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ABSTRACT 

Background: Remote, non-invasive and objective tests that can be used to support expert 

diagnosis for Parkinson’s disease (PD) are lacking.  

Methods: Participants underwent baseline in-clinic assessments, including the Unified 

Parkinson’s Disease Rating Scale (UPDRS), and were provided smartphones with an Android 

operating system that contained a smartphone application that assessed voice, posture, gait, 

finger tapping, and response time.  Participants then took the smart phones home to perform the 

five tasks four times a day for a month.  Once a week participants had a remote (telemedicine) 

visit with a Parkinson disease specialist in which a modified (excluding assessments of rigidity 

and balance) UPDRS performed.  Using statistical analyses of the five tasks recorded using the 

smartphone from 10 individuals with PD and 10 controls, we sought to: (1) discriminate whether 

the participant had PD and (2) predict the modified motor portion of the UPDRS. 

Results: Twenty participants performed an average of 2.7 tests per day (68.9% adherence) for 

the study duration (average of 34.4 days) in a home and community setting. The analyses of the 

five tasks differed between those with Parkinson disease and those without.  In discriminating 

participants with PD from controls, the mean sensitivity was 96.2% (SD 2%) and mean 

specificity was 96.9% (SD 1.9%). The mean error in predicting the modified motor component 

of the UPDRS (range 11-34) was 1.26 UPDRS points (SD 0.16). 

Conclusion: Measuring PD symptoms via a smartphone is feasible and has potential value as a 

diagnostic support tool.   
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INTRODUCTION 

Accurate diagnosis of Parkinson’s disease (PD) and other neurological disorders is critical for 

care and research. However, clinical diagnostic accuracy by a neurologist is limited as up to 20% 

of cases of may be misdiagnosed by clinicians when compared to post mortem pathology.1 New 

imaging modalities, such as SPECT scans, can assist, but their utility is limited by cost, time, and 

availability.  

 Previous studies have objectively characterized pathological changes in motor symptoms2 

such as voice production (using a microphone),3 posture and gait (using accelerometers),4 tremor 

(using finger tapping tasks),5 and cognitive performance (using reaction times) 6 in PD. 

Smartphones, which are increasingly inexpensive and ubiquitous, have built-in voice recorders, 

accelerometers, and touch screens, and can potentially be used to objectively measure PD 

severity symptoms. For continuous objective motor assessment of PD (such as, freezing of gait, 

balance deficits and falls), the potential of wearable sensors has been discussed recently.7  

Although smartphones are more ubiquitous than wearable sensors, their use by individuals in 

home settings to differentiate those with PD from controls and to evaluate disease severity has 

not been previously investigated. 

 

METHODS 

Study design and study participants 

Individuals with PD diagnosed clinically by a movement disorder specialist and control 

participants were recruited from an academic movement disorder clinic (Johns Hopkins) and all 

participants provided informed consent.  The study was reviewed and approved by the Johns 
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Hopkins Institutional Review Board. Control participants were spouses, caregivers, relatives, or 

colleagues of an individual with PD and did not have any known neurological disorder. All 

participants were provided identical LG Optimus S smartphones (cost: $30 each) with Android 

OS (Google, Inc.) loaded with specialized software developed by the team (M.A.L.) 

(Supplemental Figure 1).  

The smartphone software prompted participants to perform the following short tests (less 

than 5 minutes): (1) (voice test) say the sustained phonation ‘aaah’ for as long and as steadily as 

possible; (2) (posture test) stand upright unaided for thirty seconds; (3) (gait test) walk twenty 

steps forward, turn around, and return back to the starting position; (4) (finger tapping test) tap 

the screen alternately keeping a regular rhythm; and (5) (reaction time test) press and hold the 

on-screen button as soon as it appears and release it as soon as it disappears.  

At an in-person baseline visit, participants were given the smartphone, trained how to use 

the software application, and instructed how to upload phone data via Wi-Fi to a secure database. 

The participants were asked to conduct the above specified tests four times daily: just before 

taking their first (morning) dose of levodopa (or in one case, rasagiline), one hour later, mid-

afternoon, and before going to bed. Demographic information, medical history, and a current 

medication list were also collected in addition to completing the motor portion of the UPDRS,8 

and the Parkinson Disease Questionnaire 39 (PDQ-39), a disease-specific quality of life 

instrument. The specialists also conducted a remote assessment of the modified UPDRS8 (that 

excluded assessments of rigidity and balance) via web-based video conferencing once per week 

for four weeks at approximately the same time each week. To map the summary measures to 

UPDRS, we derived the UPDRS values corresponding to each summary measure using 

piecewise linear interpolation, going exactly through the actual UPDRS assessments.3  
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Statistical analysis 

Voice impairment may be one the earliest indicators of PD9 and is typically characterized by 

reduced loudness, breathiness, roughness, monopitch, and exaggerated vocal tremor. We 

extracted a range of summary measures that quantify roughness, aperiodicity, aeroacoustic noise 

in voice (due to incomplete vocal fold closure), and placement of the articulators (mouth, teeth, 

tongue and lips), some of which are known to be affected in PD.3 

For posture and gait, using the three dimensional accelerometry time traces we calculated 

different summary measures, ranging from basic statistics, such as mean, standard deviation, and 

median acceleration, to more sophisticated measures, such as the Teager-Kaiser energy operator 

and detrended fluctuation analysis, that characterize changes in body motion.4  

For finger tapping, we recorded the screen pixel position ( ,  coordinates) and the time 

of finger touch. Finger tapping tasks have been used to assess arrythmokinesis, which can 

include hastening, faltering or freezing in the tapping pattern in PD.5 Using this finger tap data, 

we developed novel summary measures that quantify the tapping speed, rhythm, inter-tap 

interval, fatigue, and tremor.  

For the reaction time test, we measured the elapsed time between the stimulus 

(appearance/disappearance of a screen button) and the corresponding response (press/release of 

the button). This type of reaction time is also referred to as non-cued simple reaction time and is 

linked with pre-movement central neural processing.6 Using this reaction time data, we 

calculated a range of different summary measures such as mean, coefficient of variation, 

correlation, and fatigue.  
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Supplementary Tables 1, 2, 3 and 4 provides an exhaustive list of the summary 

measures extracted using the voice, posture, gait, finger tapping, and reaction time data, 

respectively, along with a brief description of each.  

The study’s overall methodological approach is summarized in Figure 1. Using random 

forests,10 a powerful statistical machine learning technique that is commonly used to separate 

generic data into several different classes, we sought to discriminate participants with PD from 

controls and predict the modified motor UPDRS scores, solely on the basis of the summary 

measures derived from the smartphone recordings. Statistical analysis of the smartphone data 

was performed using the Matlab® software (version 2013a).  

Validation 

To validate the method, we used a standard 10-fold, randomized cross-validation method with 

100 repetitions. This validation method involves repetitive splitting of the dataset into non-

overlapping “training” and “validation” sets. In total, we identified 1772 recordings that were of 

decent quality for the analysis. The training set (consisting of 90% of randomly selected 

smartphone recordings, n=1595 recordings) allows the random forest method to find 

discriminating patterns in the summary measures. The validation set (consisting of the remaining 

10% of recordings, n=177 recordings) is used to assess the method’s accuracy; effectively, the 

random forest method is blinded to these data during training. This randomized selection of 

training and validation sets is repeated 100 times, leading to different accuracy on each 

repetition. The mean and standard deviation of the accuracy is then computed over all 100 

repetitions. The actual and interpolated UPDRS scores were used in the validation. Furthermore, 
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we performed two statistical tests against the null hypothesis that the discrimination results 

obtained were no better than randomized determinations of whether one has PD. 

 

RESULTS 

Twenty participants (10 individuals with PD and 10 controls) enrolled and completed the study, 

and their baseline characteristics are provided in Table 1. The 20 participants performed an 

average of 2.7 tests per day (68.9% adherence) for the study’s duration (average of 34.4 days). 

Those with PD performed an average 2.6 tests per day, and controls completed 2.8 tests per day.  

The summary measures differed between participants with PD and controls. Using 

random forests, the mean sensitivity was 96.2% (SD 2%) and mean specificity was 96.9% (SD 

1.9%) in discriminating participants with PD from controls. These sensitivity and specificity 

results differed from comparable results obtained from randomized predictions about which 

participants had PD or were controls (p<0.001, two-sided Kolmogorov-Smirnov test).  

To predict ongoing symptom severity, our final objective was to replicate the clinician’s 

symptom severity assessment as closely as possible, using only the summary measures. The 

performance of random forest in predicting symptom severity was assessed using the mean 

absolute error. The average mean absolute error in predicting the modified motor UPDRS (which 

ranged from 11-34, mean 19.6, SD 6.7) was 1.26 UPDRS points (SD 0.16). The average mean 

absolute error in predicting the modified motor UPDRS for female participants (UPDRS range 

14-29, mean 22.1, SD 4.0) was 1.02 UPDRS points (SD 0.2), while for male participants 

(UPDRS range 11-34, mean 20.3, SD 5.2), the average mean absolute error was 1.29 (SD 0.2). 

The UPDRS errors were lower than the inter-rater variability of the UPDRS (4-5 points).11 



8 
 

DISCUSSION 

In this pilot study, we demonstrated that consumer-grade smartphones can be used to accurately 

differentiate individuals with PD from age-matched controls and potentially predict disease 

severity, which could be used to monitor disease progression. While the results remain to be 

confirmed in larger scale studies, they open the door for smartphones to be potentially used as 

diagnostic and disease management support devices. 

Future analyses will quantify response to treatment and intra-day symptom variation, 

which are often impractical to perform in most clinical settings. Furthermore, future assessments 

could passively record accelerometry time traces continuously in the background, an approach 

which has shown good success in a recent study.2  

Despite this promise, considerable work remains. This study was limited by size (n = 20 

participants) and by the range of PD symptom severity (individuals with mild to moderate PD).  

The characteristics (e.g., age, sex) of the control participants did not match well those of the 

participants, which will need to be addressed in future studies.  Larger-scale assessments of 

individuals earlier in their disease course compared to individuals with other disorders that cause 

changes in voice, impairment in cognitive skills, or result in tremor/gait deficits will better assess 

the discriminatory potential of such smartphone applications. Importantly, this study did not 

include individuals with other parkinsonian or tremor disorders that may be more difficult to 

differentiate from PD. This study was also limited by the variability in the home conduct of the 

tests and the remote assessments of the UPDRS.  

Nearly two centuries after the seminal description of PD and five decades after the 

development of a highly effective, inexpensive therapy, many individuals in the world with PD 

have not been diagnosed or received treatment. Simple, inexpensive, widely available 
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technologies are needed to facilitate diagnosis and care. As this study demonstrates, smartphones 

– whose numbers are projected to reach 3 billion by 201712 – may represent an effective tool for 

detection, assessment, and potentially care, of this increasingly common disorder. 

 

ACKNOWLEDGEMENTS 

The authors wish to thank Andong Zhan, for his contribution towards the development of 

smartphone application used in this study, Reham Bedawy, for her help in identifying relevant 

literature for this work, and Ervin Sejdić for providing us the code for a few summary measures 

used for gait analysis. We also extend our sincere gratitude to all the individuals who participated 

in this study and made this research possible.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10 
 

 
 
 
 
 
 
 
 
Financial Disclosures of all Authors for the Past Year 
Dr. Siddharth Arora receives research support from The Michael J. Fox Foundation for 
Parkinson’s Research. 
 
Mr. Vinayak Venkataraman has no relevant financial disclosures. 
 
Mr. Donohue has no relevant financial disclosures. 
 
Dr. Kevin Biglan received compensation for consulting activities from Lundbeck and UCB, 
research support from the Davis Phinney Foundation, National Institute of Neurological 
Disorders and Stroke, Michael J. Fox Foundation, National Parkinson Foundation, Patient-
Centered Outcomes Research Institute, Huntington Disease Society of America, and Lundbeck. 
 
Dr. Ray Dorsey has received compensation for consulting activities from Amgen, Clintrex, 
Lundbeck, mc10, Medtronic, and the National Institute of Neurological Disorders and Stroke, 
research support from Davis Phinney Foundation, Great Lakes Neurotechnologies, Huntington 
Study Group, Lundbeck, Michael J. Fox Foundation, Patient-Centered Outcomes Research 
Institute, Prana Biotechnology, Sage Bionetworks, stock options from Grand Rounds, and 
compensation for expert testimony. 
 
Dr. Max Little receives research support from the Wellcome Trust and The Michael J. Fox 
Foundation for Parkinson’s Research. 



11 
 

 

REFERENCES 

1. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic 

Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg 

Psychiatry 1992; 55:181–4.  

2. Brunato M, Battiti R, Pruitt D, Sartori E. Supervised and unsupervised machine learning for 

the detection, monitoring and management of Parkinson’s disease from passive mobile phone 

data. In: predicting Parkinson’s disease progression with smartphone data, Kaggle 

Competition. Available at: https://kaggle2.blob.core.windows.net/prospector-

files/1117/958625cf-3514-4e64-b0e7-13ebd3cf9791/kaggle.pdf. Accessed October 22, 2014. 

3. Tsanas A, Little MA, McSharry PE, Ramig LO. Nonlinear speech analysis algorithms 

mapped to a standard metric achieve clinically useful quantification of average Parkinson’s 

disease symptom severity. J R Soc Interface 2011; 8:842–55. 

4. Sejdić E, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive assessment of gait 

accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural 

Syst and Rehabil Eng 2014; 22:603–12. 

5. Taylor Tavares AL, Jefferis GS, Koop M, Hill BC, Hastie T, Heit G, et al. Quantitative 

measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS 

motor disability and reveal the improvement in fine motor control from medication and deep 

brain stimulation. Mov Disord 2005; 20:1286–98.  

6. Gauntlett-Gilbert J, Brown VJ. Reaction time deficits and Parkinson’s disease. Neurosci 

Biobehav Rev 1998; 22:865–81. 



12 
 

7. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR. Quantitative wearable sensors 

for objective assessment of Parkinson’s disease. Mov Disord 2013; 28:1628–37. 

8. Abdolahi A, Scoglio N, Killoran A, Dorsey ER, Biglan KM. Potential reliability and validity 

of a modified version of the unified Parkinson’s disease rating scale that could be 

administered remotely. Parkinsonism Relat Disord 2013; 19:218–21. 

9. Harel B, Cannizzaro M, Snyder PJ. Variability in fundamental frequency during speech in 

prodromal and incipient Parkinson’s disease: a longitudinal case study. Brain and Cogn 

2004; 56:24–9. 

10. Breiman L. Random Forests. Machine Learning 2001; 45:5–32.   

11. Post B, Merkus MP, de Bie RMA, de Haan RJ, Speelman JD. Unified Parkinson’s disease 

rating scale motor examination: are ratings of nurses, residents in neurology, and movement 

disorders specialists interchangeable?. Mov Disord 2005; 20:1577–84. 

12. Pramis J. By 2017 there will almost be as many smartphones as literate adults. In: Digital 

Trends. Available at: http://www.digitaltrends.com/mobile/2017-literate-adults-

smartphones/?tru=bHNoSD#ixzz2d1dtkRDg. Accessed October 22, 2014. 

 



1 

 

Table 1.  Baseline characteristics of study participants. 

 

Characteristic Parkinson’s disease participants 

(N=10) 

Control participants 

(N=10) 

Age (SD) 65.1 years (9.8) 57.7 years (14.3) 

Percent women 30% 60% 

Percent taking levodopa 90% 0% 

Percent with high school 
education 

100% 100% 

Baseline motor Unified 
Parkinson’s Disease Rating Scale 
score (SD) 

19.6 (6.7) NA 

Baseline Parkinson’s Disease 
Questionnaire 39 score (SD) 

18.5 (16.9) NA 

NA = not applicable; SD = standard deviation 
  

Table(s)
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Supplementary Table 1: Brief description of summary measures extracted from the voice 
recordings. 

 

Summary Measure Brief Description 
Detrended Fluctuation 
Analysis 

Characterizes the changing detail of aero-acoustic breath noise  

Recurrence Period 
Density Entropy 
(RPDE) 

Quantifies any ambiguity in fundamental pitch (RPDE is zero 
for perfectly periodic signals and one for purely stochastic 
signals) 

Teager-Kaiser Energy 
Operator 

Measures the instantaneous changes in voice energy (takes into 
account both amplitude and frequency) 

Jitter  
 

Quantifies the instabilities of the oscillating pattern of the vocal 
folds by measuring cycle-to-cycle changes in the fundamental 
frequency (measure of roughness in voice) 

Shimmer Quantifies the instabilities of the oscillating pattern of the vocal 
folds by measuring cycle-to-cycle changes in the amplitude 
(measure of roughness in voice) 

Pitch Period Entropy 
(PPE) 

Measures the impaired control of stable pitch, a property 
common in PD 

Harmonics-to-Noise 
Ratio (HNR) 

Quantifies noise in the speech signal, caused mainly due to 
incomplete vocal fold closure 

Noise-to-Harmonics 
Ratio (NHR) 

Quantifies noise in the speech signal, caused mainly due to 
incomplete vocal fold closure 

Mel Frequency 
Cepstral Coefficients  
(MFCCs) 

Computes the contribution of the energy of the speech signal at 
each frequency band (are aimed at detecting subtle changes in 
the motion of the articulators) 

Glottis Quotient (GQ) Quantifies properties of the vocal folds (when glottis is open 
and closed)  

F0 contour features Measures based the summary statistics of the fundamental 
frequency 

Glottal to Noise 
Excitation (GNE) ratio 

Quantifies the extent of noise in speech using linear and 
nonlinear energy measures 

Vocal Fold Excitation 
Ratios (VFER) 

Quantifies the extent of noise in speech using energy (linear and 
nonlinear) and entropy based measures  

Perturbation Quotient 
(PQ) 
 

Quantifies variations in speech signal 

Wavelet related 
measures 

Variants of above discussed summary measures applied to 
wavelet coefficients of the speech signal 
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Supplementary Table 2: Brief description of summary measures extracted from the tri-axial 
accelerometer time series along the x-axis (��), y-axis (��), and z-axis (��), recorded during the 
postural sway and gait tests. We also extracted summary measures along the resultant absolute 
acceleration value (���), computed as	��� � ���� 	 ���	�
�.  
 

Summary measure Brief Description 
µ Average  
σ  Standard deviation 
��  25th percentile 
�
  75th percentile 
���  Inter-quartile range ��
 � ��� 
�  Median 
��  Mode 
�  Data range (maximum – minimum) 
�  Skewness  
�  Kurtosis 
����  Mean squared energy 
�  Entropy  
����  Entropy rate 
��,   Cross-correlation between the acceleration in x- and y-

axis 
���; $�  Mutual information between the acceleration in x- and 

y-axis 
���, $�  Cross-entropy between the acceleration in x- and y-

axis 
1%&' Extent of randomness in body motion 
mean 2,-./ Instantaneous changes in energy due to body motion 
ø�  Autoregression coefficient at time lag 1 
12�  Zero-crossing rate  
&3  Dominant frequency component using Lomb-Scargle 

periodogram 
�  Radial distance 
4  Polar angle 
5  Azimuth angle 

 

1
DFA stands for Detrended Fluctuation Analysis. 

2
TKEO stands for Teager-Kaiser Energy Operator. 
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Supplementary Table 3: Brief description of features extracted from the finger tapping data.  
 

Summary measure Brief description 
TS Tapping speed (number of finger taps per second) 
μ787  Average inter-tap interval (average elapsed time between two 

consecutive taps)          
σ787  Standard deviation of inter-tap intervals               
CV787  Coefficient of variation of inter-tap intervals               
��.787  Mean squared energy of inter-tap intervals               
,-./787  Mean Teager-Kaiser energy operator of inter-tap intervals 

(quantifies energy variation) 
'�1787  Autoregressive coefficient of inter-tap intervals (characterizes 

relationship between  inter-tap intervals at lag 1) 
'�2787  Autoregressive coefficient of inter-tap intervals (characterizes 

relationship between  inter-tap intervals at lag 2) 
%&'787  Detrended fluctuation analysis of inter-tap intervals (characterizes 

changes in inter-tap interval) 
&�>?@AB787��C%�  Increase in the average inter-tap interval from the first 10% to the 

last 10% of finger taps during a test (measure of slowing down in 
tapping speed) 

&�>?@AB787��E%�  Increase in average inter-tap interval from the first 25% to the last 
25% of finger taps during a test 

&�>?@AB787�EC%�  Increase in average inter-tap interval from the first 50% to the last 
50% of finger taps during a test 

,�BFG�HIJKLMJLN  Features (mean, standard deviation, median, min, max and range) 
computed using the intra-tap tremor  (displacement in position of 
the finger during a tap) 

O%HIJKLMJLN  Net displacement in finger position during a tap  
,�BFG�HIJPKMJLN  Features based on inter-tap tremor (drift in the finger position 

between consecutive taps) 
ø  Finger opening angle estimate 

 
Note: 1) Inter-tap interval was computed as the elapsed time between consecutive taps. 2) Displacement in finger 
position coordinates was quantified using the Euclidean distance.  
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Figure 1. Schematic diagram illustrating the procedure for collecting voice recordings (sustained 

vowel ‘aaah’), acceleration time traces during postural sway and gait tests, finger tapping 

coordinates and the time of touch, and reaction time (onset of stimulus and response), using 

commercially-available smartphones, along with the major steps involved in the data analysis. 

 

 

Abbreviations:  3D = three dimensional; DFA = detrended fluctuation analysis; PD = 

Parkinson’s disease; SD = standard deviation 

  

Figure(s)
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Supplemental Figure 1.  Image of Android smartphone and software application used in the 

study. 

 

 

 




