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Abstract. In this paper the effects of introducing novelty search in evo-
lutionary art are explored. Our algorithm combines fitness and novelty
metrics to frame image evolution as a multi-objective optimisation prob-
lem, promoting the creation of images that are both suitable and diverse.
The method is illustrated by using two evolutionary art engines for the
evolution of figurative objects and context free design grammars. The
results demonstrate the ability of the algorithm to obtain a larger set of
fit images compared to traditional fitness-based evolution, regardless of
the engine used.
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1 Introduction

Computational Creativity research posits that an answer to a problem is con-
sidered creative if it is both useful and novel3 [1]. Although this definition is not
consensual [2], it is the one that better fits the scope of this work. Bearing this
in mind, and applying it to images, it was proved that expression-based evolu-
tionary art, introduced by Sims [3], is theoretically able to generate any possible
image [4, 5]. In practice, however, the images generated by a given system tend
to share the same overall appearance.

Previous works on evolving figurative or ambiguous images have focused on
using an expression-based approach [6–9]. Although they achieved interesting
results in terms of recognizability of the desired object(s), an important draw-
back revealed by the analysis of these works is that there are runs where the
evolutionary algorithm is not able to evolve images that meet the requirement
of resembling the desired object(s). Moreover, there are some runs which are
able to generate those images, but the results tend to be very similar to each
other, as a consequence of the evolutionary algorithm’s convergence towards an

3 In the context of the present paper, novelty means phenotypic diversity.



optimum. Problem deceptiveness or lack of explicit diversity exploration can be
the explanation for these shortcomings.

When evolving Context Free Design Grammars (CFDGs)[10], the grammar
representation expressiveness allows the creation of different individuals [11]. As
such, CFDGs are capable of generating a family of solutions by combining a
small set of production rules. However, during the evolutionary process, after
a few generations individuals tend to converge towards an optimum, i.e., most
individuals of the final population will share common genetic background and
thus will tend to produce similar visual artifacts.

The work described here takes as its starting point these results and analysis,
aiming to address the aforementioned shortcomings by proposing an algorithm
that takes both novelty and fitness into account. Adopting the traditional defini-
tion of creativity, fitness stands for usefulness and phenotypic diversity stands for
novelty. The algorithm proposed herein is used to evolve images in two different
domains: figurative images and CFDGs. In both cases, when canonical fitness-
based evolution is used, the last generations suffer from a lack of diversity. By
incorporating novelty-based mechanisms into evolution we expect to increase
diversity. The goal of this work is to propose a novelty search algorithm for
evolutionary art purposes, and to analyse its capability to generate diverse and
fit images, comparing, for each problem, the traditional fitness-based evolution
with one that also takes novelty information into account.

The remainder of this paper is structured as follows. Section 2 surveys the
state of the art regarding novelty search algorithms; Section 3 describes the
proposed algorithm that will be applied to two different problems in Sections 4
and 5. Experimental setup, results and their analyses are focused upon in Section
6. In Section 7 conclusions are drawn and future work is addressed.

2 State of the Art

Novelty search has become a trending topic in optimisation problems, where it
has been used in fields such as robotics [12–14] and arts [15, 16]. Even before the
first formalisation of a novelty search algorithm, by Lehman and Stanley [17],
there were already reports in the literature concerning the evolution of images
using a novelty metric [18]. In the work of Saunders et al. [18], the novelty con-
cept is mathematically modeled according to an interestingness definition based
on two factors: (i) the ability to create artifacts out of the box (unexpectedness)
and (ii) the feasibility of taking an action as a consequence of the discovery
(actionability) [19]. This metric is then used in the context of an Evolutionary
Algorithm (EA) designed to evolve novel imagery artworks. In essence, these
abstract images were generated using an EA, in which the evaluation was per-
formed by an agent in two steps. First, a self organizing map (SOM) [20] is used
to determine the category where an image best fits. The novelty is computed
as the classification error of an image being associated to the best category.
The second step consists in applying the interestingness function, computing
the interest of each image, given its novelty degree.



As mentioned before, the more recent concepts of novelty search follow the
steps of Lehman and Stanley’s work, which propose a novelty search algorithm
that aims at valuing each image’s uniqueness. For each individual, a novelty score
is computed, taking into account its neighbours and an archive containing the
most novel individuals. Each novelty score computation requires a phenotype
comparison, using a dissimilarity metric, between the individual being evaluated
and a set of neighbours chosen from the population and the archive. Then, the
novelty score for the individual being evaluated (indeval) is defined as the average
of the dissimilarity scores of the k most similar neighbours, as in:

nov(indeval) =
1

k

k∑
j=1

dissim(indeval, indj), (1)

where dissim denotes the chosen dissimilarity metric, and j the j-th most similar
individual (indj) when compared to indeval.

In order to enable the use of novelty search techniques for constrained prob-
lems, Stanley and Lehman proposed the Minimal Criteria Novelty Search (MCNS)
algorithm [21]. The idea of employing novelty search per se is not suitable for
this kind of constrained problems because the function used to evolve individ-
uals enhances diversity without any boundaries and hence, creates unsuitable
solutions. Therefore, MCNS tries to tackle this problem by decimating the pop-
ulation, i.e., any valid solution would be evaluated using the respective novelty
function and unsuitable solutions would be assigned zero fitness.

Liapis et. al based their work on MCNS [22]. Although MCNS does not favour
the creation of unsuitable solutions, the idea of decimating a population means
that one is assigning the same value (zero) to all unsuitable solutions. As the
initial generations of EAs usually hold lots of unsuitable solutions, the selection
process would become similar to a random search. This drawback becomes more
evident if the problem that one is trying to solve is highly constrained. In or-
der to tackle this disadvantage, Liapis et. al proposed two solutions based on
the feasible-infeasible two-population genetic algorithm (FI-2pop GA) [23]. In
essence, the idea of FI-2pop GA is to evolve valid solutions and unsuitable solu-
tions as if they are two different populations. However, there can be exchanges
of individuals between populations, because a valid solution can become unsuit-
able and vice-versa. The two solutions proposed were: (i) a feasible-infeasible
novelty search (FINS), which consists in evolving the feasible population with
novelty search as in the work of Lehman and Stanley[17], while evolving the
infeasible one with the goal of minimising each individual’s distance to the fea-
sibility border, and (ii) a feasible-infeasible dual novelty search (FI2NS), which
consists in applying novelty search as in [17], in both populations separately,
using two different novelty archives. Their results suggest that both solutions
are superior to the MCNS performance but, while FINS is able to get feasible
individuals within a lower number of generations, FI2NS creates a more diverse
set of feasible solutions.

Despite the good performance of novelty approaches, authors tend to point
out their lack of ability to maintain good performance in problems with big



search spaces. The rationale is that novelty approaches saturate the search space,
until they eventually get a reasonable or optimal solution. However, in big search
spaces this saturation is much harder to achieve, and the solutions will fail to
reach an optimal solution or, in an optimistic scenario, the desired solution is
found after a large number of generations. This problem motivated the develop-
ment of hybrid mechanisms, which use both fitness and novelty-based functions
to guide evolution. Within this scope, we highlight three works: [12, 24, 14].

In Krcah et al. [12], novelty search is applied during a predefined number of
generations, and the remainder of the process is performed with a goal-based
evolution. Although it is a simple solution, it will not avoid a later convergence
to a local optima. In Cuccu et al. [24], novelty and fitness are merged using a
weighted combination approach. This solution requires prior knowledge about
the weight values, which depend on the domain. Finally, Mouret et al. [14] used
a Pareto-based multi-objective evolutionary algorithm to combine fitness and
novelty, in order to help a robot which is subject to a maze navigation task.
Even though it is an interesting idea, preliminary tests indicate that it is not
appropriate in an evolutionary art context since finding phenotypically diverse
images is significantly easier than finding fit images and the search space is vast.
Thus, in this conditions evolution will produce a seemingly endless stream of
images that are “novel” but not fit.

3 Proposed Algorithm

In this section, a new novelty search algorithm is proposed, designed to evolve
a diverse set of suitable images. Therefore, the main goal of this algorithm is to
generate a more phenotypically diverse set of images than the set that would
be created by a traditional fitness based EA. In essence, it is a method capable
of evolving images according to two criteria that are chosen automatically by
analysing the quality of the images produced in each generation. One criterion is
to look for the best images according to a fitness function and the other consists
in taking novelty and fitness as two different objectives to be maximised. As
previously mentioned, considering fitness or novelty alone is not suitable for the
problem at hand [25].

The algorithm’s flowchart is similar to the traditional EA one, differing only
in two main aspects: (i) the creation of an archive to store the most novel solu-
tions and, (ii) a customised selection mechanism which is able to consider single
or multiple objectives using a tournament based strategy. The algorithm’s flow
is shown in Figure 1, and can be summarised as follows:

1. Randomly initialise the population;
2. Render the images (phenotypes) from the individuals’ genotypes;
3. Apply the fitness function to the individuals;
4. Select the individuals that meet the criteria to be in the archive (archive

assessment);
5. Select the individuals to be used in the breeding process. The individuals

are picked using one of the following criteria: (i) according to their fitness,
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Fig. 1: Flow of the hybrid algorithm proposed.

as a standard EA; (ii) taking into account both the fitness and the novelty
metric, computed using the archive members;

6. Employ genetic operators to create the new generation of solutions, that will
replace the old one;

7. Repeat the process starting from step 2, until a stop criterion is met.

3.1 Archive Assessment

In this work, the archive has an unlimited size and it plays an important role,
because it is used to evaluate our solution and prevents the algorithm from
exploring areas of the search space already seen before. The idea is that the
archive should represent the spectrum of images found to date, and for this
reason, the bigger the archive is, the more capable is the algorithm of generating
suitable and diverse images. Whereas in the previously mentioned works the
archive size is limited, we opted for not restricting it.

At this stage, a candidate individual has its fitness assigned and it has to
meet two requirements in order to be added to the archive: (i) its fitness must
be greater or equal than a threshold fmin, defined by the user; (ii) it needs
to be different from those that already belong to the archive. This process is
performed by computing the average dissimilarity between the candidate and a
set of k-nearest neighbours. When the average dissimilarity is above a predefined
dissimilarity threshold, dissimmin, the individual is added to the archive. The
dissimilarity metric for an image i is computed as:

dissim(i) =
1

maxarch

maxarch∑
j=1

d(i, j), (2)

where maxarch is a predefined parameter which represents the number of most
similar images to consider when comparing with image i, and d(i, j) is a distance



metric that measures how different two images (i and j) are. From this dissimi-
larity measure there are two exceptions that should be highlighted. If there are
no entries in the archive, the first individual that has a fitness above fmin is
added. Moreover, if the number of archive entries is below maxarch, Equation 2
is used with the number of archive entries instead of maxarch.

3.2 Selection Mechanism

The selection mechanism is important to shape how evolution will proceed, de-
pending on the results obtained in a given generation. Our novelty approach
has a customised selection mechanism which can switch between a fitness-based
strategy and a hybrid mechanism that considers both fitness and novelty. It
starts as a fitness guided evolution; however, that can change according to a
decision rule, which is described as:{

change to fitness, feasibleinds < Tmin

change to hybrid, feasibleinds > Tmax,

where feasibleinds is the number of individuals of the current generation that
have a fitness above the threshold fmin, Tmin is the threshold used to verify if
evolution should be changed to fitness, and Tmax is used to verify if it should be
changed to hybrid.

In fitness guided evolution, the tournament selection is based on the fitness
values of the candidate solutions, as in a standard EA. If hybrid evolution is
chosen, it is necessary to compute the novelty of each selected individual, and
perform a Pareto-based tournament selection, using the novelty and fitness of
each selected individual as two different objectives to maximise.

The novelty computation process is inspired by Lehman and Stanley’s work,
as described in Equation 1, with one small change: the k most similar images
are considered from the set of the selected individuals and the archive, instead
of considering the whole population and the archive. An example of this novelty
computation is illustrated in Figure 2. In Figure 2, considering k = 4 and a
tournament size of 5, the dashed lines denote the chosen individuals to compute
novelty, and it is possible to see that from the 4 nearest individuals picked, 3
were chosen from the tournament while the remaining one was chosen from the
archive.

At this stage, each selected individual has a fitness and novelty value, and
there is the need to determine the winner of the tournament. This process is
inspired by multi-objective EAs, namely the Pareto-based approaches, which
select the best individuals based on their dominance or non-dominance when
compared to other individuals [26]. In this work, the hybrid tournament selec-
tion determines the non-dominant solutions by comparing, among the selected
individuals, on the basis of both fitness and novelty. After computing the set of
non-dominant individuals, we have the so-called Pareto front. The tournament
winner will be selected by randomly retrieving one of the solutions of the Pareto
front.
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4 Evolving Figurative Images

One of the problems for which we decided to apply the proposed algorithm was
the evolution of figurative images. In this problem, an expression-based approach
is used to build the individuals’ genotypes and the evolution is guided with the
help of an external object classifier. Previous works tackled the evolution of
singular objects such as faces, lips, leaves or flowers [6–8], and the evolution of
several objects at the same time, attempting to create ambiguous images [9].

For this work, we used the geNeral purpOse expRession Based Evolutionary
aRt Tool (norBErT), which is able to evolve figurative images using several
evolution strategies [25]. It uses a tree representation to encode individuals and
create images from those trees, using a rendering process which consists in gen-
erating an output value for each image pixel, which represents its colour.

For the fitness assignment task, an object detector is used to assess the
images’ quality. This object detector is a cascade classifier based on the work
of Viola and Jones [27]. The architecture of this cascade classifier is shown in
Figure 3. The cascade classifier is composed of several stages and each stage
tests the presence of a group of low level features (Local Binary Pattern features
[28]).

The fitness function is built by obtaining internal information from the cas-
cade classifier and combining them as follows:

f(x) =
∑cstagesx

i (stagedifx(i)× i) + cstagesx × 10, (3)

where cstagesx is the number of stages that an image x passed and stagedifx is
the difference between the score obtained in a given stage by an image x and the
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threshold necessary to pass that stage. The detailed description of the problem
of evolving figurative images, and specifically the object detection method and
the classifier training process can be found in [6].

5 Evolving Context Free Design Grammars

In the last section we studied how novelty search mechanisms can be applied for
the evolution of figurative images. Aiming at better understanding the impact
of novelty mechanisms applied to a broader scope of evolutionary algorithms,
we applied this kind of procedure to a different environment, which works as a
proof of concept for the ability of the methodology to properly evolve solutions
under different domains.

Taking into account the previous statements, we address the evolution of
CFDGs [10], which, in simple words, are a powerful way of generating images
through a compact set of rules (for full description check [10]). CFDGs are
mapped into images by using a software tool named Context Free Art [29].

The evolutionary engine used for this task is an extension of the one discussed
in [30] and [31], which has been generalised, in order to enable it to deal with
every domain that can be represented by means of a formal grammar (in the
Backus-Naur Form). It is thoroughly described in [32] and the application to
the domain of CFDGs, along with a large set of comprehensive experiments, is
detailed in [11].

The purpose of the engine is to evolve individuals expressed from grammar
formulations. In essence, a grammar is formed by a 4-tuple: (V,Σ,R, S) where:
V is a set of non-terminal symbols; Σ is a set of terminal symbols; R is a set
of production rules that map from V to (V ∪ Σ)∗; S is the initial symbol. Ad-
ditionally, grammars can also be considered augmented, because we allow the
specification of parameters in the calls to terminal and non-terminal symbols.
One can also say that the grammars are non-deterministic, because it is possible
to define the same non-terminal symbol more than once. When several produc-
tion rules are applicable, one of them is randomly selected and the expansion



startshape Edera 
 
rule Edera {
     CIRCLE    {s 5}
     Ciglio    {}
     Edera     {x -5 y -1 s 0.90} }
 
rule Ciglio {
     SQUARE    {hue 200 sat 0.5}
     Pelo      {r 5 hue 200 sat 0.5}
     Ciglio    {y -1 r 0.5 s 0.998 b 0.005} }
 
rule Ciglio {
     SQUARE    {hue 200 sat 0.5}
     Pelo      {r 5 hue 200 sat 0.5}
     Ciglio    {y -1 r 0.5 s 0.998 b 0.005 flip 90} }
 
rule Ciglio .008 {
     SQUARE    {hue 200 sat 0.5}
     Pelo      {r 5 hue 200 sat 0.5}
     Ricciolo  {y -1 s 0.998 b 0.005} }
 
rule Ricciolo {
     SQUARE    {hue 200 sat 0.5}
     Pelo      {r 5 hue 200 sat 0.5}
     Ricciolo  {y -1 r 3 s 0.998 b 0.005} }
 
rule Ricciolo .005 {
     SQUARE    {hue 200 sat 0.5}
     Pelo      {r 5 hue 200 sat 0.5}
     Ricciolo  {y -1 r 3 s 0.998 b 0.005 flip 90} }
 
rule Pelo {
     CIRCLE    {s 5 0.1} }

Ciglio

Ciglio

Ciglio

Ciglio

Ricciolo

Ricciolo

Ricciolo

Edera

Pelo

Fig. 4: CFDG adapted from www.contextfreeart.org/gallery/view.php?id=165 to-
gether with examples of images produced by its rendering.

proceeds. Figure 4 depicts an example of a CFDG and several images that can
result thanks to the probabilistic nature of its associated rendering algorithm.
More information regarding representation and genetic operators for CFDGs can
be found in [11, 32].

To test the influence of novelty in evolution, we adapted the methodology
described in Section 3 to this evolutionary engine. To assess the quality of each
individual we use a combination of aesthetic measures: contrasting colours [11]
and Bell Curve fit. Bell Curve fit [33] is based on the observation that fine-
art works tend to exhibit a normal distribution of colour gradients. Thus, we
calculate the deviation from the Gaussian normal distribution of colour gradients
of the individuals. Contrasting colours counts the number of colours present in
an image, discarding similar ones. Therefore, the engine aims at promoting the
evolution of images that depict a wide range of colours, possessing a normal
distribution of their gradients.

6 Results

In the current section, we describe the set of experiments that were conducted
using the two different engines summarised in Sections 4 and 5, respectively
for the evolution of figurative images and CFDGs. In Section 6.1 we present
the setup used for each problem, while Section 6.2 details the results. For each
problem, we compare the performance of a standard fitness evolution approach
and our proposed algorithm, which takes novelty into account.



Table 1: Exerimental parameters.

Parameter Figurative Images CFDGs

Number of runs 60 30
Number of generations 500 500
Population size 100 100
Image size 64× 64 128× 128
fmin Flower detected 0.52
dissimmin 20% 20%
Dissimilarity metric RMSE4 RMSE
(Tmin, Tmax) (2, 15) (2, 15)
maxarch 5 5

6.1 Experimental Setup

Table 1 specifies the parameters used to perform the experiments for evolving
figurative art images and CFDGs. We performed 30 runs for the problem of
evolving CFDGs and 60 runs in the evolution of figurative images.

The evolution of figurative images sometimes results in an empty archive.
Therefore, a larger number of runs were needed to ensure a sufficient number of
runs with non-empty archive. The entry condition for the archive is different in
the two cases. In norBErT, classifiers are used to detect objects and therefore, a
feasible solution would be one that contains an object. In the current section, we
conducted tests aiming to get images that resemble flowers. In the case where
CFDGs are evolved, a fitness threshold is defined for feasible solutions (in the
current scenario, 0.52, which was empirically determined).

The remaining parameters, i.e., those specific to the evolution of figurative
images and CFDGs can be found, respectively, in [25] and [32].

6.2 Results

The experiments serve as basis for comparing fitness-based and hybrid guided
evolutions for figurative images and CFDGs. For both domains, we use the av-
erage fitness of the best individuals (Figure 5), archive sizes (Figure 6) and
populational RMSE (Figure 7) as comparison metrics. The evolution towards
feasible zones of the search space – i.e., containing images recognized as flowers
when evolving figurative images, or with a fitness above the considered thresh-
old when evolving CFDGs – was observed in both problems. However, there is
clearly a difference between the two problems in terms of difficulty. While in the
evolution of CFDGs the fmin constant is determined empirically and based on
subjective options, in the evolution of figurative images the constraint is more
difficult to match, as images need to resemble an object. Figures 6 and 7 highlight
this situation, as the archive sizes are higher in the CFDGs case and populations
are more diverse. This suggests that, when evolving CFDGs, feasible zones of
the search space are more accessible.

4 RMSE stands for Root Mean Squared Error.



0

0.2

0.4

0.6

0.8

1

No novelty Novelty

0 100 200 300 400 500

←
  F

IT
N

ES
S 

 →

0

0.2

0.4

0.6

0.8

1

No novelty Novelty

0 100 200 300 400 500

←
  F

IT
N

ES
S

  →

Fig. 5: Evolution of fitness across generations. On the left for figurative images (averages
of 60 independent runs), on the right for CFDGs (averages of 30 independent runs).
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Fig. 7: Evolution of population dissimilarity across generations. On the left for figurative
images (averages of 60 independent runs), on the right for CFDGs (averages of 30
independent runs).

Regardless of the difficulty of the problem, we aim to demonstrate that the
proposed hybrid algorithm is able to outperform the fitness-only approach in
terms of generating diverse images, with some cost associated in the evolutionary
process, due to additional similarity calculations and possibly more generations
needed for convergence.



Concerning the behaviour of fitness, we analysed how best fitness evolves
over the generations (see Figure 5). Results are normalised, by dividing by the
best fitness value found throughout all evolutionary runs. The differences in the
evolution of figurative images are too small to be seen. In the CFDGs case, the
hybrid algorithm has more difficulty to converge towards its best solution, as the
difference in convergence between generation 25 and 250 shows. After generation
250, fitness values from both hybrid and fitness evolutions become very close.
This is due to the fact that evolving using a novelty metric blurs the search for
the fittest individuals. The evolution process can thus move towards new areas,
allowing us to get more unique individuals, at the cost of lower fitness values. Our
main goal is not to maximize fitness per se, instead, we are interested in obtaining
good individuals (the ones that are above fmin) that are as different from each
other as possible. The impact of using a novelty metric in our hybrid algorithm
in terms of number of good and unique individuals (those that enter the archive)
varies according to the problem difficulty. Figure 6 makes the previous statement
clear, by highlighting the huge difference between the archive sizes of the two
problems, also indicating this way that the evolution of figurative images is
harder than CFDGs.

In both cases, the use of novelty metrics in the hybrid algorithm, represented
by the darker line, clearly favours the growth of the archive. The difference
between fitness-based and hybrid evolution is larger in the case of the simpler
problem, where it is possible to get, on average, roughly 360 additional diverse
images per run when using the hybrid algorithm. In the case of evolving figurative
images, the difference is noticeable but smaller (approximately 3 images).

We have established that novelty search results in larger archives, but we
do not know how the algorithm proceeds in terms of phenotypic diversity in a
broader scope. In order to analyse how similar the population is over genera-
tions, we used the RMSE metric to measure diversity at a population level, by
computing the difference between every pair of individuals. As the results de-
picted in Figure 7 show, for both evolutionary engines, the population diversity
using novelty is higher than without it. Since the data does not follow a normal
distribution, we use the non-parametric Wilcoxon signed-rank test. All the tests
were performed with a confidence level of 95%, and confirm that all the dif-
ferences reported herein are statistically significant. Moreover, almost across all
the generations, the difference between the population RMSE, with and without
novelty is higher when evolving CFDGs. This can also be attributed to the fact
that it is easier to evolve CFDGs than figurative images.

When evolving figurative images, diversity with novelty converges faster (ap-
proximately to 0.14) than when evolving CFDGs, which seems to increase till
approximately 0.31. This is expected due to the nature of the problems and to
the parameters that were chosen. While evolving figurative images, tournament
changes from fitness only to hybrid are much more frequent than when evolv-
ing CFDGs. That also explains why at the beginning the diversity of CFDGs
decreases. Initially, it is necessary to generate the minimum number of feasible
solutions (CFDGs superior to a defined threshold of fitness), sacrificing diver-



Fig. 8: Archive of a run evolving figurative images guided only by fitness.

Fig. 9: Archive (sampled) of a run evolving figurative images with the hybrid method.

Fig. 10: Archive of a run evolving CFDGs guided only by fitness.

Fig. 11: Archive (sampled) of a run evolving CFDGs with the hybrid method.

sity. Until the archive has at least one entry, the two methods are practically
identical. Then, after changing to hybrid evolution, the novelty metrics promote



an increase in population diversity, which is also noticeable by the growth of the
archive, depicted in Figure 6.

We consider it essential to analyse the results from two different perspectives:
the computational one and the human one. While the former is covered by
the RMSE-based analysis, the latter was explored through a subjective human
analysis. Overall, we can conclude that not only the number of resulting images
in the archive is larger in the cases when we use the hybrid algorithm, but
also that the differences between them are more visually noticeable. This is
confirmed by the archive images of a single representative run starting from the
same initial population of images, using both approaches, for the problem of
evolving figurative images (Figures 8 and 9) and for evolving CFDGs (Figures
10 and 11).

7 Conclusions and Future Work

In this paper we proposed a new novelty search approach within the context of
evolutionary art, and applied it to the evolution of figurative images and CFDGs,
using two different evolutionary engines. Our approach is an hybrid algorithm
with adapted evolution, in the sense that it changes between fitness based and
hybrid evolution, taking into account fitness and novelty as two different ob-
jectives to maximise. Tests were designed to compare the performance of our
novelty search approach with canonical fitness based evolution.

The experimental results show that our algorithm is able to promote the
discovery of a wide set of phenotypically diverse and fit solutions to the problems
considered, outperforming fitness based evolution in terms of the number and
the diversity of the generated solutions.

Next steps to this work include the study of the conditions used to change
the evolution method. At this moment, the method depends on two user-defined
parameters. Choosing the best parameter settings requires some insight from the
user, which may not be easy to obtain. Domain knowledge may be needed to
understand what are the best parameter settings for each problem. We believe
that a self-adaptive mechanism that automatically detects when to change the
evolution method could be beneficial to this work. Additionally, the application
of these techniques to other types of problems, outside the scope of evolutionary
art, is also under way.

Acknowledgments

The project ConCreTe acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET grant number
611733. This research is also partially funded by: Fundação para a Ciência e
Tecnologia (FCT), Portugal, under the grant SFRH/BD/90968/2012. The au-
thors also acknowledge the feedback and provided by the blind reviewers of this
paper.



References

1. Boden, M.A.: The creative mind: Myths and mechanisms. Psychology Press (2004)
2. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive

evolutionary computation. IEEE transactions on evolutionary computation 16(4)
(2012) 523

3. Sims, K.: Artificial evolution for computer graphics. ACM Computer Graphics 25
(1991) 319–328

4. Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence,
Special Issue on Creative Systems 16(2) (2002) 101–119

5. McCormack, J.: Facing the future: Evolutionary possibilities for human-machine
creativity. In: The Art of Artificial Evolution. Springer Berlin Heidelberg (2008)
417–451

6. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images
using expression-based evolutionary art. In: Proceedings of the fourth International
Conference on Computational Creativity (ICCC). (2013) 24–31

7. Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In:
Evolutionary and Biologically Inspired Music, Sound, Art and Design – First Inter-
national Conference, EvoMUSART 2012, Málaga, Spain, April 11-13, 2012. Pro-
ceedings. Volume 7247 of Lecture Notes in Computer Science., Springer (2012)
187–198

8. Machado, P., Correia, J., Romero, J.: Improving face detection. In Moraglio,
A., Silva, S., Krawiec, K., Machado, P., Cotta, C., eds.: Genetic Programming
- 15th European Conference, EuroGP 2012, Malaga, Spain, April 11-13, 2012.
Proceedings. Volume 7244 of Lecture Notes in Computer Science., Springer (2012)
73–84

9. Machado, P., Vinhas, A., Correia, J.a., Ekárt, A.: Evolving ambiguous images.
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