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DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of
transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent
research problem.Up to now,manymethods have been proposed, butmost of them focus on only one classifier and cannotmake full
use of the large number of negative samples to improve predicting performance.This study proposed a predictor called enDNA-Prot
for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-
Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range
of 3.97–9.52% in ACC and 0.08–0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the
performance of enDNA-Prot outperformed the three existing methods by 2.83–16.63% in terms of ACC and 0.02–0.16 in terms
of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training
dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we
developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public.

1. Introduction

DNA-binding proteins are very important constituent of
proteomes of living body, including eukaryotic and prokary-
otic. They play crucial roles in various cellular processes,
such as DNA packaging, replication, transcription regu-
lation, and other activities associated with DNA. In the
early days of DNA-binding protein identification, it was
tackled mainly by experimental techniques, including filter
binding assays, genetic analysis, chromatin immunoprecipi-
tation on microarrays, and X-ray crystallography. Although

they achieved superior performance, its characteristics of
time consumption and expensive cost make it low practical
value. Later automated methods have been developed to
work out the difficulty of experimental methods. In the
past, many efforts have been made for developing auto-
mated methods, and several predictors have been pro-
posed. Broadly, these methods can be divided into four
categories: (1) methods based on support vector machine
(SVM), (2) methods based on Random Tree, (3) methods
based on artificial neural network (ANN), and (4) other
methods.
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SVM-based predictive methods are the most commonly
used methods. Cai and Lin [1] introduced SVM and the
pseudo amino acid composition, a collection of nonlinear
features extractable from protein sequence to the field of
protein function prediction. Yu et al. [2] integrated SVMs,
protein sequence amino acid composition, and associated
physicochemical properties for rRNA-, RNA-, and DNA-
binding protein identification. Nanni and Lumini [3] pro-
posed to combine the feature extraction method based on
grouped weight with a set of amino acid alphabets obtained
by Genetic Algorithm to produce features fed into SVMs
for identifying DNA-binding proteins. Kumar et al. [4]
developed a predictor called DNAbinder. It is the first study
in which the combination of evolutionary information in
form of PSSM profiles with SVMs has been used successfully
for DNA-binding protein identification. Nanni and Lumini
[3] proposed a parallel fusion between a SVM classifier
trained with the features extracted from the gene ontology
database and a 1-nearest neighbor classifier trained using
the dipeptide composition of the sequence. Bhardwaj et al.
[5] used SVMs as the classifier and information derived
from characteristics (surface and overall composition, overall
charge, and positive potential patches on the protein surface)
as features to develop a predictor for DNA-binding proteins.
Fang et al. [6] encoded a protein sequence into a feature
vector by autocross-covariance transform, pseudo amino
acid composition, and dipeptide composition, respectively,
and also the different combinations of the three encoded
methods, then fed them into a SVM classifier for DNA-
binding protein identification. Bhardwaj and Lu [7] applied
three steps to tackle the problem, including the development
of an automated approach for fast and reliable recognition
of DNA-binding sites, improving the prediction by distance-
dependent refinement, and using these predictions to identify
DNA-binding proteins.

Random Tree based methods were also commonly used.
Kumar et al. [8] proposed a random forest method pre-
dictor called DNA-Prot to identify DNA binding proteins
from protein sequence which used the fusion of sequence
information and structure information as features. Nimrod
et al. [9] presented a random forests classifier for identifying
DNA-binding proteins with known information, such as
electrostatic potential, cluster-based amino acid conservation
patterns, and the secondary structure content of the patches,
as well as the whole protein. Later they developed a web
server called iDBPs which used the three-dimensional struc-
ture of a query protein to predict whether it binds DNA
[10].

Up to present, several predictors applying ANN have
been proposed. Stawiski et al. [11] presented an automated
approach based on characterizing the structural and
sequence properties of large, positively charged electrostatic
patches on DNA-binding protein surfaces and used ANN
as classifier. Keil et al. [12] introduced an algorithm which
realized on the basis of a neural network strategy and the
segmentation of the molecular surface into overlapping
patches. Ahmad and Sarai et al. [13] demonstrated that Net
charge, electric dipole moment, and quadrupole moment
are important for DNA-binding protein identification.

Patel et al. [14] implemented an approach for predicting
the DNA-binding proteins from its amino acid sequence
using ANN. Furthermore, they also tried implementing a
two-layered artificial neural network for the same problem
[15]. Molparia et al. [16] developed a method for predicting
recognition helices for C2H2 zinc fingers that bind to specific
target DNA sites based on ANN and constructed a web
server called ZIF-Predict.

In addition to the aforementioned predictors, there are
also other studies that made DNA-binding protein identi-
fication. For example, Neumann et al. [17] and Cai et al.
[18] used boosted decision trees and nearest neighbor as
classifier, respectively. Shanahan et al. [19] showed that a
protein sequence of known structure and unknown function
can be identified as a DNA-binding protein by employing
structure features. Ahmad et al. [20] demonstrated that net
charge, net dipole moment, and quadrupole moment are
important features in this field. Nordhoff et al. [21] used mass
spectrometry for DNA-binding protein identification.

Many efforts have been made for DNA-binding protein
identification and many predictors have been proposed.
However, most of predictors applied only one classifier.
Otherwise, the number of newly discovered protein entries
has been increasing extremely fast. In 1986, the number
of protein entries in the Swiss-Prot [22] is only 3,939, but
the UniProtKB/Swiss-Prot (released 2013 12 on December 11,
2013) has increased to 541,954 protein sequence, and most
of them are non-DNA-binding proteins, meaning that the
negative samples can be obtained easily for DNA-binding
protein identification. Therefore, in this study, we attempted
to adopt ensemble learning to performDNA-binding protein
identification and expand the benchmark dataset with nega-
tive samples to further improve its predictive performance.

2. Methods

As shown by a series of recent publications [23–35] and
summarized in a comprehensive review [36], to develop a
useful statistical prediction method or model for a biolog-
ical system, one needs to engage the following procedures:
(i) construct or select a valid benchmark dataset to train
and test the predictor; (ii) formulate the samples with an
effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted; (iii)
introduce or develop a powerful algorithm (or engine) to
operate the prediction; (iv) properly perform cross-validation
tests to objectively evaluate the anticipated accuracy of
the predictor; (v) establish a user-friendly web-server for
the predictor that is accessible to the public. Below, we
describe our proposed method that followed such a general
procedure.

2.1. Data. In this study, four datasets are used, including
benchmark dataset, expanded benchmark dataset, indepen-
dent dataset1 and independent dataset2, where benchmark
dataset and expanded benchmark dataset were used as
training dataset while independent dataset1 and independent
dataset2 were used as two independent testing datasets.



BioMed Research International 3

2.1.1. Benchmark Dataset. The benchmark dataset is used to
train enDNA-Prot. It can be expressed as

𝑆 = 𝑆
+

∪ 𝑆
−

, (1)

where subset 𝑆
+ contains 146 DNA-binding proteins and

subset 𝑆− contains 250 non-DNA-binding proteins, while the
symbol ∪ represents the “union” in the set theory. Both the
two subsets have a pairwise sequence identity cutoff of 25%.
The DNA-binding proteins and non-DNA-binding proteins
were obtained from the work of Kumar et al. [4] and Stawiski
et al. [11]. A complete list of all the codes and sequence for the
benchmark dataset can be found in Supplementary Material
S1, available online at http://dx.doi.org/10.1155/2014/294279.

2.1.2. Expanded Benchmark Dataset. In order to analyze the
influence of the number of negative samples in benchmark
dataset on the performance of enDNA-Prot, we constructed
an expanded benchmark dataset based on benchmark dataset
by adding sufficient number of non-DNA-binding proteins. It
can be denoted as follows:

𝑆 = 𝑆
+

𝑒
∪ 𝑆
−

𝑒
, (2)

where 𝑆+
𝑒
and 𝑆
−

𝑒
denote the set of DNA-binding proteins and

non-DNA-binding proteins, respectively. 𝑆+
𝑒
is represented

as 𝑆
+

𝑒
= 𝑆
+, meaning that 𝑆

𝑒
contains the same positive

samples as 𝑆. And 𝑆
−

𝑒
can be calculated as 𝑆−

𝑒
= 𝑆
−
∪ 𝑆
𝑎
, which

means that the set of negative samples of 𝑆
𝑒
is constructed

by combining all the negative samples from 𝑆 and the
samples from another set 𝑆

𝑎
, where 𝑆

𝑎
is a set of non-DNA-

binding proteins obtained by adopting following processing
procedure. At first, randomly extract a number of non-
DNA-binding protein sequences from the latest release of
PDB (Protein Data Bank release: December 2013) [37] with
pairwise sequence identity cutoff of 25%. Next, remove all the
sequences having ≥25% pairwise sequence identity with any
sequence from benchmark dataset CD-HIT program [38].
Thus 𝑆

𝑒
contains 146 DNA-binding proteins and 2125 non-

DNA-binding proteins. A complete list of all the codes and
sequence for the expanded benchmark dataset can be found
in Supplementary Material S2.

2.1.3. Independent Dataset1. Independent dataset1 was
obtained fromWang and Brown [39] which can be formulat-
ed as

𝑆Ind1 = 𝑆
+

Ind1 ∪ 𝑆
−

Ind1, (3)

where subsets 𝑆
+

Ind1 and 𝑆
−

Ind1 originally contain 92 DNA-
binding proteins obtained from Protein Data Bank [37] and
100 non-DNA-binding protein entries obtained from Swiss-
Prot database [40], respectively. And both subsets 𝑆

+

Ind1 and
𝑆
−

Ind1 have a pairwise sequence identity cutoff of 25%. More-
over, in order to avoid overestimating the current method,
any sequence in the two subsets that has ≥40% pairwise
sequence identity to any sequence in benchmark dataset or
expanded benchmark dataset was removed using CD-HIT

Table 1: The summarization of datasets.

Dataset DNA-binding
proteins

Non-DNA-binding
proteins

Benchmark dataset 146 250
Expanded benchmark
dataset 146 2125

Independent dataset1 82 100
Independent dataset2 770 815

program [38].Thus subsets 𝑆+Ind1 and 𝑆
−

Ind1 consist of 82 DNA-
binding proteins and 100 non-DNA-binding proteins. A com-
plete list of all the codes and sequences for the independent
dataset1 can be found in Supplementary Material S3.

2.1.4. Independent Dataset2. Independent dataset2 was con-
structed by first collected 823 DNA-binding domains and 823
non-DNA-binding domains from the work of Kumar et al.
[8], in which the 823 DNA-binding domains were extracted
from Pfam dataset [41] with keywords of “DNA-binding
domain” and pairwise sequence identity cutoff of 25% while
the 823 non-DNA-binding domains were randomly selected
from it with the same pairwise sequence identity cutoff.
And then remove the sequences that have ≥40% pairwise
sequence identity to any sequence from benchmark dataset
or expanded benchmark dataset using CD-HIT program
[38] to avoid overestimating the current method. Finally, the
independent dataset2 can be formulated as

𝑆Ind2 = 𝑆
+

Ind2 ∪ 𝑆
−

Ind2, (4)

where subset 𝑆
+

Ind2 contains 770 DNA-binding proteins
and subset 𝑆

−

Ind2 contains 815 non-DNA-binding proteins.
The summarization of the four datasets is given in Table 1.
A complete list of all the codes and sequence for the
independent dataset2 can be found in Supplementary
Material S4. The four Supplementary Material files can
be downloaded from http://bioinformatics.hitsz.edu.cn/
Ensemble-DNA-Prot/download.jsp.

2.2. Features Extraction. A step that converts a sequence into
a feature vector should be conducted, which dramatically
affects the predictive performance. Inspired by the work of
Cai et al. [42] and the study of Lin et al. [43], our present
feature vector concluded the composition, distribution, and
physicochemical properties of the amino acids in a sequence.
Given that the respective occurrences of the 20 standard
amino acids were represented as 𝑜

1
, 𝑜
2
, 𝑜
3
, . . . , 𝑜

20
, the com-

position part of present feature vector was calculated as

(𝑓
1
, 𝑓
2
, . . . , 𝑓

20
) = (

𝑜
1

𝐿
,
𝑜
2

𝐿
, . . . ,

𝑜
20

𝐿
) , (5)

where 𝐿 denotes the sequence length.
With the exception of the effect of the composition,

the properties including content (𝐶), distribution (𝐷), and
dipeptide composition (DI) contributed to the predictive
performance. First the 20 standard amino acids were divided
into three groups based on each physicochemical property,
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Table 2: The three groups of amino acids for each physicochemical property.

Physicochemical property The 1st group The 2nd group The 3rd group
Hydrophobicity RKEDQN GASTPHT CVLIMFW
Normalized van der Waals volume GASCTPD NVEQIL MHKFRYW
Polarity LIFWCMVY PATGS HQRKNED
Polarizability GASDT CPNVEQIL KMHFRYW
Charge KR ANCQGHILMFPSTWYV DE
Surface tension GQDNAHR KTSEC ILMFPWYV
Secondary structure EALMQKRH VIYCWFT GNPSD
Solvent accessibility ALFCGIVW RKQEND MPSTHY

which were listed in Table 2. In this section, hydrophobicity
(𝐻) was taken as an example to calculate these three proper-
ties. For a sequence, the amino acids were distributed to three
groups according to their 𝐻 property and the respective size
of the three groups is calculated as 𝐶𝐻

1
, 𝐶𝐻
2
, and 𝐶𝐻

3
. So

the content for𝐻 was denoted as

(𝑓
21
, 𝑓
22
, 𝑓
23
) = (

𝐶𝐻
1

𝐿
,
𝐶𝐻
2

𝐿
,
𝐶𝐻
3

𝐿
) , (6)

𝐷𝐻
𝑖𝑗
(𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3, 4, 5) are used to measure the

respective location of the first (𝑗 = 1), 25 (𝑗 = 2), 50 (𝑗 = 3),
75 (𝑗 = 4), and 100% (𝑗 = 5) of amino acids with property 𝑖.
Then the distribution for 𝐻 was defined as

(𝑓
24
, . . . , 𝑓

28
; 𝑓
29
, . . . , 𝑓

33
; 𝑓
34
, . . . , 𝑓

38
)

= (
𝐷𝐻
11

𝐿
, . . . ,

𝐷𝐻
15

𝐿
;
𝐷𝐻
21

𝐿
, . . . ,

𝐷𝐻
25

𝐿
;
𝐷𝐻
31

𝐿
, . . . ,

𝐷𝐻
35

𝐿
) .

(7)

To our knowledge, there are (𝐿 − 1) dipeptides in a
sequence with length 𝐿. The parameters DI𝐻

1
, DI𝐻

2
, and

DI𝐻
3
are used to count the respective number of the three

types of dipeptides that contained two amino acids from
different groups. Then the dipeptide composition for 𝐻 was
calculated as

(𝑓
39
, 𝑓
40
, 𝑓
41
) = (

DI𝐻
1

𝐿
,
DI𝐻
2

𝐿
,
DI𝐻
3

𝐿
) . (8)

A feature vector with dimension 21 was calculated for
each physicochemical property.We finally get a feature vector
with dimension 188 after all properties were calculated.

2.3. Ensemble Classifier

2.3.1. Definition. Ensemble learning is a machine learning
method, in which multileaners are applied to tackle a same
problem. While ordinary classifiers usually try to learn
one hypothesis from training data, ensemble learning firstly
learns a set of hypotheses and then combines them into
an ensemble classifier. There are two kinds of ensemble
classifiers. One kind constructs a set of base learners called
homogeneous base learners with a single base learning
algorithm; the other kind produces base learners by adopting

multiple learning algorithms, which are called heterogeneous
learners.

In this regard, three ensemble methods are usually
adopted including Boosting [44, 45], Bagging [46], and
Stacking [47]. Bagging trains a set of base learners each
from a different dataset with the same size as the training
dataset obtained by subsampling the training dataset with
replacement. Stacking is implemented by first generating
a number of first-level individual learners from the train-
ing dataset with different learning algorithms and then
combining them by adopting a second-level learner called
metalearner [47]. Boosting is a typical ensemble method
and often used to train base learners. It has many effective
variants and its representative algorithm is AdaBoost [45].
Due to the fact that the current benchmark dataset contains
sufficient number of negative samples and a small amount
of positive samples, we proposed an improved AdaBoost
called Unbalanced-AdaBoost to make the best of the negative
samples.

2.3.2. Constructing the enDNA-Prot. The flowchart of
enDNA-Prot is shown in Figure 1. From it we can see that 𝑇
base learners were firstly trained by adopting Unbalanced-
AdaBoost and then combined into an ensemble classifier
with weighted vote rule. Before introducing the details of
Unbalanced-AdaBoost, we described some symbols. 𝑋 and
𝑌 are the instance space and the class labels, respectively, and
𝑌 = {−1, +1}. A train dataset with 𝑚 samples is represented
as 𝑆Train = {(𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑚
, 𝑦
𝑚
)}, where 𝑥

𝑖
∈ 𝑋 and

𝑦
𝑖
∈ 𝑌 (𝑖 = 1, . . . , 𝑚). Its positive samples subset and negative

samples subset are 𝑆
+

Train = {(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)}

and 𝑆
−

Train = {(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑙
, 𝑦
𝑙
)}, respectively,

where 𝑛 + 𝑙 = 𝑚. 𝑊
𝑡
is the weight distribution on 𝑆

−

𝑇
at

the 𝑡th learning round and its element 𝑊
𝑡
(𝑖) means the

probability with which the corresponding sample (𝑥
𝑖
, 𝑦
𝑖
)

in 𝑆
−

Train will be sampled by a weighted sampling process.
The pseudocode of Unbalanced-AdaBoost is shown in
Algorithm 1. At first, initialize a uniform weight distribution
𝑊
1
for 𝑆
−

Train, meaning that all the samples in 𝑆
−

Train have a
same probability to be sampled. Next, train a base learner
ℎ
𝑡
: 𝑋 → 𝑌 (1 ≤ 𝑡 ≤ 𝑇) on a dataset that contains all the

positive samples and the negative samples sampled from
𝑆
−

Train with weight distribution𝑊
𝑡
; then test it on the negative

train dataset 𝑆−Train and multiply the weights of the incorrectly
classified negative samples by a factor, meaning an updated
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Figure 1: The frame diagram of enDNA-Prot.

weight distribution 𝑊
𝑡+1

was produced based on 𝑊
𝑡
. Finally,

iterate the above process for 𝑇 times; 𝑇 base learners were
produced and combined into an ensemble classifier by
adopting weighted vote rule.

Unbalanced-AdaBoost made two adjustments over
AdaBoost. At first, the base learners were trained on datasets
generated by combining all the positive samples and same
number of negative ones sampled from 𝑆

−

Train with different
weight distribution. Next, in order to prevent overfitting and
make full use of the large number of negative samples, the
weight increasing speed of the incorrectly classified negative
samples in every round was controlled. For example, in the
𝑡th (1 ≤ 𝑡 ≤ 𝑇) round of the Unbalanced-AdaBoost, the
weight increasing factor of the incorrectly classified negative
samples was set as follows:

𝑓 = logsize (size +
1 − 𝜀
𝑡

𝜀
𝑡

) , (9)

where 𝑓 is the weight increasing factor of the incorrectly
classified negative samples, 𝜀

𝑡
denotes the error rate of base

learner ℎ
𝑡
on the negative train dataset 𝑆−Train, and size is the

number of negative samples in 𝑆
−

Train.
Previous research [48] indicated that the diversity of the

base classifiers facilitates further improvement. Accordingly

we used four types of classifiers including classifiers based
on tree, classifiers based on KNN, classifiers based on rule,
and classifiers based on function. There are 20 classifier
algorithms taken as base classifier algorithms in this study,
namely, IB1, IB5, IB15, J48graft, JRip, J48, NNge, PART,
RandomForest, RandomTree, REPTree, Ridor, SimpleCairt,
SMO, and conjunctiveRule, DecisionStump, DecisionTable,
BFTree, ZeroR, and LibSVM. For more details about these
learning algorithms, please refer to Weka [49].

3. Experiments

To evaluate the predictive performance of enDNA-Prot,
we conducted a series of experiments. Firstly, we test the
predictive performance of enDNA-Prot trained with bench-
mark dataset on the two independent datasets. Then we
discussed the influence of the number of negative samples in
benchmark dataset on the performance of enDNA-Prot.

3.1. Evaluation Metrics. Sensitivity (SE), specificity (SP),
accuracy (ACC), Matthew’s correlation coefficient (MCC)
value, and F1 Measure (F1 M) are the top five commonly
used evaluationmetrics in this regard. In order to evaluate the
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Input:
positive train dataset 𝑆+Train = {(𝑥

1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)};

negative train dataset 𝑆−Train = {(𝑥
1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑙
, 𝑦
𝑙
)}; (𝑙 + 𝑛 = 𝑚)

Base learning algorithm 𝐿 = {𝑙𝑎
1
, 𝑙𝑎
2
, . . . , 𝑙𝑎

20
};

Number of learning rounds 𝑇 = 20.
Output:

𝐻(𝑥) = sign (𝑓 (𝑥)) = sign
𝑇

∑
𝑡=1

𝛼
𝑡
ℎ
𝑡
(𝑥)

Process:
(1) 𝑊

1
(𝑖) =

1

𝑙
(𝑖 = 1, 2, . . . , 𝑙) //Initialize the weight distribution on 𝑆

−

Train

(2) For 𝑡 = 1, 2, . . . , 𝑇:
(3) 𝑆

−

sample = sampling(𝑆−Train,𝑊𝑡); //sampling negative samples from the negative train dataset 𝑆−Train with weight
distribution𝑊

𝑡

(4) 𝑆
𝑡
= 𝑆
+

Train + 𝑆
−

sample; //combine the positive train dataset 𝑆+Train and sampled dataset 𝑆−sample into a dataset
(5) ℎ

𝑡
= 𝑙𝑎
𝑡
(𝑆
𝑡
); //train the base learner ℎ

𝑡
on the dataset 𝑆

𝑡

(6) 𝜀
𝑡
= Pr
(𝑥𝑖 ,𝑦𝑖)∈𝑆

−

Train
[ℎ
𝑡
(𝑥
𝑖

̸= 𝑦
𝑖
)]; //test ℎ

𝑡
on the negative dataset 𝑆−Train and calculate its predicted error

(7) 𝛼
𝑖
= log
10

(
1 − 𝜀
𝑡

𝜀
𝑡

); //calculate the voting weight of the base learner ℎ
𝑡

(8) 𝑊
𝑡+1

(𝑖) =
𝑊
𝑡
(𝑖)

𝑍
𝑡

×
logsize (size +

1 − 𝜀
𝑡

𝜀
𝑡

) if ℎ
𝑡
(𝑥
𝑖
) ̸= 𝑦
𝑖

1 if ℎ
𝑡
(𝑥
𝑖
) = 𝑦
𝑖

//calculate the weight distribution for the next learning round,

where size denotes the number of samples in 𝑆
−

Train and 𝑍
𝑡
used to ensure that 𝑊

𝑡+1
is a distribution.

(10) End

Algorithm 1: The pseudocode of Unbalanced-AdaBoost.

enDNA-Prot objectively and without bias, they are adopted
as the metrics of our study.Their computational formulae are
written as follows:

SE =
TP

TP + FN
,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

MCC =
TP ∗ TN − FP ∗ FN

√(TP + FN) (TP + FP) (TN + FP) (TN + FN)
,

F1 M =
2 ∗ P ∗ R
P + R

,

P =
TP

TP + FP
,

R =
TP

TP + FN
,

(10)

where TP refers to the number of positive samples that
are classified correctly, FP denotes the number of negative
samples that are classified as positive sample, TN denotes the
number of negative samples that are classified correctly, and
FNdenotes that number of positive samples that are classified
as negative samples, while P andR refer to Precision value and
Recall value, respectively.

3.2. Predictive Performance. In this experiment, the enDNA-
Prot is trained with the benchmark dataset and then tested
on the two independent datasets. Furthermore, its predic-
tive performance was compared with some state-of-the-
art methods, including DNAbinder [4], DNA-Port [8], and
iDNA-Prot [50]. DNAbinder firstly extracts evolutionary
information in formof PSSM from the corresponding protein
sequence and then feeds it into SVMs for identifying DNA-
binding proteins. It proposed three ways to encode the
evolutionary information from PSSM. One is to encode the
evolutionary information into a feature vector of 21 dimen-
sions called PSSM-21 and its element is simple composition
of occurrence of each type of amino acids, calculated by
summing over each column (residual position) of PSSM.The
second way is to encode a sequence into a feature vector with
420 dimensions called PSSM-420, of which the element is
composition of occurrences of each type of amino acid cor-
responding to each type of amino acids in protein sequence,
meaning that it has 20 values instead of one for each column.
The last one is called PSSM-400which is similar to PSSM-420
except dummy residue “X” is ignored. As the sequences in our
dataset almost have no dummy residue “X,” we will not refer
to the PSSM-420 based DNAbinder. DNA-Prot is a predictor
that encodes a sequence by using several types of information
including sequence information and structure information,
such as amino acid composition, dipeptide composition,
amino acid composition in the secondary structures, and
secondary structures itself. The Random Forest is adopted
by it as a learning algorithm. iDNA-Prot represents each
sequence as pseudo amino acid composition by applied grey
model [51]. All these methods are in-house implemented and
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Table 3: Performance for independent dataset1 (trained on bench-
mark dataset).

Method ACC (%) MCC SE (%) SP (%) F1-M (%)
DNAbinder(P21) 79.00 0.61 54.87 98.08 70.31
DNAbinder(P400) 80.11 0.62 58.53 97.97 72.73
DNA-Prot 84.61 0.69 73.17 94.00 81.08
iDNA-Prot 77.47 0.55 78.05 77.00 75.73
enDNA-Prot 84.62 0.70 73.18 94.00 84.62
P400 and P21 denote the two vectorization methods PSSM-400 based
DNAbinder and PSSM-21 based DNAbinder, respectively.

Table 4: Performance for independent datset2 (trained on bench-
mark dataset).

Method ACC (%) MCC SE (%) SP (%) F1-M (%)
DNAbinder(P21) 76.64 0.55 86.18 67.57 74.89
DNAbinder(P400) 76.38 0.52 72.35 80.19 75.23
DNA-Prot 77.74 0.56 85.19 70.71 78.79
iDNA-Prot 72.19 0.45 77.01 67.64 72.89
enDNA-Prot 81.71 0.64 84.55 79.05 81.71
P400 and P21 denote the two vectorization methods PSSM-400 based
DNAbinder and PSSM-21 based DNAbinder, respectively.

tested on the same datasets to give an unbiased comparison
with the present method enDNA-Prot.

The results of different methods on independent dataset1
are given in Table 3. From this table we can see that enDNA-
Prot andDNA-Prot achievedhighly comparable performance
and outperformothermethods by 4.51–7.15% in terms ofACC
and 0.08–0.15 in terms of MCC.

In order to objectively evaluate the performance of our
method and fairly compare it with othermethods, the present
method was further evaluated on another independent
dataset. The results on independent dataset2 are given in
Table 4. From Table 4 we can see that among all the methods
enDNA-Prot achieves the best performance. It outperforms
other methods with improvement in the range of 3.97–9.52%
in terms of ACC and in the range of 0.08–0.19 in terms
of MCC, which indicated that enDNA-Prot is an effective
method for DNA-binding protein identification.

3.3. Impact of the Number of Negative Samples. To analyze the
influence of the number of negative samples in benchmark
dataset on the performance of enDNA-Prot, a training dataset
and a validation dataset are constructed based on 𝑆

𝑒
. At first,

extract the former 73 DNA-binding proteins and 125 non-
DNA-binding proteins from 𝑆

𝑒
to create a validation dataset.

Next, collect the remaining 73 DNA-binding proteins and
𝑛 different non-DNA-binding proteins from the remaining
non-DNA-binding proteins to compose a training dataset,
where the 𝑛 is a variable ranging from 250 to 2000. By
changing the value of 𝑛, we can obtain number of different
training datasets. Through a validation dataset and multiple
training datasets, the compact of the number of negative
samples in training dataset on the performance of current
method is achieved, which are given in Figure 2. As shown
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Figure 2: The influence of 𝑛 on performance.

in this figure, the performance of enDNA-Prot increases to
a maximum value as the value of 𝑛 increases from 250 to
1100 and then tends to be steady when 𝑛 is larger than 1100.
It indicated that 1100 negative samples can render enDNA-
Prot to achieve the best predictive performance. Therefore,
for further analysis, we create a dataset called expanded
benchmark dataset1100 with all the positive samples and
the former 1100 negative sample from expanded benchmark
dataset, which will be employed as another training dataset
for further evaluating the present method.

The predictive performance of enDNA-Prot trained with
different training datasets for the two independent datasets is
given in Table 5. As shown from this table, the enDNA-Prot
training on expanded benchmark dataset1100 outperforms
the one training on benchmark dataset with improvement
in the range of 1.77–4.94% in terms of ACC and 0.03–
0.09 in terms of MCC. It indicated that expanding the
training dataset with negative samples can indeed improve
the predictive performance of enDNA-Prot.

In order to further analyze the advantage of current
method over other methods, the expanded benchmark
dataset1100 is also used as training dataset to evaluate the
performance of the three methods mentioned above and
our method. The results of the proposed method and other
methods on independent dataset1 are given in Table 6. From
this table we can see that enDNA-Prot achieved 89.56% in
terms of ACC and 0.79 in terms of MCC, which outperforms
othermethods with improvement in the range of 11.11–16.63%
in terms of ACC and 0.18–0.27 in terms MCC. The results
on independent dataset2 are given in Table 7, from which we
can see that enDNA-Prot achieved 83.48% in terms of ACC
and 0.67 in terms ofMCC, which outperforms othermethods
with improvement in the range of 2.83–8.37% in ACC and
0.02–0.16 inMCC. It indicated that enDNA-Prot can perform
better than other existing methods on unbalanced dataset.
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Table 5: Performance of enDNA-Prot trained on different dataset.

Testing dataset Training dataset ACC (%) MCC SE (%) SP (%) F1-M (%)

ID1 BD 84.62 0.70 73.18 94.00 84.62
EBD1100 89.56 0.79 80.48 97.00 87.42

ID2 BD 81.71 0.64 84.55 79.05 81.71
EBD1100 83.48 0.67 84.29 82.72 83.21

ID1 and ID2 denote the independent dataset1 and independent dataset2, respectively; BD andEBD1100 denote the benchmark dataset and expanded benchmark
dataset1100, respectively.

Table 6: Performance for independent dataset1 (trained on
expanded benchmark dataset1100).

Method ACC (%) MCC SE (%) SP (%) F1-M (%)
DNAbinder(P21) 72.93 0.52 42.24 100 57.39
DNAbinder(P400) 78.45 0.61 52.44 100 68.80
DNA-Prot 76.37 0.58 47.56 100 64.46
iDNA-Prot 76.92 0.58 50.00 99.00 66.13
enDNA-Prot 89.56 0.79 80.48 97.00 87.42
P400 and P21 denote the two vectorization methods PSSM-400 based
DNAbinder and PSSM-21 based DNAbinder, respectively.

Table 7: Performance for independent datase2 (trained on
expanded benchmark dataset1100).

Method ACC (%) MCC SE (%) SP (%) F1-M (%)
DNAbinder(P21) 75.11 0.51 64.41 85.27 71.59
DNAbinder(P400) 81.65 0.65 67.14 95.42 78.09
DNA-Prot 79.07 0.60 65.32 92.03 75.19
iDNA-Prot 75.60 0.54 57.01 93.14 69.41
enDNA-Prot 83.48 0.67 84.29 82.72 83.21
P400 and P21 denote the two vectorization methods PSSM-400 based
DNAbinder and PSSM-21 based DNAbinder, respectively.

3.4. Web-Server Guide. For the convenience of the vast
majority of experimental scientists to use enDNA-Prot, a
detailed step-by-step guide on how to use the web-server of
enDNA-Prot is provided as follows.

Step 1. Open the web-server at http://bioinformatics.hitsz
.edu.cn/Ensemble-DNA-Prot/ and youwill see the homepage
of enDNA-Prot on your screen. Click on the “How to use”
button to see a brief introduction about the predictor.

Step 2. Click on the “Server” button and you will see the
server page of enDNA-Prot on your screen. Either type or
copy/paste the query protein sequence of FASTA format
into the input box at the center of the server page. For
more detailed information about the format of query protein
sequence, please click on the “fasta format” above the input
box. Note that number of query protein sequence inputted
should be no more than 50.Then click on the Submit button.

Step 3. Input your information into the corresponding input
box, such as your name and your email address, and click on
the Submit button. Then you will get the results whether it is

a DNA-binding protein or non-DNA-binding protein of your
inputted query protein sequences.

Step 4. If you need to get the source code of enDNA-Prot
and the dataset employed in this paper, you can click on
Download in the home page.

Step 5. If you have any problem regarding the predictor
enDNA-Prot or using the web-server of enDNA-Prot, please
click on Contact in home page to get our email address.

4. Conclusions

In the field of DNA-binding protein identification, many
predictors have been proposed, but most of them focus on
only one classification algorithm and cannot make full use
of the large number of negative samples to improve its per-
formance. Accordingly, we proposed a new predictor called
enDNA-Prot which firstly encoded each protein sequence
into a feature vector with dimension of 188 with features
only extracted from protein sequence and then fed into an
ensemble classifier constructed with 20 different machine
learning classifiers. The experimental results showed that the
proposed method outperforms most existing state-of-the-art
methods, indicating that enDNA-Prot is an effective method
for DNA-binding protein identification for both balanced
dataset and unbalanced dataset. Furthermore, it also showed
that the performance of enDNA-Prot trained with expanded
benchmark dataset is better than the one trained with
benchmark dataset, which indicates that expanding training
dataset with negative samples can improve its predicative
performance.
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