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ABSTRACT 

Motivation: Within bioinformatics, the textual alignment of amino 

acid sequences has long dominated the determination of similarity 

between proteins, with all that implies for shared structure, function, 

and evolutionary descent. Despite the relative success of modern-

day sequence alignment algorithms, so-called alignment-free ap-

proaches offer a complementary means of determining and express-

ing similarity, with potential benefits in certain key applications, such 

as regression analysis of protein structure-function studies, where 

alignment-base similarity has performed poorly. 

Results: Here, we offer a fresh, statistical physics-based perspec-

tive focusing on the question of alignment-free comparison, in the 

process adapting results from “first passage probability distribution” 

to summarize statistics of ensemble averaged amino acid propensity 

values. In this paper, we introduce and elaborate this approach. 
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1 INTRODUCTION  

 
Determining the similarity between macromolecules is central to 
bioinformatics. While comparison of 3-dimensional macromolecu-
lar structures remains an active area, most work focuses on mac-
romolecular sequences. From sequence similarity devolves much 
of our understanding of evolutionary homology and probable struc-
tural and functional relatedness, allowing sequences to be grouped 
in a meaningful way. It is the basis of inherited or inferred func-
tional annotation, allowing us to deduce the broad function of pro-
teins in newly sequenced genomes. 
Similarity is determined, almost exclusively, through the alignment 
of sequences as text. Textual sequence similarity is taken as a sur-
rogate for common ancestry and, by extension, functional and 
structural similarity. Most approaches to protein sequence similari-
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ty use models of sequence evolution and compare amino-acid 
strings, searching for linear conservation of sequence.  
Sequence alignment, where equivalent or near-equivalent symbols 
are brought into register, has been investigated intensely for many 
decades, and thus an enormous associated literature has accumu-
lated. Typically, substitution matrices specify a score for aligning 
pairs of nucleotides or amino acids; in such matrices different ami-
no acids or nucleotides score differently according to the potential 
likelihood that one will replace the other in a sequence. For amino 
acids, many matrices have been published, based on many ration-
ales (Feng et al., 1984; Taylor, 1986), including the genetic code 
and amino acid physico-chemical properties. Most commonly-used 
matrices are typically derived empirically from exhaustive compar-
ison of known sequences or structures. 
The log-odds matrices (Schwartz and Dayhoff, 1978) derived from 
the PAM model of protein evolution (Dayhoff et al., 1978) was, for 
many years, the most widely used. Statistical results indicate such 
matrices adopt an implicit “log-odds” form, with a specific target 
distribution for aligned residue pairs. The sensitivity of protein 
sequence searching depends on the selection of appropriate substi-
tution matrices (Henikoff and Henikoff, 1993; Pearson, 1995). 
BLOSUM, and other commonly-used matrices, constructed from 
particular sets of related proteins, are tailored to target frequencies 
reflecting implied standard background amino acid compositions. 
While probabilistic extensions to sequence alignment, such as 
profiles and Hidden Markov Models (HMMs), can capture posi-
tion-specific variation in multiple alignments, and typically 
demonstrate significantly augmented sensitivity, all alignment 
methods remain prone to similar limitations.  
Compared to sequence alignment, alternative approaches, grouped 
together as alignment-free techniques, and first proposed by 
Blaisdell (1986), have not been investigated as thoroughly (Davies 
et al., 2007). Extant methods fall into several groups; of these, 
perhaps the most explored approach focuses on sequence compari-
son based on the joint sub-word or k-tuple content of groups of 
sequences, and their analysis using increasingly sophisticated 
probabilistic statistics. 
Amongst other approaches, methods based on plotting so-called 
propensity scales (Nakai et al., 1988) have enjoyed long-standing 
popularity; with scales mirroring one or more amino acid proper-
ties, such as hydrophobicity (Hopp and Woods, 1981) or electro-
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negativity. Such scales abound: AAindex has collected 545 differ-
ent published scales (Kawashima et al., 2008). Others have sum-
marized such data, producing, inter alia, three (Hellberg et al., 
1987) or five scales (Sandberg et al., 1998; Venkatarajan and 
Braun, 2001). 
A propensity scale is a means to characterize numerically local 
sequence properties, usually plotting amino acid properties along a 
sequence. Plotting individual values is of little value however un-
less there is an obvious periodicity. More helpful is to average the 
values using a moving or sliding window: typically using a flat, 
symmetrical window of no more than 10-20 amino acids in length. 
A moving window can have several potential parameters: first, the 
scale chosen; second, the window length; third, the window shape; 
fourth, whether the window is symmetrical or unbalanced; and 
fifthly, how values are smoothed after averaging. Typically, win-
dows are short, flat, and symmetrical about the central residue, 
which takes the averaged value. Several different window shapes 
have been suggested, corresponding to weighting each position 
independently. 
Independent of the exact parameters used to define the window 
function, various kinds of smoothing are available, including digi-
tal filtering, integral transforms (Fourier and Cosine), and wavelet 
analysis, each with their own characteristics. Smoothing seeks to 
reduce the random component of the initial value spectrum gener-
ated by windowing, with the high-frequency regions removed, 
leaving only dominant low-frequency modes. 
The value of individual propensity plots is limited. It works well, 
say, for predicting transmembrane regions within proteins, where 
peaks in the plot can correlate well with regions highly enriched in 
hydrophobic residues. Hitherto, it has proved difficult to interpret 
such plots other than by a peak-spotting. Several decades ago, most 
predictors were based on identifying maximally valued regions of 
sequences; essentially looking for peaks, or troughs, in some form 
of a propensity plot. Epitopes, such as immunological T- or B-cell 
epitopes (Hopp and Woods, 1981; Deavin et al., 1996); loops and 
surface exposure (Dovidchenko et al., 2008); and transmembrane 
helices (Sipos and von Heijne, 1993) were - and often still are - 
predicted this way. Propensity scales have also been used in QSAR 
studies, particularly those focusing on peptides (Hellberg et al., 
1987; Sandberg et al., 1998). 
In what follows, we take a decisive step away from such analyses, 
using techniques drawn from statistical physics. Specifically, we 
use techniques from the rich literature of first passage probability 
distribution, sometimes referred to as the “persistence” problem 
(Redner, 2007; Bray, 2013); applying them for the first time to 
sequence analysis. Persistence analysis has found applications in 
many fields including, inter alia: stock market analysis (Ren, 
2005), modeling immunological systems (Chattopadhyay and Bur-
roughs, 2007), extremal value statistics pertaining to data degrada-
tion (Whitmore, 1986), modeling the population biology of HIV 
dynamics (Tuckwell and Wan, 2000), event detection time for 
mobile sensor networks (Inaltekin et al., 2007), and supply chain 
optimization (Wakuta, 2000).  
In this paper, we develop and analyze propensity data by modeling 
sequences as a time-series, estimating the scaling regime of a gen-
eralized probability density function (PDF) of a variable derived 
from the original propensity data structure. Our protocol enables us 
to abstract key features from propensity plots while remaining free 
of any text-based alignment scheme. We then apply this alignment-

independent approach to the analysis of protein sequences, evaluat-
ing it as a potential means of automatically characterizing and 
clustering large numbers of sequences. 

2 PERSISTENCE ANALYSIS: DERIVING ORDER 

PARAMETER OF PROTEINS SEQUENCES. 

 
The idea underlying persistence analysis is simple. It relies on the 
nature of the probability density function (PDF) of stochastic time 
series data X(t): in our case, ensemble-averaged propensity scale 
data. The basic question asked is: what is the probability p(t) that 
the field X(t) has not changed sign up to time t, starting from an 
initial configuration X(t0)? An equivalent question would be: what 
is the probability p(t1,t2) that the field X(t) changes sign N times 
between t1 and t2 for X(t) > <X>? In our case, <X> = X0 or the 
mean value of the time series data X(t). Depending on the nature of 
the ‘random walk’ - in this case a protein sequence - this probabil-
ity is given by p(t1,t2) ~ (t1/t2)

-m; where the exponent “m” assumes 
different values depending on whether this probability is calculated 
using data above or below a certain threshold. The threshold is 
typically the mean value (X0) of the stochastic data. Thus multiple 
‘order parameters’ may emerge from the same description depend-
ing on the chosen value of “m”.  
Our approach utilizes “extremal value statistics” to analyze se-
quence structure. This builds on a tacit first approximation that 
sequences - as represented by propensity plots - can be seen as 
being predominantly stochastic in structure, at least when viewed 
synoptically. At this stage, the focus is on a specific manifestation, 
that of the “first passage probability” distribution around the mean 
value X0 of the data points X(t) where “t” is our metaphor for the 
location of the data point in the time series-like sequence. What 
this “first passage statistics” captures is the distribution of the “re-
turn times” of the fluctuating “time series” across the given thresh-
old X(t) = X0.  

 

Figure 1: An illustration of first passage probability distribution 
across a threshold X(t) = X0  
 
Figure 1 shows the “return time lengths” from data points below 
the line X(t) = X0 to one above this line and then back again to 
X(t)< X0. As an example, t+

(1) defines the first “plus”-type return 
time where “plus” refers to the regime X(t) > X0 such that the time 
series starts from a point below this line (X(t) < X0) and after 
crossing this line returns back to the regime X(t) < X0.  Similarly, 
t+

(2) refers to the second such “plus-type” return time; and so on.  
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t-
(1) refers instead to the first “minus-type” return time where the 

time series count starts at X(t ) > X0, then crosses the threshold line 
in to the X(t) < X0 regime and finally returns to X(t) > X0. 
Our interest is in the probability distributions of the t+ and t- transi-
tions. Such a probability distribution is achieved by calculating 
histograms of “return times” above (t+) and below (t-) the line X(t) 
= X0. The histograms are then normalized to obtain the desired 
probability density functions (PDFs). We assume that sequences 
are, to a first approximation, “inherently random”. As long as we 
are within the stochastic realm, all prior statistical results, includ-
ing that for long range correlated stochastic data, suggest the exist-
ence of universal power law exponents defining the first passage 
probability distribution statistics related to t+ and t- transitions. In 
our description, we will use m+ to identify the exponent for 
X(t)>X0 and m_ for the exponent characterizing X(t) < X0. We now 
focus on this two dimensional (mn,i) plane where n=+,-.  

3 METHODS 

 
Here, we characterize protein sequences using an alignment-free 
approach based on techniques of time series analysis commonly-
used in statistical physics and elsewhere (Redner, 2007; Bray, 
2013).  

3.1 Plotting of Propensity data 

In general, a window could adopt any arbitrary shape; thus we may 
assume a generalized window will have this form: 
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Within the window there will be m amino acids that are to be aver-
aged upstream of the target residue, and will have n amino acids 
downstream, plus the value for the residue itself; all residues with-
in the window will have independent and arbitrary coefficients (w) 
that will selectively weight individual positions within the travel-
ling window. Averaging can be undertaken several times: values 
averaged over any particular iteration being the values generated 
by averaging in the previous iteration. 
We extracted 544 useable propensity values from AAIndex (Ka-
washima et al., 2008). All scales were used. Sequences were con-
verted to numerical profiles comprising propensity values. Using a 
window length of 7, one round of uniform smoothing was used per 
sequence. Each sequence behaved as intrinsically stochastic time 
series-like data. For each sequence processed, we generated 544 
different smoothed profiles, corresponding to the 544 scales from 
AAindex. Each of these 544 data sets was arranged in N column 
vectors, where each column vector represented a sequence. The 
number of entries in each of these column vectors was identical. 
The block structure is a matrix M (Nx544) where each element of 
this matrix is a column vector. 

3.2 Propensity Analysis 

For each sequence drawn from Pfam (Finn et al., 2014), and for 
each of the 544 AAindex propensity scales, separate m+ and m- 
values were calculated from the corresponding t+ and t- data. For 
each sequence, the arithmetic means of 544 m+ and 544 m-_values 
were derived: this gave the “order parameter” m=0.5*(m+ + m-). 
This is akin to statistical “ensemble averaging”, including any 
cogent non-ergodicity of the ensemble. The order parameter m thus 
represents each protein sequence as a single number. The resulting 

m-values were then used to cluster the sequences using the scheme 
detailed below. The schematic algorithm for calculating the values 
m+ and m- value for each of N sequences is shown below:  
 

1. (m+, m-) calculated for each of the 544 column vectors of 

row i of the M-matrix 

2. Ensemble average (arithmetical mean) taken of (m+, m-) 

for all 544 vectors in row i of the M-matrix  

3. Steps 1-2 repeated N times, for all 544 vectors in each 

row, to generate N-sets of (m+, m-) 

 
Our “order parameter” is thus the mean of the previously defined 
m+ and m- values obtained individually as “scaling exponents” 
(“persistence exponents”) of the t+ (or t_) PDFs. The ultimate ob-
jective of this analysis was a clear clustering of the protein se-
quences such that similar proteins fall into separate clusters that are 
defined by separate combinations of (mn,i) values (coordinate loca-
tion in the mn-i space) where n=+,- and i = position of the protein 
sequence along the x-axis. Clustering follows the logic below: 
 

1. Plot (m+, m-) vs relevant sequence number to generate 

the phase diagram 

2. Grouping of (m+, m-) vs sequence number i in the phase 

diagram 

3. Starting from the phase diagram defined in 2, estimate 
dm = mi+1-mi, f = (1+dm)*di between every two points 
representing each sequence. 

4. Plot f versus i using a first adjustable threshold (mean of 
the separation distances in the phase diagram plot) that 
separates out the large f's form the small f's. Use den-
dogram based MATLAB clustering protocol 

5. Since the dendogram generates more clusters than the 
system actually has, use a second threshold (standard de-
viation of the data points in the phase diagram plot) and 
repeat step 2. The clustering accuracy will be shown by 
the level of gradient equality (see Figure 3) 
 

Clustering data are then plotted sequentially to evaluate the size of 
successive clusters. The PDFs of cluster lengths exhibit power-law 
scaling. More importantly, the scaling exponents can be used to 
compare the clustering accuracy of the Matlab-inbuilt architecture. 
Comparing this to known clusters provides the probabilistic values 
of the two external parameters determining the eventual cluster 
quality.  

3.3 Application to test cases 

 
We extracted one arbitrary but representative sequence family 
from each superfamily in the Pfam database (version 27.0, March 
2013, 14831 families) (Finn et al., 2014). Seed sequences were 
used in preference to final sequence sets, for reasons of reliability, 
since members were chosen by human experts without the in-
volvement of potentially-unreliable automated methods. Down-
loaded alignments were converted to un-gapped sequence sets.  
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Figure 2: Clustering from the part of the Pfam dataset. Panel 1 
represents the reference set of known clusters with groupings ob-
tained from Pfam. Panel 2 is the clustering obtained using an in-
built Matlab algorithm which uses only the number of clusters 
from Pfam (Panel 1) as input. The y-axis represents the average 
value of the order parameter m, while the x-axis represents the 
sequence. Perpendicular (dotted) lines are used to show separate 
clusters that are otherwise identified by different symbols. 
 
 

 
 
Figure 3: Histograms of cluster sizes obtained from the clustering 
data in Figure 2 and plotted on a log-log scale. The solid line rep-
resents actual data (panel 1 of Fig 2), the dotted line represents the 
result from the Matlab-inbuilt algorithm (panel 2 of Fig 2). 
 
Figure 3 is an accuracy-check of our algorithm, estimating the 
cluster size distribution D. The gradients of the dotted and dashed 
lines in the log-log plots (cluster PDF of size) in Figure 3 are com-
pared with that of the solid line (actual data) in identifying the 
“best fit” (least squares) structure that leads to the most optimized 
clustering scheme, as shown in Figure 2. 
The distribution follows a power-law profile (D~S-p) with an (su-
per-diffusive) exponent p~1. The two (threshold) parameters are 
tuned to predict the optimal fit straight line from our algorithm 

parallel to that of the ‘known’ data from panel 1. To the best of our 
knowledge, no extant procedure has such high accuracy with only 
two tunable parameters. 
The Matlab-based dendogram algorithm used requires the number 
of clusters as input, but beyond that the resulting clustering, includ-
ing the size and location of clusters, are independent and no as-
sumptions are made or prior knowledge used. As expected, the 
location and size of resulting clusters is not 100% accurate, yet it is 
clear from Fig 2 that mismatches are generally marginal. We also 
calculated two widely-used quality indices as summary measures 
of the Pfam clustering. The cluster separation measure of Davies 
and Bouldin (1979) gave a value of 0.75032, while the Dunn com-
pactness index was 0.03296. Both values are consistent with excel-
lent overall clustering. 
The data in Figures 2 and 3 establish the robustness of our algo-
rithm. Using sequence-data with different overall characteristics 
and number of independent clusters (shown in panel 1 of Fig 2: our 
benchmark), our results show that irrespective of the low accuracy 
of the cluster distribution gradient value (“p”), as clearly seen from 
the non-parallel lines of Figure 3, cluster identification, the funda-
mental outcome of our work, results in high accurate discrimina-
tion of groups. In other work, concentrating on more readily-
apparent similarity within single Pfam clans, we have found using 
our current minimal and unoptimized method similar reliability at 
a much finer granularity. Together, these results demonstrate this 
sequence representation is both consistent and discriminatory at 
both high and low granularity. 

4 DISCUSSION 

 
The analysis of sequence similarity is the cornerstone upon which 
much of bioinformatics is built. Hitherto, alignment-based ap-
proaches have completely dominated work in this area, while other 
approaches, of which there are several (Davies et al., 2007), have 
been examined with much less thoroughness. Yet the need for 
effective approaches, able to transcend the limitations of text 
matching, is clear, if not widely appreciated. 
The protocol described here takes propensity plots produced from 
the 544 scales in AAindex (Kawashima et al., 2008), averages 
them, and generates a single value characteristic of a whole se-
quence. Our implementation is, in essence, an out-of-the-box ap-
plication of existing results, with immense potential for future 
refinement. We have applied here a well-understood statistical 
method from stochastic mathematics, using it to interpret and iden-
tify independent clusters in protein sequence data. Our approach 
introduces a fundamentally new way to represent sequences which 
is nonetheless founded on the long-standing concept of propensity 
scales, and, capitalizing on features of this representation, we have 
used it to power a novel approach to clustering. This method is 
able to capture much of the overall structure of a propensity plot in 
a single but discriminatory and self-consistent value.  
Many properties of a protein are encoded within its sequence in a 
subtle and recondite manner not amendable to direct identification 
through sequence alignment or the recognition of characteristic 
sequence motifs. Likewise, the discovery of functionally-similar 
but sequence-distinct proteins may be frustrated by a lack of osten-
sive similarity to proteins of known provenance. In such a situa-
tion, alignment-dependent approaches may produce ambiguous 
results or fail completely.  
There are many examples where structural or functional similari-
ties are readily apparent experimentally, yet are difficult - if not 
impossible - to detect from textual sequence alignment. Perhaps 
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the most obvious are the so-called twilight and midnight zones 
(Rost, 1999). Most protein sequences will fold into unique 3-
dimensional structures, and similar sequences will typically have 
similar structures. Sequence alignments can routinely distinguish 
between sequence pairs known to have similar or non-similar 
structures when the sequence identity is greater than > 40%. This 
unequivocal signal becomes lost at 20-35% sequence identity: the 
so-called twilight zone. Alignment-methods often fail to align 
paired amino-acids correctly even with 20–30% identity. Structural 
alignment has revealed many, many examples of so-called struc-
tural superfamilies, where proteins with less than 10% identity 
nonetheless retain structural propinquity (Flower et al., 1993; 
Flower, 1993). The average identity between all sequence pairs of 
related structures is 8–10%, and this marks the midnight zone, 
which is predominantly populated by protein structures that have 
become similar by convergent evolution.  
Thus, we need to apply our approach to a variety of both solved 
and unsolved problems to explore its value. Solved problems in-
clude searching within and beyond the twilight zone, and to classi-
fy and identify structural and functional relationships within it 
effectively, it is imperative to explore alternative approaches to 
pairwise similarity and BLAST statistics (Karlin and Altschul, 
1990). Unsolved problems include clustering whole genomes 
where the result is unknown, and is complicated by the presence of 
multi domain proteins, internal repeats, etc.; the development of 
regression models using our order parameter values as descriptors; 
and a surrogate of sequence searching using order values to define 
similarity measures. 
In protein design there is a need to move beyond making piece-
meal changes to extant sequences to identify wholly new sequenc-
es with new functions and structures. Effective alignment free 
approaches should allow us to address such issues, particularly 
through the development of properly grounded regression ap-
proaches to protein sequence analysis. There are many examples of 
such approaches: the proteochemometric analysis of protein se-
quences (van Westen et al., 2013), the prediction of candidate 
vaccines (Doytchinova and Flower, 2007a,b), and the successful 
assignment of bacterial proteins to various subcellular locations 
(Sjöström et al., 1995). 
Regression approaches typically require three viable components: 
an induction engine (based on multivariate statistics, such as PLS, 
or a machine learning algorithm), data to be modeled (which can 
be quantitative or categorical in nature), and an appropriate data 
representation. Data modeling methods have reached sufficient 
maturity, and data quality is constrained by its availability on a 
case-by-case basis, so increasingly it is the choice of data represen-
tation that is the crucial arbiter of success. This is especially true 
for protein regression, which lags far behind equivalent work for 
small molecules. Alignment-independent similarity measures, such 
as our representation, offer an interesting and seemingly produc-
tive avenue for achieving progress in this endeavor.  
To go beyond sequence motifs and profiles, HMMs and like meth-
odology - and thus identify common function, structure, and evolu-
tion - new, distinct, yet complimentary, methods must be devised: 
alignment-free methods that can work with textual alignment to 
identity similarity manifest as shared structure and function. 
In this paper, we have used results from statistical physics to ad-
dress alignment-free comparison, adapting results from “first pas-
sage probability distribution” to derive a single summary value 
able to differentiate sequence groups with high accuracy at several 
levels of granularity. This approach is potential highly robust being 
largely independent of fluctuation in the tunable parameters. We 

anticipate that this approach will ultimately take its place alongside 
textual alignment as a strongly complimentary method for se-
quence analysis, with many advantages compared to conventional 
techniques. 
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