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Summary 

Premium Intraocular Lenses (IOLs) such as toric IOLs, multifocal IOLs (MIOLs) and 
accommodating IOLs (AIOLs) can provide better refractive and visual outcomes compared to 
standard monofocal designs, leading to greater levels of post-operative spectacle 
independence. The principal theme of this thesis relates to the development of new assessment 
techniques that can help to improve future premium IOL design.  
 
IOLs designed to correct astigmatism form the focus of the first part of the thesis. A novel toric 
IOL design was devised to decrease the effect of toric rotation on patient visual acuity, but 
found to have neither a beneficial or detrimental impact on visual acuity retention. IOL tilt, like 
rotation, may curtail visual performance; however current IOL tilt measurement techniques 
require the use of specialist equipment not readily available in most ophthalmological clinics. 
Thus a new idea that applied Pythagoras’s theory to digital images of IOL optic symmetricality 
in order to calculate tilt was proposed, and shown to be both accurate and highly repeatable. A 
literature review revealed little information on the relationship between IOL tilt, decentration and 
rotation and so this was examined. A poor correlation between these factors was found, 
indicating they occur independently of each other.  
  
Next, presbyopia correcting IOLs were investigated. The light distribution of different MIOLs and 
an AIOL was assessed using perimetry, to establish whether this could be used to inform 
optimal IOL design. Anticipated differences in threshold sensitivity between IOLs were not 
however found, thus perimetry was concluded to be ineffective in mapping retinal projection of 
blur. 
  
The observed difference between subjective and objective measures of accommodation, arising 
from the influence of pseudoaccommodative factors, was explored next to establish how much 
additional objective power would be required to restore the eye’s focus with AIOLs. Blur 
tolerance was found to be the key contributor to the ocular depth of focus, with an approximate 
dioptric influence of 0.60D. Our understanding of MIOLs may be limited by the need for 
subjective defocus curves, which are lengthy and do not permit important additional measures 
to be undertaken. The use of aberrometry to provide faster objective defocus curves was 
examined. Although subjective and objective measures related well, the peaks of the MIOL 
defocus curve profile were not evident with objective prediction of acuity, indicating a need for 
further refinement of visual quality metrics based on ocular aberrations. 
 
The experiments detailed in the thesis evaluate methods to improve visual performance with 
toric IOLs. They also investigate new techniques to allow more rapid post-operative 
assessment of premium IOLs, which could allow greater insights to be obtained into several 
aspects of visual quality, in order to optimise future IOL design and ultimately enhance patient 
satisfaction. 
 
 
 
Key words: Premium IOL, misalignment, retinal projection, objective accommodation, 

aberrometry. 
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6.10 The pupil size with defocus lens is plotted here and shows that pupil 

miosis occurred with accommodative effort, which was an expected 

outcome. 
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A1.2 Simplified diagram of the mechanism of action of the Hartmann-Shack 

aberrometer. 
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A1.3 Simple diagram of the mechanism of action of the Tscherning 

aberrometer. A grid pattern is projected onto the retina using a laser 

light. The grid pattern is then imaged by a CCD and compared against 
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CHAPTER 1: The ageing eye 

 

1.1. Introduction 

Cataracts are a leading cause of readily curable blindness (WHO, 2007) and are 

estimated to affect over 100 million people worldwide (Pascolini et al., 2012). In 

developed countries, cataract extraction followed by implantation of an intraocular lens 

(IOL) is a routine and relatively cost-effective intervention.  Standard IOLs, which have 

a single, fixed focal length, are currently the most commonly implanted lens type 

(Horvath et al., 2014). However in recent years, there have been rapid advances in IOL 

design, which have led to the commercialization of ‘premium’ or advanced technology 

IOLs such as toric, multifocal and accommodating IOLs. This chapter will provide a 

review detailing the evolution of intraocular lenses and will also outline the mechanism 

of action and visual outcomes achievable with premium IOLs. 

 

1.2. Cataract  

The crystalline lens is an anteriorly located ocular structure which contributes one third 

of the eye’s refractive power and plays a critical role in accommodation for younger 

eyes (Gullstrand, 1924). For optimal visual performance it should be transparent. 

Cataract describes the pathological opacification of the crystalline lens and can be 

congenital or acquired (Ong et al., 2014). Ageing is typically the most common cause 

of acquired cataract (Asbell et al., 2005) which occurs as a result of the continual 

addition of new fibres to the lens mass throughout life; this results in the crystalline lens 

becoming increasingly more densely packed and less optically clear over time (Al-

Ghoul et al., 2001;Asbell et al., 2005). Other causes of acquired cataract include use of 

certain medications such as corticosteroids, from ocular trauma or secondary to ocular 

and systemic diseases such as diabetes mellitus (Pollreisz et al., 2010;Ong et al., 

2014). 
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Age-related cataracts can be categorized into three main types: nuclear, cortical and 

posterior subcapsular and these may occur alone or together in various combinations 

(Asbell et al., 2005;Michael et al., 2011). Cataract development can impair vision by 

reducing the amount of light that passes through the increasingly opaque crystalline 

lens,  causing a decrease in retinal image quality (Asbell et al., 2005). Furthermore, 

they may initiate a change in refractive error, typically a myopic shift with nuclear 

cataract, as well as an increase in the amount of ocular light scatter, both of which can 

affect visual performance and may lead to reports of reduced visual acuity, loss of 

colour discrimination and complaints of glare (Asbell et al., 2005). 

 

Global estimates indicate there to be approximately 285 million visually impaired 

people across all age groups. Surveys conducted in 39 countries indicated that the 

leading causes of this visual impairment were uncorrected refractive error followed by 

cataract, which accounted for 43% and 33% of cases respectively. An estimated 39 

million people across the world are blind, with the primary cause in 51% of these cases 

attributed to cataract (Pascolini et al., 2012). In general, cataract is treatable and it is 

possible to restore all functions of the natural crystalline lens, except accommodation, 

with cataract surgery (Ong et al., 2014). Cataract surgery is one of the most commonly 

performed surgical procedures with an estimated 19 million operations carried out per 

year globally (Donaldson et al., 2013), it is also one of the most cost-effective 

procedures (Asbell et al., 2005). In the UK an estimated 300,000 operations are 

conducted annually by the National Health Service (Trikha et al., 2013). The volume of 

cataract surgery has increased dramatically since the 1980s (Taylor, 2000) due to 

growth and ageing of the population (Asbell et al., 2005).  
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1.2.1. Surgical management of cataract 

The first attempts at surgical treatment of cataracts were rather rudimentary and high 

risk; they involved a surgical technique known as “couching” where a needle was used 

to displace the cloudy lens into the vitreous body so that it was away from the line of 

sight (Ridley, 1952;Schemann et al., 2000). This technique has been described as far 

back as 700BC in Hindu literature, and was also popular in ancient Greek and Roman 

civilizations. It remained a common procedure up until the 19th century (Bidyadhar, 

1955;Saxena, 1965;Raju, 2003). Some of the main post-operative complications 

associated with couching include: infection, secondary glaucoma, iridocyclitis with or 

without hypopyon, hyphema, leucoma adherens and retinal detachment (Saxena, 

1965). Couching is still performed in some of the world’s poorest countries, particularly 

sub-Saharan Africa (Signes-Soler et al., 2012) and is often the preferred treatment 

method despite the greater risk and reduced effectiveness compared to more 

advanced methods of cataract extraction (Saxena, 1965;Schemann et al., 2000). 

Rabiu et al. (2001) conducted a population based cross sectional survey to determine 

barriers to the uptake of cataract services in rural northern Nigerian communities and 

determined factors such as an inability to afford treatment, lack of trust, and a greater 

availability of traditional techniques, such as couching, to be the key influences. 

 

Surgical techniques for cataract management have moved on rapidly from the rather 

basic procedure of couching and records show that approximately two hundred years 

ago  intracapsular extractions were being performed (Asbell et al., 2005). Intracapsular 

cataract extraction involves surgical removal of the cloudy lens and capsular bag via a 

large corneo-scleral incision. Extracapsular cataract extraction (ECCE) developed from 

this technique and also involved delicate surgical removal of the opacified lens material 

but not the capsular bag, which was left intact. By this time IOLs were being developed 

and this capsular bag was left intact with a view to holding this type of artificial lens 
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implant in situ.  Keeping the lens capsule was found to be advantageous because of its 

action as a barrier between the anterior and posterior segments of the eye, which 

reduced the risk of vitreous problems, retinal detachment and cystoid macular oedema 

with ECCE (Linebarger et al., 1999;Asbell et al., 2005). 

 

Phacoemulsification, first developed by Charles Kelman in 1967, is a popular surgical 

method of treatment for cataracts in developed countries such as the UK and has 

changed little over the past 25 years (Nagy et al., 2009;de Silva et al., 2014). It 

involves creating a small corneal incision approximately three millimetres in size, 

through which a probe is inserted. This probe uses high frequency ultrasonic waves to 

gently liquefy the cataractous lens material so that it can then be aspirated through an 

irrigation-aspiration system, leaving the capsular bag intact. For this reason, 

phacoemulsification is sometimes thought of as a modified extracapsular extraction 

technique.  

 

Although ECCE is associated with a higher incidence of induced astigmatism as well 

as a longer visual recovery time compared to phacoemulsification, it is the preferred 

option for cataract removal in economically disadvantaged countries while 

phacoemulsification predominates in developed countries (Pershing et al., 2011;de 

Silva et al., 2014). ECCE is favoured in disadvantage countries due to the greater 

expense associated with purchasing and maintaining phacoemulsification equipment 

as well as costs associated with surgical training (Khanna et al., 2011). ECCE is also 

favoured for patients with dense cataracts, as they as  more likely to experience post-

operative corneal oedema with phacoemulsification (Pershing et al., 2011).   

Phacoemulsification devices can damage corneal endothelial cells due to mechanical 

trauma from ultrasound waves as well as from thermal injury (Conrad-Hengerer et al., 

2013;Mayer et al., 2014). A greater loss of corneal endothelial cells occurs after 
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cataract surgery with reported cell losses varying between 4% and 25% (Mencucci et 

al., 2006). This can give rise to problems such as corneal decompensation and 

oedema (Mayer et al., 2014).  

 

Recently femtosecond lasers (FS), which generate short pulses of energy at a near 

infrared wavelength (Roberts et al., 2013), have been introduced to the cataract 

surgery procedure to increase its automation and potentially improve safety. FS lasers 

can be used to create precise corneal incisions (Moshirfar et al., 2011;Mayer et al., 

2014) without damaging adjacent tissues, One-way, self sealing, water tight FS laser 

guided corneal incisions that are less prone to leakage and more stable, can be 

created in order to access the anterior chamber (Moshirfar et al., 2011). FS laser can 

also be used to create accurate and reproducible capsulotomies. An irregularly shaped 

capsulotomy can affect IOL position leading to decentration and tilt therefore creating a 

symmetrical capsulotomy is important in ensuring IOL stability (Kranitz et al., 2011). 

Additionally, FS lasers can also be used to help break up the lens nucleus prior to 

removal, although aspiration still requires an inserted probe. Research has shown FS 

systems decrease the ultrasound energy that is required for phacofragmentation with 

all levels of cataract (Moshirfar et al., 2011;Naranjo-Tackman, 2011). In a porcine eye 

study conducted  by Nagy et al. (2009),  FS laser  was found to reduce the required 

phacoemulsification power by 43% and to shorten  phacoemulsification time by  51%. 

There is therefore less likely to be damage to surrounding ocular structures with FS 

lasers since the shock and acoustic waves they produce dissipate within 100µm of the 

lens tissue targeted (Nagy et al., 2009). Conrad-Hengerer et al. (2013) found that use 

of FS lasers led to significantly lower endothelial cell loss compared to standard 

phacoemulsification, which is a key advantage in patients with known corneal 

endothelial cell dysfunction, such as Fuchs endothelial dystrophy (Mayer et al., 2014). 

Additionally, less corneal oedema can speed up visual recovery post-operatively 
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(Conrad-Hengerer et al., 2013).  Early studies suggest FS lasers to have a good record 

of safety, with a low incidence of post-operative complications (Nagy et al., 

2009;Moshirfar et al., 2011) although published studies have not yet evaluated their 

long term safety (Conrad-Hengerer et al., 2013). Possible disadvantages of FS laser 

assisted cataract surgery include an increased rate of anterior capsule tears (Bali et 

al., 2012). Some early studies comparing FS laser assisted cataract surgery with 

conventional surgery have reported similar visual acuity outcomes with both 

procedures (Nagy et al., 2012;Donaldson et al., 2013) while others found better 

refractive outcomes with FS laser cataract surgery compared to conventional cataract 

surgery (Filkorn et al., 2012). Uy et al. (2011) compared refractive results in eyes 

undergoing FS laser anterior capsulotomy with those receiving a manual continuous 

curvilinear capsulorhexis and found a spherical equivalent closer to the target 

refraction in the laser group. After removal of the cataract, a foldable artificial 

intraocular lens is placed into the intact capsular bag to restore vision back to 

satisfactory levels. Such procedures are carried out on a routine basis in developed 

countries such as the UK (Apple et al., 1996;Donaldson et al., 2013;Roberts et al., 

2013;Trikha et al., 2013). 

 

1.3. History of Intraocular lenses 

IOLs were first developed by Sir Harold Ridley over sixty years ago. Ridley witnessed 

the inert nature of polymethylmethacrylate (PMMA) imbedded inside the eye whilst 

serving as a RAF ophthalmologist during the Second World War and this observation 

inspired the invention of the first intraocular lens. At the time, routine cataract 

operations only involved removal of the cloudy lens material, leaving patients with a 

refractive error in the region of +20D. As a result of this, patients were forced to wear 

thick and unsightly aphakic spectacles to restore vision.  Ridley was one of the first to 

suggest that surgically removing the opacified lens material provided only a partial 
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solution to the problem of cataract. It was believed that subsequent implantation of a 

suitably calculated IOL offered a more complete cure as it removed this post-operative 

need for thick aphakic spectacles, leaving only a requirement of spectacles for near 

tasks (Ridley, 1952;Apple et al., 1996;Kershner, 2003;Bhartiya et al., 2009).  

 

The first IOL operation was carried out by Ridley in 1949 using an IOL composed of a 

modified PMMA material, otherwise known as Perspex. Ridley was concerned about 

the purity of commercially available PMMA and so to minimise any unforeseen risk 

requested a purer form to be made specifically for the purpose of ocular implantation 

(Apple et al., 1996). Ridley carried out an extracapsular cataract extraction procedure 

on the patient and successfully implanted an IOL some weeks later.  However, IOLs 

implanted in this way were found to be prone to displacement which spurred the 

development of new IOLs that were designed to sit in the anterior as opposed to 

posterior chamber, tethered at the irido-corneal angle. Although these lenses were 

easier to insert, initial anterior chamber IOLs produced undesirable corneal effects 

such as corneal decomposition and oedema (Jaffe, 1996). Iris supported IOLs were 

subsequently developed to overcome the problems that occurred with these earlier 

IOLs and these were relatively successful, although there were some reports of pupil 

deformation and iris chafing (Bhartiya et al., 2009). The vulnerability of the anterior 

chamber prompted a return to posterior chamber IOLs development. IOLs have since 

undergone vast improvements in both their design and optical quality. Developmental 

milestones include the invention of foldable IOLs which enabled smaller corneal 

incisions to be made and thus facilitated faster recovery time post-operatively (Apple et 

al., 1996;Kershner, 2003;Bhartiya et al., 2009). The lenses described above were all of 

a spherical design. Present IOLs include toric, multifocal, and accommodating designs 

often referred to as “premium” or “advanced technology” IOLs (Ale et al., 2012; Mingo-

Botin et al., 2010; Mendicute et al., 2009) as well as those intended for a more niche 
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market such as telescopic lenses for patients with age-related macular degeneration 

(Bhogal et al., 2011). 

 

Toric IOLs are used to correct astigmatism, a common refractive disorder, in order to 

improve post-operative visual outcomes. Multifocal and accommodating IOLs are 

designed to provide excellent uncorrected acuity at near as well as far distances in the 

pseudophakic eye (Leyland et al., 2003). As a result of the enhanced visual 

performance achievable with premium’ IOLs compared to standard monofocal designs 

(Leyland et al., 2003), they are becoming an increasingly popular choice amongst 

surgeons and patients and are discussed in more detail in the next section (van der 

Linden et al., 2012). It is important for premium IOLs to be correctly positioned within 

the capsular bag following cataract surgery given their more complex optics.  

Malposition of an IOL can introduce unwanted aberrations, such as astigmatism which 

is induced by lens tilt (Chang et al., 2007;Sheppard et al., 2008).  

 

1.4. Astigmatism 

Pre-surgical corneal astigmatism of more than 1.50DC exists in approximately 18-22% 

of patients awaiting cataract surgery (Ferrer-Blasco et al., 2009;Ahmed et al., 

2010;Buckhurst et al., 2010a;Mingo-Botin et al., 2010).  With increasing levels of 

uncorrected astigmatism, lower visual acuities are observed (Wolffsohn et al., 

2011a;Kobashi et al., 2012) therefore in order to optimise post-operative visual acuity 

this corneal astigmatism should be corrected (Mingo-Botin et al., 2010). Currently,  

astigmatic correction can be achieved through implantation of a toric IOL (Wang et al., 

2003b;Ferrer-Blasco et al., 2009;Buckhurst et al., 2010b;Ale et al., 2012b) or incisional 

surgery (Bayramlar et al., 2003;Wang et al., 2003b;Kaufmann et al., 2005;Muftuoglu et 

al., 2010). 
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1.4.1. Toric IOLs 

A study comparing toric IOLs and limbal relaxing incisions found that the former 

produced residual astigmatism of less than or equal to 1.00DC in approximately 90% 

of subjects, compared to just 40% with limbal relaxing incisions. Additionally there was 

a trend towards better contrast sensitivity under mesopic with glare conditions with 

toric IOLs compared to limbal relaxing incisions (Mingo-Botin et al., 2010). Therefore 

toric IOLs are considered to be the superior form of correction in patients with mild to 

moderate astigmatism.  

 

The invention of intraocular lenses represented a significant shift in modern cataract 

surgery techniques and allowed great advances in the distance acuity that could be 

reached after surgery.  The success of cataract surgery is influenced greatly by the 

ability of an implanted IOL to maintain a fixed and steady position within the capsular 

bag over the long term. However, once implanted, all IOLs are prone to tilt and 

decentration within the capsular bag, which can affect vision (Visser et al., 2011a) as 

the subject is no longer looking through the optimum part of the lens (Kim et al., 2010).  

With toric IOLs, lens misalignment due to rotation or inaccurate positioning becomes 

an additional source of concern and is a frequently reported complication (Ale et al., 

2012b;Packer, 2014). IOL rotation is influenced by many factors including capsular bag 

shrinkage, IOL material and haptic design (Prinz et al., 2011). Recent toric IOL 

development has focussed on methods to increase lens stability (Buckhurst et al., 

2010b;Ale et al., 2012b) such as with improved lens haptic designs. Despite this, the 

issue of lens rotation persists. Thus an alternative idea is to focus on techniques to 

compensate for the effects of toric IOL rotation, in order to increase patient tolerance to 

lens misalignment. It would be an attractive proposition to develop a lens optical design 

which is less susceptible to reduced refractive error on rotation away from the intended 

axis. 
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While toric IOL rotation has been studied at length and there is extensive literature 

measuring tilt and decentration, there are currently no studies that have examined the 

link between rotation, tilt and displacement of an implanted IOL. Tilt can have a 

detrimental impact on quality of vision (Taketani et al., 2004;Kumar et al., 2011;Madrid-

Costa et al., 2012); however it is commonly overlooked as a potential source of 

reduced vision. While IOL rotation is commonly evaluated using digital slit lamp image 

analysis, current tilt measurement techniques require the use of specialised expensive 

equipment not commonly found in most optometric consulting rooms. Therefore a 

simpler technique using similar image analysis would be a useful way of rapidly 

measuring tilt in clinical practice.  

 

1.4.2. Incisional surgery 

There are a several different approaches relating to the use of incisional surgery in 

reducing astigmatism during cataract surgery.  Options include placing a clear corneal 

incision along the steep corneal meridian in order to utilise the effects of wound 

induced corneal flattening (Wang et al., 2003b;Kaufmann et al., 2005). Alternatives 

include opposite clear corneal incision where two standard cataract incisions are made 

along the steep meridian, limbal relaxing incisions or peripheral corneal relaxing 

incisions (Wang et al., 2003b). Incisional surgery relies heavily on the corneal healing 

response which can vary significantly between individuals, leading to greater 

unpredictability in refractive outcomes post-operatively (Wang et al., 2003b;Buckhurst 

et al., 2010b). Peripheral corneal relaxing incisions preserve much of the cornea’s 

optical qualities, leading to fewer complaints of post-operative glare or discomfort 

(Bayramlar et al., 2003;Wang et al., 2003b). However, a complication of more 

peripheral incisions is the need for longer incisions to achieve the required power 

which can have a greater impact upon corneal innervation and therefore healing time 

post-operatively (Mingo-Botin et al., 2010)  Limbal relaxing incisions are thought to be 
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superior to corneal relaxing incisions because they can correct greater levels of 

astigmatism and do not encroach as much onto the central cornea (Buckhurst et al., 

2010a). They therefore rely less upon the subjects’ specific corneal healing pattern 

meaning surgical outcomes can be predicted with comparatively greater accuracy 

(Bayramlar et al., 2003).  However there are reports of under corrected astigmatism 

with some types of incisional surgery (Bayramlar et al., 2003;Wang et al., 2003b) 

 

1.5. Presbyopia 

Ocular accommodation describes an increase in the dioptric power of the eye when 

changing focus from distance to near (Wold et al., 2003;Ostrin et al., 2004;Glasser, 

2006). The most widely accepted theory of the mechanism of accommodation is based 

on Helmholtz’s theory which suggests accommodation is achieved by the change in 

shape of the crystalline lens secondary to ciliary muscle (CM) contraction. When 

viewing a distant object, the CM relaxes allowing the lens zonules and suspensory 

ligaments to pull on the lens, thereby flattening it. When a near object is viewed, the 

CM contracts to accommodate and this reduces the tension on the lens zonules which 

therefore slacken; this allows the elastic capsule surrounding lens to mould it into a 

thicker, more convex form (Gilmartin, 1995).  

 

The ability to accommodate decreases gradually with age, in a process commonly 

referred to as presbyopia. This starts to hinder near vision from around 40 years of age 

and by age 55 years, little or no accommodation remains (Ostrin et al., 2004;Ong et al., 

2014). The exact cause of presbyopia development is not fully understood although 

several theories have been proposed (Atchison, 1995;Pierscionek et al., 

1995;Charman, 2008). One theory suggests that a gradual age-related increase in 

crystalline lens size reduces zonular tension,  causing a reduction in accommodative 

amplitude (Gilmartin, 1995;Schachar, 2006;Charman, 2008) while an alternative theory 
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proposed that a progressively weakening CM initiated this presbyopic change (Duane, 

1925). The latter has largely been disproven by research, which demonstrates that the 

CM retains most of its contractility throughout life (Strenk et al., 1999;Strenk et al., 

2006). Generally speaking, the majority of recent research suggests that an increase in 

crystalline lens size coupled with changes to lens capsule elasticity, are the principle 

causes behind this loss in accommodative amplitude with age (Glasser et al., 

1998;Glasser et al., 1999) 

 

Several strategies have evolved in order to compensate for the loss of accommodation 

following cataract surgery including presbyopia correcting IOLs such as  multifocal  and 

accommodating forms (Ong et al., 2014). 

 

1.5.1. Multifocal and Accommodating IOLs 

It is estimated that several million IOLs are routinely implanted into the eye following 

cataract extraction every year (Simpson, 1992). Standard single focus IOLs, commonly 

known as monofocal IOLs, provide good uncorrected vision at only one focal point, 

typically the distance, leaving patients with inadequate uncorrected near and 

intermediate vision (Ong et al., 2014). Consequently, patients must wear some form of 

refractive corrective appliance, most often spectacle lenses, in order to aid with close 

visual tasks.   

 

Multifocal IOLs (MIOLs) have been around since the 1980s (Keates et al., 1987;Gimbel 

et al., 1991;el-Maghraby et al., 1992)  and are designed to provide clear vision at a 

range of focal points (Packer, 2014) thus reducing the need for spectacles 

postoperatively. Several design strategies have been developed in order to confer 

multifocality onto an IOL. Multi-zonal lens designs incorporate a concentric ring pattern 

into the lens design and may utilize refractive, diffractive or combined refractive-
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diffractive principles in order to create multiple focal points from distance to near. 

However there are reports of optical side effects such as dysphotopsia with MIOLs 

(Packer, 2014). Dysphotopsia, sometimes referred to as entopic or photic phenomena, 

describes undesirable light related images such as streaks, haze, haloes, glare 

(Davison, 2000;Tester et al., 2000). The MIOL design will affect the incoming light 

distribution, the number of focal points as well as image quality (Buckhurst et al., 

2012). 

 

More recently, within the last five years, segmented lenses have been developed in 

which the near portion is confined to a specific area of the IOL, much like in a bifocal 

spectacle lens, although their mechanism of action is, like all MIOLs, simultaneous 

rather than translating. The first commercially available segmented IOL was evaluated 

in 2011 by Alio et al. (2011a) who concluded that this IOL improved distance, 

intermediate and near vision but was more susceptible to tilt and decentration. 

However, it is not understood how the near segment light is distributed across the 

retina and this knowledge is needed to optimise the shape, design and power profile of 

this near addition. Such sectorial IOLs rely on good IOL alignment. Materials used in 

such advanced technology IOLs include hydrophobic acrylic, hydrophilic acrylic, poly 

(methyl methacrylate) (PMMA) and silicone (Morris et al., 2014).  

 

 

Accommodative IOLs (AIOLs) were developed in the 1990s (Cumming et al., 1996) in 

order to overcome the problem of photic phenomena experienced with MIOLs (Alió et 

al., 2012). There are a range of AIOLs designs currently available, which use different 

mechanisms in order to provide functional near vision.  AIOLs are based upon the optic 

shift principal and are designed to imitate the natural change that occurs in a young 

crystalline lens during accommodation, by moving anteriorly within the capsular bag to 
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allow clear vision during near tasks (Nanavaty et al., 2010;Sheppard et al., 2010). 

Single optic AIOLs can theoretically achieve a maximum of 1.5D of near power (Schor, 

2009). Dual optic accommodative IOLs are relatively new and consist of a mobile, high 

powered positive anterior optic and a stationary, negative posterior optic which are 

held close in the unaccomodated eye by a spring haptic. Stimulation of 

accommodation initiates compressive forces resulting in an anterior lens movement.  

The effectiveness of dual optic  AIOLs is uncertain with reports suggesting similar near 

and intermediate vision between single and dual optic lenses (Alió et al., 2012) 

therefore more studies are required (Bohorquez et al., 2010). Additional concepts 

include curvature changing AIOL devices (Schwiegerling et al., 2013) and emerging 

technologies such as magnetically driven implants which utilise magnetic force fields in 

order move the IOL optic anteriorly during accommodation (Ford et al., 2014).  

 

There is a higher incidence of posterior capsular opacification (PCO) with 

accommodating IOLs. PCO is a common, multi-factorial complication of cataract 

surgery that is caused by the retention of lens epithelial cells in the capsular bag which 

then migrate, proliferate and transform to produce Elschnig’s pearls and capsular 

fibrosis (Spalton, 1999). This causes light scatter leading to a reduction in visual 

performance. PCO can be treated with neodymium-doped yttrium aluminium garnet 

(Nd:YAG) laser capsulotomy (Spalton, 1999) and this has been shown to be effective 

in improving or maintaining visual acuity in 96% of cases (Ang et al., 2013)   

 

The reported rates of PCO vary depending on follow up period, definition of PCO, 

research design and method of reporting (Schaumberg et al., 1998). Milazzo et al. 

(2014) reported the rate of incidence of PCO to be 30%, while Spalton (1999) stated 

up to 50% of patients developed PCO 2 or 3 years after surgery. Schaumberg et al. 

(1998) conducted a systematic review followed by meta-analysis to determine the 
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proportion of eyes developing PCO at 1 year, 3 years and 5 years postoperatively and 

reported pooled estimates of 11.8%, 20.7% and 28.4% respectively.  

 

PCO is influenced by surgical technique, IOL design and patient factors such as age 

and intraocular or systemic diseases including uveitis and diabetes (Hancox et al., 

2007). The design of an IOL design is plays an important role in the incidence of PCO, 

for example it has been shown that a 360 degree square edge barrier to the optic can 

help reduce the incidence of PCO, as can sharp-edged optics (Hancox et al., 2007). 

Additionally, PCO rate is influenced by IOL biomaterial with acrylic IOLs being 

associated with less PCO compared to silicone and PMMA IOLs (Ursell et al., 1998) 

and hydrogel lenses linked to a significantly higher degree of PCO compared to PMMA 

and silicone (Hollick et al., 2000).  

 

As AIOLs are designed to move within the posterior chamber, unlike multifocal and 

monofocal IOLs, they are unable to provide an effective barrier against the migration 

and proliferation of cells over the posterior capsule and this is thought to result in a 

higher incidence of PCO with this IOL type. Hancox et al (2007) compared PCO and 

Nd:YAG capsulotomy rates in patients implanted with an accommodating IOL versus 

monofocal IOL and found that after 2 years, 50% of eyes implanted with the AIOLs 

developed clinically significant PCO with symptoms that required Ng:YAG capsulotomy 

compared to no eyes with the monofocal IOL. A study comparing PCO rates in 

monofocal IOL versus multifocal IOL patients found no significant difference between 

the two groups (Elgohary et al., 2008). This is corroborated by a study comparing 

visual performance in children implanted bilaterally with either monofocal or multifocal 

IOLs which found no difference in PCO rates between the two groups (Ram et al., 

2014). A larger study with a sample size of 225 eyes showed an higher PCO rate 

among a multifocal spherical IOL group versus a monofocal spherical however this 
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difference was not found to be statistically significant (Biber et al., 2009). Alio et al. 

(2012)  a dual optic AIOL and found a significantly higher rate of PCO in the single 

optic group with an PCO incidence rate of 40% in the single optic group versus 11.5% 

in the dual optic group. 

 

Horvath et al. (2014) reported that in 2011 7.8% of European cataract surgery patients 

opted to receive a premium IOL, defined as multifocal, multifocal toric and 

accommodative IOLs, compared to 14.7% in the United States. Thus standard 

monofocal IOLs are the most commonly implanted IOL type currently. However, it is 

envisaged that while standard monofocal IOL implantation will continue to increase at a 

steady rate in the coming years, the trajectory of premium IOLs, specifically multifocal 

and accommodating IOLs, will increase at a significantly faster rate in comparison. 

Current AIOLs provide some increase in depth of field, but in general not enough 

accommodative amplitude is provided by these lenses (Wolffsohn et al., 2010b). 

Correction of presbyopia is a major driving force in IOL development and it is believed 

that continued innovation and improvement of AIOLs will increase the accommodative 

amplitude that is achievable with these lenses to beyond ten dioptres, which will lead to 

a rise in their popularity. New accommodating lens designs are currently in 

development, such as the NuLens shape-changing accommodating IOL which early 

studies have shown can provide up to 10 dioptres of accommodative amplitude in 

human subjects (Alió et al., 2009) and active change of more than 40D in the monkey 

eye (Ben-nun et al., 2005).  It is postulated that a fully functioning AIOL could, in future, 

represent the gold standard of presbyopia correction (Chang et al., 2008). Other 

developments include light-adjustable lenses in which the optic consists of a flexible 

silicon polymer matrix containing a photoreactive macromer, a photoinitiator and UV 

absorbers (Charman, 2014). The lens can be adjusted noninvasively after implantation 

using a light delivery device in order to first correct myopia, hypermetropia and 
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astigmatism to emmetropia (Hengerer et al., 2011). Following this, a small near add 

zone can be added with further adjustment, which can be customised according to the 

patient’s visual axis and pupil diameter (Lichtinger et al., 2012). Early studies indicate it 

is possible to induce controlled amounts of negative spherical aberration and defocus 

in order to enhance near vision (Villegas et al., 2014) indicating the potential of this as 

a presbyopia correcting strategy.  

 

1.5.2. Key aspects of Multifocal and Accommodating IOL 

Presbyopic correcting IOLs have been examined using both subjective and objective 

methods. Visual acuity at different distances, contrast sensitivity, defocus curve 

measurement, assessment of reading ability, dysphotopsia evaluation and subjective 

quality of life questionnaires are all examples of tests  that can be performed to 

evaluate visual performance post-operatively.  

 

1.5.2.1. Retinal Projection of IOL optical focus 

Visual field tests are conducted routinely in Optometric practices and hospital eye 

departments across the UK primarily to assess optic nerve function but also to 

investigate retinal and neurological disorders (Kocabeyoglu et al., 2013;Horvath et al., 

2014).  As mentioned MIOLs provide good vision at more than one focal point; 

depending on whether the patient is viewing a distant or near target, there will be 

corresponding blur at the other focal length as a result of the mechanism of action of 

that MIOL. Retinal light sensitivity, as measured during visual field testing, is affected 

by blur (Anderson et al., 2001).  

 

By comparing visual field plots in MIOL patients for both near and far distances, it may 

be possible to investigate how incoming light is distributed across the retina. To the 

author’s knowledge there have been no comparisons of visual field plots at different 
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focal distances for newer types of MIOLs such as segmented IOLs or with 

accommodating IOLs. Furthermore there have been no comparisons between the 

retinal thresholds in different regions of the same MIOL. This information could provide 

useful insight into the optimal design features of different MIOLs.  

 

1.5.2.2. Range of Clear Focus Created by Multifocal and Accommodating IOLs 

MIOL and AIOL performance may also be assessed by measuring distance corrected 

near visual acuity (DCNVA), subjective amplitude of accommodation from the reported 

closest distance of clear focus (push-up test), using subjective defocus curves, or from 

objective autorefractor or aberrometry measures of optical refraction when viewing 

targets at different distances. A defocus curve consists of the subjective measurement 

of visual acuity at different distances or with different levels of trial lens induced 

defocus and can be used to evaluate range of clear vision (Gupta et al., 

2007;Wolffsohn et al., 2013). There is general agreement that subjective measures 

such as the push-up test tend to overestimate accommodation compared to objective 

measures of true optical refractive changes (Marcos et al., 1999b;Wold et al., 

2003;Wang et al., 2006a;Wolffsohn et al., 2006a;Vasudevan et al., 2007;Win-Hall et 

al., 2009). Additionally, subjective measures may be more influenced by a range of 

factors such as contrast, pupil size, higher order aberration, visual acuity, age, 

chromatic aberration, retinal eccentricity and target detail (Wang et al., 2006a). The 

precise factors which influence the difference between subjective and objective depth 

of focus measures are currently unknown. As some patients seem to cope without the 

need for a separate near correction after cataract surgery with standard spherical IOLs 

(Bradbury et al., 1992;Nanavaty et al., 2006) this depth of focus could identify which 

patients would benefit most from current AIOLs with their limited objective 

accommodation (Wolffsohn et al., 2010b). 
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There is no universally accepted, standardised procedure for measuring defocus 

curves in terms of the range and step sizes between trial lenses (Wolffsohn et al., 

2013).Traditional defocus curve testing is subjective and slow to perform. As IOL near 

additions can be as high as 4D and measurements of visual acuity must be taken 

every 0.5D including into the positive curve range for adequate curve fitting, typically 

around 14 separate measures of visual acuity are needed for each eye. To fully assess 

presbyopic correction strategies, defocus testing would ideally be performed multiple 

times to assess the range of clear vision with binocularity, with different target 

contrasts and under different lighting conditions. However subjectively measured 

defocus curves can be quite lengthy, leading to patient fatigue and variability in results. 

Hence conducting repeated subjective defocus curves in different testing conditions is 

unlikely to be feasible. There is therefore a need for shorter defocus curve testing 

times which cannot be achieved by increasing step sizes between lenses as this has 

been shown to decrease the quality of results obtained (Wolffsohn et al., 2013). 

Objective techniques may enable faster defocus curve testing to be performed thereby 

allowing more time for repeated examinations under a range of different conditions. 

However their relative accuracy compared to more traditional subjective measures is 

uncertain. 

 

1.6. Aims of thesis 

In the last sixty years, much research has been undertaken to improve IOL design with 

a view to enhancing post-operative visual outcomes. Such premium IOLs have 

reduced or even eliminated spectacle dependence leading to an increase in patient 

satisfaction (Packer, 2014).  However, methods of evaluating these lenses have not 

developed as rapidly.  
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The literature review has drawn attention to two areas concerning premium IOLs. The 

first concerns toric IOL misalignment, while the second relates to the need for faster 

techniques to assess visual performance with premium IOLs in order to acquire a 

greater understanding into different aspects of their optical performance.  

 

The aim of the thesis is therefore to address topics related to these two aspects in 

order to improve optical performance with and assessment of premium IOLS. The 

specific hypotheses to be investigated in this thesis are listed below. 

 

1. Hypothesis: Patient tolerance to toric IOL misalignment is increased using a 

novel, split surface design. 

2. Hypothesis: A new, simplified method of measuring IOL tilt is valid and 

repeatable. 

3. Hypothesis: There is an association between IOL rotation, tilt and decentration. 

4. Hypothesis: Perimetry is an effective tool for mapping the retinal projection of 

different presbyopia correcting IOLs. 

5. Hypothesis: How much additional objective accommodation is required in order 

to restore the eye’s focus with AIOLs? 

6. Hypothesis: Aberrometry can provide rapid and reliable measures of subjective 

depth of focus following multifocal IOL implantation. 
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CHAPTER 2: Reducing the effect of toric intraocular lens misalignment using a 

split surface approach 

 

2.1. Introduction 

Astigmatism is a visually debilitating refractive condition of the eye that occurs in 

relatively low amounts in a large proportion of the population (Read et al., 2007;Ferrer-

Blasco et al., 2009;Ahmed et al., 2010;Buckhurst et al., 2010a;Mingo-Botin et al., 

2010). Increasing levels of uncorrected astigmatism are associated with corresponding 

reductions in visual acuity and therefore should be compensated for where possible 

(Wolffsohn et al., 2011a;Kobashi et al., 2012). Environmental factors, eyelid pressure, 

extraocular muscle forces and nutrition are thought to influence the development of 

astigmatism (Read et al., 2014). Astigmatism can be classified as with the rule (WTR), 

against the rule (ATR) or oblique (OBL). WTR astigmatism is characterised by a 

steeper vertical meridian and ATR astigmatism is characterised by a steeper horizontal 

meridian. Vertical lines dominate the visual world; it is believed that WTR astigmatism 

aids with distance vision because vertical lines at far are focused on the retina while 

ATR astigmatism improves reading vision because vertical lines from near objects are 

more in focus at the retina (Novis, 2000;Read et al., 2014). While WTR astigmatism is 

more common amongst young adults, with age there is an axis shift resulting from a 

change in corneal curvature such that in the older population ATR astigmatism 

predominates (Ferrer-Blasco et al., 2009;Read et al., 2014). The nature of this corneal 

change was examined and an age related steepening of the horizontal corneal 

meridian, possibly resulting from an associated reduction in eyelid tension, was 

thought to account for the majority of the observed astigmatic axis shift (Read et al., 

2007).  
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Ferrer-Blasco et al. (2009) found an increase in both the prevalence and mean 

astigmatism with age in their study. Prevalence of astigmatism was found to increase 

from 10% in 0 to 10 year olds up to 64% in 81 to 90 year olds. Similarly, the mean 

amount of astigmatism increased from -0.94DC in 0 to 10 year olds, to -1.86DC in 81 

to 90 year olds. A cross-sectional study found that 45 percent of the total population 

had more than 0.50 dioptres of corneal astigmatism,  while only 4.7 percent exhibited 

more than 1.50 dioptres (Fledelius et al., 1986). In those awaiting cataract surgery on 

the other hand, pre-surgical corneal astigmatism of more than 1.50DC has been 

reported  in approximately 18-22% of patients (Ferrer-Blasco et al., 2009;Ahmed et al., 

2010;Buckhurst et al., 2010a;Mingo-Botin et al., 2010).  With increasing levels of 

astigmatism, lower visual acuities are observed (Buckhurst et al., 2010a;Wolffsohn et 

al., 2011a;Kobashi et al., 2012;Sheppard et al., 2013) therefore in order to optimise 

post-operative visual acuity (VA)  this corneal astigmatism should be corrected (Mingo-

Botin et al., 2010). In order to achieve post-operative spectacle independence, it has 

been suggested that astigmatism greater than or equal to 0.75 dioptres should be 

corrected (Rubenstein et al., 2013).  

 

Astigmatic correction can be achieved during cataract surgery via the use of incisional 

surgery as discussed in chapter 1 (Bayramlar et al., 2003;Wang et al., 

2003b;Kaufmann et al., 2005;Muftuoglu et al., 2010) or the implantation of a toric IOL 

(Wang et al., 2003b;Ferrer-Blasco et al., 2009;Buckhurst et al., 2010b;Ale et al., 

2012b). Incisional surgery relies heavily on the corneal healing response which can 

vary significantly between individuals, leading to greater unpredictability in refractive 

outcomes post-operatively (Wang et al., 2003b;Buckhurst et al., 2010b). Peripheral 

corneal incisions can produce up to 1.0D of corneal astigmatic change, while additional 

incisions such as opposite clear corneal incisions or limbal relaxing incisions can 

produce larger amounts of astigmatic change, typically up to 2.0D (Read et al., 2014). 



 
 

42 
 

Research has shown toric IOLs to be the better form of correction, both in terms of 

predictability of visual outcomes and improved healing times due to their reduced 

surgical impact (Horn, 2007;Buckhurst et al., 2010a;Mingo-Botin et al., 2010). They are 

commonly used in patients with more than 1.0D of corneal astigmatism. Most 

commercially available toric IOL can correct less than 3.0D of astigmatism (Iovieno et 

al., 2013). Correcting higher levels of corneal astigmatism over 3.0D is more 

challenging.  Current methods include combining toric IOL implantation with limbal 

relaxing incisions, use of piggyback toric IOLs, or implantation of high powered toric 

IOLs (Read et al., 2014). The Acrysof IQ toric IOL is available in cylinder powers of up 

to 6.0D, which corresponds to approximately 4.0D at the corneal plane. Higher toric 

IOL powers are available such as the Rayner T-flex toric IOL which is available in 

cylinder powers of up to 11.0D and the Acri.Comfort toric IOL, which is available in up 

to 12.0D (Visser et al., 2011b;Iovieno et al., 2013). Customised high powered toric 

IOLs can be ordered for special cases, for instance Luck (2010) used a toric IOL with a 

cylinder power of 16.0D in a patient with pellucid marginal degeneration. Thus much 

greater amounts of astigmatic correction are possible with toric IOLs compared to 

incisional surgery.  

 

2.2. Toric IOLs 

Spectacle correction of astigmatism can give rise to meridional magnification (Guyton, 

1977) leading to asymmetrically magnified and distorted retinal images which can be 

challenging to adapt to (Buckhurst et al., 2010a). Astigmatic correction at the corneal 

or IOL plane is believed to negate this effect due to the reduced vertex distance 

(Buckhurst et al., 2010a), and for this reason toric IOLs are the favoured form of 

astigmatic correction. Toric IOLs are also thought to provide a more stable correction 

compared to alternatives such as relaxing incisions with less of a corneal impact. All 

IOL manufacturers must follow the standards set out by the International Organisation 
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for Standardisation in ISO 11979-2. A part of this defines the tolerances that IOLs must 

meet (International Organisation for Standardisation, 2014).  

 

Visual outcomes with toric IOLs are however reliant upon accurate alignment of the 

lens (Buckhurst et al., 2010a;Sheppard et al., 2013) and once implanted all IOLs are 

prone to misalignment, which can affect vision (Visser et al., 2011a;Visser et al., 

2011b). With toric IOLs, lens rotation becomes an additional source of concern and is a 

frequently reported complication (Ale et al., 2012b). Reports indicate that toric rotation 

induces a hyperopic spherical change in addition to reducing the power of the 

astigmatic correction (Langenbucher et al., 2009;Jin et al., 2010). Kim et al. (2010) 

found that a loss in astigmatic power of up to 3.3% occurred for every degree of IOL 

rotation; therefore even small amounts of rotation can reduce the corrective power of a 

toric IOL. Ma et al. (2008) reported a sinusoidal relationship between residual 

astigmatism and misalignment of a toric IOL indicating that smaller rotations result in a 

proportionately greater loss in cylindrical effect. If an IOL rotates off axis by more than 

30°, nearly no astigmatic correction occurs, however there will be a shift in the 

resultant astigmatic axis (Shimizu et al., 1994;Novis, 2000). At more than 45° of 

rotation, the IOL can add to the existing ocular astigmatism leading to greater levels of 

astigmatism post-surgically (Novis, 2000). The greater the cylinder power, the more 

essential accurate IOL placement becomes (Ale et al., 2012a). With newer lens 

designs, such as multifocal toric IOLs, the impact of rotation on visual performance 

may be greater as a result of the precise nature of the refractive correction. A study 

comparing a monofocal toric IOL with a multifocal toric IOL found that uncorrected 

distance visual acuity was more affected by IOL rotation in the multifocal group one 

month post-operatively (Garzón et al., 2015). However, other studies evaluating 

multifocal toric IOLs have reported good predictability of refractive results and 

rotational stability (Alió et al., 2011;Ferreira et al., 2013;Mojzis et al., 2013;Venter et al., 
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2013). Currently available toric IOLs, including multifocal toric IOLs are detailed in table 

2.1. 
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Toric IOL Type Spherical Power Near Cylinder Power (D) Material Haptic Aspheric 

 

Staar Toric IOL, 

Staar Surgical 

Company 

 

Monofocal +9.5 to +28.5 - 2.0, 3.5 Silicone Plate No 

 

Acrysof IQ toric, 

Alcon 

 

Monofocal +6.0 to +34.0 - 1.5 to 6.0 in 0.75 steps 
Hydrophobic 

acrylic 
Loop Yes 

 

Tecnis , Abbott 

Medical Optics 

 

Monofocal +5.0 to +34.0 - 
1.00, 1.50, 2.25, 3.00 and 

4.00 

Hydrophobic 

acrylic 
Loop Yes 

 

MicroSil/Customised 

Torica, 

HumanOptics 

 

Monofocal -3.5 to +31.0 - 

2.0 to 12.0 in 1.0 steps 

(available in higher 

customised cylinder 

powers) 

Silicone, PMMA 

haptic 
Loop No 

 

Lentis Tplus/ Tplus 

X customised, 

Oculentis GmbH 

Monofocal 
-10.0 to +35.0 in 

0.5/0.01D steps 
- 

+0.25 to +12.0 in 

0.75/0.01D steps 

Hydrophilic acrylic 

with hydrophobic 

surface 

Loop/Plate Yes 

 

Morcher 89A, 

Morcher GmbH 

Monofocal +10.0 to 30.0 - 0.5 to 8.0 in 0.25 steps Hydrophilic acrylic 
Bag in the 

lens 
No 

 

AF-1 toric, Hoya 

 

 

Monofocal +6.0 to +30.0 - 1.5 to 3.0 in 0.75 steps 

Hydrophobic 

acrylic with 

PMMA haptic tips 

 

Loop Yes 
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Acri.Comfort/ AT 

Torbi, Carl Zeiss 

Meditec 

 

Monofocal -10.0 to +32.0 - 1.0 to 12.0 in 0.50 steps 

 

Hydrophilic acrylic 

with hydrophobic 

surface 

Plate Yes 

 

T-flex, Rayner 
Monofocal -10.0 to +35.0 - 1.0 to 11.0 in 0.25 steps Hydrophilic acrylic Loop Yes 

 

Light Adjustable 

Lens, Calhoun 

Vision 

Monofocal +17.0 to 24.0 - 0.75 to 2.0 
Silicone with 

PMMA haptics 
Loop Yes 

 

Acrysof IQ ReSTOR 

toric, Alcon 

 

Multifocal 

Diffractive & 

Refractive 

+6.0 to +34.0 +3.00D 
1.0 to 3.0 in 0.5/0.75 

steps 

Hydrophobic 

acrylic 
Loop Yes 

 

Acri.Lisa Toric, Carl 

Zeiss Meditec 

 

Multifocal 

Diffractive & 

Refractive 

-10.0 to +32.0 +3.75D/+4.00D 1.0 to 12.0 in 0.50 steps 

Hydrophilic acrylic 

with hydrophobic 

surface 

Plate Yes 

M- flex T, Rayner 
Multifocal 

Refractive 
+14.0 to +32.0 +3.00/+4.00D +1.5 to +6.0 in 0.50 steps 

Hydrophilic acrylic 

with hydrophobic 

surface 

Loop Yes 

Lentis Mplus toric, 

Oculentis GmbH 

Refractive 

sectorial 

shaped near 

zone 

0.0 to +36.0 +3.00D 
+0.25 to +12.0 in 0.75 

steps 

Hydrophilic acrylic 

with hydrophobic 

surface 

Plate Yes 

  Table 2.1:  List of currently available toric intraocular lenses. 
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2.3. Factors affecting toric IOL rotation  

Misorientation can occur for a number of reasons, for example surgical error resulting 

in inaccurate positioning of the IOL at the time of surgery (Watanabe et al., 2012) or 

post-operative rotation of the implanted IOL within the capsular bag (Ale et al., 

2012a;Shah et al., 2012). When implanting a toric IOL, reference markers, usually on 

opposite sides of the pupil, must be determined to ensure correct placement of a toric 

IOL during surgery (Buckhurst et al., 2010a). However these must be established prior 

to rather than during surgery, since low to moderate amounts of eye rotation have 

been reported to occur  when changing from a seated to supine position (Chernyak, 

2004). Techniques to apply these markers include using ink (Graether, 2009) or 

specific toric axis marking instruments (Buckhurst et al., 2010a).   A commonly used 3 

step ink-marker system (Ma et al., 2008;Visser et al., 2011a) for toric IOL implantation 

was found to have a mean alignment error rate of approximately 5°(Visser et al., 

2011a). In this system the horizontal 0° to 180° axis of the eye is marked pre-

operatively with the patient sitting upright. The desired alignment axis for the toric IOL 

is ascertained and then marked intra-operatively using a device with angular 

graduations. Following this the toric IOL is implanted and rotated until the IOL and 

reference markers match (Ma et al., 2008;Visser et al., 2011a). Precisely orientating 

the toric IOL during surgery is therefore essential in order to achieve optimum 

correction of astigmatism.  

 

The majority of IOL rotation is thought to occur within the first month of surgery (Mingo-

Botin et al., 2010) due to factors such as capsular bag size, capsulorhexis size and 

capsular fusion (Shimizu et al., 1994;Prinz et al., 2011). There is a gradual reduction in 

capsular bag size in the weeks following surgery. While this shrinkage can help to 

secure the IOL, it is also possible for lens rotation to occur as a result of this 

contraction because of the compressive effect on the IOL haptics. Capsular bag 
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shrinkage is the most commonly reported source of late IOL rotation in uncomplicated 

cataract cases, with most of the resulting rotation occurring in the first three months 

after surgery (Kim et al., 2010;Prinz et al., 2011). Capsular fibrosis, which normally 

occurs in the weeks after surgery (Mamalis et al., 1996) can also help to anchor the 

IOL. However it is possible for lens rotation to occur before this fibrosis stabilises the 

IOL (Buckhurst et al., 2010a). The presence of certain ocular or systemic diseases,  

such as glaucoma or diabetes, are thought to influence capsular fibrosis leading to a 

greater likelihood of rotation in these patients (Ale et al., 2012a).  

 

Interestingly, there appears to be a refractive element to lens rotation with myopes 

being more susceptible to early toric IOL rotation (Shah et al., 2012). This effect may 

occur as a result of the correlation between increased axial lengths and a greater 

capsular bag diameter, which is thought to cause greater IOL instability (Novis, 2000) 

as a result of reduced equatorial friction (Shah et al., 2009). Hence, maximising the 

resistance between the IOL haptic and capsular bag can help to reduce lens rotation 

soon after surgery; IOL material is crucial for this (Kim et al., 2001b). 

Polymethylmethacrylate (PMMA) has been found to be the best in terms of creating the 

most friction with the capsular bag and silicon the worst (Oshika et al., 1998;Yoshida et 

al., 1998;Taketani et al., 2004). IOL size is also important as smaller IOLs have less 

contact and therefore less resistance with the capsular bag which can lead to 

increased lens rotation (Buckhurst et al., 2010a). IOL haptic design can also impact 

upon the degree of rotation (Kim et al., 2010;Prinz et al., 2011). Plate haptic IOLs are 

more stable in the long term as they seem to be less vulnerable to the effects of 

capsular bag compression, whereas open loop haptic lenses show good rotational 

stability initially, but are more likely to rotate later on with capsular compression (Patel 

et al., 1999;Buckhurst et al., 2010a). Early research into closed loop haptics indicates 

better overall rotational stability with this IOL haptic as a result of good initial friction 
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between the IOL and capsular bag coupled with greater resistance to capsular 

compression (Buckhurst et al., 2010b). Surgical factors can also influence IOL rotation 

as discussed earlier, therefore ensuring accurate IOL alignment at the time of 

implantation as well as careful wound construction is imperative (Buckhurst et al., 

2010a).  

 

Shimizu et al. (1994) suggested the maximum acceptable shift in toric IOL axis to be 

no more than 30°. This is worrying since Leyland et al. (2001) determined that 18% of 

early plate haptic IOLs rotated by more than 30° three to six months after surgery, 

meaning that in theory, up to one fifth of patients implanted with this type of toric IOL 

would receive inadequate astigmatic correction. In the case of significant toric IOL 

rotation, repositioning surgery is advised to try and achieve re-alignment, however 

there is a time frame of approximately two weeks from the date of initial surgery in 

which this should be carried out, after this the risk of capsule rupture increases (Novis, 

2000;Ale et al., 2012b).   

 

There is therefore a need to improve the rotational stability of toric IOLs or to introduce 

a mechanism to compensate for the effect of toricity caused by lens rotation, as this 

would give patients better vision and allow surgeons greater flexibility. Several design 

strategies have been developed in order to increase lens stability and therefore reduce 

intracapsular lens rotation (Buckhurst et al., 2010b;Ale et al., 2012b), however there is 

still uncertainty as to which type of IOL design confers better rotational stability (Prinz 

et al., 2011). 

 

 In this chapter a novel idea for compensating for the rotational effects of a toric IOL is 

evaluated. This involves splitting the toric power of an IOL over both the front and back 
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surfaces of an IOL, as opposed to across just one surface, and misaligning their axes 

slightly to determine whether this provides a beneficial effect that could be incorporated 

into toric IOLs. In theory with such a design the maximum toric power would be spread 

over a wider angular subtense, perhaps reducing the power loss with rotation away 

from the axis of peak astigmatism. Most toric IOLs are made with one spherical surface 

and one toric surface. It has been suggested that this can cause a disparity between 

the images and object magnifications in different meridians in the case of corneal 

astigmatism. Bitoric IOLs may have the additional advantage of eliminating this image 

distortion and therefore offer an advantage over standard toric IOLs (Langenbucher et 

al., 2009). The effectiveness of this new toric IOL design idea on improving patient 

tolerance to lens rotation will be evaluated for each of the three main types of 

astigmatism. Additionally differences in the potential benefit of this correction in 

moderate compared to high astigmats will be investigated, as will the influence of 

adaptation.  
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2.4. Method 

Thirty-one healthy subjects with a mean age of 26.4 ± 8.3 years and with best 

corrected Snellen acuity of 6/9 or better gave informed consent to take part in the 

study. The study was approved by the Institutional Ethics Committee and the research 

conformed to the tenets of the Declaration of Helsinki.  

 

The patients were split into two subgroups, an induced astigmatism group made up of 

16 subjects with limited astigmatism <-0.75D and an adapted astigmatic group of 

subjects (n=15) with ocular toricity from -1.00 to -3.00 DC (mean -1.27 ± 0.54DC). 

Contact lens wearers were required to remove their lenses at least twelve hours before 

having any tests carried out. 

In order to participate in the study, participants were required to: 

 Be aged at least 18 years 

 Have no more than three dioptres of astigmatism 

 Be free of any active eye disease 

 Not currently taking ocular or systemic medications with known ocular side 

effects 

 Have no history of ocular surgery within the previous three months 

 Have best corrected visual acuity of at least 6/9 in the eye being tested 

 Be willing to participate in the study. 

 

2.4.1. Induced Astigmatism Cohort 

Patients underwent a refractive examination to ensure they were wearing the most 

accurate sphero-cylindrical distance prescription, maximising the positive power while 

retaining the best possible distance visual acuity and a measurement of their best 

corrected visual acuity was taken at this point.  In order to induce astigmatism, a low 
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(1.50DC) and high (3.00DC) cylinder was added to the distance prescription, 

compensated for with sphere. The 1.50DC lens was assessed at 90°, 135° and 180 in 

a random sequence, in order to test the effectiveness of this new toric IOL design idea 

with the three main types of astigmatism. The 3.00DC was examined at 90° only in 

order to keep testing times to within reasonable limits.  

 

The induced cylinder was then corrected using two forward facing lenses of either -

0.75DC for the low cylinder, or -1.50DC for the high cylinder. These were added to the 

trial frame either aligned with each other or misaligned from each other by 5° or 10°, 

again in a randomized order. Finally, these two correcting lenses were misorientated 

from the angle of the induced astigmatism in 5° steps up to a maximum of 15°, in a 

clockwise direction and in a randomised order. Misalignment refers to the separation of 

the two individual correcting cylinder lenses relative to each other by up to 10°, while 

misorientation describes rotation of the correcting system, comprising these two 

cylindrical lenses, away from the induced astigmatism axis by up to 15° as illustrated in 

figure 2.1A and 2.1B. 
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Figure 2.1A: illustrates lens misalignment. Two correcting lenses (blue dash and red 
dot-dash) of equal power, either 0.75 or 1.50DC depending on the induced cylinder 
power (black solid) were misaligned by up to 10°. 2.1B: illustrates lens misorientation. 
The two misaligned lenses were rotated clockwise in the trial frame by up to 15°. The 
green line dotted represents the central axis direction of the two corrective lenses.  
 

 

The position of the two -0.75DC/-1.50DC lenses for each lens misalignment and each 

misorientation is detailed in table 2.2. 

 

A: Misalignment                         -5°   90°  +5°  

 

Lens 1 
 

 Lens 2 
 
 Induced Cylinder  
 

 

      

 set of trial lenses  

 

 

B: Misorientation   

 90°                                      85°                  80° 
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Axis 
 

Correcting 
lens power 

Misorientation 
(°) 

Misalignment of split 
cylinders (°) 

Lens 1 
(°) 

Lens 2 
(°) 

V
E

R
T

IC
A

L
  (9

0
°) 

-0.75DC / 
-1.50DC 

0 

0 90 90 

5 87.5 92.5 

10 85 95 

5 

0 85 85 

5 82.5 87.5 

10 80 90 

10 

0 80 80 

5 77.5 82.5 

10 75 85 

15 

0 75 75 

5 72.5 77.5 

10 70 80 

O
B

L
IQ

U
E

 (1
3
5
°) 

-0.75DC 

0 

0 135 135 

5 132.5 137.5 

10 130 140 

5 

0 130 130 

5 127.5 132.5 

10 125 135 

10 

0 125 125 

5 122.5 132.5 

10 120 130 

15 

0 120 120 

5 117.5 122.5 

10 115 125 
H

O
R

IZ
O

N
T

A
L

 (1
8
0
°) 

-0.75DC 

0 

0 180 180 

5 177.5 182.5 

10 175 185 

5 

0 175 175 

5 172.5 177.5 

10 170 180 

10 

0 170 170 

5 167.5 172.5 

10 165 175 

15 

0 165 165 

5 162.5 167.5 

10 160 170 

Table 2.2: Axis positions of the two correcting toric lenses at each misalignment and 
misorientation with induced astigmatism of 1.50/3.00DC. 
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2.4.2. Astigmatic Cohort 

Patients with astigmatism between -1.00 and -3.00DC had their own astigmatism 

corrected using two cylindrical lenses of half the power each. The two cylindrical 

lenses were placed into the trial frame such that the axes of these two cylindrical 

lenses were misaligned from each other by 0°, 5° or 10°. These correcting lenses were 

then orientated to coincide with the angle of the patients’ astigmatism and randomly 

misorientated by as much as 15° in 5° steps in both the clockwise and anticlockwise 

direction. This was done to enable evaluation of the effects of adaptation on rotational 

tolerance by comparing patients with a moderate toric component to their prescription 

against those in whom the astigmatism had just been induced. All measurements were 

taken on one eye only. 

 

Distance visual acuity was measured on a digital logarithmic progression chart on all 

patients (TestChart 2000Pro, London, UK) with the letters randomised between 

presentations. Each letter read correctly was scored as 0.02 logMAR and subjects 

were encouraged to guess if unsure. 

 

2.5. Statistical Analysis 

All data were collected in an Excel database (Microsoft Office 2007) and analysed 

using SPSS for Windows (version 20.0, SPSS Inc.). A one-sample Kolmogorov-

Smirnov test revealed that the visual acuity data were normally distributed 

(Kolmogorov-Smirnov Z = 1.206, P=0.109). Therefore visual acuity with each axis and 

astigmatic power misalignment was compared by repeated measure analysis with 

posthoc tests applied when the overall significance was p <0.05. 
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2.6. Results 

 

2.6.1. Induced Astigmatism cohort 

Misorientation of the split toric lenses when 1.50 dioptres of astigmatism was induced 

at 90°, 135° and 180° caused an anticipated reduction in visual acuity (F = 70.341; 

p<0.001; Figure 2.2). There was a statistically significant change in VA with axis (F = 

3.775; p=0.035). Comparatively worse visual acuities were recorded when astigmatism 

was induced at 90° than at 180° as expected. Splitting and misaligning the toric power 

did not result in a statistically significant better visual acuity compared to no separation 

with the low 1.50DC lens (F=2.190, P=0.129).  

 

Misalignment of the toric power split between the two lenses when induced with a high 

3.00DC lens at 90° also produced no statistically significant benefit in VA retention with 

axis misorientation (F = 0.491, p=0.617; Figure 2.3).  
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Figure 2.2: The effect of misaligning split toric power on distance VA with lens misorientation when +1.50DC is induced at 90°, 135° and 180°. 
N = 16. Error bars = 1 standard deviation (S.D.). 
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Figure 2.3: The effect of misaligning split toric power on distance visual acuity for 
1.50DC and 3.00DC lenses induced at 90° with misorientation. N = 16. Error bars = 1 
S.D.
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2.6.2. Adapted Astigmats  

Patients with habitual astigmatism of between -1.00 and -3.00DC at any axis were 

recruited for this part of the study. A breakdown of the quantity, axis and classification 

of the astigmatism present in these subjects is shown in Table 2.3. Most subjects had 

either with the rule (n=7) or against the rule astigmatism (n=7); there was one patient 

with oblique astigmatism. 

 

 

 

 

 

 

 

 

 

 

Table 2.3: Details the astigmatic prescriptions present in the adapted subgroup. An 
axis of 90±22.5° was classed as against the rule, 0±22.5° as with the rule and 
135±22.5° or 45±22.5° as oblique astigmatism. 

 

Adapted astigmats had a similar decline in visual acuity with misorientation to non-

astigmatic subjects in whom toricity was induced using cylindrical lenses (F = 4.412, p 

= 0.054). When the subjects own astigmatism was corrected using two cylinders of half 

the power, splitting and misaligning the power of the astigmatic correction did not 

Patient number Astigmatism (DC) Axis (°) Type 

1 1.00 70 ATR 

2 1.50 70 ATR 

3 1.00 70 ATR 

4 1.00 85 ATR 

5 2.00 85 ATR 

6 1.00 95 ATR 

7 1.00 110 ATR 

8 1.00 165 WTR 

9 3.00 170 WTR 

10 1.50 175 WTR 

11 1.50 175 WTR 

12 1.00 180 WTR 

13 1.00 5 WTR 

14 1.50 5 WTR 

15 1.00 25 OBL 
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produce a statistically significant benefit in visual acuity preservation with axis 

misorientation (F=0.120, p=0.887; Figure 2.4).  

 
 

Figure 2.4: The effect of misaligning split toric power on distance visual acuity in 
adapted astigmats, with misorientation. N = 15. Error bars = 1 S.D. 
 

 

 

 

 

 

Patients own astigmatism

Misorientation (degrees)

-15 -10 -5 0 5 10 15

D
is

ta
n

c
e
 v

is
u
a

l 
a

c
u
it
y
 (

lo
g

M
A

R
)

-0.1

0.0

0.1

0.2

No misalignment

5
o 

misalignment

10o misalignment



 
 

61 
 

2.7. Discussion 

The purpose of this study was to investigate whether splitting the toric power across 

the front and back surfaces of a toric IOL misaligned by either 5° or 10° had the 

potential to increase patient tolerance to small shifts in lens rotation without 

significantly detracting from distance visual acuity. This was not found to be the case 

and splitting toric power had no statistically significant impact on maintaining better 

distance visual acuity when a lens was misorientated away from the intended axis.  

 

Visual acuity dropped with toric lens misorientation, as expected, and this happened 

regardless of whether the toric power was split and misaligned or not. While the 

magnitude of any benefit observed with spectacle lenses would have to be adjusted for 

the difference in location of a contact lens or intraocular lens in relation to the ocular 

optics, the lack of effect seen with spectacle lenses is unlikely to be altered by the back 

vertex distance of the visual correction or with a bitoric compared to two toric lenses 

used to simulate the effect. 

 

In the low astigmatic cohort, the best visual acuities were observed when the toric lens 

was induced at 180°.  As previously mentioned, patients that have with the rule 

astigmatism are thought to see better at distance while those with against the rule 

astigmatism see better at near and since all visual acuities in this study were recorded 

at a six metre testing distance better acuities were expected to occur at 180° compared 

to 90° and 135°.  

 

There did not appear to be a symmetrical reduction in VA for clockwise (-5°,-10° and -

15°) and anticlockwise (+5°, +10° and +15°) misorientation in the astigmatic cohort, as 

shown in figure 2.4.  Instead VA seemed slightly better with anticlockwise 

misorientation,  particularly for 5° and 10° separations,  probably because most of the 
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patients had a cylinder axis slightly clockwise of the horizontal and vertical meridians, 

however this difference was not found to be statistically significant (F=1.488, P=0.243). 

 

As has been previously demonstrated (Wolffsohn et al., 2011a) a faster drop in visual 

acuity occurred with lens misorientation for the high cylinder (3.00D) compared to the 

low cylinder (1.50D), which illustrates how accurate IOL placement becomes 

increasingly important with rising levels of astigmatism. 

 

It has been reported that differences in neural image processing may negatively affect 

visual acuity in patients with simulated astigmatism compared to those with habitual 

astigmatism (Ohlendorf et al., 2011b). The study compared adapted astigmats with 

non astigmatic patients in whom toricity was induced using cylindrical lenses and found 

there was no statistically significant effect of adaptation on visual acuity with both 

groups experiencing comparable drops in visual acuity with increasing lens 

misorientation. This indicates that adaptation to astigmatic correction may occur rapidly 

at least in the young as has been suggested previously (Sawides et al., 

2010;Ohlendorf et al., 2011a) 

 

High contrast visual acuity was used to evaluate visual performance in this study, 

which may have masked some of the more sensitive measures of vision and visual 

function such as low contrast acuity and reading speed (Watanabe et al., 2013). 

However, adding these measures to the assessment could also have increased the 

result variability due to fatigue. Further studies incorporating other visual assessment 

tests may provide a better understanding of the visual impact of a split surface 

approach to toric correction. 
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Verification strategies to ensure the trial frame was consistently orientated with the 

eye, perhaps through use of eye reference markers, should have been employed for 

each lens power and axis change to ensure consistency of the testing procedure. This 

lack of verification is a potential limitation of the current study. 

 

In conclusion, this study simulated the effect of splitting and misaligning toric power 

across more than one IOL surface and found spreading the toric power of the lens in 

this way had no beneficial effect on distance high contrast visual acuity with 

misorientation, but also had no detrimental effect. It may not therefore be an advantage 

to incorporate this technique into toric refractive corrections such as IOLs. Despite the 

rotational issues encountered with toric IOLs, clinical studies have reported good visual 

outcomes in patients with low to moderate astigmatism between 1.0D and 2.5D (Visser 

et al., 2013;Read et al., 2014). However, as small shifts in intraocular lens rotation 

have been shown to produce proportionately larger drops in cylindrical effect (Ma et al., 

2008;Buckhurst et al., 2010b) the need to compensate for toric misorientation, 

especially with higher powered toric IOLs, remains imperative in order to avoid the 

associated drop in acuity. 
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CHAPTER 3: Evaluation of a simplified method of measuring intraocular lens tilt 

 

3.1. Introduction 

The success of cataract surgery is greatly influenced by the ability of an implanted IOL 

to maintain a fixed and steady position within the capsular bag over the long term. IOLs 

may rotate, tilt or decentre such that the subject is no longer looking through the 

optimum part of the lens and this can lead to reduced visual performance (Kim et al., 

2010). Good IOL alignment is important in achieving post-operative success especially 

with newer IOLs such as aspheric and multifocal designs. 

  

3.2. IOL tilt 

Research into IOL misalignment has focussed mainly on investigating the impact of 

IOL rotation, and measurement techniques have been developed to enable accurate 

assessment of rotation as discussed later in chapter 4. IOL tilt is often overlooked as a 

potential cause of reduced vision post-operatively; however lens tilt, like rotation, can 

have a detrimental impact on quality of vision (Taketani et al., 2004;Kumar et al., 

2011;Madrid-Costa et al., 2012). While IOL rotation is more of a concern with toric and 

some multifocal IOLs, lens tilt can affect the success of all types of IOL. Spherical IOL 

tilt, for example, has been shown to induce unwanted refractive astigmatism (Auran et 

al., 1990;Kozaki et al., 1991b;Oshika et al., 2005) and coma-like aberrations (Oshika et 

al., 2005;Taketani et al., 2005b), while tilt of an aspheric IOL may produce a loss in its 

spherical aberration neutralising capability (Nishi et al., 2010) and tilt of an 

accommodating IOL may limit its corrective ability (Rosales et al., 2010). For this 

reason it is important to measure lens tilt.  

 

Uozato et al. (1988) investigated the tolerable limits of IOL tilt and decentration and 

concluded that decentration of more than 1.0mm or tilt of more than 5° would impair 
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visual quality. Hayashi et al. (2001) investigated the correlation between IOL 

decentration and tilt on visual acuity at all distances with a multifocal and monofocal 

IOL and found tilt of 2.38±1.18 in the monofocal group and 2.94±1.58 in the multifocal 

group. They found significant correlations between the degree of IOL decentration and 

logMAR visual acuity, with greater decentrations associated with worse far and 

intermediate acuity. No correlation was found between tilt and visual acuity in either 

group. However, the IOLs tilted by less than 5° in all but one participant, and so the 

impact of severe IOL dislocation on visual function could not be assessed. The amount 

of tilt reported to occur after surgery varies; some authors have found average tilt of 

2.45° (Hayashi et al., 1997), 2.69° (Kim et al., 2001a) and 3.43° (Taketani et al., 2004), 

which would have a negligible impact on vision, while others have documented as 

much as  28.87° (Oshika et al., 2005), which would have a significant effect. 

 

Differences in IOL tilt have been shown to occur in patients with ocular pathology. 

There are greater amounts of IOL tilt resulting from capsular shrinkage in patients with 

diabetes, retinitis pigmentosa and pseudoexfoliation syndrome compared to otherwise 

healthy eyes (Hayashi et al., 1999). The key findings of IOL tilt studies from the past 

three decades are detailed in table 3.1.  According to Sivak (1985) lens tilt of more 

than 20° is needed to induce a significant level of unwanted astigmatism, whereas 

Nishi (2010) stated that even minor variations in IOL tilt could impact on visual acuity. 

 

While IOL rotation can occur as soon as a few hours after surgery and again in 

significant amounts several months afterwards (chapter 4), research into changes in tilt 

over time indicates no such pattern. Taketani et al. (2004) assessed IOL position using 

Scheimpflug images on patients 4 to 48 months after the phacoemulsification and IOL 

implantation procedure, and found no correlation between time after surgery and level 

of tilt. Hayashi et al. (1997) evaluated lens position using a Scheimpflug imaging 
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system at six different intervals between 1 week and 1 year after implantation and 

concluded that as long as the IOL was placed correctly within the capsular bag at the 

time of surgery, there would be no significant progression in lens tilt and decentration 

in the 12 months following surgery, and this was true for any lens material including 

PMMA, silicone and soft acrylic. It therefore appears that capsular bag shrinkage, 

which is a leading source of late IOL rotation, does not affect lens tilt in the same way 

(Kim et al., 2010;Prinz et al., 2011). The relationship between lens tilt, rotation and 

decentration is unclear.  It is not certain whether IOL tilt occurs as a consequence of 

other lens movement, such as rotation or decentration, and so should be investigated 

further. 

 

3.3. Current IOL tilt measurement techniques 

There are various methods of measuring lens tilt (Nishi et al., 2010;Rosales et al., 

2010;Kumar et al., 2011;Grewal et al., 2012), however there is currently no gold 

standard technique (de Castro et al., 2007). Common methods of IOL tilt measurement 

include Scheimpflug imaging, Purkinje reflections and Anterior Segment Optical 

Coherence Tomography, each of which are discussed in more detail next.  

 

3.3.1. Scheimpflug imaging 

In standard cameras, the image and object planes are usually parallel to each other, as 

well as to the plane of focus. Therefore an object that is placed parallel to the image 

plane of a camera will coincide with the plane of focus and the whole object will be 

imaged sharply (figure 3.1a). If the object is not parallel, image distortion may occur 

and the image will only be focussed along a small region where it intersects with the 

plane of focus as illustrated in figure 3.1b. 
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In Scheimpflug systems, the image and object planes are not parallel, but at an angle 

to each other (Wolffsohn et al., 2007;Grewal et al., 2012). A tangent from both the 

image plane, object plane and plane of focus will intersect at a point, known as the 

Scheimpflug intersection (figure 3.1c). In this way all sections of non-parallel objects 

can be focussed sharply and completely with a large depth of focus. As a result of tilt of 

the object plane in respect to the optical axis of the instrument, image magnification will 

vary over the image resulting in geometrical distortion, thus correction factors need to 

be applied to account for this as this can produce a discrepancy in tilt and decentration 

measurements (Coppens et al., 2005;de Castro et al., 2007). What’s more, because 

each succeeding optical surface is viewed through the preceding refracting ocular 

surface, this introduces optical distortion, which must also be accounted for (de Castro 

et al., 2007;Rosales et al., 2010). Commercially available Scheimpflug instruments 

such as the Pentacam system  typically only correct for the anterior and posterior 

corneal surface and not the crystalline lens (Rosales et al., 2009). Ray tracing 

techniques can be utilised to attain accurate information about crystalline lens 

geometry in order to fully correct optical distortion (Coppens et al., 2005). Limitations of 

Scheimpflug imaging include a need for adequate pupil dilation (de Castro et al., 

2007;Nishi et al., 2010) in order to be able to visualize the posterior surface of the lens, 

as well as excellent patient co-operation in remaining still and maintaining good fixation 

during measurement (de Castro et al., 2007).   
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Figure 3.1a: the object, lens and image plane are parallel to each other producing a 
sharp image. 3.1b: the object and image planes are not parallel leading to peripheral 
image distortion. 3.1c: the object and image planes are not parallel, however use of the 
Scheimpflug principle renders the whole image in sharp focus.  
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3.3.2. Purkinje imaging 

Purkinje imaging is another method which can be used to assess in vivo IOL 

alignment. Purkinje images are named after Johannes Purkinje who first described 

them in 1832. They are reflections from all interfaces of ocular media with different 

refractive indices (Nishi et al., 2010). Purkinje reflexes from the corneal and lenticular 

surfaces of the eye can be used to assess IOL tilt (de Castro et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Purkinje images are formed as a result of reflections from the eye’s 
refractive surfaces. Purkinje 1 comes from the anterior cornea/tear film, Purkinje 2 from 
the posterior cornea, Purkinje 3 from the anterior lens and Purkinje 4 from the posterior 
lens.  
 

Clinical studies have used purkinje images to assess lens alignment (Phillips et al., 

1988;Auran et al., 1990;Guyton et al., 1990).This method of measuring lens tilt and 

decentration in dilated eyes, assumes a linear relationship between the location of 

Purkinje images 1, 3 and 4 relative to a central reference point such as the pupil 

centre, as a function of ocular rotation in addition to lens tilt and decentration (de 

Castro et al., 2007;Rosales et al., 2010).  
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However there are some reports of low reproducibility with this technique (Kim et al., 

2001b) as well as limitations in its use in certain instances, such as with very flat 

lenses, which can produce unreliably large values for Purkinje 3 (de Castro et al., 

2007).  

 

3.3.3. Anterior Segment Optical Coherence Tomography  

IOL tilt can also be measured using Anterior Segment Optical Coherence Tomography 

(AS-OCT). OCT is a high resolution imaging technique in which a light source is split 

into two beams. One, called the reference beam, is reflected by a mirror and the 

second, a measurement beam, is reflected by ocular structures. These beams are 

recombined and the distance travelled by the reference beams can be scanned to 

allow interferometry to build a 2D or 3D image. Tilt angle can be ascertained using the 

software that is supplied with the instrument (Wolffsohn et al., 2007;O'Donnell et al., 

2011).  
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Figure 3.3: AS-OCT can be used to image the anterior segment of the eye and the 
supplied software tools used to measure tilt angle of an implanted IOL. 
 

 

AS-OCT can be used for a number of different functions from measurement of corneal 

thickness and anterior chamber depth to non-invasive in vivo evaluation of IOL 

alignment (Kumar et al., 2011). As with Scheimpflug imaging, AS-OCT is prone to 

optical distortion as a result of differences in the refractive index of ocular structures 

and  the curved nature of the eye’s surfaces, and so a correction factor must be 

applied (Dunne et al., 2007).  Some instruments, such as the Visante (Carl Zeiss 

Meditec Inc., Dublin, CA, USA) use built-in software to help reduce the effect of 

distortion, however some error still remains. While it is possible for AS-OCT devices to 

measure the posterior crystalline lens surface without dilation (O'Donnell et al., 2011) 

pupil dilation is recommended to ensure adequate assessment of tilt with this 

technique (Kumar et al., 2011).  
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IOL name 
No. of 
eyes 

Post-op 
visit 

Analysis 
method 

Tilt SD (°) 
about X axis 

Tilt SD (°) 
about Y axis 

Decentration 
(mm) 

Rotation  

SD (°) 

Visual 
Outcomes 

 
Study 

 

Posterior 
chamber IOL 

- - 
Purkinje 
imaging 

7.533.03 - 0.680.33 - - 
Kozaki et 

al. (1991a) 

PMMA 
Posterior 

chamber IOL 
13 - Purkinje 7.8 - 

 
0.7 

 
- - 

Phillips et 
al. (1988) 

PC IOL 56 
variable, 

up to 
3years 

Purkinje 
Mean: 

6.093.80 
- 

Mean: 

0.670.43 
(range 0 to 

2.5mm) 

- - 
Durak et 
al. (2001) 

Alcon 
MA30BA 

40 
4-

48months 
Scheimpflu

g 
3.4331.55 - 0.303  0.168 - 

Best 
corrected 
VA at time 
of exam of 
better than 

20/25 

Taketani 
et al. 

(2004) 

un-specified 1 5years 
Scheimpflu

g 
28.87 - 1.78 - 

Visual 
acuity 
25/20 

Oshika et 
al. (2005) 

 
   

Group I: 
 

sharp optic 
edge one 

eye, rounded 
optic edge in 

other eye  
 
 

 
 
 
 

Group 
I:50 

 
 
 
 
 

1 week, 
6+12 

months 

Scheimpflu
g 

 
At12months: 
 
   Group I-  

 
sharp edge: 

3.031.79, 
rounded 

edge: 

3.261.69 
 

- 

 
At 12months: 

 
Group I- 

 

sharp edge: 

0.240.13, 
rounded edge: 

0.230.13 
 
 

- - 

Baumeister 

et al. 
(2005) 
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     Group II: 

 
 silicone 

sharp optic 
edge one 

eye, acrylate 
sharp edge 

in 
contralateral 

eye 

 
Group 
II: 56 

  
Group II- 

 

silicone:2.34
1.81, 

acrylate:2.32

1.41 

     
    Group II- 

  
silicone 

0.290.21, 
acrylate: 

0.240.10 

1 piece vs. 3 
piece hydro-

phobic 
acrylic IOL 

88 
1,7,14,30 
days and 
6 months 

Purkinje 
reflection 

and photos 

1 piece: 

2.700.84 
3 piece: 

2.720.55 

- 

 
1 piece: 

0.390.13 
3 piece: 

0.340.08 
 

- - 
Mutlu 
 et al. 
(2005) 

Acryfold 
60BB and 
Acrysof 

MA60AC 

64 6months 
Scheimpflu

g 

Acryfold 
60BB : 

2.22 1.44 
 

Acrysof 
MA60AC: 

3.181.84 

- 

Acryfold 60BB : 

0.345 0.208 
 

Acrysof 
MA60AC: 

0.3700.171 

- 

All patients 
had best 
corrected 
VA better 

than 20/25 
at the time 
of exam 

Taketani 
et al. 

(2005a) 

Aspheric IOL 21 ≥6months 

Scheimpflu
g and 

Purkinje 
imaging 

S: 1.170.75 

P: 1.891.00 

S: 1.560.82 

P: 2.340.97 

Horizontal 

S: 0.23 0.19 

P: 0.34 0.19 
 

Vertical - 

S: 0.19 0.20 

P: 0.17 0.23 
 

- - 
de Castro 

et al. 
(2007) 
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Young group 
with their 
natural 

crystalline 
lens (CL) 

and Tecnis 
ZCB00 IOL 

40 
each 
group 

≥6 weeks Purkinje 

Crystalline 

lens:  2.20.7 
(up) 

 
IOL group: 

2.51.4 (up) 

CL: 3.11.5 
(temporal) 

 
IOL group: 

2.61.5 
(temporal) 

CL: 0.16 down 
0.07 temporal 

 
IOL group: 0.06 
nasal and 0.02 
upward of pupil 

- - 
Mester et 
al. (2009) 

Tecnis, 
AMO, 

Acrysof 
21 - 

Scheimpflu
g and 

Purkinje 
imaging 

S: 1.170.75 

P:1.891.00 

S: 1.560.82 

P:2.340.97 

Horizontal- 

S: 0.23  0.19 

P:0.340.19 
 

Vertical- 

S: 0.190.20 

P:0.170.23 

- - 
Rosales et 
al. (2010) 

 
Part I: 
Akreos 
Adapt Plate 
haptic OU 
one vertical 
and the other 
horizontal 
 
 
Part 
2:Acrysof 3 
piece  
MA60AC one 
eye, Acrysof 
1 piece 
SA60AT in 
other eye 

 
Part 1: 
15 eyes 

 
 
 
 
 
 
 

Part 2: 
15 eyes 

 
 
 
 
 
 

1 + 3 
months 

 
 
 
 
 
 
 

    Purkinje 
 

 
 
 

 
*-ve= 

upward & 
temporal tilt 

 
At 3months: 

Part 1- 
Vertical:-

1.51.1, 
Horizontal: 

2.90.9 
 

 
 
     Part 2- 

1 piece: 

2.27.2, 
3 piece: 

5.32.4 
 

 

 
At 3months: 

       Part 1- 
Vertical:  

1.61.2, 
Horizontal:  

1.91.4 
 
 
      
      Part 2- 

1 piece: 

1.90.3, 
3 piece: 

2.64.1 

 
At 3months: 

         Part 1- 
Vertical: 

0.40.2, 
Horizontal:  

0.40.2 
 
 
 

      Part 2- 
1 piece: 

0.40.3, 
3 piece: 

0.60.8 

- - 
Crnej et 

al. (2011) 
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3 IOLs: 1-

piece 
foldable 
acrylic 

(Appasamy), 
1-piece non-

foldable 
PMMA 

(Appasamy) 
and 1 piece 

foldable 
acrylic 

(Akreos) 
 
 

123 
61.2 

months 
AS-OCT 

Mean: 

1.520.9 
Range: 0.04- 

3.6 

- no data - 

Best 
corrected 
visual 
acuity 
≥20/20 in 
88 eyes out 
of 123,  
20/30 in 23 
eyes and 
≤20/40 in 
12 eyes 

Kumar et 
al. (2011) 

1 piece : 
Tecnis 
ZCB00 

 
3 piece 
Tecnis 

ZA9003 

100 

1 day, 
1month,  

3 months, 
12 months  

and 24 
months 

Purkinje 
meter 

(prototype) 

 
 

     
 
    Vertical 

 
12months- 

 
1 piece: 

2.281.80,  
 

3 piece 

4.125.08 
 
 
 
 

 
 

    
 
   Horizontal  

 
12months-  

 
1piece: 

2.273.07, 
 

3 piece: 

2.712.73 
 

 
 
 

 - 

 
 
Mean un-
corrected 
distance 
logMAR 
visual 

acuity at 24 
months-  

 
1piece: 

0.110.09, 
  

3 piece: 

0.130.04 
 
 

Findl et 
al.(2015) 
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Table 3.1: Table of important findings from IOL tilt studies from the last three decades.  Tilt about the X axis refers to movement of the superior 
edge of the IOL forward (positive number) or backward (negative) relative to the inferior IOL, while tilt about the y axis refers to temporal tilt 
constituting movement of the nasal IOL edge forwards (positive) or backwards (negative) relative to the temporal IOL (de Castro et al., 2007).

 
 

 
24months- 

 
1 piece: 

3.042.13, 
  

3 piece 

3.412.66 

 
 
 

24months- 
 

1 piece: 

2.022.36, 
 

 3 piece: 

2.792.40 
 
 

 
 

Mean 
corrected 
distance 

logMAR VA 
at 24 

months- 
 

1piece: 

0.020.02, 
  

3 piece: 

0.020.10. 
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3.3.4. New tilt evaluation technique  

 

The previously used techniques of rotating Scheimpflug, Purkinje analysis and m ti-

axis ASOCT involve additional non-standard consulting room equipment which is 

generally expensive. Hence, a simpler technique using standard en-face photography 

would be useful in clinical practice, even if it had limited resolution, as a screening tool.  

 

IOLs have a circular optic which, when imaged, should have major and minor axes of 

equal length. When tilted these axes will no longer be equivalent and the central optic 

will appear elliptical as opposed to circular. For example, if the IOL is tilted outwards 

about the horizontal meridian, the lower part of the IOL will be more anteriorly located 

compared to the top half of the IOL. Therefore the width of the IOL will remain 

unchanged, however the height will decrease (figure 3.4). It is proposed that by 

applying Pythagoras’s theorem, the relationship between the height and width of the 

central IOL optic can be used to mathematically determine IOL tilt in relation to the 

visual axis.  

 

While the direction of tilt cannot easily be determined, the orientation and magnitude 

should be determinable with simple current slit-lamp image capture technology
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Figure 3.4: As an IOL with a circular optic (black, solid) is tilted, it appears more 
elliptical (grey, dotted).   
 

 

Pythagoras’s theorem defines the relationship between the three sides of a right 

angled triangle and states that in a right angled triangle, the square of the hypotenuse 

is equal to the sum of the squares of the other two sides (figure 3.5, equation 3.1) 

 

                            Equation 3.1  
 
 

IOL tilted 

outwards 

Circular optic            Oval optic     
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Figure 3.5: Pythagoras’s theorem.  

 

The Pythagorean trigonometric identity expresses Pythagoras’s theory in terms of 

trigonometric functions. The cosine of an angle gives the ratio of the length of the 

adjacent side, to the length of the hypotenuse. Given this, the projection of an IOL can 

be defined so that the axial ratio of the ellipse, as measured by dividing the minor axis 

by the major axis, is used to calculate angle of tilt (ϴ) (figure 3.6, equation 3.2, 3.3): 

 

     
        

          
 

          

          
 

                  Equation 3.2 

 

    

       
          

          
 

                  Equation 3.3

 c: hypotenuse 

                         b: opposite  

 

   

 

    a: adjacent 

 

 

 

 

http://en.wikipedia.org/wiki/Trigonometric_function


 
 

80 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6: illustrates the use of Pythagoras’s theorem to determine the IOL tilt angle. 
 

 

This technique could potentially enable tilt to be measured rapidly using equipment that 

is readily accessible in most ophthalmic clinics; the accuracy and repeatability of this 

new IOL tilt technique is evaluated next. 

 

 

 

Major axis 

Minor axis 

 

Aligned IOL 

Tilted IOL 

 

 

 

 

 

Tilt angle ϴ 
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3.4. Methods 

A multifocal IOL (AcrySof Restor, Alcon) was carefully placed on a bespoke tilt stand 

(figure 3.7) which enabled vertical tilt and horizontal tilt. This custom built stand was 

constructed in the engineering department at Aston University. Following a pilot study, 

a flat platform on which to place the IOL was constructed to minimise potential 

alterations in the lens tilt between measurements. Goniometers, which enable an 

object to be accurately rotated about a fixed point, were stacked on top of each other 

to enable both vertical and horizontal tilt to be adjusted. A GNL 10/M goniometer which 

allowed tilt of ±10 ° was firmly fastened on top of a GNL 18/M goniometer which 

allowed tilt of ±5°, at 90 degrees to each other (Thorlabs, Munich, Germany). The IOL 

platform was then securely attached on top of this stack of goniometers (figure 3.7).  

 

The IOL was placed flat on the IOL platform and the stand tilted horizontally, both in 

the leftward and rightward direction as well as vertically in both the upward and 

downward direction by up to 10° in 1° steps. An image of the IOL was captured after 

each degree of tilt using a high resolution Nikon digital camera (figure 3.8). The 

camera used was a Nikon D5200 24.1 megapixel camera with a Nikon 60mm f/2.8G 

ED AF-S Macro. Camera resolution is related to the sensor size, with bigger sensors 

producing higher quality images. In this case the sensor size was 23.5mm by 15.6mm, 

giving a resolution of 255.3 pixels per millimetre.  Good alignment of the IOL relative to 

the camera is crucial in obtaining accurate tilt measurements and so IOL centration 

was carefully monitored to ensure the IOL remained on-axis during photography. 
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     Figure 3.7: custom tilt stand on which the IOL was placed during the study. 
 

IOL  

Goniometer stack 

Flat IOL platform 
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Figure 3.8: image showing the setup of the camera in relation to the IOL. The digital 
camera was placed vertically above the IOL which was placed centrally on the stand. 

High resolution 

digital camera 

IOL placed 

on tilt stand 
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The images were extracted and analysed using an imaging programme called ImageJ 

(figure 3.9) available at: http://imagej.nih.gov/ij/.  

Figure 3.9: screenshot of an IOL tilt image extracted into ImageJ. 

 

An ellipse was superimposed over the central IOL optic (figure 3.10 and 3.11) in order 

to obtain measurements of the IOL width and height in pixels; from this IOL tilt could 

then be calculated using equation 3.3. This was done in order to determine how 

accurately width and height measurements from digital imaging related to actual IOL tilt 

and thus whether this technique could be used to accurately evaluate IOL tilt in vivo.   

http://imagej.nih.gov/ij/
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Figure 3.10: An oval tool is selected in ImageJ and superimposed over the central IOL 

optic.  
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Figure 3.11: The dimensions of this oval in pixels can then be evaluated using the 
“Analyze” menu function.  

 

Resolution describes the ability to distinguish between two adjacent spots. It is an 

important factor to consider when using digital imaging and is influenced by pixel 

number (Peterson et al., 2005). The Nikon camera had a resolution of 6000 x 4000 and 

was viewed on a 15 inch monitor with a screen resolution of 1280 x 1024 pixels. 

Viewing higher resolution images on a monitor of lower resolution can lead to a 

reduction in the perceived image quality and this can be a potential source of 

inaccuracy (Peterson et al., 2005). The number of pixels across the lens will affect 

ability to detect tilt. In this study, the images were scaled using the known IOL 

dimensions and it was determined that in order to reliably distinguish 1° of tilt, a 

difference between IOL width and height of 0.0009 ± 0.00002mm, which s equivalent 

to 0.211 ± 0.006 pixels, was required. Given that 0.205 to 0.217 pixels are required to 
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detect a 0.0009mm difference, a pixel resolution of between 227.78 to 230.00 pixels 

per millimetre is required, as shown below. Therefore a minimum resolution of 227 

pixels per millimetre is recommended equivalent to around 1400 across a 6mm IOL 

optic or 2724 pixels across the typical 12mm iris. 

 

   0.205 - 0.207pixels = 0.0009mm 

         x 1111.1111 

   227.78 -230.00pixels = 1.00 mm 

 

3.5. Repeatability 

The repeatability of the new tilt evaluation technique was analysed in order to assess 

its reliability. To investigate this, ten images of increasing IOL tilt in the horizontal 

rightward direction were assessed again using image J software in the same 

measurement session (intrasession), on a different session day by the same observer 

(inter-session) and then also with a different observer (inter-observer). To assess intra-

session repeatability the same observer measured the ten horizontal rightward tilt 

images, continued measuring the other tilt direction images and then re-measured the 

first ten horizontal rightward images within the same testing session. The observer was 

masked to the previous measurement values. The same observer also re-analysed the 

same ten horizontal rightward images in the same way on a different day in order to 

assess inter-session repeatability. Finally inter-observer repeatability was evaluated 

using an individual with no prior knowledge of the research and with no previous 

experience of this type of image analysis. The measurement procedure was explained 

to them using a demonstration image and the individual asked to record their findings 

on a separate spreadsheet.  
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3.6. Statistical analysis 

A one-sample Kolmogorov-Smirnov test revealed that the data exhibited a normal 

distribution (Kolmogorov-Smirnov Z = 0.576, P >0.05). Tilt calculated using the new 

method was compared to actual tilt using paired two-tailed t-tests. Agreement between 

the two methods of tilt assessment was evaluated by calculating the mean of the 

differences, or the bias, between the two techniques and the 95% confidences limits, 

as described by Bland and Altman (1986), and presented graphically.  

 

3.7. Results 

Tilt values were calculated and compared against actual tilt (table 3.2; 3.3).  

IOL tilt 
direction 

Actual tilt 
(°) 

Width 
(pixels) 

Height 
(pixels) 

W/H 
ratio 

IOL 
tilt (°) 

Change in 
tilt angle (°) 

h
o
riz

o
n
ta

l rig
h
tw

a
rd

 

0 1412.982 1413.991 0.999 2.16 0 

1 1412.014 1414.010 0.998 3.04 0.88 

2 1412.020 1415.995 0.997 4.29 2.13 

3 1414.009 1422.010 0.994 6.08 3.92 

4 1402.020 1411.971 0.993 6.81 4.64 

5 1407.997 1422.028 0.990 8.06 5.89 

6 1407.006 1425.017 0.987 9.12 6.95 

7 1396.019 1415.012 0.987 9.40 7.23 

8 1397.972 1418.013 0.986 9.64 7.48 

9 1377.967 1401.001 0.984 10.40 8.24 

10 1386.013 1413.037 0.981 11.22 9.06 

h
o
riz

o
n
ta

l le
ftw

a
rd

s
 

0 1410.025 1412.006 0.999 3.04 0 

1 1410.038 1414.014 0.997 4.30 1.26 

2 1409.028 1416.023 0.995 5.70 2.66 

3 1393.995 1402.026 0.994 6.14 3.10 

4 1396.000 1406.025 0.993 6.85 3.81 

5 1395.015 1407.000 0.991 7.48 4.45 

6 1378.027 1390.992 0.991 7.83 4.79 

7 1385.994 1400.997 0.989 8.39 5.36 

8 1374.013 1392.994 0.986 9.47 6.43 

9 1382.016 1405.019 0.984 10.38 7.35 

10 1373.012 1401.996 0.979 11.67 8.64 

Table 3.2: Actual versus calculated horizontal IOL tilt. The change in tilt angle column 
refers to the difference in calculated tilt relative to the preceding tilt value 



 
 

89 
 

 Table 3.3: Calculated versus actual IOL tilt in the vertical meridian. 

 

IOL tilt 
direction 

Vertical 
tilt (°) 

Width 
(pixels) 

Height 
(pixels) 

W/H 
ratio 

IOL tilt 
angle (°) 

Change in 
tilt angle (°) 

v
e

rtic
a

l u
p
w

a
rd

 

0 1355.016 1353.012 0.999 3.12 0 

1 1359.023 1356.008 0.998 3.82 0.70 

2 1356.018 1350.021 0.996 5.39 2.27 

3 1360.017 1351.958 0.994 6.24 3.12 

4 1356.000 1343.984 0.991 7.63 4.52 

5 1359.997 1346.016 0.990 8.22 5.11 

6 1360.016 1344.001 0.988 8.80 5.69 

7 1362.017 1343.992 0.987 9.33 6.22 

8 1365.986 1344.005 0.984 10.29 7.18 

9 1368.009 1342.025 0.981 11.18 8.07 

10 1374.020 1341.005 0.976 12.59 9.47 

v
e

rtic
a

l d
o
w

n
w

a
rd

 

0 1342.997 1341.976 0.999 2.23 0 

1 1343.997 1342.023 0.999 3.11 0.87 

2 1346.983 1344.005 0.998 3.81 1.58 

3 1346.998 1341.010 0.996 5.40 3.17 

4 1350.020 1340.991 0.993 6.63 4.40 

5 1354.018 1343.992 0.993 6.98 4.74 

6 1350.990 1337.997 0.990 7.95 5.72 

7 1350.021 1335.998 0.990 8.27 6.03 

8 1356.015 1338.021 0.987 9.34 7.11 

9 1355.998 1332.003 0.982 10.79 8.56 

10 1348.999 1322.998 0.981 11.27 9.03 
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       Figure 3.12: plot comparing calculated tilt in the four directions with actual tilt.  

 

Calculated and actual tilt values were found to be highly correlated (figure 3.12; 3.13). 

Paired t-tests showed there to be no statistically significant difference between actual 

and average calculated tilt (paired t-test t=-1.739, p=0.113) indicating good agreement 

between the two techniques. 

 

3.8. Validity of new IOL tilt evaluation: 

Agreement between the new method of calculating IOL tilt and actual tilt was plotted 

graphically using Bland and Altman plots (figure 3.13-3.16).  There was a slope to the 
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Mean of calculated and actual IOL tilt (
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)
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data with the difference between actual and calculated tilt changing from positive to 

negative with increasing tilt indicating proportional bias, therefore regression based 

limits of agreement were used (Bland et al., 1999). Since the data showed 

homoscedasticity as opposed to heteroscedasticity the 95% prediction intervals were 

used to represent the limits of agreements, and are indicated by the black dashed 

lines. The regression line is indicated by the solid black line (Bland et al., 

1999;Ludbrook, 2010). Inspection of the Bland Altman plot indicates good agreement 

between actual and calculate tilt, more so for vertical tilt than horizontal tilt, since the 

mean difference is close to 0 and the limits of agreement narrow. 

Figure 3.13: Bland and Altman plot comparing calculated versus actual tilt. 
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3.9. Repeatability of new IOL tilt calculation method 

 

3.9.1. Intra-session 

Test-retest intersession repeatability is presented in Bland-Altman graphical format 

(Figure 3.14). The average difference between calculated tilt measured by the same 

observer within the same measurement session at the 95% confidence interval was -

0.12° ± 0.62°. This demonstrates good intra-session repeatability of the new tilt 

technique since the mean difference was close to 0 with narrow limits of agreement. 

 

Figure 3.14: Bland and Altman plot comparing intra-session repeatability of the new tilt 
calculation method. 
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3.9.2  Intersession 

The average difference between calculated tilt measured on the same images by the 

same observer on different days at the 95% confidence interval was -1.24° ± 0.99° 

(figure 3.15). This mean difference is relatively small which demonstrates the relative 

repeatability of this new tilt technique with the same observer at different measurement 

sessions.  

 

 

 

 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.15: Bland and Altman plot comparing the intersession repeatability of the new 

calculated tilt method. 
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3.9.3  Inter-observer 

 The average difference between calculated tilt from two different observers assessing 

the same images at the 95% confidence interval was -2.08° ± 1.28° (figure 3.16). 

Repeatability of the technique between different observers was lower than for intra and 

inter-session measurements with the same observer. This may have occurred due to a 

learning curve with the first examiner, who had more opportunity to practice their 

measurement technique in ImageJ compared to the second observer. Thus this mean 

difference could potentially be reduced by addressing this limitation; however the mean 

difference in tilt measurements found between observers is acceptable for the intended 

purpose of this new tilt measurement technique as a screening tool to detect large 

amounts of lens tilt. 
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Figure 3.16: Bland and Altman plot comparing inter-observer repeatability of the new 
tilt calculation method.
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3.10. Discussion 

Accurate alignment of an implanted IOL is important in achieving post-operative 

success, particularly with toric and multifocal designs. IOL tilt is frequently disregarded 

when evaluating lens fit, but can have an equally damaging effect on visual quality as 

other measures of malposition such as IOL rotation and decentration (Taketani et al., 

2004;Kumar et al., 2011;Madrid-Costa et al., 2012). Tilt and decentration are 

commonly evaluated together and can influence the eye’s optical properties by 

contributing to the myopic shift of the post-operative refractive error and inducing 

oblique astigmatism (Korynta et al., 1999;Durak et al., 2001). Large decentrations and 

tilts can produce considerable post-operative refractive errors. The relationship 

between the geometrical axes of decentration and tilt influences the extent of the 

refractive error. Korynta et al. (1999) found that the least favourable combination of 12° 

tilt and 3mm decentration generated a refractive error of up to -7.00DS and +4.00DC. 

IOL shape can also  influence decentration and tilt, with biconvex lenses found to be 

least affected by decentration and tilt compared to planoconvex and meniscus designs, 

and so considered the superior choice for IOLs (Kozaki et al., 1995). IOL haptic design 

may also influence decentration and tilt, with 3 piece IOLs showing a tendency to tilt 

and decentre more than 1 piece IOLs in a study by Crnej et al. (2011) although the 

difference was not found to be statistically significant.  

 

The purpose of this study was to develop a new, objective method of rapidly measuring 

IOL tilt. Most, if not all optometry and ophthalmology clinics have access to a slit lamp 

and even if a camera system is not integrated into the system, images can be captured 

by smart phones or other cameras through the eyepiece optics. An advantage of the 

new technique is the speed with which the images can be captured, especially if the 

patient has already been set up behind the slit lamp for other post-operative tests, 
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since there is no need to rotate the camera or analyse multiple images as with 

Scheimpflug imaging and AS-OCT.  

 

Absolute calculated tilt values appeared to compare well with actual tilt and the 

technique has been shown to be repeatable (figure 3.13-3.16). This new tilt 

measurement method was assessed against actual, known tilt of an un-implanted IOL 

to ensure more accurate evaluation, as opposed to comparing directly with other tilt 

evaluation methods such as Purkinje and Scheimpflug imaging, each of which have 

their own range of measurement error. Grewal et al. (2012) found that Scheimpflug 

imaging used in conjunction with ImageJ software was highly repeatable. Similarly, de 

Castro (2007) found both Purkinje and Scheimpflug imaging to be highly repeatable, 

with a mean standard deviation of repeated tilt measures of 0.61° for Purkinje and 

0.20° for Scheimpflug imaging. The mean standard deviation of repeated tilt measures 

for the new tilt evaluation technique was comparable at 0.92°. The impact of these 

typical measurement errors on visual performance would be expected to be minimal 

given that no correlation was found between visual acuity and mean IOL tilt levels of 

between 2.39° and 2.94° (Hayashi et al., 2001). There may have been a learning curve 

with the new, simplified tilt method in terms of the process of superimposing the oval 

onto the IOL optic in ImageJ, which could have lead to an improvement in calculated 

tilt values with repeated testing. Development of an automated mechanism to 

determine this would be advantageous to make the technique more objective.    

 

The cornea and crystalline lens greatly influence the optical quality of the human eye, 

with the cornea accounting for two thirds of the eye’s refractive power and the 

crystalline lens contributing one third of the power (Gullstrand, 1924). It is therefore 
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important to measure corneal shape and correct for any associated distortion effects in 

order to obtain more accurate measurements. This is especially the case when 

imaging the crystalline lens, or an implanted IOL, given the numerous refraction 

changes that occur imaging through the multiple preceding ocular surface layers 

(Dubbelman et al., 2001;Ortiz et al., 2012). The new method of calculating IOL tilt 

presented here is susceptible to the effects of corneal astigmatism. If significant 

amounts of corneal astigmatism are present in a subject, the imaged lens may appear 

more tilted that it actually is. The impact of this on measurement accuracy is not 

currently known but was predicted as follows.  

 

Mean corneal astigmatism is estimated to be in the region of 1.00D (Hoffer, 

1980;Ferrer-Blasco et al., 2009;Hoffmann et al., 2010) in the average population, 

ranging up to 6.75DC (Ferrer-Blasco et al., 2009).  The meridional magnification 

effects associated with uncorrected astigmatism can be calculated using equation 3.4 

(Atchison, 1996;Rosen et al., 2011).   

 

    
 

    
 

          Equation 3.4 
 
  Where d refers to the vertex distance and F, the lens power.  
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This formula can be adapted to the current scenario by entering the power of the 

corneal astigmatism as F, and using the anterior chamber depth as the vertex 

distance. Estimates of mean anterior chamber depth have been given as 3.11mm 

(Hoffmann et al., 2010), 3.32mm (Hoffer, 1980) and 3.59mm (Queiros et al., 2005). A 

ratio of the associated magnification effects can be determined using equation 3.4, 

which can then be converted into a magnification percentage. Using averaged anterior 

chamber depth values an approximate meridional magnification effect of 0.3% was 

found for 1 dioptre of uncorrected corneal astigmatism, which translated to apparent tilt 

of 4.59°. Apparent tilt for every dioptre of astigmatism up to 7.00DC was calculated and 

is shown in figure 3.17.   

 

Figure 3.17: the effect of corneal astigmatism on apparent IOL tilt.  
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Curve fitting in Matlab using the rational fit model (r2=0.999) gave the following 

equation with which to predict the effect of uncorrected corneal astigmatism on 

apparent tilt: 

                                       
                          

        
                             

                     Equation 3.5 
Where x= uncorrected corneal astigmatism in dioptres. 

 

Uncorrected corneal astigmatism can mask true tilt therefore use of corneal 

topography is recommended so that the effect of any corneal astigmatism can be 

measured and accounted for using equation 3.5. Alternatively, the effect of corneal 

astigmatism on measurement error may be eliminated by insertion of an appropriately 

calculated toric contact lens. This will ensure enhanced accuracy of IOL tilt evaluation 

using this new, simplified method in patients with varying degrees of corneal 

astigmatism.   

 

 

This new method of mathematically calculating IOL tilt has been shown to be accurate 

and repeatable and as such could be useful as a rapid alternative to more costly 

methods of tilt assessment such as Scheimpflug imaging, Purkinje imaging or AS-

OCT. This technique has been used to assess tilt in a large cohort of subjects 

implanted with an IOL in the next chapter. 
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CHAPTER 4: Evaluating long-term tilt, decentration and rotation of an implanted 

IOL 

 

4.1. Measurement of IOL position 

For maximum effect, an IOL must remain correctly orientated in the capsular bag after 

surgery (Prinz et al., 2011) as malposition can negatively impact upon visual 

performance (Kim et al., 2010;Wolffsohn et al., 2010a;Visser et al., 2011a). Previous 

research in this thesis (chapter 2) has confirmed a statistically significant decrease in 

visual acuity with increasing amounts of toric rotation with a larger and faster drop in 

acuity observed for greater amounts of uncorrected astigmatism (figure 2.3). Therefore 

accurate IOL placement becomes even more crucial with greater IOL powers (Ale et 

al., 2012b). 

 

Previous chapters have evaluated a new idea for improving patient tolerance to toric 

IOL rotation (chapter 2) and also developed a relatively simple, new technique that can 

be used to measure tilt of an IOL (chapter 3). IOL malposition can be characterised by 

a third type of misalignment- decentration (Baumeister et al., 2005). A review of the 

literature has revealed there to be a paucity of available information regarding the 

association between lens tilt, rotation and decentration. Given the similarity in their 

possible causes, the link between these factors should be examined in more depth to 

determine whether they arise together or occur independently of each other. 

 

4.2. Lens Decentration  

Accurate IOL placement is a key determinant of patient success after IOL implantation. 

A recent study investigated the effect of decentration by laterally displacing a wavefront 

corrected IOL by 1mm and found an increased incidence of higher order aberrations, 
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mainly coma, with increasing decentration. Thus it was concluded that excellent 

centration was necessary to maximize visual performance (Wang et al., 2005b).   

 

IOL decentration describes a difference in the IOL centre relative to another reference 

point, commonly the centre of the pupil or limbus. Subjective decentration assessment 

of an implanted IOL requires the pupil to be dilated and is examined by measuring the 

position of the edge of the IOL optic within the pupil. It is susceptible to the effects of 

parallax since the IOL lies in a different plane. 

 

Lens decentration can reduce optical quality, especially when coupled with lens tilt 

(Eppig et al., 2009). Tilt and decentration are often evaluated together as the actual 

combination of the two will influence the optical quality (de Castro et al., 2007) and can 

influence the refractive error that is induced; they will either enhance or lessen this 

refractive error depending upon the relationship between their geometrical axes 

(Korynta et al., 1999). IOL decentration, like tilt, can reduce retinal image quality and 

thus visual performance (Taketani et al., 2004). IOL tilt greater than 5° and 

decentration of over 1mm may induce a myopic shift as well as oblique astigmatism 

thereby impairing visual quality (Uozato et al., 1988;Yang et al., 2000;Baumeister et 

al., 2005). There is an estimated reduction in effective optical zone power of 11% when 

a 6.0mm IOL is decentred by 0.5mm (Hansen et al., 1988). Possible causes of tilt and 

decentration include an asymmetric capsulorhexis causing unequal capsule shrinkage 

as well as capsule tear (Jung et al., 2000). Lens centration may be related to IOL 

factors such as design, length and material (Jung et al., 2000). Significantly higher  

amounts of decentration have been found with a silicone 3-piece IOL compared to a 

plate haptic silicone IOL (Cumming, 1993;Hwang et al., 1998), although Hwang et al. 

(1998) reported no difference in the rate at which this decentration occurred. This 

increased resistance to decentration with the plate haptic IOL was attributed to an 
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increased rigidity together with differences in the ability of each IOL to resist the force 

of capsular fibrosis (Cumming, 1993;Hwang et al., 1998). There is considered to be no 

significant difference in the progression of tilt or decentration in the 12 months following 

IOL implantation, provided the IOL was placed correctly in the capsular bag at the time 

of surgery (Hayashi et al., 1997;Yang et al., 2000;Taketani et al., 2004). In some 

instances, an IOL may be deliberately decentred so that the associated prismatic effect 

that this induces can be used to treat strabismus (Nishimoto et al., 2007). 

 

Concentric ring design IOLs rely on a precise distribution of light in order to create 

multiple focal points from distance to near. While diffractive MIOLs are believed to be 

less sensitive to IOL movement, the success of refractive designs are dependent upon 

good centration as well as minimal tilt (Hayashi et al., 1997).  

 

IOL position can be measured in a number of ways (Baumeister et al., 2005). Purkinje 

imaging, Scheimpflug images corrected for optical distortion (Phillips et al., 

1988;Baumeister et al., 2005;de Castro et al., 2007) and AS-OCT also corrected for 

distortion (Dunne et al., 2007) can be used to measure decentration. An alternative 

technique uses digital image analysis together with comparison of the centres of an 

oval fitted over the central IOL optic and limbus but relies upon good retroillumination 

images (Becker et al., 2004). The magnifying effect of the cornea should also be 

compensated for by using the known size of the IOL optic (Buckhurst, 2011). 

 

4.3.  Methods of assessing IOL rotation 

A key aspect of assessing premium IOL misalignment is the use of accurate 

assessment techniques.  There are several ways of measuring IOL rotation such as 

through use of a slit lamp protractor, however subjective techniques such as this 

depend upon the patient maintaining an identical head position every time a 
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measurement is taken and are only accurate to the nearest 1 to 5 degrees (Buckhurst 

et al., 2010a;Wolffsohn et al., 2010a;Shah et al., 2012).  

 

Differences in eye and head inclination between visits must also be accounted for 

when evaluating the degree of total postoperative toric IOL rotation, as this can be a 

source of measurement inaccuracy. The reproducibility of the eye’s orientation during 

standard fundus photography was evaluated in order to assess the effect of 

autorotation on measurement accuracy and it was shown that the eye’s rotational 

stability changed by an average of 2.3°±1.7° over the 6 month measurement period 

(Viestenz et al., 2005). This difference in eye position was attributed to a number of 

factors including head rotation, cyclotorsion as well as errors in equipment alignment 

(Wolffsohn et al., 2010a).  Eye rotation was generally found to be higher in females, 

older patients, those with greater amounts of astigmatism and worse visual acuity 

(Viestenz et al., 2005). There have been several attempts to compensate for this head 

and eye rotation. Shah et al. (2009) first calculated the centre of the toric IOL over 

which they superimposed a radial grid to enable measurement of the axis of the toric 

markings to within 0.1. Head and eye rotation was compensated for by measuring the 

axis of an additional line joining the IOL centre to a single prominent episcleral blood 

vessel.  

 

Use of ocular reference markers, such as conjunctival vessels (Wolffsohn et al., 

2010a), can be used to account for the effect of eye and head rotation thereby 

increasing the accuracy of toric IOL rotation measurement. Iris features can also be 

used as reference points instead of ocular blood vessels as they are more stable,  

especially in cases when certain topical mydriatic agents are used, such as 

phenylephrine which also has a vasoconstrictive action (Wolffsohn et al., 2010a). 

However iris features are susceptible to change during pupil dilation and it has 
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therefore be suggested that a combination of both iris features and blood vessels be 

used for greater accuracy (Visser et al., 2011a). For instance Buckhurst et al. (2011)  

used either two consistent conjunctival vessels or iris features on opposite sides of the 

pupil. Alternatively the use of peripheral iris features, which are unaffected by iris 

movement during dilation, can be used to overcome issues with iris stability (Buckhurst 

et al., 2010a).  

 

Other IOL alignment measurement techniques include use of Scheimpflug imaging 

(Sasaki et al., 1989;Jung et al., 2000;Kim et al., 2001b), Purkinje reflections (Phillips et 

al., 1988;Auran et al., 1990) and anterior-segment optical coherence tomography 

(Kumar et al., 2011) each of which have been discussed in more detail in chapter 3. 

 

Several studies have investigated IOL rotation using a range of the techniques 

described. IOL rotation values obtained, along with short study summaries including 

assessment methods, have been summarised below in table 4.1. 
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IOL name 
No. of 
eyes 

No. of 
patient

s 

Follow up 
visit (months) 

Analysis method RotationSD (°) 
Rotation 

information 
Tilt 
(°) 

Study 

Nidek Nt-
98B 

47 47 3 Image analysis  21% > 30 
 no 

data 
Shimizu et 
al. (1994) 

STAAR 
4203TF 

37 30 2017 
Slit-lamp 
protractor 

21.6%>5 
2.7%  40 no 

data 
Ruhswurm 
et al. 
(2000) 

STAAR 
4203TF 

22 16 4 
Slit-lamp 
protractor 

 
22%>10, 13.6%>20,  
9% >30 

no 
data 

(Leyland 
et al., 
2001) 

Custom 
IOL 

(600TW) 
26 24 12-48 Slit lamp 46%>5,  23%>10 

no 
data 

Gerten et 
al. (2001) 

STAAR 
4203TF 

and 
4203TL 

25 19 
2 weeks- 26.2 

months 
Image analysis  

1.361.85,  
0% > 5 

 no 
data 

Jampaulo 
et al. 
(2008) 

AcrySof 
SN60T 

17 - 6 Image analysis  
0.1-1.8,  
0% > 5 

 no 
data 

Weinand 
et al. 
(2007) 

AcrySof 
SN60T 

53 43 4 Slit lamp 3.5  1.9 
 no 

data 
Bauer et 
al. (2008) 

AcrySof 
SN60T 

30 15 3 Slit lamp 
3.63 3.11,  
19% > 5,  

3% > 10 no 
data 

Mendicute 
et al. 
(2008) 

AcrySof 
SN60T 

44 33 
1 week-3 
months 

Slit lamp 
integrated eye 
piece 

2.22.2 , 
5% > 5 

 no 
data 

Zuberbuhl
er et al. 
(2008) 

AcrySof 
SN60T 

20 3 3 
Slit lamp 
integrated 
eyepiece 

3.53  1.97,  
5% > 5 

 no 
data 

Mendicute 
et al. 
(2009) 
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Akreos 
Adapt and 
AcrySof 
SA60AT 

64 and 
58 

- 

24 months Retro-illumination 
images  

Akreos:2.532.4
0 6months, 

3.22.57 at 24 
months 
 

Adapt: 3.22.57 
at 6 months, 

3.333.06 at 24 
months 

Akreos: 10%≥5 at 
6months, 9%≥5 at 
12 months and 
20%≥5 at 24 months 
Adapt:  11%≥5 at 
6months, 25%≥5 at 
12 months and 
19%≥5 at 24 months 

no 
data 

Kwartz et 
al. (2010) 

Acrysof 
toric 

30 24 
1 day to 

13.3±5.0month
s 

Digital image 
analysis using 
ImageJ software 

3.45±3.39, 
 

3.3%> 10.3 
no 
data 

Kim et al. 
(2010) 

Acri.Smart 
46S and 
Acri.Lyc 

53N 

80 40 
1 hour, 1 week 

& 1,6,12 
months 

Retroillumination 
images and 
Adobe Photoshop 

Acri.Smart: 
2.6±1.9 

Acri.Lyc:3.1±2.4 
 

<4° in 71%, <2° in 
29% of eyes in both 

groups 
 

no 
data Prinz et al. 

(2011) 

Acrylic toric 
IOL 

29 22 
1 week & 1 

month 

Anterior segment 
optical coherence 
tomography 

1week:3.2±2.2 
1month: 3.2±2.4 

1 week: range 0–8 
1 month: range 0–9 

 
< 5° from target in 

72.4%, <10 in 100% 

no 
data Watanabe 

et al. 
(2012) 

Arysof 
Toric IOL 

168 168 
1 day, 1 week 
& 1,3,6months 

Retroillumination 
images and 
purpose-designed 
software 

6months: 
1.6±0.5 

 

6 months: 
0.61%<0.5, 66.7% = 
1.1-2.0, 15.9%>2.1 

no 
data Shah et al. 

(2012) 

Bi-Flex toric 
IOL 

30 22 
1 day, 1 week, 

1 and 3 
months 

Retroillumination 
images  

2.12±3.45 
range: -2 to +5 
(+= clockwise, -
=anticlockwise) 

no 
data 

Bacherne
gg et al. 
(2013) 

AcrySof 
Cachet 

50 28 
2 weeks & 
12months 

Digital overlay of 
ocular 
photographs 

11.0±15.1 
 

range 0-60 no 
data 

Kermani 
et al. 

(2013) 
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Table 4.1: Studies from the past two decades which have assessed toric IOL rotation, listing the methods used to quantify rotation along   
with results obtained. In general, although the range of reported rotation varied between studies, mean rotation was <5° in most cases.

Tecnis toric 
IOL 

67  60 4-8weeks 
Dilated slit lamp 
examination 

3.4 
range 0-12 no 

data 
Sheppard 

et al. 
(2013) 

Tecnis toric 
IOL 

Randomise
d control 

study: 
ZCT150  

 
Open label 

study: 
ZCT225, 

ZCT300 or 
ZCT400 

Randomi
sed 
control 
group: 
ZCT150 
(102)  
  
Open 
label 
group: 
ZCT225 
(17), 
ZCT300 
(25) or 
ZCT400 
(30) 

Rando
mised 
control 
group: 
ZCT15
0 (102)  
  
Open 
label 
group: 
ZCT22
5 (17), 
ZCT30
0 (25) 
or 
ZCT40
0 (30) 

1 day, 1 week, 
1 and 3 
months 

High resolution 
digital 
retroillumination 
photographs 

mean <3 

7.1%≥5 between 1 
and 3 months 

 
5.9%≥5 between 3 

and 6 months 

no 
data 

Waltz et 
al. (2014) 

Tecnis 1-
piece IOL 

30 30 
1 hour, 3 

month 
Retroillumination 
photographs 

 
Mean difference 
between visits 

2.7±3.0 
 

 
62% < 3, 95%< 6 

 
no 
data 

Hirnschall 
et al. 

(2014) 
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4.4. Study Purpose 

A new technique, described in chapter 3, to measure IOL tilt from static images using a 

mathematical equation was tested and calculated tilt values appeared to correlate well 

with actual tilt. Few clinical studies have measured IOL tilt and to the author’s 

knowledge, none have objectively measured tilt, rotation and decentration in the same 

subjects (table 4.1).Therefore, an aim of this study was to put the technique developed 

in chapter 3 into clinical use in order to quantify long term IOL tilt of an aspheric 

monofocal IOL with toric orientation markings (Bausch and Lomb, Rochester, NY, 

USA) and also to determine whether there is any relationship between IOL tilt, rotation 

and decentration.  

 

4.5.   Study design 

A retrospective analysis of previously collected data was carried out. Data had been 

collected in an earlier study by Buckhurst et al. (2010b) who evaluated the long term 

rotational stability of the Akreos AO IOL with a simulated toric design. Objective 

analysis of digital retroillumination images was undertaken and the purpose of that 

study was to determine whether the platform would be suitable for correcting 

astigmatism through application of a toric optical surface. In the present study this 

previously collected raw data was re-analysed to calculate IOL rotation and 

decentration. Calculated mean rotation and decentration values differ slightly from 

those found in this earlier work perhaps as a result of the elimination of different 

outliers from the analysis.  For the current study, IOL tilt was additionally calculated for 

each post-operative visit using the new simplified tilt technique described in chapter 3 

and the correlation between these measures of IOL rotation, decentration and tilt 

assessed. 
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4.6. Sample size  

The American National Standards Institute (ANSI) provides guidance on standards for 

the clinical investigation of toric IOLs. According to the current American national 

standard, known as ANSI Z80.30-2010 approved in March 2010, a minimum of 100 

subjects should be recruited when assessing IOL rotation. A sample size calculation 

showed that in order to achieve a power of 80% for a correlation coefficient of 0.3 at a 

0.05 significance level, a minimum of 75 subjects were required. 

 

4.7. Methods  

A prospective, non-randomised study had previously been conducted on 107 subjects 

(mean age 69.9 ± 7.7 years) implanted with the Akreos AO aspheric monofocal IOL 

(Bausch & Lomb, Rochester, NY). The Akreos lens is a single piece, aberration 

neutral, aspheric lens with toric orientation markers to enable rotation assessment. It is 

made from an acrylic material, features a central 6mm optic and a closed loop haptic 

design. Data had been collected at the following six European sites: Universitat 

Rostock Germany, Umea University Hospital Sweden, University Hospital Sweden, 

University Medical Centre Ljubljana, Universitat Niederrhein Germany and Uppsala 

University Hospital Sweden (Buckhurst et al., 2010b). Aston University acted as a 

reading site for this multi-centre study by collating and analysing the data. For the 

current study, a retrospective analysis was conducted on this previously collected data. 

 

Digital slit lamp images were taken of the implanted IOL at pre-determined intervals 

over a six month period. In order to fully image the IOL, pupils were dilated using 

phenylephrine 2.5 % and tropicamide 1.0 %. Peripheral iris features were used as 

stability markers in order to account for head and eye rotation.  
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Subjects were assessed over four visits. Visit 1 occurred 1 to 2 days after surgery, the 

second visit occurred 1 to 2 weeks after, patients were seen for the third time 1 to 2 

months after implantation and then for the fourth and final time between 4 and 6 

months post operatively. Informed consent was obtained from all participants prior to 

lens implantation and ethical approval obtained.  

 

Inclusion criteria for this study were:  

 The absence of ocular pathology such as Fuch's endothelial dystrophy. 

 Presence of clinically significant cataract treatable with standard 

phacoemulsification and IOL implantation. 

 Ability to meet the minimum dilation level of 5.5mm. 

 Best corrected visual acuity projected to be better than 0.2 logMAR. 

 Aged between 50 and 80 years. 

 A willingness participate in the study and attend the agreed post-operate 

visits. 

 

The presence of any of the following conditions served as exclusion criteria:  

 Anterior segment pathology such as chronic uveitis and corneal dystrophy 

 Uncontrolled glaucoma 

 Previous intraocular and corneal surgery 

 Diabetic retinopathy 

 Very shallow anterior chamber 

 Traumatic cataract 

 Aniridia 

 Microphthalmos 

 Amblyopia 

 Degenerative visual disorders  
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4.7.1.  Image capture 

At each visit retroillumination images of the posterior capsule were taken using a digital 

slit lamp. The SL-990 digital slit lamp biomicroscope was used to image the IOL at a 

10X magnification with the eye externally illuminated. The illumination arm of the slit 

lamp was decoupled, the IOL retro-illuminated by the fundus and then imaged 

(Buckhurst et al., 2010b).  

 

4.7.2.  IOL rotation measurement 

The digital images were analysed using bespoke computer software written in Labview 

(National Instruments, Texas, USA). Using this software the axis of IOL rotation was 

determined by constructing a line between the two IOL orientation markers as has 

been described in greater detail by Buckhurst (2011) . Eye rotation between visits was 

accounted for by comparing the axis of a line joining two conjunctival vessels or iris 

features on opposing sides of the pupil (Shah et al., 2009).  

 

4.7.3.  IOL tilt measurement 

IOL tilt was calculated mathematically (equation 3.3) from the given height and width 

measurements of the IOL as described in chapter 3 using ImageJ software. A pixel to 

mm conversion factor was obtained by imaging an object of known size. 

 

4.7.4.  IOL decentration measurement 

Centration was measured by overlaying ovals over the IOL optic, pupil margin and also 

the limbus using the same computer software programme and measuring the centre of 

these ovals (Buckhurst et al., 2010b;Wolffsohn et al., 2010a). Scheimpflug systems 

use the central of the pupil as a reference point for decentration measurements 
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therefore IOL position relative to the pupil was used in this study for decentration 

evaluation (de Castro et al., 2007). Measurements were given in pixels and converted 

into mm using this pixel conversion factor. Corneal magnification effects were 

compensated for by using the known size of the IOL optic (Buckhurst, 2011). The 

distance between the centre of the IOL and the centre of the pupil was calculated using 

equation 4.1 below.  

 

.                 Equation 4.1 

 Where h= distance between centres, x= horizontal distance between centres and y= 

vertical distance between the centres. 

 

4.8.  Statistical Analysis 

IOL data were assessed for normality using the Kolmogorov-Smirnov test and were not 

normally distributed (Kolmogorov-Smirnov: Rotation Z=5.632, P<0.001; Tilt Z=4.491, 

P<0.001). Therefore, non-parametric tests were performed. The Friedman Chi-Square 

test was used to determine if there was a difference in level of IOL rotation over time. If 

a difference was detected then post-hoc testing was conducted using the Wilcoxon 

signed-rank test to establish which post-operative visits showed this difference. As 

multiple comparisons were made using the Wilcoxon signed-rank test, a compensating 

Bonferroni adjustment was made.  

 

Stepwise linear regression analysis was performed to determine the relationship 

between IOL rotation and post-operative visit. Statistical analysis was performed using 

SPSS version 21.0 (SPSS Inc., Chicago, IL., USA.) 
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4.9.  Results 

 

4.9.1.  IOL rotation 

IOL rotation was assessed at four intervals over a six month period. The average total 

rotation that occurred from visit 1 to visit 4 as given by the median, was 1.25°°. The 

average change in rotation at each visit is detailed in figure 4.2.  

 

A breakdown of the percentage of early, mid and late rotation is shown in figure 4.1. 

Over 80% of IOL rotation that occurred between each visit was below 5°, and over 

90% rotated by less than 10° between each of the four visits.  This illustrates the 

relative rotational stability of the Akreos AO lens. The current standard for toric IOL 

manufacturers is  known as ANSI Z80.30-2010,  and states that ≥90% of eyes should 

experience a change in axis of ≤5° between two consecutive visits that are 

approximately three months apart.  Analysis of the change in rotation from visit 3 which 

took place 1 to 2 months post-operatively, and visit 4 which occurred between 4 and 6 

months after surgery, showed that ≤5° rotation occurred in 90% of subjects (figure 4.1).  
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Figure 4.1: Comparative breakdown of the amount of IOL rotation that occurred 
between visits.  

 

 

The Freidman test confirmed there was a significant (2(3) = 18.120, P <0.001) 

difference in the amount of rotation that occurred between visits. Post hoc tests were 

conducted to determine  whether this difference in IOL rotation occurred for early, mid 

or late IOL rotation by comparing visit 1 with 2, visit 2 with 3 and visit 3 with 4; a 

bonferroni adjustment was made to compensate for the effect of multiple comparisons. 

A greater amount of IOL rotation occurred soon after lens implantation corresponding 

to the time between visit 1 and 2 (Z=-2.782, P=0.005) while similar levels of rotation 

occurred between visit 2 and 3 (Z=-1.612, P=-0.107) and between visit 3 and 4 (Z=-

1.049, P=-0.294). This indicates the lens is more likely to rotate in the first 2 weeks 
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after surgery, but after this period maintains a more stable position within the capsular 

bag. 

 

This was confirmed by linear regression analysis. This was performed to establish 

which of the post-operative visits contributed most to total IOL rotation at the final visit. 

Total IOL rotation from visit 1 to 4 was entered as the dependent variable and rotation 

from visit 1 to 2, visit 2 to 3 and visit 3 to 4 were entered as the independent variables. 

Analysis showed that the majority of total IOL rotation at 6 months was influenced by 

rotation that occurred between visit 1 and 2, which accounted for 50.6% of the 

variance. A further 33.3% occurred due to late rotation from visit 3 to 4 and 16.1% due 

to rotation between visit 2 and 3.  
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Figure 4.2: Box plot of the mean change in rotation between visits. The line in the 
centre of the box represents the median or 50th percentile, while the upper and lower 
limits of the box indicate the 25th and 75th percentile respectively. The bars show the 
maximum and minimum rotations values and the dots indicate outliers. The average 
change in rotation was within 5° between visits.   

 

 

4.9.2.  IOL tilt 

IOLs were found to have tilted on average by 3.67°° between the first and last follow up 

visit, with a maximum recorded tilt at 6 months of 22.84°. A breakdown of the median 

tilt at each visit is given in table 4.2.The absolute tilt values at each post-operative visit 

were relatively high. Refractive information was not available and so the effects of 

uncorrected corneal astigmatism could not be accounted for, which may have 

artificially increased calculated tilt values.  
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Visit 1 
 

Visit 2 
 

Visit 3 
 

Visit 4 

Median tilt (°) 13.60 10.99 12.15 12.29 

Range (°) 19.62 15.21 13.53 15.99 

Table 4.2: The average, absolute IOL tilt values at each post-operative visit. There was 

comparatively less IOL tilt at visit 3 corresponding to 1-2 months after surgery. 

 

 

Figure 4.3: Box plot of the mean change in tilt between visits. The median is shown by 

the central line in each box; the upper and lower limits of the box indicate the 25th and 

75th percentile respectively. The maximum and minimum tilt values are represented by 

the bars and outliers indicates as dots.  
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The difference in lens tilt between visits was analysed using the Freidman test, which 

showed a statistically significant (2(3) = 71.667, P <0.001) difference in the amount of 

tilt that occurred between visits. Post hoc tests revealed a statistically significant 

difference in IOL tilt between visits 1 and 2 (Z=-4.218, P<0.0016), between visit 2 and 

3 (Z=-5.495, P<0.0016) and also between visit 3 and 4 (Z=-6.528, P<0.0016) indicating 

the pattern of IOL tilt is less predictable compared to lens rotation.  

 

Linear regression analysis was performed to establish which post-operative visits 

influenced IOL tilt position at the final post-operative visit. Total IOL tilt from visit 1 to 4 

was entered as the dependent variable. Tilt from baseline (taken as 0°) to visit 1, from 

visit 1 to 2, visit 2 to 3 and visit 3 to 4 were entered as the independent variables. 

Analysis showed that the majority of IOL tilt was influenced by initial tilt corresponding 

to 1-2 days following implantation, which accounted for 73.9% of the variance. A 

further 15.2% occurred due to late tilt corresponding to 4-6 months after surgery. 

Intermediate tilt was not a greatly influencing factor with 1.1% of total IOL tilt due 

occurring between 1 and 2 weeks and 9.1% between 1 and 2 months after surgery.   

 

4.9.3.  IOL decentration 

IOLs were found to have decentred on average by 0.016mm (IOL versus pupil) 

between the first and last follow up visit, with a maximum recorded decentration at 6 

months of 0.34mm. The change in decentration at each visit is shown in figure 4.4. 
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4.9.3.1.  Decentration: IOL versus pupil 

The difference in decentration between visits, with IOL position measured relative to 

the pupil (figure 4.4), was analysed using the Freidman test, which showed a 

difference in the amount of decentration that occurred between visits(2(3) = 60.503, P 

<0.001).  Post hoc tests revealed a statistically significant difference in IOL 

decentration between visits 2 and 3 (Z=-5.718, P<0.0167) and between visit 3 and 4 

(Z=-6.575, P<0.0167). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Box plot of the mean change in decentration between visits (IOL vs. pupil). 
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Linear regression analysis was performed to establish which post-operative visits most 

influenced IOL decentration position at the final visit. Total IOL decentration from visit 1 

to 4 was entered as the dependent variable and decentration that occurred from visit 1 

to 2, visit 2 to 3 and visit 3 to 4 were entered as the independent variables. Analysis 

showed that the IOL decentration was influenced by initial decentration between visit 1 

and 2 corresponding to 1-2 days following implantation, which accounted for 36.5% of 

the variance. A further 23.1% occurred due to late decentration from visit 3 and 4 

corresponding to 4-6months after surgery and 40.4% due to intermediate decentration 

between visit 2 and 3, corresponding to 1-2 weeks post-operatively. 

 

4.9.4.  Association between tilt, rotation and decentration 

The relationship between total IOL tilt, rotation and decentration from visit 1 to 4 was 

examined and revealed correlations between visits for each IOL misalignment type, 

such as between tilt at visit 2 and visit 3, between rotation at visit 1 and 2 and so on. 

However, no statistically significant correlations were found between the different types 

of IOL misalignment (table 4.3). 
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     TILT(DEG) ROTATION(DEG) DECENTRATION 

        V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4 

S
p
e

a
rm

a
n
's

 r
h
o

 

T
IL

T
 

V1 Correlation 
Coefficient 1.000 .192 .015 .118 .046 .080 -.120 .051 -.125 -.099 -.147 -.124 

  Sig. (2-
tailed) 

  .058 .886 .243 .666 .451 .256 .629 .218 .332 .146 .223 

V2 Correlation 
Coefficient .192 1.000 .233

*
 .145 -.013 .023 -.106 -.005 .095 .194 .165 .187 

  Sig. (2-
tailed) 

.058   .020 .151 .899 .826 .319 .960 .351 .055 .104 .065 

V3 Correlation 
Coefficient .015 .233

*
 1.000 -.023 -.009 -.047 -.055 -.030 -.144 .061 .174 .094 

  Sig. (2-
tailed) 

.886 .020   .823 .931 .656 .602 .774 .152 .544 .084 .352 

V4 Correlation 
Coefficient .118 .145 -.023 1.000 .113 .087 -.083 .128 .069 .029 -.026 -.054 

  Sig. (2-
tailed) 

.243 .151 .823   .280 .408 .431 .221 .498 .774 .801 .592 

R
O

T
A

T
IO

N
 

V1 Correlation 
Coefficient .046 -.013 -.009 .113 1.000 .885

**
 .401

**
 .935

**
 -.032 .133 -.072 -.096 

  Sig. (2-
tailed) 

.666 .899 .931 .280   .000 .000 .000 .762 .204 .493 .359 

V2 Correlation 
Coefficient .080 .023 -.047 .087 .885

**
 1.000 .483

**
 .822

**
 -.001 .050 .081 -.030 

  Sig. (2-
tailed) 

.451 .826 .656 .408 .000   .000 .000 .994 .635 .443 .777 
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V3 Correlation 
Coefficient -.120 -.106 -.055 -.083 .401

**
 .483

**
 1.000 .357

**
 -.099 -.061 -.145 -.172 

  Sig. (2-
tailed) 

.256 .319 .602 .431 .000 .000   .000 .344 .563 .164 .100 

V4 Correlation 
Coefficient .051 -.005 -.030 .128 .935

**
 .822

**
 .357

**
 1.000 .009 .096 -.066 -.121 

  Sig. (2-
tailed) 

.629 .960 .774 .221 .000 .000 .000   .935 .358 .529 .250 

D
E

C
E

N
T

R
A

T
IO

N
 

V1 Correlation 
Coefficient -.125 .095 -.144 .069 -.032 -.001 -.099 .009 1.000 .181 .233

*
 .177 

  Sig. (2-
tailed) 

.218 .351 .152 .498 .762 .994 .344 .935   .072 .020 .078 

V2 Correlation 
Coefficient -.099 .194 .061 .029 .133 .050 -.061 .096 .181 1.000 .361

**
 .792

**
 

  Sig. (2-
tailed) 

.332 .055 .544 .774 .204 .635 .563 .358 .072   .000 .000 

V3 Correlation 
Coefficient -.147 .165 .174 -.026 -.072 .081 -.145 -.066 .233

*
 .361

**
 1.000 .760

**
 

  Sig. (2-
tailed) 

.146 .104 .084 .801 .493 .443 .164 .529 .020 .000   .000 

V4 Correlation 
Coefficient -.124 .187 .094 -.054 -.096 -.030 -.172 -.121 .177 .792

**
 .760

**
 1.000 

  Sig. (2-
tailed) 

.223 .065 .352 .592 .359 .777 .100 .250 .078 .000 .000   

 Correlation is significant at the 0.05 level (2-tailed)  **Correlation is significant at the 0.01 level (2-tailed) 

 
Table 4.3: Correlation between tilt, rotation and decentration at each post-operative visit.  Significant correlations are highlighted in 
yellow.
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 4.10.  Discussion 

The success of an implanted toric IOL is not determined solely by its ability to correct 

refractive astigmatism, long term lens stability with minimal misalignment is equally, if 

not more important (Kim et al., 2010). IOL tilt, although often overlooked as a potential 

source of reduced vision following cataract surgery, can induce additional unwanted 

refractive astigmatism (Auran et al., 1990;Kozaki et al., 1991b;Oshika et al., 2005) and 

coma-like aberrations (Oshika et al., 2005) and so should be evaluated. There is a 

paucity of literature investigating lens rotation, tilt and decentration together and so the 

aim of this study was to assess the link between the three in greater detail.   

 

The stability of the Akreos AO IOL was assessed at set intervals over a six month 

period. The lens showed good rotational stability, both in the short and long term, with 

less than 5° rotation present in the majority of subjects at each visit. Lens position was 

calculated from retro-illumination images and showed relatively little rotation over the 

six month period. This observed rotational stability may have occurred in part due to 

the closed loop haptic design of the IOL. Narendran et al. (2009) reported no more 

than 5° of lens rotation occurred between 1 week and 2 years after surgery in a study 

they conducted with the T-flex toric (Rayner, Hove, UK) closed loop haptic design IOL. 

Closed loop designs tend to be longer than other haptic designs (fig 4.6a-c), which 

may improve friction between the lens and capsular bag early on. Additionally, 

capsular bag shrinkage is a chief source of IOL rotation in uncomplicated cataract 

cases (Kim et al., 2010;Prinz et al., 2011) and closed loop designs are believed to 

benefit from a greater tolerance to the effects of capsular contraction as a result of a 

second insertion between the haptic and IOL (Buckhurst et al., 2010a). 
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Figure 4.5a: Example of an open loop haptic design such as the Acrysof toric 6N60TT. 
4.5b: Example of a plate haptic design such as the STAAR toric IOL. 4.5c: Example of 
a closed loop haptic design like the Akreos AO toric IOL. 

 

Total IOL rotation at 6 months was influenced mostly by early rotation occurring 

between visit 1 and 2. This too may have been due to IOL haptic design and capsular 

compression effects. Previous research has shown that plate haptic design lenses are 

more resistant to capsular bag compression and thus have better long term stability 

while open loop designs are more vulnerable to capsular shrinkage and therefore show 

better stability early on (Patel et al., 1999;Buckhurst et al., 2010a;Kim et al., 2010;Prinz 

et al., 2011). Closed loop haptics are relatively new compared to plate and open loop 

haptic designs and there is comparatively less literature available on the long term 

stability of this haptic design. However, like the plate haptic design, it appears that 

closed loop designs show poor initial stability but may be less prone to capsular 

compression effects resulting in better long term stability. 

 

IOL tilt was evaluated using a new mathematical technique, described in chapter 3, in 

conjunction with digital retroillumination images. The new method of evaluating IOL tilt, 

a.           b.               C.  
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which had previously been evaluated using digital images of an IOL in vitro related well 

with retroillumination images taken of an IOL in vivo indicating its potential for use in 

rapidly assessing post-operative IOL tilt in patients. Using this new technique, 

significant mean IOL tilt was measured six months after surgery. Hayashi (1997) 

assessed tilt using Scheimpflug imaging and a computer software package at six 

intervals over a 12 month period with three different lens materials and found average 

IOL tilt of between 1.95 and 2.71°.A later study by de Castro et al. (2007) found mean 

Scheimpflug and Purkinje imaging tilt values of 0.26°± 2.63° about the x axis, and 

1.54°±1.50° around the y axis, while Rosales et al. (2006) found tilt of 0.87°± 2.16° 

about the x axis and 2.3° ± 2.44° about the y axis using Purkinje imaging. In this study, 

relative tilt of 1.83° ± 7.03° occurred between the first visit, conducted 1 to 2 days after 

surgery, and the final visit four to 6 months later. The average, absolute tilt present at 

the first visit was 13.60°, whereas by the final visit this had reduced to 12.28° indicating 

potential compensatory tilt movements in the intervening months.  

 

The effect of corneal astigmatism was not accounted for in this study, which is a 

limitation as uncorrected astigmatism may have artificially increased measured values 

of absolute tilt. As described in chapter 3, uncorrected astigmatism of even 1 dioptre 

could cause an error in tilt measurement of approximately 4.59° and so the effects of 

this should have been accounted for. Uozato et al. (1988) stated tilt of more than 5° 

would impact upon quality of vision; given this, the possible impact of 13.60° of tilt on 

visual performance would be significant. Possible causes of this tilt may include 

asymmetric capsular fibrosis and the presence of viscous-elastic between the lens and 

capsule (Cazal et al., 2005). While total lens rotation was mostly influenced by late 

rotation occurring in visits 3 and 4, regression analysis showed most IOL tilt occurred 

within 48 hours of surgery with smaller amounts of tilt occurring in the weeks and 
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months that followed. In view of this, it may have been useful to have had information 

on intra-operative IOL tilt during surgery.  

 

The association between tilt, rotation and decentration was investigated and a poor 

correlation was found between each of these factors indicating they occur 

independently from each other. One might have expected a link due to the similarity of 

possible causes in lens fibrosis and shrinkage as well as surgical skill factors. 

However, the interaction between these factors and the natural history of the biological 

changes in the anterior chamber after cataract surgery are not well understood. 

 

Hence the chapters so far have focussed on toric IOLs and have shown the 

importance of correcting even low levels of corneal astigmatism in order to optimise 

vision. Objective analysis of digital retro-illumination images following surgery can 

allow IOL stability to be assessed relatively easily and precisely using equipment that 

is readily available in clinical practice. The remaining chapters will examine the other 

principal form of premium IOLs, those designed to overcome presbyopia. 
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CHAPTER 5: Visual field analysis of two different multifocal and an 

accommodative intraocular lens 

 

5.1. Introduction 

Surgery for cataract extraction and subsequent IOL implantation is carried out on a 

routine basis in developed countries such as the UK (Bhogal et al., 2011;Trikha et al., 

2013;Horvath et al., 2014).Traditional monofocal IOLs are designed to provide good 

vision at a single focal point, typically the distance, often leaving patients with poor 

unaided near and intermediate vision, thus corrective lenses must be worn. Multifocal 

IOLs (MIOLs) on the other hand are designed to give clear vision at more than one 

focal point thus reducing this need for spectacles postoperatively. As a result they have 

become increasingly popular amongst patients (Davison et al., 2006;Alfonso et al., 

2008;van der Linden et al., 2012;Aychoua et al., 2013). 

 

5.2. Multifocal and Accommodating IOLs 

Several different design strategies have been developed in order to bestow multifocal 

capability onto an IOL (Alio et al., 2011a;Alio et al., 2011b;Alfonso et al., 2012;Alio et 

al., 2012b). These include refractive, diffractive or combined refractive-diffractive 

concentric ring design IOLs, segmented designs and also accommodating IOLs 

(AIOLs) which are designed to imitate the action of a young crystalline lens during 

accommodation. Numerous studies comparing the efficacy of most of these lenses 

have been conducted (Wolffsohn et al., 2006a;Alfonso et al., 2008;Barisic et al., 

2008;Zelichowska et al., 2008).  

 

5.3. Concentric ring design MIOLs  

MIOLs may incorporate a central concentric ring optic (figure 5.1) made up of steps of 

differing heights, and so would look similar in appearance, but not in action to a 

Fresnel lens. The inclusion of an apodized concentric ring pattern into the IOL optic 
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that utilizes either refractive, diffractive or combined refractive-diffractive principles to 

create multiple focal zones from distance to near, is a popular means of achieving 

multifocality (Alio et al., 2011b;Bhogal et al., 2011;McAlinden et al., 2011;Alio et al., 

2012b).  

 

 

 

 

 

 

 

 

 

 

Figure 5.1: typical ring pattern of concentric MIOLs.   

 

Concentric refractive MIOLs consist of concentric zones of varying curvatures to create 

more than one refractive power; they are sensitive to lens decentration as this can 

reduce the portion of the near segment within the pupil margin. 

 

Diffractive designs use diffraction of light at a boundary to create multiple focal points, 

with the separation between ring edges determining the effective near addition power 

of the IOL. In fully diffractive MIOLs the concentric ring covers the entire central IOL 

optic and so the splitting of light is not affected by pupil size. Partially diffractive MIOLs 

only incorporate this diffractive pattern over a specific area of the optic. 
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5.3.1. Rayner Mflex 

The Rayner Mflex IOL (Rayner Intraocular Lenses, Ltd, Sussex, England) is a biconvex 

aspheric refractive MIOL made from a hydrophilic acrylic copolymer with a central optic 

diameter of 6.25mm, a haptic angulation of 0° and a 360° square edge to impede lens 

epithelial cell migration and therefore minimise posterior capsule opacification (PCO) 

(Cezon Prieto et al., 2010). The anterior surface of the IOL features the multifocal 

optic, which consists of five refractive zones that alternate between the base and add 

power of the lens in order to create dual focal points (figure 5.2). The lens is available 

with an add power of +3.00D or +4.00D at the IOL plane equivalent to 2.25 or 3.00D at 

the spectacle plane (Rabsilber et al., 2013). A greater portion of incident light is 

focussed at the distance focal point compared to near, as a result of the central 

distance zone which is surrounded by the alternating distance and near zones, thus 

the design can be described as “distance dominant” (Cezon Prieto et al., 2010).  
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Figure 5.2: An illustrated example of the Rayner Mflex IOL. 

 

 

 

5.3.2. Acrysof ReSTOR  

The Acrysof ReSTOR lens (figure 5.3) is a one piece hydrophobic acrylic, hybrid lens 

as it incorporates both diffractive and refractive technologies in its optic. The central 

3.6mm of the lens contains the diffractive optic and is made up of 12 concentric rings 

of gradually decreasing heights. This is surrounded by a refractive region which directs 

any additional incoming light, for example from larger pupils, to the distant focal point 

(Alfonso et al., 2008).  
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Figure 5.3: An illustrated example of the Acrysof ReSTOR IOL. 

 

 

 

Both the Rayner Mflex and Acrysof Restor lenses incorporate a concentric ring design 

in the central optic and so will be referred to as concentric ring IOL for this study.  
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It has been hypothesised that because incoming light is split across two foci in 

multifocal IOLs wearers, they may experience a reduced quality of vision despite 

demonstrating good visual acuity (Ravalico et al., 1998). Concentric ring design IOLs 

are more prone to photic phenomena like glare and haloes as a result of the numerous 

optical transitions present within the pupil area (Bhogal et al., 2011;van der Linden et 

al., 2012). Dysphotopsia can affect quality of vision, resulting in patient dissatisfaction.  

The aspheric optic of the Rayner Mflex lens helps minimise these visually troublesome 

phenomena (Alfonso et al., 2008). Cezon Prieto et al. (2010) evaluated the level of 

dysphotopsia following implantation of the Rayner Mflex lens by showing patients 

pictures representing halos and glare and asking them to rate their experience of such 

unwanted visual phenomena with a score of 1, meaning no glare or haloes, to 4 

indicating severe halos or glare. At the 1 month post-operative visit, no halos were 

reported in 21.9% of eyes and no glare in 28.1%, at 6months this had improved to no 

halos in 78.1% and no glare in 100% of eyes and by 12months there were no reports 

of halos or glare in all eyes, thus the experience of glare and halos does not appear to 

be permanent. They were no reports of severe or moderate glare and no reports of 

severe haloes at any of the post-operative visit with this IOL. Similarly, there were no 

reports of photic symptoms in a study by Aslam et al. (2009) who evaluated the same 

IOL; they speculated that the relatively low refractive index hydrophilic acrylic material 

could have been an influencing factor, in addition to the blended surface design at 

each zonal interface which was thought to reduce light scatter. Another study 

assessing subjective visual symptoms found that in patients with the apodized 

diffractive Acrysof ReSTOR lens, 38% reported no glare, and 34% reported no haloes 

three months post-operatively.  Moderate glare was reported in 17% of eyes, moderate 

halos in 13% and severe halos in 3% of eyes. Despite this, overall satisfaction with this 

lens was good with dissatisfaction reported in only 4% of patients (Chiam et al., 2007). 
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5.4. Segmented MIOL 

Segmented IOLs are rotationally asymmetric MIOLs which incorporate the near 

prescription into a particular segment of the lens, much like in a bifocal lens (figure 

5.4), although the mechanism of action is still simultaneous rather than translating (Alio 

et al., 2011a;Alio et al., 2012a;van der Linden et al., 2012). 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Example of a segmented IOL optic.  

 

Segmented IOLs such as the Oculentis Mplus IOL (Oculentis GmbH, Berlin, Germany) 

are a relatively new MIOL design. The 6mm lens optic of the Oculentis IOL features an 

aspheric distance correction with a sectorial addition incorporating the near correction 

embedded on the posterior surface. The near addition is available with a +3.00D 

(model LS-313 MF30), +2.00D (model LS-313 MF20) or +1.50 D (model LS-313 MF15) 

addition power at the IOL plane (McAlinden et al., 2011;van der Linden et al., 

2012;Wolffsohn et al., 2013) as well as in toric forms. The model used in this study had 

an add power of +3.00. The IOL is designed to reflect any incoming light between the 

near and far zones of the IOL away, in order to prevent super-imposed images or 

diffraction in the optical axis. The optic is enclosed by a 360° square edge to reduce 

the incidence of PCO (van der Linden et al., 2012) and is made from a hydrophilic 
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acrylic material with a hydrophobic surface (figure 5.5). Segmented IOLs rely on good 

IOL centration as the distribution of light to the near segment depends upon the 

proportion of near segment within the pupil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: An illustrated example of the Oculentis Mplus IOL. 

 

5.5. Accommodating IOLs  

The Tetraflex KH-3500 IOL (Lenstec, St Petersburg, Florida, USA) is a one piece, 

hydrophobic acrylic ‘accommodating’ lens (figure 5.6), which is designed to move 

anteriorly within the capsular bag upon ciliary muscle contraction (Nanavaty et al., 

2010;Sheppard et al., 2010;Wolffsohn et al., 2010b). However, studies have shown 

that any improvement in near vision with this lens results from flexure rather than a 

change in position (Wolffsohn et al., 2010b). It is a single-piece acrylic IOL with a 

spherical optic measuring 5.75mm (Wolffsohn et al., 2010b) and unlike concentric ring 
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designs, does not feature a refractive or diffractive optic which helps minimise the rate 

of halo and glare post-operatively (Zhe et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: illustrated example of the Tetraflex accommodating IOL. 

 

As incoming light passing through the pupil is focussed at more than one focal point by 

MIOLs, this light must be split between these points; the precise distribution of light 

varies with each type of MIOL due to their differing optical properties. Consequently, a 

greater proportion of light should theoretically reach each focal point with the AIOL 

than in the MIOLs. However, the way in which light from these focal planes is 

distributed across the retina with MIOLs is currently unknown. It would be useful to 

map the retinal projection of different types of MIOL and compare with an AIOL, as this 

information could be used to optimise future MIOL design.  
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5.6.  Visual field testing 

Visual field tests are conducted routinely in Optometric practices and hospital eye 

departments across the UK primarily to assess optic nerve function as well as to 

investigate retinal and neurological disorders (Kocabeyoglu et al., 2013). Visual field 

machines measure the differential light sensitivity in decibels (dB) using a log scale of 

sensitivity whereby 0dB represents the brightest stimulus and 51dB the dimmest 

(Rosenfield et al., 2009). There are several different ways of mapping a subjects’ field 

of vision using perimetry; these range from rather basic screening tests to 

comprehensive examinations designed to test the threshold sensitivity at various 

retinal points.  

 

5.6.1. The Nidek MP-1 microperimeter 

The MP-1 microperimetry is a relatively new piece of equipment designed to test 

threshold sensitivity at precise points on the retina (Crossland et al., 2012). It is highly 

customisable such as in terms of stimulus position and target size. 

 

The MP-1 utilises a 4-2-1 step strategy which is more precise than the 4-2 strategy 

used in the Humphrey Visual field analyzer (Carl Zeiss Meditec, USA), however this 

more accurate testing strategy has been found to measurably increase testing time 

with this machine compared to other perimeters (Springer et al., 2005). Patient fixation 

is directly monitored by the MP-1 (Springer et al., 2005) via an integrated infrared 

camera which displays a fundus image in real -time (Charbel Issa et al., 2007). The 

MP-1 is highly sensitive to small shifts in fixation, testing stops whenever the patient 

appears to lose fixation and does not resume until tracking has been re-established 

(Charbel Issa et al., 2007).  In other perimeters such as the Humphrey Visual field 

analyzer, fixation is tracked from the first Purkinje image relative to the pupil centre or 

monitored via camera by the examiner who can pause the test as necessary in order to 

re-establish fixation; field testing does not stop unless instigated by the examiner.  This 
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helps keep testing times to within reasonable limits, which is important as longer 

testing times can cause patient fatigue which in turn can lead to erroneous results 

(Johnson et al., 1988;Hudson et al., 1994;Bengtsson et al., 1998b). 

 

5.6.2.  Humphrey visual field analyzer  

The Humphrey visual field analyzer attempts to provide a balance between conducting 

an accurate test and keeping testing times to within acceptable limits. The testing 

method itself is relatively straightforward; numerous flashes of light of varying intensity 

are shown against a defined background and the patient is required to click a button 

every time they see the spot of light. Almost all aspects of the field test are 

customisable in order to adapt to the individual being tested, allowing a more 

meaningful examination to be conducted.  

 

Several different testing programs are included which allow specific parts of the visual 

field to be examined as required. Common programs include central 40, 24-2 which 

tests the central 24 degrees, 10-2 and the peripheral 60 test. The size of the stimulus 

can also be changed to cater for patients with low vision, as can stimulus colour. A 

stimulus size III, which has an angular subtense of 0.43°, is most widely used in routine 

visual field assessment. The Humphrey visual field analyser, and indeed most 

perimeters, traditionally measure light using the old European unit of luminance, the 

apostilb (asb); most perimeters use a uniform background luminance of 31.5 asb as 

standard (Rosenfield et al., 2009).  

 

The 24-2 test program compares threshold values for each test point with normative 

data from aged-matched subjects and classifies each threshold value as either normal 

or abnormal based on four different probability levels. The mean deviation (MD) is also 

worked out by averaging all data points and comparing to others of a similar age and 

race, a positive score signifies better overall sensitivity than normal while negative 
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values mean a brighter stimulus was required before detection and is thus indicative of 

lower sensitivity. The pattern standard deviation (PSD) measures the level of 

irregularity in the visual field with lower PSD scores indicating less variability.  

 

5.7. Threshold Estimation 

There are several different testing strategies each with differing levels of accuracy and 

examination time. The specific sensitivity of every test point can be determined using a 

full threshold test in which threshold values from previously tested points are used to 

determine the brightness of successive test points. On the Humphrey visual field 

analyzer a 4-2 double reversal staircase procedure is used so at each test point 

stimulus brightness is gradually reduced in 4dB steps to begin with, until it can no 

longer be detected by the patient; after this the intensity is increased and then 

decreased, this time in 2dB steps, until reversal occurs again.  The dimmest light that 

can be seen by the patient, in other words the last stimulus seen before the second 

reversal, corresponds to the  threshold value at that point (Anderson et al., 1992). This 

is done for every test location and so is useful for mapping any visual field loss or 

reduction, due to its increased accuracy.  However as expected this test can be time 

consuming, for example  examination of the central 30° of vision using this 4-2 double 

staircase strategy on both eyes can take up to forty five minutes (Schaumberger et al., 

1995;Schimiti et al., 2002). This introduces the possibility for patient fatigue, which as 

mentioned previously can affect test reliability.  

 

Supra-threshold tests on the other hand use pre-set stimulus intensities for each test 

location and provide estimated visual field plots, which are more useful as a screening 

tool. 
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5.7.1. Swedish Interactive Threshold Algorithm (SITA) 

 The Humphrey visual field analyzer includes the SITA testing strategy, which enables 

a full threshold visual field test to be completed in a shorter time interval (Bengtsson et 

al., 1998a;Bengtsson et al., 1998b;Chandra Sekhar et al., 2000) thus minimizing 

fatigue effects. The SITA standard (Swedish Interactive Threshold Algorithm) analyses 

the patients’ previous responses in order to predict the threshold values (Bengtsson et 

al., 1997), this reduces testing time considerably without reducing the repeatability of 

the data (Bengtsson et al., 1999;Chandra Sekhar et al., 2000). The SITA fast test 

allows even quicker assessment (Bengtsson et al., 1998a;Artes et al., 2002) and is 

ideally used on reliable patients. This testing strategy calculates the threshold 

sensitivity of one primary point located in each of the four quadrants of the patient’s 

visual field, and uses this information to estimate the starting stimulus intensity of 

adjacent test points. To determine the threshold of these four primary points, the 

stimulus intensity is altered in 4dB steps until the first reversal occurs, and then in 2dB 

steps until the second reversal.  For all neighbouring points on the other hand, the 

stimulus intensities are altered in 4dB steps until a single reversal occurs (Bengtsson 

et al., 1998a). Such threshold estimating procedures in conjunction with a lower level 

of testing accuracy compared to the SITA standard mean fewer stimuli need to be 

presented to the patient leading to a reduced testing time (Bengtsson et al., 

1998a;Artes et al., 2002). 

 

5.8. Use of visual field testing to determine IOL retinal light distribution 

Since MIOLs provide good vision at more than one focal point, depending on whether 

the patient is viewing a distant or near target, there will be corresponding blur at the 

other focal length as a result of the mechanism of action of that MIOL. Retinal light 

sensitivity is affected by blur (Anderson et al., 2001). By comparing visual field plots in 

MIOL patients for both near and far distances, it may be possible to investigate how 
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incoming light is distributed across the retina. Psychophysical measures of visual 

function, such as perimetry, provide a subjective assessment of retinal sensitivity to 

incremental changes in luminance at different locations in the visual field (Lung et al., 

2012). An alternative way of assessing visual function is through the use of 

electrophysiological assessment techniques such as multifocal electroretinography. 

Here electrical responses to visual stimuli at different retinal locations are recorded 

using electrodes, thus the light sensitivity of retinal cells as well as the spatial 

distribution of this sensitivity can be evaluated (Jimenez et al., 2008;Lung et al., 

2012;Messias et al., 2013). Electroretinography provides an objective assessment 

about the function of the retina (Sample et al., 2001;Lung et al., 2012;Gualtieri et al., 

2013;Messias et al., 2013) however it requires the use of suitable equipment to capture 

the  low amplitude signals that are generated as well as signal processing algorithms 

to ensure clinically useful results are produced (Jimenez et al., 2008).  

 

Visual field examinations have previously been conducted on patients implanted with 

multifocal and monofocal IOLs primarily to determine whether there is a significant 

difference in threshold sensitivity caused by the implantation of an IOL (Steinert et al., 

1999). A study conducted high-pass resolution (HPR) perimetry on subjects. This test 

represents thresholds by displaying the scaled threshold target size at each location, 

which would increase with eccentricity in a normal subject (Frisen, 1993). Some 

authors believe HPR perimetry to be superior to standard differential light sensitivity 

perimetry in certain instances such as for estimating the number of functioning retino-

cortical channels (Frisen, 1993), in assessing the function of MIOLs (Ravalico et al., 

1998) and identifying visual field loss earlier in subjects already displaying 

glaucomatous progression (Chauhan et al., 1999).  Ravalico et al., (1998) performed 

HPR perimetry on patients implanted with either a one-piece near dominant  aspheric 

MIOL, a distance dominant  concentric ring design MIOL or a diffractive MIOL. The test 

was conducted at three different distances and the diffractive MIOL was found to give 
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higher spatial resolution at distance and the best performance at near. However to the 

author’s knowledge there have been no comparisons of visual field plots at different 

focal distances for newer types of MIOLs such as segmented IOLs and AIOLs. 

Furthermore there have been no comparisons between the retinal thresholds in 

different regions of the same MIOL.  

 

 

A reduction in foveal sensitivity, as measured by perimetry, occurs with increasing 

amounts of dioptric blur (Weinreb et al., 1986;Herse, 1992;Anderson et al., 

2001;Rosenfield et al., 2009). The effect of retinal blur differs according to stimulus 

size, with more pronounced blur effects occurring for smaller stimuli (Anderson et al., 

2001;Rosenfield et al., 2009). Anderson et al. (2001) found a loss in sensitivity of 

0.43dB per dioptre of refractive blur for a 0.4  degree stimulus corresponding to 

Goldman III on the Humphrey perimeter, while Weinreb et al., (1986) found a reduction 

in averaged macular sensitivity of -1.26dB with every dioptre of blur in dilated (>4mm) 

pupils for the same stimulus size. Herse et al. (1992) determined the reduction in 

average sensitivity with blur was related to pupil size as they found a greater -1.84dB/D 

drop with an 8mm pupil compared with -1.10dB/D for a 3mm pupil. Sensitivity was also 

found to decrease with eccentricity with Herse et al. (1992) finding a reduction of 

approximately -0.34db/degree for an 8mm pupil. This is consistent with Weinreb et al., 

(1986) who found a reduction of -0.377dB/ degree. Anderson et al. (2001) stated the 

effect of blur on peripheral vision was less severe compared to central vision. They 

found that peripheral sensitivity was initially unaffected by blur but then showed a 

sharp deterioration similar to that which occurs centrally. This difference is thought to 

occur as a result of differences in the size of the ganglion cell receptive field centrally 

and peripherally (Johnson et al., 1978;Anderson et al., 2001).  
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5.8.1. Expected outcomes 

As mentioned, there are three types of presbyopia correcting IOL, each with a different 

mechanism of action. As a result, differences retinal sensitivity thresholds are expected 

with each. 

 

When viewing a close object, the near portion of an MIOL will be stimulated in order to 

give the patient good vision at near and there will be retinal blur corresponding to the 

distance portions of the lens.  Thus MIOLs incorporating a concentric ring in the optic 

would be expected to reduce the overall light sensitivity from distance and increase it 

at near and so would be expected to have a lower average threshold value at distance 

compared to a distance corrected IOL such as an AIOL. Providing the IOL had an 

equal number of near and distance focussed optical zones, a comparable threshold 

average would be expected between both near and distant corrected threshold 

sensitivity values with this MIOL type and no regional difference in sensitivity is 

expected.  

 

Since AIOLs do not incorporate multiple focal zones into the optic, a greater proportion 

of light should theoretically reach each focal point with this IOL compared to a 

concentric ring design or segmented MIOL where incoming light is split between each 

focal point. Additionally, if the AIOL truly accommodates, the retinal sensitivity for 

distance and near viewing will be similar. 

 

It is uncertain what form the retinal projection a segmented IOL such as the Oculentis 

lens would take. If this IOL projects discrete areas of distance and near onto the retina, 

the retinal sensitivity at these locations should reflect this by showing an intra-lens 

regional difference in retinal sensitivity between the inferior and superior portions that 

is reversed depending on the focal distance for which the subject is corrected. This is 

important to understand as it might have implications as to the optimal size, location 
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and shape profile of the near segment. The distance segment is expected to give 

sensitivity similar to the AIOL and better than the concentric ring IOL for distance 

viewing while the near portion is anticipated to give sensitivity comparable to the 

accommodating and better than the concentric IOL for the near target. 

 

5.9. Study Purpose 

This study will therefore assess the threshold sensitivity across the central 24° of the 

retina in eyes that have been implanted with either a diffractive multifocal, segmented 

multifocal or hinge -optic accommodating IOL in order to determine whether perimetry 

is an effective tool for mapping the retinal projection of these different presbyopia 

correcting IOLs. If so, this could provide valuable information relating to optimal IOL 

design features such as the most effective near segment size and shape for 

segmented MIOLs like the Oculentis Mplus. Earlier studies have performed perimetry 

on different presbyopia correcting IOLs at difference distances in order to compare 

them to each other (Ravalico et al., 1998) however none, to the author’s knowledge, 

have compared newer MIOLs such as the segmented IOL and none have attempted to 

compare differences in threshold sensitivity across different locations of the retina for 

the same IOL. This will therefore be investigated in the current study.  

 

5.10. Method 

A prospective, comparative clinical study was conducted on 30 eyes (mean age 64.5 ± 

9.32years). Thirteen eyes implanted with an Oculentis MPlus segmented intraocular 

lens (Oculentis, Berlin, Germany), 10 with a Tetraflex accommodating  intraocular lens 

(Lenstec, Florida, USA), and 7 with either a  Rayner Mflex or Acrysof Restor lens were 

recruited approximately 1 year following implantation. 

All surgeries were carried out by the same experienced surgeon at Solihull Hospital 

and the Midland Eye Institute (Solihull U.K.) and all patients gave informed consent to 

participate in the study following explanation of the procedures and the risks involved. 
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The study adhered to the tenets of the Declaration of Helsinki and was approved by 

the Local Research Ethics Committee.  

 

To take part in this study, participants were required to: 

 have post-operative corrected Snellen visual acuity of at least 6/7.5  

 be free of any active ocular or systemic disease with ocular side effects 

 not be on ocular or systemic medications with known ocular side effects 

 Have no history of eye surgery within the last 3 months.  

 

All patients had pre-operative ocular health checks prior to surgery to ensure the 

absence of any active ocular pathology that could impact upon the post-operative 

visual outcome; there were no complications with the surgeries in any of the patients.  

 

Microperimtery using the MP-1 microperimeter (NIDEK, Japan) was initially used to try 

and map the multiple transition zones and near segment area of the two implanted 

multifocal IOLs. However the MP-1 was found to be unsuitable for the patient 

demographic as the equipment was especially sensitive to small movements in head 

and/or eye movement and this increased testing times to unacceptable levels (figure 

5.7). 
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Figure 5.7: Microperimetry data for one eye, from two different subjects. This technique 

was found to be unsuitable for our patient demographic and resulted in unacceptably 

long testing times (red circle).   

 

Therefore the use of the MP-1 Microperimeter was abandoned in favour of the 

Humphrey visual field analyser (Carl Zeiss Meditec, USA). A SITA FAST strategy was 

chosen as it provided the best balance between conducting a detailed threshold 

examination and testing within a reasonable time frame to minimise fatigue; a 24-2 

testing pattern was selected for similar reasons. A standard stimulus size III was used.   

Once the patients were familiarised with the visual field testing procedure, they were 

asked to perform the 24-2 SITA Fast exam twice with each eye, four times in total, 

once corrected for optimal distance viewing and once optimised for near viewing to 

correspond with the focal demand of the visual field target hemisphere distance.  
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The total deviation of each of the 52 plots for the patients’ right and left eyes were 

collated according to figure 5.8, so that values for right and left eyes would coincide. 

 

Figure 5.8: Diagram showing how total deviation results were recorded so that values 
coincided for both eyes. 

 

Visual field results were averaged by location in two different ways, as indicated in 

figures 5.9 and 5.10 and then analysed for all IOLs, for both near and distance viewing. 

 

5.10.1. Division of visual field test points by region 

In the first analysis, shown in figure 5.9, the field data was divided regionally along the 

45° and 135° meridians to create central, superior, inferior, nasal and temporal 

sections. An attempt to distribute visual field data points equally amongst each section 

was made, meaning some data points were merged into a different quadrant from that 

in which they would normally fall. For example, points 22 and 25 were included in the 
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“superior” quadrant rather than temporal and nasal quadrants, and points 30 and 33 in 

the “inferior” quadrant. 

 

Figure 5.9: A diagram illustrating a regional division of the visual field plot. The red 
dashed line shows the approximate regional distribution of test points. 

 

 

 

5.10.2. Division of test points by quadrant 

In the second analysis, shown in figure 5.10, the field plot was divided along the 

horizontal and vertical meridians with the two meridians intersecting at the fovea thus 

creating quadrants corresponding to the superior temporal, superior nasal, inferior 

temporal, inferior nasal and central field.  
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Figure 5.10: An illustration showing the visual field plot divided into quarters. The red 
dotted line demonstrates the quadrant division of test points. 

 

5.11. Statistical analysis 

5.11.1. Sample size calculation 

A sample size calculation carried out using Sigma Plot statistical and graphing 

software (Version 11, Systat Software Inc., Chicago, Illinois, USA) showed a minimum 

of 30 subjects was required to achieve a power of 80% for a correlation coefficient of 

0.5, at a 0.05 significance level. 

 

5.11.2 Testing for Normality 

A one-sample Kolmogorov-Smirnov test revealed that the visual acuity data were 

normally distributed (Kolmogorov-Smirnov Z = 1.678, P=0.07). Therefore threshold 

   
1 2 3 4 

  
  

  
5 6 7 8 9 10 

 
 Region 

 
11 12 13 14 15 16 17 18  1 

19 20 21 22 23 24 25 
 

26  2 

27 28 29 30 31 32 33 
 

34  3 

 
35 36 37 38 39 40 41 42  4 

  
43 44 45 46 47 48 

 
 5 

   
49 50 51 52 

  
  



 

150 
 

sensitivity across regions with the different IOLs was compared using parametric 

analysis.  

 

5.11.2. Analysis method 

The 52 retinal sensitivity thresholds of the 24-2 visual field examination were grouped 

together in two different ways (figure 5.9 and 5.10) and collected in an Excel database 

(Microsoft Office 2007). All data were analysed using SPSS for Windows (version 20.0, 

SPSS Inc.) using repeated measures analysis, with posthoc tests applied when the 

overall significance was p <0.05.  

5.12. Results 

Data were analysed in the same way for the two different test point distributions and 

results are detailed below. 

 

5.12.1. Regional division 

Analysis of variance of data that was split into regions according to figure 5.9 showed 

no significant difference in retinal sensitivity between the three lenses (ANOVA: 

F=1.936, P=0.187) or between the two distances (ANOVA: F=5.646, P=0.055), but did 

show a statistically significant difference between different regions (ANOVA: F=5.267, 

P=0.003) and an interaction between distance and region (ANOVA: F=7.122, 

P=0.001). 
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Table 5.1: ANOVA of visual field data divided by region.  

 

Further testing using student’s t-tests to compare mean threshold sensitivity by region 

for all IOLs showed that threshold sensitivity in region 1, corresponding to the superior 

portion of the lenses, differed from the other four regions (table 5.2).  

 

Table 5.2: Further analysis of the regional differences within the lenses.  

Tests of Within-Subjects Effects 

Source 
Type III Sum of 

Squares 
df Mean Square F Sig. 

lens 45.455 2 22.728 1.936 .187 

distance 14.895 1 14.895 5.646 .055 

region 23.380 4 5.845 5.267 .003 

lens * distance 11.463 2 5.731 .490 .624 

lens * region 10.346 8 1.293 1.289 .272 

distance * region 17.297 4 4.324 7.122 .001 

lens * distance * region 1.470 8 .184 .213 .987 

Student’s T-test (p value)  

 

region 1 region 2 region 3 region 4 region 5 

region 1   0.016 0.003 0.014 <0.001 

region 2     0.42 0.98 0.27 

region 3       0.23 0.73 

region 4         0.16 

region 5           
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Threshold loss appeared greatest in region 1 for both near and far distances with the 

Oculentis and Concentric MIOLs, and at near for the Tetraflex lens. There was a larger 

standard deviation for threshold loss with the Oculentis lens at near for all regions, 

indicating the data is more widely spread (figure 5.11). The standard deviation was 

also relatively large for the Tetraflex IOL at distance for all regions as well as for other 

more specific regions such as region 1 of the Oculentis lens at distance and region 3 of 

the Tetraflex lens for near. Higher standard deviations may have occurred as a result 

of the relatively small sample size or possibly due to other factors such as subject head 

movements during testing, despite the fact that subjects were instructed to keep their 

heads still and to fixate on a central target.  
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Figure 5.11: Comparative retinal sensitivity loss, divided regionally, at each region for each distance and lens.
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5.12.2. Quadrant division 

Analysis of variance of data that was split by quadrant according to figure 5.10 showed 

a statistically significant difference in retinal sensitivity between the three lenses 

(ANOVA: F=5.470, P=0.020) but no difference between regions (ANOVA: F= 1.701, 

P=0.183) or distance (ANOVA: F=0.169, P=0.695), although again there was an 

interaction between distance and region (ANOVA: F=3.610, P=0.019; figure 5.9).  

 

Table 5.3: ANOVA of visual field data split into quadrants. 

 

 

Further analysis using student’s t-tests comparing retinal threshold sensitivity between 

IOLs revealed that the Tetraflex accommodating lens differed from both the Oculentis 

segmented and concentric ring design MIOLs (table 5.4). 

Tests of Within-Subjects Effects 

Source Type III Sum of Squares df Mean Square F Sig. 

lens 129.538 2 64.769 5.470 .020 

dist .245 1 .245 .169 .695 

region 10.256 4 2.564 1.701 .183 

lens * dist 12.377 2 6.189 3.702 .056 

lens * region 11.836 8 1.480 1.260 .287 

dist * region 9.725 4 2.431 3.610 .019 

lens * dist * region 4.318 8 .540 1.053 .411 
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   Figure 5.12: Comparative retinal sensitivity loss, divided by quadrant, at each region for each distance and lens. 
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Table 5.4: Differential threshold sensitivity between IOLs with test points divided by 
quadrant. 
 
 
 

5.12.3. Other analyses 

There was no regional difference between the inferior and superior portions of the 

Oculentis lens when corrected for near (Student’s t-test: p=0.52) or distance (p=0.77).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Student’s T-test (p value) 

 

Accommodating Segmented Concentric 

Accommodating 

   Segmented <0.001 

  Concentric <0.001 0.26 
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5.13. Discussion 

This study assessed the retinal threshold sensitivity of two different types of MIOL and 

an AIOL in order to determine whether the retinal projection of light from the IOL optics 

led to a measureable difference between lenses. A reduction in perimetric sensitivity 

occurs with increasing blur (Weinreb et al., 1986). While the reports in the literature 

vary, it can be expected that defocus of a light source on the retina will cause between 

a 0.4db (Anderson et al., 2001) and 1.8dB (Herse, 1992) change in sensitivity per 

dioptre. Therefore a visual field examination using the Humphrey visual field analyzer 

was undertaken to determine whether this test was able to identify retinal threshold 

differences created as a result of the mechanism of action of each lens type. If so, it 

was hoped that this could provide valuable insight into the optimal design features of a 

segmented MIOL.  

 

There was a statistically significant difference between lenses depending on how the 

visual field plot was divided for analysis. Data divided regionally appeared better suited 

to picking up differences in sensitivity between different areas of a lens (table 5.2; 

figure 5.12), compared to data divided into quadrants.  

 

It was thought that the near segment of the Oculentis MPlus IOL would project onto the 

retina resulting in a regional difference in sensitivity, the superior region having better 

sensitivity than the lower region for the distance visual field and vice versa for the near 

focused visual field. While there was an interaction between region and distance of 

visual field analysis across all lenses for both analyses, this did not result specifically 

from the predicted pattern of retinal sensitivity with the segmented IOL compared to the 

other IOLs. This lack of regional difference in threshold sensitivity between the inferior 

and superior portions of the Oculentis lens could suggest that simultaneous images are 
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spread over the central retina as opposed to being located in discrete areas.  This may 

be because of a blending zone, which results in a more gradual power change across 

the lens from distance to near, much like in a varifocal spectacle lens, as opposed to 

the abrupt power change that had been anticipated. Additionally the Oculentis lens is 

designed to reflect any light that hits the transition zone away from the optical axis (Alio 

et al., 2011a) which could also have contributed to the masking of the near segment 

during perimetry. Interestingly, the superior region was depressed in retinal sensitivity 

for the regional analysis compared to the other regions in the regional analysis, and 

this was true for all lenses (table 5.2; figure 5.11). This could have occurred because of 

differences in visual performance between the inferior and superior portion of the visual 

field (Danckert et al., 2003;Silva et al., 2008).  Previc et al. (1990) believed the upper 

and lower visual fields were specialised for differing functions with the lower field being 

optimised for near vision and the upper field optimised for distant visual tasks such as 

scanning a visual scene. Research has shown the lower visual field to provide better 

contrast sensitivity and spatial resolution compared to the upper field (Abrams et al., 

2012;Petrova et al., 2012). A potential reason for this disparity is thought to be an 

increased number of ganglion and cone cells in the upper half of the retina, which 

receives its input from the lower visual field compared to the inferior hemiretina, which 

receives it input from the superior field (Curcio et al., 1990;Silva et al., 2008). This 

therefore could explain the observed reduction in upper visual field sensitivity.  

 

If AIOLs truly accommodated, there should be no blur at distance or near, hence the 

retinal sensitivity should be superior to the concentric and segmented MIOLs at both 

visual field distances. However, AIOLs are known to provide limited objective 

accommodation by six months after implantation (Kriechbaum et al., 2005;Wolffsohn et 

al., 2006b;Saiki et al., 2010;Takakura et al., 2010;Wolffsohn et al., 2010b) and instead 

any ‘accommodative’ mechanism results from lens flexure (Hancox et al., 
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2006;Wolffsohn et al., 2010b). In this case, as light is not split in focus, the 

accommodating IOL should provide better retinal sensitivity for distance visual fields 

than the concentric or segmented MIOLs, but worse retinal sensitivity for near focused 

visual fields. However, quadrant analysis showed the AIOL to provide poorer retinal 

sensitivity at both distance and near compared with the concentric and segmented 

multifocal IOLs (table 5.4; figure 5.12). This could be the result of the patients 

implanted with AIOLs having more posterior capsular opacification, a known side effect 

of these lenses (Hancox et al., 2006;Hancox et al., 2007;Saiki et al., 2010;Takakura et 

al., 2010) although this was not apparent from slit lamp examination. Alternatively 

greater retinal deterioration in this group compared to the MIOL groups may have been 

a contributory factor, though again this was not evident through ophthalmoscopy. 

Lastly, the IOL material and fibrosis could also have influenced this result. A reduction 

in IOL transparency, referred to as “glistenings” can occur with all materials including 

silicone, PMMA and acrylic. However, the frequency of glistenings has been found to 

be greatest in 1 piece hydrophobic acrylic IOLs such as the Tetraflex IOL (Xi et al., 

2014), which may explain the poorer retinal sensitivity observed with this IOL.  

 

As subjects were required to complete the visual field test twice, once when corrected 

for distance and the other when near-corrected, there was potential for fatigue to occur 

which may have reduced test reliability.  While the impact on average distance and 

near visual field results was balanced by randomising the order of the tests, patient 

fatigue can result in a general depression of the visual field (Bengtsson et al., 1998b) 

thus making it more difficult to pick on up small variations in retinal sensitivity.  For this 

reason, the SITA-fast strategy was selected in order to provide a balance between 

accurate threshold evaluation and testing time. However in hindsight this test may not 

have been adequate enough to detect subtle differences in sensitivity between regions 

of a MIOL in order to identify the near segment of the Oculentis lens. In order to 
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counteract for the effect of fatigue a longer break should perhaps have been 

introduced between tests and the more accurate SITA-standard test used (Bengtsson 

et al., 1997;Chandra Sekhar et al., 2000).  

 

Despite perimeters being readily accessible by most eye-care practitioners to assess 

light sensitivity across the visual field, perimetry does not appear to be a useful 

technique to map and compare the retinal projection of different MIOLs and AIOLs in 

order to gain greater insight into the mechanism of action of these relatively new 

lenses. 



 

161 
 

CHAPTER 6: Restoring eye focus- how much additional objective 

accommodation would we need? 

 

6.1.  Accommodation 

Accommodation describes the dioptric increase in ocular power when focussing on 

near objects (Wold et al., 2003;Ostrin et al., 2004;Glasser, 2006). The most widely 

accepted theory of accommodation suggests accommodation is achieved by a change 

in shape of the crystalline lens secondary to ciliary muscle (CM) contraction. 

Accommodative ability decreases gradually with age in a process commonly termed 

presbyopia.  

 

Pseudophakic patients implanted with monofocal IOLs are sometimes able to 

demonstrate relatively good near ability, an occurrence that is generally termed pseudo 

accommodation (Nakazawa et al., 1984;Glasser, 2006). True accommodation and 

pseudo-accommodation are fundamentally different. True accommodation occurs due 

to a change in the optical power of the eye. Pseudoaccommodation on the other hand, 

refers to the achievement of functional near vision through non accommodative means, 

such as an extended depth of focus produced as a result of higher order aberrations, 

such as coma (Wolffsohn et al., 2010b), pupil constriction or from using implants and 

corneal inlays that produce a simultaneous image,  like multifocal contact lenses or 

IOLs (Glasser, 2006). 

 

AIOLs take advantage of the continued flexibility of the CM and are designed to mimic 

a young crystalline lens during accommodation in order to provide pseudophakes with 

better vision during near tasks (Wolffsohn et al., 2006a;Cleary et al., 2010). There are 

several different AIOLs designs available; single optic devices use CM contraction 
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during near vision stimulation to produce forward movement in order to increase the 

effective power of the IOL. Dual optic AIOLs are designed to increase the power 

change with accommodative effort and also use forward shift with CM contraction to 

achieve this (Marchini et al., 2007;Cleary et al., 2010;Sheppard et al., 2010).  

Wavefront technology has shown the forward shift feature of AIOLs induces myopia 

associated with spherical aberrations and coma, which aids with near vision (Macsai et 

al., 2006). 

 

AIOL performance can be assessed in a number of ways; these may include 

measurement of distance corrected near visual acuity (DCNVA), or subjective defocus 

curves, using the push up test or measuring objective refractive changes to target over 

a range of vergences with an autorefractor or aberrometer (Vasudevan et al., 2007;Yi 

et al., 2010;Atchison, 2012). Such focus-shift AIOLs have been found to produce little 

objective accommodation (Wolffsohn et al., 2006a;Wolffsohn et al., 2006b;Cleary et al., 

2010). The subjectively reported range of clear focus results principally from pseudo-

accommodative factors such as pupil size and aberrations, which increase the 

subjective depth of focus. Many agree that amplitude of accommodation is best 

measured using objective methods since true accommodative amplitude is 

overestimated during subjective measurement (Wold et al., 2003;Ostrin et al., 

2004;Macsai et al., 2006;Cleary et al., 2010). 

 

Research has indicated that the objective accommodative performance of such focus 

shift AIOLs is limited with only a small benefit to near vision (Cleary et al., 

2010;Sheppard et al., 2010;Takakura et al., 2010;Wolffsohn et al., 2010b). Macsai et 

al. (2006) compared an AIOL with a standard monofocal IOL and reported superior 

uncorrected distance and near vision with the AIOL. However subjects with AIOLs 

perceived greater eye focusing ability than was measured, which they hypothesised 

could have occurred as a result of several pseudo-accommodative factors such as 
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pupil size and aberrations increasing subjective depth of focus. Cleary et al. (2010) too 

attributed the observed near vision performance with an implanted AIOL to depth of 

focus rather than true pseudophakic accommodation of the IOL.  

 

The amount of accommodation AIOLs need to provide in order to restore equivalent 

near vision will depend upon how much pseudo-accommodation patients already have. 

Therefore the ability to determine how these factors contribute to pseudo-

accommodation is of interest, especially until AIOLs can provide greater levels of true 

accommodation. 

 

6.2.  Depth of field and focus  

Depth of field is key component of the accommodative process. If an object that is in 

focus is moved closer to or further away from the eye, there will be a drop in image 

sharpness producing a blurred retinal image. However for a given range of object 

distances, the observer will not perceive this blurring and the object will still appear 

clear even without a change in ocular accommodation. The depth of field describes this 

range of object distances that does not produce a detectable reduction in image focus 

and is represented in figure 6.1 (Nakazawa et al., 1984;Glasser, 2006).  When 

focusing a near target, the visual system utilises the depth of focus in order to alter the 

refractive state by the minimum amount in order to form a paraxial image at the retina 

(Bernal-Molina et al., 2014). 

 

The depth of focus on the other hand, describes the range of image distances in front 

of and behind the focal point or retina over which the image may be focused without 

causing an objectionable reduction in image sharpness, as illustrated in figure 6.1 

(Hung, 2001;Wang et al., 2006a;Gupta et al., 2007;Vasudevan et al., 2007;Millodot, 

2009;Atchison, 2012). 
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Figure 6.1: Schematic representation of the depth of field and depth of focus of an eye.  

 

Depth of field and depth of focus are closely related but can be distinguished by the 

fact that the former is an object quantity while the latter, an image quantity (Atchison et 

al., 1997;Millodot, 2009). Atchison et al. (1997) did not differentiate between depth of 

field and depth of focus and instead defined them as the greatest range in dioptric 

focusing error that does not produce an objectionable drop in retinal image quality. 

This is a practice that shall be followed here by use of the acronym DOF. So long as 

an image remains within the DOF space it will be perceived as clear thus the DOF 

effectively provides a perceptual tolerance for small errors in ocular focus (Ciuffreda et 

al., 2007b). 

 

6.3.  Objective versus subjective measures of accommodation 

6.3.1.  Objective  

Accommodation can be measured both subjectively and objectively. Objective 

measures of accommodative amplitude require the use of instrumentation such as 

autorefractors or aberrometers, which measure the optical power of the eye. In an eye 

with accommodation, an increase in optical power will be observed as the near target 

is moved closer to the eye. In absolute presbyopes with no accommodation on the 

other hand,  no change in power will be recorded (Glasser, 2006). 

Depth of field      Depth of focus 

Object                                                                                               Image plane 
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6.3.2.  Subjective 

Two key ways of subjectively measuring accommodation are discussed below. The 

first technique relates to using push-up to blur to determine accommodative ability 

while the second method evaluates acuity loss with changing stimulus vergences. 

 

6.3.2.1.  Push-up test 

With subjective measures, such as the push up test, the distance corrected subject is 

required to report when text that is moved gradually closer to the eye can no longer be 

sharply focused. In young adults as the near target moves closer, the eyes will 

accommodate to increase the optical power of the eye, converge to direct the eyes 

onto the near target and the pupils will constrict  increasing the DOF (Kasthurirangan 

et al., 2006).  

 

In young adults the subjective near point during the push-up test is achieved as a 

result of true accommodation as well as pseudo-accommodation. In presbyopes with 

no accommodation, when focusing on a near object there will be no accommodative 

increase in the optical power of the eye however the eyes will still converge as part of 

the near vision triad and, more importantly, the pupils will still constrict leading to an 

increased DOF. Glasser et al. (2006) concluded that this increase in DOF during 

subjective measurement could lead to the incorrect assumption that some 

accommodation was present in absolute presbyopes when it is not. For example, MIOL 

patients tested using the push-up test could appear to have functional accommodation 

when in reality none exists (Ostrin et al., 2004). Subjective tests like the push up test 

can overestimate accommodation compared to objective measurements (Marcos et al., 

1999b;Wold et al., 2003;Wang et al., 2006a;Wolffsohn et al., 2006a;Vasudevan et al., 

2007;Win-Hall et al., 2009). According to Ostrin et al. (2004) the push up test 
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overestimates accommodation even more in patients with poor visual acuity and those 

with a reduced ability to detect blur. 

 

Wold et al. (2003) stimulated and measured accommodation using  four different 

techniques, two of which were subjective and two objective. They found more 

consistent results when accommodation was stimulated with negative trial lenses, a 

finding corroborated by Ostrin et al. (2004), and concluded this was an effective way of 

stimulating maximum accommodation.  Objective measurements were less variable 

than results obtained with subjective measurements. However, there are relatively few 

studies which have directly compared subjective and objective methods (Marcos et al., 

1999b;Wold et al., 2003) in the same cohort using the same target, and in the same 

test conditions. 

 

6.3.2.2. Defocus curve testing 

The subjective measurement of visual acuity at different distances or with different 

levels of trial lens induced defocus can also be used to evaluate range of clear vision 

(Gupta et al., 2007;Wolffsohn et al., 2013).  There is currently no universally accepted 

standardised procedure for measuring defocus curves  in terms of the range and step 

sizes between trial lenses. A key aspect of the testing procedure is randomisation of 

either the trial lenses, letter sequences or both in order to counteract for memory 

effects. Gupta et al. (2007) investigated the importance of randomisation when 

measuring defocus curves in pre-presbyopes and found there was no statistically 

significant difference between randomising the order in which trial lenses are 

presented compared to randomising the letter sequences when measuring visual 

acuity. Furthermore they found no difference between randomising just one of these 

factors compared to randomising both factors in eliminating learning effects and 
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reducing unwanted bias, although randomising both factors was considered ideal. It 

has been suggested that the use of negative lenses to stimulate accommodation 

causes pupil miosis through the near triad, which can artificially increase DOF thus 

masking true accommodative ability (Gupta et al., 2007). However Wold et al. (2003) 

and Ostrin et al. (2004) compared several different methods of assessing 

accommodation and concluded that the use of negative lenses was most effective in 

stimulating maximum accommodation and produced more consistent results, and so 

the effect of pupil miosis in falsely increasing DOF appears to be minimal under these 

conditions. 

 

 Defocus curve testing is commonly used to compare presbyopia correcting strategies 

(Wolffsohn et al., 2013) such as MIOLs, but is subjective and slow to perform. To fully 

assess presbyopic correction strategies defocus testing would ideally be performed 

multiple times to assess the range of clear vision with binocularity, under different 

lighting conditions as the optics of the eye change and with different target contrasts. 

However subjectively measured defocus curves can be quite lengthy, leading to patient 

fatigue and variability in results. Therefore conducting repeated subjective defocus 

curves in different testing conditions is unlikely to be feasible. There is a need for 

shorter defocus curve testing times which cannot be achieved by increasing step sizes 

between lenses as this has been shown to decrease quality of results obtained 

(Wolffsohn et al., 2013).  

 

6.4.  Factors affecting DOF 

Subjective DOF is influenced by many ocular and patient factors and these are thought 

to partly contribute to the difference between subjective and objective DOF. For 

example target factors (Marcos 1999) such as luminance, colour, size and shape 

(Atchison et al., 1997), as well as subject factors such as pupil size, age and higher 
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order aberrations (Atchison et al., 1997;Wang et al., 2006a) can affect subjective DOF 

as summarised in table 6.1.  

 

Factors increasing 

Depth of Focus 
Study 

Luminance ↓ 
(Campbell, 1957;Ciuffreda et al., 2007b;Cufflin et 

al., 2007) 

Target contrast ↓ 
(Campbell, 1957;Atchison et al., 1997;Ciuffreda et 

al., 2007b;Cufflin et al., 2007) 

Spatial frequency ↓ (Legge et al., 1987;Marcos et al., 1999b) 

Pupil size ↓ 
(Campbell, 1957;Nakazawa et al., 1984;Atchison et 

al., 1997;Ostrin et al., 2004;Cufflin et al., 2007) 

Retinal eccentricity ↑ (Ronchi et al., 1975;Ciuffreda et al., 2007b) 

Target detail ↓ 
(Atchison et al., 1994;Atchison et al., 1997;Marcos 

et al., 1999b;Ostrin et al., 2004;Wang et al., 2006b) 

Visual acuity ↓ (Green et al., 1980;Legge et al., 1987) 

Chromatic aberration ↑ (Ciuffreda et al., 2007b) 

Blur sensitivity ↓ (Ciuffreda et al., 2007b) 

      Table 6.1: list of factors which are thought to increase subjective depth of focus.  

 

Presbyopes have a higher DOF compared to young subjects and this most likely 

occurs due to pupil miosis, an increase in ocular aberrations with age (McLellan et al., 

2001;Yi et al., 2010;Atchison, 2012) and reduced sensitivity to blur (Kline et al., 

1999b).  

 

6.4.1.  Pupil size 

As pupil size varies, so too does the level of incoming light, ocular aberrations and 

DOF. Pupil size influences retinal image size and shape (Atchison et al., 2005). With a 

decreasing pupil, the size of the retinal blur circle decreases to below the eye’s blur 

threshold meaning a sharp image is still perceived over a wider range and this raises 
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the range of clear focus. Therefore as pupil size decreases, DOF increases (Nakazawa 

et al., 1984). However, there is some disparity as to the direction of the change in DOF 

with pupil size depending on whether DOF is measured subjectively or objectively. 

Marcos et al. (1999a) found that as pupil size increased from 2mm to 4mm DOF 

decreased, as expected, for both subjective and objective measurement techniques. 

However for larger pupils, specifically 4mm to 6mm subjective DOF decreased, but the 

objective DOF increased in some cases. This suggests cues other than perception of 

blur are used to achieve best focus. Due to the paucity of data in this area, the 

discrepancy between subjective and objective DOF and pupil diameter should be 

investigated further. 

 

6.4.2.  Tolerance to blur 

Human blur perception is multifaceted and complex.  Blur detection, which is an 

important part of blur perception, describes the ability to detect when an image is just 

noticeably blurred compared to a blur-free target  (Atchison et al., 2005). A reduced 

sensitivity to blur from ocular disease or trauma for example, is believed to be 

associated with an increased DOF (Ciuffreda et al., 2007a) and so blur detection ability 

may be an important contributor to the difference between objective and subjective 

measures of accommodation (Vasudevan et al., 2007).  

 

The ability of observers to resolve fine detail decreases gradually with age (Kline et al., 

1999a). Legge et al. (1987) found that individuals with reduced visual acuity were more 

tolerant to defocus compared to those with normal vision. Given this, ability to tolerate 

blur should increase with age. Kline et al. (1999b) investigated the effect of ageing on 

ability to correctly identify blurred text signs by measuring photopic and mesopic 

legibility threshold in a group of young and older adult observers. They found the older 

observers were better at correctly identifying the defocused text compared to young 

observers indicating young people with better vision are less tolerant to blur, which is 
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consistent with the findings of Legge et al. (1987). The superior performance of older 

observers in this task was later attributed by Jung and Kline (2010) to age related 

optical factors, specifically pupil miosis, as well as experience-mediated neural 

compensation. There is also thought to be a link between personality and tolerance to 

blur (Woods et al., 2010). 

 

Interestingly, myopes were reported to have larger objective blur thresholds compared 

to emmetropes and were therefore believed to be less sensitive to defocus blur 

(Campbell, 1957). However later studies have found no statistically significant 

difference in the blur thresholds of myopes compared to non myopes (Schmid et al., 

2002).   

 

Blur thresholds also increase with pupil size (Campbell, 1957) and retinal eccentricity 

(Hess et al., 1989;Ciuffreda et al., 2007a). This increase with retinal eccentricity is 

thought to occur due to a combination of anatomical, physiological, optical and 

perceptual factors (Ciuffreda et al., 2007a). Blur detection varies with stimulus 

exposure time; ability to detect blur improves with longer stimulus durations in both 

central and peripheral vision (Hess et al., 1989). 

 

6.4.3.  Higher order aberrations 

Ocular aberrations arise from imperfections in the eye’s structures, particularly the 

cornea and crystalline lens, and can affect the clarity of the retinal image (Liang et al., 

1997;He et al., 2000;McLellan et al., 2002;Charman, 2005). They are dynamic and 

change with pupil size, age and accommodation (Artal et al., 2002;Holladay et al., 

2002;Artal et al., 2004;Li et al., 2011). HOAs such as spherical aberration are thought 

to act as cues for best focus and can also increase DOF (Wang et al., 2006a). 
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Ocular aberrations can be measured in a number of ways. The more popular method 

of measurement is through the use of an aberrometer (Vandenberg et al., 1993;Liang 

et al., 1997;Porter et al., 2001;Kuroda et al., 2002). There are several types of 

aberrometer currently available to measure ocular aberrations; all are based upon 

slightly different measurement principles. Aberrometers based on the Hartmann-Shack 

principle are currently preferred since it is thought they allow faster and more accurate 

evaluation of the eye’s higher order aberrations (Prieto et al., 2000;Cheng et al., 

2003;Miranda et al., 2009;Bueno et al., 2010;Yu et al., 2010).  

 

6.5.  Study purpose 

Together, pupil size, HOAs and tolerance to blur are thought to cause the observed 

difference between subjective and objective depth of focus measurements although 

the relative contribution of each factor to the observed difference is not currently 

known. Hence these features should dictate how much additional optical power change 

an AIOL should need to overcome presbyopia. To the author’s knowledge, this has not 

been confirmed previously. Therefore the purpose of the study is to investigate the 

factors affecting subjective range of clear focus in pre-presbyopes in greater detail. 
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6.6. Method  

The study was approved by the Institutional Ethics Committee and the research 

conformed to the tenets of the Declaration of Helsinki.  Written, informed consent was 

obtained from all participants. 

 

To take part in this study, participants were required to: 

 be aged between 20 and 45 years 

 have no more than 0.75 dioptres of uncorrected astigmatism 

 be able to wear contact lenses for the duration of the study rather than 

spectacles unless they were emmetropic  

 have corrected visual acuity in the eye being tested of at least 6/7.5 

 be free of any active eye disease 

 not be on ocular medications or systemic medications with known ocular side 

effects 

 Have no history of eye surgery within the last 3 months.  

 

6.6.1. Blur detection test 

There is no standard way of measuring blur tolerance and so to investigate if and how 

much a person’s sensitivity to blur influenced subjective range of clear focus variance, 

a blur detection test was developed. There are different ways of measuring a subject’s 

blur sensitivity. One method consists of a bipartite target in which one half of the target 

is movable relative to the other fixed half and  the observer is asked to  find the 

position of just noticeable blur (Cufflin et al., 2007). Other methods include alternate-

forced choice spatial tasks in which one target differs from the others and the subject is 

requested to identify this target (Hess et al., 1989). A test for measuring a subject’s 

ability to distinguish blur was devised based on this second type of blur detection test. 

Blur discrimination is affected by target size. As target size increases, blur thresholds 
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increase and so blur sensitivity decreases (Ciuffreda et al., 2007a). Thus a target close 

to the limit of the subject’s acuity was required. GIMP software (version 2.6) which is 

an image manipulation program, was used to blur the image by differing levels using a 

Gaussian blur filter. Initially a linear blur progression was envisaged in order to 

determine blur detection capability to greater levels of accuracy. However this resulted 

in an excessive number of test slides, which would have increased testing time and 

could have resulted in subject fatigue. Therefore a logarithm blur progression was 

chosen as this was thought to provide a better balance between accurate blur 

discrimination assessment (Hammett et al., 1998) and testing time.  

 

Subjects were asked to view the high contrast computerised visual target monocularly, 

which was placed two metres away, through a 1.5mm pinhole in order to neutralise 

aberration and pupil size effects.  The test was conducted in a room that received 

solely artificial illumination which provided a background luminance that fell within the 

photopic range (85 cd/m2).The visual target comprised of four shortened logMAR 

charts placed in each corner of the screen. This shortened chart comprised three lines 

of black letters equivalent to 6/5 (bottom line), 6/6 (middle line) and 6/9 (top line) 

against a white background (figure 6.3). A shortened logMAR chart was chosen to 

prevent subjects using cues such as the blurred edges of larger letters or the reduced 

contrast of smaller letters to aid in their subjective assessment of blur as this could 

produce inaccurate results. For this reason a chart consisting of only small letters was 

used. 

 

6.6.1.1. Calculating equivalent letter size at a reduced working distance 

The following mathematical calculation (equation 6.1) was used to calculate the correct 

letter size needed to equate to 6/9, 6/6 and 6/5 from this shorter working distance.   
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                        Equation 6.1 

 Where: A= angular subtense in degrees of arc, L= letter height in millimetres and D= 

working distance in millimetres. 

 

In order to determine the equivalent letter height for use in the blur detection test using 

equation 6.1, angular subtense first needs to be calculated. The approach used to 

ascertain this value is detailed next.  

 

Visual acuity is generally recorded according to the following Snellen fraction. 

 Snellen notation=          test distance (m)    

                     Distance (m) letter subtends 5mins of arc 

          Equation 6.2 
 

Therefore a 6/6 Snellen letter will subtend 5minutes of arc at 6 metres(Rosenfield et 

al., 2009). This value can be used as the standard from which the angular subtense of 

other Snellen letters can be calculated, in minutes of arc (equation 6.3).  

 
Angular subtense (6m) =   distance (m) letter subtends 5mins of arc  x5 

      test distance (m) 
Equation 6.3 

 

A 6/9 Snellen letter will subtend 5 minutes of arc at 9 metres, so using equation 6.3, 

the angular subtense of a 6/9 letter at 6 metres is 7.5 minutes of arc. This method was 

used to calculate the angular subtense of Snellen letters from 6/60 to 6/5 (table 6.2).  
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Table 6.2: Snellen notation in metres and feet with the calculated angular subtense.  

 

After calculating angular subtense, it is then possible to work out the equivalent height 

of a letter for a reduced testing distance using equation 6.1. To calculate letter size at a 

2 metre testing distance, all angular subtense values were converted into degrees of 

arc by dividing these values by 60, since there are 60 minutes of arc in one degree of 

arc (Rosenfield et al., 2009). So a 6/9 letter with an angular subtense of 7.5 minutes of 

arc would be equivalent to 0.125 degree of arc. The height of this 6/9 letter at 2 metres 

could then be calculated by rearranging equation 6.1 to find L (equation 6.4). 

 

           

         Equation 6.4 

Where letter height L= unknown, angular subtense A=0.125 deg of arc and test 

distance D= 2 metres, which is equivalent to 2000millimetres.  

Snellen Notation Decimal Angular subtense (mins of arc) 

20/200 6/60 0.10 50 

20/100 6/30 0.20 25 

20/70 6/21 0.29 17.5 

20/60 6/18 0.33 15 

20/50 6/15 0.40 12.5 

20/40 6/12 0.50 10 

20/30 6/9 0.67 7.5 

20/25 6/7.5 0.80 6.25 

20/20 6/6 1.00 5 

20/17 6/5 1.18 4.17 
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Inputting this into equation 6.4 gave an equivalent letter height of 4.36mm. The same 

procedure was followed for 6/6 and 6/5 letters to give letter heights of 2.91mm and 

2.43mm respectively.  

 

In blur detection tasks, subjects must identify blur so for example subjects may be 

required to  indicate in which alternative location they are able to detect a blur target 

(Jakel et al., 2006). A blur discrimination task, on the other hand, relates to just 

noticeable difference in perceived blur (Wang et al., 2005a). The test used in this study 

comprised one blurred image and three sharply focussed images with subjects 

required to identify the blurred image and so is best described as a blur detection test. 

The number of alternatives presented to the patient can impact on test accuracy. A 

four alternate forced choice (AFC) method was adopted in our blur detection test, as 

opposed to a 2 AFC since a greater number of alternatives have been shown to 

produce more reliable results. A study comparing a 2, 4 and 8AFC method found that 

naive observers showed the highest sensitivity and reliability with a 4AFC test for 

detection tasks (Jakel et al., 2006). This was not found to be true for discrimination 

tests, however, and this was attributed to the fact that discrimination tasks require 

more of the participant’s attention compared to detection tasks. Increasing the number 

of choices in a blur discrimination test will therefore cost more attentional resources, 

leading to a poorer performance.  

 

Subjects were given thirty seconds to identify the blurred chart by indicating whether it 

was the top right, top left, bottom right or bottom left image that was blurred (figure 

6.3). A demonstration practice plate was placed at the beginning of the test and 

consisted of a blurred chart with a 5.5 Gaussian filter applied. The purpose of this was 

to allow subjects to familiarise themselves with the task and make it easier for them to 

understand the aim of the test before starting. Subsequent plates had decreasing 

amounts of Gaussian blur applied to them using this computer software. The level of 
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Gaussian blur applied to the blurred image decreased logarithmically in 1.2log steps 

until the final plate, which had no blurred image. A log as opposed to linear step 

change was used to minimise the number of test slides and therefore limit the effect of 

fatigue on results.  A blank black page was inserted between each test page and 

shown for five seconds to allow subjects to recover before seeing the next image and 

also to stop patients from potentially identifying the blurred image by the change in 

letter clarity from one slide to the next rather than recognising the blurred image out of 

the four on the screen. A staircase method of assessment, much like in visual field 

testing, was adopted for better accuracy.  

 

6.6.1.2. Staircase strategy 

Blur tolerance ability was assessed with a double-reversal staircase strategy. Use of 

this bracketing strategy ensured greater end point accuracy. Subjects were required to 

identify the blurred image out of the four displayed, a correct answer resulted in the 

examiner moving onto the next test slide. An incorrect response, on the other hand, 

prompted a reversal of 1 Gaussian blur filter step. If this was correctly answered the 

examiner continued on with the test, in which the blur level applied to each slide 

decreased in logarithmic steps. Another incorrect answer instigated the second 

reversal whereby the examiner went back to preceding test slide. After a correct 

response was given, the examiner continued with the test until the observer gave a 

final incorrect response in which case this last correctly identified blur level was 

recorded as the final blur tolerance as illustrated in figure 6.2. 
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Figure 6.2: Example of the double-reversal staircase procedure used to accurately 
determine blur tolerance in subjects. Green diamonds represent when the blurred 
image was correctly identified and red diamonds when an incorrect answer was given.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Example of one of the blur detection test slides where subjects were asked 
to identify which of the four images was blurred (the top right image is blurred in this 
case). 
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6.6.2. Experimental protocol  

50 subjects mean age 32.98 ± 6.42 years (range 23- 45 years; 30 female) attended the 

Ophthalmic Research Group’s laboratories where a basic refractive examination was 

conducted in order to ensure they were wearing the most accurate distance 

prescription; a measurement of the best corrected visual acuity (VA) for each eye was 

taken at this point.  To minimise reflections, subjects with uncorrected VA below 6/7.5 

were fitted with a contact lens in the eye under test. Spherical daily disposable lenses 

were given to subjects with astigmatism up to -0.75DC while toric contact lenses were 

fitted to those with more than -0.75DC astigmatism.  

 

After allowing the contact lenses to settle for 10 minutes, tolerance to blur and 

amplitude of accommodation were measured on the eye being tested. To investigate if 

and how much a person’s sensitivity to blur influenced subjective and objective range 

of clear focus variance, blur detection ability was assessed using the  4AFC test 

described earlier in which subjects were required to identify the blurred image out of 

the four displayed on the screen. Subjective amplitude of accommodation was 

measured in all subjects using a push-up test to confirm subjective range of focus in 

subjects with greater than 10 dioptres of accommodation.  

 

After this, subjective and objective defocus curves were measured simultaneously 

using full aperture trial lenses from +2.00 to -10.00DS in -0.50 steps and in a 

randomised order. Objective measurements were taken using the Aston open field 

aberrometer. Wavefront sensing using a Hartmann-Shack wavefront sensor is 

commonly used to objectively measure the ocular aberrations of the human eye. The 

Hartmann-Shack aberrometer is designed to measure along the eye’s primary optical 

axis and so is ideally used in the assessment of central vision (Wei et al., 2010). The 
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Aston aberrometer is a miniaturised slit-lamp mountable aberrometer based on the 

Hartmann-Shack principle (Bhatt et al., 2013) and is described in more detail in chapter 

7. The aberrometer measured pupil size and higher order aberrations in addition to 

HOAs at each level of defocus. Distance visual acuity was measured on a digital 

logarithmic progression chart placed four metres away (TestChart 2000Pro, Thomson 

Software Solutions, Hatfield, UK) with the letters randomised between presentations in 

order to reduce learning effects (Wolffsohn et al., 2013).  

 

Each letter read correctly was scored as 0.02logMAR and subjects were encouraged 

to guess if unsure. Trial lenses were held approximately 40mm from the corneal plane 

so they were not in the aberrometer path and were powered to create the traditional 

defocus step sizes of 0.50D at a back vertex distance (bvd) of 12mm using equation 

6.5. The original and equivalent lens powers at the greater bvd have been listed in 

table 6.3. 

 

     
 

    
 

          Equation 6.5 

 

Where Fc= power corrected for vertex distance, F=original lens power and x=the 

difference in bvd in metres. 
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Table 6.3: original power alongside equivalent defocus lens power at a 40mm bvd. 

Lens power (bvd:12mm) Equivalent Lens (bvd:40mm) 

+2.00 +2.00 

+1.50 +1.50 

+1.00 +1.00 

+0.50 +0.50 

plano plano 

-0.50 -0.50 

-1.00 -1.00 

-1.50 -1.50 

-2.00 -2.00 

-2.50 -2.75 

-3.00 -3.25 

-3.50 -400 

-4.00 -4.50 

-4.50 -5.25 

-5.00 -5.75 

-5.50 -6.50 

-6.00 -7.25 

-6.50 -8.00 

-7.00 -8.75 

-7.50 -9.50 

-8.00 -10.25 

-8.50 -11.25 

-9.00 -12.00 

-9.50 -13.00 

-10.00 -14.00 
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All subjective acuities were corrected for magnification effects associated with this 

increased back vertex distance using equation 6.6 and 6.7 (Aaron et al., 2010;Rosen 

et al., 2011). 

   

                        
 

          
    

Equation 6.6 

Where bvd refers to the back vertex distance in metres and F is the lens power in 

dioptres. 

                                           Equation 6.7 

 

6.7. Analysis  

6.7.1. Objective accommodation range 

All aberrometry values were normalised. The objective defocus range was then 

calculated for each subject in Sigma Plot 11.0 using dynamic curve fitting to find the 

initial point of plateau of the aberrometer-predicted Z4 spherical defocus values. A 

Sigmoidal 3, parameter equation was selected to fit the data (equation 6.7) with an 

average rsqr goodness of fit value of 0.953±0.08.  

 

  
 

   
  

    
 

 
 

          Equation 6.7 

Where e= the base of the natural logarithm, a= the curve’s maximum value, b= the 

slope of the curve and x0= the x-value of the sigmoid’s midpoint.   

    



 

183 
 

Accommodative stimulus (Dioptres)

-10-8-6-4-202

A
c
c
o

m
m

o
d

a
ti
v
e

 r
e

s
p

o
n

s
e

 (
Z

4
, 

m
ic

ro
n

s
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.4: Example of a subject’s accommodative response to various defocus trial 
lenses as measured objectively using aberrometry. The raw aberrometry data was 
normalised and curve fitting applied to determine the initial point of plateau. Measuring 
the point when maximum accommodation is first reached gives us the objective 
focussing range which can then be directly compared with the subjectively measured 
range. 

 

6.7.2. Subjective accommodation range 

There are two different criteria, relative and absolute, which can be used to determine 

subjective range of accommodation from defocus curves,  as summarised by Gupta et 

al. (2008).The absolute criterion refers to the first point at which visual acuity passes a 

certain level, for instance +0.3logMAR. The relative criterion on the other hand states 

that best visual acuity plus an allowance to account for variance with repeated visual 

acuity measurements of 0.04logMAR, gives the subjective range of focus. The two can 

give very different values for the range of focus as illustrated in figure 6.5 and so both 
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were employed in the analysis. Gupta et al. (2008) recommended the  best VA plus 

0.04 relative criterion as this was found to have the strongest correlation and smallest 

Bland-Altman limit of agreement to the subjective push up test, though they 

acknowledged that this criterion had been used in relatively few studies.  

 

Figure 6.5: A subject’s subjective defocus curve. The subjective range of 
accommodation was determined using both absolute (green, solid) and relative (blue, 
dotted) criteria which gave varying ranges of approximately 6.50D (absolute) versus 
2.75D (relative). 
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6.8. Statistical analysis  

 

6.8.1. Sample size calculation 

A sample size calculation was carried out with Sigma Plot statistical and graphing 

software (Version 11, Systat Software Inc., Chicago, Illinois, USA) which showed a 

minimum of 30 subjects was required to achieve a power of 80% for a correlation 

coefficient of 0.5 with a significance level of 0.05.  

 

6.8.2. Testing for Normality  

A one-sample Kolmogorov-Smirnov test was used to test for normality and revealed 

that the data was normally distributed (Kolmogorov-Smirnov Z = 0.661, P=0.775), 

therefore parametric analysis was used. 

 

6.8.3. Analysis method 

Stepwise linear regression analysis was performed using Sigma plot 11.0 (Systat 

Software Inc., Chicago, Illinois, USA) in order to identify the key factors influencing the 

difference between subjective and objective defocus curves and to determine their 

relative contribution to this difference.  
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6.9. Results 

Subjective range of focus was principally accounted for by the change in spherical lens 

power (67.4% of the variance) with an additional 6.2% determined by the blur tolerance 

accounting for 73.6% of the variance in total (F=17.751,p<0.001). This was confirmed 

by analysis of the difference between objective accommodation and the subjective 

range of clear focus where 20.3% of the variance could be accounted for by the 

subject’s blur tolerance. Tolerance to blur was correlated with the difference between 

objective accommodation and the subjective range of clear focus (r=0.464, p=0.007; 

figure 6.6) and spherical aberrations (r=0.366, p=0.036). Spherical aberrations were 

also related to average pupil size (r=0.367, p=0.011).The power of the statistical tests 

performed was 0.8 or above.  

Figure 6.6: Subjective/objective difference in accommodation increased with the 
subjects’ ability to tolerate blur.  
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Age was correlated to objective accommodation and the subjective range of clear 

focus (p<0.001; figure 6.7), but not pupil size, aberrations or tolerance to blur in the 

pre-presbyopes (p>0.05). 

Figure 6.7: Subjective/objective accommodation difference increased with age. 

 

Once the subject’s maximum accommodation had been reached, the patient was 

instructed to continue focussing on an acuity chart through the remaining higher 

powered trial lenses. The accommodative response after this point was then evaluated 

and in most cases, once the limit of focusing ability had been reached, accommodation 

remained relatively steady with slight fluctuations about the maximum. A repeated 

measures ANOVA showed there to be no statistically significant difference in the 
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accommodative response of subjects once maximum accommodation had been 

stimulated (ANOVA: F-1.426, p=0.229; figure 6.8). 
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Figure 6.8: The objectively measured accommodative response, once maximum accommodation had been stimulated, is plotted. Data from 
subjects with an objective accommodative range ≤9.5D is included and in most cases accommodation remained relatively steady.
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A statistically significant negative slope was found for change in pupil size per dioptre 

of defocus (t test: t=-2.253, p<0.05; figure 6.9). 

Figure 6.9: Difference between subjective and objective accommodation decreased as 
the average change in pupil size per dioptre of blur increased.  
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There was a statistically significant decrease (one way ANOVA: F=60.70, p<0.001) in 

pupil size with lens induced defocus blur, as expected (figure 6.10).  

 

Figure 6.10: The pupil size with defocus lens is plotted here and shows that pupil 
miosis occurred with accommodative effort, which was an expected outcome. 
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6.10. Discussion 

Cataract surgery involves removal of the cloudy natural crystalline lens and insertion of 

an artificial intraocular lens; a key goal of this surgery is for patients to attain spectacle 

independence post-operatively for distance vision, and a reduced reliance on 

spectacles for near and intermediate vision if implanted with a MIOL or AIOL. AIOLs 

are designed to increase the optical power of the eye by shifting within the capsular 

bag during near vision. However, many researchers have found there to be only a 

moderate benefit to near vision with these lenses (Wolffsohn et al., 2006a;Wolffsohn et 

al., 2006b;Cleary et al., 2010;Sheppard et al., 2010;Takakura et al., 2010;Wolffsohn et 

al., 2010b). It is hypothesised that only a limited amount of objective accommodation is 

needed to restore near visual function due to the eyes natural DOF. Therefore the 

objective of this study was to identify the key determinants of the subjective range of 

clear focus and to quantify their relative contribution to the difference between 

subjective and objective accommodation.  

 

Blur tolerance was found to be the key factor driving subjective range of focus beyond 

objective measures in pre-presbyopes, with a greater tolerance to image blur linked to 

increased variability between subjective and objective measures. The dioptric effect of 

blur tolerance on increasing subjective range of accommodation should be evaluated 

and taken into consideration when selecting the optimum IOL design needed to 

overcome presbyopia for the patient.  This study found a subjective DOF range of 8.60 

± 2.34D (absolute) compared to an objective DOF range of 8.02 ± 1.55D. This 

indicates an additional 0.58D of accommodative power is contributed principally as a 

result of the patient’s ability to tolerate blur. 

 

As anticipated, pupil size decreased with accommodative effort (one way ANOVA: 

F=60.70, p<0.001), however the absolute or change in pupil size was not found to be 
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an independent factor influencing the difference between subjective and objective 

accommodation in this study.  

 

DOF has been found to increase with age and this is thought to occur due to a 

combination of pseudoaccommodative factors including pupil miosis, increased 

aberrations and an increased blur tolerance (Kline et al., 1999b;McLellan et al., 

2001;Yi et al., 2010;Atchison, 2012).  In this study, subjects aged between 20 and 45 

years were examined as residual accommodation was required and a positive 

correlation was found between age and the difference between subjective and 

objective accommodation (p<0.001; figure 6.7). However, within this age group, there 

was no correlation between age and pupil size, aberrations or tolerance to blur 

(p>0.05) suggesting other ageing factors may contribute, although this may have 

occurred due to the narrow age range of the subjects examined in this study. 

 

It has been suggested that only one half of a person’s amplitude of accommodation 

can be sustained for an extended period before CM fatigue manifests (Millodot et al., 

1989). However recent research has shown this value may be an underestimation. 

Wolffsohn et al. (2011b) found that up to 80% of accommodation could be used for 

prolonged near tasks without reports of asthenopia and without a reduction in the 

accuracy of objectively measured accommodation. Additionally, they noted an increase 

in this percentage with subject age and no evidence of a decrease in maximum 

accommodation level during prolonged tasks. This is in agreement with the findings of 

the present study which showed that the maximum accommodation level was 

maintained in most subjects beyond their point of blur, with only small fluctuations 

about the upper level (figure 6.8). This has implications for optimum MIOL selection 

since this, together with the effect of pseudo-accommodative factors such as blur 

tolerance, indicate that MIOLs may not need to provide such high levels of near 
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addition power to enable functional near vision. A stronger MIOL near addition power 

than required may in fact lead to patient dissatisfaction post-operatively, as this can 

produce a narrower range of clear vision (Wolffsohn et al., 2011b).  A study comparing 

visual acuity at different distances with a spherical MIOL with +4.00D add to aspheric 

MIOLs with a +4.00D add, a +3.75D add and a +3.00D found that all models produced 

good vision, however patients with the +3.00D add had statistically better corrected 

intermediate and near visual acuity than those with the other MIOLs (Alfonso et al., 

2010). Similar studies comparing outcomes with a +3.00D add MIOL to a +4.00D add 

MIOL have found the +3.00D IOL gave better intermediate vision than the +4.00D lens 

without compromising distance and near vision (Maxwell et al., 2009;de Vries et al., 

2010;Santhiago et al., 2010). 

 

This is not the case for accommodating IOLs however. If on average 0.58D is 

contributed by blur tolerance, at a standard working distance of 33cm an additional 

2.42D of power is required. If, as Wolffsohn et al.  (2011b) suggests, around 80% of 

active focus can be used for sustained periods an AIOL would need to provide 3.00D 

of near power in order to provide this. Holladay (1993) investigated the effect of 

pseudophakic IOL movement on ocular power and stated a forward shift of 1.0mm of a 

posterior chamber IOL would effect a change in ocular refraction of approximately 

1.90D. More recent studies measuring pseudophakic IOL shift have shown axial optic 

displacement of between 0.25mm and 1.0mm (Lesiewska-Junk et al., 2000) which 

equates to between 0.3D and 1.9D of accommodating power (McLeod et al., 2003). 

Langenbucher et al. (2003) used anterior chamber depth measurements together with 

data from Gullstrand’s model eye to determine that forward movement of a single piece 

AIOL corresponded to a theoretical accommodating amplitude of between 1.13D and 

1.40D. Similarly, Mcleod et al. (2003) found that a 1.0mm anterior displacement of a 

single optic IOL would produce a change in conjugate power of the eye of 1.2D, while 

a dual optic system would produce 2.2D of power for the same 1.0mm forward 
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movement. Thus providing 3.00D of accommodating power is beyond the theoretical 

limit of most hinge AIOLs and around the limit of dual optic AIOLs. Alternative options, 

such as shape changing IOLs (Fine et al., 2007) which are reported to provide real 

accommodative restoration of as much as 8.00D (Alio Sanz et al., 2008) may be more 

suitable. Having examined the factors affecting the range of clear focus in AIOLs, the 

next chapter explores how aberrometry might provide a more objective measure of the 

range of clear focus for MIOLs.   
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CHAPTER 7: Can Aberrometry Provide Rapid and Reliable Measures of 

Subjective Depth of Focus following Multifocal Intraocular Lens Implantation? 

  

7.1. Evaluating Presbyopia correcting IOLs 

7.1.1. Aberrometry 

Surgical procedures such as cataract extraction and corneal refractive surgery 

necessitate deliberate modification of important ocular structures to improve or restore 

vision; however surgery in itself could be a potential source of superfluous ocular 

aberrations (Applegate et al., 2003b;Chisholm et al., 2003;Jimenez et al., 2008). 

Measurement of a person’s ocular aberrations after surgery can be used to provide an 

objective assessment of visual function (Ligabue et al., 2009;Ravikumar, 2014). 

 

There are two main categories of aberration: low and high order. Low order aberrations 

typically represent those aberrations which are correctable with spectacle or contact 

lenses whereas higher order aberrations (HOA), whose existence has been known for 

nearly 150 years, are generally lower in magnitude and not as easily corrected. The 

range of higher order aberrations that can occur in the human eye is extensive. It is 

generally accepted that no two people possess identical aberration profiles; instead 

every individual is thought to comprise both a unique pattern and quantity of different 

aberrations (Walsh et al., 1984;Liang et al., 1994;Liang et al., 1997;Thibos et al., 

2002;Artal et al., 2006;Piers et al., 2007;Sawides et al., 2011;Williams, 2011).   

 

 

Ocular aberrations can be measured in a number of way including by comparing pairs 

of double pass retinal images and computing the wave aberration or more commonly, 

through the use of an aberrometer, as described later in this chapter and in more detail 

in the appendix (Vandenberg et al., 1993;Liang et al., 1997;Porter et al., 2001;Kuroda 

et al., 2002). Wavefront error maps are commonly used to convey information about 
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the pattern of aberrations present, and often incorporate colour to allow easier visual 

interpretation of the aberrometric information (Holladay, 2009;Ravikumar, 2014). In 

general, they are derived through the use of some form of topographic modelling 

system (Smolek et al., 2007). However, such maps do not clearly describe which 

aberrations are present and in what quantity (Ravikumar, 2014).  

 

The root mean square (RMS) wavefront error expresses the wavefront aberration more 

precisely since it provides a numerical value for the total amount of aberration present 

in that eye. However it does not specify the precise pattern of aberrations that 

constitute this total, which is a limitation since different aberrations tend to affect visual 

performance in distinctly different ways (Artal et al., 2004;Sawides et al., 2010). Hence 

two subjects with an identical total RMS wavefront error could have different visual 

experiences due to a disparity in the composition of each of their aberration profiles 

(Applegate et al., 2002;Applegate et al., 2003a;Charman, 2005).  

 

To overcome this each wavefront aberration is arranged in terms of its Zernike 

polynomial. There are different indexing schemes for the Zernike polynomial sequence. 

As the polynomials depend on two parameters, their radial order and angular 

frequency, it is more convenient to arrange the polynomials in the form of a pyramid 

(Lakshminarayanan et al., 2010). This allows all aberrations to be categorized 

precisely and the contribution of each aberration to the total RMS error to be 

determined (Applegate et al., 2003a;Charman, 2005).   

 

Zero and first order polynomials, which represent piston and prismatic tilt, do not affect 

image quality while second order modes describe spherical defocus and astigmatism, 

which are the most predominant type of aberration to occur in the general population 

and are amenable to sphero-cylindrical correction. Zernike polynomials of third order 



 

198 
 

and above are classified as higher order aberrations (Artal et al., 2004;Charman, 

2005;Lakshminarayanan et al., 2010;Sawides et al., 2011).  

 

Visual performance is most commonly assessed using high contrast photopic 

assessment of visual acuity however on its own this provides an insufficient 

assessment of visual performance. The association between aberrations and visual 

performance is complex as some aberrations degrade visual quality more so than 

others and this formed the basis for the development of image quality metrics which 

are more highly correlated to measures of visual function (Ligabue et al., 

2009;Ravikumar, 2014).Visual quality metrics such as point spread function (PSF), 

modulation transfer function (MTF) and Strehl ratios can be used to assess visual 

performance and are discussed in more detail in the appendix. 

 

The type of IOL implanted is important since IOL power, shape and refractive index 

can all affect aberrations. Taketani et al. (2005) established that IOLs with a higher 

refractive index were associated with a greater incidence of HOAs. They also found 

that a more posteriorly curved IOL was more effective in reducing glare and surface 

reflections when implanted. An equivalent anteriorly curved IOL was purported to show 

less spherical-like aberrations and was therefore recommended as the IOL of choice in 

patients with large pupils, such as children with congenital cataracts (Taketani et al., 

2005b).  

 

7.1.2. Defocus curves 

It is estimated that several million IOLs are routinely implanted into the eye following 

cataract extraction every year (Simpson, 1992).  The range of clear vision achievable 

with different presbyopia correcting IOLs is most commonly evaluated using lengthy 

subjective defocus curves (Gupta et al., 2008;Buckhurst et al., 2012). Since MIOLs are 

designed to provide good vision at multiple distances this is reflected in their defocus 
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curve profiles as more than one peak of good acuity (Buckhurst et al., 2012) and the 

depth and range of good acuity can indicate the strength of the presbyopic correction.  

 

As summarised in chapter 6, depth of focus can be measured both objectively and 

subjectively and there is general agreement that subjective measures of 

accommodation tend to overestimate accommodation compared to objective measures 

(Marcos et al., 1999b;Wold et al., 2003;Wang et al., 2006a;Wolffsohn et al., 

2006a;Vasudevan et al., 2007;Win-Hall et al., 2009). Subjective DOF may be 

influenced by a range of factors such as contrast, pupil size, higher order aberration,  

visual acuity, age, chromatic aberration, retinal eccentricity and target detail (Wang et 

al., 2006a). In a previous study (chapter 6) we found that blur tolerance was a key 

factor driving subjective range of focus beyond objective measures in pre-presbyopes. 

Thus an objective defocus curve testing procedure would be preferable in allowing a 

more accurate assessment of near visual function to be obtained following implantation 

of a presbyopia correcting IOL.  

 

 Subjective defocus curve testing times can be prolonged and potentially tiring for the 

patient especially if there are numerous defocus lenses to be tested. Wolffsohn et al. 

(2013) investigated the effect of reducing the number of steps between defocus trial 

lenses on quality of results. They used trial lenses from +1.50 to -5.00D in the 

traditional 0.50D step size and compared this against 1.00D and 1.50D steps.  Larger 

step sizes were found to produce distorted results indicating defocus step sizes cannot 

be increased in order to speed up testing time. As a result, it is often not possible to 

fully assess the visual capability of patients, for example under different levels of 

illumination as the optics in front of the pupil change, with subjectively measured 

defocus curves. 

 



 

200 
 

7.2. Study purpose 

A faster defocus curve testing procedure would allow additional measurements to be 

conducted which could help improve our understanding of MIOLs. Objective measures 

of accommodation, such as aberrometry, tend to be quicker however there is a 

disparity between subjective and objective measures of accommodation. In the 

previous chapter we found this was largely attributed to blur tolerance, which 

accounted for approximately 0.60D of the difference. Taking this into account, this 

study will simultaneously measure objective and subjective defocus curves using the 

Aston aberrometer in order to determine whether reliable defocus curves can be 

predicted from faster objective through focus measurements in patients implanted with 

different types of presbyopia correcting IOL.  

 

 

7.3.  Method  

Subjects (7 male, 17 females) aged between 46-79 years (mean age 62.9 ± 8.9 years) 

who had been successfully implanted with either the Oculentis Mplus segmented 

IOL(n=10), Tetraflex accommodating IOL (n=6) and a  Rayner Mflex or Acrysof 

concentric ring design IOL (n=8 )  were recruited from Midland Eye, Solihull, UK. 

 

To take part in this study, participants were required to: 

 have corrected visual acuity in the eye being tested of at least 6/7.5 

 be free of any active eye disease 

 not currently taking ocular medications or systemic medications with known 

ocular side effects 

 have had no history of ocular surgery within the previous 3 months 

 Be willing to participate in the study. 
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All patients gave informed consent to take part in the study. The study adhered to the 

tenets of the Declaration of Helsinki and was approved by the Institutional Ethics 

Committee and the research conformed to the tenets of the Declaration of Helsinki. A 

breakdown of the subject demographics is detailed in Table 7.1. 

 

IOL type Segmented Accommodating Concentric 

Age, years (mean ± SD) 60.7±9.3 56.5±6.5 69.3±5.4 

Gender (F:M) 8:2 5:1 4:4 

  Table 7.1: Subject demographic for each IOL group. 

 

The cataract extraction procedure was performed by the same experienced surgeon 

on all subjects using either topical or local anaesthetic. A 2.85mm clear corneal 

incision, widening to 3.2mm before IOL insertion, was positioned along the steepest 

corneal meridian to reduce residual postoperative astigmatism. Phacoemulsification, 

aspiration and irrigation were performed through a 5.5mm diameter curvilinear 

capsulorhexis using the Millennium phacoemulsification system (Bausch & Lomb). All 

presbyopia-correcting IOLs were then implanted in the capsular bag. 

 

Subjects were invited to attend the Ophthalmic Research Group’s laboratories a year 

after their surgery. A sphero-cylindrical refractive examination was conducted by the 

same UK-qualified optometrist (S.K.D) in which positive power was maximised whilst 

maintaining optimum distance vision in order to ensure subjects were wearing the most 

accurate distance prescription. A measurement of the best corrected visual acuity (VA) 

for each eye was taken at this point using a new digital test chart at four metres (Aston 

EyeTech, Birmingham, UK; Figure 7.3). Simultaneous monocular subjective and 

objective defocus curves were then measured using randomised trial lenses from 

+1.50 to -5.00DS in -0.50 steps. Objective measurements were taken using the 

miniaturized Aston open field Hartman-Shack aberrometer (Bhatt et al., 2013) which 
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also measured pupil size and higher order aberrations (a combination of the patient’s 

and the defocus inducing lens aberrations) at each level of defocus blur.  

 

7.3.1. The Aston Aberrometer 

The Aston open-field aberrometer is a miniaturized aberrometer designed to be slit-

lamp mountable and based on the Hartmann-Shack principle (Bhatt et al., 2013). A 

near infrared (840nm) super luminescent diode (SLD) beam of light is transmitted onto 

the retina and reflects back becoming aberrated by the optics of the eye on its return. 

The reflected beam of light is focused by a 47 by 47 lenslet array into 2209 spots and 

captured by a complementary-symmetry metal oxide semiconductor (CMOS) pixel 

camera (Micron Technology, Inc).  The pattern and displacement of the reflected spots 

from the optical axis of each lenslet indicates the shape of the wavefront, which can be 

measured mathematically using Zernike coefficients. Zernike terms up to the 6th order 

are displayed in microns. A second CMOS sensor uses a 940nm light emitting diode 

(LED) to provide an image of the anterior eye which  aids with alignment and pupil 

measurement. Beam-splitting dichroic prisms are positioned in the path of both 

incoming and returning light. Dichroic mirrors 1 and 2 (figure 7.1) allow visible light and 

certain bands of the infra red spectrum to pass through in order to aid viewing of the 

target and in anterior eye imaging. They reflect other bands of the near infrared light 

range for measurement and wavefront sensing purposes (Bhatt et al., 2013).   
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*SHWS: Shack Hartmann wavefront sensor  
 **Light source 1 refers to the 840nm SLD needed for wavefront sensing  
 ***Light source 2 to the 940nm LED required for imaging the anterior eye. 
 

Figure 7.1: Schematic of the Aston aberrometer from (Bhatt et al., 2013). 
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The  Aston aberrometer can be attached to a slit lamp base (figure 7.2) and has an 

open-field and so can measure aberrations over a range of different focal distances 

(Bhatt et al., 2013). 

. 

 

 

 

 

 

 

 

 

 

    

 

 Figure 7.2: Aston aberrometer mounted on a slit lamp base. 
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Subjective DOF was measured by assessing best visual acuity with each defocus trial 

lens. The manifest refraction along with each defocus lens was placed in an Oculus 

Universal Trial Frame (Keeler Ltd., Windsor, UK) which had been adjusted to ensure 

trial lenses were held 12mm from the corneal plane. A new remote test chart 

application called the Aston EyeTech Ipad app was connected from the hand-held 

device to a 23 inch display screen placed four metres away using the Wi-Fi network 

(Figure 7.3). A digital logarithmic progression chart was projected onto this screen 

using the app which allowed letter randomisation to help overcome memory and 

learning effects. 
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Figure 7.3: remote Ipad acuity application. 
 
 
 
Letter sequences on the computerised test chart were randomised for each trial lens 

and subjects requested to read the lowest line on the test chart in order to obtain 

subjective DOF measurements.  When they stopped  reading they were asked if they 

could read any more letters on the line below to ensure the best visual acuity was 
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measured as recommended by Gupta et al. (2008). Each correctly read letter scored 

0.02logMAR. The study set up is illustrated below (Figure 7.4). 
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Figure 7.4: Diagram illustrating the study set-up for the MIOL group. Defocus trial lenses in addition to the patient’s prescription were housed in 
an Oculus trial frame 12mm from the corneal plane. Subjects viewed a distance logMAR chart at 4 meters through the aberrometer, which 
measured pupil size and HOAs at each defocus level simultaneously to the subjective measurement.
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7.4. Statistical analysis 

 

7.4.1. Testing for Normality  

A one-sample Kolmogorov-Smirnov test was used to test for normality. Parametric 

analysis was used for normally distributed data and non-parametric tests for data that 

didn’t follow a normal distribution (Armstrong et al., 2011).  

 

7.4.2. Analysis method 

A one-sample Kolmogorov-Smirnov test revealed that the data was normally 

distributed (Kolmogorov-Smirnov Z = 1.056, P=0.215). A repeated measures ANOVA 

was conducted in SPSS version 21.0 (SPSS Inc., Chicago, USA) with post-hoc testing 

conducted using paired t-tests at each defocus level. Pearson’s bivariate correlation 

coefficient was also conducted to investigate the correlation between the two 

measures for each MIOL. Predicted logMAR acuity was calculated using the LogVSX 

image quality metric.  

 

7.4.2.1. LogVSX visual quality metric 

Snellen acuity indicates the eyes ability to resolve detail and the recorded value for this 

is commonly used to measure a person’s quality of vision. However this type of high 

contrast visual acuity assessment does not indicate the level of photic phenomena, 

such as halos and glare, that is experienced and so on its own provides an insufficient 

assessment of visual performance. Image quality metrics can provide a greater insight 

regarding visual function and thus may be more useful (Ligabue et al., 2009).  They 

can objectively predict optimum sphero-cylindrical correction (Thibos et al., 

2004;Martin et al., 2011) as well as help improve the design of wavefront guided 

refractive corrections such as contact lenses and IOLs (Ravikumar, 2014). 
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VSX refers to the visual Strehl ratio computed in the spatial domain (Martin et al., 

2011) and takes into account optical components of visual processing, such as the 

effect of diffraction and wavefront aberrations, as well as neural effects and shares a 

linear relationship with logMAR acuity (Ravikumar et al., 2011). It can be calculated 

from the optical transfer function (OTF) where the OTF is weighted by the neural 

contrast sensitivity function (CSFN) normalized to the diffraction-limited case (Thibos et 

al., 2004;Ravikumar et al., 2011) as shown in equation 7.1 (Ravikumar et al., 2011). 

                           

           
                                        

 

  

                                          
 

  

 

                          Equation 7.1 

       

Where CSFN is the neural contrast sensitivity function, OTF is the measured optical 

transfer function and OTFDL is the diffraction-limited OTF. 

 

Ravikumar et al. (2011) concluded that the LogVSX was a effective metric with 

numerous uses such as objectively assessing the likelihood of new intraocular lenses, 

designed to increase the depth of focus, producing noticeable blur to the patient.  It 

was also determined that when optical errors are reduced, age does not significantly 

alter the correlation between change in logMAR acuity and change in LogVSX, which 

was thought to occur due to stability of the neural contrast sensitivity function, from 

which LogVSX is calculated. This was therefore believed to further indicate the efficacy 

of such objective visual quality metrics in predicting acuity over a large subject age 

range (Ravikumar, 2014).  

 

Ravikumar et al. (2011) found that change in logMAR acuity was highly correlated with 

six image quality metrics, indicating the use of these metrics to objectively model acuity 

with refractive corrections such as IOLs. Cheng et al. (2004) stated that image quality 
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metrics which take into account the neural contrast sensitivity threshold, such as the 

VSX, are good predictors of visual acuity in through focus experiments. Therefore this, 

together with its strong reported correlation with logMAR (Cheng et al., 2004;Marsack 

et al., 2004;Thibos et al., 2004;Ravikumar et al., 2011;Shi et al., 2013) was the reason 

why LogVSX was selected as the image quality metric with which to predict logMAR in 

this study. The relation between LogVSX and logMAR was presented by Ravikumar et 

al.  (Ravikumar, 2014) and is defined as follows:  

 

  LogMAR acuity = -0.4029 x LogVSX – 0.1579         Equation 7.2 

 

7.4.3. Sample size calculation 

Sample size for earlier studies that have investigated defocus curves in MIOL patients 

tend to vary with subject numbers ranging from 6 (Plakitsi et al., 1995) to 60 and above 

(Buckhurst et al., 2012). It is difficult to accurately calculate study sample sizes 

because of differences in defocus curve testing procedures and analysis as recognised 

by Buckhurst (2011). However, Armstrong and colleagues advised at least 15 degrees 

of freedom for repeated measure type statistics (Armstrong et al., 2000), which was 

achieved. 
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7.5. Results 

Objectively measured predicted defocus curves for each IOL type are shown below in 

figure 7.5. Predicted acuity was optimal around plano, as expected, for all IOLs. There 

was a gradual reduction in acuity with increasing defocus lens power either side of 

plano. There appeared to be a slower deterioration in acuity between -3.00D and -

4.50D  for the concentric MIOL, around -3.00D for the Oculentis segmented MIOL and 

from -2.00D and -2.50D for the Tetraflex AIOL, signifying stimulation of the near portion 

of the presbyopia correcting IOLs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5: Average predicted defocus curves, measured using the Aston aberrometer, 
as a function of target vergences for lenses between +1.50DS and -5.00DS in 0.50 
steps for patients implanted with the Oculentis segmented (n=10), Tetraflex 
accommodating IOL (n=6) and Concentric ring design IOL(n=8). 
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A more noticeable double dip occurred at the near point with subjectively measured 

defocus curves (figure 7.6), especially for the concentric (figure 7.7) and segmented 

IOLs (figure 7.8), indicating an overestimation of intermediation vision and 

underestimation of the near focusing ability with objective measures. This is not the 

case for the Tetraflex AIOL, which instead appears to perform better overall with 

objective compared to subjective measures (figure 7.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Subjectively measured defocus curves for lenses between +1.50DS to -
5.00DS for each IOL design type.  
 

A repeated measures ANOVA showed a difference in visual acuity between the three 

IOL types, (ANOVA F=15.506, P=0.001) and also between subjective and objective 

defocus curve measures (F=6.685, P=0.049). This was investigated further using a 

series of paired t-tests, which showed that on the whole subjective and objective 
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measures related well with each other for minus defocus lenses, with discrepancies 

mainly found between the two measures for positive defocus lenses. There was no 

statistically significant difference between subjective and objective defocus curves with 

lenses from +0.50DS to -5.00DS in the Oculentis segmented MIOL group (Paired t-

test: p>0.05). A difference was found with this MIOL for +1.50DS (p= 0.022) and 

+1.00DS (p=0.017). Similarly there was no statistically significant difference between 

the two measures for lenses between +1.00DS and -5.00DS in the Tetraflex AIOL 

group (Paired t-test: p>0.05) with the only statistically significant difference found with a 

+1.50DS lens (p=0.018).  For the concentric ring group, the two measures related well 

with each other for most lenses between -0.50DS and -5.00DS (p>0.05). A difference 

was found between subjective and objective measures at -1.00DS (p=0.010) and -

3.00DS (p=0.015). There was again a discrepancy with positive defocus with 

differences found at +1.50DS (p=0.002), +1.00DS (p=0.002), +0.50DS (p=0.007) and 

plano (P=0.022).  
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Figure 7.7: Predicted versus measured logMAR acuity with the concentric ring MIOL. 
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Figure 7.8: Predicted versus measured logMAR acuity for the Oculentis segmented 

lens. 
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Figure 7.9: Predicted versus measured logMAR acuity for the Tetraflex AIOL. 

 

 

 

 

 

Tetraflex

Defocus lens (D)

-5-4-3-2-1012

V
is

u
a

l 
a

c
u
it
y
 (

lo
g

M
A

R
)

0.0

0.2

0.4

0.6

0.8

1.0 Measured VA

Predicted VA



 

218 
 

Defocus lens (D)

-5-4-3-2-1012

D
e
lt
a
 l
o
g

M
A

R

-0.6

-0.4

-0.2

0.0

0.2

0.4

Delta logMAR, which refers to the mean predicted acuity minus mean measured 

acuity, for all target vergences was -0.06 ± 0.21 logMAR.  Therefore, on average 

across all defocus lenses and for all IOLs, the average predicted logMAR was three 

letters better than average measured acuity (figure 7.10).  

Figure 7.10: Mean Delta logMAR data (Predicted logMAR – Measured logMAR) for all 
IOLs, as a function of target vergences.  
 

 

This can be reduced to 0.00 ± 0.22 logMAR by steepening the slope of the model used 

to predict acuity as follows: 

  

 logMAR acuity = -0.462 x LogVSX – 0.1579                    Equation 7.4 
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Ravikumar et al. (2014) used average data obtained from a cohort of largely young 

subjects with good visual acuity. Subjects participating in the present study were 

principally recruited from an older age range. Although the correlations between 

change in logMAR acuity and change in LogVSX were reported to remain true 

regardless of variation in starting acuity (Ravikumar, 2014),  the slope of the model 

used to predict acuity could be adjusted to account for this difference in subject age 

range and is the subject of future research.  
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A strong positive correlation was found between measured and predicted logMAR for 

all three types of IOL (table 7.2, figure 7.11).    

 

 
Concentric 
objective 

Oculentis 
objective 

Tetraflex 
objective 

Concentric 
subjective 

Pearson 
Correlation 

.812** .906** .861** 

Sig. (2-tailed) .000 .000 .000 

N 14 14 14 

Oculentis 
subjective 

Pearson 
Correlation 

.759** .860** .831** 

Sig. (2-tailed) .002 .000 .000 

N 14 14 14 

Tetraflex 
subjective 

Pearson 
Correlation 

.948** .988** .973** 

Sig. (2-tailed) .000 .000 .000 

N 14 14 14 

 

Table 7.2: Pearson’s correlation between subjective and objective depth of focus 

measures for the three different presbyopia correcting IOL types. 
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    Figure 7.11: Predicted visual acuity as a function of measured acuity.  
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7.6. Discussion 

Simultaneous subjective and objective defocus curves were conducted in patients 

implanted with two different types of MIOL and an AIOL to determine whether objective 

defocus measurements can reliably predict patient clear range of focus, as measured 

by subjective visual acuity at different levels of defocus. Current subjective procedures 

are lengthy and do not enable important additional measures such as defocus curves 

under different luminance or contrast levels to be assessed. This, therefore, may limit 

our understanding of these advanced technology IOLs especially their performance in 

sub-optimal conditions. This is especially important since there is often a mismatch 

between the visual performances achievable in a relatively well-lit testing room 

compared to the real-world.  

 

In general, the segmented MIOL wearers benefitted from better vision compared to the 

concentric ring and AIOL groups and this was true for both subjectively and objectively 

measured acuity (figure 7.5-7.6). Subjective defocus curves with MIOLs usually show a 

double dip corresponding to maximum visual acuity at distance and near vision 

(Maxwell et al., 2009;Buckhurst et al., 2012;Berrow et al., 2014). For the concentric 

ring (figure 7.7) and segmented MIOLs (figure 7.8) this classic double dip was present, 

with maximum vision at 0D corresponding to optimal distance vision and around -

3.00D corresponding to near vision,  for both lenses. As expected, there was no double 

dip in the subjective defocus curve with the AIOL (figure 7.9), which seemed to perform 

moderately better at intermediate distances. There is some evidence that there is a 

reduction in accommodative ability with AIOLs (Hancox et al., 2006;Wolffsohn et al., 

2006b) as soon as six months post-implantation (Wolffsohn et al., 2006b) and a high 

incidence of anterior and posterior capsule opacification (Mastropasqua et al., 2007) 

which may have contributed to the comparative under-performance of this IOL type. 

Paired t-tests showed that in general, subjective and objective measures related well 

with each other for minus defocus lenses, especially for the segmented MIOL and 
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AIOL, with discrepancies between the two measures mostly found with positive 

defocus. For the concentric ring design MIOL, objective measures over-estimated 

visual acuity compared to subjective measures at intermediate distances and under-

estimated at near. While objectively predicted visual acuity and subjective 

measurement across a range of levels of defocus were strongly correlated (figure 

7.11), the profile of the defocus curve was largely masked by the objective prediction of 

acuity. Hence objective measures cannot currently reliably predict patient clear range 

of focus as measured by subjective visual acuity at different levels of defocus. This 

could be due to the spot size of the aberrometer not detecting the multifocal optics of 

the lenses, although this seems unlikely with the dense array of the Aston aberrometer 

and the large area of the segment in the Oculentis IOL. The alternative is the metrics 

do not fully account for the neural factors, especially under blurred viewing conditions 

as they were developed to predict optimum refraction for clear vision. Hence future 

research will be needed to see whether these metrics can be further developed for this 

purpose. 
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CHAPTER 8: Conclusions 

 

 8.1. General conclusions 

Premium IOLs can provide better visual outcomes compared to standard monofocal 

IOL designs leading to greater levels of spectacle independence and better vision post-

operatively (Leyland et al., 2003;Bi et al., 2008;Alio et al., 2011a;Ong et al., 2014).  

The central experimental theme of the thesis has been to evaluate techniques to 

enhance the assessment of and visual performance with premium or advanced 

technology IOLs specifically toric, multifocal and accommodating IOLs.  

 

The first part of the thesis concerned IOLs designed to correct astigmatism. Rotation of 

an implanted toric IOL can significantly diminish visual acuity therefore precise IOL 

alignment is vital to attaining good levels of vision in astigmats.  The development of 

IOLs has evolved rapidly and new lens design features have been incorporated in 

order to minimise intracapsular rotation (Buckhurst et al., 2010b;Ale et al., 2012b). 

However it appears that toric IOL rotation is still an inevitable outcome, as studies have 

shown small amounts of rotation occur despite advances in current IOL designs. Thus 

an alternative avenue focussing on the development of an optical mechanism to 

increase the patient’s ability to accept small amounts of rotation was instead proposed.  

A novel toric IOL design idea was devised and its potential to improve patient tolerance 

to toric IOL misalignment, without significantly detracting from distance visual acuity, 

was tested. The proposed idea involved splitting the astigmatic power of a toric IOL 

across both surfaces and misaligning their axes slightly. However, splitting toric power 

in this way was found to have no statistically significant improvement on visual acuity 

retention compared to a standard toric design. Toric IOL rotation is one of the main 

sources of patient dissatisfaction (Ale et al., 2012b) especially with higher cylinder 

powers; a faster and larger drop in visual acuity was observed with lens rotation in this 
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study, as expected. Therefore compensating for the effect of lens rotation is crucial in 

order to maximise visual performance. 

 

Like rotation, tilt can also decrease the effectiveness of an IOL and limit visual success 

post-operatively, although its visual impact is not reported to be as visually debilitating 

(Taketani et al., 2004;Kumar et al., 2011;Madrid-Costa et al., 2012). Current methods 

of assessing lens tilt can be quite lengthy and require the use of specialist equipment. 

Therefore a new, faster and more cost-effective objective method of IOL tilt 

assessment was proposed using equipment that is readily accessible in the majority of 

optometry and ophthalmology clinics. This new method requires photographic 

assessment of an implanted IOL, followed by measurement of the width to height ratio 

of the central lens optic using imaging software. From this the angle of tilt can be 

solved using the cosine trigonometric function. The validity and repeatability of the 

technique was investigated in vitro using an IOL placed on a custom made stand and 

imaged using a high resolution digital camera. This technique was found to give 

accurate calculated tilt measurements and also shown to be highly repeatable.    

 

While the link between IOL tilt and decentration has been studied in depth, the 

relationship between tilt, decentration and rotation is not so clear, therefore the next 

part of the thesis aimed to investigate this. An IOL was implanted and imaged digitally 

at set intervals after surgery. Tilt was assessed in this large cohort of patients using the 

new, objective tilt evaluation technique described earlier. Rotation was analysed from 

the position of the toric markings and lens decentration was measured in relation to the 

pupil. A link was anticipated between these three factors due to similarities in their 

potential cause, however linear regression analysis revealed a poor correlation 

between IOL tilt, decentration and rotation indicating they occur independently of each 
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other. The relationship between IOL tilt, rotation and tilt was examined with just one 

type of IOL design, a closed loop aspheric lens, and this may have limited our ability to 

fully investigate the association between these factors. Future studies will investigate 

the link between these IOL alignment factors with multiple different lens designs 

featuring varying haptics.  

 

Hence the chapters in the first part of the thesis focussed on toric IOLs and showed the 

importance of correcting even low levels of corneal astigmatism in order to optimise 

vision. These investigations also demonstrated that objective analysis of digital retro-

illumination images following surgery can allow IOL stability to be assessed relatively 

easily and precisely using standard ophthalmic equipment.  

 

The remaining chapters examined the other principal form of premium IOLs, those 

designed to overcome presbyopia. The first of these investigated the distribution of 

light by the optics of different types of MIOL and an AIOL, in order to determine 

whether there were measureable differences in the retinal projection of light between 

these lenses. Visual field examination was performed using the Humphrey visual field 

analyzer in order to determine the efficacy of this test in identifying retinal threshold 

differences created as a result of the mechanism of action of each lens type. 

Depending on how test points were divided during the analysis, a difference in 

threshold loss in the superior section of the visual field could be detected using this 

technique. However this was not thought to be related to the IOL optics but instead 

attributed to natural differences in the function of the superior visual field compared to 

the inferior field (Previc, 1990;Danckert et al., 2003;Silva et al., 2008). Anticipated 

differences in perimetry thresholds between IOLs were not found.  Therefore it was 

concluded that perimetry was not a useful technique with which to map and compare 
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the retinal projection of different presbyopia correcting IOLs in order to gain a greater 

insight into their mechanism of action and to inform optimal MIOL design.  

 

The final part of the thesis examined the influence of pseudoaccommodative factors 

(Legge et al., 1987;Atchison et al., 1997;Ciuffreda et al., 2007b), such as blur tolerance 

and higher order aberrations, on the observed difference between subjective and 

objective measures of accommodation (Marcos et al., 1999b;Wold et al., 2003;Macsai 

et al., 2006;Wolffsohn et al., 2006b) in order to ascertain how much additional objective 

power would be needed to restore the eye’s focus with AIOLs. Blur tolerance was 

found to be the key factor driving subjective range of focus beyond objective measures 

in pre-presbyopes, with an approximate dioptric contribution of 0.60D. As anticipated, 

pupil size decreased with accommodative effort but was not found to be a key factor 

influencing the difference between subjective and objective accommodation. Axis shift 

AIOLs are designed to increase the optical power of the eye by moving within the 

capsular bag during near vision. However, many researchers have found there to be 

only a moderate benefit to near vision with these lenses (Wolffsohn et al., 

2006a;Wolffsohn et al., 2006b;Cleary et al., 2010;Sheppard et al., 2010;Takakura et 

al., 2010;Wolffsohn et al., 2010b). Given blur tolerance contributes 0.60D, in order to 

provide adequate near focussing ability at a standard 33cm reading distance, 2.40D of 

additional power would be required. Given that Wolffsohn et al. (2011b) found 

approximately 80% of accommodation can be used for sustained near tasks, an AIOL 

would need to provide 3.00D of near power at this working distance, which is beyond 

the theoretical limit of most hinge AIOLs and around the limit of dual optic AIOLs. This 

therefore, may explain the observed underperformance of AIOLs at near compared to 

MIOLs.  
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Having examined the factors affecting the range of clear focus in AIOLs, the next 

chapter explored how aberrometry might provide a more objective measurement of the 

range of clear focus for MIOLs. Current subjective procedures are long and do not 

enable important additional measures to be undertaken such as defocus curves under 

different luminance or contrast levels which may limit our understanding of  MIOLs.   

The use of faster objective techniques was thus examined. Simultaneous subjective 

and objective defocus curves were conducted in patients implanted with two different 

types of MIOL and an AIOL, to determine whether objective defocus curve 

measurements taken with an aberrometer, could reliably predict range of clear focus 

as compared to subjective measures. In general, although subjective and objective 

measures related well with each other, the peaks of the defocus curve profile of the 

two MIOLs was largely hidden in the objective prediction of acuity. Hence at present, 

objective measures are not able to reliably predict the range of clear focus as 

measured by subjective visual acuity at different defocus levels. This could be because 

the metrics do not fully account for the neural factors, as they were developed to 

predict optimum refraction in young observers with clear vision. Future research would 

therefore need to focus on developing these visual metrics further for this purpose.   

 

 
8.2.  Main limitations  

In the first study, the potential of a new split power toric IOL design in increasing 

patient tolerance to lens rotation was evaluated. High contrast visual acuity was used 

to measure visual performance in this study; however this test alone may not have 

been sufficient to detect subtle changes in vision with this novel design idea. Therefore 

additional studies incorporating a battery of visual assessment tests, including more 

sensitive measures of visual function such as low contrast visual acuity and reading 

speed (Watanabe et al., 2013) may improve the ability to ascertain whether there is 

any visual benefit to a split surface design approach for toric correction. Another 
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limitation of this study was the absence of any trial frame verification techniques to 

ensure consistency in orientation of the trial frame and trial lenses, and so should be 

adopted for future studies.  

 

The next chapter evaluated a new, simplified mathematical technique for measuring 

IOL tilt using more readily available ophthalmic equipment. Imaging software was used 

to calculate IOL measurements; however the objectivity of the technique could be 

improved by the development of an automated process to determine these IOL 

dimensions.  

 

In the succeeding chapter, this new tilt evaluation technique was utilised to measure 

IOL tilt in vivo, in a large cohort of subjects. Good quality digital images are important 

in obtaining accurate and valid measurements of IOL position. Accurate set up of 

ophthalmic and imaging equipment as well as correctly directing the subject’s gaze is 

therefore essential to prevent erroneous measurements. Use of reference markers to 

ensure consistent eye position during photography is recommended however as this is 

determined using subjective judgement there is potential for human error. Therefore 

development of an automated system to identify key anatomical features would be 

advantageous and further increase the objectivity of the new IOL tilt technique. The 

new method presented is also susceptible to the effects of corneal astigmatism, which 

if uncorrected, could make an imaged IOL appear more tilted than it truly is. Although 

the theoretical impact of uncorrected astigmatism on tilt error was estimated, no 

refractive information was available for the in vivo study which is a limitation of the 

study since true IOL tilt may have been masked to some extent. For the in vivo study, 

regression analysis showed that the majority of IOL tilt occurred within 48 hours of 

surgery however the study did not measure IOL position intra-operatively which may 
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be beneficial in future studies to further understand the mechanisms behind IOL mal-

position. 

 

The potential for perimetry to assess the retinal light projection through an implanted, 

advanced technology IOL was evaluated in chapter 5. In order to minimise patient 

fatigue due to the multiple testing required with distance and near correction, the SITA-

fast strategy was selected. This calculates the threshold sensitivity of a primary point 

located in each of the four visual field quadrants using a double reversal strategy in 

order to predict the starting stimulus intensity of neighbouring test points, which are 

measured using a single reversal strategy (Bengtsson et al., 1998a).It is ideally used 

on reliable patients; however given that subjects were older, SITA fast may not have 

been the most appropriate threshold testing strategy for this cohort. Such advanced 

technology IOLs consist of complex optics within a very small area and so small 

changes in head and eye position during testing could have affected testing accuracy. 

Head and eye position was monitored by the examiner using the internal camera; 

however the use of reference markers should perhaps have been employed to ensure 

consistency in head and eye position during testing.     

 

The next chapter investigated the impact of pseudoaccommodation on driving 

subjective measures of accommodation beyond objective measures as it was 

envisaged that this information could help inform the level of additional objective power 

an AIOL would need in order to restore the eye’s focus. It is difficult to accurately 

calculate study sample sizes because of differences in defocus curve testing 

procedures and analysis as recognised by Buckhurst (2011). The sample size in the 

present study, as well as in the next study, was relatively small and so larger sample 

sizes are recommended in future studies. 
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 The final chapter explored whether aberrometry could provide accurate and 

repeatable objective measurement of the range of clear focus with MIOLs. However 

the prediction metrics used had been developed to predict optimum refraction in clear 

vision which may explain why they were not able to reliably predict the defocus curve 

profile. This was therefore a limitation of the study and future research will need to 

focus on further developing these visual metrics.  

 
 
8.3. Concluding statement 

The investigations detailed in the thesis have explored methods of improving visual 

performance with and assessment of premium IOLs. Toric IOLs are effective in 

correcting corneal astigmatism with generally good levels of patient satisfaction 

reported postoperatively (Ahmed et al., 2010;Agresta et al., 2012;Waltz et al., 2014).  

However a potential complication of toric IOL implantation is lens misalignment which 

can reduce the effectiveness of the toric correction (Langenbucher et al., 2009;Jin et 

al., 2010;Kim et al., 2010;Ale et al., 2012a;Visser et al., 2013). The development of 

innovative toric IOL design ideas aimed at  enhancing the patient’s ability to tolerate 

toric IOL rotation may be beneficial as small amounts of rotating motion are 

unavoidable with current toric IOLs.  

 

The development of toric, multifocal and accommodating IOLs have provided surgeons 

with greater flexibility and given rise to the potential for patients to benefit from superior 

quality of vision compared to standard monofocal IOLs. However, to achieve optimum 

vision with premium IOLs, it is crucial for the lens to both attain and maintain a stable 

position within the capsular bag, which is not always the case.  

 

While IOL designs have evolved rapidly in order to prevent misalignment of an 

implanted lens, the techniques used to assess IOLs have not progressed as rapidly. 

There is a need for faster objective methods of vision assessment with premium IOLs, 
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as this could provide greater insight into several aspects of their optical performance 

that are not yet fully understood, such as performance under different lighting 

conditions. These evaluations could provide useful information to help improve future 

lens designs and more crucially further enhance patient satisfaction post-operatively. 
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Appendices 

 

A1. Ocular aberrations 

The human eye is not a perfect, diffraction-limited optical system (Cervino et al., 2008). 
Irregularities in ocular structures, particularly the cornea, give rise to higher order 
aberrations (Liang et al., 1997;He et al., 2000;McLellan et al., 2002;Charman, 2005). 
Although it is generally accepted that aberrations degrade retinal image quality and 
therefore restrict the eye’s visual capability (Queiros et al., 2010), some reports 
suggest certain aberrations may in fact be beneficial to vision (Liang et al., 1997;Rocha 
et al., 2009b).  Smirnov (1961) was one of the first to recognize the potential to 
enhance human vision by modifying the eye’s aberrations.  
 
The range of higher order aberrations that can occur in the human eye is extensive. It 
is generally accepted that no two people possess identical aberration profiles; instead 
every individual is thought to comprise both a unique pattern and quantity of different 
aberrations (Walsh et al., 1984;Liang et al., 1994;Liang et al., 1997;Thibos et al., 
2002;Artal et al., 2006;Piers et al., 2007;Sawides et al., 2011;Williams, 2011).  Whilst 
there is much inter-subject variability with regards to the specific pattern and quantity of 
ocular aberrations present, there is little intra-subject variability. In fact there appears to 
be a positive correlation in the aberration pattern between a person’s right and left eye, 
which implies that aberrations are not just random imperfections, but fulfil a role in 
human vision that has yet to be fully understood (Walsh et al., 1984;Liang et al., 
1997;Thibos et al., 2002;Charman, 2005;Artal et al., 2006). Yeh et al. (2007) enrolled 
monozygotic and dizygotic twin pairs in a study in order to investigate the role of 
genetics in determining refractive error, corneal curvature and anterior corneal 
aberrations. They found a moderate correlation between the right and left eyes for 
vertical coma, secondary vertical coma, spherical aberration and secondary spherical 
aberration in monozygotic twins and between vertical coma, secondary horizontal 
coma and spherical aberration for dizygotic twins. They concluded that corneal 
aberrations, specifically spherical aberration and corneal astigmatism had a higher 
genetic predisposition compared with refractive error and other aberrations. This is in 
agreement with Dirani et al. (2009) who also identified a potential genetic component 
for HOAs. 
 
Wavefront error maps can be used to convey information about the pattern of 
aberrations present (Holladay, 2009;Ravikumar, 2014) but generally do not clearly 
express the visually debilitating effect of wavefront error or which aberrations are 
present and in what quantity (Ravikumar, 2014).  The root mean square (RMS) 
wavefront error provides a numerical value for the total ocular aberration but also does 
not specify the precise pattern of aberrations that constitute this total (Artal et al., 
2004;Sawides et al., 2010). Wavefront aberration can also be arranged in terms of its 
Zernike polynomial which allows all aberrations to be categorized precisely and 
determination of the contribution of each aberration to the total RMS error (Applegate 
et al., 2003a;Charman, 2005).  Aberrations in the Zernike pyramid degrade visual 
acuity (VA) differently and therefore some impact on visual performance more so than 
others. Applegate et al. (2002) studied second, third and fourth order aberrations and 
found that aberrations towards the centre of the Zernike pyramid, with a lower angular 
frequency, produced a greater loss in VA compared to more peripherally located 
aberrations with higher angular frequencies. Thus defocus was found to degrade the 
visual image more so than astigmatism, likewise coma impacted on VA more than 
trefoil, and both spherical aberration and secondary astigmatism were found to be 
more detrimental to VA than tetrafoil (Applegate et al., 2002).  
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Visual performance is most commonly assessed using high contrast photopic 
assessment of visual acuity. The association between aberrations and visual 
performance is complex as some aberrations degrade visual quality more so than 
others and this formed the basis for the development of image quality metrics which 
are more highly correlated to measures of visual performance (Ravikumar, 2014). 
 
 
A1.1. Visual quality metrics 

While Snellen acuity is used to evaluate the eyes ability to resolve detail, on its own it 
provides an insufficient assessment of visual performance. Image quality metrics can 
provide a greater insight regarding visual function and thus may be more useful 
(Ligabue et al., 2009).   
 
 
A1.1.1. Modulation Transfer Function 

Visual quality metrics such as point spread function (PSF), modulation transfer function 
(MTF) and Strehl ratios can be used to assess visual performance. The MTF (see 
figure A1.1) illustrates how a point of light is distorted by the optics of the eye (Thibos 
et al., 2004;Ligabue et al., 2009).  
 
 

 
 
Figure A1.1: Example of the MTF taken from a subject implanted with a concentric ring 
design MIOL. When the area beneath the MTF is maximised, better image quality is 
achieved (Ligabue et al., 2009).  
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The MTF characterizes the resolution capability of an optical system or lens (Fujita et 
al., 1992) and is a commonly used measure of image quality (Wang et al., 
2007;Roorda, 2011;Woolliams et al., 2011). In general, measurement of the MTF 
utilizes the relationship between the spatial frequency of an image and modulation 
amplitude. Spatial frequency describes the rate of change in image luminance as a 
function of length and is usually expressed in cycles per degree, a unit which describes 
the number of cycles of a grating that subtend a one degree angle at the eye. 
Modulation amplitude is a measure of the difference in the maximum and minimum 
luminance of a grating. For a certain spatial frequency the modulation amplitude will be 
zero, at which point image intensity is uniformly spread. With increasing lens quality, 
there is a concurrent increase in the spatial frequency at which this point is reached, 
and this forms the basis of assessing lens quality using MTFs (Millodot, 2009).   
Lopez-Gil et al. (1998) developed a near-infrared double pass imaging device in order 
to better understand the changes that occur to HOAs in the accommodated eye. They 
used a 784nm infrared light as opposed to the 632nm laser light that is typically used, 
in order to reduce dazzle and enable a truer measure of the effect of accommodation 
on aberrations to be obtained.  Lopez-Gil et al. (1998) computed and then compared 
the MTF for the accommodated and unaccomodated eye and found that the MTFs 
were similar but generally slightly worse in the accommodated eye; this is consistent 
with the drop in image quality that occurs with accommodation (He et al., 2000). The 
eye’s natural response when focusing at close distances is characterized by the near 
vision triad, the components of which include binocular convergence, pupil miosis and 
accommodation (Kothari et al., 2009;Bogdan et al., 2010). The similarity in the MTFs 
between the unaccommodated and accommodated eye was attributed in part to this 
near vision triad due to the constricted pupil present in the accommodated eye. 
Defocus due to accommodative error is considered to be the main cause of image 
quality degradation during accommodation (Artal, 2000). A smaller pupil can help to 
negate some of this loss in image quality resulting in a similar MTF between the two 
accommodative states (Lopez-Gil et al., 1998).  
 
 
A1.1.2. Point Spread function 

A point spread function provides a mathematical description of the distribution of light 
that has been emitted from a point source. It essentially characterizes the response of 
an imaging system to a point source (Huang et al., 2002;Roorda, 2011).  Objects may 
be considered an amalgamation of several point sources of light. The process by which 
all these points are overlapped to form an object is known as a convolution and from 
this the PSF can be calculated (Ligabue et al., 2009). The shape and spread of the 
PSF is influenced by factors such as pupil size. As pupil size increases so too do the 
levels of wavefront aberrations which directly impact on the PSF. The point spread 
function that would be produced in a perfect, diffraction limited optical system, is 
commonly known as an Airy disk (Millodot, 2009). In highly aberrated eyes, an infinitely 
located point source would neither be imaged as a point nor a rotationally symmetric 
blurred point, instead the PSF would take on a more complex form (Ravikumar, 2014). 
 
 
A1.1.3. Strehl ratio 

The Strehl ratio is an example of a visual quality metric and is given by the ratio of the 
peak height of the PSF being measured to the peak height in a perfect optical system 
(Thibos et al., 2004). It ranges from 0 to 1 with greater Strehl ratios indicating better 
image quality (Hofer et al., 2001;Roberts Jr et al., 2004;Ligabue et al., 2009) and can 
be calculated as shown in equation A1.1. 
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                      Equation A1.1 
       Where DL is the PSF in a diffraction-limited system, for the same pupil diameter. 
 
 
A1.1.4. LogVSX 

As alluded to in chapter 7, VSX shares a linear relationship with logMAR acuity 
(Ravikumar et al., 2011) and can be calculated as shown in equation 7.1. Ravikumar et 
al. (2011) concluded that the LogVSX was an effective metric with numerous uses 
such as objectively assessing the likelihood of new intraocular lenses, designed to 
increase the depth of focus, producing noticeable blur to the patient.   
 
 
A1.2. Factors affecting ocular aberrations 

Ocular aberrations do not remain constant throughout life; instead they are dynamic 
and change with pupil size, age and accommodation (Artal et al., 2002;Holladay et al., 
2002;Artal et al., 2004;Ferrer-Blasco et al., 2009;Queiros et al., 2010;Li et al., 2011).  

 

A1.2.1. Pupil size 

Liang et al. (1997) found that ocular aberrations vary with pupil size, with dilated eyes 
typically found to be more susceptible to aberration associated visual degradation than 
smaller pupils. This was corroborated by Applegate et al., (2007) who measured ocular 
aberrations in 146 subjects aged between 20 and 80 years, with pupil diameters of 3, 
4, 5, 6 and 7mm and found that the RMS wavefront error increased with larger pupil 
diameters for any given age group. It was also established that fourth order aberrations 
and above did not impact greatly on retinal image quality when pupil size was small, 
yet the same aberrations had a considerable impact on image quality in a dilated pupil 
(Liang et al., 1997).      
 

A1.2.2.  Age 

With age, there occurs a gradual rise in ocular aberrations (McLellan et al., 
2001;Brunette et al., 2003;Fujikado et al., 2004) particularly those originating from the 
crystalline lens (Wang et al., 2003a;Ferrer-Blasco et al., 2009) in addition to a 
measured and systematic fall in both retinal image quality (Artal et al., 2002;Holladay 
et al., 2002;Charman, 2005) and contrast sensitivity (McLellan et al., 2001). Berrio et 
al.  (2010) found that the higher order aberrations of the complete eye increased at a 
rate of approximately 0.032µm/year with relative increases in SA of about 
0.0011µm/year and horizontal coma of approximately 0.0017 µm/year.  
 

A1.2.3. Accommodation 

As mentioned previously, age-related lenticular changes are known to affect the overall 
wavefront aberration of the eye by generating increased aberrations. Similarly 
lenticular changes due to accommodation also affect the total wavefront aberration of 
the eye. A young eye is able to bring into clear focus objects at close distances 
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because of its ability to accommodate; this ability declines gradually with age in a 
process termed presbyopia (Gilmartin, 1995). As the eye accommodates the crystalline 
lens undergoes significant changes to both its shape and location within the eye, in 
order to focus objects at varying distances. Both of these changes occur in response to 
ciliary muscle contraction (Helmholtz, 1855;Glasser et al., 1998). For near objects the 
ciliary muscle contracts forcing the young and flexible crystalline lens to adopt a more 
convex form, with a greater positive refractive power. This enables close objects to be 
precisely focused onto the retina to produce a sharp image. It is the misalignment of 
the crystalline lens in relation to other ocular structures that is thought to initiate the 
change in high order aberrations during accommodation (He et al., 2000). 
 
Artal (2000) suggested that on the whole ocular aberrations decreased with 
accommodation. Li et al. (2011) stated that spherical aberration, which reportedly 
decreases in relation to accommodative effort, changes more than any other aberration 
during accommodation. Other aberrations such as defocus and coma are also known 
to change with accommodation; however the precise direction of this change is less 
certain and appears to vary considerably from one individual to the next (Lopez-Gil et 
al., 1998;He et al., 2000;Charman, 2005;Li et al., 2011).  
 
In summary, there is much ambiguity as to the exact nature of the change in ocular 
aberrations that occur during accommodation with trends appearing to vary 
significantly between subjects.  
 
A1.3. Measurement of ocular aberrations 

Ocular aberrations can be measured in a number of ways. One of the earliest methods 
used for this purpose was the Foucault knife edge test, which is a simple and 
inexpensive test first described by Léon Foucault in 1858. In this test light is directed 
onto a knife edge either at or close to the centre of the mirror’s radius of curvature, in 
doing so surface defects are amplified (Gaviola, 1936;Vandenberg et al., 1993).  
In recent times two different methods of assessing the wavefront aberration of the eye 
have evolved; the first technique involves comparing pairs of double pass retinal 
images and computing the wave aberration. The second more popular method is 
through the use of an aberrometer (Vandenberg et al., 1993;Liang et al., 1997;Porter et 
al., 2001;Kuroda et al., 2002).  
 

A1.3.1. Double pass retinal imaging 

This retinal imaging technique involves directing a point source, such as an infra red 
laser light, onto the retina and capturing images after retinal reflection and double pass 
through the ocular media. From these double pass images the modulation transfer 
function (MTF), which indicates the optical performance of the human eye and point 
spread function (PSF) can be calculated (Artal, 2000;Diaz-Douton et al., 2006). The 
wavefront aberration of the eye can also be measured from this using phase-retrieval 
techniques (Artal et al., 1995;Lopez-Gil et al., 1997;Prieto et al., 2000).  
 
Originally, red 632nm light was used in this system, however,  it was later shown that 
substituting this for a green 543nm light potentially reduced light scatter at the retina, 
which in turn improved the quality of the retinal images allowing more accurate 
estimates of the ocular MTF to be obtained (Williams et al., 1994;Lopez-Gil et al., 
1997). The first double pass setup used equal entrance and exit pupil sizes, however 
this proved to be a major limitation of the system since it enabled only even aberrations 
to be imaged; important information about odd aberrations such as coma were lost. 
Without this vital phase information, although the MTF could be computed correctly, 
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the shape of the PSF was difficult to determine and consequently the wave aberration 
of the eye could not be accurately judged. To overcome this asymmetrical, sized 
entrance and exit pupils were used and was found to be an effective solution since it 
allowed the shape of the PSF to be accurately ascertained and this could then be used 
to recover accurate information about the wavefront aberration in the eye (Artal et al., 
1988;Artal et al., 1995;Iglesias et al., 1998a;Iglesias et al., 1998b).  While there is no 
doubt that double pass retinal imaging is a useful technique, it is known to 
underestimate retinal image quality.  As such it has largely been superseded by other 
more accurate methods of wavefront assessment such as aberrometry (Artal et al., 
1994;Williams et al., 1994;Artal et al., 1995;Prieto et al., 2000).  
 
A1.3.2. Aberrometry 

There are several types of aberrometer currently available to measure ocular 
aberrations; all are based upon slightly different measurement principles. The three 
leading types of aberrometer include the Hartmann-Shack objective wavefront sensor 
(Cheng et al., 2003;Charman, 2005;Miranda et al., 2009;Bueno et al., 2010;Yu et al., 
2010) (Cheng et al., 2003), the Tscherning objective aberrometer  (Kaemmerer et al., 
2000;Mrochen et al., 2000) and the Ray tracing aberrometer (Molebny et al., 
2000;Moreno-Barriuso et al., 2001).  Of the three, the Hartmann-Shack is currently the 
preferred aberrometer since it is thought to allow a faster and more accurate evaluation 
of the eye’s higher order aberrations (Prieto et al., 2000;Cheng et al., 2003;Miranda et 
al., 2009;Bueno et al., 2010;Yu et al., 2010).  
 
A1.3.2.1. Hartmann-Shack aberrometer 

A Hartmann-Shack wavefront sensor provides a relatively simple but accurate method 
of measuring the aberrations of the human eye. A spot of coherent light approximately 
1mm wide is directed onto the fovea and reflects back from the retina. The Hartmann-
Shack wavefront sensor uses this emerging spot of light alongside wave-front 
estimation with Zernike polynomials to measure the actual wavefront of that eye (Liang 
et al., 1994;Charman, 2005). This system generally consists of identical microlenses 
also known as lenslets, set in a regular pattern. These lenslets, typically around 1024 
in current commercially available devices, bring to a focus any of the reflected light that 
reaches them. In an aberration free eye, the lenslets will focus light at its precise focal 
point and a charged couple device (CCD) camera is carefully placed to coincide with 
the plane of ideally focused points that would be produced in such an eye. A focusing 
target is incorporated into the system and often also a means of correcting the subjects 
existing refractive error (Charman, 2005;Rocha et al., 2009a).  
 
In a perfect eye, the reflected light would be composed of parallel light rays, in other 
words a plane wavefront. These parallel light rays would be focused by the lenslets at 
their focal point on the optical axis which would fall perfectly onto the camera sensor to 
produce perfectly positioned point images, set in an identical pattern to that of the array 
of microlenses. In an aberrated eye however the returning wavefronts would not be 
plane and therefore when focused would fall less uniformly onto the carefully placed 
camera sensor producing a distorted replication of the lenslet array as shown in figure 
A1.2 The degree of displacement of these distorted point images from their ideal 
location would be governed by the degree of tilt of the emerging wavefront, which 
would in turn be influenced by the amount of aberration existing in the eye. From this, 
the Hartmann-Shack wavefront sensor is able to deduce important information about 
the type and intensity of aberrations present in an eye (Cheng et al., 2003;Charman, 
2005;Yu et al., 2010). 
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Figure A1.2: Simplified diagram of the mechanism of action of the Hartmann-Shack 
aberrometer. 
 

 

A1.3.2.2. The Aston Aberrometer 

The Aston open-field aberrometer is a miniaturized aberrometer designed to be slit-
lamp mountable and is based on the Hartmann-Shack principle (Bhatt et al., 2013). It is 
described in more detail in chapter 7.  

 
A1.3.2.3. Tscherning aberrometer 

The Tscherning aberrometer measures aberrations by projecting a regular lattice of 
spots onto the retina and using the distortions that are created in the pattern of spots, 
as a result of the eye’s imperfections, to determine the HOAs present in that eye. A Nd: 
YAG (neodymium-doped yttrium aluminium garnet) laser beam, which has been 
frequency doubled so that it emits green light at a wavelength of 532nm as opposed to 
infrared light at a wavelength of 1064nm, is used to illuminate a 10mm grid pattern 
onto the retina, typically for 40 milliseconds. The returning spot pattern is imaged by 
indirect ophthalmoscopy onto a camera sensor that is linked to a computer. A 
comparison is then made of each spot in the imaged grid against the equivalent spot 
location in an ideal grid and from this the wavefront aberration can be calculated 
(Mrochen et al., 2000;Krueger et al., 2001) as shown in figure A1.3. 
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 A target is usually used to aid alignment and an infrared tracking system can be used 
to monitor fixation (Kaemmerer et al., 2000).  One of the drawbacks of this particular 
aberrometer is its need for optically clear ocular media to facilitate accurate evaluation 
of the eye’s aberrations (Kaemmerer et al., 2000;Mrochen et al., 2000;Krueger et al., 
2001;Yu et al., 2010).  

 
Figure A1.3: Simple diagram of the mechanism of action of the Tscherning 
aberrometer. A grid pattern is projected onto the retina using a laser light. The grid 
pattern is then imaged by a CCD and compared against the original to measure the 
wavefront aberration in that eye.  
 

A1.3.2.4.Ray tracing aberrometry 

A ray tracing aberrometer directs multiple parallel laser beams onto the retina via 
numerous points in the pupil. Each laser beam is usually 0.3mm wide with a 
wavelength of around 650nm. These light spots are then imaged onto a detector using 
an objective lens to create a map from which the wavefront aberrations are measured 
(Molebny et al., 2000). One commercially available device, the Tracey ray tracing 
aberrometer, may incorporate an accommodative fixation target thereby permitting 
dynamic evaluation of aberrations. Previously, one of the problems encountered with 
this type of system was its sensitivity to a subject’s eye movements. To overcome this, 
the length of time over which the eye is irradiated has been reduced in addition to the 
use of video tracking which only allows irradiation to occur when the eye and 
instrument are in perfect alignment (Molebny et al., 2000;Moreno-Barriuso et al., 
2001;Yu et al., 2010). 
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A2: Aston University Life and Health Sciences Ethics Committee acceptance 

of amendment to project AO2010.14 JW. 
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A3:  Aston University Life and Health Sciences Ethics Committee Decision 

letter for project 606. 
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A4: Patient Information sheet and consent form for experimental participants 

at Aston University.  

 

A.4.1: Reducing the effect of toric intraocular lens misalignment using a split 

surface approach.  

 

 

PATIENT INFORMATION SHEET 
 
Research workers, school and subject area responsible 
Professor James Wolffsohn, School of Life & Health Sciences, Aston University 
Dr Amy Sheppard, School of Life & Health Sciences, Aston University 
Miss Sandeep Dhallu, School of Life & Health Sciences, Aston University 
 
Project Title 
Reducing the effect of toric intraocular lens misalignment using a split surface 
approach. 
 
Invitation 
You are being invited to take part in a research study.  Before you decide whether you 
wish to participate, please take the time to read this information sheet detailing why the 
research is being done and what it will involve. 
   
What is the purpose of the study?  
To investigate whether splitting toric lens power results in greater patient tolerance to 
lens rotation. 
 
Where will the study take place? 
Ophthalmic Research Group laboratories, Vision Sciences, Aston University, 
Birmingham, B4 7ET. 
 
Inclusion and Exclusion Criteria  
To take part in this study, you must be at least 18 years of age and have refractive 
astigmatism of no more than -3.50DC. You must also have best corrected visual acuity 
of at least 6/9 or better in the eye being tested, be free of any active eye disease, not 
on ocular medications or systemic medications with known ocular side effects and 
have no history of eye surgery within the last 3 months. If you are a contact lens 
wearer, you must remove your contact lenses before any tests are carried out but you 
may re-insert them after testing. 
 
What will happen to me if I take part? 
By volunteering to participate in this study, you will be invited to attend the Ophthalmic 
Research Group’s laboratories to sit for a non-contact, non-invasive test.  
 
Data collection will start with you being asked to wear a trial frame with your distance 
correction in place. The prescription will be refined to ensure it is accurate and up to 
date and your visual acuity will be checked at this point.  
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After this one of two things will happen, depending on your prescription. Either an 
additional cylindrical lens will be added to the trial frame in order to induce astigmatism 
followed by a further two cylindrical lenses of half the power to correct this astigmatism. 
Or, if you have a toric component to your prescription of between -1.00DC to -3.50DC 
then two cylindrical lenses, each of half the power will be used to correct your own 
astigmatism. The orientation and separation of these two correcting cylinders will be 
altered numerous times throughout the test, and each time you will be asked to read a 
distance letter chart and your visual acuity will be recorded.  
 
All measurements will be taken on one eye only and the visit is expected to last 
approximately 30minutes. 
 
Are there any potential risks in talking part in the study? 
There are no known risks involved with the instruments or techniques listed above. All 
measurements will be taken in accordance with the manufacturers’ guidelines by a 
GOC (General Optical Council) registered Optometrist. 
 
Do I have to take part? 
No, you do not have to participate if you do not wish to do so.  You are free to withdraw 
at any time from the project. Your decision to participate (or not) will not influence your 
ability to participate in any future research. 
  
Expenses and payments 
Your participation in this study is voluntary. No expenses or payments will be offered. 
 
Will my taking part in this study be kept confidential? 
Privacy and confidentiality will be protected vigorously to the extent permissible by law. 
Your name will be turned into a code, the details of which will be kept on a separate 
database which will only be accessed by the investigators. Analysis of data by others, 
including the internal project examiner, will only be undertaken in the coded format to 
prevent a breach of confidentiality. We cannot, however, guarantee privacy or 
confidentiality. 
 
What will happen to the results of the research study? 
We aim to publish the results of this project.  However, there will be no reference to 
any individual’s performance in any publication. A copy of the entire thesis (that this 
study will contribute to) will be available from the British Library. 
 
Who is organising and funding the research? 
The project is being conducted by a research team at Aston University and is funded 
by Lenstec, Florida. 
 
Who has reviewed the study? 
The research has been submitted to the LHS Research Ethics Committee, Aston 
University. 
 
Who do I contact if something goes wrong or I need further information  
Please contact the principal investigator, Professor James Wolffsohn 
J.S.W.Wolffsohn@aston.ac.uk . 
 
 
 

Please email Sandeep Dhallu at dhallus@aston.ac.uk if you are interested in taking 
part in this study. 

 

mailto:J.S.W.Wolffsohn@aston.ac.uk
mailto:dhallus@aston.ac.uk
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Identification No: ________ 
 
 

CONSENT FORM 
 
 
 

Title of Project  
Reducing the effect of toric IOL misalignment using a split surface approach. 
 
 
Research Venue 
Ophthalmic Research Group laboratories, Vision Sciences, Aston University, 
Birmingham, B4 7ET.   
 
 
Name of Investigators 
Miss Sandeep Dhallu, Professor James Wolffsohn and Dr Amy Sheppard. 
 
 
 
 
Please initial inside each box: 
 
1. I confirm that I have read and understand the information sheet 
 for this study and have had the opportunity to ask questions. 
 
 
2. I understand that my participation is voluntary and that I am free 

to withdraw at any time without giving any reason, without my legal  
 rights being affected. 
 
 
3. I agree to take part in the above study.      
 
 
 
 
_________________________ ________________             _________________ 
Name of Research Participant  Date   Signature 
 
 
 
 
_________________________ ________________             _________________ 
Name of Person taking Consent  Date   Signature 
 

1 copy for research participant 
1 copy for investigator 
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A.4.2: Evaluating visual acuity with different levels of induced spherical and 

astigmatic blur and ocular aberrations and pupil size using an aberrometer.  

 

 

 

                                   PATIENT INFORMATION SHEET 
 
Research workers, school and subject area responsible 
Professor James Wolffsohn, School of Life & Health Sciences, Aston University 
Dr Amy Sheppard, Optometry, School of Life & Health Sciences, Aston University 
Miss Sandeep Dhallu, Optometry, School of Life & Health Sciences, Aston University 
 
Proposed Project Title 
Evaluating visual acuity with different levels of induced spherical and astigmatic blur 
and ocular aberrations and pupil size using an aberrometer. 
 
Invitation 
You are being invited to take part in a research study.  Before you decide whether you 
wish to participate, please take the time to read this information sheet about why the 
research is being done and what it will involve. 
   
What is the purpose of the study?  
The aim of this study is to determine how different levels of blur affect visual 
perception, ocular aberrations (which occur due to small imperfections in the eye’s 
optics) and pupil size.  
 
 
Where will the study take place? 
Ophthalmic Research Group laboratories, Vision Sciences, Aston University, 
Birmingham, B4 7ET. 
 
Inclusion and Exclusion Criteria  
In order to participate in the study subjects will need to: 

 be aged 18 years and over 

 have good corrected visual acuity in the eye being tested 

 be willing to wear a daily disposable contact lenses for the duration of the test if 
vision without spectacles does not meet the required standard 

 be free of any active eye disease 

 be free of ocular medications or systemic medications with known ocular side 
effects and 

 have had no history of eye surgery within the last 3 months. 
 
What will happen to me if I take part? 
You will be invited to attend the Ophthalmic Research Group’s laboratories to sit for a 
test. A basic refractive examination will be conducted by a qualified optometrist to 
ensure you are wearing the most accurate distance prescription for the study. Your 
subjective visual acuity, which is a measure of how clearly you can see, will be taken 
with different levels of induced blur. Astigmatic blur is caused by the eye’s inability to 
focus an image to a sharp point and occurs due to the irregular curvature of the cornea 
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or lens. With spherical blur, the image is focused to a sharp point however this point 
does not fall on the retina, it falls either in front (termed myopia) or behind the retina 
(termed hyperopia) and also causes blur. Astigmatic blur between 0 and -3.00DC at 
axes between 0 and 180° and increasing levels of spherical blur between +2.00 to -
10.00DS in -0.50 steps will be induced as subjective visual acuity is measured using a 
digital test chart that is placed four metres away. While you are doing this an 
instrument you will be look through will assess the optics of your eyes and measure 
your pupil size. We will also ask you to identify which out of several images displayed 
on a computer screen are blurred and test how close we can bring some letters to you 
before you can no longer focus on them clearly. Your field of vision will also be 
measured using the Humphrey visual field analyzer. This test will be done monocularly; 
therefore the eye not being tested will be covered with an eye patch. This will be 
conducted twice, once when corrected for close distances and once when corrected for 
far distances.  
 
Are there any potential risks in talking part in the study? 
There are no known risks involved with the instruments or techniques listed above. All 
measurements will be taken in accordance with the manufacturers’ guidelines by a 
GOC registered Optometrist. 
 

Do I have to take part? 
No, you do not have to participate if you do not wish to do so.  You are free to withdraw 
at any time from the project. Your decision to participate (or not) will not influence your 
ability to participate in any future research. 

 
Will my taking part in this study be kept confidential? 
Privacy and confidentiality will be protected vigorously to the extent permissible by law. 
Your name will be turned into a code, the details of which will be kept on a separate 
database which will only be accessed by the investigators. Analysis of data by others, 
including the internal project examiner, will only be undertaken in the coded format to 
prevent a breach of confidentiality. We cannot, however, guarantee privacy or 
confidentiality. 
What will happen to the results of the research study? 
We aim to publish the results of this project.  However, there will be no reference to 
any individual’s performance in any publication. A copy of the entire thesis (that this 
study will contribute to) will be available from the British Library. 
 

Who is organising and funding the research? 
The project is being conducted by a research team at Aston University and is funded 
by Lenstec, Florida. 
 
Who has reviewed the study? 
The research has been submitted to the LHS Research Ethics Committee, Aston 
University. 
 
Who do I contact if something goes wrong or I need further information  
Please contact the principal investigator, Professor James Wolffsohn at 
J.S.W.Wolffsohn@aston.ac.uk or telephone on 0121 204 4140. 
 
Who do I contact if I wish to make a complaint about the way in which the 
research is conducted? 

mailto:J.S.W.Wolffsohn@aston.ac.uk
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If you have any concerns about the way in which the study has been conducted, then 
you should contact the Secretary of the University Research Ethics Committee at 
j.g.walter@aston.ac.uk or telephone 0121 204 4665. 
 

 

Please email Sandeep Dhallu at dhallus@aston.ac.uk if you are interested in taking 
part in this study. 
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                             Identification No: ________ 
 
 

CONSENT FORM 
 
 

Proposed Title of Project  
 
Evaluating visual acuity with different levels of induced spherical and astigmatic blur, 
ocular aberrations and pupil size using an aberrometer. 
 
Research Venue 
ORG laboratories, Vision Sciences, Aston University, Birmingham, B4 7ET 
  
Name of Investigators 
Miss Sandeep Dhallu, Professor James Wolffsohn and Dr Amy Sheppard. 

              Please initial box 
 
1. I confirm that I have read and understand the information sheet  
 for this study and have had the opportunity to ask questions. 
 
2. I understand that my participation is voluntary and that I am free  
 to withdraw at any time without giving any reason, without my legal  
 rights being affected. 
 
3. I agree to take part in the above study.    
  
 
 
 
 
_________________________ ________________             _________________ 
Name of Research Participant  Date   Signature 
 
 
 
 
 
_________________________ ________________             _________________ 
Name of Person taking Consent  Date   Signature 

 
 
 
 
1 copy for research participant 
      1 copy for investigator 
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