computed networks have 

identical size (i.e. nodes, see Tewarie et al., 2014). 

 

MST prevents the imposition of thresholds as well as a normalisation process involving 

random surrogate networks that often leads to biases in network analysis and the 

subsequent comparison between participants (Boersma et al., 2012; van Wijk et al., 2010). 

As a result, MST network analysis provides a more structured way to construct networks 

from neurophysiological data. By constructing trees using a set number of nodes, this 

approach ensures an unbiased comparison of networks. Information contained in MSTs is 

believed to capture the most important connections retained from the original network. As a 

result, trees are believed to represent ‘information highways’ (Tewarie et al., 2014; van 

Dellen, et al., 2013). The use of conventional graph-theoretical approaches, such as small-

world properties, along with bias free minimum spanning tree analysis, to characterise local 

and global organisation of complex functional networks provided further support for a novel 

strategy of investigating large-scale functional organisation. 

 

Hence, despite discarding connections while constructing MST, this thesis showed that MST 

measures are as sensitive to alterations in network change as conventional graph measures. 

However whilst MST offered a bias free novel approach to investigate network topology, 

further research is needed before MST can be applied as a substitute for a conventional 

graph- theoretical approach. In addition, the reliability of MST measures was not assessed in 

this study. This is because unlike graph-based measures, MSTs are mathematically 

quantified to reflect the more important network properties, and as a result can withstand 
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connectivity noise and potential dependence on network size (Tewarie et al., 2014). 

However, future studies would benefit from examining the reproducibility of these measures. 

 

In addition, whilst the application of MST has several advantages over conventional graph 

network analysis, with MST analysis it is not possible to determine local network efficiency 

because segregation measures, most notably clustering, are not easy to assess in MST 

trees (Tewarie et al., 2014), This indicates that the graph analysis, specifically measures of 

local efficiency such as clustering and modularity, are crucial as they provide insights on 

local connectivity. It would therefore make sense that future studies, while acknowledging 

the limitation of graph theory, do not ignore the fact that with this approach one can assess 

local network efficiency, which is not as straightforward with MST. 

 

Related to network measures, only a few graph and MST measures were considered in the 

research reported in this thesis. For graph-based networks, efficiency was examined using 

clustering, path length, and small worldness, whilst for MST global efficiency was examined, 

based on leaf-number, diameter, hierarchy, and eccentricity. However, as explained in 

Chapter 3, many of these measures are highly correlated with each other. A decision was 

therefore taken to only focus on measures that have been extensively investigated in other 

psychiatric conditions and shown to contained predictive information regarding network 

efficiency. In the future, studies will benefit from considering several other measures using 

explanatory analysis.  

 

Sample size issues 

 

The samples sizes for some of the studies were small. Also for the first experimental study 

(Chapter 3), a high dropout was experienced. For Experimental Study 1, the study was a 

repeated design. Although students were awarded course credits, this did not apply to the 

postgraduate volunteers. In the future, an incentive (e.g. a raffle draw) might encourage 

volunteers to complete both parts of the study.  

 

In addition, sample sizes, particularly in the clinical groups, were limited. As a result, the 

effects of variables such as medication, gender, age, handedness, and clinical ADHD sub-

types were not taken into consideration. Previous studies (Boersma et al., 2013; Gong et al., 

2009) have reported that factors such as gender play a crucial role in network organisation. 
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These studies reported that women and girls showed higher whole-brain connectivity and 

often the organization of their networks was more efficient. Future studies examining the 

clinical potential of network variables will therefore benefit from larger and more diverse 

samples, where the effect of aspects such as medication, gender, and age can be 

investigated. It would also be beneficial to design longitudinal or follow-up studies to 

investigate whether network analysis (both graph theory and minimum spanning tree) is able 

to successfully predict outcome in cohorts with both single and comorbid developmental 

disorders. Further, to confirm whether network measures are clinical endophenotypes of 

atypical development, future studies would also benefit from investigating network efficiency 

in the unaffected siblings of children with neurodevelopmental conditions. 

 

Study design 

 

The research reported in this thesis was cross-sectional. It is therefore not possible to 

conclude from the results whether observed network disturbances persist throughout 

development, or whether reorganization of functional networks has a time scale or limit. 

From these results, it is therefore not possible to predict the long-term outcome of identified 

disrupted network communication in the context of cognitive deficits and behaviour 

functioning. To build upon the research presented in this thesis, future studies have three 

tasks. First, they should conduct longitudinal studies, to determine the progress of 

disturbances in network function; second, they should use larger samples, and third, they 

should examine whether functional network alterations measures are specific enough to 

reliably differentiate those with neuropsychiatry conditions from controls.  

 

Neural oscillations 

 

As with most neuropsychological and region-specific imaging studies, one is inclined to 

question the specificity of the altered network parameters and neural oscillations reported in 

this thesis. Are these specific to ADHD and dyslexia? In addition, if they are not, does that 

imply that their potential clinical utility as biomarkers for atypical neurodevelopment is 

reduced? In neurodevelopmental conditions, similar altered underlying neurotransmitter 

systems and brain regions have been reported. For instance, in neuropsychiatry altered 

global network efficiency in beta oscillations have been shown to be associated with several 

neuropsychiatric populations, such as those with schizophrenia. This suggests dysfunctional 
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underlying neurotransmitter systems of beta oscillations. While a finding such as this no 

doubt reduces potential specific clinical relevance, it does however help explain symptom 

overlaps in many neuropsychiatry conditions that are sometimes difficult to determine using 

behavioural measures.  

 

Although the norm is often to study ‘pure’ disorder conditions, the research presented in this 

thesis suggests that similarities in underlying network efficiency may be important to 

enhance understanding of why conditions that appear behaviourally different, such as ADHD 

and dyslexia, co-occur more often than is expected by chance. For this reason, future 

studies will benefit from conducting research among clinical groups that co-occur frequently 

or present with similar behavioural phenotypes. In neurodevelopmental disorders, co-

morbidity is the rule rather than the exception, hence investigations of groups such as the 

one presented in Chapter 6, are important.  

 

Furthermore, one of the main findings of the research presented in this thesis suggested that 

network efficiency varied depending on frequency band. This indicates that neural 

oscillations are well suited for further investigation of network efficiency as potential markers 

of atypical development. Given that much research has already been conducted to 

determine the underlying mechanisms that generate oscillations, further research would 

therefore benefit more from using imaging techniques that enable an investigation of network 

properties across both slow and fast neural oscillations.  

 

However, it is also important to consider that a possible explanation for differences in 

network efficiency derived from the resting-state condition could be that the resting-state 

condition in children with atypical neurodevelopment is fundamentally dissimilar from that of 

controls. By definition, for instance, children with ADHD are inattentive. Perhaps even under 

resting conditions, underlying spontaneous brain activity is different. While this is a 

theoretical possibility, instructing children in this study to remain still during scanning was no 

more difficult for children with developmental conditions compared to controls. Therefore, it 

is an inference that the results observed were due to genuine biological differences between 

those groups. 
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7.4. Conclusion 

 

Graph theory has proved useful for investigating the neural correlates of some 

neuropsychiatric disorders, where a key feature of the behavioural and cognitive problems 

experienced is as an effect of disrupted communication within and between brain networks. 

In those neurodevelopmental disorders where diagnosis is based on measures related to 

behavioural and cognitive tasks, a consistent set of measures of the underlying biological 

mechanisms would hold promise as a clinical tool. The research reported in this thesis was 

able to reliably validate test-retest reproducibility of graph metrics prior to their application in 

addressing typical and atypical neurodevelopment. The results revealed that connectivity 

strength and network variables estimated in eyes-closed rest conditions generated more 

reliable metrics. As a result, subsequent studies computed network measures in this 

condition. To understand the nature of the underlying physiological mechanisms in atypical 

development, the research in this thesis first sought to determine the functional network 

topology in typical volunteers. The results revealed that graph analysis and MST were able 

to capture network changes in typical development in high frequency beta and gamma 

ranges. The utility of these approaches was also demonstrated in the clinical populations 

studied. More importantly, from the results in each chapter (See discussions) it was possible 

to establish associations between network efficiency and brain volumes integrity. As a result, 

speculative suggestions were made that changes in functional networks may correspond to 

typical and/or atypical development of physiological mechanisms. In addition functional 

network variables correlated with behavioural and cognitive functioning, indicating the 

potential clinical relevance of altered functional network organisation in atypical 

development. 

 

In conclusion, the application of mathematically based computational approaches, to 

quantify neurophysiological disruptions of whole-brain functional connectivity and network 

activity, proved useful in increasing insight into many underlying pathophysiological 

mechanisms that characterise neurodevelopmental conditions. The results offered support to 

the proposition that measures of network organisation, derived from sensor-space MEG 

data, offer qualified, but informative insights in helping analyse the biological bases of typical 

brain maturation and neurodevelopmental conditions, with a further possibility of future 

clinical utility. It has been suggested that the functional networks in higher frequencies, 

particularly the beta band, may function as vital markers or even ‘fingerprints' for untangling 
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the underlying neurobiological risk factors of atypical development and corresponding 

cognitive and behaviour impairments. Moving to a more objective biologically driven 

measure seems vital for improved assessment of neurodevelopmental disorders. This can 

be seen as a promising future for applied neuroscience, and has already commenced in 

ADHD diagnosis in the USA, where in 2013, the Food and Drug Administration (FDA) federal 

agency approved the marketing of the Neuropsychiatric EEG-based Assessment Aid 

(NEBA), an instrument that provides a measure of the theta/beta ratio, shown to discriminate 

between those with ADHD and controls. The results reported in the current study suggest a 

potential utility of functional network topology alongside conventional diagnostic measures. 

However, the first scientific step should be to attempt to replicate the results reported in this 

thesis using larger cohorts.  
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Appendices 

 

Although results in Chapter 3, revealed that non-normalized/first-order metrics (CW and LW) 

were highly robust, these metrics do not represent ‘pure’ measures of network topology 

(Stam et al., 2009). This is because they are more likely to be affected by changes in the 

average coupling strength (i.e. average phase lag index), (Boersma et al., 2012), whereby 

lower average coupling strength results in decreased CW, and longer LW, regardless of 

network structure (Stam et al., 2009). When placed in the context of ADHD (See Figure 5.1) 

where, lower whole-brain connectivity was revealed in the beta band, this would mean that 

non-normalised Cw would low and LW would be high in ADHD compared to typically 

developing controls (TCD). This was in fact confirmed (See appendix A.1). For this reason, 

we were justified in focusing on normalized CW and LW. 

 

Appendix A.1 

 
 
 

Bar graphs demonstrate mean group differences for the beta band in A) mean clustering coefficient 

and B) characteristic path length derived from the original networks. Error bars are ± 2 SE, standard 

error. Topological parameters using non-normalized metrics revealed that local clustering was lower 

in children with ADHD while path length was significantly higher * p < .05, ** p < .01. Key: ADHD 

= attention-deficit/hyperactivity disorder, TDC = typically developing controls. 

 

 

 

 

 

Figure A. 1 Non-normalised clustering and path length graph metrics 
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Appendix A.2 

 
 
 
 
Results of small-worldness in controls and children with developmental conditions. Though 

not statistically significant (α level of 0.5), the Kruskal-Wallis H test revealed a trend towards 
differences in small-worldness between the four groups in the gamma band. Error bars are ± 

2 SE, standard error. Key: ADHD = attention-deficit/hyperactivity disorder, and TDC = 
typically developing controls 

 

Appendix A.3. Regional differences in theta connectivity strength in dyslexics, 

ADHD and those with heterogeneous phenotypes 

 

Analysis was restricted to frequency range where significant results were observed in post-

hoc comparisons (See Figure 6.1). For Chapter 6, this was in the theta. Post-hoc 

comparisons revealed that mean whole brain connectivity theta connectivity was significantly 

higher in the dyslexic group compared to controls, those with ADHD and with comorbid 

conditions.  

 

Inter and intra hemispheric resting-state brain functional connectivity  

 

The justification for this type of analysis was motivated by the possibility that local problems 

(i.e. sensor clusters) might reveal problems in areas previously considered unaffected, which 

Figure A. 2 Small-worldness organisation in controls and 
children with developmental disorders  
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may intern affect global network function. Magnetometers were grouped into the four 

classical cortical regions of interest (excluding the midline sensors) for the left (L) and right 

(R) hemisphere, consistent with a previous approach reported by Stam et al. (2009). The 

remaining 96 magnetometers roughly corresponding to frontal (11L, 11R), temporal (12L, 

12R), parietal (13R, 13L) and occipital (12R, 12L) in the right and left hemisphere were 

computed.  

 

 

 
 
A schematic illustration of sensors grouped to represent 8 cortical regions. Key: L = left, R = 

right, F =frontal, T = temporal, C = occipital, P = parietal. 
 

The Kruskal-Wallis H test showed that there was a statistically significant difference in 

standardised mean phase lag index values between the three groups in the left frontal-

temporal regions (H(2) = 6.83, p <. 05) and a trend towards differences in right frontal-

temporal magnetometer sensors, (H(2) = 6.0, p >.05). Post-hoc comparisons of left frontal-

temporal magnetometer sensors revealed significant differences between children with 

ADHD and those with dyslexia (U = 878.50, z = -2.56, p <.01), but not between those with 

ADHD and comorbid conditions (U = 447.5, z = -1.54, p >.05), or dyslexic readers and those 

comorbid conditions (U = 578.5, z = -.51, p >.05).  

 

 

Figure A. 3 Topological illustration of the schematic view of 
magnetometers sensors grouped in the four classical regions 



235 
 
 

 

 

 
 

 
The y-axis represents mean population standardised z scores for long-distance functional 

connectivity strength, whilst the x-axis represents hemispheres. Graphs A and B are regions 
where connections have been reported to be altered in dyslexia, while C and D are 

implicated in ADHD. Error bars are 2 ± SEM. Kruskal-Wallis H tests (*p <.05). 

Figure A. 4 Theta band long-distance functional connections in children with 
dyslexia, those with ADHD and those with comorbid conditions 




