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a b s t r a c t

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including
metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein
phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct
evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox
status on its protein–protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-
reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with
cell lysate to capture interacting proteins. Captured proteins were analyzed by LC–MSMS and com-
paratively quantified using label-free methods. 97 Potential protein interactors were identified, including
a significant number that are novel. The abundance of fourteen interactors was found to vary sig-
nificantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down
and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with
unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the
PTEN interactome. The resin capture method developed had distinct advantages in that the redox status
of PTEN could be directly controlled and measured.

& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

PTEN is a dual specificity phosphatase that has attracted sig-
nificant interest from the biomedical research community over the
r Inc. This is an open access article
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last two decades. The PTEN gene is mutated in many cancers and
its phosphatase protein product has been implicated as a negative
regulator of the PI3K/Akt pathway [1–4]. PTEN dephosphorylates
the signaling intermediate PtdIns(3,4,5)P3 (phosphatidylinositol-
3,4,5-bisphosphate) to PtdIns(4,5)P2 (phosphatidylinositol-4,5-bi-
sphosphate), suppressing the PI3K-dependent signaling cascade
that leads to the activation of the intracellular protein Akt (also
known as protein kinase B, PKB) [5]. The activation of Akt triggers
the signal responsible for the modulation of many cellular func-
tions, including cell cycle regulation, cell growth, apoptosis, an-
giogenesis, protein synthesis, transcription and proliferation [6–9].
It has been reported that PTEN phosphatase activity is inactivated
when treated with oxidizing agents in vitro, as well as in cells
exposed to oxidative stress conditions [10–12]. Reversible in-
activation of PTEN has been shown upon hydrogen peroxide oxi-
dation, which results in the formation of a disulfide bond between
Cys71 and Cys124 in the N-terminal phosphatase domain of the
protein [11]. PTEN protein interactions play an important role in
the function of PTEN beyond its simple phosphatase activity [8],
and it has been suggested that as well as affecting catalytic ac-
tivity, this oxidation of PTEN might also modulate its ability to
interact with its binding partners, thereby affecting downstream
signaling [13]. However, few studies to date have described the
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effect of altered redox status on the signaling pathways and pro-
tein–protein interactions of PTEN.

Several different techniques have been used to characterize the
PTEN interactome over the last two decades, and have produced
both high-throughput and low-throughput data [14–17]. Previous
research in mammalian cells treated with H2O2 has shown in-
creased binding of DJ-1 (also known as Parkinson disease 7,
PARK7) to PTEN, reduction in PTEN catalytic activity, and enhanced
phosphorylation of Akt [18], resulting in increased cell prolifera-
tion and apoptosis. Similarly, the association between thioredoxin
(Trx) and PTEN has been shown to be redox-regulated [19]. Trx
plays an important role in the re-activation of PTEN in vivo after
H2O2 treatment and has been demonstrated to be even more ef-
ficient than glutathione or glutaredoxin in the reduction of oxi-
dized PTEN [10]. The interaction between PTEN and peroxiredox-
in-1 (Prdx1) has also been proposed as a possible mechanism to
protect PTEN from hydrogen peroxide-induced inactivation,
thereby preserving its tumor suppressing function [20]. Generally,
these studies suggest that there could be a correlation between
cellular redox status and the regulation of specific PTEN protein–
protein interactions. This relationship needs to be investigated
further, as such mechanisms are likely to be involved in the
modulation of tumorigenesis and stress-related cellular processes.

Mass spectrometry (MS) methods used in combination with affi-
nity capture-based experiments are a valuable and well-recognized
tool to investigate protein–protein interactions [21]. Along with data
providing evidence of protein identity, accurate information on pro-
tein abundance is also required to generate high-throughput protein–
protein interaction datasets. Methodologies based on in vivo isotope
labeling are a common choice for absolute and relative quantification
of protein–protein interaction data [22] and offer the advantage of
minimal errors in the final quantification, but present a number of
significant limitations, including amenability of certain cell lines to
grow in modified media, labeling-induced artifacts, and limited
availability of required reagents [23]. Recently, label-free methods
have become more popular in the field of LC–MS-based interactomics
[24]. These do not require additional sample manipulation steps, and
represent a fast, straightforward, and relatively cost-effective method
to perform comparative analysis between different protein mixtures
in complex biological samples. New generation label-free in silico
solutions rely on accurate feature intensity-based quantification and
are capable of processing large amount of high resolution data [25].
Over the past few years, complex proteome-wide data such as those
generated from biomarker discovery and protein–protein interactions
studies, have been analyzed by proteomics researchers using label-
free quantification, with accurate and reliable results [26].

We hypothesized that oxidative-induced inactivation of PTEN
would modulate the ability of the protein to bind its interacting
partners, thus altering its interactome. To investigate this, a GST-
tagged fusion PTEN was immobilized on a glutathione-sepharose
resin and challenged with HCT116 cell lysate for the affinity-cap-
ture of the interactions. Using label-free quantitative LC–MS/MS,
we compared the abundance of the binding proteins between
reduced and oxidized PTEN. In addition, the method described
identified a number of putative novel protein–protein interactions
that contribute to shedding a light on the possible involvement of
PTEN in several cellular processes of current interest.
2. Materials and methods

2.1. Reagents

All reagents were purchased from Fisher Scientific (Loughbor-
ough, UK), unless otherwise indicated. All solvents were of LC–MS
grade and Milli-Q water was used at all times. Monoclonal
antibodies against Trx (ab16965) and Anxa2 (ab54771) were pur-
chased from Abcam (Cambridge, UK). Monoclonal antibodies
against Prdx1 (D5G12), DDB1 (D4C8) and PTEN (26H9) were
purchased from Cell Signaling Technology. HRP-linked anti-mouse
IgG secondary antibody was purchased from Santa-Cruz (sc-2031)
and HRP-linked anti-rabbit IgG was from Cell Signaling Technology
(7074S). Enhanced chemiluminescence (ECL kit) was from Pierce,
Life Technologies, Paisley, UK. Reduced L-glutathione, methionine,
3-O-methylfluorescein phosphate (OMFP) cyclohexylammonium
salt, bovine serum albumin (BSA), bromophenol blue and SDS-
PAGE Sample Buffer Laemmli 2� concentrate were supplied by
Sigma-Aldrich Chemical Co., Dorset, UK. 3-O-methylfluorescein
(OMF) was obtained from Apollo Scientific, Denton, UK.

2.2. Expression and purification of PTEN

Glutathione S-transferase (GST)-PTEN cDNA was cloned into
the PGEX-4T1 plasmid. Escherichia coli DH5α calcium chloride-
competent cells (100 μL) were transformed with 1 μL of 47.6 ng/μL
PGEX-4T1-PTEN-GST expression plasmid DNA by incubating on ice
for 30 min, heat shocking at 42 °C for 90 s, followed by another
incubation on ice for 2 min. The transformed cells were then in-
cubated at 37 °C for 1 h in a shaking incubator (Infors AG, Bott-
mingen, Switzerland) at 180 rpm, and plated onto sterile LB-agar
containing 100 mg/mL ampicillin sodium salt (Sigma-Aldrich Che-
mical Co., Dorset, UK). Following incubation overnight at 37 °C,
isolated bacterial colonies were picked from the plate and pre-
cultured in 10 mL of LB Broth medium supplemented with
100 mg/mL ampicillin at 180 rpm for 16 h at 37 °C. Cultures were
grown in 1 L LB Broth supplemented with 100 mg/mL ampicillin at
37 °C and at 180 rpm in a shaking incubator (MAXQ 8000, Thermo
Scientific, Hemel Hemstead, UK) until the optical density at
600 nm (OD600) reached 0.5–0.6, at which point isopropyl-β-D-1-
thiogalactopyranoside (IPTG) was added to a final concentration of
1 mM to induce protein expression, and the cultures grown for a
further 24 h at 23 °C.

The cells were harvested by centrifugation at 4645g for 20 min
at 4 °C. Pellets were resuspended in 50 mM Tris pH 7.4 supple-
mented with EDTA-free protease inhibitor cocktail (Catalog no. 11
873 580 001, Roche Diagnostics GmbH, Mannheim, Germany), the
suspension was centrifuged at 4800g for 20 min at 4 °C, the su-
pernatant removed and the pellet stored at �20 °C. The cells were
lysed in 50 mM Tris pH 7.4 containing 2 mg/mL lysozyme, 2 mM
EDTA, 2 mM DTT, 1% Triton, and supplemented with EDTA-free
protease inhibitor cocktail by ultrasonication (UP50H, Ultrasonic
processor, Hielscher ultrasound technology) for 5 cycles of 1 min
pulsing and 2 min resting on ice, and finally with a Potter homo-
genizer until the suspension no longer appeared viscous. The
homogenized suspension was centrifuged at 4 °C for 45 min at
14,800g and the supernatant removed and filtered through a
0.45 mm syringe filter (Millexs Syringe-driven filter unit, Millipore,
Watford, UK). The GST-tagged PTEN was purified with a gravity
flow column packed with 5 mL of glutathione sepharose 4B beads
(GE Healthcare, Little Chalfont, UK) previously equilibrated with
50 mM Tris pH 7.4, 140 mM NaCl, 2.7 mM KCl (Tris column buffer).
All purification steps were performed at 4 °C. The filtered cell
extract was loaded onto the column and allowed to flow through
by gravity. A series of reducing saline wash buffers were then
loaded onto the column in the following order: 25 mL of Tris
column buffer containing 1% Triton X-100 and 2 mM DTT; 40 mL of
Tris column buffer containing 2 mM DTT; 40 mL of 50 mM Tris pH
7.4, 500 mM NaCl, 2.7 mM KCl, 2 mM DTT. The protein was eluted
by overnight incubation of the column in 50 mM Tris pH 7.4,
20 mM reduced L-glutathione, 250 mM NaCl, 2 mM DTT, and an
equal volume of glycerol was added to the eluent for storage at
�80 °C. Prior to use the protein was buffer-exchanged in 20 mM
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Tris pH 7.4, 0.1 mM EDTA, 100 mM NaCl using a Microcons 10 kDa
Centrifugal filter unit (Millipore, Watford, UK), according to the
manufacturer’s recommendations. Protein concentration was de-
termined using absorbance at 280 nmwith a Nanodrop 2000c UV–
vis Spectrophotometer (Thermo Scientific, Hemel Hemstead, UK).

2.3. PTEN oxidation and activity assay

Purified buffer-exchanged PTEN-GST was treated with either
0 or 1 mM H2O2 for 1 h at room temperature. The reaction was
quenched by the addition of 5 mM methionine. An aliquot of the
1 mM H2O2 oxidized sample was subsequently incubated in
100 mM DTT for 15 min to assess the reversibility of the oxidation.
The phosphatase activity of PTEN was measured by monitoring the
hydrolysis of the artificial substrate 3-O-methylfluorescein phos-
phate (OMFP) to 3-O-methylfluorescein (OMF). Fresh OMFP was
prepared in dimethyl sulfoxide (DMSO) to a final concentration of
20 mM. 60 mg each of untreated, oxidized and DTT-treated oxi-
dized protein were mixed with 10x Assay Buffer (150 mM Tris pH
7.4, 10 mM EDTA, 750 mM NaCl) according to Tierno et al. [27]. The
20 mM OMFP substrate mixture was diluted 25-fold with 1 M Tris
pH 7.4 and added to the final assay mixture containing the protein.
The released OMF fluorescence was determined with excitation at
485 nm, emission at 525 nm and cutoff at 515 nm continuously
over 20 min using a Spectra MAX GEMINI XS Fluorescence plate
reader (Molecular Devices Sunnyvale, CA, USA) controlled with the
Softmax Pros software. A standard curve generated by reading
serial dilutions of OMF was used to determine protein specific
activity. Statistical analysis of activity data was performed using
GraphPad Prism Software (GraphPad, San Diego, CA, USA) using
one-way ANOVA followed by Tukey's multiple comparison test.

2.4. Cell culture

HCT116 human colon cancer cells were grown in Dulbecco's
modified Eagle medium (41966, Life Technologies, Paisley, UK)
supplemented with 10% fetal bovine serum (Life Technologies,
Paisley, UK) and maintained at 37 °C, 5% CO2 in a controlled in-
cubator. Approximately 5x107 cells of passage 4–10 were har-
vested, washed twice with ice cold phosphate buffered saline
(PBS) pH 7.4 by spinning at 500g for 10 min, and lysed with ice
cold 50 mM Tris pH 7.4 containing 150 mM NaCl, 1 mM EDTA, 0.5%
NP-40 (Sigma Aldrich Chemical Co., Dorset, UK) supplemented
with EDTA-free protease inhibitor cocktail (Catalog no. 11 873 580
001, Roche Diagnostics GmbH, Mannheim, Germany) by incubat-
ing for 45 min on ice with occasional mixing. The lysate was
clarified by spinning at 20,000g for 15 min at 4 °C.

2.5. Preparation of PTEN affinity capture column and protein capture

The untreated and oxidized/DTT-recovered samples of PTEN-
GST (100 mg protein each) were diluted in 500 mL of wash buffer
(20 mM Tris pH 7.4, 0.1 mM EDTA, 100 mM NaCl) supplemented
with 100 mM DTT; the oxidized PTEN-GST (100 mg) and a GST
control (100 mg) were diluted in 500 mL of wash buffer without
DTT. 100 mL of glutathione sepharose 4B slurry (GE Healthcare,
Little Chalfont, UK) was sedimented by centrifugation at 500g for
5 min. The glutathione sepharose beads were extensively washed
with wash buffer and stored at 4 °C. The bait proteins (GST or
PTEN-GST) were immobilized on the glutathione sepharose beads
by incubation with the protein solutions at 4 °C for 3 h. The beads
were then washed once with wash buffer, and then 1 mL of
HCT116 cell lysate derived from approximately 5�107 cells was
incubated with each of the immobilized bait proteins and a control
consisting of glutathione sepharose beads only, at 4 °C overnight
on an end-over-end mixer. Subsequently, the beads were washed
with 500 mL of 20 mM Tris pH 7.4, 0.1 mM EDTA, 300 mM NaCl,
0.5% NP-40 to remove non-bound proteins. For reducing gels the
bound proteins were then eluted by boiling in SDS-PAGE Sample
Buffer Laemmli 2� concentrate, or for non-reducing gels in 2�
non-reducing SDS sample buffer (125 mM Tris pH 6.8, 4% SDS, 15%
glycerol, 0.01% bromophenol blue), and analyzed by SDS-poly-
acrylamide gel electrophoresis followed by staining with Coo-
massie Brilliant Blue.

2.6. Protein digestion

Gels run under reducing conditions were stained with In-
stantBlue (Expedeon, Cambridge, UK), to visualize the lanes prior
to further processing. The gel lanes corresponding to the bead
control, the GST control, the untreated (reduced) PTEN-GST and
the oxidized PTEN-GST samples were then each cut into 12 slices.
The gel pieces were washed twice with 500 mL 100 mM NH4HCO3

and twice with 100 mM NH4HCO3/50% acetonitrile. Reduction was
performed adding 10 mL of 45 mM DTT to 150 mL NH4HCO3 and
incubating at 60 °C for 30 min. Cysteine alkylation was performed
by adding 10 mL of 100 mM iodoacetamide and incubating at room
temperature for 30 min in the dark. The gel pieces were washed in
100 mM NH4HCO3/50% acetonitrile and incubated in 50 mL of 100%
acetonitrile for 10 min. The gel pieces were then dried completely
in a centrifugal evaporator and resuspended in 25 mL of 0.1 mg/mL
trypsin (Trypsin Gold, Mass Spectrometry Grade, Promega,
Southampton, UK) in 50 mM acetic acid. 100 mL 40 mM
NH4HCO3/10% acetonitrile was added to the gel pieces, which were
incubated overnight at 37 °C. The gel pieces were pelleted by
centrifugation and the supernatant was collected in a fresh tube.
Peptide extraction from the gel pieces was performed by adding
20 mL 5% formic acid and incubating at 37 °C for 20 min, followed
by addition of 40 mL acetonitrile and incubation for 20 min at
37 °C. The gel pieces were pelleted by centrifugation, and the su-
pernatant was combined with the first extract; this procedure was
repeated twice. The peptide extracts were dried completely in a
vacuum centrifuge and resuspended in a volume up to 50 mL of
98% H2O, 2% acetonitrile, 0.1% formic acid (HPLC solvent A) and
loaded into screw top glass autosampler vials (Chromacol, Speck
and Burke analytical, Clackmannanshire, UK).

2.7. LC–MS

Peptides were separated and analyzed using an Ultimate 3000
system (Thermo Scientific, Hemel Hemstead, UK) coupled to a
5600 TripleTOF (ABSciex, Warrington, UK) controlled by Chrome-
leon Xpress and Analyst software (TF1.5.1, ABSciex, Warrington,
UK). Enrichment and desalting of the peptides was achieved using
a C18 pre-column (C18 PepMap™, 5 μm, 5 mm�0.3 mm i.d.,
Thermo Scientific, Hemel Hemstead, UK) washing for 4 min with
aq. 2% acetonitrile, 0.1% formic acid at 30 μL/min. The peptides
were then separated on a C18 nano-HPLC column (C18 PepMap™,
5 μm, 75 μm i.d.�150 mm, Thermo Scientific, Hemel Hemstead,
UK) at 300 nL/min using a gradient elution running from 2% to 45%
aqueous acetonitrile (0.1% formic acid) over 45 min followed by a
washing gradient from 45% to 90% aq. acetonitrile (0.1% formic
acid) in 1 min. The system was washed with 90% aq. acetonitrile
(0.1% formic acid) for 5 min and then re-equilibrated to the start-
ing solvent. Ionization of the peptides was achieved with spray
voltage set at 2.4 kV, a source temperature of 150 °C, declustering
potential of 50 V and a curtain gas setting of 15. Survey scans were
collected in positive mode from 350 to 1250 Da for 200 ms using
the high resolution TOF-MS mode. Information-dependent acqui-
sition (IDA) was used to collect MS/MS data using the following
criteria: the 10 most intense ions with þ2 to þ5 charge states and
a minimum of intensity of 200 cps were chosen for analysis, using
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dynamic exclusion for 12 s, and a rolling collision energy setting.
To calculate the relative abundance of a given modified residue,

the individual abundance values of each detected peptides con-
taining the amino acid in both its modified and unmodified form
were added together. Next, the abundances of the detected pep-
tides containing the residue solely in its modified form were
summed and divided by the total abundance value to obtain the
relative abundance of the modification. Statistical analysis of ac-
tivity data was performed with GraphPad Prism Software
(GraphPad, San Diego, CA, USA) using two-tailed unpaired Stu-
dent’s t test (for multiple comparisons). po0.05 was considered
significant.

2.8. Label-free quantification with Progenesis QI for proteomics

Comparative quantification was performed using the Progen-
esis QI for Proteomics software (Non-linear Dynamics, Newcastle,
UK). A total of 12 experiments were created, one for each set of gel
bands excised from the lanes of the Coomassie-stained gel at the
same molecular weight. For each experiment, LC–MS runs corre-
sponding to peptides digested from each band across the lanes and
corresponding to the proteins bound to the reduced and oxidized
PTEN-GST were aligned against each other. The alignment re-
ference was automatically chosen by the software and after au-
tomated alignment of the data additional vectors were added
manually where necessary to improve the initial alignments. The
feature normalization was set to normalize to all proteins, the
automatic sensitivity method of the peak picking algorithm was
set at default and the maximum allowable ion charge was set at
20. No peptide ion filtering was applied. The experimental design
setup was set as Between-subject Design. The spectra were ex-
ported in .mgf format for database searching, and the search re-
sults were imported in .xml format after Mascot Database search
for the identification of matched peptides. Any peptide showing a
Mascot ion score below the threshold indicative of identity or
extensive homology (p valueo0.05) was removed from the fea-
ture identification list. Cytoskeletal keratin IDs were removed from
the feature identification list. Only features that showed zero
conflicts were used for quantification. Data obtained from the
alignment of LC–MS runs correspondent to single fractions were
then pooled into a multi-fraction experiment. Statistical analysis
was performed using Progenesis QI for Proteomics using a one-
factor ANOVA.

2.9. Database search

The Mascots probability based search engine (Matrix Science,
London, version 2.4.0) was used to interrogate SwissProt 2015-03
primary database [28]. For Mascot searches that was not auto-
mated through the Progenesis QI analysis, LC–MS .wiff file were
converted into .mgf format using Peakviews (AB SCIEX). The 12 .
mgf files obtained the Progenesis analysis of each of the samples
were searched for protein identification and for bait protein oxi-
dative post-translational modifications (oxPTMs). For protein
identification, a variable modification of methionine oxidation and
a fixed modification carbamidomethyl cysteine were used. For the
analysis of the oxPTMs of the bait, the variable modification lists
included: methionine oxidation and dioxidation; cysteine oxida-
tion, dioxidation and trioxidation, and tyrosine oxidation. Other
parameters for the searches were as follows: Enzyme: Trypsin;
Peptide tolerance: 70.8 Da; MS/MS tolerance: 70.8 Da; Peptide
charge state: þ2, þ3 and þ4; Max Missed cleavages: 1; #13C: 1;
Quantitation: None; Instrument: ESI-QUAD-TOF; Data format:
Mascot Generic; Experimental mass values: Monoisotopic; Tax-
onomy Homo sapiens (Human).
2.10. Validation by Western blotting

Proteins resolved by SDS-PAGE were transferred onto PVDF
membrane (Immobilion-P, Millipore, Watford, UK) in 25 mM Tris
pH 8.3, 192 mM glycine, 10% methanol applying 30 V overnight at
4 °C. The membrane was blocked in Tris buffered saline (TBS)-
Tween blocking buffer (20 mM Tris pH 7.6, 137 mM NaCl, 0.05%
Tween-20, 5% BSA) for 1 h, incubated in blocking buffer with
monoclonal primary antibodies for Trx, Prdx1, Anxa2, or DDB1 at
the working dilution of 1:1000 overnight at 4 °C, washed ex-
tensively for 30 min (3 washes of 10 min each) with TBS-Tween
and incubated with either HRP-linked anti-mouse or HRP-linked
anti-rabbit secondary antibodies (working dilution 1:1000) for 1 h
at room temperature. The membrane was washed again as de-
scribed above and HRP-linked anti-mouse or HRP-linked anti-
rabbit were detected using Life Technologies ECL kit according to
the manufacturer's instructions. The membrane was scanned
using a G:BOX system (Syngene, Cambridge, UK) running the
GeneSys software (Syngene, Cambridge, UK). Next, the membrane
was stripped in Restore Plus Stripping buffer (Life Technologies,
Paisley, UK) for 15 min, washed as described above and reblocked
in TBS-Tween plus 5% BSA. The monoclonal primary antibodies for
PTEN was incubated with the stripped membrane in blocking
buffer at the working dilution of 1:2500 for 1 h at room tem-
perature, the membrane washed, and incubated with HRP-linked
secondary antibody for 1 h at room temperature at the working
dilution of 1:2500. After washing, HRP-linked antibody detection
and scanning procedures were repeated as described above.
3. Results

3.1. Confirmation of reversible disulfide bond formation of
H2O2-oxidized PTEN-GST

Purified PTEN-GST was prepared in the presence of high levels
of DTT to maximize retention of catalytic activity, but was ex-
changed into non-reducing buffer prior to treatment with H2O2 to
allow oxidation. The buffer exchange had no significant effect on
the catalytic activity, as monitored by the OMFP phosphatase assay
(Supplementary Fig. 1). The effect of oxidation in vitro with 1 mM
H2O2 on PTEN activity was measured using the OMFP phosphatase
assay immediately before the immobilization of the bait protein
onto glutathione sepharose beads. When PTEN was treated with
1 mM H2O2 for 1 h, the phosphatase activity dropped dramatically,
but was recoverable by subsequent incubation with 100 mM DTT
(Fig. 1). This confirmed that the oxidative inactivation was re-
versible, and is consistent with it being due to formation of an
intramolecular disulfide bond between the catalytic cysteine
Cys124 and regulatory cysteine Cys71 in the active site of the
enzyme, as reported previously [10]. This reduced protein was
used as a control in subsequent IP experiments as it should retain
any non-reversible oxidation.

3.2. Identification of proteins affinity-captured by the reduced and
oxidized PTEN-GST

The untreated PTEN bait protein was maintained in reducing
conditions (100 mM DTT) during the immobilization step to pre-
vent spontaneous oxidation, and to ensure direct correlation be-
tween PTEN redox status (reduced versus oxidized) and the results
of the protein interaction analysis. However, no reducing agent
was added to the HCT116 cell lysate used for the affinity-capture,
in order to avoid further alteration of the redox status of potential
interactors. Care was taken to keep the amount of protein im-
mobilized consistent across the different baits used. The



Fig. 1. Effect of 1 mM H2O2 oxidation on PTEN-GST phosphatase activity. The un-
treated, oxidized and DTT-incubated PTEN-GST were assayed for phosphatase ac-
tivity using the O-methylfluorescein phosphate assay, immediately before the im-
mobilization step. The results are presented as mean7SD (n¼3) of PTEN specific
activity. Statistical significance was assessed by one-way ANOVA followed by Tu-
key's multiple comparison test. The enzymatic activity of PTEN-GST following
1 mM H2O2 oxidation is significantly different to that of the untreated PTEN-GST
(p¼0.0002). The enzymatic activity of the untreated protein is not significantly
different to that obtained following incubation of the oxidized PTEN-GST with
100 mM DTT (p¼0.0861). The calculated specific activity values are 0.57207
0.0917 nmol OMF/min/mg protein for the untreated PTEN-GST; 0.02067
0.0031 nmol OMF/min/mg protein for the H2O2-oxidized PTEN-GST and
0.724970.0819 nmol OMF/min/mg protein for the PTEN-GST following 15 min
incubation with 100 mM DTT. ***po0.001; ns¼not significant.
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glutathione sepharose beads alone and with immobilized GST
were also incubated with HCT116 lysate as negative controls.
Proteins captured by the immobilized native and oxidized PTEN-
GST bait and the controls mentioned above were initially analyzed
by SDS-PAGE (Supplementary Fig. 2). Although there were limited
bands visible in the Coomassie stained gel, small differences were
observed in the oxidized PTEN-GST sample lane compared to the
native PTEN-GST and GST and beads controls, especially for pro-
teins between 50 and 60 kDa. The wash following bait im-
mobilization was also analyzed in order to test the binding effi-
ciency of the reduced and the oxidized PTEN-GST to the glu-
tathione sepharose beads. The results (Supplementary Fig. 2)
suggest that in all cases we were able to saturate the resin for the
affinity-capture, as traces of PTEN-GST were visible in the gel lanes
loaded with the wash buffer from resin loaded with both reduced
and oxidized PTEN-GST, reflecting the elution of unbound PTEN-
GST.

Each gel lane was dissected into 12 approximately equal slices,
trypsin digested and analyzed by LC–MS. Mascot (Matrix Science,
v. 2.4.0) was used to identify proteins from all samples, and Pro-
genesis QI for Proteomics software was used for label-free quan-
tification analysis of the LC–MS data for the proteins bound to the
reduced and the oxidized PTEN-GST samples. A total of 237 pro-
teins were identified after Mascot database search of the data. The
bait protein PTEN and its GST protein tag were identified with a
high level of confidence in both reduced and oxidized fractions.
Proteins that were also found in the bead and GST controls were
removed from the list but are included in Supplementary Table 1.
Of the 97 identified proteins from the remaining list, 27 that
showed a confidence score above 50 and a number of unique
peptides greater than or equal to 2 and p- and q-valueso0.05 for
the quantification are reported in Table 1. The 70 proteins that
showed a confidence score above 50 and a number of unique
peptides greater than or equal to 2 but a q-value40.05 are shown
in Supplementary Table 2, and those that were below this cutoff
criteria are listed in Supplementary Table 3. The overall false
discovery rate reported by Mascot was 2.1%, which is reasonable
for a small dataset.

Some of the interactors identified are highly abundant cellular
proteins and have been reported before to show non-specific
binding to beads, although they were not present in the controls in
this study. These proteins included elongation factors, tubulin,
myosins, histones, 60S and 40S ribosomal proteins, and heat-shock
proteins; interestingly, almost all of these have been reported as
interactors in previous proteomics studies of the PTEN interactome
[29,30].

3.3. Potential novel interactors of PTEN

Some of the proteins identified as interactors correspond to
proteins not previously identified as PTEN-binding proteins; these
are indicated by “e” in Table 1. Known interactors not commonly
identified as associating with beads are indicated by “f” in the
table. While no direct interaction of these proteins with PTEN has
been shown to date, some of them are linked with the cellular
pathways in which PTEN is known to be involved. A number are
involved in DNA replication and DNA damage, including protein
pelota analog (Pelo), DNA-damage binding protein 1 (DDB1) and
polymerase delta-interacting protein 2 (PDIP2 or Poldip2). There
are also a number of proteins associated with cytoskeletal struc-
ture and control, including spectrin α-chain (Spta1), myosin
phosphatase Rho-interacting protein (MPRIP) and desmoplakin
(Dsp). Other interesting potentially novel interactors include the
multi-enzyme fatty acid synthase (FAS), A-kinase anchor protein
12 (AKAP12), and guanine nucleotide-binding protein G(i) subunit
α and/or β (GNAIα/β).

3.4. PTEN binding proteins interact differently with reduced and
oxidized PTEN-GST baits

Of the interactors identified, 14 showed a significant change in
binding on oxidation-induced inactivation of the PTEN-GST bait,
with p- and q-valueso0.05 and greater than 2.5 fold change
(Table 1, bold entries). These interactors were all manually vali-
dated to confirm the quality of the identification and quantitative
data; for example, annexin A2 (Anxa2, 6.8-fold change, p-
value¼0.0118), PDIP2 (10.8-fold change, p-valueo0.0001) and the
actin-binding protein drebrin (Drb1) (4.8-fold change, p-
value¼0.0180) showed substantially increased binding to the
H2O2 oxidized PTEN-GST.

Two proteins that showed high fold changes in binding to
oxidized PTEN-GST were thioredoxin and thioredoxin peroxidase
(peroxiredoxin-1; Prdx1), both of which are proteins with redox
functions. A total of 6 Prdx1 peptides were detected, of which
5 unique peptides were used for quantification. Prdx1 was sig-
nificantly more abundant in the sample eluted from the oxidized
PTEN-GST than in the sample eluted from the reduced PTEN-GST
(4.1-fold change, p-value¼0.0233). Two unique Trx peptides were
detected, and the protein was significantly more abundant (6.2-
fold change, p-value¼0.0065) in the protein fraction eluted from
the oxidized PTEN-GST. Using Progenesis QI for proteomics we
were able to verify the presence of the peptide features corre-
sponding to the identified proteins listed in Table 1 and compare
their intensities. Fig. 2 shows the three-dimensional maps zoomed
into the features corresponding to the Prdx1 and the Trx peptides
detected following elution of the proteins bound to the oxidized
and reduced PTEN-GST baits.

3.5. Validation of selected interactions with Western blotting con-
firmed the proteomics study

Following screening of the identified proteins and alterations in



Table 1
Identification and LC–MS based label free quantification of the binding partners of reduced and 1 mM H2O2 oxidized PTEN following GSH affinity enrichment.

Accessiona Peptide countb Confidence
scorec

p-Valued q-Valued Fold
changed

Highest mean
condition

Protein description

PDIP2_HUMAN 4 (4) 190.31 o0.0001 0.0005 10.8 Oxidized Polymerase delta-interacting protein 2e

PELO_HUMAN 2 (2) 110.35 0.0018 0.0212 2.7 Oxidized Protein pelota homologe

RS2_HUMAN 2 (2) 97.3 0.0021 0.0212 1.9 Oxidized 40S ribosomal protein S2f

RL10A_HUMAN 2 (2) 71.19 0.0014 0.0212 5.3 Reduced 60S ribosomal protein L10af

RLA0_HUMAN 3 (3) 159.13 0.0052 0.0261 2.4 Oxidized 60S acidic ribosomal protein P0f

THIO_HUMAN 2 (2) 150.69 0.0065 0.0299 6.2 Oxidized Thioredoxin
SSRD_HUMAN 2 (2) 153.39 0.0075 0.0301 1.7 Reduced Translocon-associated protein subunit deltae

ANXA2_HUMAN 3 (3) 195.41 0.0118 0.0374 6.8 Oxidized AnnexinA2
FAS_HUMAN 3 (3) 163.01 0.0144 0.0387 1.7 Oxidized Fatty acid synthasee

AKA12_HUMAN 4 (4) 180.42 0.0181 0.0415 1.3 Oxidized A-kinase anchor protein 12e

DREB_HUMAN 2 (2) 83.3 0.018 0.0415 4.9 Oxidized Drebrin
PRDX1_HUMAN 6 (5) 316.76 0.0233 0.0437 4.1 Oxidized Peroxiredoxin-1
DESP_HUMAN 4 (4) 165.62 0.0221 0.0437 1.6 Oxidized Desmoplakine

NDKA_HUMAN 3 (3) 131.93 0.026 0.0448 1.5 Oxidized Nucleoside diphosphate kinase Ae

DHB8_HUMAN 2 (2) 110.35 0.0258 0.0448 6.4 Oxidized Estradiol 17-beta-dehydrogenase 8e

UTRO_HUMAN 2 (2) 101.72 0.0306 0.0454 2.2 Oxidized Utrophine

SPTN1_HUMAN 4 (4) 188.58 0.0361 0.0456 2.9 Oxidized Spectrin alpha chain, non-erythrocytic 1e

RS9_HUMAN 4 (4) 172.02 0.0331 0.0456 1.5 Oxidized 40S ribosomal protein S9f

RL38_HUMAN 5 (5) 405.89 0.0389 0.0463 1.6 Oxidized 60S ribosomal protein L38f

GNAI1_HUMAN 6 (4) 343.46 0.0462 0.0463 3.6 Oxidized Guanine nucleotide-binding protein G(i) subunit
alpha-1e

GNAI2_HUMAN 5 (2) 300.5 0.0488 0.0463 6.9 Oxidized Guanine nucleotide-binding protein G(i) subunit
alpha-2e

MPRIP_HUMAN 4 (4) 164.53 0.0423 0.0463 2.1 Oxidized Myosin phosphatase Rho-interacting proteine

RS15A_HUMAN 3 (2) 135.35 0.0449 0.0463 0.7 Oxidized 40S ribosomal protein S15af

GSTM2_HUMAN 2 (2) 130.8 0.0495 0.0463 1.4 Reduced Glutathione S-transferase Mu 2e

SKP1_HUMAN 2 (2) 112.83 0.0413 0.0463 8.6 Oxidized S-phase kinase-associated protein 1
HSP7C_HUMAN 2 (2) 107.77 0.0413 0.0463 3.0 Oxidized Heat shock cognate 71 kDa protein
EF2_HUMAN 2 (2) 101.61 0.0428 0.0463 1.3 Oxidized Elongation factor 2f

The data was obtained from the analysis of three independent GSH-affinity experiments. The list was restricted to the protein hits showing a confidence scoreZ50 and a
number of unique peptidesZ2 and a p- and q-valueo0.05. Ranking is based on q-values.
Bold indicates more than 2.5-fold change in abundance depending on PTEN redox status.

a Accession¼SwissProt Protein ID.
b Peptide count¼the number of detected peptides (the number of unique peptides) used for quantification.
c The protein confidence score was generated using Mascot as described in the experimental methods.
d The p-value, q-value and fold change were generated by Progenesis QI for proteomics as described in the experimental methods.
e Indicates proteins not previously identified as PTEN interactors.
f Indicates proteins that appeared to be PTEN interactors (i.e. were not found in controls) but have also been found as common non-specific interactors in bead-based

affinity enrichments.
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their abundance between the sample eluted from the reduced and
oxidized bait, a number of the more interesting interactors were
selected for validation by Western blot, in order to confirm the
interaction and the quantitative changes in binding to oxidized
PTEN-GST. The GSH-affinity capture was performed with the DTT-
recovered oxidized PTEN-GST as additional control for the vali-
dation of interactors. Prdx1, Trx, and Anxa2 were chosen for vali-
dation from the interactors that had altered binding to PTEN, and
DDB1 as a novel interactor from those with unaltered binding, and
their levels were compared across the protein samples eluted from
the reduced, oxidized and DTT-recovered PTEN-GST against PTEN
loading control (Fig. 3). For all the proteins selected, the Western
blot results were in agreement with the proteomics data and
confirmed the comparative quantitative analysis between the
oxidized and reduced sample. The levels of Prdx1 (Fig. 3A), Trx
(Fig. 3B) and Anxa2 (Fig. 3C) were visibly increased in the sample
eluted from the H2O2-oxidized PTEN. Little or no signal was ob-
served for those proteins in the samples corresponding to the
reduced (untreated) and DTT-recovered PTEN, confirming, at a
qualitative level, the significant difference observed by MS-based
label-free quantification. No significant change in the levels of
DDB1 were observed (Fig. 3D), again in agreement with the pro-
teomics-based analysis. None of the chosen interactions was de-
tected in the samples eluted from the immobilized GST control nor
from the glutathione sepharose beads alone.
3.6. Non-reducing gels to test for intermolecular disulfide formation

To explore the possibility that the association between proteins
was mediated by intermolecular disulfide formation, the Western
blot validation was also performed on non-reducing gels (Sup-
plementary Fig. 4). If disulfide formation was responsible for the
association then a band that blotted for both PTEN-GST and the
associated protein should appear at the additive mass of the two
proteins; specifically, 112 kDa for Anxa-2-PTEN-GST, 96 kDa for
Prdx1-PTEN-GST, and 86 kDa for Trx-PTEN-GST. No bands were
identified at these masses (as indicated in Supplementary Fig. 4).
Some additional bands were apparent, but these appear to be
oligomers of the captured proteins.

3.7. Relative quantification of oxPTMs of the oxidized PTEN-GST bait

After quantification and validation of the affinity-captured in-
teractors, a Mascot database search was performed on the aligned
LC–MS runs to check for any oxidative post-translational mod-
ifications (oxPTMs) that occurred to the PTEN-GST bait following
oxidation with hydrogen peroxide and affinity capture of protein–
protein interactions, and might also have affected any interactions.
Given the concentration of hydrogen peroxide used to inactivate
PTEN (1 mM), we did not expect the treatment to generate major
modifications other than the formation of the Cys71–Cys124 dis-
ulfide bond. The aligned features identified across three



Fig. 2. Representative 3D montage of the comparative MS-based label free quan-
tification for the peroxiredoxin-1 peptide TIAQDYGVLK and the thioredoxin-1
peptide TAFQEALDAAGDK detected following elution of the proteins bound to the
reduced and oxidized PTEN-GST. The montages are representative of three in-
dependent experiments. (A) The Prdx1 peptide TIAQDYGVLK (m/z¼554.30, 2þ;
RT¼22.24 min) was found to be 4.2 times more abundant in the sample obtained
from the oxidized PTEN GST than in the sample obtained from the reduced PTEN-
GST (one-factor ANOVA, p-value¼0.0358, n¼3). (B) The Trx peptide TAFQEAL-
DAAGDK (m/z¼668.83, 2þ; RT¼24.45 min) was found to be 7.33 times more
abundant in the sample obtained from the oxidized PTEN GST than in the sample
obtained from the reduced PTEN-GST (one-factor ANOVA, p-value¼0.0107, n¼3).
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independent GSH-affinity enrichment experiments were searched
for methionine oxidation and dioxidation, cysteine oxidation, di-
oxidation and trioxidation, and tyrosine oxidation. A total of
4 PTEN peptides and 6 GST peptides were found to be oxidatively
Fig. 3. Western blots showing validation of proteomics data in comparing selected affin
and DTT-recovered PTEN-GST. Each panel shows PTEN-GST loading control; expression o
pull down compared to the sample eluted from GST and beads alone; whether the bait w
recovered samples were kept in constant reducing conditions (100 mM DTT incubati
H2O2-treated PTEN-GST pull down showed increased level of Prdx1 (A), Trx (B) and An
modified (Table 2). Interestingly, Met134 of PTEN was substantially
oxidized in both control and oxidized PTEN, but there was no
significant difference between the two, and a number of GST
peptides also showed significant oxidation in both samples. The
only significant increase in oxidation following treatment was at
Met35 of PTEN in the peptide YQEDGFDLDLTYIYPNIIAMGFPAE.
Overall, these results suggest that apart from the formation of the
regulatory disulfide, the oxidative treatment caused minimal ad-
ditional oxidative modifications to the PTEN-GST.
4. Discussion

In this study we have carried out the first comprehensive
analysis of the redox proteome of PTEN. We have identified a
number of proteins whose interaction with PTEN appears to be
dependent on the PTEN redox status, specifically, increased for
oxidized PTEN, and we have also identified a number of potentially
novel PTEN interactors.

The observed 495% oxidative-induced inactivation of the bait
protein was in agreement with previous studies reporting the ef-
fect of 1 mM H2O2 on PTEN phosphatase activity [12], and the DTT-
induced reversibility of the inhibitory effect is good evidence of
the involvement of the regulatory disulfide in PTEN-GST in-
activation, as previously discussed by Lee et al. [10]. The oxidant
type and concentration were chosen to maximize the formation of
the regulatory disulfide bond between Cys71 and Cys124 while
minimizing oxidation of other amino acids. It is important to bear
in mind that the concentration of H2O2 used to generate the PTEN
disulfide in the in vitro studies described here may differ sig-
nificantly from that needed to show similar effects in vivo, and the
use of exogenous H2O2 in studying signal transduction needs to be
undertaken with some care [31]. Mass spectrometric analysis and
quantification of oxidation of susceptible amino acids (methionine,
cysteine) indicated that treatment with 1 mM H2O2 caused very
little change in the oxidation levels of oxidation of PTEN or GST,
apart from a small increase in the oxidation of one residue, Met35
ity-captured PTEN interactions across the samples eluted from untreated, oxidized
f selected PTEN-interactor in the H2O2-treated, untreated and recovered PTEN-GST
as treated with 1 mM H2O2 and/or incubated with 100 mM DTT. Both untreated and
on) during the bait immobilization and showed similar interactions profile. The
xa2 (C) and comparable levels DDB1 (D) when compared to the reduced controls.



Table 2
Identification and quantification of PTEN and GST oxidative modifications in comparing untreated versus 1 mM oxidized PTEN-GST following GSH-affinity enrichment.

Protein Peptide sequencea Fraction detectedb m/z (charge) Modificationsc p-Valued % Relative modification

Reduced Oxidized

PTEN YQEDGFDLDLTYIYPNIIAMGFPAER 5 1023.2028 (3) Met 35 OX 0.0004 1.0171.74 14.4871.28
PTEN TGVMICAYLLHR 3 470.2714 (3) Cys 136 DIOX 0.420748 2.3170.60 1.6371.17
PTEN TGVMICAYLLHR 2,3,4 483.9500 (3) Met 134 OX 0.696349 34.0573.61 30.64713.64
PTEN FMYFEFPQPLPVCGDIK 3 1052.5630 (2) Met 239 OX 0.959338 1.7673.05 1.6571.61
GST MLLADQGQSWK 6,7,8,9,10,11 646.8266 (2) Met 20 OX 0.0333 24.5973.69 17.7970.19
GST MLLADQGQSWK 7,10 431.5445 (3) Met 20 OX 0.0487 24.3372.01 21.0070.46
GST MLLADQGQSWK 7 654.8150 (2) Met 20 DIOX 0.0681 0.3970.12 0.2170.03
GST ASCLYGQLPK 7 556.2746 (2) Cys 48 DIOX 0.0705 1.8070.69 0.6570.44
GST ASCLYGQLPK 7 564.2732 (2) Cys 48 TRIOX 0.2220 0.8970.42 1.5970.73
GST PPYTVVYFPVR 7 677.3622 (2) Tyr 4 OX 0.2590 0.7670.26 0.5570.05
GST DQQEAALVDMVNDGVEDLR 7,8,9,10 1067.0113 (2) Met 92 OX 0.3008 30.14711.34 22.2771.78
GST MLLADQGQSWKEEVVTVETWQEGSLK 10 752.6226 (4) Met 20 OX 0.5333 13.0773.68 14.8872.78
GST MLLADQGQSWKEEVVTVETWQEGSLK 9,10 1003.1702 (3) Met 20 OX 0.5981 18.4171.64 19.8373.96
GST DQQEAALVDMVNDGVEDLR 7,8,9,10 711.6659 (3) Met 92 OX 0.6981 26.7076.68 25.0371.97
GST MPPYTVVYFPVR 7 495.5891 (3) Met 1 OX 0.7441 19.8974.56 18.9371.39
GST DQQEAALVDMVNDGVEDLR 7 533.9936 (4) Met 92 OX 0.9933 44.85721.58 44.9779.42

The data was obtained from the analysis of PTEN and GST peptide features present in three independent GSH-affinity experiments. Ranking is based on p-values returned by
Two-tailed unpaired Student’s t test.

a Peptide sequence obtained from the Mascot database search of LC–MS runs aligned on Progenesis QI for Proteomics.
b Gel slice fraction(s) corresponding to the LC–MS run where the peptide was detected.
c Modification type and position within the protein amino acid sequence.
d p-Value returned by Two-tailed unpaired Student’s t test, following relative quantification of the modifications.
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of PTEN, to around 14% (Table 2); this residue is distant from the
active site and not surface accessible. Given this, and the full re-
storation of the activity of the oxidized protein on DTT treatment,
it is reasonable to assume that this modification was not re-
sponsible for the loss of function. It also seems unlikely that it
contributed significantly to the observed changes in PTEN inter-
acting proteins, especially as the changes in interactions were re-
versible by DTT according to the Western blotting validations.

HCT116 cells were chosen as a source of prey proteins for the
affinity capture as this cell line has previously been demonstrated
to be a suitable model to study the action of PTEN, as it is a widely-
used epithelial cell cancer model, has two wild-type alleles of
PTEN, and haploid and diploid knockouts are available for down-
stream mechanistic studies [32,33]. Cells were grown under nor-
mal conditions to assess the interactions affected by PTEN oxida-
tion alone, and it is likely that lysates from stressed cells or other
cell lines would show some differences in the interactome. Protein
interactions were determined by MS-based proteomic techniques
using immobilized PTEN in reduced and oxidized states along with
appropriate controls. Four of the interactions, 3 redox sensitive
(Prdx1, Trx, Anxa2) and 1 redox insensitive (DDB1), were con-
firmed by Western blotting. To rule out intermolecular disulfide
formation through disulfide exchange with the PTEN being re-
sponsible for the interactions, the blotting was also performed
from a non-reducing gel. If disulfide formation was responsible, a
band that blots for both PTEN-GST and the target protein should be
apparent at the combined mass of the proteins. These would be
approximately 96 kDa for Prdx1, 86kDa for Trx and 122 kDa for
Anxa2. There was no evidence of bands at these masses in the
blots. In addition, intermolecular disulfide formation would be a
relatively non-selective process and under equilibrium, hence one
might expect rather more proteins to become disulfide bound to
PTEN, especially the very abundant proteins with known reactive
thiols such as GAPDH, SOD and the HSPs, and other abundant
proteins that have been shown to form disulfides under oxidative
stress conditions, such as actin and tubulin to be present in in-
creased amounts in the oxidized sample (see for example [34]).
The majority of the 93 interactors reliably identified show no
change in binding between the samples, and the proteins with
reactive thiols mentioned above either showed differences or were
not present at all. Also, under the equilibrium conditions of the
experiment, one might expect those proteins that have resolving
thiols, such as PTEN and thioredoxin, where the equilibriumwould
lie to the intra rather than intermolecular disulfide (strong en-
tropic drive), not to favor intermolecular disulfide formation.
However, if intermolecular disulfides were formed between pro-
teins under conditions of oxidative stress, this would be a good
indication both of proximity and of redox sensitivity of the pro-
teins, and the formation of these covalent associations could have
significant implications for redox signaling.

It was interesting that significant increases in the binding of the
redox proteins Prdx1 and Trx1 to the oxidized (inactive) PTEN-GST
were observed. Prdx1 is a non-selenocysteine peroxidase that is
known to catalyze the reduction of H2O2, protecting the cells from
oxidative damage to DNA, lipids and proteins [35]. PTEN has pre-
viously been reported to interact with Prdx1, which seems to play
a key role in protecting the phosphatase from H2O2-induced oxi-
dative damage, as it fully restored PTEN activity in the presence of
hydrogen peroxide [20]. Cao et al. suggested that Prdx1 binds
PTEN through interaction with its C2 domain (aa 186–274), and
they described a decreased binding of Prdx1 to PTEN when cells
were treated with high concentration of H2O2 [20], which at first
sight appears to conflict with the findings in our study. However, it
has been proposed that this may be due to oxidative damage to
Cys51 in Prdx1 resulting in dissociation of the PTEN/Prdx1 com-
plex [20,36], and as our in vitro inactivation of PTEN does not in-
volve direct oxidation of Prdx1, but rather the targeted formation
of the regulatory disulfide, our data suggest that the binding of
Prdx1 to PTEN is increased on formation of the regulatory dis-
ulfide. It is also possible that other interactors may contribute to
the protection observed in cells and that it may be dependent on
the presence of redox cofactors.

A second significant increase was seen for the antioxidant
thioredoxin-1 (Trx). Trx, which also bound preferentially to oxi-
dized PTEN bait protein, is generally thought to responsible for the
reactivation of PTEN via reduction of the disulfide bond between
Cys71 and Cys124 of PTEN with a thiol-disulfide exchange me-
chanism [10,11,37]. The increased abundance of Trx affinity cap-
tured with the oxidized PTEN-GST bait suggests that the formation
of the PTEN:Trx complex is dependent on the redox status of PTEN.
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It has been reported previously that redox status of Trx is also
important in the PTEN/Trx interaction [19], as it was shown that
reduced but not oxidized Trx binds the C2 domain of PTEN via a
disulfide bond with PTEN Cys212, causing inhibition of the phos-
phatase and resulting in increased tumorigenesis. Overall, these
findings imply that the redox status of both Trx and PTEN are
important in the regulation of the interaction, and additional
studies would be required to fully understand the dynamics of
Trx-mediated PTEN reactivation in vivo.

Interestingly it has been shown that in macrophages treated
with ATP, which results in the production of reactive oxygen
species, PTEN is glutathionylated causing the activation of Akt and
Erk1 [38], and both Trx and Prdx1 are also glutathionylated under
oxidative stress conditions [39,40]. The enzymes responsible for
the inactivation and reactivation of PTEN via glutathionylation
have not been identified, but given the changing interactions of
Trx and Prdx1 demonstrated in our study, it is possible that these
enzymes are involved in this complex redox control.

PTEN has been shown to play an important role in the control
of the actin cytoskeleton, especially through PtdIns(4,5)P2 [41,42],
and a number of the identified protein interactors are also asso-
ciated with the functioning of the actin cytoskeleton. AnnexinA2
(Anxa2), which appears to bind more strongly to oxidized PTEN-
GST, is a previously identified PTEN interactor [17], and it has been
shown that PTEN co-localizes on the apical surface of polarized
cells along with Anxa2 and the small GTPase Cdc42, which plays a
role in regulating epithelial morphogenesis [43]. The authors also
showed that Anxa2 binds PtdIns(4,5)P2 at the apical surface, and
noted the potential involvement of PTEN in the depletion of
PtdIns(4,5)P2 from PtdIns(3,4,5)P3. The exact molecular mechan-
ism responsible for the PTEN/PtdIns(4,5)P2/Anxa2 network is still
unclear, but may involve a direct association between Anxa2 and
PTEN in the apical domain for the recruitment of PtdIns(4,5)P2 to
the apical surface. Another actin-binding protein, drebrin (Dreb),
for which the interaction with PTEN has previously been observed
in neurons [44], was also found more highly associated with oxi-
dized PTEN-GST. PTEN has been proposed as a negative regulator
of the phosphorylation of Dreb at Ser647, and the formation of the
complex PTEN:Dreb seems to be inversely correlated to neuronal
activity [44]. Nonetheless, a relationship between the redox status
of PTEN and the molecular dynamics of the PTEN:Dreb complex
has not previously been reported, and the mechanism by which
PTEN binds Dreb seems to be independent of PI3K signaling. We
also observed that the binding of spectrin alpha chain (non-ery-
throcytic 1, Spta1) to oxPTEN was significantly increased. Sptn1is
involved in actin crosslinking and scaffolding to the cytoskeleton
[45] helping to stabilize the plasma membrane and in the orga-
nization of intracellular organelles. Myosin phosphatase Rho-in-
teracting protein (MPRIP), which targets myosin phosphatase to
the actin cytoskeleton [46], and utrophin (Utro), which is an actin
binding protein that plays an important role in the role of the
cytoskeleton in the neuromuscular junction formation [47], also
appeared to be interactors of PTEN that show no difference in
association between oxidized or reduced PTEN-GST. PTEN has
been shown to play a number of roles in neuronal cell function and
development, and to localize to specific regions in neuronal cells
rich in cytoskeleton, such as the growth cone and dendritic spine
[48].

Another group of potentially interacting proteins are associated
with DNA damage and repair, chromosomal segregation and
genomic stability, and a role in DNA damage repair and response
has been proposed for PTEN [49], although the knowledge of the
molecular mechanism is currently limited [49]. PDIP2 (aka
PDIP38) shows stronger association with oxidized PTEN, has been
shown to interact with DNA polymerase delta (p50), and is in-
volved the ability of the replication fork to pass DNA lesions,
important in cell cycle control and chromosomal replication [50].
PDIP2 has also been reported to increase the activity of Nox4, a
NADPH oxidase that has been identified as the main source of
H2O2 production in non-phagocytic cells [51]. Nox4 has been
shown to be activated by PtdIns(3,4,5)P3, which triggers the in-
creased generation of H2O2 resulting in the oxidation of PTEN [11].
Interestingly, our study has shown a 410-fold increase in binding
of PDIP2 to the oxidized PTEN-GST, suggesting that this protein
might be involved in the ROS-mediated signaling cascade re-
sponsible for PTEN inactivation. Protein pelota homolog (Pelo),
which by homology to the Drosophila protein has been associated
with chromosomal segregation during cell division and genomic
stability [52], also showed significantly increased binding to oxi-
dized PTEN. Pelo has also been shown to regulate HER2 signaling
via the PI3K/Akt pathway [53]. PTEN has been reported to play a
key role in chromosomal stability and genetic integrity through a
number of interactions, including with Rad51 in the control of
double-strand breaks [54], commonly caused as a result of cellular
oxidative stress. DNA-damage binding protein-1 (DDB1) is a po-
tentially novel PTEN interactor that showed no difference in
binding between reduced and oxidized PTEN-GST. The interplay
between the PI3K/Akt pathway and the excision nucleotide path-
way, of which DDB1 is a member, has been shown in human
epithelial cells [55].

Other potentially interesting novel PTEN interactors were also
identified. The interactions with GNAI1/2 appeared to be sig-
nificantly stronger to the oxidized protein. GNAIs are members of
the Gαi family, and inhibit adenylate cyclase, playing a key role in
the control of cellular proliferation and differentiation [56], pro-
cesses in which PTEN also plays an important role. Fatty acid
synthase (FAS) has also been linked to the Akt/PI3K pathway; a
close correlation has been demonstrated between the over-
expression of FAS and the loss of PTEN in HCC tissue [24], and
PTEN seems to be involved in the regulation of FAS through the
inhibition of Akt [57]. AKAP12 is a scaffold protein involved in the
regulation of PKA and PKC in G-protein coupled receptor signaling
[58]. Although the interaction of these two proteins with PTEN-
GST did not appear to be redox-sensitive, they may nevertheless
have an important role in metabolic regulation and cell survival.

Protein–protein interactions (PPIs) have been shown to play a
major role in the biological mechanism behind many human dis-
eases and are currently considered a promising target for the
discovery and development of new drugs [59,60]. Here we provide
the first report on the redox-sensitive interactome of the tumor
suppressor protein PTEN. Our data showed that protein interac-
tions with PTEN are significantly affected by its reversible oxida-
tion, most probably the formation of the inactivating regulatory
disulfide in PTEN. The in vitro affinity capture of proteins from cell
lysates by reduced and oxidized PTEN in combination with label-
free quantitative mass spectrometry has provided a valuable tool
for the study of PTEN interactome under oxidative stress. We be-
lieve this method can be usefully implemented to measure the
protein levels in complex biological mixtures in order to interpret
MS-based proteomics datasets and has identified a new paradigm
in the regulation of protein–protein interactions. The redox-al-
teration of the PTEN interactome is likely to play an important role
in PTEN-mediated signaling, and may contribute to changes in cell
function in diseases, including cancers.
Acknowledgments

This work is part of The Proxomics Project, a collaboration
between Aston University, ICL and the University of Glasgow. The
research presented in this paper was supported by the



I. Verrastro et al. / Free Radical Biology and Medicine 90 (2016) 24–34 33
Engineering and Physical Sciences Research Council (EP/I017887/1
Cross-Disciplinary Research Landscape Award). Data associated
with this paper can be obtained by contacting the corresponding
author.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.freeradbiomed.
2015.11.004.
References

[1] J. Li, PTEN, a putative protein tyrosine phosphatase gene mutated in human
brain, breast, and prostate cancer, Science 275 (1997) 1943–1947.

[2] M.P. Myers, I. Pass, I.H. Batty, J. Van der Kaay, J.P. Stolarov, B.A. Hemmings, M.
H. Wigler, C.P. Downes, N.K. Tonks, The lipid phosphatase activity of PTEN is
critical for its tumor suppressor function, Proc. Natl. Acad. Sci. U.S.A. 95 (1998)
13513–13518.

[3] L.C. Cantley, B.G. Neel, New insights into tumor suppression: PTEN suppresses
tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway,
Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 4240–4245.

[4] T. Tamguney, D. Stokoe, New insights into PTEN, J. Cell Sci. 120 (2007)
4071–4079.

[5] T. Maehama, J.E. Dixon, The tumor suppressor, PTEN/MMAC1, depho-
sphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trispho-
sphate, J. Biol. Chem. 273 (1998) 13375–13378.

[6] E.L. Whiteman, H. Cho, M.J. Birnbaum, Role of Akt/protein kinase B in meta-
bolism, Trends Endocrinol. Metab. 13 (2002) 444–451.

[7] D. DeFeo-Jones, S.F. Barnett, S. Fu, P.J. Hancock, K.M. Haskell, K.R. Leander,
E. McAvoy, R.G. Robinson, M.E. Duggan, C.W. Lindsley, Z. Zhao, H.E. Huber, R.
E. Jones, Tumor cell sensitization to apoptotic stimuli by selective inhibition of
specific Akt/PKB family members, Mol. Cancer Ther. 4 (2005) 271–279.

[8] M.M. Georgescu, PTEN tumor suppressor network in PI3K-Akt pathway con-
trol, Genes Cancer 1 (2010) 1170–1177.

[9] B.A. Hemmings, D.F. Restuccia, PI3K-PKB/Akt pathway, Cold Spring Harb.
Perspect. Biol. 4 (2012) a011189.

[10] S.R. Lee, K.S. Yang, J. Kwon, C. Lee, W. Jeong, S.G. Rhee, Reversible inactivation
of the tumor suppressor PTEN by H2O2, J. Biol. Chem. 277 (2002)
20336–20342.

[11] J. Kwon, S.R. Lee, K.S. Yang, Y. Ahn, Y.J. Kim, E.R. Stadtman, S.G. Rhee, Reversible
oxidation and inactivation of the tumor suppressor PTEN in cells stimulated
with peptide growth factors, Proc. Natl. Acad. Sci. U.S.A. 101 (2004)
16419–16424.

[12] N.R. Leslie, D. Bennett, Y.E. Lindsay, H. Stewart, A. Gray, C.P. Downes, Redox
regulation of PI 3-kinase signalling via inactivation of PTEN, EMBO J. 22 (2003)
5501–5510.

[13] K. Piotukh, D. Kosslick, J. Zimmermann, E. Krause, C. Freund, Reversible dis-
ulfide bond formation of intracellular proteins probed by NMR spectroscopy,
Free Radic. Biol. Med. 43 (2007) 1263–1270.

[14] M. Tamura, J. Gu, E.H. Danen, T. Takino, S. Miyamoto, K.M. Yamada, PTEN in-
teractions with focal adhesion kinase and suppression of the extracellular
matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway, J.
Biol. Chem. 274 (1999) 20693–20703.

[15] L. Salmena, A. Carracedo, P.P. Pandolfi, Tenets of PTEN tumor suppression, Cell
133 (2008) 403–414.

[16] O. Gorbenko, G. Panayotou, A. Zhyvoloup, D. Volkova, I. Gout, V. Filonenko,
Identification of novel PTEN-binding partners: PTEN interaction with fatty acid
binding protein FABP4, Mol. Cell. Biochem. 337 (2010) 299–305.

[17] J. Gunaratne, M.X. Goh, H.L. Swa, F.Y. Lee, E. Sanford, L.M. Wong, K.A. Hogue, W.
P. Blackstock, K. Okumura, Protein interactions of phosphatase and tensin
homologue (PTEN) and its cancer-associated G20E mutant compared by using
stable isotope labeling by amino acids in cell culture-based parallel affinity
purification, J. Biol. Chem. 286 (2011) 18093–18103.

[18] Y.C. Kim, H. Kitaura, T. Taira, S.M. Iguchi-Ariga, H. Ariga, Oxidation of DJ-1-
dependent cell transformation through direct binding of DJ-1 to PTEN, Int. J.
Oncol. 35 (2009) 1331–1341.

[19] E.J. Meuillet, D. Mahadevan, M. Berggren, A. Coon, G. Powis, Thioredoxin-1
binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity
and membrane binding: a mechanism for the functional loss of PTEN's tumor
suppressor activity, Arch. Biochem. Biophys. 429 (2004) 123–133.

[20] J. Cao, J. Schulte, A. Knight, N.R. Leslie, A. Zagozdzon, R. Bronson, Y. Manevich,
C. Beeson, C.A. Neumann, Prdx1 inhibits tumorigenesis via regulating PTEN/
AKT activity, EMBO J. 28 (2009) 1505–1517.

[21] R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422
(2003) 198–207.

[22] M. Vermeulen, N.C. Hubner, M. Mann, High confidence determination of
specific protein–protein interactions using quantitative mass spectrometry,
Curr. Opin. Biotechnol. 19 (2008) 331–337.
[23] T. Nakamura, Y. Oda, Mass spectrometry-based quantitative proteomics, Bio-
technol. Genet. Eng. Rev. 24 (2007) 147–163.

[24] X. Zhu, X. Qin, M. Fei, W. Hou, J. Greshock, K.E. Bachman, R. Wooster, J. Kang, C.
Y. Qin, Combined phosphatase and tensin homolog (PTEN) loss and fatty acid
synthase (FAS) overexpression worsens the prognosis of chinese patients with
hepatocellular carcinoma, Int. J. Mol. Sci. 13 (2012) 9980–9991.

[25] S. Nahnsen, C. Bielow, K. Reinert, O. Kohlbacher, Tools for label-free peptide
quantification, Mol. Cell. Proteomics 12 (2013) 549–556.

[26] C. Kumar, M. Mann, Bioinformatics analysis of mass spectrometry-based
proteomics data sets, FEBS Lett. 583 (2009) 1703–1712.

[27] M.B. Tierno, P.A. Johnston, C. Foster, J.J. Skoko, S.N. Shinde, T.Y. Shun, J.S. Lazo,
Development and optimization of high-throughput in vitro protein phos-
phatase screening assays, Nat. Protoc. 2 (2007) 1134–1144.

[28] D.N. Perkins, D.J. Pappin, D.M. Creasy, J.S. Cottrell, Probability-based protein
identification by searching sequence databases using mass spectrometry data,
Electrophoresis 20 (1999) 3551–3567.

[29] D.K. Crockett, G.C. Fillmore, K.S. Elenitoba-Johnson, M.S. Lim, Analysis of
phosphatase and tensin homolog tumor suppressor interacting proteins by in
vitro and in silico proteomics, Proteomics 5 (2005) 1250–1262.

[30] Y. Ahn, C.Y. Hwang, S.R. Lee, K.S. Kwon, C. Lee, The tumour suppressor PTEN
mediates a negative regulation of the E3 ubiquitin-protein ligase Nedd4,
Biochem. J. 412 (2008) 331–338.

[31] H.J. Forman, Use and abuse of exogenous H2O2 in studies of signal transduc-
tion, Free Radic. Biol. Med. 42 (2007) 926–932.

[32] C. Lee, J.S. Kim, T. Waldman, PTEN gene targeting reveals a radiation-induced
size checkpoint in human cancer cells, Cancer Res. 64 (2004) 6906–6914.

[33] J.S. Kim, X. Xu, H. Li, D. Solomon, W.S. Lane, T. Jin, T. Waldman, Mechanistic
analysis of a DNA damage-induced, PTEN-dependent size checkpoint in hu-
man cells, Mol. Cell. Biol. 31 (2011) 2756–2771.

[34] J.P. Brennan, R. Wait, S. Begum, J.R. Bell, M.J. Dunn, P. Eaton, Detection and
mapping of widespread intermolecular protein disulfide formation during
cardiac oxidative stress using proteomics with diagonal electrophoresis, J. Biol.
Chem. 279 (2004) 41352–41360.

[35] M.I. Berggren, B. Husbeck, B. Samulitis, A.F. Baker, A. Gallegos, G. Powis,
Thioredoxin peroxidase-1 (peroxiredoxin-1) is increased in thioredoxin-1
transfected cells and results in enhanced protection against apoptosis caused
by hydrogen peroxide but not by other agents including dexamethasone,
etoposide, and doxorubicin, Arch. Biochem. Biophys. 392 (2001) 103–109.

[36] C.A. Neumann, J. Cao, Y. Manevich, Peroxiredoxin 1 and its role in cell sig-
naling, Cell Cycle 8 (2009) 4072–4078.

[37] U. Schwertassek, A. Haque, N. Krishnan, R. Greiner, L. Weingarten, T.P. Dick, N.
K. Tonks, Reactivation of oxidized PTP1B and PTEN by thioredoxin 1, FEBS J.
281 (2014) 3545–3558.

[38] C.M. Cruz, A. Rinna, H.J. Forman, A.L. Ventura, P.M. Persechini, D.M. Ojcius, ATP
activates a reactive oxygen species-dependent oxidative stress response and
secretion of proinflammatory cytokines in macrophages, J. Biol. Chem. 282
(2007) 2871–2879.

[39] S. Lu, S.B. Fan, B. Yang, Y.X. Li, J.M. Meng, L. Wu, P. Li, K. Zhang, M.J. Zhang, Y. Fu,
J. Luo, R.X. Sun, S.M. He, M.Q. Dong, Mapping native disulfide bonds at a
proteome scale, Nat. Methods 12 (2015) 329–331.

[40] P. Checconi, S. Salzano, L. Bowler, L. Mullen, M. Mengozzi, E.M. Hanschmann,
C.H. Lillig, R. Sgarbanti, S. Panella, L. Nencioni, A.T. Palamara, P. Ghezzi, Redox
proteomics of the inflammatory secretome identifies a common set of re-
doxins and other glutathionylated proteins released in inflammation, influ-
enza virus infection and oxidative stress, PLoS One 10 (2015) e0127086.

[41] J.L. Li, E.J. Tanhehco, B. Russell, Actin dynamics is rapidly regulated by the PTEN
and PIP2 signaling pathways leading to myocyte hypertrophy, Am. J. Physiol. –
Heart Circ. 307 (2014) H1618–H1625.

[42] V. Kolsch, P.G. Charest, R.A. Firtel, The regulation of cell motility and chemo-
taxis by phospholipid signaling, J. Cell. Sci. 121 (2008) 551–559.

[43] F. Martin-Belmonte, A. Gassama, A. Datta, W. Yu, U. Rescher, V. Gerke,
K. Mostov, PTEN-mediated apical segregation of phosphoinositides controls
epithelial morphogenesis through Cdc42, Cell 128 (2007) 383–397.

[44] P. Kreis, R. Hendricusdottir, L. Kay, I.E. Papageorgiou, M. van Diepen, T. Mack,
J. Ryves, A. Harwood, N.R. Leslie, O. Kann, M. Parsons, B.J. Eickholt, Phos-
phorylation of the actin binding protein Drebrin at S647 is regulated by
neuronal activity and PTEN, PLoS One 8 (2013) e71957.

[45] A. Chakrabarti, D.A. Kelkar, A. Chattopadhyay, Spectrin organization and dy-
namics: new insights, Biosci. Rep. 26 (2006) 369–386.

[46] H.K. Surks, C.T. Richards, M.E. Mendelsohn, Myosin phosphatase-Rho inter-
acting protein – a new member of the myosin phosphatase complex that di-
rectly binds RhoA, J. Biol. Chem. 278 (2003) 51484–51493.

[47] G.C. Dobbins, B. Zhang, W.C. Xiong, L. Mei, The role of the cytoskeleton in
neuromuscular junction formation, J. Mol. Neurosci. 30 (2006) 115–118.

[48] P. Kreis, G. Leondaritis, I. Lieberam, B.J. Eickholt, Subcellular targeting and
dynamic regulation of PTEN: implications for neuronal cells and neurological
disorders, Front. Mol. Neurosci. 7 (2014) 23.

[49] M. Ming, Y.Y. He, PTEN in DNA damage repair, Cancer Lett. 319 (2012)
125–129.

[50] L. Liu, E.M. Rodriguez-Belmonte, N. Mazloum, B. Xie, M.Y.W.T. Lee, Identifi-
cation of a novel protein, PDIP38, that interacts with the p50 subunit of DNA
polymerase delta and proliferating cell nuclear antigen, J. Biol. Chem. 278
(2003) 10041–10047.

[51] F.J. Miller Jr., NADPH oxidase 4: walking the walk with Poldip2, Circ. Res. 105
(2009) 209–210.

[52] R. Shamsadin, I.M. Adham, G. von Beust, W. Engel, Molecular cloning,

http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.004
http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.004
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref1
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref1
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref1
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref2
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref2
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref2
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref2
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref2
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref3
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref3
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref3
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref3
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref4
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref4
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref4
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref5
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref5
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref5
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref5
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref6
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref6
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref6
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref7
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref7
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref7
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref7
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref7
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref8
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref8
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref8
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref9
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref9
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref10
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref11
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref11
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref11
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref11
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref11
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref12
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref12
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref12
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref12
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref13
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref13
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref13
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref13
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref14
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref14
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref14
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref14
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref14
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref15
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref15
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref15
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref16
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref16
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref16
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref16
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref17
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref17
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref17
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref17
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref17
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref17
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref18
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref18
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref18
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref18
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref19
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref19
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref19
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref19
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref19
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref20
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref20
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref20
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref20
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref21
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref21
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref21
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref22
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref22
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref22
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref22
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref23
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref23
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref23
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref24
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref24
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref24
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref24
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref24
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref25
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref25
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref25
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref26
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref26
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref26
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref27
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref27
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref27
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref27
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref28
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref28
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref28
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref28
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref29
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref29
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref29
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref29
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref30
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref30
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref30
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref30
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref31
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref32
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref32
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref32
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref33
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref33
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref33
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref33
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref34
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref34
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref34
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref34
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref34
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref35
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref35
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref35
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref35
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref35
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref35
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref36
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref36
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref36
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref37
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref37
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref37
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref37
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref38
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref38
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref38
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref38
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref38
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref39
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref39
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref39
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref39
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref40
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref40
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref40
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref40
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref40
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref41
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref41
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref41
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref41
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref42
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref42
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref42
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref43
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref43
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref43
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref43
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref44
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref44
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref44
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref44
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref45
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref45
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref45
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref46
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref46
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref46
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref46
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref47
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref47
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref47
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref48
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref48
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref48
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref49
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref49
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref49
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref50
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref50
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref50
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref50
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref50
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref51
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref51
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref51
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref52


I. Verrastro et al. / Free Radical Biology and Medicine 90 (2016) 24–3434
expression and chromosome location of the human pelota gene PELO, Cyto-
genet. Cell Genet. 90 (2000) 75–78.

[53] K. Pedersen, F. Canals, A. Prat, J. Tabernero, J. Arribas, PELO negatively reg-
ulates HER receptor signalling and metastasis, Oncogene 33 (2014) 1190–1197.

[54] W.H. Shen, A.S. Balajee, J. Wang, H. Wu, C. Eng, P.P. Pandolfi, Y. Yin, Essential
role for nuclear PTEN in maintaining chromosomal integrity, Cell 128 (2007)
157–170.

[55] Y.R. Chen, M.T. Liu, Y.T. Chang, C.C. Wu, C.Y. Hu, J.Y. Chen, Epstein-Barr virus
latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOX-
O3a pathway in human epithelial cells, J. Virol. 82 (2008) 8124–8137.

[56] J. Yao, L.H. Liang, Y. Zhang, J. Ding, Q. Tian, J.J. Li, X.H. He, GNAI1 suppresses
tumor cell migration and invasion and is post-transcriptionally regulated by
Mir-320a/c/d in hepatocellular carcinoma, Cancer Biol. Med. 9 (2012)
234–241.
[57] T. Van de Sande, E. De Schrijver, W. Heyns, G. Verhoeven, J.V. Swinnen, Role of

the phosphatidylinositol 3'-kinase/PTEN/Akt kinase pathway in the over-
expression of fatty acid synthase in LNCaP prostate cancer cells, Cancer Res. 62
(2002) 642–646.

[58] M.H. Chen, C.C. Malbon, G-protein-coupled receptor-associated A-kinase an-
choring proteins AKAP5 and AKAP12: differential trafficking and distribution,
Cell Signal. 21 (2009) 136–142.

[59] A.I. Archakov, V.M. Govorun, A.V. Dubanov, Y.D. Ivanov, A.V. Veselovsky,
P. Lewi, P. Janssen, Protein–protein interactions as a target for drugs in pro-
teomics, Proteomics 3 (2003) 380–391.

[60] D.P. Ryan, J.M. Matthews, Protein–protein interactions in human disease, Curr.
Opin. Struct. Biol. 15 (2005) 441–446.

http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref52
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref52
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref52
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref53
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref53
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref53
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref54
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref54
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref54
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref54
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref55
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref55
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref55
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref55
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref56
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref56
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref56
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref56
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref56
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref57
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref57
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref57
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref57
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref57
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref58
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref58
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref58
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref58
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref59
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref59
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref59
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref59
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref60
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref60
http://refhub.elsevier.com/S0891-5849(15)01102-8/sbref60

	Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory...
	Introduction
	Materials and methods
	Reagents
	Expression and purification of PTEN
	PTEN oxidation and activity assay
	Cell culture
	Preparation of PTEN affinity capture column and protein capture
	Protein digestion
	LC–MS
	Label-free quantification with Progenesis QI for proteomics
	Database search
	Validation by Western blotting

	Results
	Confirmation of reversible disulfide bond formation of H2O2-oxidized PTEN-GST
	Identification of proteins affinity-captured by the reduced and oxidized PTEN-GST
	Potential novel interactors of PTEN
	PTEN binding proteins interact differently with reduced and oxidized PTEN-GST baits
	Validation of selected interactions with Western blotting confirmed the proteomics study
	Non-reducing gels to test for intermolecular disulfide formation
	Relative quantification of oxPTMs of the oxidized PTEN-GST bait

	Discussion
	Acknowledgments
	Supplementary material
	References




