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Abstract

Optimal design for parameter estimation in Gaussian process regression models
with input-dependent noise is examined. The motivation stems from the area
of computer experiments, where computationally demanding simulators are ap-
proximated using Gaussian process emulators to act as statistical surrogates. In
the case of stochastic simulators, which produce a random output for a given
set of model inputs, repeated evaluations are useful, supporting the use of repli-
cate observations in the experimental design. The findings are also applicable
to the wider context of experimental design for Gaussian process regression
and kriging. Designs are proposed with the aim of minimising the variance of
the Gaussian process parameter estimates. A heteroscedastic Gaussian process
model is presented which allows for an experimental design technique based
on an extension of Fisher information to heteroscedastic models. It is empiri-
cally shown that the error of the approximation of the parameter variance by
the inverse of the Fisher information is reduced as the number of replicated
points is increased. Through a series of simulation experiments on both syn-
thetic data and a systems biology stochastic simulator, optimal designs with
replicate observations are shown to outperform space-filling designs both with
and without replicate observations. Guidance is provided on best practice for
optimal experimental design for stochastic response models.

Keywords: Optimal design of experiments, Correlated observations,
Emulation, Gaussian Process, Heteroscedastic noise

1. Introduction1

Design plays an important role in enabling effective fitting and exploitation2

of a wide variety of statistical models, e.g. regression models such as Gaussian3
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processes. The motivation for this work is a recognition that experimental design1

plays a crucial part in the building of an emulator [26]. The use of emulators, or2

surrogate statistical representations of computer simulators, provides a solution3

to the computational constraints that limit a full probabilistic treatment of4

many simulators. Experimental design is particularly relevant to emulation5

because we are able to choose the inputs at which the simulator is evaluated6

with almost complete freedom. The simulator is typically expensive to run, thus7

it is beneficial to optimise the design given the available a priori knowledge.8

Most work on emulation has focused on deterministic simulators, where the9

outputs depend uniquely on the inputs, however it is increasingly common to10

encounter stochastic simulators, where the randomness is typically associated11

with interactions which are intrinsically unpredictable or represent some unre-12

solved, essentially random, process within the simulator. Examples of stochastic13

simulators arise in microsimulation in transport modelling [24] and biochemical14

networks of reactions [32]. Design and emulation methods developed for de-15

terministic computer experiments need to be extended to be applicable in the16

stochastic context [11].17

A common feature of stochastic simulators is that the variance of the output18

is input dependent. This requires adaptation of the normal Gaussian Process19

(GP) regression model [23]. In this paper we introduce a class of heteroscedas-20

tic GP models that allow for both flexible variance modelling and tractable21

calculations for optimal design. Our work extends [36] which developed optimal22

designs for homoscedastic GPs using a Fisher information criterion. This paper23

expands [36] to heteroscedastic GPs with replicated observations. Our approach24

is general and is relevant to areas such as model-based spatial statistics [8, 28],25

where kriging methods are used, and more general GP regression [23].26

When considering correlated processes, such as GPs, the majority of the27

results of traditional optimal design, such as the General Equivalence Theorem28

and the additivity of information matrices do not hold [16]. For an overview29

of classical optimal design theory see [2] or other standard textbooks. In GP30

regression, a parametric covariance function is used to model the variance and31

correlation of the unknown function. The parameters of the covariance are32

usually estimated by Maximum Likelihood (ML) or Bayesian inference. In this33

paper, we investigate design under ML estimation, with a focus on best learning34

the model parameters.35

By utilising asymptotic results of estimators, useful approximations to finite36

sample properties can be constructed. Two asymptotic frameworks are consid-37

ered in the literature [35, 27]: increasing domain and infill domain asymptotics.38

It has been found that for certain consistently estimable parameters of expo-39

nential kernels with and without a noise term, under ML estimation, approx-40

imations corresponding to these two asymptotical frameworks perform about41

equally well [35]. For parameters that are not consistently estimable however,42

the infill asymptotic framework is preferable [12]. In [14], it was shown that43

under increasing domain asymptotics the ML estimator, θ̂, converges in proba-44

bility to the true parameter, θ, and standard asymptotics hold. Unfortunately45
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no such general results exist under infill asymptotics except for specific classes1

of covariance functions [1]. A non-asymptotic justification is provided by [20]2

using a truncated function expansion, but is only valid for low process noise3

levels.4

Recently, a ‘nearly’ universal optimality has been addressed for the case of5

correlated errors, see e.g. [7] and references therein, overcoming some of the6

difficulties in the correlated setup. Exact optimal designs for specific linear7

models with correlated observations have been investigated (see [12] and refer-8

ences therein), but even for simple models exact optimal designs are difficult to9

find.10

Optimal design for correlated errors has also been examined under gen-11

eralised least squares estimation of treatment contrasts in fixed-block effects12

models where correlation is assumed between treatments within the same block13

[30]. Within the class of equally replicated designs, designs that minimise the14

variance of treatment contrasts were found. It was also found that for large15

positive correlations unequally replicated designs could achieve lower variance16

values. Although the derivation was only for a specific number of treatments17

and units, the potential that unequally replicated designs hold for a wider class18

of scenarios is tantalising and is further investigated in this paper for the GP19

model case.20

Most of the literature on optimal experimental design assumes homoscedastic21

noise. Optimal design under a fixed basis log-linear-in-parameters model is22

examined in [29]. Although stochastic processes are not considered, the variance23

model used is similar to the fixed basis model utilised in this work. They follow24

a Bayesian approach to design and demonstrate that informative priors lead to25

more efficient designs.26

In certain cases there may exist multiple objective functions which depend27

upon different information matrices. Compound optimal design provides a gen-28

eral approach, combining multiple such objective functions such as model dis-29

crimination (T-Optimality) and parameter estimation (A- or D-optimality) via30

a weighted average of their information matrices [15]. Compound designs may31

also be used to generate designs with non-equal emphasis on the trend and co-32

variance parameters [17]. Hybrid criteria that explicitly combine prediction and33

parameter estimation have also been developed [38, 37]. In [38] such a criterion34

is defined to minimise the maximum predictive variance as well as a summary35

of the ML parameter covariance. While this criterion selects observations which36

reduce parameter uncertainty and predictive uncertainty given the current pa-37

rameter, it does not take into account the effect of parameter uncertainty on38

prediction error. To address this issue, [37] propose an amended criterion and39

derive an iterative algorithm which alternates between optimising the design for40

covariance estimation and spatial prediction. We note here that a space-filling41

design does not necessarily minimise the prediction error. For instance if one42

is interested in optimization of the Integrated Mean Squared Prediction Error43

(IMSPE), in one dimension and for an Ornstein-Uhlenbeck processes, then the44

space-filling, i.e. equidistant design, is optimal citeZagoraiou2010. However,45

this property is not generally true in a 2-dimensional design space [3]. As proven46
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in [3], a space-filling design does not necessarily reduce the IMSPE more than1

a design forming a line, which they term monotonic set designs.2

Geometric designs such as nested or subsampling designs have been pro-3

posed to identify hierarchically related sources of variations. They allow for4

the estimation of the amount of variation that is derived from each hierarchical5

level and the determination of the optimal allocation of sampling effort to each6

level [10]. Such designs place points at a variety of inter-point distances and7

may be used for the inference of difficult to learn GP correlation length-scale8

parameters [21].9

Our design approach is model-based, where the assumption of a sufficiently10

well known model is made for the problem of interest. In geometric designs11

such as Latin Hypercube sampling which aim to cover the design space or12

nested sampling which aim to have a range of inter-point distances available, no13

such model is assumed. For model-based design, incorrect model assumptions14

may lead to arbitrarily bad performance. However, we expect model-based op-15

timal designs using informative prior beliefs to offer superior performance to16

designs that arise from purely geometric grounds when the model assumptions17

are met. We show that this is the case via an extensive set of simulation ex-18

periments where model-based optimal designs are contrasted to space-filling19

maximin Latin-Hypercube [22] and grid designs with and without replication.20

We demonstrate the resulting gains in parameter accuracy when model-based21

designs are utilised.22

The paper is structured in the following way. The GP model and the corre-23

sponding design criterion are described in Section 2 and Section 3 respectively.24

Optimisation is discussed in Section 4. A series of simulation studies is presented25

in Section 5 and an application of the methodology to a systems biology sim-26

ulator is discussed in Section 6. We conclude with a discussion and a proposal27

for future work in Section 7.28

2. Heteroscedastic GP model29

This section describes the hetoroscedastic GP model we have developed that
permits model-based optimal design. The joint likelihood GP model allows the
optimisation of the mean and variance model parameters to proceed jointly.
The assumed additive model for the simulator for each output is:

t(x) = f(x) + ε(x) ,

where x denotes the simulator inputs, f(x) is the unknown mean of the simulator30

response, ε(x) is an input dependent, zero mean, additive Gaussian random31

variable representing the intrinsic simulator variability and t(x) represents a32

single realisation of the simulator output.33

A zero-mean GP prior is placed on the simulator mean:34

p(f |θf ) = GP (0,Kf (θf )) , (1)
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where Kf is the input dependent covariance and θf the kernel hyperparameters.1

From now on we will omit the dependency of Kf on θf and just write GP (0,Kf ).2

The crucial simplification is the consideration of parametric variance models.
The variance model is a parametric function gσ2(x, β) with unknown parame-
ters β. The heteroscedastic GP prior can be calculated after integrating out f
(see Appendix A):

p(t|θ,x) = GP (0,Kf +R) ,

where R is the diagonal matrix with elements Rii = exp (gσ2(x, β)) representing3

the spatially varying noise process. To explicitly include replicate runs of the4

simulator we replace t with t̄, the sample mean of the replicated runs and thus5

p(t̄|θ,x) = GP
(
0,Kf +RP−1

)
, (2)

where P the diagonal matrix of the number of replicated observations Pii =6

ni at the i’th training point location xi. For the Matérn kernel used in our7

experiments, θf includes the process variance σ2
p and correlation length scale λ8

parameters (see Section 4.2 of [23]). The set of free parameters for this model9

is θ = {θf , β}. The likelihood corresponding to this model, expressed in terms10

of the sample means t̄ and sample variances s2 of the training data, is derived11

in Appendix A.12

The model parameters are estimated via maximum likelihood on a set of
noisy observations referred to as the training set. The GP predictive equations
are obtained by conditioning on the training dataset:

E[t∗] = Kf
∗(Kf +RP−1)−1t̄ , (3)

V ar[t∗] = Kf
∗∗ +R∗ −Kf

∗(Kf +RP−1)−1Kf
∗T , (4)

where Kf = K(X,X), Kf
∗ = K(x∗,x∗) and Kf

∗∗ = (x∗,x∗) are the between13

training, training-test and test-test input covariance functions respectively. R∗14

is the diagonal matrix of the variance model evaluated at the test points x∗.15

We have considered two options for the variance function gσ2(x, β). For16

the Fixed Basis variance model, the log variance function is represented as a17

log-linear-in-parameters regression:18

gσ2(x, β) = exp
(
H(x)Tβ

)
, (5)

where H(x) is the set of fixed basis functions with known parameters. A sim-19

ple example in 2D input space is a log-linear variance model: gσ2(x, β) =20

exp (β0 + x1β1 + x2β2) which we refer to as the Log-Linear model. We have21

considered two types of basis functions: local (e.g. radial basis functions) and22

global (e.g. polynomial) to provide the input dependent variance. An advan-23

tage of local basis functions is the interpretability of priors on the β coefficients24

as they relate to a particular region of input space. However the number of25

local basis functions required for domain coverage grows exponentially with the26

input dimension. Polynomial and other global bases are therefore better suited27

for higher-dimensional spaces but imply a relatively simple variance response.28
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In high-dimensional cases a semi-parametric model, which we refer to as the
Latent-Kernel model, could be considered using an additional ‘variance kernel’:

gσ2(x, z) = kTΣ(KΣ + σ2
n)−1z,

where KΣ = k(Xz, Xz) and kΣ = k(Xz, Xt) are the variance kernel functions,1

depending on parameters θΣ and σ2
n, a noise term. In this case z is a vector of2

latent variance parameters. In principle the latent points Xz could be set to the3

entire training data set Xt of the GP but for quicker inference it can also be set4

to a much smaller set which is not necessarily a subset of Xt. The parameters5

of the model are Xz, z and θΣ. Although all could in principle be optimised,6

in the experiments presented herein we simplify the optimisation task by fixing7

Xz to a Latin Hypercube design, fixing θΣ to constant values and optimizing z.8

3. Optimal Design under Heteroscedastic noise9

The design criterion we use for the joint likelihood GP model (Section 2) is10

defined as the negative log determinant of the Fisher Information Matrix (FIM).11

From now on when we refer to the FIM, we are referring to log determinant of12

the Fisher Information Matrix and not to the matrix itself. Lower values of the13

FIM signify a more informative design.14

The (j, p)th element of the matrix for model parameters θj , θp is:15

Mjp =

m∑
i=1

Mjp
si +Mjp

N , (6)

where m is the number of design points and Mjp
N = 1

2 tr(Σ−1 ∂Σ
∂θj

Σ−1 ∂Σ
∂θp

) for a

zero mean GP is [19]. Inclusion of mean parameters in the criterion is straight-
forward (see for example [19]) but is not developed herein as our focus is on
design for covariance parameter estimation. Mjp

si is the contribution of the
uncertainty in the sample variance model parameters:

Mjp
si =

ni − 1

2

∂gσ2

∂θj

∂gσ2

∂θp
,

where
∂gσ2
∂θj

the derivative of the variance model gσ2(θ) (Section 2) with respect16

to parameter θj . A complete derivation is given in Appendix B.17

In the case of the fixed basis model gσ2(x, β) = exp(H(x)Tβ) and

Mjp
si =

1

2
(ni − 1)H(xi)

TJjH(xi)
TJp,

where Jj the zero vector with jth element 1. If we examine the formula,Mjp
si = 018

unless both θj an θp are parameters of the variance model f and the number of19

replicates is at least 2, i.e. ni > 1.20
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For illustrative purposes, the matrix for a fixed basis variance model is1

shown. For the GP prior in Equation (2) we specify a Log-Linear fixed ba-2

sis variance model for a one-dimensional input space with constant nugget3

gσ2(x, β) = exp (βx). The nugget characterizes the continuity of the covari-4

ance function at the origin. In our example for x = 0, gσ2(0, β) = 1. The model5

specification is completed by specifying the kernel Kf with a single parameter,6

the length-scale λ. For this model, M is:7

↓ θi, θj → λ β

λ 1
2 tr
(

Σ−1 ∂Kf
∂λ

)2
1
2 tr(Σ−1 ∂Kf

∂λ Σ−1 ∂R
β P

−1)

β 1
2 tr(Σ−1 ∂R

β P
−1Σ−1 ∂Kf

∂λ ) 1
2 tr
(

Σ−1 ∂R
β P

−1
)2

+
∑M
m=1

ni−1
2 β2

8

where Σ = Kf + RP−1, ∂R
β = R � x, and � denotes element-wise matrix9

multiplication.10

The calculation ofM in Equation (6) is defined for a given parameter value11

vector, θ0. If a point estimate for θ is used, the design is termed locally optimal12

since the design is optimal for a specific parameter value θ0, see e.g. [18].13

4. Optimisation14

To complete the specification of the experimental design algorithm the method15

of optimisation must be defined. The most commonly employed approach is to16

select a subset of points from a large candidate design set [36]. A complete17

enumeration of all possible designs quickly becomes infeasible as the number18

of candidate points increases. Various search strategies have been proposed in19

the literature to address this limitation. Some authors have suggested using a20

stochastic algorithm like simulated annealing with multiple restarts to guaran-21

tee robustness [36] or random sampling where an information gain is estimated22

for each candidate point by averaging the design score over all searches in which23

this point was included [33].24

We have implemented two optimisation methods, Simulated Annealing (SA)25

and a sequential greedy optimisation algorithm. Both methods are described in26

Algorithms 4.1 and 4.2 respectively. The fitness function minimised in both op-27

timisation schemes is the FIM defined in the previous section. The perturbation28

functions used in our SA implementation are described in Algorithm 4.3. An29

extensive discussion of the SA algorithm and other details are given in Section30

5.5 of [5]. Greedy optimisation is a sequential procedure where at each step the31

input point is selected from a candidate set such that the selected point max-32

imises the score gain. In [33] the greedy approach is shown to be superior to33

simple stochastic optimisation schemes through a set of simulation experiments.34

In experiments not reported here the Greedy and SA algorithms were found to35

offer good performance in a complete enumeration experiment with the latter36

recovering the globally optimum design [6].37

One challenge with the sequential greedy optimisation method is initiali-38

sation. It is necessary to have at least two points to compute the FIM. A39
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Algorithm 4.1 Simulated annealing design optimisation algorithm.

Input: Candidate points XC , Target Design size p, degree of parallelism d, fitness
function ff (X), perturbation function fp(x), initial steps to determine temperature
Nt, maximum iteration count M . Output: Local optimum design XO.

I. Initialisation. Generate d Latin Hypercube designs and for each use the steps below
to set the initial temperature T0..

1. Perform Nt random perturbations and evaluate the average change in fitness
< ∆E >.

2. Calculate initial temperature T0 = −<∆E>
log(0.5)

.

A. Generate Continuous Design XC
O. Loop until one of the termination criteria is met.

1. Perform perturbation on current design and calculate ∆E.

2. Metropolis Acceptance Rule: if ∆E ≤ 0 the perturbation is accepted. If ∆E > 0
perturbation is accepted with probability exp(−∆E/T ) where T is the current
temperature.

3. Check termination conditions. If any are met proceed to step B.

(a) Has the maximum number of iterations M been reached?
(b) 12p perturbations accepted or 100p perturbations attempted (equilib-

rium)?.

4. Temperature lowered according to linear schedule Tk+1 = 0.9Tk.

B. Discretise Continuous Design

1. Match optimum continuous design XC
O to candidate set XC by minimising the

Euclidean distance of the optimum set to candidate points. Replicate points may
be introduced in this process depending on the granularity of the candidate set
and the clustering of the optimum design.

Algorithm 4.2 Greedy design optimisation algorithm.

Input: Target design size p, design fitness function ff (X), Candidate set design XC

of size C, Initial design XI . Output: Optimal design XO.

A. Initialise current proposal design to initial design, X1
O = XI .

B. Iterate p times by adding to the current proposal design XO the candidate set point
which maximises the fitness function ff (X). Denote the iteration step as T .

1. Select candidate point Xi
C .

2. Evaluate the criterion function on the current proposal design appended with
the candidate point, ff

(
[XT

O;Xi
c]
)
.

3. Permanently add the point that maximises the criterion to the current proposal
design XT+1

O = [XT
O;Xi

c].
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Algorithm 4.3 Perturbation function used in the SA algorithm.

Input: Current design Xc, current temperature T , maximum temperature TM .
Output: Perturbed design XO.

A. Generate a random number r in U[0, 1]. If r > 0.5 use perturbation method P1, else
P2.
P1. Shift Single Point.

1. Pick point xic in design Xc to change at random.

2. Calculate range of shift dependant on temperature ratio T/TM and shift xic
within the feasible region. At maximum temperature the entire design space
is feasible. Specifically given the upper and lower bounds for each dimension
xi ∈ [li, ui], a random value is generated by

xic =

{
xic + (ui − xic)

T
TM

r...D+1 + li , r1 > 0.5

xic − (xic − li) T
TM

r...D+1 + li , r1 ≤ 0.5

where r = {r1, r...D+1} are D+1 samples from the uniform distribution U(0, 1),
where D the dimensionality of Xc.

P2. Replace Points.

1. Calculate the number of points to replace dependant on the temperature ratio
T/TM . At maximum temperature all the points are replaced. Specifically the
number of points replaced for a design size M is round(M × T

TM
) where round

denotes the integer rounding operation.
2. Replace the selected number of points with randomly generated points that may

lie anywhere in the design domain.

potentially useful initialisation is to evaluate the FIM for all point pairs and se-1

lect the pair that achieves the minimum value. Alternatively the algorithm may2

be initialised by selecting the centroid point of the candidate set as the initial3

design point. The greedy algorithm can then proceed by selecting the point in4

the candidate set which, in conjunction with the centroid point, minimizes the5

FIM.6

We have also implemented a replicate only version of the algorithm referred7

to as the replicate greedy optimisation. In this case, two replicates at a single8

design point are included at each step. This approach restricts the optimisation9

design space to replicate only designs which we have found in some cases to offer10

better solutions in terms of FIM than the standard greedy approach.11

5. Simulation Experiments on Synthetic data12

In this section properties of optimal designs are investigated through a range13

of synthetic examples. The optimal designs are compared to two types of space-14

filling designs, maximin Latin Hypercube and grid. The designs are assessed in15

terms of both prediction and parameter estimation performance. A GP with16

known parameters is sampled in order to assess the quality of the Maximum17

Likelihood (ML) parameter estimates. In all the experiments presented herein,18

the model used in design generation is the correct model, i.e. the same model19
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that is sampled from to generate observations. The issue of model misspecifica-1

tion in optimal design is discussed further in Section 7.2

The following designs are compared:3

1. Greedy (F ) and Simulated Annealing (S ). We obtain the designs using4

greedy and SA optimisation respectively.5

2. Grid (G). A standard grid design where the distance between neighbouring6

points is a constant and replication is not allowed. If the design size is7

not a perfect root of the input dimension, the remaining points are placed8

randomly.9

3. Maximin Latin Hypercube (L). Maximises the minimum Euclidean dis-10

tance between design points by selecting from 1000 randomly generated11

Latin Hypercube designs.12

4. Replicate Grid (Rg) and Replicate Maximin Latin Hypercube (R). As a13

Grid and Maximin Latin Hypercube design respectively, but the number14

of design points is halved with ‘replication’ giving two samples per point.15

Prediction error is assessed using the standardised mean-squared-error (sMSE)
[23] and the Dawid loss [4]. The sMSE is used to assess the predictive accuracy
of the GP with regards to the mean only

sMSE =
1

Nν2
t

N∑
i=1

(E[t∗i]− ti)2

where E[t∗i] the GP predictive mean defined in Equation (3) for test point
i ∈ {1, . . . , N}, ti the observation at that point and ν2

t the sample variance of
the test set observations. As the sMSE ignores the predictive variance, we utilise
a multivariate extension of the logarithmic score known as the Dawid loss [4],
which is defined as

Dawid = log |V ar[t∗]|+ (t− E[t∗])
T
V ar[t∗]

−1 (t− E[t∗i]) ,

where |·| denotes the determinant and V ar[t∗] the covariance matrix of the joint16

predictive distribution at the set of test points (Equation (4)). By incorporating17

the volume of the covariance ellipsoid via the log determinant, large predictive18

variances are penalised in the Dawid score. The Dawid loss is a more precise19

error measure than the average univariate logarithmic score since the full pre-20

dictive covariance is utilised without assuming the errors are uncorrelated. The21

test set used is a 1024 point Latin Hypercube design.22

In order to measure the accuracy of parameter estimation we use two mea-23

sures, the parameter Mean Absolute Error (pMAE) and the Log Determinant of24

the ML estimator parameter covariance (LDM). The LDM is defined as the log25

determinant of the covariance of the ML estimates of all parameters across all26

realisations of the experiment under consideration. It is a measure of dispersion27

of the ML estimates and does not capture the error of the estimations with re-28

spect to the true parameters. However the FIM (Section 3) should approximate29

the Log determinant of the ML estimates and the quality of this approximation30

10



is a useful diagnostic for the performance of the design. The pMAE on the1

other hand is an estimate of the error of the ML estimate to the true parameter2

value, pMAE = 1/NE
∑NE
i=1 |θ̂i − θ0|/|θ0| where | · | the absolute value, θ̂i is the3

ML point estimate for realisation i, θ0 the true parameter and NE the number4

of realisations. The rescaling by θ0 ensures the pMAEs for different parame-5

ters are comparable. To ensure robustness in the calculation of the pMAE, the6

maximum likelihood optimisation is restarted five times from random initial7

conditions for all parameters. The solution with the highest training set likeli-8

hood is selected for subsequent validation. For the multiple restarts the initial9

value for the log length-scale parameter was sampled from N (−2, 0.01), i.e. a10

Normal distribution centred at −2 corresponding to a length-scale of ≈ 0.1. A11

small variance was used to avoid numerical issues in the calculation of the model12

likelihood. All other parameters were initialised by sampling from N (0, 1). To13

help present the results concisely the pMAE for the variance models parameters14

are aggregated in a single summary. The median and interquartile range (IQR)15

are reported for all pMAEs based on multiple realisations of the experiments.16

The design space for all experiments is set to X ∈ [0, 1]2. A zero mean17

GP with a fixed order ν = 5/2 Matérn kernel is used for both generation and18

fitting. A series of further experiments on other kernels and variance models is19

presented in Chapter 5 of [5] whose findings are consistent with the for results20

presented here.21

5.1. Local Design22

In this section locally optimal designs are investigated using a synthetic23

example. To evaluate the parameter errors, 500 realisations of the experiment24

are performed. All designs were generated using a 1024 grid space of candidate25

points, picking n = 30 points and allowing for replication. The Greedy algorithm26

was initialised by computing the FIM for all possible permutations for two point27

designs and selecting the pair with the minimum value (Section 4).28

A Fixed basis Log-Linear model variance model is used exp(β1+β2x1+β3x2).29

The GP model length scale is set to λ = 0.2, the process variance to σp = 1,30

the variance model intercept to β1 = −4.6 and slope to β2 = β3 = −1.6.31

The Greedy algorithm can be run with a fixed number of replicates added32

at each step. In Figure 1 the FIM and LDM values for different Greedy designs33

is shown. The Greedy design where replication is not allowed (Fn) is the worst34

performing design both in term of FIM and LDM. Allowing for replication but35

adding a single point at each Greedy step improves both scores but results in a36

design that is still worse than the replicate Grid (Rg) and replicate Latin Hyper-37

cube (R) designs. Adding 2 replicates at each step (FR) significantly increases38

the scores of the resulting design outperforming the SA design, suggesting the39

SA optimisation could be run for longer. Adding three replicates at each step40

improves only modestly the design and adding more replicates impacts nega-41

tively on both scores. In this instance there is good agreement between the FIM42

and the actual design performance in terms of parameter error as reflected by43

the LDM. This approach may therefore be used in practice to judge how many44

replicates to add at each Greedy step.45
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The designs obtained using the no-replicate (Fn) and 2-replicate Greedy1

(FR) and SA (S) optimisation methods are shown in Figure 2; the no replicate2

Fn design places point along a line at the boundaries of the design space while3

the replicate FR and S designs place points on the corners of the space. The4

LDM agrees with the FIM (Figure 2(d)) with regards to separating the non-5

replicate designs (which show a large variability in estimated parameters) from6

the replicate designs. The lowest FIM and LDM values are obtained by the FR7

and SA designs.8

(a) Replication step size vs FIM (b) Replication step size vs LDM

Figure 1: FIM and LDM for different replicate step sizes for Greedy algorithm. For step size
0, the FIM and LDM for the non-replicate design is shown - see Figure 2(a). For reference the
FIM and LDM scores for the SA and Replicated Grid and Maximin Latin Hypercube designs
are also shown as horizontal dashed lines. The non-replicate (Fn) and 2-replicate at each step
Greedy designs are explicitly labelled.

In terms of parameter estimation accuracy, all variance model parameters β9

are better identified in the replicate designs as is shown in Table 1. Specifically10

the replicate designs FR, S, Rg, R achieve lower median pMAEs than the non-11

replicate designs Fn, G, L which incur much higher median errors and are also12

more variable in their performance as reflected by the increased IQR values. In13

terms of the length-scale parameter, the non-replicate Fn, G, L designs achieve14

somewhat smaller pMAEs than the corresponding replicate designs. No practi-15

cally relevant differences were observed in the estimation of the process variance16

parameter. In this scenario the replicate designs are superior in identifying the17

variance model parameters without significantly sacrificing the estimation of the18

length-scale parameter.19

In terms of predictive errors, the space-filling non-replicate designs (G, L)20

achieve the lowest average sMSE of 0.2, followed by the space-filling replicate de-21

signs (Rg,R) with mean sMSE 0.4 and finally the optimal non-replicate Greedy22

(Fn) with average sMSE 0.8, replicate Greedy (FR) and SA (S) designs with23

average sMSE 0.8 and 0.9 respectively. As space-filling designs cover the space24

more uniformly than the highly clustered optimal designs the smaller interpo-25

lation error on the mean is expected. In terms of Dawid loss (Table 1) the26

non-replicate Fn, G, L designs achieve significantly worse median errors than27
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(a) Greedy No Replication (Fn) (b) Greedy (FR)

(c) Simulated Annealing (S) (d) Correspondence of FIM to LDM

Figure 2: Greedy designs with replication (FR), without (Fn) and SA (S) designs for the
Log-Linear model. Replicate points (red squares) are annotated with the number of replicates
ni, non-replicate points are not (blue circles). Also shown a comparison of these designs to
the replicate (Rg) and non-replicate (G) Grid, replicate (R) and non-replicate (L) maximin
Latin Hypercube designs. Replicate points shown as red squares, single replicate point as blue
circles.

Table 1: Median and interquartile range for the pMAE and Dawid loss for the Log-Linear
model.

Design λ β1,2,3 Dawid

Greedy (FR) 0.21± 0.25 0.19± 0.33 -4170 ± 296

Simulated Annealing (S) 0.18± 0.23 0.26± 0.47 -4134 ± 333

Non-replicate Greedy (Fn) 0.17± 0.22 0.96± 2.16 -3391 ± 4001

Replicate Grid (Rg) 0.32± 0.50 0.31± 0.56 -3918 ± 990

Replicate Maximin LH (R) 0.26± 0.31 0.34± 0.61 -4065 ± 462

Grid (G) 0.18± 0.26 1.18± 2.05 21800 ± 87493

Maximin Latin Hypercube (L) 0.19± 0.26 1.22± 2.61 8195 ± 62011
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the replicate FR, S, Rg, R designs. The larger interquartile values for the former1

are striking and point to a lack of robustness in the prediction. This is consistent2

with the larger IQR values for the pMAEs of the variance model parameters3

for these designs. In conjunction with the larger variance parameter errors and4

smaller sMSEs, we conclude that the non-replicate designs have higher Dawid5

loss mainly due to inaccurate variance prediction.6

For the heteroscedastic Log-Linear model a design that is optimal for the7

identification of the coefficients of the log-linear variance model is required. As is8

well known in the case of linear regression [2], the optimal design for parameter9

estimation places points on the corners of the space and this is exactly the10

effect we observe in the SA and FR optimal designs for the Log-Linear model.11

The parameter estimation errors lend further credence to this conclusion as the12

optimal designs achieve lower errors for the variance model parameters β than13

the non-replicate space-filling designs. The good performance of the replicate14

space-filling designs is also explained by this effect since replicated design points15

are placed on the edges of the design space. As the noise level is quite low16

across the design space, design points with just two replicated observations are17

sufficient to capture the variance response. In the case of the non-replicate18

designs however, the single observation design points on the edge of the space19

are not as informative with regards to the variance process.20

5.2. On the monotonicity of the FIM21

As [36] have noted, for the FIM to be used as a design criterion, it should22

provide the same ordering of designs as the LDM. Based on a small simulation23

experiment with homoscedastic noise, they conjecture that such a monotonic24

relationship exists, although they note the approximation error is significant for25

small design sizes. In our simulation experiments under heteroscedastic noise we26

have found a strict monotonic relationship to be violated. However we believe27

an approximate ordering still holds which we empirically demonstrate.28

For the first simulation experiment we consider two types of design, Grid29

and Latin Hypercube. For each type of design, we start with no replicates and30

increase the number of points with two replicates by simultaneously removing31

non-replicate design points to maintain a constant design size of 100 points.32

Examples of the designs are shown in Figure 3. A Latent-Kernel variance model33

with 9 latent points is used. The latter are placed on a grid in the design space.34

For each design the local FIM is calculated. As in [36], the experiment is35

performed by sampling from a GP with known parameters. The length scale36

prior is set to λ = {0.6}, the process variance is kept fixed at 0.6, and the37

variance model parameters to z = {3.5}. This configuration has a medium38

length scale process with relatively small changes in the mean response and39

large variability in the variance response. For all designs, the parameters are40

estimated using ML with 100 realisations of the experiment performed, each41

utilising a different GP sample.42

The experiment is summarised by the plot shown in Figure 4. The ratio43

of the LDM to the FIM is used to summarise the approximation error. The44

correspondence of this ratio to the ratio of replicated points in the design is45
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(a) Grid, no replication (b) Grid, some replicated points

Figure 3: Examples of designs considered in the FIM vs LDM consistency experiment.

plotted. The latter is defined as the ratio of design points with two replicates1

to the total number of points in the design (100). As the ratio of replicated2

points is increased, the LDM/FIM ratio approaches 1 reflecting the decrease3

in the approximation error. Further, when few replicate points are available in4

the design, the value of the LDM/FIM ratio reflects the underestimation by the5

FIM of the parameter variance as reflected by the LDM. But as [36] have noted,6

the critical property for a design criterion is the monotonicity of the FIM-LDM7

relationship and not the magnitude of the approximation error.8

Fisher.

Figure 4: Relation of FIM to the LDM for a fixed design size of 100 points. Grid (red solid
line) and Latin hypercube (blue dashed line) designs with different ratios of replicated to
non-replicated points considered.

To establish whether strict monotonicity holds in the simulation experiment9

we compute a violation measure on the intermediary designs produced by the10

Simulated Annealing (SA) optimisation algorithm in Section 5.1. The final SA11

design is shown in Figure 2(c). The design used to initialise the SA algorithm12

is a Latin Hypercube with no replicated points. As the algorithm proceeds we13

store the design every 100th iteration giving a total of 258 designs. We split14

the designs into 9 categories depending on the number of replicated (ni > 1)15

points Cr in the design (Table 2). We define a violation measure to investigate16

the departure within each category from strict monotonicity. The measure is17
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defined as:1

V (ξ) =

Nξ∑
i 6=c

δci | (M(ξ)−M(ξi)) (L(ξi)− L(ξ)) | , (7)

where ξ is the evaluated design, Nξ the number of designs in the same category as2

ξ, and M(. . . ), L(. . . ) the FIM and LDM functions respectively. The indicator3

function δci = I [(M(ξ)−M(ξi)) (L(ξi)− L(ξ)) > 0] returns 1 if a violation has4

occurred and 0 otherwise. As we see in Table 2 the violation measure is highest5

for designs without replicated points and is rapidly reduced when even a single6

replicate point is included. The approximation error of the FIM to the LDM7

is therefore smaller and the FIM criterion more robust when replicated points8

are included. For this reason we will restrict our space of candidate designs9

to only replicate designs in Section 6 where the systems biology application is10

considered.11

Table 2: Number of replicated points Cr per design category, number of designs Nξ in each
category and the normalised monotonicity violation measure V (ξ) for the SA intermediate
designs.

Cr Nξ V (ξ)/Nξ Cr Nξ V (ξ)/Nξ
0 61 16.52

1 57 1.36 5 9 0.00

2 47 0.31 6 17 0.14

3 28 0.09 7 7 0.03

4 27 0.14 8 5 0.00

6. Application to prokaryotic autoregulatory network12

In this section we discuss the application of the optimal design methodology13

to a stochastic simulator describing the autoregulatory function of prokaryotic14

organisms. This simulator exhibits input dependent variance requiring the use15

of our heteroscedastic GP model described in Section 2 when constructing an16

emulator.17

6.1. The prokaryotic autoregulatory network18

The simulator describes a simple gene expression auto-regulation mechanism
often present in prokaryotic gene networks. It is composed of five reactant
species, the gene g, protein P and its dimer P2, and the mRNA molecule. The

16



eight reactions complete the specification of the model [32]:

g + P2
k1−→ g.P2 Repression

g.P2
k2−→ g + P2 Reverse Repression

g
k3−→ g + r Transcription

r
k4−→ r + P Translation

2P
k5−→ P2 Dimerisation

P2
k6−→ 2P Dissociation

r
k7−→ ∅ mRNA degradation

P
k8−→ ∅ Protein degradation

Dimers of the protein P (P2) coded for by the gene g repress their own tran-1

scription by binding to a repressive regulatory region upstream of g. This2

model is minimal in terms of biological detail included but contains many of the3

interesting features of an auto-regulatory feedback network [32]. Simulations4

of the network are implemented using the stochastic Gillespie algorithm [32].5

The resulting model is stochastic as the simulation considers interactions for6

each molecule in the system under consideration, and the interaction of these7

molecules is inherently random [32].8

Following [31], we restrict our attention to the k6 and k7 reaction rate pa-9

rameters with range k6 ∈ [0, 7] and k7 ∈ [0.05, 0.4]. The other parameters are set10

to reference values (k1 = 1, k2 = 10, k3 = 0.01, k4 = 10, k5 = 1, k8 = 0.01) [31].11

The initial number of molecules were set to {g.P2, g, r, P, P2} = {100, 0, 0, 0, 0}.12

The response we have selected to emulate is the number of bound molecules13

g.P2 at time step T = 18. A linear trend has been removed from the mean14

response using ordinary least squares regression, as we will assume a zero mean15

GP prior for the regression model in both the design and inference stages.16

6.2. Local Design17

We use the same kernel and design space as specified in Section 5. For the18

variance model, we utilise a nine point latent kernel structure. The latent kernel19

points Xz are placed on a grid in the interior of the design space. Specifically20

the grid is placed in the region [0.2, 0.8]2. This is done to avoid placing latent21

basis functions on the edge of the design space where the training design is least22

informative. For the variance kernel a Matérn kernel with fixed differentiability23

ν = 5/2 is used. We perform 500 realisations of the experiment.24

We utilise a locally optimum design by specifying a single set of parameter25

values for design generation. This scenario aims to demonstrate the case where26

strong prior information regarding the simulator response is available. A process27

length-scale of λ = {0.04} is assumed with the process variance set to σ2
p = 0.3628

and the variance model coefficients to z1,...,9 = 2.29

The experiment consists of comparing three different design methodologies30

for a small design size of 30 points. Replicate-only designs are used since repli-31

cate designs allow for more robust estimation of the variance model parameters32
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as well as reducing the approximation error of the FIM to the LDM (Section 5.2).1

The optimal design is produced using the 2-replicate greedy (FR) algorithm ini-2

tialised using the centroid of candidate set discussed in Section 4. We compare3

the performance of the greedy design to a replicate Grid (Rg) and replicate Max-4

imin Latin Hypercube (R) design. The SA algorithm was unable to produce a5

design with a lower FIM than that achieved by the greedy design. Further,the6

best SA design showed a pattern similar to the greedy design (see Section 6.3.47

of [5]).8

The optimal design is shown in Figure 5(a). The design exhibits a particular9

structure, placing points in the centre and edges of the design space with a high10

number of replicates. These areas correspond to the locations of the latent11

points of the latent kernel variance model.

(a) Greedy (FR) design (b) Correspondence of FIM to LDM

Figure 5: (a) Optimal design and (b) monotonicity plot in the prokaryotic autoregulatory
network example. Cyan = optimal design (FR), blue = Replicate Grid design (Rg), green =
replicate Maximin Latin Hypercube (R) design.

12

To calculate the pMAE, the ‘true’ parameter vector θ0 was estimated using13

the entire candidate set as the training set. The median and IQR of the pMAE14

for each design is shown in Table 3. The variance model parameters are identified15

with similar accuracy and variability with one exception not apparent in Table 3.16

For parameter β3 the R design has median pMAE of 0.83 (IQR 1.05), much17

higher than for the FR and Rg designs with values 0.35 (IQR 0.44) and 0.23 (IQR18

0.29) respectively. The random nature of the R design leads to a design that19

misses placing points around the location corresponding to the β3 parameter.20

The length scale λ and process variance σ2
p parameters are estimated with least21

error in the optimal design. However the most striking differences are in the22

IQR values for the length scale parameter where the optimal design exhibits the23

smallest variability. The Rg and R designs cannot robustly estimate the length-24

scale parameter for small design sizes since points are quite far apart and cannot25

resolve a small length-scale. The reduced variability in the estimation of the26

model parameters for the optimal design is summarised by the LDM measure27

shown in Figure 5(b) where a monotonic relationship of the FIM to the LDM28

is also evident.29
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Table 3: Median pMAE for the prokaryotic autoregulatory network model. Interquartile range
in parenthesis.

Design λ σ2
p β

Greedy (FR) 1.23± 2.49 0.96± 2.74 0.28± 0.37

Replicate Grid (Rg) 1.78± 7.54 1.03± 2.95 0.23± 0.30

Replicate Maximin LH (R) 1.39± 4.89 1.13± 3.16 0.26± 0.38

In terms of predictive errors, all designs achieve sMSEs of 1.00 reflecting sim-1

ilar performance on mean prediction. The optimal design achieves the smallest2

Dawid loss with a median value of 6194 (1018), followed by the Rg and R median3

loss of 6324 (1238) and 7903 (6045) respectively. The large Dawid loss for the R4

design is due to the estimation error for the variance model β3 parameter high-5

lighted above. Overall the optimal design achieves the smallest median Dawid6

loss with the smallest variability (IQR) due to the more robust estimation of7

the length-scale and variance model parameters.8

7. Summary and Discussion9

In this paper we have presented a new approach to model-based optimal10

design for heteroscedastic regression models with correlated errors and examined11

empirically the performance of the optimal designs through an extensive set of12

simulation studies. The criterion we have used aims to minimise the estimation13

error of the GP covariance parameters. This can be of use for variable screening14

and uncertainty quantification.15

In contrast to [36] we have found a strict ordering of the FIM to LDM does16

not hold for heteroscedastic models. However we have found that as the ratio of17

design points with replicates is increased, the approximation error of the FIM18

to the LDM is reduced and the monotonic relationship is more likely to hold.19

We believe this is related to the reduced inferential uncertainty on the variance20

model parameters when replicate points are used. We hypothesise that as the21

uncertainty on the parameters increases, the FIM to LDM approximation error22

increases. We believe a deeper theoretical understanding of this conclusion is a23

worthwhile direction for future research.24

For both the synthetic example and prokaryotic autoregulatory network case25

study the predictive performance of all replicate designs was found to be superior26

to that of the non-replicate Grid and Maximin Latin Hypercube designs. Al-27

though the sMSE was lower for the space filling non-replicate designs, reflecting28

a lower error on the mean, the replicate designs achieved more accurate variance29

prediction through the better identification of the variance model parameters,30

thus producing better calibrated probabilistic GP models as evidenced by the31

lower Dawid losses. We suggest that under non-trivial noise regimes, employing32

this model-based strategy and considering replicate-only designs, i.e. designs33
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with at least two replicates at each point, can be a very effective strategy for1

identifying the regression model parameters.2

The methodology presented can be extended in a variety of ways. It is rela-3

tively simple to extend the locally optimal design methods to Bayesian optimal4

designs by integrating over the unknown parameters to compute an expected5

FIM [36, 5]. In work not presented in the paper for brevity these conclusions6

have been shown to extend to the Bayesian version of the FIM (see Chapter 57

of [5]).8

We envisage the usage of our design method for approaches that linearise9

the correlated process using functional expansions. In [9] the GP covariance is10

approximated by a truncated eigenvector expansion. The approximation error of11

the expansion critically depends on the parameter accuracy. A Latin Hypercube12

is used in [34] for the initial design but a more natural choice would be a design13

where the parameter estimation variance is explicitly minimised.14

In [13], a two stage exploration-exploitation sequential strategy is proposed.15

In the exploration phase a variety of designs are proposed to minimise parameter16

uncertainty while in the exploitation phase, the parameters are assumed to be17

known with sufficient accuracy to allow for the minimisation of the predictive18

variance. The designs we have proposed would be a natural choice to employ19

during the exploration phase within such a framework.20

In this work the focus has been exclusively on design for identifying the21

covariance parameters. In practice, a non-constant mean function is specified in22

the GP prior as it produces an efficient and flexible model structure. It is well23

known in the literature (e.g. [17]) that design for trend parameters is usually24

antithetical to that of covariance parameters. Combining design for trend and25

covariance parameter estimation in the heteroscedastic emulation context is an26

area for future research.27

Our work can also be used to motivate design strategies relying on geomet-28

ric criteria. For simple stochastic responses, incorporating some replicate design29

points into the geometric design can substantially reduce the estimation error30

of the variance model parameters. For more complex noise models, a hybrid de-31

sign approach, where model-based criteria such as the FIM are combined with32

geometric criteria, such as coverage of the input space, may also be possible.33

Alternatively, for specific cases a deeper understanding of the underlying ge-34

ometry implied by the FIM can lead to corresponding geometric criteria which35

would be easier to compute. This is a promising area where only preliminary36

results exist, especially in the field of correlated processes. In [25] a parabola re-37

flection transformation is used to produce space-filling designs that can identify38

the correlation parameter in a Chemometrics model. In more realistic setups39

of model-based design, an appropriate geometry derived from FIM would be40

non-Euclidean and geodesic lines may be pretty curved (and only in rare cases41

will have an easy Euclidean parametrisation). Tackling this research question42

in a realistic setup is challenging and we suggest it as a future research problem.43

Overall our work suggests the following recommendations:44

• optimal model-based designs can be very useful where there is a reasonable45
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level of prior information on the model structure and parameter values;1

• when using FIM based optimal design for noisy correlated processes repli-2

cate observations should be used;3

• the FIM based design approach developed in this work produces better4

calibrated probabilistic models when compared to other designs, including5

space filling designs;6

• in high input dimensions model-based design becomes challenging – geo-7

metric designs should incorporate replicate points.8
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[3] S. Baran, K. Sikolya, and M Stehĺık. On the optimal designs for pre-24

diction of Ornstein-Uhlenbeck sheets. Statistics and Probability Letters,25

83(6):1580–1587, 2013.26

[4] L. S. Bastos and A. O’Hagan. Diagnostics for Gaussian process emulators.27

Technometrics, 2009.28

[5] A. Boukouvalas. Emulation of Random Output Simulators. PhD thesis,29

Aston University, 2011. Available at wiki.aston.ac.uk/foswiki/pub/30

AlexisBoukouvalas/WebHome/thesis.pdf.31

[6] A. Boukouvalas, D. Cornford, and M. Stehĺık. Notes on optimal design32

for correlated processes with input-dependent noise. Technical Report33

https://wiki.aston.ac.uk/AlexisBoukouvalas, Non-Linear Complex-34

ity Group, Aston University, 2013.35

21



[7] H. Dette, A Pepelyshev, and A Zhigljavsky. Nearly universally optimal1

designs for models with correlated observations. computational statistics2

and data analysis. Computational Statistics and Data Analysis, 2013.3

[8] P.J. Diggle, R. A. Moyeed, and J. A. Tawn. Model-based geostatistics.4

Applied Statistics, 47:299–350, 1998.5

[9] V. Fedorov and W. Müller. Optimum design for correlated fields via co-6

variance kernel expansions. mODa 8 - Advances in Model-Oriented Design7

and Analysis Contributions to Statistics, pages 57–66, 2007.8

[10] R. H. Green. Sampling design and statistical methods for environmental9

biologists. Wiley, 1979.10

[11] D. A. Henderson, R. J. Boys, K. J. Krishnan, C. Lawless, and D. J. Wilkin-11

son. Bayesian emulation and calibration of a stochastic computer model12

of mitochondrial dna deletions in substantia nigra neurons. Journal of the13

American Statistical Association, 104(485):76–87, 2009.14
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[17] W. G. Müller and M. Stehĺık. Compound optimal spatial designs. Envi-30

ronmetrics, 21(3-4):354–364, 2010.31

[18] W. G. Müller and D. L. Zimmerman. Optimal design for variogram esti-32

mation. Environmetrics, 10:23–37, 1993.33

[19] A. Pázman. Correlated optimum design with parameterized covariance34

function: Justification of the fisher information matrix and of the method35

of virtual noise. Technical Report 5, Department of Statistics and Mathe-36

matics, Wirtschaftsuniversitat Wien, June 2004.37

22



[20] A. Pázman. Criteria for optimal design of small-sample experiments with1

correlated observations. Kybernetika, 43(4):453–462, 2007.2

[21] A. N. Pettitt and A. B. McBratney. Sampling designs for estimating spatial3

variance components. Applied Statistics, 42(1):185–209, 1993.4

[22] Luc Pronzato and Werner G. Müller. Design of computer experiments:5

space filling and beyond. Statistics and Computing, 22(3):681–701, 2012.6

[23] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine7

Learning. MIT Press, 2006.8

[24] Soora Rasouli and Harry Timmermans. Using emulators to approximate9

predicted performance indicators in complex micro-simulation and multi-10

agent models of travel demand. In 4th Transportation Research Board11

Conference on Innovations in Travel Modeling, 2012.12

[25] J.M. Rodrguez-Daz, M.T. Santos-Martn, H. Waldl, and M. Stehĺık. Filling13
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Appendix A. Joint likelihood Model derivation13

We derive the likelihood for the model defined in Equation (2). Assuming
normality, the sample variance is distributed as a scaled X 2 distribution with
ni − 1 degrees of freedom:

s2
i ∼

gσ2(x, β)

ni − 1
X 2
ni−1 ,

where ni the number of replicates at location xi. This can also be expressed as
a Gamma distribution:

p(s2
i |β, xi, ni) ∼ Γ

(
ni − 1

2
,

2gσ2(x, β)

ni − 1

)
,

The joint log likelihood of the sample mean t̄ and variance s2 for N obser-14

vations can then be derived:15

log p(t̄, s2|X, θf , β) =

(
N∑
i=1

log p(s2
i |β, xi, ni)

)
+ logN (t̄|0,Kf +RP−1). (A.1)

The notation N (x|µ,Σ) is used to denote the pdf of a normally distributed16

random variable x with mean µ and covariance Σ. The joint likelihood of the17
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sample mean t̄ and sample variance s2 is:1

p(t̄, s2|X, θf , β) =

∫
p(t̄, s2, f |X, θf , β)df

=

∫
p(t̄, s2|f,X, θf , β)p(f |θf )df

=

(
N∏
i=1

p(s2
i |xi, β)

)∫
p(t̄|f, θf , β,X)p(f)df

=

(
N∏
i=1

p(s2
i |xi, β)

)
N (t̄|0,Kf +RP−1) .

(A.2)

The last equality follows from the law of total variance. The log likelihood can2

then be written log p(t̄, s2|X, θf , β) =
(∑N

i=1 Lsi

)
+ LN where the latter term3

is a GP standard likelihood with the given covariance and the former can be4

expanded:5

log p(s2
i |β, xi) =

ni − 1

2
(log(ni − 1)− log(2)− log gσ2(xi, β))− log Γ(

ni − 1

2
)

+
ni − 3

2
log(s2

i )−
(ni − 1)s2

i

2gσ2(xi, β)
.

(A.3)

Appendix B. Proof of Fisher Information for Heteroscedastic Noise6

Models7

For the heteroscedastic GP model with parameters θj ,θp ∈ {θf , β} the cor-
responding element in the FIM is:

Mjp = −
∫ ∫ (

∂2

∂θjθp
log p(t̄, s2|θf , β, n)

)
p(t̄, s2|θf , β, n) dt̄ds2,

where n =
∑
ni the total number of replicates in the design. We omit the8

dependency on the inputs X for brevity.9

The log likelihood term can be decomposed into two terms as shown in Equation10

(A.1), a term dependent on the distribution of the sample variances, Lsi, and a11

Gaussian Process term LN .12

Mjp = −
∫ ∫ [

∂2

∂θjθp

∑
Lsi

]
p(t̄, s2|θf , β, n) dt̄ds2 −

∫ ∫ [
∂2

∂θjθp
LN

]
p(t̄, s2|θf , β, n) dt̄ds2

= −
∫ [

∂2

∂θjθp

∑
Lsi

]
p(s|β, n) ds2

∫
p(t̄) dt̄−

∫ [
∂2

∂θjθp
LN

]
p(t̄) dt̄

∫
p(s|β, n)ds2.

We are able to separate the sample variance integrals to the individual si terms13
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due to the noise independence assumption, i.e. p(s2|β, n) =
∏N
i=1 p(s

2
i |β, ni).1

Mjp = −
∫ [

∂2

∂θjθp

N∑
i=1

Lsi

]∏
p(s2

i |β, ni) ds2 +MN

= −
N∑
i=1

∫ [ ∂2

∂θjθp
Lsi

]
p(s2

i |β, ni) ds2
i

∫ N∏
j 6=i

p(s2
i |β, ni) dsj

+MN

=

N∑
i=1

Msi +MN ,

(B.1)

where2

Msi = −
∫ [

∂2

∂θjθp
log p(s2

i |β, ni)
]
p(s2

i |β, ni) ds2
i ,

MN = −
∫ [

∂2

∂θjθp
LN

]
p(t̄) dt̄ .

The solution to the MN integral for a zero mean GP is 1
2 tr(Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θp
)

[19]. The Msi integral can be solved by rewriting the integral in terms of the

second order derivative of the variance model ∂2f
∂βjβp

:

Msi = −
∫
∂2 log p(s2

i |β, ni)
∂βjβp

p(s2
i |β, ni) ds2

i =
ni − 1

2

∂2f

∂βjβp

∫
p(s2

i |β, ni) ds2
i

− (ni − 1)

2

[
− exp(−f)

∂f

∂βj

∂f

∂βp
+ exp(−f)

∂2f

∂βjβp

] ∫
s2
i p(s

2
i |β, xi) ds2

i .

The integral can be analytically solved. For notational brevity let gσ2 = gσ2(xi, β) =3

exp(f).4

∫
s2
i p(s

2
i |β, xi) ds2

i =

ni−1
2gσ2

ni−1

2

Γ(ni−1
2 )

∫
s2
i (s

2
i )

ni−3

2 exp

(
−ni − 1

2gσ2

s2
i

)
ds2
i . (B.2)

The last integral is the mean of Gamma distribution. Therefore the Gamma
integral is

2gσ2
ni−1

ni−1
2 = gσ2 . To conclude the Fisher information contribution of

the sample variance term of the log likelihood Msi is:

Msi =
ni − 1

2

(
∂2f

∂βjβp
− ∂2f

∂βjβp
+

∂f

∂βj

∂f

∂βp

)
.

The final result is:

Msi =
ni − 1

2

∂f

∂βj

∂f

∂βp
.
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