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Abstract

Beta frequency oscillations (10–35 Hz) in motor regions of cerebral cortex play an important role in stabilising and
suppressing unwanted movements, and become intensified during the pathological akinesia of Parkinson’s Disease. We
have used a cortical slice preparation of rat brain, combined with concurrent intracellular and field recordings from the
primary motor cortex (M1), to explore the cellular basis of the persistent beta frequency (27–30 Hz) oscillations manifest in
local field potentials (LFP) in layers II and V of M1 produced by continuous perfusion of kainic acid (100 nM) and carbachol
(5 mM). Spontaneous depolarizing GABA-ergic IPSPs in layer V cells, intracellularly dialyzed with KCl and IEM1460 (to block
glutamatergic EPSCs), were recorded at 280 mV. IPSPs showed a highly significant (P, 0.01) beta frequency component,
which was highly significantly coherent with both the Layer II and V LFP oscillation (which were in antiphase to each other).
Both IPSPs and the LFP beta oscillations were abolished by the GABAA antagonist bicuculline. Layer V cells at rest fired
spontaneous action potentials at sub-beta frequencies (mean of 7.1+1.2 Hz; n = 27) which were phase-locked to the layer V
LFP beta oscillation, preceding the peak of the LFP beta oscillation by some 20 ms. We propose that M1 beta oscillations, in
common with other oscillations in other brain regions, can arise from synchronous hyperpolarization of pyramidal cells
driven by synaptic inputs from a GABA-ergic interneuronal network (or networks) entrained by recurrent excitation derived
from pyramidal cells. This mechanism plays an important role in both the physiology and pathophysiology of control of
voluntary movement generation.
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Introduction

Beta oscillations (15–35 Hz) are a characteristic feature of

neuronal network activity in primary motor cortex (M1) and such

activity has been suggested to reflect an idling state of cortex,

which prevails in the absence of appropriate sensory input [1].

However, other studies [2] have indicated that motor cortical beta

activity may reflect active inhibition of movement and therefore

likely to be involved in maintaining postural tone [3]. This latter

aspect has relevance for the dopamine-depleted state, as seen in

Parkinson’s disease (PD), where beta activity within cortical-

subcortical motor loops is abnormally enhanced [4,5,6] and which

coincides with the emergence of movement disorders [7] such as

akinesia and bradykinesia. Administration of levodopa or deep

brain stimulation of the subthalamic nucleus appears to reduce this

coherent beta frequency activity, which is accompanied by motor

improvement [8,9]. Similar effects can be seen with antidromic

stimulation of deep motor cortical pyramidal cells [10], suggesting

that M1 itself is important in the pathogenesis and/or treatment of

PD and recent advances using optogenetic approaches have shown

that afferent axons projecting from deep M1 may be the primary

target in effective DBS [50].

In contrast to the extensive in vivo literature, oscillatory activity

in M1 has remained little explored in vitro. We have described a

pharmacological approach to obtain persistent oscillations in slices

of rat M1 [11] and showed that this region will generate

synchronous network oscillations preferentially at beta frequency.

These oscillations were found to be generated in deep layers and

dependent upon fast synaptic inhibition mediated by GABAA

receptors. A contribution from NMDA receptors and GABAB

receptors was also evident, while electrical coupling of the

neuronal network by gap junctions appears necessary for robust

rhythmogenesis. These features, including the involvement of

glutamate and GABA synaptic drive and direct electrical coupling,

are common to many types of oscillatory activity in hippocampus,

entorhinal cortex and somatosensory cortex [12,13,14,15,16].

Field oscillatory activity arises through the synchronous activity

of pyramidal neurons. In neocortex, two classes of glutamatergic

pyramidal cells, regular spiking (RS) and intrinsic bursting (IB)

cells, have been characterised electrophysiologically in vitro

[17,18,19]. Inhibitory GABAergic neurons within the neocortex
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display extensive electrophysiological and morphological diversity

[20,21,22], each cell type contributing differently to the pattern of

multiple oscillatory frequencies [23,24]. However, to date there

has been no description of the underlying cellular mechanisms of

beta oscillatory activity in M1. In this study we have explored the

contribution to the field beta oscillation in the primary motor

cortex (M1) made by GABAergic IPSPs and action potentials (AP;

spike) recorded intracellularly in single M1 layer V pyramidal cells.

We report that beta oscillations induced by co-application of

kainic acid and carbachol in slices of M1 in vitro are mediated by

beta-frequency IPSPs acting to control spiking activity in the large

pyramidal cells present in layer V of M1. We show that IPSPs in

pyramidal cells occur at beta frequency and are highly coherent

with the local field potential (LFP) signal, whereas spike activity in

the same cells, though highly coherent with beta oscillations,

occurs at much lower frequency, indicating that individual

pyramidal neurons are active only sparsely during on-going beta

activity. Phase analysis of the relationship between APs and the

LFP revealed high vector strength at beta frequency, suggesting

that, as in other systems [25,26], motor processing in M1 may

depend on both amplitude and phase of cortical oscillatory

activity.

Methods

Extracellular local field potential (LFP) and intracellular (sharp

microelectrode) recordings were made from the M1 primary

motor cortical region in sagittal slices obtained from 80–120g male

Wistar rats. In accordance with Home Office guidelines, animals

were maintained in a temperature and humidity controlled

environment on a 12/12 light dark cycle and allowed access to

food and water ad libitum. The cage environment was enriched. All

animal procedures were performed in accordance with the Aston

University policy on research involving animals and under a

project license approved by the Aston University Bioethics

Committee. Procedures were also in accordance with the Animals

(Scientific Procedures) Act UK 1986 as amended by the European

Communities Directive 2010/63/EU. Each rat was terminally

anaesthetized with isoflurane (20% in N2/O2) and transcardially

perfused with approximately 100 ml ice-cold sucrose-based

artificial cerebrospinal fluid (aCSF) of composition (in mM); 171

sucrose, 2.5 KCl, 10 MgCl2, 25 NaHCO3, 1.25 NaH2PO4, 10

glucose, 0.5 CaCl2, 1 ascorbic acid, 2 N-acetyl cysteine, 1 taurine

and 20 pyruvate and saturated with 95% O2 and 5% CO2 at pH

7.3 and 310 mOsm. Indomethacin (45 mM), a cyclo-oxygenase

inhibitor, was added to the aCSF to improve cell viability [27] and

the antioxidants ascorbic acid (300 mM) and uric acid (400 mM)

added as neuroprotectants. After the brain was extracted and

placed in ice-cold sucrose-based aCSF, sagittal brain slices

(450 mm thick) were cut at room temperature using a HM650 V

microslicer (Microm GMBH, Germany) and subsequently stored

in an interface chamber filled with oxygenated glucose-based

aCSF of composition (in mM) 126 NaCl, 3 KCl, 1.6 MgSO4, 26

NaHCO3, 1.25 NaH2PO4, 10 glucose, 2 CaCl2, at room

temperature (24uC).

Electrophysiological recordings
For extracellular recordings, slices were transferred to an

interface chamber (Scientific System Design Inc, Canada) and

continuously perfused at 1–2 ml/min with glucose-based aCSF.

The temperature of the perfusate was maintained at 33–34oC

using a PTC03 proportional temperature controller (Scientific

System Design Inc., Canada). Kainic acid (KA, 100 nM) and

carbachol (CCh, 5 mM) were added to the perfusate in order to

promote neuronal network oscillatory activity which stabilized

over a period of 60 minutes. Local field potential (LFP) recordings

were made using borosilicate glass microelectrodes filled with

aCSF, of resistance 1–3 MV (P-97, Sutter instrument Co, USA).

Microelectrodes were placed into layer V and layer II of M1,

which was located using a stereomicroscope (Leica Wild M3Z,

Leica UK). The M1 region of the cortex was taken as being dorsal

to the lateral ventricle and the caudal extent of the striatum, within

which layers II (superficial) and V (deep) were identified by visual

inspection. Signals were amplified 1000-fold and low-pass filtered

using an extracellular amplifier (EXT-02F, NPI, Germany) and

conditioned using an 8-pole Bessel filter (LHBF48X, NPI,

Germany) to a final gain of 61000. All signals were also

conditioned using a Humbug (Digitimer, UK) to subtract low

amplitude mains noise.

Concurrent intracellular recordings were made in Layer V,

using borosilicate glass sharp microelectrodes of resistance 50–

120 MV, filled with KCl (3 M) and 1-trimethylammonio-5-(1-

adamantane-methylammoniopentane) dibromide (IEM1460;

5 mM) [28], which blocks AMPA-type glutamate receptor

channels in the recorded cell [29]. These sharp microelectrodes

were connected to an SEC 05 LX amplifier via a low noise

headstage (NPI, Germany), with signals low-pass filtered at

1.3 kHz. All recordings were digitised at 10 kHz using pClamp

10.3 and a Digidata 1440A (Molecular Devices, USA) and

analysed with Clampex 10.3, Spike2 software (Cambridge

Electronic Design, UK) and KSpectra software (Spectraworks,

USA). Graphs were prepared using Graphpad Prism (Graphpad,

USA).

Data Analysis
Data are expressed as mean+standard error of the mean (SEM).

Cell input resistance was derived from voltage-current plots over

the range 255 to 275 mV. Power spectra were derived from 10 s

periods of simultaneous LFP and intracellular recording, with

single neurones either held at between 280 to 2100 mV with

current injection (to eliminate action potentials and to optimise

detection of spontaneous depolarising postsynaptic potentials), or

examined at resting potential, without any intracellularly applied

direct current. The incidence of action potentials (at resting

potential) were marked as single events, and used to perform spike-

triggered averaging of the LFP signals. The significance of

oscillatory data (power spectra and coherence) was ascertained

at 99% level using multi-taper method (MTM) analysis performed

with KSpectra software (SpectraWorks) run on an Apple iMac.

Within KSpectra, resolution was set at 5, with the number of

tapers at 9. Peaks in power spectra, or coherence between two

signals, were grouped into 3 frequency bands: 3–14 Hz, 15–

40 Hz, and 41–100 Hz to facilitate meaningful pooling of data.

Data were derived from 27 sets of recordings from a total of 11

different brain slices, all taken from different animals. We chose to

measure power in 3 frequency bands (3–14 Hz, 15–40 Hz, and

41–100 Hz), which broadly correspond to theta, beta and gamma

bands. Although the precise divisions between such bands vary

considerably in the literature and there is no common agreement

on terms (e.g. theta versus mu in motor cortex), our recordings of

LFPs in layer II/V of M1 in vitro (unpublished observations)

indicated that these bands bracketed fundamentally different

forms of pharmacologically induced oscillatory activity. Data from

recordings in which no significant peak in the power spectra in the

range 3–100 Hz in any of the LFP or intracellular recordings were

excluded from analysis.

Rat M1 Motor Cortical Beta Oscillations
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Phase analysis
The LFP data were first filtered using a finite impulse response

(FIR) filter centred on the frequency of interest, f0, with a pass

band f062 Hz. Phase angle data were calculated by convolving

the filtered LFP data with a complex Morlet wavelet function [30]

to produce complex time-frequency data, w(t, f0), from which

amplitude and phase information were extracted. Briefly, the

Mortlet wavelet function is defined as

w(t,f0)~A: exp ({t2
�

2s2
t ): exp (2pif0t), where sf ~1=2pst, nor-

malisation factor A~(st

ffiffiffi
p
p

){1=2 and wavelet bandwidth param-

eter f0=sf ~7. Defining the time of each spike maxima as tand the

filtered LFP phase history as w(t), the phase angles of interest were

w(t). The mean phase vector magnitude R, is defined [31] as:

R~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X 2zY 2)

p

where

X~
1

n

Xn

j~1

cos Q(tj)
� �

Y~
1

n

Xn

j~1

sin Q(tj)
� �

and n = the number of samples.

As the mean phase angle is not specified, the Rayleigh test may

be applied to the vector magnitude R, to differentiate between a

unimodal distribution of phase angles (indicating phase locking)

and a random or uniform distribution of phase angles (indicating

no phase locking). For sufficiently sized samples (n.50), the

following approximation of the Rayleigh Z formula31 may be used,

Pr (R)~ exp ({Z), where Z~nR
2
. Evidence for a temporal

offset in the phase locking mechanism was explored by performing

the phase magnitude calculation with a timing offset added to the

phase index. Calculations were conducted with offsets ranging

between 2400 ms and +400 ms with increments of 1 ms. Spike

events occurring within the first and last 400 ms of the data set

where eliminated from the calculation, which placed an additional

condition on the required number of spike events. To ensure a

minimum number of spike events (n.50) in the phase vector

calculation, only data sets initially comprising at least 70 spikes

were included in the analysis. Where results are presented within a

graph showing the phase vector magnitude as a function of LFP

frequency or temporal offset in spike timing, a correction factor is

applied to the vector magnitude significance threshold appropriate

to the multiple comparisons in the data and significance level

declared.

Results

Significant Power in LFPs in beta frequency range
In the M1 slice, beta activity induced by combined application

of KA and CCh was observed in both layers II and V in most

slices. The amplitude of fast oscillatory activity was always greater

in layer V (Fig. 1A and B). In layer V, significant (.99%

confidence limits) peaks in the power spectra in the range 15–

40 Hz, with a single distinct significant peak of mean frequency

29.3+0.9 Hz was seen (n = 18; Fig. 1D). Similarly, in layer II

significant power between 15–40 Hz, with a single distinct peak

seen at 31.8+1.1 Hz was seen (n = 18; Fig. 1C). In 4 recordings (3

from the same slice) there was significant power in layer II

unaccompanied by that in layer V, while the reverse was true in 3

recordings. In the range 40–100 Hz, significant peaks in the power

spectrum were seen in layer V, although in only 7 cases was there

a single distinct peak, of mean frequency 60.9+6.1 Hz (n = 7). The

amplitude of this peak co-varied with the peak at beta frequency,

suggesting that this was a harmonic. In layer II, 5 recordings

showed a distinct single peak of mean 68.1+7.6 Hz. In the range

3–14Hz no significant power was seen in layer V, but was present

in layer II in 3 instances (2 in the same slice) at 11.6+1.9 Hz

(n = 3). Typical power spectral density plots are shown in Fig. 1C
and D, where beta frequency peaks (and harmonics) can be seen

rising above the significance line (red).

Figure 1. Characteristics of beta activity in local field potentials
(LFPs). Layer II and V LFPs show significant power in the beta
frequency range, which is both correlated and significantly coherent
between layers II and V. (A), sample of filtered recording showing LFPs
acquired concurrently in layer II (upper record) and layer V (lower
record). (B), power spectra derived from these LFPs, plotted on log
scales as power spectral densities (PSD), showing peaks in beta (20–
30 Hz) range. (C) and (D), power spectra of same LFPs from layer II and
layer V respectively, on linear scales, showing 99% significance levels
above red lines. Significant peaks are present at 25.7 Hz (layer II), and at
both 26.6 and 51.9 Hz (layer V), with no single clear peak shown in
range 40–100 Hz in layer II, although significant power is evident. (E),
strong cross-correlation of LFPs from layers II and V, with period of
around 34 ms. (F), coherence between LFPs in layer V and layer II (in
same recordings as (A) is significant at 99% confidence level (above red
line) at 10.3 and 50.3 Hz, but most markedly at 27.6 Hz.
doi:10.1371/journal.pone.0085109.g001

Rat M1 Motor Cortical Beta Oscillations
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Thus significant power in the 15–40 Hz range was common-

place in both layers V (70%) and II (81%), with clearly defined

peaks at 29 and 32 Hz respectively displayed in 67% of cases in

both layers. Significant power in the range 40–100 Hz was also

observed in both layers V (55%) and II (96%), but clearly defined

peaks (of 61 and 68 Hz) less frequently seen (only in 26% and 19%

of cases respectively), while little power at 3–15 Hz was evident in

either layer V or II.

Coherence and phase-relationship of LFPs in layer V and
layer II

Previous studies (e.g. [15]) have reported that oscillatory activity

in slice models of persistent oscillatory activity shows characteristic

inter-laminar relationships, including strong coherence and phase-

reversal between deep and superficial layers, and this was the case

in M1. Typically, activity in layer II was phased-reversed with

respect to that in layer V, and showed a lag of 26.7+2.1 ms

(Fig. 1E). MTM analysis (Fig. 1F) showed significant (.99%

confidence) coherence between LFPs in layer V and layer II,

which was detected in the 15–40 Hz range during 23 of 27

recordings made and displayed a distinct peak of 26.8+1.9 Hz in

18 instances. In the range 40–100 Hz, significant coherence was

seen in peaks in 22/27 sets of recordings, with a distinct peak

displayed at 59.5+4.3 Hz in 15 cases, whereas between 3–14 Hz,

only 7 recordings showed any such significant coherence, with a

distinct peak shown at 7.8+1.2 Hz in 6 cases. Therefore the

oscillations in the LFPs in both layers V and II appear coupled,

and coherent at both 27 and 59 Hz in the majority of cases, while

coherence at 3–14 Hz was far less evident.

Cell properties
Intracellular recordings made were in slices concomitantly

manifesting oscillatory activity. The 27 intracellularly recorded

layer V cells used in this study displayed the properties

summarised in Table 1. Most cells (24/27) spontaneously fired

action potentials in the absence of any injected current (‘at rest’),

often in a regular manner (Fig. 2A). Cells with action potentials

that did not exceed zero mV at their peak were not accepted for

study. Input resistance was measured following a current injection

protocol of a series of 200 ms pulses on multiples of 0.2 nA and a

typical recording and I–V plot is shown in Fig. 2B and C. These

cells were of sufficiently uniform character to be considered of a

single type, and most likely to be pyramidal cells.

Figure 2. Properties of a layer V pyramidal cell, demonstrated with sharp microelectrode intracellular recording. (A), recording of
resting membrane potential, showing spontaneous action potential firing at 18.1 Hz. Right panel: a single action potential on an expanded time
scale, with dashed cursor lines indicating method of measuring amplitude (between top and bottom horizontal cursors: 65.3 mV) and duration at K
maximal amplitude (between vertical cursors: 1.10 ms). (B), superimposed records of membrane potential showing response to successive 200 ms
hyperpolarizing pulses of current (not shown) injected in multiples of 0.2 nA from baseline of zero (ie. resting potential). (C), voltage-current plot
derived from a series of current pulses injected in multiples of 0.1 nA into the same cell [including those in (B)] in which steady-state voltage attained
near end of current pulse [dashed vertical line in (B)] is plotted. Slope of line (best fit in range 255 to 275 mV) yields input resistance value of 45 MV.
All records from the same cell.
doi:10.1371/journal.pone.0085109.g002

Table 1. Basic intracellular properties of recorded cells used
in this study.

Property

Action potential firing rate at rest 1 7.1+1.2 Hz N = 27

Action potential duration 2 1.23+0.10 ms N = 26

Action potential amplitude 61.0+1.3 mV N = 26

Input resistance 3 59.0+6.3 MV N = 18

14 cells were quiescent; 2 at K maximal amplitude; 3 in range 255 to 275 mV.
doi:10.1371/journal.pone.0085109.t001

Rat M1 Motor Cortical Beta Oscillations
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IPSPs
On hyperpolarizing membrane potential to the range 280 to 2

100 mV, transient depolarising events, increasing in amplitude

with increased membrane hyperpolarisation, were clearly ob-

served in 24 of the 27 cells examined (Fig. 3A). These were taken

to be GABA-mediated spontaneous inhibitory postsynaptic

potentials (IPSPs), rendered depolarising by chloride loading of

the cell with KCl from the recording electrode. The amplitude of

both the IPSP and the LFP was profoundly depressed by

application of the GABAA antagonist bicuculline methiodide

(10 mM), indicating that (i) there was little, if any, contribution of

glutamate receptor activation to these events, and (ii) GABAA

receptor-mediated inhibition was responsible for both the IPSPs

and the field oscillatory activity, which was also blocked by

bicuculline (as previously reported11). Spectral analysis of mem-

brane potential recordings made in the range 280 to 2100 mV

revealed significant (.99% confidence limits) power in the range

15–40 Hz in 23/27 cells, with a single distinct significant peak

frequency in 9 of these cells of 29.5+1.3 Hz (Figs. 3B and E). In

the 40–100 Hz range, significant power was seen in 21/31 layer V

cells, but with clearly distinct single peaks in only 2 (mean

57.7 Hz). In the range 3–14 Hz, significant power was seen in 13/

31 layer V cells, with a distinct peak at 11.0+1.0 Hz in 9 cells

(Fig. 3E).

Coherence and Cross-Correlation Between IPSPs and
LFPs

Membrane potential recordings manifesting IPSPs in layer V

cells showed significant coherence with Layer V LFPs in the 15–

40 Hz range in 23 of 27 instances, with a distinct peak at 27.5+
1.2 Hz shown in 20 cases. Significant coherence between IPSPs

and the layer II LFP was also observed in the 15–40 Hz range in

21 of 27 recordings, with a distinct peak at 28.7+1.3 Hz (n = 20).

In the 40–100 Hz range coherence was seen with the layer V LFP

in 20 of the 27 recordings, with a distinct peak at 57.3+5.1 Hz

(n = 13), and with the layer II LFP in 19 recordings with a distinct

peak at 69.0+5.2 Hz (n = 18). In the 3–14 Hz range such

coherence with layer V LFP was seen in only 7 of the 27

recordings, with a distinct peak at 9.7+1.3 Hz (n = 6), and with the

layer II LFP in 4 cells at 10.8+1.5 Hz (Fig. 3D and F). Such

coherence was blocked by bicuculline (10 mM; Fig. 3D). Cross-

correlation of both the layer V and layer II LFP with membrane

potential (while held at 280 to 2100 mV, thus optimised for

IPSPs) indicated a clearly phase-locked correlation, with the IPSP

leading the peak of the layer V LFP by 7.2 ms (based on n = 20

cells), and the peak of the layer II LFP by 20.5 ms (Fig. 3C).

In summary, the highest incidence of significant power in IPSP

recordings was seen in layer V cells at 29 Hz. Moreover,

coherence of IPSPs in layer V cells with LFPs, at mean frequencies

of 28 and 57 Hz (layer V) and 29 and 69 Hz (layer II), was seen in

the majority of cells, and this is consistent with the LFP power in

this beta range, and likely the first harmonic thereof, being driven

by the IPSPs.

Spikes
It was apparent from raw data records that action potentials

(spikes) in spontaneously firing cells often corresponded to the

troughs of the layer V LFP, and to the peaks of layer II LFP

(Fig. 4A and D); this relationship was explored further.

Frequency analysis of membrane potential recordings from the

23 spontaneously firing neurones (with mean firing rate of 8.4+
1.2 Hz) showed a significant (.99%) peak(s) in the power

spectrum for 10 cells. These peak frequencies varied between

8.5 and 52.4 Hz (10.8+1.0 Hz, n = 7, in 3–14 Hz range; 20.8+
2.1 Hz, n = 8, in 15–40 Hz range). The lowest significant peak in

any given cell was 93.7+4% (n = 10) of the firing rate measured

over the 10 s period analysed, indicating a considerable regularity

in the firing pattern of these 10 cells (a ratio of 100% would

indicate a constant inter-spike interval). Moreover, in 6 of these 10

cells a second significant peak in the power spectrum was seen at

200.6+4% (n = 6) of the lower peak, probably reflecting harmonics

in the power spectrum. Thus the power in the resting membrane

potential records arose largely from action potentials.

Relationship between Spikes, Membrane Potential and
LFPs: Coherence Analysis, and Spike-Triggered Averaging

Significant (.99%) coherence between membrane potential of

spontaneously firing neurones and the layer V LFP was observed

in the 15–40 Hz range in 10/23 cells examined, with a distinct

peak at 29.0+2.1 Hz (n = 10). Significant coherence with layer II

LFP was also observed in the 15–40 Hz range in 11/23 cells, with

a distinct peak seen at 27.8+2.0 Hz (n = 11). In the 40–100 Hz

range, such coherence with the layer V LFP was seen in 21/23

cells, with distinct peak at 69.0+4.9 Hz in 15 cases, and with the

layer II LFP in 16 cells, with a distinct peak at 69.2+4.9 Hz in 13

cases. In the 3–14 Hz range, coherence with the layer V LFP was

seen in only 3/23 cells, at 6.9+1.5 Hz (n = 3), and with the layer II

LFP in 5 cells, at 10.0+2.1 Hz (Figs 4B and E). The incidence of

spike-LFP coherence was greater than that of cells showing

significant power in the frequency analysis of spike trains alone.

This was strongest between spike trains and both layer V LFPs

(around 29 and 69 Hz) and layer II LFPs (around 28 and 69 Hz),

despite the mean firing rates being only 8.4 Hz (around which

there was little such coherence). While this indicates a contribution

from layer V cell firing to generating the predominant oscillation

in both layers V and II, it does not indicate (as seen with the IPSPs)

a likely 1:1 correspondence of spike firing to the 28 Hz beta

frequency cycle manifest in the LFP recordings.

The relationship between spontaneous spikes and the LFPs was

explored using spike-triggered averaging (Fig. 4C). This demon-

strated that spikes were time-locked to the LFP, preceding the

peak of the layer V LFP beta oscillation by approximately 20 ms

(Fig. 4C, lower panel, based on data pooled from 10 cells).

Assuming a mean predominant oscillation frequency of 28 Hz,

this period of 36 ms indicates the spikes, when they occur, tend to

do so around 2 ms prior to the trough of layer V LFP and –

assuming antiphase in layer II – around the peak of the layer II

LFP. While LFP oscillations were abolished by bicuculline, as was

coherence between membrane potential and LFP in both layers V

and II (Fig. 4D) lower panels), spike firing itself was not

bicuculline-sensitive, and thus clearly not dependent on any

GABA-ergic synaptic input.

Relationship between Spikes and LFPs: phase angle
analyses

The coherence and spike-triggered averaging described above

may be compromised by the influence of the amplitude of

oscillations on the overall measurements of coherence. In order to

mitigate this problem, and also to determine the precise

relationship between spiking and the LFP, we further analysed

the interactions between spikes and the LFP in layer V through a

phase-angle based approach. Fourier analysis of beta activity

(Fig. 5A) showed significant energy in the LFP to justify

performing phase measurements over the frequency range of

10 Hz to 70 Hz. Of 17 datasets analysed, 9 showed phase locking

between spike train and LFP at a significance level of P,0.01

Rat M1 Motor Cortical Beta Oscillations
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(Rayleigh Z statistic). An example Rayleigh Z statistical analysis for

a data set showing significant phase locking history is shown in

Fig. 5B.

Evidence for phase locking interactions between spike train and

layer V local field potentials was explored further by analysing the

distribution of a subset of phase angles within band-filtered LFP

Figure 3. IPSPs in layer V cells are strongly coherent with LFPs in the beta range. (A) Concurrent LFPs from layers V and II, and
intracellularly recorded membrane potential (Vm) from a cell in layer V. Oscillations and IPSPs (at 280 mV, optimised for IPSPs) are blocked following
application of GABAA receptor antagonist bicuculline (right panel). (B) Power spectral densities (PSD) of LFPs from layers V and II, and of Vm (with
IPSPs), showing 99% significance levels (above red lines) at beta frequencies, and harmonics thereof, which (right panels) are blocked by bicuculline.
Vertical dashed lines indicate 27 Hz for reference. Same recordings as (A). (C), upper panel: cross-correlograms of LFPs from layers II (blue) and V (red)
with Vm from same recordings as in (A) and (B). Lower panel: normalised, cross-correlated data (means+SEM) between Vm (displaying IPSPs) and LFPs
in layer V (red) and layer II (blue) pooled from all 20 recordings showing significant IPSP-LFP coherence in 15–40 Hz range. The IPSP leads layer V peak
(red dashed line) by 7.2 ms and layer II peak (blue dashed line) by 20.5 ms. (D) Left column: coherence between each of layer II and layer V LFP (top
row), layer II LFP and IPSPs (middle row), and layer V LFP and IPSPs (bottom row) in each case demonstrates single significant (.99%) peaks at beta
frequencies, and harmonics thereof, which is abolished by bicuculline (right panels). Same recordings as A, B and C. (E) and (F), data pooled from all
recordings within 3 frequency ranges (demarked by vertical dashed lines, with mean 6 SEM in red, n in parentheses) showing (E) the distribution of
the single largest significant (.99%) power spectrum peaks for Vm (optimised for IPSPs), and (F) peak frequencies of coherence between LII, LV, and
Vm (IPSPs).
doi:10.1371/journal.pone.0085109.g003

Rat M1 Motor Cortical Beta Oscillations

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e85109



data, specifically those phase data indexed by the timing of spike

train maxima [32]. Spike train indexed phase angles were

averaged, producing a phase vector magnitude ranging in value

between 0 and 1. Thus phase vector magnitude is a measure of the

strength of phase locking present with a value of 0 indicating no

phase locking between spike train and LFP, while perfectly

synchronized noiseless data would yield a phase vector magnitude

of 1.

As Fig. 5C shows, with 21 Hz filtered LFP data, the

relationship with the corresponding spike train does not suggest

phase-alignment. However, using data band-filtered at 26 Hz, a

distinct clustering in phase values was seen (Fig. 5D), indicating

strong phase locking between spike train and LFP. Plotting mean

phase vector magnitude values (Fig. 5E) across frequency showed

phase locking, at 26 Hz (P,0.01). Finally, calculation of the mean

phase vector magnitude at different temporal offsets (Fig. 5F)

Figure 4. Layer V pyramidal cells action potentials are coherent with and phase-locked to LFPs. (A) membrane potential (Vm) recording
(without DC current injection), with spontaneous action potentials (spikes), together with concurrent (unfiltered) records of LFPs. (B), left panels:
Power spectral densities in LFPs are significant (99% above red lines) in beta range, but for Vm are close to spontaneous spike firing rate. Right panels:
coherence between Vm and layers V and II LFP is seen in beta range, and harmonics thereof (same recordings as A). (C), upper panel: spike-triggered
averages of LFPs from layer V (red) and II (blue), time-locked to each of 84 spikes occurring over a 10 s period (at t = 0 on x-axis). Spikes precede by 2–
3 ms the trough, and peak, of the layer V and II oscillations respectively, both of which display a period of around 40 ms. Taken from same cell as in A
and B. Lower panel: pooled, normalised, layer V LFP spike-triggered average data (mean 6 SEM) from all the 10 recordings that showed significant
coherence in the 15–40 Hz range between layer V LFP and Vm (during spontaneous firing). The layer V LFP peak follows the spike by approximately
20 ms. (D), upper panels: Records of (Vm) recorded at rest, during spontaneous spike firing, and of layer V and II LFPs, in absence (left) and presence
(right) of bicuculline (10 mM). While spikes persist in bicuculline, LFP oscillations are abolished. Lower panels: significant beta range coherence
between Vm and both layer V and II LFP (left) is abolished in bicuculline (right). Different preparation from panels A–C. (E), data pooled from all
recordings showing the distribution of frequencies at which significant coherence between LFPs in layer II and layer V, and spikes, was detected,
grouped into 3 frequency bands (mean 6 SEM in red, n in parentheses).
doi:10.1371/journal.pone.0085109.g004
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indicated that the spike train was most strongly phase locked to the

LFP that occurs after a delay of 18 ms.

These data indicate that whilst spiking frequency is much lower

than LFP beta frequency in deep layers of M1, such activity is

strongly phase locked to the LFP, almost certainly dictated by the

characteristics of the bicuculline-sensitive beta frequency IPSP

described above.

Discussion

In our previous study [11], it was shown that phasic inhibitory

and phasic/tonic excitatory synaptic inputs were required for

persistent beta oscillations in M1 layer V coronal slices in vitro. In

this study we have shown that, 1) in slices, persistent beta

oscillatory activity can be simultaneously evoked in layers V and II

of M1, 2) beta frequency activity is strongly correlated between LII

and LV and with the intracellularly recorded IPSP in layer V, 3)

regular spiking, presumably principal, cells in M1 fire action

potentials at low frequency during on-going network oscillations,

and 4) despite their relatively low frequency, spikes in layer V cells

are phase locked to the LFP.

The layer V cells from which intracellular recordings were

made have properties resembling those previously described as

‘regular-spiking’ (RS) pyramidal cells [17,18,19]. In contrast to

these previous studies, no ‘intermittent burster’ (IB) cells were

encountered. While this may just reflect a sampling bias, it may be

that bursting behaviour was not favoured by the temperature of

the experiments [33], and/or the (depolarizing) actions of the

kainic acid and carbachol used to induce beta oscillations.

The precise nature of the mechanisms underlying the LFP

remain elusive, however a dominant role of synaptic currents over

action potentials in the contribution to low frequency (,100 Hz)

rhythmic activity seems likely [48,49]. Hence, it is probable that

the principal current source underlying the peak of the layer V

LFP is the hyperpolarizing IPSP in pyramidal cells in layer V. A

parsimonious simple local circuit model would have the IPSP

arising from a local interneuron network whose output is entrained

by mutual inhibitory connections, and also by EPSPs originating

in pyramidal cells, following their action potentials. Spike firing in

pyramidal cells would then aid entrainment of network activity

and strengthen the oscillation. Making this assumption, the

antiphasic relationship of the layer II LFP to the layer V

oscillation probably reflects activity in layer V cell dendrites

known to course through layers I-III acting as current sinks, rather

than any contribution from layer II neurones to generating the

beta oscillation, hence, a current sink-source dipole in deep and

superficial layers would appear to be the simplest explanation for

our observations.

The characteristic frequency of the oscillations observed here -

around 29 Hz – places them at the upper end of the beta

frequency band, generally taken to range from 13 Hz up to 30, 35

or even 40 Hz, depending on species [34]. Although this

oscillatory frequency is similar to the beta2 (20-30 Hz) oscillations

observed in layer V of rat somatosensory cortex [16] the two

activities appear pharmacologically and mechanistically different.

In M1 in vitro, beta oscillatory activity requires muscarinic M1

receptor activation, is insensitive to AMPA receptor blockade, but

extremely sensitive to GABAA receptor modulators such as

pentobarbital, zolpidem [11] and beta carbolines (10 nM,

unpublished observations), as well as being blocked by bicuculline.

As in M1, beta2 activity in somatosensory cortex is insensitive to

AMPA receptor blockade, however, these oscillations appear to be

relatively insensitive to GABAA receptor blockade and show

Figure 5. Spike firing is strongly phase-locked to the Layer V
LFP. A) Fourier transform representation of the unfiltered LFP shows
significant energy is present in the signal up to 70 Hz. (B) Data
presented in A are expanded to show phase locking statistics for
frequencies 10–70 Hz and time offsets 2400 ms to +400 ms. Phase
locking data not reaching significance (P,0.01) are displayed dark blue.
The Rayleigh Z significance threshold is corrected for the multiple
frequency and time offsets displayed. Data from a single spike train/LFP
recording. (C) A three second data segment showing distribution of
spike train (middle record, black) - indexed measurements in both
amplitude (upper record, red) and phase (lower record, blue),
representing LFP data band - filtered at 21 Hz. Randomly distributed
phase values (red circles) show that, at this frequency, the spike train
and LFP are not phase aligned. (D) Using the LFP data filtered at 26 Hz,
there is a distinct clustering of phase values indicating strong phase
locking between spike train and LFP. (E) Plotting mean phase vector
magnitude values against frequency shows two regions of phase
locking, at 26 Hz and 51 Hz. The red line shows the significance
threshold at p,0.01. Same data set as A and B. (F) The timing
relationship between spike train and 26 Hz filtered LFP is investigated
by calculating the mean phase vector magnitude at different temporal
offsets between spike train and filtered LFP. The graph indicates that
the spike train is most strongly phase locked to the LFP after a delay of
18 ms for this data set.
doi:10.1371/journal.pone.0085109.g005
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intense spikelet activity in IB cells at beta frequency [16], which is

not observed in M1.

The low firing frequency of pyramidal cells, phase-locked with

faster field activity, has been previously reported in gamma

oscillations [14,15]. Synaptic mechanisms appear to account for

the discrepancy between field and individual neuronal activity [14]

and this type of mechanism may also apply in M1. In present

study, EPSPs during beta oscillatory activity had been blocked in

the individual cells recorded, and could not be examined directly.

However, any contribution from phasic recurrent excitatory inputs

from pyramidal cells to both pyramidal cells and interneurons in

synchronising pyramidal cell output may have been overridden by

the strong tonic excitation of all cell types likely to result from

activation of both kainate and muscarinic M1 receptors. Alterna-

tively, the longer decay time of IPSPs (compared to decay time of

IPSPs seen during gamma oscillations) may shunt EPSP activity.

In addition, action potential firing may only occur when EPSPs

coincide with activation of an intrinsic membrane conductance

(for example, activation of Ih, CaV 3.1 calcium current or gap

junction mediated spikelets). In support of this possibility, intrinsic

properties of postsynaptic neurons have been suggested to interact

effectively with GABAergic inputs in shaping supra-threshold

activity [35]. In our experiments, recordings were performed with

electrodes filled with a solution designed to block AMPAR and

load cells with chloride, and hence the precise relationship

between spike timing and IPSPs may be subtly altered compared

to the situation in which IPSPs are not reversed. Overall, it is likely

that GABA-ergic interneurons in M1 [36] receive IPSPs at beta

frequency, and provide phasic GABAA receptor-mediated inhib-

itory inputs at beta frequency to large populations of RS cells in

M1. Alternatively, another interneuron network could be gener-

ating the beta frequency activity. This network would be required

to make synaptic or electrical contact with principal cells and/or

FS cells. One such candidate is the low-threshold spiking (LTS)

cell [37,38,39] which preferentially targets distal apical dendrites

[35,38] and which have been shown to undergo oscillatory activity

in the beta range by a number of groups [44,45,46]. In a recent

computational modelling study [47], distal dendrite targeting

‘Martinotti’ cells have been proposed to control layer V

neocortical pyramidal cell spiking in the 5–30 Hz range through

oscillatory inhibition, which serves to allow distal dendritic

excitation to drive somatic spiking. By contrast, asynchronous

distal dendritic inhibition may facilitate more irregular burst firing.

The strong oscillatory activity in our in vitro preparation may thus

explain why we were unable to see intrinsic bursts firing patterns in

the pyramidal cell recordings made.

The activity of each RS cell only contributes to at most every

second beta cycle. Thus, the population of RS cells mediating any

given cycle will be highly variable. This may allow dynamic

formation of a network though the recruitment of neurons to a

phase-coherent population. In this way, neuronal pools within a

pre-existing population of excited pyramidal cells in the beta

oscillating network could be selected or suppressed by newly

arriving, phase altering, motor or sensory information. Changes in

phase synchrony will be reflected in alterations in beta power, and

thus may have relevance in PD, where beta power is enhanced.

However, the contribution of RS cells to the population mediating

the beta oscillation may also be related to alterations in the

number of neurons participating in ongoing activity or changes in

the underlying frequency of spiking in principal neurons. The low-

frequency but phase locked spikes in layer V with the LFP

corroborates previous reports of sparse coding activity in cortical

structures [24,40]. Interestingly, there is some suggestion in our

data (Fig. 5D) that phase locking may occur in more than one

mode, and this is the subject of current investigations.

Beta oscillations in basal ganglia–motor cortical loops have been

proposed to facilitate maintenance of ongoing sensorimotor status

[41], although this has been modified recently by the proposal that

its role is to gate access of novel cues (distractors) to motor

programmes, permitting appropriate task selection and prosecu-

tion on the basis of existing cues [42]. In the intact human M1, we

have previously reported neuroplastic effects of transcranial

stimulation on beta activity and its effects on control of voluntary

movement [43]. The preparation and methodology described here

may be useful in future studies of beta oscillation of the motor

system, and in better understanding of the pathology of neural

circuit function in akinetic disorders where beta oscillations

predominate.
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