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ABSTRACT 

 

Developers have an obligation to biodiversity when considering the impact their development may 
have on the environment, with some choosing to go beyond the legal requirement for planning 
consent.  Climate change projections over the 21st century indicate a climate warming and thus the 
species selected for habitat creation need to be able to withstand the pressures associated with 
these forecasts.  A process is therefore required to identify resilient plantings for sites subject to 
climate change. 

 

Local government ecologists were consulted on their views on the use of plants of non-native 
provenance or how they consider resilience to climate change as part of their planting 
recommendations.  There are mixed attitudes towards non-native species, but with studies already 
showing the impact climate change is having on biodiversity, action needs to be taken to limit further 
biodiversity loss, particularly given the heavily fragmented landscape preventing natural migration. 

 

A methodology has been developed to provide planners and developers with recommendations for 
plant species that are currently adapted to the climate the UK will experience in the future.  A 
climate matching technique, that employs a GIS, allows the identification of European locations that 
currently experience the predicted level of climate change at a given UK location. Once an 
appropriate location has been selected, the plant species present in this area are then investigated 
for suitability for planting in the UK.  The methodology was trialled at one site, Eastern Quarry in 
Kent, and suitable climate matched locations included areas in north-western France.  Through the 
acquisition of plant species data via site visits and online published material, a species list was 
created, which considered original habitat design, but with added resilience to climate change.   

 

 

 

KEYWORDS: planting regime, habitat-design, development site, climate change, developer’s 
obligation. 
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1. Introduction 
The attribution of recent climate change to anthropogenic forcings is widely accepted, as exemplified 

by the increase in atmospheric greenhouse gases since the industrial revolution and the consequent 

rise in global temperatures.  Having increased by 0.8°C since the late 19th century, global average 

temperatures are currently increasing at an unprecedented rate of 0.2°C per decade (EEA, 2004), and 

they are set to continue increasing.  Reports by the Intergovernmental Panel on Climate Change (e.g. 

IPCC, 2007), along with advanced computer modelling of the future climate all point to a further 

warming. 

  

In their fourth assessment report (AR4), the IPCC conclude that human activities have very likely 

contributed to recent climate change, and even if mitigation measures were fully implemented to 

reduce global emissions, the globe is already committed to a certain degree of climate change due to 

the inherent inertia of the climate system (Schneider and Thompson, 1981).  Simulations using global 

circulation models (GCMs) show that the temperature will rise by between 1.1 and 5.8°C depending 

on the emissions generated over the next century, i.e. dependant on the intensity of fossil fuel 

consumption, the uptake of energy efficient technology, amongst other socio-economic factors 

(Nakicenovic et al., 2000).  Other climate variables like precipitation are harder to predict, but given 

the increase in temperature and the affect this will have on the atmospheric-ocean interactions, 

precipitation rates will rise, more so in some areas than others.  The emission scenarios developed by 

the IPCC and published in AR4, estimate this to be between 1.3% and 6.8% higher in the final 30 

years of the 21st century compared with the period 1961-1990.  In Europe, the climate overall will 

comprise drier summers and wetter winters.  Although the 5th IPCC Assessment Report (AR5) has yet 

to be published, the Summary for Policymakers (IPCC, 2013), shows that it will not only support the 

AR4 findings, but provide more robust evidence of the anthropogenic contributions to global 

warming and climate change.   

 

The climate is one of the determining factors on the distribution of vegetation types and plant 

species across the globe (Graham and Grimm, 1990), as illustrated by the different biomes.  With the 

magnitude of climate change expected over the next century, there are concerns over the ability of 

species to successfully migrate and keep track of their climate space.  Paleodistribution analyses 

studying the migration of species at the start of the Holocene period, when similar conditions 

existed, show that in general most species responded spatially to the change (Huntley, 1991), with 

the rate of change dependant on a number of variables.  Some species, however, are thought not to 

be in sync with the current climate (Svenning and Skov, 2007) and thus their future survival hangs in 
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the balance.  The effect climate change will have on species and how they will respond needs to be 

understood, so that adaption plans can be made accordingly.   

 

Species distribution models have been created to project the future climate space of species as a way 

of determining the possible impacts.  They highlight the areas which would be climatically suitable 

for species, but also project that some species will lose their climate space under climate change, 

with the possible risk of extinction (Thomas et al., 2004).  There are limitations associated with these 

modelling tools however, as they do not always take into account interactions between species, the 

abiotic effects on plant physiology and a species dispersal capacity, all of which determine the ability 

of a species to exist in a particular community.  Attempts have been made to incorporate a greater 

number of important factors, but models are still in the relatively early stages (EEA, 2012).  A species 

future fate may not be as positive as the models show, and action is required now when long term 

planning decisions are made in relation to vegetation and biodiversity.  The long life cycle of trees for 

example (Broadmeadow and Ray, 2005), means that action is required immediately if they are to 

survive future conditions.   

 

Recent climate change is already known to have had an effect on biodiversity, with the literature 

providing ample examples illustrating this point, including: 

 the migration of many taxa polewards, extending their ranges to higher latitudes and 

altitudes (Thomas et al., 2004; Walther et al., 2009) at an average of 6.1km per decade over 

the last century (Parmesan and Yohe, 2003); 

 observed changes in species phenology, e.g. first flowering dates, have advanced in line with 

recent temperature increases (Fitter and Fitter, 2002).  

Viner (2006) states that  

“These recent climate changes are likely to accelerate as human activities continue to 
perturb the climate system, and many reviews have made predictions of serious 
consequences for ecosystems and for food supplies and food security.” 

Unless a species is able to adapt in situ or shift its range, extinction may be a likely outcome as 

selective pressures increase (Jump and Peñuelas, 2005).  The loss of habitat and a heavily fragmented 

landscape add to the uncertainty that species will be able to respond naturally to climate change, 

with the added problem of increased threat from invasive species (Root et al., 2003).   

 

The services provided by biodiversity are valuable and important, some of which under climate 

change will become more creditable, including the regulation of air temperature through 
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evapotranspiration, the provision of shade by trees, as well the absorption of CO2 from the 

atmosphere and the removal of other pollutants (Broadmeadow and Ray, 2005).  Water attenuation 

during floods and reduction of soil erosion under the expected climate will also be beneficial.  Green 

spaces also provide sense of wellbeing and are linked with recreational activity.  These services, 

amongst others, need to be protected and sustained, and are one of the reasons why action to 

mitigate the impact of climate change needs to be taken now, and in particular the appropriate 

adaption plans to keep green areas green. 

 

1.1 A Developer’s Biodiversity Obligation 
From a practical perspective, planners and developers are currently making investment decisions on 

vegetation planting schemes, which will survive and flourish over a 50-100 year time horizon.  This 

requires the selection of appropriate species that will withstand the added pressures likely to be 

experienced over this time frame.  Biodiversity has been given more recognition in the planning 

system over the last half a century, and there is now a requirement for developers to consider the 

biodiversity aspects when designing proposals (Bell and McGillivray, 2008).  Sustainable development 

also requires that the environment is given equal consideration as economic and social factors.  It is 

not always necessary to consider the environment, but in today’s society it upholds companies’ 

reputations and shows their commitment to the environment.  Inaction to respond to climate change 

will cost the environment as well as the economy (HM Treasury, 2006). 

 

1.2 The Origin of the Research 
Planting decisions are typically guided by biodiversity action plans (BAPs) at both the national and 

regional level, the principle of which being to maintain and enhance the local indigenous flora.  These 

species, however, are characteristic of a previous climate and they may not be appropriate for the 

climate of the 21st century given the change in abiotic factors expected, e.g. higher average 

temperatures, reduced summer moisture availability.  Sustainable planting decisions need to be 

made so that developments maintain their investment into habitat creation, particularly when 

developments are of a large scale and entail 60 year life designs.  Developers therefore need the 

appropriate guidance to consider climate change in their plans. 

 

Middlemarch Environmental Ltd, an ecological consultancy company, is often involved with large 

property developers who require advice on various biodiversity aspects, including planting regimes.  

With concerns over the selection of suitable plant species, which will satisfy the long term 

investment obligations of their clients, Middlemarch saw a need to rethink currently accepted 
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habitat creation and planting design practice, so that they can be appropriately informed.  Large 

brownfield sites, typical of their site profiles, also have an added disadvantage in that they often are 

characterised by poor soil conditions with limited water retention characteristics, with subsequent 

stressful edaphic conditions.  With warmer summers predicted for the UK and decreases in 

precipitation levels, these problems are only going to exacerbate under climate change.  

 

A project of particular concern to Middlemarch, was the Thames Gateway project, a long term 

development in the South East, where large scale housing provision is proposed to be built within a 

disused chalk quarry along with the associated habitat creation and biodiversity enhancement.  

Current practice would recommend a mosaic of calcareous habitats as specified by the BAP, but over 

the lifetime of the project the climate is predicted to change to mirror that currently experienced on 

the nearby continent and southern Europe – consequently, decisions made need to reflect this.  

Research was therefore urgently required which, based on the most recent predictions of climate 

change, would establish appropriate planting provenance to both guarantee long term viability and 

minimum maintenance cost for this and similar schemes. 

 

1.3 The Research Proposal 
The research project was initiated with a view to developing a methodology for the creation of 

planting assemblages that will be adapted to the climate of the UK in 2050.  This research would thus 

provide suitable environmental and financial solutions for developers and planners involved with 

large scale developments and long-term management plans involving biodiversity provision. 

 

1.3.1 Project Aim 

The aim of the proposed project is:  

‘to develop a process to enable the production of species lists for the habitat creation 

and planting design associated with large scale development sites subject to climate 

change.’ 

 

1.3.2 Project Objectives 

The aim of the project would be achieved through meeting the following objectives: 

i. undertake a literature review to understand the climate science and modelling of the 

future climate; 



25 

 

ii. obtain the most recent climate change predictions for the UK for the time period 2050, in 

particular temperature, precipitation and emission scenario projections, and select an 

appropriate climate change scenario for study; 

iii. undertake a literature review to ascertain the impact climate change is having on 

biodiversity, in particular the distribution of vegetation and species composition; 

iv. employ a case study approach to test the methodology by selecting a range of suitable 

development sites across the UK with a requirement for biodiversity, and published site 

landscape designs; 

v. determine the views of ecologists regarding the research proposals, non-native species 

and planting design via a questionnaire; 

vi. develop a climate matching technique to identify areas on the continent which currently 

experience a similar climate to that predicted for given locations in the UK in 2050; 

vii. obtain species lists for identified European sites and chosen habitats through site visits 

and desk studies, where appropriate; 

viii. interrogate the species lists to compile vegetation assemblages and species lists for each 

of the case study sites, taking into account habitat proposals, species’ environmental 

preferences and soil considerations; 

ix. consult an expert ecologist to refine the resulting species lists for recommendation to 

planners and developers. 

 

1.4 Thesis Structure 
Chapter 2 

The rationale behind climate change provided in this chapter looks at the main forcing agents, both 

natural and anthropogenic which have influenced the climate system.  The evolution of global 

circulation models is also discussed, as these produce projections of the future climate.  The IPCC 

marker emission scenarios are also introduced, as well as the most recent climate projections 

developed by UKCP09. 

 

Chapter 3 

This chapter identifies measures taken for protecting the environment within the planning system at 

the international, European and national level, as often such agreements to protect the environment 

and biodiversity are made at the international level, but are enforced through regulation at the 

national level.  The requirement for developers to consider biodiversity when proposing site plans is 

also discussed. 
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Chapter 4 

The past, present and future effect climate change is having on biodiversity is examined in Chapter 4, 

to highlight the need to consider and protect biodiversity.  Studies have shown that unless efforts are 

made now to reduce the impact of climate change, there could be dangerous consequences for 

biodiversity across the globe in the future. 

 

Chapter 5 

This chapter introduces the research methodology employed, and the steps taken to reach the 

findings, including the climate matching technique.  A case study approach is adopted to test the 

framework developed to create robust planting assemblages suitable for the future climate.   

 

Chapter 6 

The questionnaire design, results and evaluations are given in this chapter.  An online questionnaire 

was sent out to local government ecologists to ascertain their perceptions of climate change effects 

on biodiversity, the decisions made in relation to planting on brownfield sites, and their views on the 

wider implications of this research. 

 

Chapter 7 

The five case study development sites selected to test the methodology are described in Chapter 7, 

including the history of each site, the site conditions, the site proposals and the biodiversity elements 

incorporated into them.  The landscape surrounding the site is also considered as this can influence 

planting design and decisions.  

 

Chapter 8 

European locations which currently experience the climate predicted for each of the case study sites 

in 2050 were identified in this chapter.  UKCP09 climate projections were used along with current 

day meteorological conditions across Europe to identify these.  A GIS was employed to visually show 

how well the locations matched the climate for each case study.  The best matched locations were 

identified through a visual inspection and comparison of monthly rainfall and temperature 

distributions, when considered alongside other relevant factors. 

 

Chapter 9 

This chapter details the steps taken to identify and obtain the appropriate vegetation data from the 

selected European sites, including site visits and desk studies.  The data collected was subsequently 
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classified into the broad habitats proposed for the development sites, with further consideration of 

the species’ environmental preferences. 

 

Chapter 10 

The discussion chapter relates the findings of this research to the wider context of the field, the 

issues which would likely be encountered, the reasoning behind and evaluations of the decisions 

taken.  In light of the limitations a framework is proposed which would provide developers and 

planners with species lists that take into account climate change. 

 

Chapter 11 

The thesis concludes with a summary of the research and the consequent development of the 

framework, highlighting the reasoning behind the project and why it is important for the 

sustainability of biodiversity.  Recommendations are made in relation to further developing the 

framework. 
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2. Climate Change and Climate Models 
 

2.1 Introduction 
Over the last half a century, changes to the climate have occurred at an unprecedented rate; 

noticeably the increase in temperature has been at 0.17 ± 0.05°C per decade, believed to surpass any 

100-year rate of warming during the past 1000 years (EEA, 2004).  Understanding of the climate 

system and how interactions between the land, ocean and atmosphere can affect the climate has 

shown that there are radiative forcings which act to modify the energy balance and thus the climate 

experienced on Earth.  There are natural forcing agents or events like changes in the orbit of the 

earth, but there are also human induced forcings, e.g. the emission of gases from industry, which 

have radiative properties.  Recent climate change is assumed to have been caused by more than just 

natural causes (Stott et al., 2000), and with the CO2 concentrations rising significantly since the pre-

industrial period, anthropogenic sources are seen as being partly responsible for deviations in the 

climatic mean . 

 The need to address climate change, to prevent irreconcilable damage to the environment, 

has been recognised through international agreements with the intention to mitigate the world’s 

impact on the environment.  Contracting parties have to fulfil objectives and meet targets through 

implementing schemes to stabilise greenhouse gases, and commitments to sustainable 

development.  With economic development underpinned by the natural capita of the earth, studies 

have investigated the damage that the economy could encounter if inaction to limit climate change 

prevails (HM Treasury, 2006).   

 Complex mathematical models representing the climate system have been developed to 

illustrate the climate response to increased greenhouse gas emissions (Randall et al., 2007).  There 

are many limitations associated with the models, due to the complex nature of the components they 

model, and therefore outcomes are riddled with uncertainty.  Model advances since the start of this 

century, however, like the inclusion of atmospheric and ocean dynamics and those incorporating the 

carbon cycle (Cox et al., 2000), have increased the model confidence and the projections they 

produce, which ultimately provides the best estimate for how the climate may change over the 21st 

century.   Some models predict that there may be a cooling over north western Europe as a result of 

weakening in the ocean circulation in the northern North Atlantic (Broecker, 1987; Jacob et al., 

2005), yet many models project a climate warming, in line with the trend observed over recent 

decades.   

 The International Panel on Climate Change (IPCC) have developed a range of emission 

scenarios based on potential future events over the 21st century in terms of the demographics, 

energy source and intensity, economic development and social structures.  These emission scenarios 
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drive climate models and thus produce the likely climate scenarios of the future.  Depending on what 

assumptions are employed, the global temperature is estimated to rise between 1.1 and 6.4°C (IPCC, 

2007) in the future.  UKCP09 have produced climate projections utilising the IPCC scenarios, and it is 

these projections which underlie this research. 

 

2.2 The Climate  
The climate of an area is defined by the average of weather accumulations over a given period of 

time (Burroughs, 2007), i.e. it is statistically derived.  The climate system is made up of, and 

influenced by complex interactions between the atmosphere, the ocean, land, ice and the biosphere 

(Solomon et al., 2007), all of which are looked at in more depth throughout the chapter with regards 

to their effect on the climate.  The flow of energy within the climate system also influences it. 

 

2.2.1 Climate Change 

The climate is always fluctuating, but the term climate change refers to a change in the state of the 

climate, through either a drop or increase in the average of a parameter (Burroughs, 2007), such as 

temperature or rainfall, over typically a prolonged period of time.  This can be as a result of natural 

variability or due to human activity (Le Treut et al., 2007).  In relation to current climate change, the 

mean temperature is increasing at a rate that suggests the climate is being affected by more than 

just natural variability (Stott et al., 2000); other external forcings may be mediating the change.  

Although this chapter covers some of the science behind climate change, more detailed scientific 

information on climate change can be found by consulting Le Treut et al. (2007).  

 

2.2.1.1 Greenhouse Gases 

The discovery that greenhouse gases (GHG) alter the amount of long wave energy radiated back to 

space and thus affect the climate of the earth, came about in 1859 when John Tyndall carried out 

experiments in his basement laboratory (Hulme, 2009a).  He discovered that different gases 

commonly found in the atmosphere have varying absorptive properties when radiant (infra-red) heat 

is passed through them.  Water vapour, carbon dioxide, nitrous oxide, methane and ozone, all 

naturally present in the atmosphere, were later collectively called ‘greenhouse gases’ for their 

warming effect as they capture the heat radiating from the earth; they are an external forcing on the 

climate.  The planet would be considerably colder if these gases did not perform such a function 

(Hulme, 2009a).  The GHG all have varying attributes, some capable of absorbing more heat than 

others, but their atmospheric concentration will also determine the extent of climate change.  CO2 

has the smallest global warming potential (GWP), but as it is the most abundant GHG in the 
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atmosphere (Blasing, 2010), it is known to be the major contributor to climate change out of the 

main gases. 

 

2.2.1.2 Insolation 

The climate can be altered by other natural influences like changes in incoming solar radiation 

(insolation), which occurs as a result of changes in the orbit of the earth or by the characteristics of 

the sun.  Variations of the climate between ice ages and warmer periods over the past million years 

or so can be partially explained by variations in the Earth’s orbit and the amount of radiation 

received by the sun, a theory devised by Milankovitch (Nasa, 2008).  The cycles correspond with the 

majority of climate transitions, but not all, and conversely their direct heating or cooling effect is 

small, not wholly explaining the temperature changes over time.  For instance, insolation has 

remained relatively constant over the past 50 years (Randall et al., 2007), highlighting its relatively 

minor role in climate change over the last half a century. 

 

2.2.1.3 Feedback Mechanisms 

There are a number of feedback mechanisms in the climate system, which can either amplify 

(positive feedback) or reduce (negative feedback) the climate variability.  The fraction of radiation 

that is reflected back from the earth’s surface can be affected by the albedo of the land surface (the 

measure of how strongly land reflects light from light sources), land cover, aerosols and sulphur 

emissions from volcanic eruptions in the atmosphere (Randall et al., 2007).  One possible cause of 

climate change is even the ice itself; it has an albedo of around 0.8 on average (Perovich et al., 2008), 

reflecting around 80% of the electromagnetic radiation from the sun falling on the surface.  When 

vast ice sheets start to shrink, less of the suns electromagnetic radiation is reflected back into space, 

thus accelerating the warming process. 

 

2.3 Biogeochemical Cycles 

2.3.1 The Carbon Cycle 

With CO2 being a radiative forcing on the climate, its sources and sinks must be understood when 

looking at climate change.  Its concentration in the atmosphere, as mentioned, will affect the 

atmospheric temperature. 

 

The flow of carbon and its interactions in the biosphere, atmosphere, hydrosphere, lithosphere and 

pedosphere is known as the carbon cycle.  Plants and other producers are both sources and sinks 

(stores) of CO2.  The gas is taken in for photosynthesis whereby the carbon is used as a building block 
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for the plant, which also emits CO2 into the atmosphere via respiration.  The consumers that then eat 

the plants, facilitate the carbon to continue up the trophic hierarchy, until it is eventually returned to 

the Earth during decomposition or added back to the atmosphere during respiration.  Soil can act as 

a carbon sink, but if the temperature increases and the soils warm, respiration of CO2 back to the 

atmosphere increases (Cox et al., 2000). 

 

The ocean (seawater and ecosystems within it) acts as a sink, but its storage capacity can be affected 

by the temperature, as well as actual concentrations of the gas in the ocean.  Dependant on these 

variables the ocean can also act as a source of CO2 (UKCP09, 2010a).  The burning of fossil fuels, 

typically in industry, also returns the biological carbon back into the atmosphere.  Transport and 

changing land use, e.g. deforestation, are other factors which release CO2 back into the atmosphere, 

both of which have increased greatly over the past 50 years.  The cycling of carbon through land and 

water is illustrated in figure 2.1. 

 

 

Figure 2.1 The Carbon Cycle (NOAA, No date) 
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2.3.2 The Sulphur Cycle 

Sulphur is another agent which acts to modify the climate.  Sulphur gases are released with the 

combustion of fossil fuel gases, but also naturally from the oceans. Once in the atmosphere, chemical 

reactions take place to convert the sulphur gas into sulphate aerosol.  These aerosols do not persist 

for long in the atmosphere as clouds and rain remove them, but they do cause a temporary cooling 

effect on the climate, both directly and indirectly, which can be quite substantial.  The direct effect is 

due to a suspension of aerosols reflecting back some of the incoming solar radiation.  The indirect 

effect is when the sulphate particles act as additional nuclei on which water vapour condenses to 

form clouds; the increase in cloud total surface area resultantly reflects more solar radiation, creating 

a further cooling effect (UKCP09, 2010a). 

 

2.4 Recent Climate Change 
This section is based on the IPCC Climate Change Synthesis report 2007 (IPCC, 2007). The following 

observations are evidence for recent climate change, with figure 2.2 illustrating the change for 3 of 

the parameters since 1850: 

- The atmosphere is warming 0.13°C each decade, with the eleven years between 1995 and 

2006 ranking among the twelve warmest years in the instrumental record of global surface 

temperature (since 1850).  

- 1.3 times as much CO2 is entering the atmosphere compared with just 20 years ago. 

- The oceans have warmed to an increased depth of 3 kilometres since 1961, with the ocean 

absorbing over 80% of the heat being added to the climate system.  

- The sea level has risen on average about 1.89cm each decade over 1961 to 2003, with the 

last 10 years of this period averaging at a rise of 3.1cm.  Since 1993 thermal expansion of the 

oceans has contributed about 57% of the sum of the estimated individual contributions to 

sea level rise, with decreases in glaciers and ice caps contributing about 28% and losses from 

the polar ice sheets contributing the remainder. 

- Observed decreases in snow and ice extent are also consistent with warming. Satellite data 

since 1978 shows that the annual average Arctic sea ice extent has shrunk by 2.7% per 

decade, with larger decreases in summer months of 7.4% per decade.  



33 

 

 

Figure 2.2 Changes in temperature, sea level and Northern Hemisphere snow cover (IPCC, 2007) 
 
 

2.4.1 Anthropogenic Climate Change 
Climate Change is nothing new, it has been happening on all time scales, and Burroughs (2007) 

suggests that “past changes are etched on the landscape, have influenced the evolution of all life 

forms, and are a subtext of our economic and social history”.  However, recent changes to the 

climate cannot be fully explained by natural forcings (Stott et al., 2000), and the IPCC (2007) believe 

that ‘most of the observed increase in global average temperatures since the mid-twentieth century 

is very likely (i.e. more than 90 percent chance) due to the observed increase in anthropogenic 

greenhouse gas concentrations’.  Figure 2.3 shows the global surface temperature variation 1880-

2012. The 10 warmest years have occurred since 1990 including each year since 1997. 

 

Figure 2.3 Detailed global surface temperature variations 1880-2012 (NASA, 2013) 
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2.4.2 CO2 Concentrations 

CO2 emissions from human activity are relatively small compared with most natural sources, but it 

has been shown, through the analysis of ice cores, that for the past half-a-million years CO2 

concentrations have remained fairly stable at between 180 and 300 parts per million (ppm) (Brahic 

and Le Page, 2007), only to have risen to nearly 400ppm since the industrial age began (18-19th 

Century), which is almost a 50% increase over a relatively short time period.  Hulme (2009a) reports 

sites for monitoring CO2 in the mid 1950s were arranged by scientists Revelle and Suess, and with the 

help of a young post-doctoral scientist, Charles Keeling, they were able to establish a reliable 

‘baseline’ carbon dioxide level with anticipated continuous monitoring.  Mauna Loa Observatory in 

Hawaii, based at the top of the world’s largest volcano, was the location of one site, with another 

based at the South Pole.  Measurements commenced in 1957, and it was evident even after eighteen 

months, that concentration of the atmospheric gas was rising by about 0.5 and 1.3ppm per year, 

respectively at both sites.  Continuous recording of the concentrations still take place today, and as 

figure 2.4 shows, its abundance in the atmosphere has increased by about 80ppm since the recording 

began only 50+ years ago. 

 

 

Figure 2.4 Atmospheric CO2 at Mauna Loa Observatory (NOAA, 2013). 

 

The increase in CO2 can be correlated with the increase in human activity since the industrial age, 

thus pointing to anthropogenic influences on the climate.  Emissions may have been previously 

balanced through natural sinks (natural reservoirs that accumulate and store some CO2 for an 

indefinite period), but in recent years more CO2 has been entering the atmosphere than can be 

absorbed by the natural sinks, as shown in the end net accumulation in figure 2.5 (IPCC, 2007).  

Consequently an excess of CO2 is left in the atmosphere, which in turn enhances global warming. 
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Figure 2.5 Carbon Dioxide Sources and Sinks (IPCC, 2007) 

 

Figure 2.6 shows how human activity since 1750 has had the largest radiative forcing in comparison 

to natural processes, with CO2 responsible for the greatest forcing effect on the climate at 1.6 W/m2. 

 

Figure 2.6 Global average radiative forcing of climate 1750-2005 (NASA, 2013) 

 

The additional CO2 in the atmosphere and the recent unprecedented rate of climate change has 

shown how the climate can be affected by more than just natural forcings.  Anthropogenic influences 

on the climate, particularly since the industrial revolution, have amplified the forcing effect on the 

climate causing imbalances in biogeochemical cycles.  Some feedback processes have also acted to 

exacerbate the warming effect, highlighting the sensitivity of the climate system to external forcings. 

 

http://www.newscientist.com/articleimages/mg19426041.100/3-the-7-biggest-myths-about-climate-change.html
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2.5 Addressing Climate Change   
The continuous increase of greenhouse gas emissions over the 20th century and the observed global 

temperature increase was a call for action, with the perceived threats to the environment due to 

these activities being recognised.  Flooding of low-lying land from polar ice cap melt and the increase 

in extreme weather events across the globe are some of the activities being linked to climate change 

(HM Treasury, 2006).   

 

Even though various studies have shown the impacts, both environmentally and economically, that 

inaction on climate change can create, there is still much disagreement about climate change.  Much 

uncertainty surrounds who is responsible for recent climate change, and who should take action.  As 

Hulme (2009a) remarks climate change is an ‘environmental, cultural and political phenomenon 

which is reshaping the way we think about ourselves, our societies and humanity’s place on earth’, 

with some reasons for disagreement down to peoples differing beliefs and attitudes about their ‘duty 

to others, to nature, and to their deities’.  Governing the climate in response to the danger it poses, 

has occurred through international bodies and conventions with the intention to try and regulate the 

system and bring the situation under control. 

 

2.5.1 Establishment of the IPCC  

The Intergovernmental Panel on Climate change (IPCC) was jointly established in 1988 by the World 

Meteorological Organisation (WMO) and United Nations Environment Programme (UNEP) to carry 

out international assessments of scientific, technical and socio-economic knowledge in relation to 

human-induced climate change and the potential risks it posed (IPCC, No date).  It is world leading 

for such assessments.  The plethora of publications by the IPCC are now benchmark references, 

acknowledged by policymakers, scientists and other experts.  Four major assessments have been 

carried out every five years or so from 1990, with the most recent being that in 2007, with voluntary 

contributions from thousands of scientists based across the globe.  The reports are extensively 

reviewed by scientists all around the world prior to publication, to ensure the content and 

knowledge ‘are a fair reflection of the views of the whole scientific community’ (BBC, 2007).  This 

gives validity to the conclusions of the IPCC reports. 

 

2.5.2 International Mitigation Measures 

International agreements have been developed to address climate change (Bell and McGillivray, 

2008); with it being a global problem there needs to be a concerted effort by all countries.  

Developing countries have contributed little to greenhouse gas emissions over time, as opposed to 
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the likes of the USA and Europe whose CO2 emissions due to energy production have totalled 70% of 

global emissions since 1850 (HM Treasury, 2006).  This is recognised in the agreements, and although 

developing countries have a right to develop and thus emit greenhouse gases (Hulme, 2009a), efforts 

need to be made so that they develop within the means of the globe’s environmental capacity.  The 

main concept of the agreements is mitigation. 

 
2.5.2.1 The UN Framework Convention on Climate Change (UNFCCC) 

In 1992, as a result of the IPPC’s first annual report, the UN Framework Convention on Climate 

Change (UNFCCC) was adopted at the Rio Conference, with 50 countries (including the EC and the 

UK) initially ratifying the agreement (Bell and McGillivray, 2008).  A ‘common but differentiated 

responsibility’ approach towards mitigating climate change underlies the Convention, with onerous 

responsibility placed on parties listed in Annex 1 – the industrialised nations.  The main principle of 

the UNFCCC is to 

“achieve...Stabilisation of greenhouse gas concentrations in the atmosphere at a level that would 
prevent dangerous anthropogenic interference with the climate system...to allow ecosystems to 
adapt naturally to climate change, to ensure that food production is not threatened and to enable 
economic development to proceed in a sustainable manner” (UN, 1992b). 

 

2.5.2.2 The Kyoto Protocol 

The Kyoto Protocol, negotiated in 1997, is linked to the UNFCCC, and Annex 1 parties must mitigate 

for climate change through internationally binding emission reduction targets (Bell and McGillivray, 

2008).  It took 8 years before the Protocol was in force after many years of complex negotiations 

surrounding political disagreements; a countries economic development was in the balance (Hulme, 

2009a).  Through a collective scheme Annex 1 parties had to cut emissions by 5.2% relative to 1990 

levels at some point between 2008 and 2012.  This could be achieved through variable emission 

trading between countries and investment mechanisms, including the clean development 

mechanism.  Carbon credits can also be gained through afforestation, reforestation and forest 

management (Bell and McGillivray, 2008).  A major flaw of the Protocol and its effectiveness is that it 

has not been endorsed by China, the USA and India, three of the four main greenhouse gas 

producers. 

 

2.5.3 The Economics of Climate Change  

Economic development has often come at the cost of high greenhouse gas emissions, and this is 

where one of the controversies has arisen when it comes to addressing climate change.  The Stern 

Review (HM Treasury, 2006) on the economics of climate change highlighted that it would be more 
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cost-effective to take action now, as oppose to dealing with the problems later on.  The damage to 

economic growth globally was estimated to be ‘between 5 and 20 per cent global gross domestic 

product (GDP) each year, now and forever’ if climate change was not mitigated for, i.e. if a business-

as-usual scenario continued.  The economic analysis of Stern’s findings, however, received much 

criticism (as discussed in Hulme, 2009a), in particular the weighting given to the welfare of future 

generations to that of our own, and that estimates were unreasonable.  Nonetheless the warning 

given was clear and it gave economists an idea of the cost of inaction. 

 

2.5.4 The Need for Climate Models 

To illustrate just how severe climate change could be over the next 100 years, climate models have 

been developed to demonstrate the effect CO2 is having on the climate.   Although mitigation 

measures are in place to curb emissions, people still speculate on the need to change and favour a 

business as usual approach; climate models, as discussed in the next section, facilitate the warning 

required to make people realise the likely extent of future warming. 

 

2.6 Global Climate Models 
General Circulation Models, more commonly known as Global Climate Models (GCMs), represent the 

climate system mathematically, and are used to calculate future climate parameters.  They simulate 

the atmosphere, ocean, ice and land surface processes, based on the known laws of physics, 

describing the motion of energy and moisture (Hulme and Carter, 1999) and the conservation of 

mass, energy and momentum (Randall et al., 2007).   
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Figure 2.7 The horizontal and vertical structure of the HadCM3 climate model (UKCP09, 2010a) 

 

In a GCM the surface of the earth is broken up into a number of latitude/longitude grid boxes, with 

the atmosphere divided into layers between the surface and the stratosphere, and the ocean divided 

up between the surface and the deepest waters (figure 2.7).  It is at the points of this three-

dimensional grid in the atmosphere, that a number of equations derived from the basic laws of 

physics are solved to describe the large-scale momentum, heat and moisture parameters.  A similar 

process is ensued with the ocean, but with different variables.  The third Met Office coupled 

Atmosphere-Ocean Global Circulation Model (AOGCM), HadCM3, has a resolution over land areas of 

2.5° latitude x 3.75° longitude, with 19 vertical levels in the atmosphere and four layers in the soil.  

The ocean model has 20 vertical levels and a grid size of 1.25° latitude x 1.25° longitude (UKCP09, 

2010a).  In total there are about a million grid points covering the globe in the model. 

 

2.6.1 Evolution of Climate Models 

The continuous evolution of GCMs over recent decades has been facilitated by a capacity increase in 

computer power, with supercomputer speeds increasing by roughly a factor of a million in the three 

decades from the 1970s (Le Treut et al., 2007).  Manabe and Wetherald performed the first three-

dimensional model simulation showing the global climate response to a doubling of atmospheric 

carbon dioxide concentration (Hulme, 2009a), and although this work was ground-breaking there 

were significant flaws.  Spatial resolution of the models was 500km and ocean dynamics were 

http://ukclimateprojections.defra.gov.uk/images/stories/Projections_images/P_Fig2.5.png


40 

 

omitted, i.e. a ‘wet surface’ or simple ‘slab’ covering 70 per cent of the Earth’s surface mimicked the 

ocean,  with evaporation occurring to an infinite amount of water.  Nevertheless, such model 

experiments led the way for further developments in climate modelling, with increases in complexity 

reflected in both the length of simulations generated, as well as the spatial resolution. 

 

The more complex coupled ocean-atmosphere models which followed on from the earlier slab 

models, and the climate projections they make can investigate time-dependent scenarios of climate 

evolution, sometimes including interactive chemical or biochemical components.  The replacement 

of ‘slab’ ocean models by fully coupled ocean-atmosphere models at the end of the twentieth 

century may have constituted one of the most significant leaps forward in climate modelling 

(Trenberth, 1993).  Simpler models, however, are still used in a hierarchical manner, along with more 

complex computer models, as a ‘hierarchy of models’ is the only way to provide a linkage between 

theoretical understanding and the complexity of realistic models (Held, 2005).  Models, nonetheless, 

do not provide a perfect simulation of reality, because the capability of resolving all necessary spatial 

and temporal scales is not entirely possible even with today’s technology, and with the behaviour of 

such a complex nonlinear system being generally chaotic, it proves difficult to predict reality.   

 

Figure 2.8 illustrates the progression of climate models over time, showing that CO2 and rain were 

the only main parameters included in the mid-1970s. FAR, SAR, TAR stand for first, second and third 

assessment reports respectively, as published by the IPCC in 1990, 1995 and 2000.  AR4 refers to 

assessment report four published in 2007.  It can be observed how the complexity of the models has 

increased greatly from the initial stages of modelling, with the inclusion of many more components, 

processes and interactions (IPCC, 2007a). 
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Figure 2.8 Pictorial images denoting the increase in complexity of climate models over the last few 
decades (Randall et al., 2007). 

 

2.6.2 Confidence of Climate Models 

The fact that the underlying basis of the climate models is accepted physical principles, lends 

confidence to the models and the simulations they produce.  Confidence can also be gained through 

their ability to reproduce current climate and paleo-climate changes, such as the warm mid-Holocene 

of 6,000 years ago or the last glacial maximum of 21,000 years ago ‘but such opportunities are much 

more limited than are those available through weather prediction...as there are no precise past 

analogues for future predictions’ (Randall et al., 2007).  Models are often justified by simulating the 

observational records and give a realistic representation of the climate system, responding to its 

anomalies (Cox et al., 2000).  There is a cascade of confidence in the projections made by climate 

models; at the continental scale, confidence is moderate, whereas at the finer 25 km resolution, local 

conditions such as mountains and coasts are represented and they modify the large scale changes 

thus increasing confidence levels.  Confidence is also higher for certain climate variables in the model 
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estimates (e.g. temperature) than for others (e.g. precipitation), due to the complexities and scales 

of predicting such parameters (Randall et al., 2007).  

 

2.6.3 Limitations of Climate Models 

Even though computers have advanced considerably over time, there are still limitations in their 

ability to represent the climate system accurately.  The confidence in climate models has 

undoubtedly increased over the last decade, but there are still significant errors, which are mostly 

apparent at the smaller scale.  Problems that still remain at the larger scale include deficiencies in the 

simulation of tropical precipitation and the El Nino southern oscillation (Randall et al., 2007).  There 

are vacant gaps of knowledge in understanding scientific aspects of the climate, along with the 

availability of detailed observations of some physical processes, e.g. clouds.  The rounding of errors 

and averaging also adds to the uncertainty of the mathematical models, as deviation from the truth 

increases as more and more equations are involved.  As a result of the limitations, and the various 

methods models employ, the range of possible climate changes simulated, in response to specified 

greenhouse gas forcing, is considerable. 

 

The limited resolution ability of global models results in some important physical processes being 

inaccurately represented: e.g. the formation and precipitation of cloud droplets that operate at a 

scale too fine to be modelled (Lovejoy and Hannah, 2005).  Consequently these processes have to be 

parameterised (an element of ‘up-scaling’ has to be applied to such variables in the model).  Grid 

scaled variables like wind, temperature, humidity, etc. ‘which are explicitly described in the model’ 

(UKCP09, 2010a) are used to estimate the sub-grid scale processes to be parameterised.  A 

combination of physical theories, observations, experimentation and expert judgement are applied 

to various equations, for example, in trying to portray the statistics of the cloud field (e.g. the 

fractional cloudiness or the area-averaged precipitation rate) so that such climate processes can be 

represented in the climate model.  As “realistic parameterizations of cloud processes are a pre-

requisite for reliable current and future climate simulation” (Randall et al., 2007), it is important that 

these up-scaling processes take place. 

 

The feedback processes in the climate system can act to either amplify (positive) or reduce (negative) 

the initial effect, whether it be warming or cooling.  The uncertainty in modelling the future climate is 

exacerbated with the incorporation of feedback processes, and this, along with differences in the 

methods employed to simulate these feedbacks in GCMs, results in a range of climate sensitivities 

and predictions for a future with increased greenhouse gas concentrations.  In certain models, 
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artificial corrections (known as flux adjustments) are imposed, as components of the climate system 

can only be approximate representations of the real world.  When these are coupled together, the 

simulated climate tends to drift further away from reality (Hulme and Carter, 1999).  A greater 

number of climate models, however, are now being developed that do not alter the surface heat, 

water and momentum fluxes artificially to maintain a stable control climate (Randall et al., 2007).  

 

2.6.4 Predictions and Recent Improvements  

Despite the clear limitations of GCMS, they do however provide the best information available on 

how global and regional climate may change as a result of increasing atmospheric greenhouse gas 

concentrations (Hulme & Carter, 1999). “Models are unanimous in their prediction of substantial 

climate warming under greenhouse gas emissions” (Randall et al., 2007), with their continuous 

development providing a consistent and robust picture of climate warming. The increase in 

computational capacity and power over the last few decades has further enabled the reliability of 

such models.   

 

The comprehensiveness of models is also increasing with regards to the treatment of the climate 

system, with recent model improvements including (Randall et al., 2007): 

1.  Dynamical cores (advection etc) have been improved, and the horizontal and vertical 

resolutions of many models have been increased. 

2. The representation of physical and biophysical processes and interactions at a greater, more 

in depth level. 

3. The inclusion in some GCMs of plant responses, ocean biological and chemical interactions, 

ice sheet dynamics, the modelling of aerosols and land surface. 

4. The parameterisations of physical processes have been improved – for example most of the 

models no longer use flux adjustments. 

The incorporation of all these advancements will be important for improving predictions of climate 

change. 

 

2.7 Coupled Climate Models 
Most GCMs neglect the feedback between climate and the biosphere and the complex carbon-cycle 

feedbacks that are involved.  As Randall et al., (2007) states, however, “coupled climate models 

perform generally better than atmosphere-only models, and reveal the amplifying roles of ocean and 

land surface feedbacks in climate change”.  The ocean is as important a feature of the climate models 
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as the atmosphere, since ocean currents transport vast amounts of heat from the equator to the 

poles, as well as having a very large thermal inertia (Lovejoy and Hannah, 2005).  Also, the exchange 

of heat, momentum and water vapour between the ocean and atmosphere plays a part in regulating 

the climate. Representation of such features in coupled atmosphere-ocean models has, only in the 

last decade or so, been used to portray an overall picture of the climate for the future. 

 

Coupled climate models are an essential tool, for both making predictions, and for increasing the 

understanding of feedbacks and sensitivities.  Only about half of the current emissions of carbon 

dioxide are absorbed by oceans and ecosystems, but the facilitation of such processes is climate 

dependant.  The future atmospheric CO2 concentration is therefore not easy to predict in relation to 

working out future climate change (Dufresne et al., 2002).  The rising concentrations of the gas is 

believed to cause an increase in plant photosynthesis (DeLucia et al., 1999) and carbon dissolution in 

water (Oeschger et al., 1975), whereas the related climate change associated with rising CO2 

emissions is known to reduce ocean carbon uptake (Sarmiento et al., 1998) and the terrestrial carbon 

uptake (Cramer et al., 2001), resulting in a positive feedback.   

 

The inclusion of the terrestrial biosphere model, that replicate changes in terrestrial carbon sources 

and sinks, into fully coupled climate models, is a leading development in climate science, resulting in 

new and potentially important feedback into the simulated climate system on time scales of decades 

to centuries.  Some coupled climate/carbon-cycle models are also linked to a dynamic global 

vegetation model (DGVM), so as well as the exchange of CO2 between the atmosphere and the 

ocean, and the relationship between soil carbon and atmospheric levels of CO2, the dynamics and 

extent of up to five functional types of plant within grid boxes of the models are also considered.   As 

Cox et al. (2000) infers, this allows the interplay between factors of the climate system and external 

forcings to be fully represented. 

 

2.7.1 Coupled Carbon-cycle/Climate Model Studies 

The first two studies to investigate the effect of incorporating an interactive carbon-cycle into an 

AOGCM discovered that there was a positive feedback response, with an acceleration of global 

warming being the outcome (Friedlingstein et al., 2006).  Cox et al. (2000) used a fully coupled, three 

dimensional carbon-climate model – the HadCM3, which was also coupled to an ocean carbon-cycle 

model (HadOCC) and a DGVM, with the atmospheric physics and dynamics consistent with the 

HadCM3.  Emission scenario IS92a (from the first set of IPCC scenarios) was used for the transient 

simulations between 1860-2100, reproducing observational records and thus lending the model 
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validity.  Sulphate aerosols, however, and their radiative effects were neglected, a possible flaw due 

to the cooling effect created when these aerosols are formed.  Three varying simulations were run to 

demonstrate the effect of climate-carbon cycle feedbacks.  Dufresne et al. (2002) used an AOGCM - 

Institute Pierre Simon Laplace model IPSL-CM2, coupled to land and ocean carbon models to 

simulate the progression of climate and atmospheric CO2 between 1860-2100; a control simulation 

was run with no anthropogenic CO2 sources.  The simulation used IPCC SRES98-A2 emission scenario 

from 1990 to 2100 (Nakicenovic et al., 2000), which is an updated version of the earlier IPCC IS92a 

scenario.  Both studies used similar methodologies, although Dufresne et al. (2002) applied no 

restoring term of flux adjustments and they did not use a terrestrial model that accounts for 

vegetation dynamics. 

 

In Cox et al. (2000) simulations it was predicted that, as emissions of CO2 increase and thus 

atmospheric levels increase, by 2050 the land biosphere becomes a strong source of CO2 rather than 

a sink, with ‘widespread climate-driven loss of soil carbon’.  Normally the rates of photosynthesis as 

well as terrestrial carbon stocks increase when there is an increase in atmospheric CO2, as Hughes 

(2000) discusses, with CO2 having a direct fertilisation effect on plants.  However, with the indirect 

effect of CO2 being warming, other factors like plant maintenance and soil respiration consequently 

increase and thus reverse the initial increase in terrestrial carbon storage levels, leading to the land 

biosphere becoming a source of CO2 (Cox et al., 2000).  This becomes more apparent when 

temperatures increase dramatically midway through the 21st century, with a reduction of terrestrial 

carbon by about 170GtC between 2000 and 2100, and a consequent increase in the rate of CO2 in the 

atmosphere (Cox et al., 2000). Figure 2.9 shows that the terrestrial biosphere takes up CO2 at a 

decreasing rate from 2010 onwards, becoming a net source at around 2050. By 2100 this source from 

the land almost balances the oceanic sink, so that atmospheric carbon content is increasing at about 

the same rate as the integrated emissions (Cox et al., 2000).  Both Dufrense et al. (2002) and Cox et 

al. (2000) forecast that the CO2 induced climate change will reduce the land carbon uptake, with a 

bigger percent of anthropogenic CO2 left in the atmosphere.   
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Figure 2.9 Budgets of carbon during the fully coupled simulation (Cox et al., 2000). 

The thick line shows the simulated change in atmospheric CO2. The thinner line shows the integrated 
impact of the emissions, and of land and ocean fluxes, on the atmospheric CO2 increase with 
negative values implying net uptake of CO2 (Cox et al., 2000).  

 

In the experiment reported by Cox et al. (2000) concentrations of carbon in the model reach around 

980 ppmv (parts per million by volume) by 2100, compared to about 730 ppmv calculated using the 

IS92a scenario. As a result the global-mean land temperature increases by about 8 K between 1860 

and 2100, with the rise being only 5.5 K in the standard non-coupled scenario, exemplifying the 

difference a coupled climate model can make (Cox et al., 2000).  In the Dufresne et al. (2002) 

scenario simulation, it was found that by 2100 the atmospheric CO2 concentration is 770ppmv, with a 

global temperature increase of 3°C (4.4°C over the continents) and a small precipitation increase 

(4%).  The oceanic circulation shows a small but significant reduction of the thermohaline circulation, 

and of the deep convection at high latitudes.  The warming in the Hadley model may be larger due to 

the fact that Cox et al. (2000) account for more than just CO2 emissions (CH3, N20 etc), whereas IPSL 

only accounts for CO2.  It is not due to differences in the IPCC forcing scenarios, but rather to large 

differences in the model sensitivities (Friedlingstein et al., 2003). 

 

In Cox et al. (2000), although the oceanic CO2 uptake over the 21st Century does increase overall, the 

efficiency of the uptake decreases to some extent because of the ‘nonlinear dependence of the 

partial pressure of dissolved CO2 on the total ocean carbon concentration’.  As Sarmiento et al. 

(1998) discuss, climate change may be a contributing factor to this reduction, as the consequent 

2050 
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warming and increased stratification on the ocean has an effect on the downward flux of carbon, 

with solubility of CO2 decreasing relative to a constant climate control scenario.  When Sarmiento et 

al. (1998) used an AOGCM (simulating the observed temperature record) coupled to an ocean carbon 

only model, they found that climate change reduces ocean carbon uptake, which contradicts with the 

findings of both Dufresne et al. (2002), and Cox et al. (2000). This indicates that atmosphere and 

ocean carbon models may be more reliable; they find that reduced land uptake of CO2, through 

enhanced atmospheric CO2 results in increased ocean uptake, a feedback that must be neglected in 

ocean carbon only studies (Dufresne et al., 2002).  It is important to consider the feedbacks between 

the climate system and the global carbon cycle simultaneously. 

 

Reasons for reduced land CO2 uptake over time are due to reductions in net primary production 

(NPP) for both models with the associated warming and soil drying, but the soil respiration rate (SRR) 

increases much more in the Cox et al. (2000) model due to warming, compared with Dufresne et al. 

(2002).  Change in landcover due to deforestation is not accounted for in either model, which could 

indicate the models overestimate CO2 absorption in regions where deforestation may occur in the 

future.  The effect of temperature on soil respiration is still a debateable topic which puts uncertainty 

on all results calculated. Changes in landcover and land use, through human intervention, will also 

play a role in terrestrial carbon uptake and whether it acts as a source rather than a sink over the 21st 

century (Cox et al., 2000). 

 

Both studies confirm that there is positive feedback between the climate and carbon cycle, as a 

result of climate impact on the terrestrial biosphere, but that it is the land response to global 

warming that essentially explains the differences between the Dufresne IPSL model and the Cox 

Hadley model results, and thus more research into model sensitivities is required.  Being the first two 

studies to investigate the effect of a carbon-cycle incorporated into a climate model, the studies have 

shown the importance of the climate-carbon cycle, with results showing a substantial increase in 

temperature when compared to standard non-coupled scenarios.  If predictions for future climate 

change are to be successfully calculated such models need to be utilised.   

 

The ocean plays a vital part in the climate system, distributing heat and acting as a CO2 sink. The next 

section describes how the global ocean circulation system can have a strong effect on global climate 

change, and how some models have shown that there may not be an increase in temperature in 

years to come, particularly over Europe. 
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2.8 Global Ocean Circulation & Climate Models 
The thermohaline circulation (THC) is a global ocean system, whose currents transfer large amounts 

of heat (thermo) and salt (haline) around the world.  Ocean density is determined by these two 

important variables.  The THC is the engine of the Meriodional Overturning Circulation (MOC), which 

is a constant overturning of the ocean’s deep water from north to south in the North Atlantic, 

incorporating both thermohaline driven deep-ocean movements, and the wind driven movement of 

water at the ocean surface. The THC is driven by the sinking of cold dense water in the northern 

North Atlantic, known as deep water formation, and this is the most important aspect of the 

circulation (Broecker, 1991); high salinity levels in the surface waters and cold air temperatures 

increase the density of the water and cause it to sink.  As the surface water is converted to deep 

water, it releases heat to the atmosphere, believed to be responsible for the mild climate over 

western and northern Europe.  The Great Ocean Conveyor (GOC) as shown in figure 2.10 is the 

combined movement of the THC, the MOC and surface currents. 

 

Figure 2.10 The Ocean Conveyor Belt (Smithsonian Institution, No date) 

 

2.8.1 THC Weakening and Global Cooling 

The effect that an increase in sea-surface and air temperature resulting from global warming may 

have on the circulation could lead to a slowing or weakening of the THC, Manabe and Stouffer (2007) 

report ‘the simulated conveyor weakens as global warming proceeds’.  Coupled atmosphere ocean 

models, which plausibly reproduce the conveyor mechanisms, have predicted that the excess heat 

flux due to increased atmospheric CO2 could be responsible for about 20% weakening of the THC 
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(Manabe and Stouffer, 2007).  Further weakening could be attributable to increased freshwater input 

at the surface, from increased precipitation and surface run-off.  It is the magnitude of such inputs 

and the sensitivity of the circulation to this increase that is mainly responsible for the huge variation 

between models.  The low spatial resolution of GCMs also prevents predictions of a suitably 

comprehensive manner being observed in relation to potential or probable THC-induced climate 

change in Europe.  Understanding of the conveyor, however, suggests that a collapse of the THC in 

the North Atlantic could cause cooling over northwest Europe (e.g.Broecker, 1987), a factor which 

needs to be considered when understanding likely future climate change. 

 

A study undertaken by Jacob et al. (2005) shows that a weakening of the THC could lead to much 

lower temperatures around the northern North Atlantic, disagreeing with observations from a 

majority of GCMs and palaeo-observations of a climate warming.  Using a GCM they carried out a 

THC-slowdown sensitivity experiment, by comparing a 50% weakening of the MOC, with the 

associated control experiment.   

 

Regional sensitivity and control climate models for Europe were then constructed from the two 

global simulations, to produce detailed future projections.  Regional models and their higher 

resolution allow for better simulations of physical geographical features, and thus better weather 

predictions. These models, however, use an externally imposed additional freshwater flux into the 

northern North Atlantic, which as discussed in section 2.6.3, can cause excessive climatic drift.  

Greenhouse gas emissions were set at pre-industrial levels, the use of which is justified by the Couple 

Modelling Intercomparison Project (PCMDI, 2012) and its defined protocol. An additional 0.1 

Sverdrup (Sv – a unit of measure of volume transport, in relation to ocean currents) of freshwater is 

incorporated into the flux adjusted model, which is equivalent to 1/6 of the Greenland ice sheet 

melting over 100 years.   

 

Results show that there is a weakening of the THC strength from a mean of 15 Sv in the coupled 

control simulation, to 8 Sv in the flux perturbation run.  This decrease leads to a reduction of the 

maximum meridional heat transport, with a consequent cooling in the North Atlantic sector of more 

than 3°C, and thus significantly, for all of western and northern Europe.  It is predicted that there will 

be a larger fraction of snow in precipitation, more so with the regional model outcomes.  There is 

also enhanced snow cover over Europe under the sensitivity experiment, with most parts of Britain 

experiencing more than ten ‘snow days’ over a year, with a snow day defined as a day with more 

than 3cm water equivalent of snow.  In contrast, the control experiment shows Britain only receiving 

more than ten days of snow cover in areas of high altitude.  Jacob et al.’s (2005) model suggests a 
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weakening of the THC, which indirectly initiates a positive feedback loop; with an increase in albedo 

through more snow cover, it results in more of the sun’s energy being reflected thus leading to 

further cooling. 

 

The models developed by Jacob et al. (2005) were addressing the consequences of THC changes in a 

“current climate” setting, or those following a moderate meltwater discharge, and thus not based on 

enhanced greenhouse gas emissions as predicted for the future.  However, what they do highlight is 

the difference a regional model nested into a global model can make to climate predictions.  This 

kind of model creates the 25km climate change projections used in this research, instilling confidence 

in the outcomes. 

 

2.8.2 Concluding the Climate Models 

The uncertainty of interactions between the climate components within the models considered has 

led to a number of outcome predictions for the future.  Model uncertainty and differences between 

models leaves doubt about what may actually happen over the 21st century.   

 

A model which has been used in many climate prediction studies is the HadCM3, the model used to 

create the climate projections for UKCP09, the projections of which are used in this research.  It is a 

fully coupled three dimensional carbon-climate model, as used by Cox et al. (2000); the inclusion of 

the carbon-climate cycle, as exemplified, is important for future climate change due to the feedback 

effect this has on the climate system.  It also does not use flux adjustments which can distort the 

outcome.  Wood et al. (1998)  believe that the HadCM3 model has ‘reached a level of realism’, which 

adds validity to its use in the projections.  HadCM3 was also one of the models used by the IPCC, and 

it was also used in the Coupled Model Intercomparison Project (CMIP3), the biggest and most 

comprehensive international GCM experiment ever attempted.  HadCM3 was ranked highly in a 

current evaluation of climate models with observations (Reichler and Kim, 2008), and so it is believed 

to be one of the best models currently in use.   The next section is focused on the range of emission 

scenarios created, which drive the GCMs to produce various climate scenarios for the next 100 years. 

 

2.9 Climate Projections UKCP09 
The UK Climate Projections 2009 (UKCP09) provide climate data and facts, with the aim to help those 

who need to prepare and adapt in order to mitigate the likely impacts of climate change (UKCP09, 

2012d).  The information is intended to be suitable to support user decisions in the real world; 

methods for projections have therefore been rigorously tested.  Using a new methodology designed 
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by the Met Office Hadley Centre (MOHC), the UK’s official centre for climate change research, 

UKCP09 have produced the fifth generation of climate change information for the UK including 

probabilistic projections, utilising HadCM3.  As the term ‘projection’ implies, the climate of the future 

could be one of many possibilities (Lovejoy and Hannah, 2005), depending on the workings of the 

climate system.   

 

In comparison to UKCIP02, the previous climate projections, the UKCP09 projections are much more 

advanced with inclusion of sampling uncertainties of climate system processes in the GCM (Jenkins et 

al., 2009).  UKCP09 considers more feedbacks than previously, and methodically explores the 

uncertainties related to them.  The resolution of UKCIP02 only went as high as 50km, compared to 

UKCP09’s 25km grid resolution, reflecting greater accuracy of local climate feedbacks.   

 

2.9.1 Model Description 

HadCM3 is an AOGCM, which uses perturbed physics ensembles (PPE), discussed in section 2.9.1.1, 

to generate the projections.  Both atmospheric and oceanic processes were accounted for in the 

modelling, ‘providing a realistic representation of the climatological processes’ (UKCP09, 2012b).  The 

models are also quite advanced in that they consider feedbacks associated with the carbon cycle and 

the sulphur cycle, as well as some ocean transport processes.  As it is unlikely that there will be a 

drastic change in the Atlantic Ocean MOC this century, only the effects of a gradual weakening of the 

circulation over time are included in the UKCP09.  Variations in external factors like solar activity and 

volcanic eruptions cannot be predicted, and are not considered in the projections.  UKCP09’s models 

comprehensively sample key uncertainties systematically, in carbon cycle processes and 

downscaling, as well as internal climate variability and uncertainties in atmospheric and oceanic 

processes.   

 

Sampling uncertainty in processes affecting oceanic uptake of carbon are not performed in the 

UKCP09 models, which as discussed in section 2.7.1, is expected to increase over the 21st century 

(Cox et al., 2000).   Carbonaceous aerosols, non-aerosol atmospheric chemistry and methane cycle 

feedbacks are also omitted from the simulations, all of which would have an effect on the forcing of 

the climate (Murphy et al., 2009).  There are nonetheless limits to computational power, modelling 

capacity and current comprehension and all possible future outcomes may not be captured. 
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An assumption in UKCP09 (2012a) is that projections of future climate by certain models are deemed 

to be more reliable if they accurately simulate recent climate observations, at the global scale.  

Different weights are then placed on these variants accordingly when simulations are run.  

Consideration at the global scale is important as studies have shown UKCP09 (2012a) that ‘large scale 

processes dominate local responses to forcing’.  

 

2.9.1.1 Perturbed Physical Ensemble 

As mentioned in section 2.6.3 parameterisations are used to account for the unknown outplay of 

some climate system processes.  There are considerable uncertainties associated with many 

parameters, i.e. they are poorly constrained by observations. Parameters regulating principle 

physical and biogeochemical processes in the HadCM3 AOGCM can be adjusted accordingly to 

represent different plausible interactions that may occur in earth system processes (Murphy et al., 

2009).  Practice is therefore to run a set of simulations sampling each relevant parameter 

combination, giving different possible model variants.  This is phrased a Perturbed Physical Ensemble 

(PPE), which is the method adopted in the UKCP09 projections, with a climate change projection 

generated for each variant (Murphy et al., 2009).  These outcomes are then weighted using historical 

observations.  There are of course parameter errors in its representation of the real climate system.  

Exploration of the full range of variability of each model parameter is computationally not possible, 

but an evaluation of earth system modelling uncertainty and internal climate variability on feedbacks 

expected to have a considerable effect on climate change over the next century, is quantified 

through the use of a PPE (Murphy et al., 2007). 

 

Murphy et al. (2007) note that a Bayesian statistical framework underpins the ensemble simulations, 

whereby prior distributions for uncertain model parameters are approximated by experts based on 

their knowledge of the relevant physical processes.  For more information on the methodology for 

climate change projections using perturbed physics ensembles the reader is referred to the paper by 

Murphy et al. (2007). 

 

2.9.1.2 Multi-model Ensemble 

The UKCP09 projections incorporate projections from other GCMs, more specifically 12 of the GCMs 

used in the IPCC’s Fourth Assessment Report, to create a multi-model ensemble.  This allows the 

integration of structural error (the difference between the real world and the model projections) in 

the projections, giving a more inclusive range of uncertainties than the HadCM3 on its own could 



53 

 

provide.   As the UKCP09 (2012a) methodology states ‘It prevents the models from being too heavily 

biased by the way in which one model is structured’. 

2.9.1.3 Regional Climate Model 

Projections were downscaled to a 25km grid over land areas of the UK, using the regional climate 

model (RCM) HadRM3 to produce high resolution climate change projections (UKCP09, 2012c).  

RCMs take into account the smaller scale topographical features not detected by GCMs, and thus the 

local climate change is projected more realistically and at a scale more preferable for decision 

making.  The RCM is essentially nested into an AOGCM, which has a corresponding simulation with 

‘spatial scales skilfully resolved by the latter’ (NERC, 2011), known as the downscaling process.  As 

Denis et al. (2002) states “Nested RCMs have been shown to generate skilful fine-scale information in 

idealised predictability studies”, exemplifying their practicability for decision making. 

 

Uncertainty is introduced when downscaling projections, but this aims to be captured by the model 

from an ensemble of 11 different simulations of HadRM3 (NERC, 2011).  This is a similar process as 

performed for HadCM3 whereby parameters are varied to represent the different possible physical 

processes of the climate system.  Greater confidence can then be assigned to the method used to 

produce the climate change projections. 

 

2.10 Emission Scenarios and Climate Predictions for the Future 

2.10.1 What are Emission Scenarios? 

Emission scenarios are plausible representations of the potential future discharges to the 

atmosphere of substances (both natural and man-made) that affect the Earth’s radiation balance, 

such as greenhouse gases and aerosols (or aerosol precursor emissions like sulphur dioxide), 

(Nakicenovic et al., 2000; Moss et al., 2010).  When emission scenarios are developed in relation to 

climate change, they are not forecasts or predictions, but mirror the expert judgement attained 

through research done on socioeconomic (changes in population, GDP and energy use), 

environmental, and technological trends and developments (Moss et al., 2010).  These are the 

driving forces and they take into account emissions generated from energy, industry and land-use 

change.  Climate scenarios developed using emission scenarios portray likely future climate 

conditions, such as temperature and precipitation.  It is these climate projections which are used in 

this research. 
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2.10.2 The Special Report on Emission Scenarios  

The IPCC in 1992 created the first global emission scenarios - IS92, providing estimates for the whole 

range of greenhouse gases.  Since then, however, there has been a greater understanding of possible 

future greenhouse gas emissions and climate change, and a new set of emission scenarios now exist, 

published in 2000 in the Special Report on Emission Scenarios (SRES) (Nakicenovic et al., 2000).  The 

changes in understanding over the original scenarios relate to factors considering the carbon 

intensity of the energy supply, the income gap between developed and developing countries, and 

sulphur emissions: 

“They include improved emission baselines and latest information on economic restructuring 
throughout the world, examine different rates and trends in technological change and expand the 
range of different economic-development pathways, including narrowing of the income gap between 
developed and developing countries” (Nakicenovic et al., 2000).   
 
In order to create the emission scenarios an extensive literature assessment was undertaken, various 

modelling approaches were utilised, and an ‘open process’ was conducted, whereby many groups 

and individuals were requested to participate and provide feedback.  This can be seen as a very 

subjective approach, albeit a much rationalised one, constrained by scientific facts. 

 

2.10.2.1 The SRES Storylines 

The projections of the SRES incorporate a ‘storyline’ or a narrative of the future into their scenarios, 

facilitating their interpretation, thus making them widely popular (Nakicenovic et al., 2000).  The four 

emission scenario families developed under the IPCC SRES are A1, A2, B1 and B2 (see figure 2.11): in 

all there are 40 SRES scenarios branching from the initial four qualitative storylines.  These initial four 

scenarios are known as ‘marker scenarios’; they are of equal likelihood as any other scenarios, but 

the SRES writing team believe they represent a particular storyline.  There are 6 scenarios groups 

drawn from the four families; one group each in A2, B1 and B2, and three groups in A1 each 

reflecting alternative developments of energy technologies. The wide range of scenarios produced 

consider all possible shares of the energy mix, with high dependency on fossil fuels, oil and gas or 

coal, to those governed by non-fossils.  A1 and A2 are more market-oriented, as opposed to B1 and 

B2 being more environmentally aligned.  A1 and B1 place more focus on global solutions, whereas A2 

and B2 are more regionally oriented (Murphy et al., 2009). 
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Figure 2.11 The IPCC SRES marker scenario storylines (based on (Nakicenovic et al., 2000) 

 

The scenarios are ‘alternative conceptual futures’ (Murphy et al., 2009).  A probability of occurrence 

cannot be attached to the different emission scenarios, but neither are they to be assumed as 

equally probable.  The scenarios do not account for any future political action aimed at reducing 

emissions for climate change mitigation, i.e. the scenarios do not assume implementation of the 

UNFCCC or the emission targets of the Kyoto Protocol (Nakicenovic et al., 2000).  However, non 

climate change policies relating to development, resource use and pollution control, may influence 

GHG emission drivers at varying degrees, and this is portrayed to some extent in the scenarios. 

 

A new generation of scenarios for climate change research and assessment have been developed by 

Moss et al. (2010).  Although these reflect new economic data, information about emerging 

technologies, and observations of environmental factors like land use and land cover change, no 

climate scenarios have been developed using these emission scenarios, and they are therefore not 

considered any further in this present research.  At the time the literature review was undertaken, 

the SRES were therefore the best scenarios to use. 

 

 

 

IPCC SRES 

A1 Storyline 

- Very rapid economic 
growth 

- Global population that 
peaks mid-century 

- New technologies. 

 

 

 

 

A1F1  

Fossil fuel 
intensive  

A1B  

Balanced: 

various energy 
sources   

A1T 
Predominantly 
non-fossil fuel 

sources 

A2 Storyline 

- Heterogeneous world 
based on the continued 
separation and 
preservation of local 
identities 

- Continuous population 
growth 

- Regionally orientated 
economic development 

- Slow technological 
change. 

B1 Storyline 

- Similar population 
growth to A1 

- Rapid changes in 
economic structures 
(service and information 
economy) 

- Introduction of clean 
technology and material 
intensity reduction. 

- Global solutions re 
sustainability. 

B2 Storyline 

- Local solutions re 
sustainability 

- Slow but continuous 
increase in population 
growth  

- Intermediate economic 
development 

- Slow, but more diverse 
technological change 
than B1. 
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2.10.2.2 The SRES Storylines: CO2 and Temperature Projections 

Figure 2.12 shows the variation in CO2 emissions between the 4 main IPCC SRES including the 3 that 

constitute the A1 storyline.  It can be seen that the B1 storyline results in the lowest amount of CO2 

emissions over the 21st century, in comparison to the A1F1 and A2 storylines emitting the most CO2.  

This reflects how the storylines will develop over the next century, with the scenarios increasingly 

diverging after the 2040s as the differing scenario narratives proceed.   

 

 

Figure 2.12 Total global annual CO2 emissions from all sources (energy, industry and land-use change) 
from 1990 to 2100 (gigatonnes of carbon (GtC/yr) for the four IPCC marker scenarios and six scenario 

groups. (a) A1 (A1F1, A1B and A1T); (b) A2; (c) B1 and (d) B2. (Nakicenovic et al., 2000)  

The width of the colour band represents the range for that scenario family, encompassing all 40 scenarios between them. 

 

Based on the varying CO2 emissions over the 21st century, figure 2.13 shows the range of global 

surface warming (relative to 1980-1999) for the SRES.  With the A1F1 relying heavily on fossil fuels 

for energy supply it results it the climate warming being the greatest, as opposed to the B1 scenario 

with the lowest expected warming due to the high uptake of low carbon technologies in this 

storyline.  All scenarios will be subject to a degree of increased warming over the next few decades 

as a result of past CO2 emissions and the inertia of the climate system.  Across all 6 scenarios, the 

range of global mean temperature change between 2090 and 2099, relative to 1980-1999, is 1.1 to 

6.4°C (IPCC, 2007).  Warming over land will additionally be larger than the global mean, particularly 

over the high latitudes of the northern hemisphere.  Globally averaged precipitation is expected to 

increase, as well as evaporation rates.  Snow cover and sea-ice extent are projected to decrease. 
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Figure 2.13 Global averages of surface warming (relative to 1980-1999) for the emission scenarios 

(SRES), shown as continuations of the 20th century simulations (Solomon et al., 2007).  
The Grey bars indicate the best estimate and likely range for the six SRES scenarios 

 

2.11 UKCP09 Usage of the IPCC SRES 
UKCP09 use the SRES to drive their GCMs leading to the generation of climate scenarios.  They are 

known to be the most advanced climate scenarios in the world (UKCP09, 2010c).  UKCP09 have 

developed climate scenarios for a number of variables under 3 of the IPCC’s special report on 

emission scenarios, and have been labelled according to relative greenhouse gas emission levels: 

high (A1F1), medium (A1B) and low (B1) to show how the different emission pathways will affect 

future climates.  

 

The underlying figures for the 3 IPCC scenarios used in UKCP09 are shown in tables 2.1, 2.2 and 2.3.  

The full range is given in Nakicenovic et al. (2000).  These tables show the values for the illustrative 

scenarios.  
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Table 2.1 Main primary driving forces in 1990, 2020, 2050 and 2100 for the 3 emission scenarios used 
in UKCP09 (Source: Nakicenovic et al., 2000) 

Table 2.2 Main secondary scenario driving forces in 1990, 2020, 2050 and 2100 for the 3 emission 
scenarios used in UKCP09 (Source: Nakicenovic et al., 2000) 
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Table 2.3 GHG, SO2 and ozone precursor emissionsa in 1990, 2020, 2050, and 2100, and cumulative 
carbon dioxide emissions to 2100 for the 3 emission scenarios used in UKCP09 (Source: Nakicenovic 
et al., 2000) 

 

2.11.1 Projected Climate Changes  

This section includes the projected temperature and precipitation changes under a medium emission 

scenario (A1B) in 2050 for the UK, based on change relative to a 1961–1990 baseline.  The reasoning 

behind this emission scenario selection can be found in section 5.3.3.  They are presented in maps of 

the UK with colour bars showing the change, with all maps being taken from UK Climate Projections 

2009 data.  The 10%, 50% and 90% probability levels for the future climate change are given. 

 

Figure 2.14a shows that there will be a 1-2°C increase in winter mean temperature in the UK, under 

the central estimate, with possible increases of 4°C at the 90% probability level showing.  Figure 
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2.14b shows that there will be an overall 2°C increase in summer mean temperature across the UK 

under the central estimate, with it very unlikely being greater than 3-4°C. 

 

a)  

b)  

Figure 2.14 change in a) winter mean temperature (°C) for the 2050s under a medium emission 

scenario, and b) summer mean temperature (°C) (UKCP09, 2010c) 

 

Figure 2.15a shows that there will mainly be a 20% increase in winter mean precipitation in most 

parts of the UK under the 50% probability level, with a 10% increase in more northerly parts. At the 

90% probability level it is very unlikely that the increase will be greater than 30% in southern parts of 

the UK, with between a 10% and 20% increase in precipitation for the rest of the UK.  Figure 2.15b 
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shows mainly a 10% decrease in summer mean precipitation under a central estimate for the UK, 

with the 90% probability level showing generally a 10% increase in precipitation across the UK.   

 

a)  

b)  

Figure 2.15 change in a) winter mean precipitation (%) for the 2050s under a medium emission 

scenario, and b) summer mean precipitation (%) (UKCP09, 2010c) 

 

Figure 2.16 shows the change in summer mean temperature at the 10%, 50% and 90% probability 

levels under the low, medium and high emission scenarios to highlight the range in the resulting 

projections.  Subtle temperature changes can have an effect on vegetation, as discussed in chapter 4, 

and so considering the possible variations for future projections of climate change is useful.  

Monitoring of the climate over the years to come will be necessary to observe which projection the 

UK is leaning towards. 
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Figure 2.16 The change in summer mean temperature (°C) in the 2050s, over the 3 emission 
scenarios (UKCP09, 2010c). 

 

2.12 Conclusion 
Evidence has shown that climate change is having an effect on the Earth, with anthropogenic sources 

likely to be responsible, albeit in part, for the changes.  Any mitigation measures implemented 

through international agreements will not be felt for a period of time, due to the inertia of the 

climate system and its response to past CO2 emissions (Schneider, 1981).  The problem has, however, 

been recognised and governments are seeking ways to limit the potential impact of climate change. 

Although the climate system is made up of complex interactions between the atmosphere, 

the oceans, ice, land and the biosphere, it has been possible, through advancement of technology, 

and improved understanding of the various systems, to create global climate models for predicting 

future climate scenarios with relatively high confidence.  The inclusion of the carbon cycle in the 
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models, including HadCM3, has been of particular importance, due to its effect on the climate system 

(Cox et al., 2000).  Models considering this cycle, project that the global warming effect will be 

enhanced in comparison to other models, due to the land becoming a carbon source half way 

through the 21st century.  Climate warming could potentially weaken one of the main ocean 

circulation systems and in turn this could reverse the climate warming in some parts of the world 

(Broecker, 1987), illustrating the complex nature of the climate system and the feedback processes 

that operate within it.  There are evidently discrepancies between the models created, but the 

majority of models project a climate warming over Europe, including the UK.  The UKCP09 scenarios 

used throughout this research, the most up-to-date climate projections, indicate a climate warming 

in the UK with varying precipitation rates throughout the year.   

The degree of climate change is not known, as this all depends on future emission scenarios 

which in turn depend on such variables as demographics and the development of clean technologies 

(Nakicenovic et al., 2000), but what is certain is the effect climate change has already had on the 

environment. Many of the planets’ species are responding to the changes at varying rates, with 

certain ecosystems of the world likely to suffer more than others, as is discussed in the next chapter.  

The biodiversity of the planet must be protected due to the important services it provides. 
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3. The UK Planning System and Biodiversity  

3.1 Introduction 
Over the 20th century recognition of the need to protect the environment became evident.  In the UK 

this has been achieved through the efforts of conservation movements and advances within the 

planning system, which over time has placed more obligations regarding the effects on the 

environment on infrastructure developers.  UK policy has been heavily influenced by legislation 

developed at the EU level, with the EU being at the forefront in terms of commitment to protecting 

the environment (JNCC, 2011).  In times when the need for economic prosperity has prevailed, and 

through careless actions, impacts to the environment have been significant, and in some cases 

damage has been irreversible, leaving the global environment in a poor state of repair (MEA, 2005). 

   

Only near the end of the 20th century did the topic of biodiversity become an international concern, 

with the consequence that regulations pertaining to the sustainable use of biological resources 

across many nations have been tightened (UN, 1992a).  Biodiversity awareness has increased, and a 

more sustainable ethos is now practised, with the environment given equal weight along with the 

economy and social factors when planning decisions are made.  Sustainability needs to prevail and 

the environment preserved, so future generations can live in a world as previous generations have. 

 

3.2 An Overview of Environmental Protection and Nature Conservation 
Environmental protection measures through public control were developed as a result of the 

Industrial Revolution and the impacts to the land, water and air that were associated with this period 

of time.  In relation to town planning provisions, the non-obligatory Housing, Town Planning Act 1909 

was created in response to public health pressures and quality of life, which was followed by the 

Town and Country Planning Act (TCPA) 1947  (Bell and McGillivray, 2008).  This act gave additional 

power to local authorities through the mandatory countrywide system of town and country 

development control.  Although there was some consideration for the environment in these laws, 

less so in the early stages, voluntary organisations initially made sure nature was conserved as much 

as possible. 

 

Recognition of the need for environmental protection, through the likes of the Wildlife Trusts 

(formally the Society for the Promotion of Nature Reserves), led to the creation of a legislative 

framework for nature reserves through the 1949 National Parks and Access to Countryside Act (Bell 

and McGillivray, 2008).  Subsequently, a series of protected sites across the nation were established 

under the Act, including National Parks, National Nature Reserves (NNRs) and Sites of Special 
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Scientific Interest (SSSIs), which built upon the casual approach formally adopted through private 

land acquisition. 

 

Following the 1970s and 80s boom of agriculture and development, many sensitive sites were 

devastated despite efforts from The Wildlife Trusts to control this.  Funding was consequently sought 

to ‘save our natural heritage for future generations’ (The Wildlife Trusts, 2011).  After campaigning 

for better habitat protection, in 1981 the Government granted increased protection to all SSSIs 

through Great Britain’s first comprehensive legislation for wildlife – the Wildlife and Countryside Act 

(WCA).  The deciding rules for protecting sites and species are now actioned through EC directives 

and international conventions (Bell & McGillivray, 2008).  Amendments have strengthened the 

original laws passed in 1949, with the emphasis being on safeguarding designated sites through the 

legal process, rather than the previous voluntary approach (Bell and McGillivray, 2008).  The Joint 

Nature Conservation Committee (JNCC) is a statutory advisor to the UK Government and the 

devolved administrations, with the aim of contributing to UK-wide and international nature 

conservation. 

 

3.3 The UK Planning System 

3.3.1 The Development Control Process 

Since the TCPA 1947 Act  development proposals are permitted through a case-by-case review 

system in Britain (Cullingworth and Nadin, 2002), with most developments requiring planning 

permission from the local planning authority before they can proceed.  This is known as the 

development control process, and specialist environmental regulatory agencies are normally 

involved.  

The definition of development is found in TCPA 1990, s.55(1) –  

‘Development...means the carrying out of buildings, engineering, mining or other operations in, on, 
over or under land, or the making of any material change in the use of any buildings or other land’ 
(England and Wales Town and Country Planning Act, 1990). 
 

Development plans are non-binding documents produced by Local Planning Authorities (LPAs) for 

their respective areas and influence development in the area (Cullingworth and Nadin, 2002).  The 

1947 Act defined a development plan as ‘a plan indicating the manner in which a local planning 

authority propose that land in their area should be used’.  Environmental protection is considered in 

these plans in line with central government policy guidance, i.e. which is currently enforced through 

the National Planning Policy Framework (NPPF) (DCLG, 2012).  The development plan, the wider 

government policies and any other material considerations are taken into account when making a 
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decision on planning applications.  Even when planning permission is granted, the local planning 

authorities can still impose some form of control over the development activities through setting 

conditions and entering into agreements (Cullingworth and Nadin, 2002).  Planning policy in relation 

to biodiversity is discussed in section 3.9. 

 

The recognition of the need to conserve nature in the planning system has improved over the last 

few decades, but the clash between economic development and protecting our green areas has 

caused much controversy of late, and a suitable compromise is always being sought.  Monetary 

values are now being placed on the environment as a way of making people realise its value through 

the services it provides, see for example TEEB (2012), but this can only follow after a full investigation 

of potential planting regimes.   

 

3.3.2 The Conservation of Nature in the Planning system. 

 
3.3.2.1 Impact of EU on UK Planning for the Environment 

Protection of the environment at the UK level has been largely influenced by the fundamental 

environmental policy and legislation developed at the EU level.  Approximately 80% of all UK 

environmental legislation is derived from EU law, with excess of over 200 legal acts in force 

pertaining to a range of environmental factors (JNCC, 2011).  The EU is a major source of 

environmental law, and threatened habitats and species are a key consideration for biodiversity 

conservation.  Targets for their protection are in theory to be attained through the legislative 

protection they receive, with the EU and member states having joint legal capability and 

accountability in creating and actioning environmental legislation. 

 

3.3.2.2 Protection of Species 

An understanding of the protection awarded to species and habitats is needed for this research, as 

identifying species for habitat creation can be limited by certain legislation. 

 

There are two EC Directives influential on UK conservation law, and which will continue to be so;  

 Directive 79/409/EC on the Conservation of Wild Birds (the 1979 Wild Birds Directive), and 

 Directive 92/43/EC on the conservation of Natural Habitats and of Wild Fauna and Flora (the 

1992 Habitats Directive).   

The Wildlife and Countryside Act (WCA) 1981 implements these EU Directives, protecting the Special 

Areas of Conservation (SACs) and Special Protection Areas (SPAs) in the UK which contribute to the 

EU Natura 2000 network (JNCC, 2010).   
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Certain species are awarded individual protection through the WCA 1981, and laws dealing with 

relevant EC directives.  This is normally due to their vulnerable conservation status; a species may be 

endangered or suffering decline in population size or range, either within the UK or the European 

Union.  Part 1 of the WCA 1981 (sch 5 and 8) and the Habitats Regulations are the two main parts of 

legislation protecting wild species of flora and fauna (ODPM, 2005a).   

 

3.3.2.3 Protection against Invasive Species 

Given that climate change may result in the recommendation for non-native species, legalities 

around non-natives may be very significant.  Invasion by non-native species is a global issue and one 

of the major threats to biodiversity (Sala et al., 2000).  The protection of communities against 

invasive non-native species, deliberately introduced, is administered through legal measures dealt 

within Section 14 and Schedule 9 of the WCA 1981. Section 14(2) of the Act prohibits the planting or 

spreading of certain invasive non-native plants into the wild in Great Britain; it is an offence under 

section 14(2) to “plant or otherwise cause to grow in the wild” any plants listed in Part II of Schedule 

9 to the Act (which includes some established invasive non-native plants).  Some, however, argue 

that the list is only limited to a few high risk species (Dehnen-Schmutz, 2011). 

 

Although WCA 1981 is the principal legislation which regulates the release of non-native species, 

there are also international obligations to address problems posed by non-natives.  The main 

international conservation agreement is the Convention on Biological Diversity (CBD), with 184 

contracting parties (its role is discussed later in section 3.4.2).  Under Article 8h, each contracting 

party is under obligation to 

 “as far as possible and as appropriate prevent the introduction of, control or eradicate those alien 
species which threaten ecosystems, habitats or species.”  (UN, 1992a) 
 

In relation to plants, the UK Government is also obliged under article 22 of the Habitats Directive to 

regulate the introduction of non-native species so as not to prejudice natural habitats or wild fauna 

and flora, with prohibition of introductions where deemed necessary.  This is actioned through 

section 14 of the WCA 1981 in GB. 

 

The EC Wildlife Trade Regulations regulate the import and sale of species which pose an ecological 

threat to native species, and the EC Plant Health Directive aims to safeguard native species from 

imported organisms, such as pests, parasites and diseases (Defra, 2003).  There are also restrictions 

on the use of specific imported provenances of regulated tree species, as enforced by the EC Forest 

Reproductive Material Directive, to avoid the risk posed by non-native genotypes. 
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3.3.2.4 Environmental Assessment 

There is an anticipatory element in the planning system, whereby a planning decision on certain 

projects cannot be made unless an environmental impact assessment (EIA) has been carried out 

under Environmental Assessment regulations.  These identify any potential harmful environmental 

impacts that may arise as result of the development, including those to the ecology of the site or the 

surrounding landscape.  Environmental effects are typically a material consideration of the planning 

process before permission is granted or refused (Bell and McGillivray, 2008), but there are certain 

developments which require a more rigorous assessment before construction commences, e.g. 

power stations.  The underlying philosophy is that prevention is better than cure, with any 

environmental effects being taken into account as early as possible when projects are being planned.  

 

3.4 Sustainable Development 
 Sustainable Development is a relatively recent term, but its principles have been around a lot longer.  

It was first formally used by the World Commission on Environment and Development (WCED) (the 

Brundtland Commission) in its report, Our Common Future, in 1987 (WCED, 1987), where it was 

defined as: 

 
“Development that meets the needs of the present without compromising the ability of future 
generations to meet their own needs” 
 
 
Although slightly ambiguous, the central point of the definition is clear, today’s generation must 

progress, whether this be economically, environmentally or socially, by using resources efficiently 

and with caution so that future generations can live as previous generations have or better. The 

concept of sustainable development ran parallel with the period of time when nature conservation 

was becoming more prominent and recognised in policy, shaping the world as it is known today.  One 

of the outcomes of the growing recognition of the need for sustainability was the Rio Conference on 

environment and development. 

 

The UN conference on Environment and Development held in Rio in 1992 was a significant milestone 

for sustainable development (UN, 1997).  The Summit achieved a great deal, with agreements, listed 

in table 3.1, being signed by many governments including the UK.   
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Table 3.1 Agreements signed at the Rio Earth Summit (Source: UN, 1997) 

The creation of the Convention on Biological Diversity (CBD) at the Rio Earth Summit positioned 

biodiversity at an international scale.  Its main objective is the conservation of biological diversity, 

and the sustainable use of its components, including genetic resources, habitats and ecosystems (UN, 

1992a).  The CBD treaty was the first of its kind to provide a legal framework for the protection of 

biological diversity.  Those who signed the agreement, initially 159 governments including the UK, 

were required to produce and put into effect national strategies and action plans to address the 

conservation of biodiversity in their communities, as well as enhancing it where possible (JNCC, 

2012).   

 

3.5 Biodiversity Action Plans 
As an international policy commitment, under Article 6 of the 1992 CBD, the first UK Biodiversity 

Action Plan (BAP) was produced in 1994.  BAPs marked an important stage in national conservation 

policy since the 1981 Act (Bell and McGillivray, 2008), with the overall goal being: 

 “To conserve and enhance biological diversity within the UK and to contribute to the conservation of 
global biodiversity through all appropriate mechanisms” (HMSO, 1994) 
 

 The document detailed the process through which biological resources would be conserved and 

enhanced across the UK, including identification of priority species and habitats, the setting of 

targets for their recovery and how the targets would be met. The UK policy that followed was 

steered by this fundamental document, and many habitat and species action plans were 

subsequently produced, listing those species that were most threatened and requiring conservation.  

A review of these lists was carried out in 2007 in the Species and Habitat Review report: a monitoring 

and review process allows changes to be made to species inclusion, targets and actions as and when 

necessary; there are currently plans for 1,159 species of plants and animals, and 65 habitats (JNCC, 

2013). Awareness, monitoring of key species and integration between public sector agencies have 

been the main intentions of the scheme.  The UK BAP was superseded by the ‘UK Post-2010 

Biodiversity Framework’, which was published in July 2012 (JNCC and Defra, 2012), 
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Practitioners use BAP species lists for implementing biodiversity considerations on a development 

site, as shown in the questionnaire analysis in chapter 6.  The adoption of the UK BAP also resulted in 

the development of Local Biodiversity Action Plans (LBAPs) being put into practice throughout the UK 

to conserve and enhance biodiversity at the local level.   

 

3.6 International Targets for Biodiversity 
The creation of biodiversity targets at the EU and global level is addressed, in part, through the array 

of legislative measures which have been discussed.  In June 2001, the target to halt the rate of 

biodiversity loss by 2010 was agreed at the EU Summit in Gothenburg, Sweden (IUCN, Unknown).   

Even before the deadline, however, The Millennium Ecosystem Assessment (MEA) reported that an 

exceptional effort would have been required if the 2010 biodiversity target was to be met in full 

(MEA, 2005).  One of the MEA findings was that over the last 50 years, humans have exploited and 

altered ecosystems at an unprecedented rate, mainly to meet ever increasing demands for food, 

fresh water, timber, fibre and fuel.  After failing to meet the 2010 target, the UN Aichi targets were 

agreed at the 10th Conference of the Parties to the CBD in Nagoya at the end of 2010 (CBD, 2011). 

 

3.7 General Biodiversity Duty 
There is now a general biodiversity duty in England and Wales for public bodies to consider the 

impact of their decisions on nature conservation (Bell and McGillivray, 2008), both in relation to 

certain designated sites (where the ruling is to further and enhance conservation), and across the 

wider countryside, through the more recent duty to have regard to conserving biodiversity. In 

Scotland, the duty only applies to protected sites. 

 

The duty is set out in Section 40 of the NERC Act 2006, and states that: 

“Every public authority must, in exercising its functions, have regard, so far as is consistent with the 
proper exercise of those functions, to the purpose of conserving biodiversity” 
 

Public bodies include local authorities who make the majority of decisions on planning applications; 

biodiversity should therefore benefit from this duty.  Local authorities also carry out many other 

functions, with the aim of conserving and promoting biodiversity across a range of fields, and with 

the intention of raising the profile of biodiversity.  The ultimate goal is to facilitate the practice of 

biodiversity conservation into all relevant policies and decisions made by public authorities.  The 

predominate tool, which local authorities use to guide biodiversity measures, is the Biodiversity 

Action Plan (Defra, 2010).  The local biodiversity indicator NI 197, essentially a performance 

indicator, has also had a role in the way local authorities consider biodiversity and protect it, as they 

had a statutory duty to report to central Government on the indicator.  “Biodiversity is ultimately lost 
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or conserved at the local level” (Natural England, No date, a), which along with the creation of local 

BAPs, illustrates the importance that is placed on conserving biodiversity locally. 

 

3.8 The State of Nature in the UK and the Restorative Approach 

3.8.1 The Restorative Approach 

The last two decades have been fundamental in reconstructing the way the world views and values 

the environment.  Even though the conservation movement accomplished great gains for the 

environment, what was achieved was not enough to halt losses and reverse many years of damage, 

mainly because of the lack of legislation and resources needed.  The building blocks have been 

present for many years, and finally a shift has now occurred towards a restorative agenda rather 

than a protectionist one (Bell and McGillivray, 2008).  Landscape scale conservation initiatives are 

being implemented both by wildlife NGOs and the Government, including the likes of Nature 

Improvement Areas (NIAs), and The Wildlife Trusts’ ‘living landscapes’, of which there are 112 

schemes across the UK (The Wildlife Trusts, 2009).  These schemes are a solution to the effects of 

climate change on biodiversity and the intensity of habitat fragmentation, discussed in chapter 4, as 

it means isolated pockets of wildlife can spread and flourish from secluded areas.   

 

The Making Space for Nature report (Lawton et al., 2010), exemplified how England’s collection of 

wildlife sites do not provide the ecological network system that is needed to ensure England’s 

biodiversity can cope with the challenges of today and the future.  The fragmentation of the 

landscape by human activities is largely to blame for this, with significant declines in some species 

groups through land use change and consequent habitat loss, as discussed in section 4.6.  Four words 

in the report sum up the approach needed to rebuild biodiversity: more, bigger, better, joined 

(Lawton et al., 2010).  This is an approach which can continue to effectively provide the services 

society depends on it for, as well as allowing species to adapt better to change - most importantly to 

climate change.  The Lawton report was fundamental in making the Government aware of the action 

needed; with added weight from the Wildlife Trusts, as well as being endorsed in the Biodiversity 

2020 strategy for England, it influenced the creation and outcomes of the National Environment 

White Paper (NEWP). 

3.8.2 The Natural Environment White Paper of 2011 

The Natural Choice (HM Government, 2011) was the first white paper on the natural environment in 

20 years.  The three themes of the NEWP are: protecting and improving the natural environment, 

growing a green economy, and reconnecting people and nature (HM Government, 2011). It is 

acknowledged that the natural environment supports economic growth, and that the two are 

‘mutually dependant’.  This is important and positive to note, as often natural capita can go 
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unnoticed, when it actually provides many of the services needed for growth and regeneration.  The 

NEWP is therefore ambitious in its aims, and it is yet another positive step in the right direction for 

the level of protection that should be awarded to the natural environment and the services it 

provides. 

3.9 Planning Policy Frameworks  
The National Planning Policy Framework (NPPF) is the current framework for land use planning, 

reflecting the governments’ aims and objectives for the planning system and what to deliver on, and 

is to be used by planning authorities in creating their local plans. This is discussed more in section 

3.9.2.  

3.9.1 Planning Policy Statement 9 

Before the NPPF, a principal document used for guidance in relation to protecting biodiversity 

through the planning system was Planning Policy Statement 9: Biodiversity and Geological 

Conservation PPS9 (ODPM, 2005b), published by the then English Nature.  It provided the prospect 

that planning policies and decisions would seek not just to conserve, but to enhance biodiversity, and 

it exemplified the government’s commitment to sustainable development.  PPS9 emphasised that 

when a planning application is decided on, the biodiversity value of a site, and the importance of the 

site at the country-wide and worldwide level, are most definitely material considerations.  It also 

implied that if developments cause irrevocable damage that cannot be avoided, mitigated or 

compensated for, then the development should not go ahead.   

 

PPS9, along with many others, is effectively void after the publication of the NPPF, and although the 

NPPF builds on PPS9 and applies similar principles, it is thought that the policies of the NPPF do not 

replace those of PPS9 sufficiently (Wilson and Simpson, 2012). 

 

3.9.2 National Planning Policy Framework (NPPF) 

The NPPF was published in 2012.  It was developed with a view to streamlining the planning system 

and making planning approval processes simpler and quicker.  It sets out the Government’s planning 

policies for England and how they should be applied.  Local planning authorities and decision makers 

must take the NPPF into account when preparing local and neighbourhood plans, and it should be a 

material consideration when deciding on planning applications (para 2 of NPPF).   

 

3.9.2.1 Sustainable Development  

A presumption in favour of sustainable development is the basis for every local plan, with ‘the 

purpose of the planning system being to contribute to the achievement of sustainable development’ 

(para 6) in both plan-making and decision-taking.  The NPPF makes reference to all three ‘pillars’ of 
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sustainable development –environmental, economic and social (DCLG, 2012) - being incorporated.  

Paragraph 8 states that these three roles are ‘mutually dependant’ on each other, and therefore 

should not be viewed in isolation.  Certain phrases throughout the NPPF, however, can be seen as 

being contradictory to this statement; local plans should still ‘plan positively for development’ (Para 

157), ‘decision takers at every level should seek to approve applications for sustainable development 

where possible’ (Para 187) (Wilson and Simpson, 2012). Para 9, nonetheless, does state that ‘moving 

from a no net loss of bio-diversity to achieving net gains for nature’ (a NEWP target) as a way of 

pursuing sustainable development, in relation to seeking positive improvements in the quality of the 

built, natural and historic environment.     

 

A core planning principle of the NPPF in relation to biodiversity is that “Planning should contribute to 

conserving and enhancing the natural environment and reducing pollution” (Para 17, sub-para. 7).  

Local plans, in relation to biodiversity and climate change should (DCLG, 2012): 

 consider the long term effects of climate change, including factors such as changes to 

biodiversity and landscape (para 99) 

 deliver on climate change mitigation and adaption, conservation and enhancement of the 

natural environment (para 156) 

 aim to establish ‘coherent ecological networks that are more resilient to current and future 

pressures’ 

 

3.9.2.2 Re-using Land 

A core planning principle of the NPPF (para.17) is to ‘encourage the effective use of land by reusing 

land that has been previously developed (brownfield land), provided that it is not of high 

environmental value’.  This last point is of particular importance, as it brought up as a recurring 

concern in the questionnaire analysis (chapter 6).  Brownfield land has been noted for its sometimes 

high biodiversity value (mentioned also in NPPF para 111), but by using brownfield sites it reflects an 

understanding and acceptance of the need to use resources effectively and sustainably.  The policy 

has however changed slightly since 1995, when it was a ‘brownfield first’ policy, whereas now it can 

be inferred that other sites, brownfield or greenfield, can be sought if brownfield sites are of high 

biodiversity value.  With the population for the UK projected to increase from 62.3 million in 2010 to 

73.2 million by 2035 (ONS, 2012), the effective use of land is fundamental, especially with other 

competition for space, e.g. food production, energy crop growth and renewable energy 

infrastructure.  If it is not done correctly and without caution, there will be more habitat 

fragmentation across the landscape. 
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3.9.2.3 Incorporating Biodiversity in and around Developments 

With many more housing developments needed across the UK, and the Government encouraging the 

idea of incorporating biodiversity in and around developments when the opportunity arises (NPPF 

para 118), consideration must be given to how this biodiversity element can be incorporated.  

Creation of biodiversity elements within a development should be compulsory, as this would ensure 

a continuation of habitats across the landscape, rather than just ‘blocks of concrete’ hindering 

species movement.   

 

3.9.2.4 Landscape Scale and Priority Species 

The ministerial forward mentions that species that have become isolated can be reconnected 

through the agendas of the NPPF.  Reference to BAP species is also found in para 117in that planning 

policies should ‘promote the preservation, restoration and re-creation of priority habitats, ecological 

networks and the protection and recovery of priority species populations, linked to national and local 

targets’, thereby relating back to fulfil the requirement of section 41 under the NERC Act.  This 

wording however is restricted to priority species, as oppose to protecting biodiversity in general (e.g. 

common or locally rare species), which was a consideration of the now redundant PPS9 (Wilson and 

Simpson, 2012).  It is inferred that special habitats, e.g. ancient woodland, or designated sites will be 

under protection, but other areas of high biodiversity with no designation may not fair so well.   

 

3.9.2.5 Concluding the NPPF 

Through the NPPF it is now a requirement for local authorities to consider all pillars of sustainable 

development in planning and decision making.  The NPPF sets out to not just protect biodiversity, but 

also to improve it, which is a step in the right direction for the planning world.  There is also an 

emphasis on gains for biodiversity through the planning system, and this would put the country on 

track for meeting biodiversity targets.  There is also encouragement for local authorities to plan for 

the development of ecologically coherent networks, which is essential for habitat continuation in a 

currently very fragmented landscape, echoing the thoughts of the Lawton review. There are doubts, 

however, as to whether the NPPF will deliver on its biodiversity aims, as even though sustainable 

development is the basis for every plan, the main objective of the NPPF is to streamline the 

development process and plan positively for growth, which may come at the expense of the 

environment.  Para 19 states ‘significant weight should be placed on the need to support economic 

growth through the planning system’, which may result in negative consequences for the 

environment, as it can be interpreted that the economic pillar has more prominence over the other 

pillars of sustainable development. 
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3.10 Developers Obligation to Biodiversity 
Through the environmental legislation discussed in this chapter developers are obliged to consider 

their impacts on the environment and mitigate or compensate for any harm as a result of their 

development.  If a LPAs local plan has certain biodiversity elements that it wants to achieve for their 

area, or to contribute to meeting biodiversity targets, which the government specify in the NPPF, 

then the developer should include such provisions in their applications.  Since the incorporation of 

biodiversity into developments is a consideration of the NPPF, if a developer is proposing an 

extensive development it will be in their best interests to do so.  Typically, large development sites, 

e.g. for housing, do incorporate biodiversity and green spaces into their schemes, with the intention 

to increase the attractiveness of their development, giving residents access to nature. 

 

A study by Barber (2011) found that once developers have provided biodiversity enhancements in 

response to the regulatory system, they are more inclined to carry out the same practice on 

subsequent schemes, even in the absence of regulatory requirements.  By incorporating biodiversity, 

developers can also encounter benefits such as improved company image, which may bring in more 

custom and potential commercial benefits if this is advertised.  In a study by Calow (2009) it was 

found that some businesses use a sympathetic working approach to biodiversity, so as to avoid 

breaching environmental legislation which often entails hefty fines. 

 

BREEAM is a global environmental assessment method for sustainable buildings (BRE, No date), 

which is widely used by practitioners to demonstrate their environmental awareness, - although it is 

voluntary.  Ecology is an aspect of the method, and developers who use BREEAM may implement 

biodiversity measures on site which go above and beyond that required, illustrating how biodiversity 

is now widely acknowledged as an important service, which delivers on sustainable development and 

much more. 

 

3.11 Achievements and Future Challenges 
The plethora of environmental based documents, reports and policies published over the last decade 

or so, illustrates the recognition that is now being given to biodiversity and the natural environment 

in planning and policy, which has come a long way since the 1949 TCPA.  It is now a “factor to weigh 

in the balance when considering policy everywhere” (Bell & McGillivray, 2008), and environmental 

objectives are now more integrated into the planning process.  It is a routine material consideration 

in land-use planning decisions, with both planners and developers understanding the benefits 

biodiversity considerations can bring.  This is either through grants or financial incentives to farmers, 

the need for public bodies to carry out impact assessments, or a requirement to fulfil conservation 
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objectives through appropriate actions.  There will, however, always be conflicts between land-use 

and the continuous challenges of protecting the natural environment (Bell & McGillivray, 2008). 

 

Climate change presents a challenge to nature conservation and the methods which are currently 

used in the field, particularly as many of those involved in conservation are only interested in 

preserving existing species and habitats.  It needs to be understood that “nature conservation 

interests cannot be frozen in time, because they are constantly evolving and adapting to changing 

environmental circumstances” (Bell and McGillivray, 2008), therefore practices need to evolve which 

allow more flexibility when it comes to species acceptance.   This is discussed further in the next 

chapter, with the need for spatial planning to also adapt for a changing climate.  A more open-

minded approach to non-native species is also required; an issue which may be difficult to 

accomplish, but one which is in agreement with the views of Bell and McGillivray (2008), that the UK 

may need to mitigate species that will be unable to tolerate their new climate conditions. 

 

3.12 Conclusion  
Consideration of biodiversity in the planning system has improved considerably over the last couple 

of decades, with the true value of nature being recognised.  However, there is still a long way to go in 

protecting the biodiversity which provides society with many benefits and services.  As the NEWP 

states “human wellbeing is intimately connected with our natural environment” (HM Government, 

2011), and the need to protect this is great.   

Through the Environmental Assessment Regulations, developers now consider the effect 

their development may have on the environment through EIAs, often providing mitigation for 

potential biodiversity loss, and sometimes going beyond that required.  The NPPF aims to give equal 

weighting to the environment when developments are proposed, and sees an opportunity for 

biodiversity to be incorporated in and between developments.  The NPPF also makes reference to 

biodiversity and climate change, with the need to adapt and create resilience. 

The ability for species to migrate along natural corridors is being hindered and habitat 

fragmentation, along with climate change, presents an added challenge.  Efforts are being made to 

rectify this, with the creation of NIAs and planners being urged to take a landscape approach, but 

how this is mirrored in reality and the weighting given to the environment will dictate the state of 

nature in the future.  The next chapter looks at the effect climate change is already having on 

biodiversity, with changes in species distribution, phenology and abundance all having been 

observed. 
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4. Species Distributions – Past, Present and Future 

4.1 Introduction 
The effect of climate change on biodiversity has been studied both in relation to past warming events 

at the end of the last glacial, as well as the more recent changes which have occurred during a period 

of unprecedented climate change.   Given that the earth has warmed by 0.6°C over the past century, 

the impact on biodiversity, particularly over the last 50 years, leads to the presumption that there 

will be many more far-reaching consequences for species and ecosystems in response to the 

predicted increases in temperature (Root et al., 2003).  Even if major reductions in greenhouse gases 

are made, changes to biodiversity will continue to occur, due to inertia in the climate system 

(Schneider and Thompson, 1981).  Climate change poses a serious threat to biodiversity over the 21st 

century.   

The main changes to biodiversity have been shifts in species distribution, the timing of 

natural life-cycle stages (phenology), and a greater number of interactions with non-native species as 

they migrate with the climate, all with subsequent effects on ecosystem balance (Fitter and Fitter, 

2002).  Local government ecologists have also observed changes in biodiversity during their years in 

the profession, as ascertained through the questionnaire discussed in chapter 6.  Computer models 

have attempted to simulate species’ future distributions based on observations, and projections 

point to some degree of biodiversity loss depending on the extent of future climate change (Thuiller 

et al., 2005).  As mentioned in chapter 2 habitat fragmentation over the 20th century has left the 

environment in a poor state.  A specie’s ability to find suitable climate space in such a landscape may 

further exacerbate the challenges biodiversity face; a migrational route needs to be present.   

Conservation practices and policies over the 21st century will need to be flexible and 

acknowledge that species will change distributions.  Inevitably some species can cause more harm 

than good, and caution still needs to be exercised when monitoring changes in distribution.  The 

NPPF, as discussed in section 3.9, recognises the link between climate change and biodiversity, and 

recommends that planners should be aware of this in their local plans.  This chapter examines the 

effects of climate change and other drivers of change from past to present to future, covering 

multiple taxa, but with more focus on plants where studies exist.  As studies observing impacts of 

climate change on biodiversity are an ongoing activity, there is currently limited published 

information available. 

 

4.2 Distribution Change and Spatial Scale 

Climate has long been recognised as a limiting factor for species distributions at continental and sub-

continental scales (Grinnell, 1917; MacArthur, 1972), whereas at the regional scale soils and habitat 
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are thought to be the main drivers of distribution change (Pearson and Dawson, 2003).  The biotic 

interactions (i.e. with surrounding species, invaders) have a greater influence than climate and soils 

at the local level, illustrating how the differing spatial scales can determine the location in which a 

species resides.  The life-history of a species, dispersal ability and land-use, along with climate, can all 

limit a specie’s ability to move at the larger scales. 

 

4.3 Species Response Rate to Past Climatic Change 
The study of paleoecological events during previous climatic upheavals can help with the 

understanding of possible migrations and adaption processes of flora and fauna in the changing 

climate of the future.   

 

4.3.1 The Fossil Record and Evidence of Spatial Responses 

The Quaternary fossil record provides an abundance of data relating to terrestrial organisms 

responses to past climatic changes.  There have been many studies on the fossil pollen and spores of 

higher plants preserved in peats and lake sediments, refer to Huntley (2007) for more on this, and 

the evidence points to species responding spatially to past rapid climatic changes, following their 

climatic niche and thus shifting their geographical range (Graham and Grimm, 1990; Huntley, 1991).  

There would have also been adaptive genetic responses of the population at any given area where 

climatic change occurred, as a result of the specie’s overall spatial response to climate change 

(Huntley, 2007).  The rate at which species were required to respond was often a function of the 

surrounding landscape, the variation in topography, and the ability of a species to exploit this. 

Species unable to spatially and/or genetically respond to climate change suffered regional or global 

extinction (Stuart, 1993).  A negative of using the fossil pollen record is that it is sometimes too 

coarse to identify the effect on small populations (McLachlan et al., 2005).   

 

4.3.2. Magnitude and Rates of Change 

Estimates have been placed on the magnitude and rates of species’ responses to climatic changes 

between the last glacial stage (10-20,000 years ago) and the post-glacial or Holocene period.  Over 

most of the European continent, the magnitude was estimated to have been one to two thousand 

kilometres (Huntley and Birks, 1983).  Estimates of yearly average range margin displacement for 

most trees, the group with the best data available, were 200-500m yr-1, with some taxa from both 

Europe and America in rare circumstances reaching rates as much as 1-2 km yr-1 (Huntley and Birks, 

1983; Ritchie and MacDonald, 1986).  Concern arose around these findings years later as even 

species with poor seed dispersal or long generation times had high dispersal rates (McLachlan et al., 

2005).  Rates have recently been found to be a lot slower as discussed in section 4.3.5. 
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4.3.3 Reid’s Paradox 

Pitelka and Plant Migration Workshop Group (1997) accepted the theory that certain species in the 

postglacial warming period had the ability to advance rapidly.  They support the belief held by Clark 

et al. (1998) that migration is accomplished by ‘rare long jumps that escape our observation’, in 

order to explain how trees could move so fast and leap broad obstacles. ‘Reid’s Paradox’ is a term 

associated with this concept of rapid migration, as the Victorian botanist Clement Reid faced 

difficulty in understanding the postglacial spread of oaks into the UK (Clark et al., 1998).  The original 

theory or plausible explanation for the paradox was that dispersal of the seeds over long distances 

must have been accomplished by wind updrafts and by birds in nest material. Later modelling studies 

went on to conclude that rapid migration rates depended on the dynamics of seed distribution, 

rather than the mean dispersal distance (Clark et al., 1998). 

 

One example of the long-jump-and-outlier model of spread would be that of the Norway spruce 

(Picea abies) and its western migration across northern Europe during most of the Holocene, 

particularly it’s migration 3000 years ago across western Sweden (Bradshaw and Zackrisson, 1990).  

In this migration, isolated trees hundreds of kilometres ahead of the migrating front, appear to have 

been the foci for the consequent invasion of Picea and the reason why Scandinavia’s landscape is 

dominated by this species (Pitelka and Plant Migration Workshop Group, 1997).   

 

4.3.4 Macrofossil Evidence 

Varying evidence from macrofossils (e.g. fruits, seeds) suggested alternative theories and that the 

rates may have been slightly under-estimated.  Tree taxa were present up to a millennium before 

their pollen increased in quantity (Kullman, 1998), and in some instances overestimated as some 

temperate taxa may have had glacial areas of distribution that extended north of the main European 

mountain chains (Kullman, 1998; Willis and van Andel, 2004), and even isolated areas of persistence 

in northern Europe (Kullman, 2006). This implies range-boundaries from pollen and spores data may, 

in some circumstances, be under-estimating or over-estimating the species potential rates of change 

to future projected climatic changes (Huntley, 2007).   

 

4.3.5 Molecular Evidence 

More recent techniques have been to use modern chloroplast DNA to deduce tree distributional 

change, as mutation rates are low in the chloroplast genome, and there is little gene flow into 

established tree populations (Pearson, 2006).   
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It has been demonstrated that the modelling for the theory of extremely rapid tree migration rates 

(Clark et al., 1998), mentioned above, was based on idealistic ecological assumptions and that the 

actual historic rates of range shift may actually have been slower than previously thought.  By using 

modern life history data and molecular evidence (chloroplast DNA), McLachlan et al. (2005) 

suggested that the migration rates of two North American tree species - American beech (Fagus 

grandifolia) and red maple (Acer Rubrum) at the end of the last glacial were considerable slower than 

had been deduced from fossil pollen records, which was 100-1000 m/yr for temperate tree species 

(Huntley and Birks, 1983).  McLachlan et al. (2005) believe that small amounts of pollen may have 

travelled to sediments far outside a specie’s range and thus indicate or make it apparent that 

migration rates were quicker.  These low density ‘isolated’ populations are believed to have been 

“driven by local dispersal from disjunct glacial refugia”, i.e. areas where species reside, a place of 

refuge, particularly during times of climatic upheaval or biological stress (Pearson, 2006).  When the 

regional climate is unsuitable, these places can shelter ecology of high biological diversity in a 

microclimate. This points to there being an overestimation of migration rates, with the average rate 

more likely to have been <100m yr-1. 

 

4.3.6 An Overall Long-term Average Rate 

Considering all the available evidence, including those from extensively glaciated areas, a range of 2-

20km per decade has been given as the overall long-term average rate of shift in tree range margins 

(Huntley, 2007).  With the extent of future climate change not known, a specie’s ability to keep pace 

with their climatic gradient is uncertain.  Some species are thought not to be in synchronisation with 

the current climate, with negative implications for their future survival, as is discussed in the next 

section.  

 

4.3.7 Species Lag due to Past Climate Change  

Much debate surrounds the extent to which species’ past rates of change lagged behind climate 

change at the start of the Holocene (Davis, 1989), i.e. how much of their climate space was yet to be 

reached.  Prentice et al. (1991), however, showed that those tree taxa that appeared to be lagging, 

based on eastern North American data, could have just been a reflection of their varying climatic 

requirements/tolerances, and that they would respond at different times accordingly as the climate 

continued to change throughout the Holocene. 

 

4.3.8 An Overview of Species Responses to Past Climatic Change 

Given the different theories and models for rates of migration during the early Holocene epoch 

(Huntley and Birks, 1983; Ritchie and MacDonald, 1986; Clark et al., 1998; McLachlan et al., 2005), it 
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is not currently possible to gauge at what rate current species will migrate to stay within their climate 

envelope, especially as climate change at present appears to be unprecedented.  Species intrinsic 

dispersal potential and the surrounding topography will have an effect on their response to current 

climate change in trying to colonise suitable areas.  Today’s biodiversity face many challenges to keep 

pace with climate change.  

 

4.4 Species Response to Recent Climate Change 
There is uncertainty surrounding the ability of some species to keep pace with future climate 

warming, and that their potential range extent will be limited (Thomas et al., 2004; Thuiller et al., 

2005).  The literature relates largely to trees, and a limited number of other species, which needs to 

be considered when making reference to species response rates and climate change. 

 

4.4.1 Idiosyncratic Rates of Range Shift  

The rates of range shift in response to climate change varies within and between species groups, and 

this is true for observations more recently (e.g. Holzinger et al., 2008 as discussed later), and for 

those from the Quaternary; species respond individualistically (Huntley, 1991).  This may lead to 

complete changes in community composition, i.e. non-analog communities (Kullman, 2006), and 

could lead to the alteration of species’ known niches (Thuiller et al., 2005).  Le Roux and McGeoch’s 

study (2008) found idiosyncratic expansion rates have occurred at Marion Island in South Africa, 

leading to altered, previously unknown community compositions at intermediate and high altitude 

rates.   

 

4.4.2 Variation between species 

Different species have different patterns and rates of growth, and thus will respond accordingly.  

Seed plants are at more of a disadvantage than the likes of ferns whose spores are easily dispersed, 

while tree dispersal rates may be slower in comparison to that of herbs, as they take longer to reach 

reproductive maturity (Normand et al., 2011), with consequent longer response lag times.  Their 

capability to keep track of rapid climate change therefore decreases, with the unfortunate likelihood 

of them being stranded in unfavourable climates.  A study by Lenoir et al. (2008) also found that 

species with certain characteristics have shifted the most over the last century including species with 

faster life cycles, quicker maturation rates and smaller sizes at maturity, mainly the life forms of 

herbs, ferns and mosses, in comparison to trees and shrubs who display distribution shifts of a lesser 

magnitude.  There is, however, not always a strong correlation between these two factors.  
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Araujo & Pearson (2005) analysed breeding birds, amphibians and reptiles and ca 20% of the 

European vascular flora.  They found that the reptiles and amphibians grouping were the least at 

equilibrium with their climatic niche, whereas plant assemblages were comparatively closer.  

Whether plants will be able to migrate at the rate required depends on their ability for long-distance 

dispersal (LDD), with there being a notion that plants may be more mobile than initially thought 

(Nathan et al., 2002).  A plants potential for LDD will affect their ability for significant range 

expansion and thus the extent, if any, of their migrational lag (Normand et al., 2011).   

 

4.4.3. Constraints on Range Expansion 

It is assumed that many taxa, during post-glacial migration, were unable to follow their climate space 

and are currently in disequilibrium with the current climate (Normand et al., 2011).  Normand et al. 

(2011) assessed the constraints on species range for 1016 European plant species and found that 

climate was vital for all species, but the magnitude of postglacial colonisation has meant the range of 

more than 50% of the species is lagging.  The constraints on range expansion can be assigned to a 

number of factors, true for both previous and current day climate change: a specie’s inability to co-

exist with previously established vegetation, soil development, geographical barriers, interference of 

land-use by humans, limited dispersal and reproductive age as is discussed in 4.4.2.   

 

4.4.4 Accessibility to Expand 

It was found in the Normand et al. (2011) study that Mediterranean and temperate species  in 

southern Europe were more restricted in their location, with accessibility (or lack of) being more 

important than climate for between 20-60% of the species.  The mountainous landscape and 

separation of land into many peninsulas in southern Europe is an aspect of the accessibility 

restriction, impacting long-term dispersal.  Northern European species may be more at equilibrium 

with the climate, as climate is more important than accessibility for these species. 

 

A study by Svenning and Skov (2007) also found that the postglacial expansion of European tree 

species was limited, linking back to the realistic rate of <100m/yr as estimated by McLachlan et al. 

(2005), consequently putting them at disequilibrium with the current climate.   Svenning & Skov 

(2007) state that “geographical accessibility from glacial refugia explains most of the variation in tree 

diversity in central and northern Europe”.   There are locations which would appear to be climatically 

suitable for some species, but their absence could be a reflection of the migrational lag.  Today, 

anthropogenic barriers and dispersal limitations means that small-range species remain associated 

with their Last Glacial Maximum refugia and are unable to migrate. 
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4.4.5 Potential Range Filling 

The bioclimatic envelope “describes the conditions under which populations of a species persist in 

the presence of other biota as well as climatic constraints” (Thuiller et al., 2005).  The bioclimatic 

envelope modelling work undertaken by Svenning and Skov (2004) found that the likes of Quercus 

robur, is one of few trees keeping pace with the climatic changes.  In comparison, the likes of Fagus 

sylvatica and Quercus cerris have failed to keep track due to postglacial migration limitations, as 

shown in figure 4.1, and consequently potential northern range limits have not been met.  Forest 

herbs are of a similar disposition; they are known to have migration rates at a slow 20m/year or less 

(Honnay et al., 2002), therefore herbaceous forest flora in Europe may well have been of a different 

composition today if such species would have been able to fill their potential climatic range, as also 

demonstrated by bioclimatic envelope modelling (Svenning and Skov, 2004). 

 

Figure 4.1 Current native distribution of three temperate tree species (dots) and their climatic 

potential range (shading), estimated using bioclimatic envelope modelling from Svenning & Skov 

(2004). (Svenning and Skov, 2007) 

 

With many species unable to efficiently expand their range after the last glacial, and thus ‘lagging’ 

behind climate warming, there is doubt whether species will be able to respond appropriately over 

the next century to the expected rate of climate change.  The ability of a species to adapt, or their 

life-history traits, will be important in their range expansions (Svenning and Skov, 2007).  Species at 

the northern margin of their range may overcome any restriction of dispersal by undergoing 

evolutionary processes, with climatic changes being a driver for such processes.  Although these 

studies have been for taxa apart from plants (Pateman, 2012), it nonetheless highlights the adaption 

processes taxa are developing in response to climate change and dispersal limitation.  
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Although a considerable amount of research looking at rates of range shift has been carried out in 

Europe, the theory relating to species traits could also be applied to species in the UK, as species with 

higher reproductive rates have the ability to “increase propagule pressure and hence the probability 

and number of species reaching new areas, facilitating population establishment” (Pateman, 2012).  

An assumption, therefore, is that species with these characteristics are more likely to prosper in the 

UK, taking full advantage of their potential range filling.  As the UK is made up of islands, however, 

there is the possibility that species may run out of future space with resultant likely losses. 

 

4.4.6 Lag times and Extinctions 

The composition of a specie’s population across a landscape is known to change over a long time-

scale (Pateman, 2012).  Those species at the trailing margin of a shifting distribution may lag in 

comparison to those at the leading edge of the margin as a result of environmental changes (Brook 

et al., 2009).  The individuals in some species which exhibit a long life span, and the seed banks and 

rhizomes which are able to remain dormant in hostile conditions, explains the natural resistance of 

many plant species to extinction (Eriksson, 1996).  Trees are such an example as they can experience 

especially long lag times for local extinction, even when their ideal climatic niche moves over time.  

Some can survive for lengths of time at their warm range boundary, they may just be unlikely to 

reproduce, or seedlings be unlikely to establish (Pateman, 2012). 

 

The climatic tolerances of small-leaved lime (Tillia cordata) have for example limited its range, as at 

its northern range in northern England, the temperature is not warm enough for complete pollen 

tube formation (Pigott and Huntley, 1981).  The tree therefore produces sterile seeds and 

reproduction is hindered.  The tree will, however, have a long lag time for local extinction as it is able 

to survive, just not able to reproduce. 

 

4.5 Recent Range Shifts 
Despite several species experiencing migrational lag over the past four decades, species across 

various taxa have extended their ranges to higher latitudes and altitudes in many parts of the world, 

in line with the direction expected from climate warming, i.e. a polewards migration (Thomas et al., 

2004).  This illustrates how species are shifting their distributions to track their climatic niche 

(Bradshaw and Holzapfel, 2006), rather than adapting in situ. 
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A European survey showed that out of 35 non-migratory butterfly species, 22 species have shifted 

northward by 35-240km over the 20th century, with only 2 species having shifted south. Temporal 

scales across the 20th century used in this study varied within and among countries, e.g. for Britain 

this was since the 1950s, for Estonia this was since the 1980s, but for northern Africa (southern 

margins of some European butterflies) this was since the early 20th century; for exact dates of change 

see Parmesan et al. (1999) .  Two thirds of the species showing extensions at their northern boundary 

had southern boundaries that remained stable, thus effectively expanding their range (Parmesan et 

al., 1999).   

 

Poleward range expansions have also been reported for birds in both Europe and the USA. The 

northern margins of 59 bird species with distributions in the south of Britain, have moved further 

north by an average of nearly 19km over a 20 year period; 1988-1991 compared with 1968-1972 

(Hughes, 2000).  Butterflies and birds are more mobile than the likes of plants, and such observations 

relating to climate change are easier to spot, but distribution changes have also been observed in 

certain plant ranges. 

 

4.5.1 Changes in Composition – Alpine Communities 

Changes in community composition have been observed, with cool adapted species on mountain 

ecosystems reacting to climate warming.  A study by Pauli et al. (2007) discovered a change in 

vascular plant species richness on high peaks of the European Alps between 1994 and 2004, with an 

increase from 11.4 to 12.7 species per plot, a similar finding to that of Grabherr et al. (1994).  The 

altitudinal preferences of plants were reflected in the species change figures; there were significant 

declines in subnival to nival plants, whereas alpine pioneer species increased at their leading edge.  If 

this trend continues then alpine biodiversity is severely at threat with cold adapted species being 

driven out of their distribution range, and the consequent possibility of extinction.  The climate 

warming at the Alps has recently been twice as high as the global average and thought to be the 

main reason for such changes (Pauli et al., 2007).   

 

A study by Holzinger et al. (2008)  also had similar findings to Pauli et al. (2007), with there being a 

common trend of ascending migration rates in the Alps of several metres per decade over the last 

120 years of historical records.  Another study spanning the entire elevation range (0 - 2600 metres 

above sea level) of 171 forest plant species in West Europe between 1905 and 1985, and 1986 and 

2005, also confirmed a ‘significant upward shift in plant species optimum elevation averaging 29 

meters per decade’ (Lenoir et al., 2008).   Upward movement of subalpine species has also been 
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extensively reported, with young trees found at elevations or altitudes further than the current 

treeline.  This is particularly apparent in most of western North America, where there is an upward 

expansion of the forest margin after 1890, with establishment peaks between 1920 and 1950 

(Peterson, 1994).  An observation in Holzinger et al.’s study (2008) was that the increase in alpine 

migration occurred more on calcareous bedrock, with a presumption of there being more micro-

habitats on such bedrock.  Many studies looking at shifts in altitudinal gradients in plants have been 

carried out in Europe, but a study by Britton et al. (2009) on species richness in the Scottish 

mountains revealed that southern generalist species are also increasing and northern specialist 

species are decreasing, as would be expected as a consequence of climate change.   

 

The first ever pan-European study into the response of mountain vegetation to climate change found 

that between 2001 and 2008, the abundance of thermophilic species increased significantly 

(Gottfried et al., 2012), a process the researchers have termed ‘thermophilization’.  A total of 867 

vegetation samples above the treeline, from 60 different summits in all major European mountain 

systems, including the Cairngorms in Scotland to as far south as the mountain ranges in Crete, were 

analysed for species occurrence and cover.  As found in regional studies, cold-adapted species are 

declining, with no further mountain space to inhabit, whilst warm-loving plants are increasing; the 

continental scale of this study, however, just reinforces the impact climate change is having, 

transforming alpine plant composition even over such a short time period.  This frames the future of 

alpine biodiversity as uncertain, with extinction more than likely for species at the end of their range. 

 

4.5.2 Arctic Communities 

The effects of climate warming have also been observed in the Antarctica, where the distributions of 

the only two native vascular plants, Colobanthus quitensis (Antarctic Pearlwort) and Deschampsia 

antarctica (Antarctic hair grass) have shown dramatic increases in numbers from 1964-1990, with 

greater rates of seed germination and seedling survival (Smith, 1994).  Normally such activities are 

limited by the number of degree days above 0°C and by the water supply during the cold growing 

season, so this exemplifies a slight warming.  At Galindez Island, D. Antarctica increased from 500 

individuals in 1964 to 12,030 individuals in 1990, with similar increases observed at many other 

locations.  This time period included warm summers in the mid 1950, early 1960s, early 1970s and 

mid-to-late 1980s, with winter temperatures also increasing greatly (Hughes, 2000). 

 

4.5.3 Meta-analysis for Multiple Taxa 

The distributions of all terrestrial species studied have shifted their latitudinal and altitudinal range 

by a median rate of 16.9km and 11.0m per decade respectively (Chen et al., 2011), with the more 
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predominant range shifts being where warming has been the highest.  These rates are significantly 

greater than a previous meta-analysis (Parmesan and Yohe, 2003), which reported a shift of range 

boundaries at ca 6.1km per decade towards higher latitudes, and 6.1m per decade to higher 

elevation.  Although the scale of this study was considerably smaller than Chen et al.’s (2011) and the 

data includes species of varying mobility, together they demonstrate that species are responding to 

climate change. 

 

4.5.4 Future Colonisations and Translocations 

Some species will be spatially restricted in their ability to shift distribution.  Species in the UK with a 

northern distribution may face extinction if at their northern margin they end up with nowhere to go, 

i.e. no suitable habitat, or if they occupy mountain tops.  Species from continental Europe may 

colonise the UK if a suitable climatic niche becomes available, assuming they can reach the UK with 

no dispersal barriers.  New colonisations in the UK already include species of bats, damselflies, and 

several species of birds (Pateman, 2012), with the respondents of the questionnaire (chapter 6) also 

identifying new species in their local region.  These colonisations, however, may not be solely 

attributable to climate change (other drivers of change are discussed in section 4.9.2).  Species 

extinctions as a result of climate warming have not been observed at the national scale in the UK.   

 

Successful butterfly translocation studies (Pateman, 2012) have shown that they are able to survive 

beyond their current cool range boundaries.  This demonstrates that they are experiencing a 

migrational lag, and that a suitable climatic niche exists for the future survival of such species.   

 

4.5.5 Overview of Range Extension Studies 

The studies reported indicate that the effects of climate change, including the changes to species 

traits, will be more prominent at higher latitudes and altitudes where the temperature change will be 

the largest.  Yet, climate change is just one of the factors which has an influence over the 

distributions and health of populations and trait changes. 

 

4.6 Habitat Fragmentation  
Habitat fragmentation is a major threat to biodiversity, as it can prevent or slow down species 

migrating along environmental gradients, and consequently dispersal into suitable habitats both 

naturally and in times of upheaval; there needs to be connectivity (Doxford and Freckleton, 2012).  

Landscapes have greatly altered since the early Holocene, the last significant migration, with humans 

on many occasions having created barriers between natural landscapes, normally through 
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urbanisation, with consequent habitat loss.  In fragmented landscapes, the patterns of spread will 

depend on variables such as the local topography as well as the ‘plants intrinsic dispersal potential’ 

(Pitelka and Plant Migration Workshop Group, 1997).   

 

As habitats become fragmented and thus smaller in size, the population carrying capacity and overall 

species diversity decreases (Rosenzweig, 1995); species are unable to find new suitable habitat to 

add to the diversification that comes with natural range change.  Suitable habitat may have 

disappeared for some species, and others will inevitably die out as population numbers decline 

(Kuussaari et al., 2009).  Although this will affect rarer, specialist species more, it will also affect wide 

ranging species. 

 

4.6.1 Dispersal 

The processes which allow the movement of seeds may break down in a fragmented landscape, 

resulting in shorter seed dispersion distances, and furthermore a proportion of the seeds may be 

deposited in habitats unsuitable for recruitment (Higgins et al., 2003).  Seed production and survival 

are limiting factors to rapid rates of migration in response to climate change.  The fact that man also 

inhibits the migration of some species, and accelerates others, will result in future communities 

being different to the composition of todays.   

 

4.6.2 Species Threshold to Land-use Change 

The colonisation ability of a species and its habitat requirements will ultimately dictate the degree of 

habitat loss a species will be able to encounter along its migrational route.  Travis (2003) shows that a 

threshold exists before a species will rapidly decline and eventually become extinct.  A similar 

threshold exists for species with respect to the rate of climate change; if the rate is too great then 

species’ minimum patch occupancy quickly drops, until the inevitable happens - extinction.  In the 

current day situation, where climate change and habitat loss are occurring simultaneously, the 

outcome for some species, e.g. specialists, will be poorer than for others.  The likelihood of this 

occurring depends on the life-history traits of a species; if a species can tolerate many habitats and 

colonise quickly, it will be resilient to the effects of climate change (Travis, 2003).   A study by Opdam 

& Wascher (2004) highlights the need to consider the underlying landscape patterns and the spatial 

cohesion of areas in conservation management, as these have an effect on a species ability to 

increase its range in response to climate change. 

 



89 

 

4.6.3 Suitable Habitat Space 

Access to and presence of suitable habitat is important for plant species, as the majority have limited 

dispersal (Cain et al., 2000).  Land use change has impacted negatively on habitat quality over the 

20th century (Thompson and Jones, 1999), and increases in habitat segregation has meant 

colonisation rates are lower than would be expected for some species and their potential for 

distribution change is limited (Doxford and Freckleton, 2012).  For those species with less specific 

habitat requirements, e.g. generalists, however, this is less of a problem, and they achieve wide-

spread colonisations – possibly also true for recently introduced species (Preston et al., 2002; Hulme, 

2009b). 

 

4.7 Colonisations and Extinctions – Doxford & Freckleton Study (2012) 
Doxford and Freckleton (2012) have used presence/absence data on 1,781 British plant species to 

examine distribution shifts in the 20th century.  This was over two time periods: 1930-1960 and 1987-

1999, to correspond with the atlas data they consulted.  Using a fitted set of four generalised linear 

models to contrast the various mechanisms of distribution change (rather than the extent of change), 

it was discovered that the majority (82%) of distribution change occurs through a phalanx-spread 

process – ‘the diffusion-like spread of a population through localised colonisations’; i.e. species 

established at one site will colonise sites at its immediate edge, as opposed to random colonisation, 

or colonisation of adjacent habitats (localised phalanx).  This illustrates that the distribution of 

surrounding habitat, and localised dispersal, are important for species spread.  On the whole, rates of 

extinction and colonisation over the time period were low, but highly variable; it depends on the 

spatial structure of the established distribution. 

 

4.7.1 Patch Occupancy and Extinction 

There was a strong relationship between extinction rates and total occupancy.  It was found that high 

extinction rates had low occupancy and were likely characterised by specialist species possibly 

hindered from reaching suitable habitat because of geographical barriers, an inability to colonise new 

habitats, and/or fewer dispersers.  In addition, high occupancy had low extinction rates and the 

species involved were likely to be habitat generalists and hence resistant to habitat changes.  Long-

distance dispersal events appear to be rare, emphasising a plants lack of mobility, which under future 

climate change could present a huge threat.  It must be recognised though that the changes in 

species distribution may be a function of differences in recorder effort between study periods, as 

well as biotic interactions like invasion and extinction.   
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4.7.2 Implications of Study 

Low rates of extinction observed in the study could be due to length of lag time for a species or their 

inherent resistance to extinction as discussed in section 4.4.6.  Access to suitable habitat space 

discussed in section 4.6.3 and species’ dispersal capabilities has and will dictate a species 

colonisation rate.  The outcomes of Doxford and Freckleton’s (2012) research illustrates that the 

recommendations of the Lawton et al. review Making Space for Nature (2010), i.e. connecting 

habitats, discussed in section 3.8.1, will benefit species distribution.  Ecological networks will be 

fundamental to the dispersal ability of many species, allowing species to colonise suitable habitat 

nearby, in response to environmental change (Hilty et al., 2006). 

 

4.7.3 Study of Temperature and Rainfall on Distribution Change 

Doxford and Freckleton (2012) also applied climate data - rainfall and temperature, to an additional 

set of three models.  It is recognised by Doxford and Freckleton (2012) that the pertinent distribution 

change cannot be fully signified by the two climate variables used, as there are of course other 

environmental factors to consider.  However, they do state “in terms of environment, these are 

particularly significant variables, for example, sites that are warmer are often dryer, two phenomena 

with opposing effects on plant growth” a point which is also of relevance to this research project, as 

just rainfall and temperature data were also used.  Resultantly, it was believed that the primary 

climate indicator would be revealed in the data “when accounting for the role of site dynamics and 

spatial arrangement of the sites”. 

 

The results showed that climate had an effect on c. 45% of the species, with rainfall and temperature 

seeming to have separate or independent impacts on distribution change.   There was a signal that 

could not be explicitly linked to either of the climate variables for the remainder of the species.  

Climate can change habitats (on a decadal scale), with the extent of such changes happening at a 

fairly slow rate.  The effect of climate change on distribution could be masked by the more governing 

role of habitat (availability) and land use effects. 

 

4.8 Climate Effects on Phenology 
Phenological events which occur in the spring are most sensitive to climate fluctuations, and research 

carried out by Sparks and Smithers  (2002) provides evidence that spring is getting earlier as a result 

of climate change.  In astronomical terms, spring is defined strictly by the position of the sun over the 

equator, whereas the general public conceive the term ‘spring’ and its beginning in terms of 

biological events (Sparks and Smithers, 2002).   
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Annual mean CET (°C) 

4.8.1 Temperature Trends and First Flowering Dates 

Temperature is not the only influence on phenology, but phenological events are most sensitive to 

temperature (Fitter and Fitter, 2002).  Although there is variability in the mean annual temperature 

of the UK, the temperature does appear to be on the increase, with there being a significant warming 

trend since the mid 1980s, as indicated in chapter 2.  The year 2006 experienced the warmest year in 

the Central England Temperature (CET) series, which goes back 350 years (Sparks, 2012).  Figure 4.2 

shows the records over the last century (trend as determined by Lowess smoothing), with cold 

winters still being experienced like that of 2010.  As data relating to phenological events is not always 

consistent, records of a minimum of 20 years are recommended for making assumptions between 

climate and such events.  Correlations can then be made between the data.  Recently, first flowering 

dates have advanced in line with noticeable increases in temperature, evident in the CET record from 

around 1975 (Fitter and Fitter, 2002).   

 

 

Figure 4.2 Annual mean Central England Temperature (°C) over the last century (1912-2011)  
The thick grey line represents the underlying trend (Sparks, 2012) 

 

The recording of spring events for the UK date back to 1736 (Sparks and Carey, 1995), with 

phenology therefore being the longest written biological record (Sparks and Smithers, 2002). The 

change is most apparent in ‘early’ spring species.  Figure 4.3 displays the relationship between wood 

anemone (Anemone nemorosa) flowering and March temperature (with historical Royal 

Meteorological Society data and current data identified separately).  It exemplifies that flowering and 

leafing events have advanced by 6-8 days for every 1°C rise in temperature, and the trend implies 

that data of this kind can be used to predict future change of species that have been recorded 

historically (Sparks and Smithers, 2002).   
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Figure 4.3 National mean first flowering date of wood anemone relative to March Central England 
Temperature (CET, °C) (Sparks and Smithers, 2002).  Open circles represent data from 58 years of the RMS 

phenological reports, filled circles are data for 1998-2000 from the UK Phenology Network  
 

Figure 4.4 shows trends in the flowering of garden snowdrop (Galanthus nivalis) from 

Northumberland and Norfolk.  Environmental differences between the areas, as well as 

Northumberland being at a higher latitude, results in different rates of advance, but a similar trend is 

shown for both series over the last 50 years (Sparks and Smithers, 2002).  Rates of advance 

inherently vary across spatial climes (Schwartz et al., 2006). 

 

Figure 4.4 First flowering dates of snowdrop in Northumberland (upper) and Norfolk (lower); 
smoothed lines superimposed (Sparks and Smithers, 2002) 

 

Amano et al. (2010) looked at first flowering dates over a 250 year index for 405 plant species in the 

UK, and also found climate change is having an effect on multiple species at multiple sites.  Current 

flowering dates for the most recent 25-year period being 2-13 days earlier than any other respective 

time period since 1760.  Fitter and Fitter (2002) also illustrated that in the last decade of the 20th 

century flowering dates have advanced for 385 British plant species on average by 4.5 days 
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compared to the 4 decades before it (1954-1990), with 16% of species flowering considerably earlier 

by 15 days.  There is much variation between species, but it was observed that annuals flowered 

earlier than perennials, and insect-pollinated species more than wind-pollinated species.  Globally, 

there has been evidence to show an advance in phenology across multiple species (Parmesan and 

Yohe, 2003), but changes are not always consistent and can lead to asynchrony between species 

(Sparks, 2012).  This is discussed in the next section. 

 

4.8.2 Effects of Phenological Changes 

Changes in first flowering dates can have several knock on impacts including likeliness of pollination 

success if the pollinating insects are no longer in synchronisation with such dates, possible alteration 

of interactions between coexisting species, and increases in the probability of hybridisation.  The 

latter is likely if flowering dates between species gets closer, as illustrated with 12 calcareous 

grassland species (Fitter and Fitter, 2002).  Effects on pollination will also impact the animals that rely 

on pollen, nectar and seed as a resource. 

 

An empirical study on the interactions between plants and their animal pollinators with phenological 

shifts after a doubling of atmospheric CO2, led to reduced flora resources for 17-50% of all 

pollinators, reduced overlap between plants and pollinators and decreased diet variety of the 

pollinators.  Extinction of both plants and pollinators is the expected outcome when there is a 

disparity in interactions (Memmott et al., 2007). 

 

4.8.3 Trees Fruiting Earlier 

Data recording carried out by the public for the Woodland Trust (2011) showed that native trees are 

fruiting earlier than they were a decade ago, and that this may be a potential response to recent 

warming.  Compared to the period 2000-2012 acorns are ripening 13 days earlier, beech nuts 19 days 

earlier and rowan berries nearly one month earlier. 

 

4.8.4 Onset of Summer 

The onset of summer also appears to be advancing, with 60% of summer flowering plants blooming 

earlier in the 1990s than in the period 1954-1963 (Kirbyshire and Bigg, 2010).  Pollen release also 

appears to be occurring earlier, in line with spring temperatures, as found in a European study 

looking at the Birch pollen season (Emberlin et al., 2002). 
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4.8.5 Phenological Differences between Differing Provenances 

When comparing phenology processes between varying provenances of Hawthorn (Crataegus 

monogyna) in mid-Wales, Jones et al. (2001) found that non-local provenances encountered bud-

burst in some cases up to 5 weeks before local provenances, illustrating that even genetic differences 

can have an effect on phenological events.  Deans and Harvey (1995) also found that budburst dates 

varied by more than 3 weeks when assessing phenologies of 16 European provenances of Sessile Oak 

(Quercus petraea) at a site in Scotland.  Correlations between budburst and altitude, and budburst 

and latitude, showed that those provenances of southerly latitudes and high altitudes burst bud 

earliest.  This emphasises the sensitivity of phenological events across scales. 

 

4.8.6 Flowering Phenology and Distribution Change 

In a study by Hulme (2011), by looking at the phenology (first flowering date recorded between 

1970-2000) of 347 species he found that those with earlier flowering responses to spring 

temperatures had changed their distributions over the same period across the British Isles, a link 

previously not observed. 

 

The onset of phenological events marks the start of the reproductive phase of the plant’s life cycle, 

with the “reproductive success of a population each year, the growth and the survival probability of 

individuals” (Cleland et al., 2007) determined by such events.  It is assumed then, that with an earlier 

flowering time in response to warming, certain plants will be at an advantage and their probability of 

occurrence greater; they will exploit the longer growing season, may have improved interactions 

with pollinators (Walther et al., 2009) and resultantly be more favoured to increase range.  

Conversely, earlier flowering may lead to a greater risk of damage by late frosts and thus poorer 

reproductive output (Miller-Rushing and Weltzin, 2009).   

 

Species that are later flowering may be at a disadvantage to those species that have flowered earlier 

and utilised the available resources, therefore being out-competed (Miller-Rushing and Weltzin, 

2009) with likely poor plant performance and reproductive output (Hulme, 2009b).  However, plants 

which flower earlier and perform better have experienced declines in their range due to other 

environmental factors – namely the effect of agricultural intensification on arable weeds (Hulme, 

2009a).  Plants may also flower earlier in comparison to others but not increase their range to the 

extent that those flowering later have, and this can also be down to factors affecting distribution 

other than climate, e.g. soil fertility, pH. 
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4.8.7 Apparent Climate Signal 

Increase in native species’ ranges can be down to other environmental variables (as is discussed in 

section 4.9.2) allowing them to persist in the environment, or because of human intervention, but 

there is an apparent climate signal between climate change and earlier flowering dates, especially as 

those natives having later flowering responses declined in distribution (Hulme, 2009b). In 1999 

phenological events were accepted by the UK government as indicators of climate change (Cannell et 

al., 1999) so monitoring of these events will increase the field data relating the two variables. 

 

Phenological shifts illustrate the impact recent warming may be having on biodiversity and that there 

can be knock on effects on reproductive performance, interactions with other species and ability to 

track future climate change.  Phenological changes along with displacement of species ranges owing 

to climate change will “alter population-level interactions, community dynamics and have profound 

ecosystem and evolutionary consequences” (Fitter and Fitter, 2002).  Sensitive ecosystems will be 

more at risk and conservation effort should be focused here, but novel communities will more than 

likely emerge in the future. 

 

4.9 Monitoring Change in the UK and Drivers of Change 
Biological recording of species distribution has come a long way since the 1960s when the Atlas of 

the British Flora was published 50 years ago.  Awareness of the need to monitor species, the 

methods used, the ease of computerising data records and people generally more interested in 

nature, have all added to the data bank now available.  Through these studies those species most at 

risk/vulnerable can be identified and the requirement for conservation attention flagged.  These are 

often species on the edge of extinction, thermal specialist species physiologically sensitive to change, 

species lagging dangerously behind current climate change, and plants with poor dispersal abilities.  

Careful interpretation of the data is, however, required due to recorder difference/effort since the 

earlier days of recording (Preston et al., 2012).   

 

Repeat atlases have been compared and it is clear that agricultural intensification has led to bird and 

vascular plant species of arable farmland suffering the greatest declines (Preston et al., 2012).  For 

species in more semi-natural habitats, the causes of change are less clear; studies looking at the 

ecological traits of species have yielded further insight into differences between species and within 

habitats, including Grime et al.’s (2007) detailed trait analysis of species, and Ellenberg et al.’s (1991) 

indicator values, which were less specific than Grimes, for monitoring change across Europe.   
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4.9.1 Recent UK Gains and Losses (Changes in British Flora) 

The Botanical Society for the British Isles (BSBI) carried out a repeat of surveys done in 1987 in 2004 

to map the changes in the British flora; species traits in broad habitats were looked at to identify the 

variability of range change (Braithwaite et al., 2006).   An assessment of calcareous grassland species 

showed that annual species, preferring nutrient–rich soils, and/or of a southerly European 

distribution have fared better than the larger groupings of biennial and perennial species that require 

low fertility habitats.  Greater knapweed (Centaurea scabiosa) is a typical calcareous grassland 

species; the results of survey indicate its decline in range by about 26%.  There has also been a 

decrease in Birds-foot trefoil.  There are many studies which also make similar deductions of declines 

in plants favouring nutrient-poor habitats, as well as overall decreases in species diversity/richness 

(Walker et al., 2009; McClean et al., 2011). 

 

The BSBI Local Change survey also revealed that certain plant species with a southern distribution, 

such as the Bee Orchid (Ophrys apifera) have extended their range northwards, with the Pyramidal 

Orchid (Anacamptis pyramidalis) also increasing its range  (Braithwaite et al., 2006).  Orchid seeds 

are much smaller than the majority of vascular plants, and so dispersal could be due to human 

activities, rather than climate change (Preston et al., 2012).  Whilst some orchids are increasing in 

range, the Burnt Orchid (Neotinea ustulata) has undergone significant declines in the British Flora 

(Plantlife, 2000). 

 

New species are being gained, as areas lose species, but the gains do not compensate for the losses 

which are mainly native flowers of natural habitats, with a consequent less diverse flora.  The gains 

tend to be commonplace species, typically present in un-natural habitats like road verges and 

wasteland (Plantlife, 2000).  “The increase in species such as cow parsley, brambles, coarse grasses 

and stinging nettle is linked to an increase in soil fertility as a result of nitrogen pollution from farms, 

power stations and car exhausts”.  Rare plants are better protected than scarce ones, through the 

likes of SSSIs, but even protected sites are affected. 

 

In contrast, the 2007 Countryside Survey reported no evident changes in plant distribution or 

abundance in those fixed plots surveyed since 1978, relating to those in line with climate change 

(Carey et al., 2008).  Studies monitoring the response of animals distribution in relation to climate 

change have been analysed by Hickling et al. (2006); it was found that 13 of the 16 taxonomic groups 

studied with southerly distributions in Britain (including both vertebrates and invertebrates) have 

shifted their range northwards.  A study of such scale is yet to have been done for plant species in 

the UK, which may yet detect changes in response to climate change. 
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4.9.2 Other Drivers of Change 

The change in species distributions may not all be attributable to climate change, there are other 

factors which could be responsible for some of the changes seen to date.  With the increase in urban 

development, the species that are typically found in habitats associated on urban land may have 

resultantly expanded their range (Pateman, 2012).  The upward shift of Scots pine (Pinus sylvestris) in 

Scotland is more than likely as a result of a decrease in grazing pressure (French et al., 1997), and 

may explain similar shifts found in other high altitude treeline regions.  Plant species which thrive in 

areas experiencing more nitrogen deposition may have also increased their ranges here (Britton et 

al., 2009).   Conservation programmes aimed at specific species, and better management of land may 

also have led to the range increase of species, including Plantlife’s Back from the Brink species 

recovery programme.   

 

Sometimes organisms are unintentionally transferred to areas which they can survive in and thus 

boundaries expand to distances not possible otherwise, as seen with the pine processionary moth in 

a study by Robinet et al. (2012).  The planting of Alder Buckthorn (Frangula alnus) in ornamental 

assemblages in North Wales has facilitated the range expansion of one of its harbouring species - the 

brimstone butterfly, and similar plantings may lead to other species range expansions (Pateman, 

2012).  Such examples illustrate that changes in the climate are not the only drivers of species 

distributional change. 

 

4.9.2.1 Reasons for Species Decline 

Reasons for species decline, as noted by Plantlife (2000) other than climate change, habitat 

fragmentation and intrinsic dispersal constraints, include changes in management practices, drainage 

of the countryside, and a decline in water quality.  Corn cockles, cornflowers, corn marigolds, corn 

buttercups, corn cleavers and narrow-leaved hemp-nettles have declined in all but most arable 

counties.  Woodland plants have suffered from neglect, with only shade-loving species now thriving.  

Agricultural intensification, farm fertilisers and atmospheric pollution have lead to increases in soil 

fertility, a condition favoured by vigorous hostile plants, leading to declines in wildflowers which 

prefer naturally infertile conditions (Plantlife, 2000).  The biotic constraints to a species colonisation 

beyond their current range may be inhibited due to the presence of herbivores.  The current 

distribution of some species may be down to a combination of factors, and thus future patterns of 

spread will be unknown.   

 

4.9.3 Biotic Interactions 

With climate likely to affect the abundance and diversity of natural enemies and competitors, an 

indirect effect of the climate will be the biological interactions it creates between invasive species 
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and native species along climatic gradients (Thomas, 2010), the outcomes of which could differ with 

climate change.  It is unpredictable to say to what degree climate change will alter the distribution 

capabilities of certain species, and their ability to colonise new communities, as such interactions are 

complex and each species is different, i.e. dependant on their ability to withstand natural enemies, 

and their ability to compete for resources (Pateman, 2012). 

 

4.10 The effect of CO2 on Plants 
Aside from climate change, the forcing agent partly responsible for climate change - carbon dioxide 

(CO2) will also have an effect on species; levels of atmospheric CO2 currently exceed any experienced 

during the past 20 million years (IPCC, 2007).  Temperature and CO2 have a direct effect on the rate 

of photosynthesis, respiration and consequently growth and tissue composition in plants (Hughes, 

2000).  Experiments studying the effect of CO2 enrichment on plants have shown that the effect 

varies between short-term and long-term experiments, and if the plant utilises a C3 or C4 

photosynthetic pathway (Woodward, 2002). 

 

4.10.1 Stomatal Conductance 

The effect of an increase of CO2 in the atmosphere, which has occurred since the mid-1800s to the 

present day, has already been observed (Hughes, 2000).  There is evidence that CO2 levels may be 

having an effect on stomatal density, and thus stomatal conductance and water use efficiency in 

many species.  Several studies have shown that the stomatal densities of plants collected recently are 

significantly lower than in herbarium samples of the same species collected between 70 and 200 

years ago (Beerling and Kelly, 1997).  Fossil records and experimental studies using pre-industrial CO2 

concentrations have mirrored the trends found in these studies (Hughes, 2000). 

 

4.10.2 Photosynthetic Rate 

The possible effects of CO2 fertilisation have also been identified, with observed increases in the 

yields of conifer plantations since the mid 1800s (Cannell et al., 1998), as well as the increasing rate 

of tropical trees turnover and biomass since the 1950s, as a result of increased photosynthesis.  This 

biomass increase may help mitigate some of the effects of climate change by acting as a sink for CO2 

(Hughes, 2000).  In contrast, some experiments have shown that certain plants experience a down-

regulation of photosynthetic rate, i.e. a reduced rate, as they acclimatise to elevated concentrations, 

they do however benefit from a 40% increase in water use efficiency due to a decline in stomatal 

conductance (Woodward, 2002).   
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4.10.3 Multiple Interactions 

The CO2 exchange status of the plant is also associated with the metabolic and physiological 

pathways, interactions of which are complex.  Experiments of varying soil fertility showed that there 

was no early growth stimulation on a site with infertile soil conditions (Oren et al., 2001).  This 

exemplifies how certain factors, e.g. nitrogen availability, are crucial for growth; trees treated with 

both nitrogen fertiliser and elevated CO2 showed a three-fold increase in growth over controls.  As 

Woodward (2002) acknowledges ‘the coupled nature of the carbon and nitrogen cycles feeds into 

whole-ecosystem processes’ and as shown in another CO2 enrichment study by Oren et al. (2001), 

when the nitrogen availability decreased, the fertilisation effect of elevated CO2 on plant growth 

became minimal. 

 

4.10.4 Reproduction and Seed 

Some studies have shown that under elevated CO2 levels the onset of reproductive maturity begins 

earlier and seed production increases, in comparison to the ambient CO2 concentrations control.  

Woodward (2002) states that this response may increase a species’ chances of tracking climatic 

change.  Conversely, grassland studies with CO2 enrichment showed that flowering and seed set 

demonstrated a range of different responses: unaffected, reduced or stimulated.  The outcome of 

this in the future could be changed plant community composition (Woodward, 2002).  This is another 

example of an abiotic interaction yielding different responses between species, and just as has been 

discussed with regards to how species have and will respond individually to climatic changes, the 

composition of future plant communities will more than likely alter with non-equivalent 

assemblages. 

 

4.10.5 Summary of CO2 Impacts on Plant Physiology 

Plants will physiologically respond to the increases in CO2, including growth responses and changes in 

water-use efficiency, and it is expected that such responses will improve the reaction of some plant 

functional types to climate change (Sitch et al., 2003).  The intrinsic CO2 pathway of the plants 

selected for sites in the UK, and the effect of an increase in CO2 on such plants, will not be 

investigated any further in this research.  

 

4.11 The Effects of the 2003 Heatwave on Vegetation 
The 2003 heatwave over Europe was one of the hottest summers for  more than 500 years 

(Luterbacher et al., 2004), with a new temperature extreme of 38°C being reached in the UK by mid-

august.  By observing the effect such climatic events have on vegetation it can be seen which species 

are more vulnerable and at risk to future climate change, so that adaption plans can be made 



100 

 

accordingly.  In a study by Jolly et al. (2005), with the use of satellite-derived rates of photosynthetic 

activity, it was discovered that there was a pattern of high elevation growth enhancement as a result 

of the longer snow free growing season, and low elevation growth suppression as a result of 

increased summertime evaporative demand and thus water stress, across the Alps.  Such climatic 

events therefore do not just shift the elevation belt of plants upwards, but affect them on many 

more levels.   

 

Those plants in mid-high latitudes were particularly affected, with there being differential impacts on 

the vegetation depending on their growing environment.  For instance, in the alpine (>2100-2800m) 

and nival (>2800m) vegetation zones of the Alps, above average photosynthetic activity was shown.  

Normally only a few specialist plants survive in the nival zones, but it is thought that if prolonged 

warming was sustained at such altitudes, with enhanced growing conditions, then previously 

inhospitable areas would perhaps foster subsequent plant dispersal, even for the heartiest of alpine 

plants (Jolly et al., 2005).  Evaporative demand, frost and drought interact to affect the performance 

of plants during their growing season.  Species resistant to drought will be at an advantage if/when 

similar extreme climatic events occur in the future. 

 

Studies undertaken in 2004 by Gobron et al. (2005) evaluating the state of vegetation during and 

after the heatwave, discovered that the effect on vegetation was identifiable from space as early as 

March 2003, but that by spring season 2004 the terrestrial environments in Europe had returned to 

more normal conditions, except for areas affected by fire.  This illustrates how species can adapt, but 

as the extremes of temperature were only for a short period, it is not known how these observed 

changes relate to the effects of long term warming, which could be far worse for biodiversity. 

 

4.12 Modelling Future Distributions 

4.12.1 Species Distribution Models 

Species distribution models (SDMs) or climate envelope models (CEMs) are commonly used in 

assessing the impacts of climate change on species future distributions (Pearson and Dawson, 2003; 

Guisan and Thuiller, 2005).  SDMs are a form of empirical modelling correlating the current 

distribution of a species with the climate conditions in which it resides, e.g. (Bakkenes et al., 2002; 

Pearson et al., 2002).  When combined with climate projections derived from GCMs, the potential 

distribution of a species is estimated.  This can either be achieved statistically or with genetic 

algorithms (Pateman, 2012).   
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4.12.1.1 Ecological Niche Theory 

SDMs are based on ecological niche theory.  The fundamental niche of a species includes the 

environmental requirements fundamental to the species survival and growth, a concept defined by 

Hutchinson (Hutchinson, 1957).  However, biotic interactions between species and competition 

results in species occurring only in parts of their fundamental niche, known as their realized niche.  In 

the context of SDMs, they can be perceived to be representing only the climatic aspects of a species 

fundamental niche, i.e. the species climatic niche (Pearson and Dawson, 2003), excluding all other 

factors which affect a plants existence in nature.  As the observed distributions of species considered 

in an SDM are already being constrained by biotic interactions and limiting resources, i.e. as they 

exist currently in nature, they are said to be based on the realized niche of the species (Pearson et 

al., 2002; Guisan and Thuiller, 2005).  The assumption here is that these biotic interactions will 

remain the same under future climate change, which may not be the case. 

 

Some models aim to represent the fundamental niche of a species by mechanistically modelling a 

specie’s physiological response to climate (Pearson and Dawson, 2003; Buckley et al., 2010); these 

models obviously yield more realistic projections, as the community interactions observed today, 

reflected in correlative models, are likely to change along with future conditions.  As mentioned in 

section 4.4.1, species are predicted to respond individually to climate change, which will make SDM 

predictions invalid (Pearson and Dawson, 2003), as community compositions begin to form with no 

previous analogue. 

 

4.12.1.2 Applications of SDMs 

By realising a specie’s potential distribution in the future, those species more at risk of losing suitable 

climate space can be identified and conservation efforts can be focussed on these; Williams et al. 

(2008) propose a conceptual framework of adaption for vulnerable species based on their ecological 

and evolutionary traits.  Alternatively, where future climate space does exist, but colonisation of 

these areas is hindered by incoherent land-use patterns, SDMS are being created for this approach 

(Vos et al., 2008; Crossman et al., 2012; Summers et al., 2012), with the outcome of targeting 

conservation appropriately and creating better connectivity for those species susceptible to this fate.  

SDMS have also identified species which may have little or no suitable climate space in the future, 

with the risk of extinction likely if conservation efforts are not addressed towards them, or if 

sufficient reductions in greenhouse gases are not made (Thomas et al., 2004; Thuiller et al., 2005).   
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4.12.1.3 Assumptions and Limitations of SDMs 

The ability of SDMs to accurately portray future situations has however been questioned (Davis et al., 

1998; Pearson and Dawson, 2003; Hampe, 2004), with the methodology being flawed.  There are 

three main factors which are, in the majority of studies, neglected or falsely assumed: 

- Biotic interactions between species – a species may be surviving in an area due to its 

positioning within the surrounding plant community, with distribution in reality not strongly 

correlated to climate 

- Evolutionary change; a species can rapidly evolve adaptive traits in response to 

environmental change and thus its ability to survive is not as constrained as assumed.  

However, this adaptive response will not be true for all species when responding to climatic 

change. 

- Species dispersal; the dispersal characteristics of a species will dictate its ability to migrate 

accordingly, which will also depend on the surrounding cohesion of the landscape.  

“The ability to migrate is a function not only of individual species’ characteristics, but also the 

structure of the landscape over which dispersal is occurring” (Pearson and Dawson, 2003).  SDMs 

only portray a specie’s potential for survival at a specific location, when in reality this may not be 

achievable. 

 

SDMs expect species to immediately occur at a site with no account of potential dispersal limitations, 

they simply treat distributions and vegetation types as ‘infleixble units, which snap to a new position’ 

(Doxford and Freckleton, 2012), and this is not realistic.  Most studies incorporating SDMs predict 

distributions under two extreme dispersal scenarios (Thomas et al., 2004; Thuiller, 2004); a ‘no 

dispersal’ scenario whereby the species are incapable of dispersing, and a ‘universal’ scenario, where 

conversely there are no limits to a species ability to disperse.  In reality dispersal ability is likely to be 

in between the two (Thomas et al., 2004), with projections consequently over-estimating or under-

estimating future projections. 

 

SDMs assume that a species current distribution is in equilibrium with the climate, but as discussed in 

section 4.4.5 some species are experiencing a migrational lag after the last glacial and therefore 

projections will overestimate/miscalculate future potential distributions.  Although climate is an 

important factor influencing plant distributions (Thomas et al., 2004; Walther et al., 2009), most 

SDMs assume that, for all species, climate is the main determining factor.  Some species are however 

governed by other environmental factors, and so a future suitable climate space may not actually 

sustain the species existence. 
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Models results should be interpreted with caution as, for example, although a CEM created by 

Pearson et al. (2002) projected a good agreement between observed distribution and simulated 

distribution for hard-fern (Blechnum spicant) in Europe, there was only a general agreement for the 

broad distribution trends of yew (Taxus baccata), with the finer details not being captured.  The 

uncertainties of GCMs of which the projections are based on, discussed in chapter 2, and the coarse 

spatial resolution of the analysis, also need to be acknowledged when interpreting results.  Through 

a combination of factors including nitrogen deposition, the increased possibility of invasion by non-

native species, as well as the emergence of more competitive native species, this could result in the 

alteration of plant communities and the competitive interactions within them, “yielding novel 

patterns of dominance and ecosystem function” (Thuiller et al., 2005).  With computer modelling 

unable to predict such interactions, the outcomes of the models may falsely predict the distributions 

of species in the future. 

 

4.12.1.4 Improved Models 

Models are being developed, nonetheless, which incorporate biotic interactions like resource 

competition (Meier et al., 2011), and include realistic models of dispersal (Engler and Guisan, 2009), 

but it is not known whether increases in model complexity and ecological dynamics will result in 

more accurate predictions (Thuiller et al., 2008; Pateman, 2012).  Computational demand will also 

need to be considered when many factors are processed in a model.  As stated in Pearson and 

Dawson (2003) “The complexity of the natural system presents fundamental limits to modelling 

strategies, making predicting errors inevitable”, imploring the question of whether models will ever 

be able to mimic the natural system with 100% accuracy, as understanding the dynamics of nature is 

a forever learning process. 

 

4.12.1.5 Overview of SDMs 

Although SDMs do not always account for factors that limit a species distribution, other than climate, 

they do demonstrate the potential future distributions of species under climate change.  Where it 

appears species will lose climate space or face the possibility of extinction, conservation efforts or 

adaption measures can be targeted at those most at risk, preventing irrefutable biodiversity loss; it is 

a proactive approach.  At the least, SDMs are focusing efforts on very prevalent issues, and with time 

modelling errors will decrease and assumptions can become more realistic.   
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4.12.2 SDMs and Species Change 

 

4.12.2.1 Species Loss and Turnover 

A study by Thuiller et al. (2005) project late 21st century distributions of 1,350 European plant species 

under seven climate change scenarios using a SDM.  Rates of species loss and turnover showed great 

variation across scenarios and it depended strongly on the amount of change in just two climate 

variables: temperature and moisture conditions.  For the A1-HadCM3 model scenario (detailed in 

chapter 2), where there is an increase of mean European temperature by up to 4.4°C, Thuiller et al.’s 

(2005) study showed there is a mean loss of species of 42% and a turnover of 62%.  Species loss 

could exceed 80% in some areas, such as north central Spain, and the Cevennes and Massif Central in 

France.  The lowest expected mean percentage of species’ loss (27%) was under the B1-HadCM3 

scenario, which correlates with the fact that this scenarios’ CO2 and temperature increase is the 

lowest out of all the scenarios studied.  Species loss will be low in the Boreal region, with an influx of 

species from immigration.  The most significant changes are likely to be in the transition between the 

Mediterranean and Euro-Siberian ranges (Thuiller et al., 2005). 

 

As discussed in section 4.12.1.3 there are limitations to SDMs.  In Thuiller et al.’s (2005) study biotic 

interactions were not included, and neither were the physiological effects to species caused by 

increases in CO2, all of which play a part in plant growth and population dynamics.  Other flaws in the 

study were that the impacts of land-use change, which will have an effect on plant distributions, 

were not analysed, but Thuiller et al. (2005) believe that the effect of land use change would be 

superseded by the effect of climate change.  Research has, however, shown that thresholds exist for 

both, as discussed in section 4.6.2. 

 

4.12.2.2 Extinction Predictions 

With climate change it is probable that there will be reductions in the geographical ranges of certain 

species, which could potentially lead to an increased risk of local extinction (Thomas et al., 2004).  

Thomas et al. (2004) also performed a similar study to Thuiller et al. (2005) utilising a SDM to assess 

the extinction risks for sample regions that cover some 20% of the Earth’s terrestrial surface. Under a 

mid-range climate-warming scenario (1.8-2.0°C increase in temperature) for 2050, it was predicted 

that 15-37% of species and taxa in the regions sampled, will be ‘committed to extinction’.  The 

extinctions predicted vary across the world and between taxonomic groups.  Currently global habitat 

loss is the biggest cause of species extinction, but over the course of the 21st century climate change 

is predicted to play a big part in biodiversity loss.  A factor not considered in the study, which was 

also neglected in Thuiller et al. (2005), is that of land use; extinction risks might be higher than 
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predicted if future locations of suitable climate do not contain other vital resources, like the correct 

soil type or nutrients.   

 

4.12.3 SDMs and Likely Biome Changes of the Future 

A computer modelling study carried out by NASA and JPL-Caltech (California Institute of Technology) 

(2011) has revealed that by 2100, climate change across the globe will alter plant communities found 

on nearly 50% of the Earth’s land surface, and will lead to the alteration of almost 40% of land-based 

ecosystems from one major ecological community type towards another.  They used the 

intermediate IPCC emission scenario which assumes greenhouse gas levels will double by 2100 and 

then level off.  The shift in biomes towards Earth’s poles will be most felt in temperate grasslands 

and boreal forests, and towards higher elevations, mainly the higher latitudes of the northern 

hemisphere, including the Scottish Highlands.  Conservation and adaption action should therefore be 

aimed at these sensitive regions. 

 

4.12.4 SDMS and Specific Vegetation Shifts over the 21st Century 

4.12.4.1 Forest Effects in UK 

Forest Research studied the effect of climate change on Skita spruce and Beech in the UK using the 

Ecological Site Classification, a method which models future species suitability, in this case the 

commercial suitability of forest trees as a function of climatic and edaphic factors (Broadmeadow, 

2002).  Figure 4.5 shows the simulations for Skita spruce and Beech, incorporating the medium-high 

climate scenario.  The effect of CO2 on growth and water use (stomatal conductance) are not 

accounted for, so a worst case scenario is presumed.  ‘Very suitable’ in the key to Figure 4.5 denotes 

a 75% yield, ‘suitable’ denotes between 50 and 75% yield, and ‘unsuitable’ denotes a less than 50% 

yield achievable in the UK.  The suitability of tree growth for both species decreases in the south and 

increases in the north, more so towards the end of the 21st century. 
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Figure 4.5 ESC simulations of suitability of Skita spruce (top) and Beech (bottom) under the UKCIP98 
‘medium-high’ climate scenarios (Broadmeadow, 2002) 

 

4.12.5 MONARCH – Modelling Potential Range Change for UK Species.  

The Modelling Natural Resource Responses to Climate Change (MONARCH) project, which ran 

between 1999 and 2006, used CEMs to assess the impact of climate change on wildlife in Britain and 

Ireland (Walmsley et al., 2007).  The aim was to identify the future climate envelope of species, and 

thus their future likely distributions dependant on their ability to disperse.  In the final phase of 

MONARCH’s study, the future climate space of 32 BAP species were projected; a small proportion as 

many BAP species are conservation priorities and thus it is not always climate controlling their 

distribution, which is the basis of CEMs.  Species modelled had good European-level distribution data 

available to train the model and achieve a good level of agreement between simulated and observed 

distribution.  The UK Climate Impact Programme’s (UKCIP) 2002 climate scenarios under low and 

high emission for the 2020s, 2050s and 2080s were used in the process and projections were at a 

50km resolution. 

 

Table 4.1 shows the four categories the 32 BAP species fall into, based on their future projections of 

potentially suitable climate space.  The ‘gain’ category contains species currently with a southerly 

distribution in the UK, which are often more abundant in continental Europe.  The ‘loss’ category 

contains species with a predominantly northern distribution, with some species at risk of losing all or 
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almost all of their suitable climate space in the UK by the 2080s under the high emission scenario.  

Only 3 species fell into the ‘no change’ category, with the whole of the UK remaining climatically 

suitable for them; they are also widespread within Europe.  Species in the ‘shift’ category are 

expected to gain suitable climate space in the north but lose space at their southern margins 

(Walmsley et al., 2007). 

Table 4.1 Categories of simulated change in potentially suitable climate space for 32 BAP species 
(Source: Walmsley et al., 2007) 

As with all SDM/CEM modelling projections, there are caveats; Walmsley et al. (2007) state that the 

results should be interpreted cautiously and taken to show the general pattern of expected change.  

There is much variability between the potential distributions of species, but the MONARCH results 

show the broad effect climate change will have on natural resources and that the majority of species 

will need to disperse to survive.  Conservation policy and management should be flexible to work 

under a range of circumstances to adapt with the climate. 

 

Although there is a paucity of studies on plant dispersal and migration rates, it is assumed that many 

plant species will be unable to disperse into new suitable climate space.  UK BAPs will potentially 

need to be flexible in either the species it selects to re-create priority habitats, or provide 

connectivity between these habitats to allow species to move naturally (Harrison et al., 2001).      

Whether non-natives will pose a contribution or a threat to nature is a topic also lacking in depth 

(Harrison et al., 2001), as invasive species will be detrimental to conserving biodiversity and 

counteract meeting biodiversity targets, a point which has not been over-looked in this research. 
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4.12.6 BRANCH – Biodiversity Spatial Planning for Climate Change  

BRANCH stands for Biodiversity Requires Adaption in North West Europe under a CHanging climate.  

The aim of BRANCH, which ran between 2004-2007, was to provide evidence that spatial planning for 

conservation needs to be a focus of policies and strategies to allow wildlife to adapt to climate 

change (BRANCH partnership, 2007).  BRANCH acknowledge that the fragmented landscape of 

Europe does and will prevent species moving into future suitable climate space and this needs urgent 

attention from the European level to the local level.  Multiple partners from England, France and the 

Netherlands collaborated on the BRANCH project, transferring knowledge and expertise to assess 

current policy and identify the areas which are most at risk, with transferable outputs.  The extent, 

character and distribution of terrestrial and coastal habitats were studied in the south east of 

England and other parts of North Western Europe. 

 

4.12.6.1 Modelling Potential Suitable Climate Space 

The loss and gain of suitable climate space was projected, using a CEM, for 389 species of different 

taxa across Europe, highlighting the vulnerability of the majority of species, particularly by the 2080s, 

with 6 species losing all suitable climate space, 11 potentially losing more than 90%, with only 28 

species doubling their suitable space (BRANCH partnership, 2007). Trans-national co-operation will 

be important if species of conservation lose suitable climate space in one country and gain it in 

another.  Unfortunately the future projections (maps) of potential suitable climatic space for the 

species studied are no longer available to observe, with the BRANCH website having been archived; 

this is a limitation of BRANCH and limits the message they are trying to convey.   

 

As mentioned for other studies, the gain of future climate space will only be achievable if the species 

are able to disperse at a suitable rate, and that suitable habitat exists at the future site as well as in-

between it.  As discussed in section 4.4.2, species with poor dispersal mechanisms and long 

maturation rates may not be able to take full advantage of their future climate space without some 

assistance (Berry et al., 2005). 

 

4.12.6.2 Planning Issues and Recommendations  

Although the environment is considered in legislation like the Habitats Directive and the EIA Directive 

(as discussed in chapter 3), reasons gathered from planners for not addressing the issue of climate 

change and biodiversity earlier were because of (BRANCH partnership, 2007): 

 Lack of certainty on the severity and timescales of climate change and uncertainty 

surrounding the climate model projections; 

 Vague sense of leadership to govern issues surrounding climate change; 
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 Availability of resources like skills, time and money to address the issue; 

 Lack of knowledge on implementing the correct adaption measures for wildlife protection; 

 Competing land use issues, e.g. between biodiversity and infrastructure plans. 

In relation to the questionnaire (chapter 6), it was found that the majority of respondents’ thoughts 

towards climate change were able to have an influence on their work.  This could potentially indicate 

that since research was undertaken by BRANCH, the need to adapt for climate change has become 

more common knowledge than it was previously, with planners recognising the need to consider 

biodiversity in their work, but this does not necessarily mean action will follow their thoughts. 

 

Recommendations to address the barriers to planning accordingly included increased integration 

between different policy sectors, and between plans at all spatial scales of development, longer 

spatial planning times and a promotion of biodiversity networks and recognition of the benefits 

biodiversity brings to people and to the economy (Piper et al., 2006).  Habitat creation should be a 

condition of planning permission.  Integration of climate change into European Directives associated 

with biodiversity should also be considered, to provide guidance and allow adaption measures to be 

taken in due course.  With there being little certainty of what the future climate will be like and how 

biodiversity will respond, Piper et al. (2006) believe an element of flexibility is essential in 

conservation policies and how they are implemented. 

 

4.12.6.3 BRANCH Terrestrial Case Studies 

One of the studies that BRANCH (van Rooij et al., 2007) carried out was assessing the effect of 

climate change in relation to habitat fragmentation in three terrestrial case studies, in Limburg (NL) 

and in Kent and Hampshire (UK).  

 

4.12.6.3.1 Hampshire and South Downs Case Study 

Chalk grassland and lowland heath were studied in Hampshire and the South Downs, characteristic 

habitats of importance to the area (van Rooij et al., 2007).  Species typical of the habitats were 

selected for the study and climate change modelling showed that species responses vary; for some 

the local climate becomes more suitable and for others it becomes less suitable.  In the long term 

(2080s) most species modelled are expected to lose climate space, with the composition and 

character of these habitats changing significantly unless species are able to adapt to the changes.  

Under the 2020 (high) and 2050s (low and high) scenarios, the key species for the lowland heath 

(ericaceous species) and chalk grassland (e.g. crested hair grass, meadow oat grass and musk orchid) 

do not suffer considerable loss, but under the 2080s high scenario all, or nearly all potential suitable 



110 

 

climate space could be lost for these characteristic habitat species.  Even species which remain, may 

decline if the species they rely on disappear.  

 

As the climate becomes unsuitable, a species may undergo stress and become unable to function 

efficiently (i.e. with competitors), resulting in a possible decrease in abundance or localised 

extinction (Berry et al., 2002).  A solution to this would be to manipulate the local climate and uphold 

a heterogeneous landscape (Berry et al., 2007).  BRANCH recommends maintaining favourable 

conditions and re-creation of habitat which might allow the species to survive in the short-mid term 

(van Rooij et al., 2007).   

 

It is expected that new species will colonise the case study area as they become more suitable for a 

different assemblage of species, unless of course habitat fragmentation prevents such activities.  

New species should be allowed to infiltrate these habitats as otherwise biodiversity may decline, 

although it is not known whether these new species will bring problems or benefits to the new plant 

community.  Another recommendation is to allow Natura 2000 sites to accommodate change, with 

land designated for new incoming species, as well as the protection it already offers species of high 

nature conservation (van Rooij et al., 2007), species which may not remain as the climate becomes 

unsuitable.  In the long term, BRANCH believes this may be the best decision for adaption. 

 

4.12.6.3.2 Kent Case Study 

The Kent case study looked at present habitat connectivity and explored the possibilities for creation 

of an ecological network to enable species to adapt to climate change.  Transport, infrastructure and 

development were identified as the main obstacles for a coherent landscape, but that wildlife 

corridors could still exist in such a landscape (van Rooji et al., 2007).  Alternative strategies will be 

needed for different species: maintenance of ecological networks will assist those species declining 

due to a reduction in suitable climate space; ‘adaption zones’ consisting of suitable habitat of 

considerable size to maximise colonisation will benefit those species incoming to the area/increasing 

as the climate becomes more suitable, as well as improved connectivity between habitats for 

dispersal reasons.   

 

Species indicative of typical Kent habitats were looked at in the study, but this included only three 

plant species, all of whose climate will remain suitable under the 2020 and 2050 high emission 

scenarios including wetland species Gentiana pneumonanthe (Marsh Gentian) and Thelypteris 

palustris (Marsh Fern), and woodland species Hyancinthoides non-scripta (Bluebell).  Thelypteris 

palustris is a Kent Red Data Book species, with the edge of its current suitable climate space being in 
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Kent and here it appears to remain.  This suggests that climate is not the determining factor for its 

distribution (van Rooij et al., 2007).   

 

The aim of BRANCH was to develop a climate change-proof ecological network with key stakeholders, 

and a transferrable method to illustrate how fragmented landscapes can be addressed and rectified 

to allow the changing distributions of species to occur when climatic conditions change and become 

more or less favourable.  Spatial planning can be part of the solution for minimising the effect of 

climate change on biodiversity.   

 

4.13 Forest Research Climate Matching  
Forest Research have identified locations that currently have a similar climate to that projected for 

the UK with the intention to understand the likely effect climate change will have on tree growth 

(Forest Research, No date).  One of their main concerns is identifying the suitability of broadleaved 

trees for hardwood timber production under the changed climate of the future, so that these trees 

can maintain their economic importance, as well as their environmental value in the UK.  With 

warmer summers, there will be larger soil moisture deficits and the wetter autumn and winter 

periods will reduce root growth.  It is likely some will prosper in the changed conditions, but others 

will simultaneously suffer as the conditions become less suitable for them (The National Forest, 

2010).  Collection of seed material from these climate-matched areas would be used in provenance 

trials. 

 

Data Used: 

CRU 1961-1990 for current European Values and UK baseline values. 

UKCIP 2002 (UKCIP02) scenarios for predicted climate values – 50 km gridded data-set. 

Emission Scenarios: Low (IPCC SRES B2) and High (IPCC SRES A1F1) 

Time Period: 2050s and 2080s  

Climate Variables: Mean temperature, precipitation and diurnal temperature range. 

 

Baseline data for the monthly mean climate variables were applied to the UKCIP02 climate change 

scenarios.  Identification of the area (grid square) presently best matched was by using the least 

squares method, creating a climatic difference index between the current and predicted climate 

variables.  The variables were then weighted according to the annual range values under the current 

climate to describe the climatology of a given location.  Best matched locations are therefore 
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identified which have the smallest difference overall for the year between current and future 

projections.   

 

Forest Research carried out climate matching for 5 sites across the breadth of the UK in regions 

where broadleaf species are currently grown for timber, to understand the future range of climate 

change that could be experienced in these areas. The 5 sites and their matched locations are shown 

in figure 4.6. 

Figure 4.6 Forest Research climate matching results (Forest Research, no date) 

The matched locations illustrate how climate and latitude are linked, with southern European areas 

currently experiencing the climate expected in southern England.  The higher the emission scenario 

level also leads to areas of hotter climates being matched. 
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National Forest Planting Trial - Forest Adaption to Climate Change 

In another study between Forest Research, National Forest Company, Forestry Commission and the 

Aggregate Industries, tree provenance trials have been established to research adaption options for 

creating resilience amongst native trees, woods and forests.  The plantings are subject to a range of 

environmental factors in order to select the most appropriate species, suitable provenance(s) and 

silvicultural practice for adaption to climate change.  The location of possible future climate-proofed 

genetic material for planting was carried out under a similar methodology to that as used by Forest 

Research, but matches were made in relation to the location of The National Forest, the Midlands.  

Trees under consideration were Oak Quercus robur, Ash Fraxinus excelsior, Wild Cherry Prunus avium 

and Sweet Chestnut Castanea sativa.  Seed was sourced from the climate-matched regions and 

seedlings then raised at the Forest Research nurseries in Alice Holt, Surrey.   

 

Figure 4.7 shows the best matched grid squares for the 2050s high emission scenario (yellow 

squares) predominantly being in northern France and occasionally southern England.  The 2080s high 

emission scenario (blue squares) has matches predominantly in southern Italy.  Consequently, 

provenance material would be sourced from southern England, northern France and Italy based on 

these findings. 

Figure 4.7 National Forest climate matching results (Barsoum et al., 2009) 

 
According to their schedule planting of the saplings at the two sites were due to start 2012/2013, so 

it is assumed monitoring of the sites has only recently commenced.   

 

The influence of mixing tree provenance on planting success, woodland stand structure and relative 

performance of the differing tree types and seed source will be determined in the trials (Barsoum et 
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al., 2009).  Another desired outcome is to ascertain how non-native provenance may affect biological 

diversity and the incidence of pests and diseases.  Some of the questions posed will be answered 

through their assessment of the following traits (Barsoum et al., 2009):  

 Survival (especially post-frost, post-drought), 

 Growth (height, dbh), 

 Form (leaf area, branching patterns), 

 Phenology (e.g. bud-burst), 

 Biomass of flowers, leaves and fruit. 

 

4.13 Conclusion 
It is evident that over large time scales climate change has had an effect on biodiversity, altering 

species’ distributions, composition and interactions with both biotic and abiotic factors.  Previous 

migration rates at the end of the last glacial show that some species are capable of adapting to 

change and dispersing into areas more suitable than others, but that some species are constrained in 

their ability to disperse either due to lack of accessibility or poor dispersal mechanisms (Svenning and 

Skov, 2007).   

Recent spatial shifts in species’ distributions have predominantly been noticed in birds and 

butterflies, but certain plant species are also increasing their range in ways consistent with those 

expected as a result of climate change.  In Europe species appear to be shifting northwards to higher 

altitudes, and often species respond individually (Kullman, 2006).  The ability to migrate and acquire 

suitable habitat will ultimately dictate the colonisation and extinction rates of species, along with 

species-species interactions.  Fragmented landscapes and changing land use will have a detrimental 

effect on the rates and success of species migration in response to future climate change, and spatial 

planning should address this issue, creating permeability for species to move. 

The future distributions of various taxa have been projected using computer models, 

showing where gains and losses will occur, with the aim to influence conservation priorities.  These 

models, however, make many assumptions and results should be interpreted lightly.  Observations 

and research have shown that the interplay of various factors dictates a species response to 

environmental change, interactions which models cannot simulate.  The outcome may be community 

compositions in the future having no previous analogue, and the reason why conservation measures 

need to be flexible, and adaption planned appropriately for both native and non-native species.    

As the historic, current and model studies on species distribution all have employed varying 

methods, variables and species to analyse a specie’s ability to track climate change, it is hard to draw 

comparisons between them.  What has been shown, however, is that some species are capable of 
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responding and either adapting in situ or expanding their range, but this may alter given the 

magnitude of climate change.  Based on the outcomes of future climate models, it is hard to predict 

if the species will be able to reach their suitable climate space as this depends on the degree of 

habitat fragmentation and habitat loss in the species surrounding area. 

Many studies modeling species’ responses to climate change have used temperature and 

moisture variables, with Thuiller et al.’s (2005) study stating that these two variables had a large 

influence on species loss and turnover.  This is pertinent to the climate matching technique for 

climate variables in the next chapter. 
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5. Methodology 
 

5.1 Overview of the Research Approach  
The planned outcome of the research is the creation of resilient planting assemblages for 

brownfield sites to survive the climate predicted for the UK in 2050, maximising biodiversity 

robustness and ensuring longevity on such sites.  This will be achieved by creating a framework which 

considers the future climate of case studies throughout the UK and indicates plant species of varying 

provenance that could be suitable at such locations.  The requirement to incorporate biodiversity 

into development schemes has, as discussed in chapter 3, become more prevalent in the planning 

system, with some developers actively seeking to create areas of high ecological value on their sites.  

The research aims to incorporate a climate change adaption element into this biodiversity, with the 

use of species of non-native provenance, i.e. species which will be suited to the future climate of the 

UK.  As plants are the building blocks of ecosystems, the research is focused at the plant level of 

biodiversity.  

Climate models or GCMs have been developed to predict the climate of the future based on 

the amount of greenhouse gases in the atmosphere, including natural forcings and anthropogenic 

influences (Randall et al., 2007), as discussed in chapter 2.  The most recent climate projections are 

utilised in this research to identify locations in Europe with an analogous climate to that which the 

UK is likely to experience in the future (UKCP09, 2012a). 

As discussed in chapter 4, modelling studies have incorporated climate projections into 

computer simulated models for the projection of specie’s distribution in the future based on the 

specie’s climate envelope (Pearson and Dawson, 2003).  There are, however, limitations associated 

with the functioning of these models  as they do not consider fundamental interactions between 

species and abiotic factors, and it is assumed that climate is the primary factor controlling a species 

distribution.  The ability of a species to disperse into their future ‘climate space’ is also an issue to 

consider, as the fragmented landscape of Europe has meant many possible migrational routes that 

species would use, consist of obstructions and isolated patches of land (Honnay et al., 2002).  SDMs 

can highlight species which are more vulnerable, and thus point conservation efforts towards these. 

The outcomes of SDMs, however, lead to little further else in terms of proactive measures for climate 

change adaption.   

This research method proposes a practical approach to facilitating species’ distributions to 

areas climatically matched.  It will provide a tool which developers can use when incorporating 

biodiversity aspects, through the selection of appropriate species which are adapted to the future 

climate of the UK.  It is a proactive and sustainable measure to ensure development sites, which 

typically have poor edaphic factors like soil structure, can become resilient to climate change.   
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5.2 Method approach 
The following tasks constitute the approach taken to reach the outcomes of the research: 

i. Determine the future climate of the UK. 

ii. For a given development site, match the predicted climate data of the site to current 

European climate, with the use of a GIS. 

iii. At the matched location explore the current species and habitats. 

iv. Produce suitable species list resilient to future climate change. 

 

As point ii. mentions, a Geographical Information System (GIS) will be used in the research to identify 

climate matched locations.  The next section discusses the background of GIS in data handling and 

manipulating. 

 

5.2.1 GIS as a Tool  

Since civilisation began to current day, the gathering of spatial data ‘by navigators, geographers, and 

surveyors has been recorded in a coded, pictorial form by map-makers and cartographers’ (Burrough 

and McDonnell, 1998).  The practice of map-making, in some situations however, cannot adequately 

portray the data in a format that can be easily analysed or updated; there are many limitations to 

paper maps.  Advances in computer-assisted mapping in the 1970s and early 1980s (Burrough and 

McDonnell, 1998), and the consequent development of GIS has taken static data and made it more 

dynamic; through a GIS, a computer software package, the world is represented 

electronically/digitally, with the ability to store, manipulate, analyse, retrieve and update spatial data 

more efficiently than previously.  The increase in computer processing power has further enabled 

applications of GIS. 

 

GIS is defined as a powerful set of tools for collecting, storing, retrieving at will, transforming and 

displaying spatial data from the real world for a particular set of purposes (Burrough and McDonnell, 

1998). 

 

Location and attribute data are inputted into a GIS, with location spatially referenced to the earth by 

a known coordinate system.  The database behind a GIS map allows the linkages between spatial 

data and attribute data to be made (Wadsworth and Treweek, 1998). 

 

GIS’s versatility means it is used throughout a wide range of sectors and its applications are used, as 

listed by Burrough and McDonnell (1998), in spatial statistics, soil science, utility networks, 

hydrology, topographic maps, resource assessment, land evaluation, planning etc.  In the 
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environment sector GIS has been used for land evaluation and rural planning, water quality and 

quantity, air quality, weather and climate modelling and prediction, as well as many more user 

specific applications.  GIS is an interdisciplinary and multi-disciplinary tool and has become a world-

wide phenomenon.  It is widely available throughout many institutions and industries, making it a 

well-known, accessible software package.   

 

To perform functions, GIS requires computer hardware (storage devices, an electronic network, 

plotter, printer), application software modules and a suitably qualified user.  Data can then be input, 

stored, and manipulated with data output and presentation functions; the main components are 

shown in figure 5.1. 

 

 

 

 

 

 

 

 

Figure 5.1 The main software components of a GIS (adapted from Burrough and McDonnell (1998)) 

 

5.2.2 Use of GIS in the Research 

GIS software (ArcGIS) was used in the research as explained in the steps below.  Through the use of a 

GIS, European climate data was analysed to help answer the research questions .i.e. where in Europe 

has a temperature of x and rainfall of y.  The query tools in the GIS enabled the correct information 

to be sought and the output be communicated through the visualisation capabilities of a GIS. 

 

The research uses a mixture of quantitative and qualitative data to answer the research question.   

First of all the climate data and the methods for their generation, along with reasons for choice of 

data used will be looked at. 

 

5.3 Climate Change Projections for the UK 
UKCP09 provide the climate change projections used in this research, as discussed in section 2.9, and 

are based on a change relative to a 1961-1990 baseline (UKCP09, 2012d).  UKCP09 recommend use 

of the Met Office baseline data in conjunction with their data to produce the actual predictions of 
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climate.  The Projections were for the medium emission scenario for the time period 2050 (2040-

2069). 

The UKCP09 25km gridded data-set projections were selected, of which there are 434 grid squares 

for the UK.  As the resolution is 25km2, local micro climates are not considered in the methodology.  

The data downloaded comprised of the following factors: 

 Resolution: 25km2 

 Monthly data 

 Baseline climate variables: Temperature (°C), Precipitation (mm/day) 

 UKCP09 Climate change variables: Temperature (°C), Precipitation (mm/month) 

 Medium emission scenario 

 2050 time frame 

 

5.3.1 Climate Variable Selection 

The variables chosen for this research were the monthly mean temperature (°C), and precipitation 

(mm).  These variables are ‘commonly used to determine climate’ (Wood, 2005), and as climate is a 

determining factor for plant distributions (Pearson and Dawson, 2003), they are suitable variables to 

use.  In relation to vegetation studies most only consider temperature and precipitation factors as 

they are essential for plant growth (Prentice et al., 1992; Martínez-Meyer et al., 2004; Thuiller et al., 

2005; Doxford and Freckleton, 2012), and as Walther et al. (2009) states: 

 
“Temperature is a key factor limiting survival, growth and reproduction in plants”  
 
illustrating its significance to this research.  Water availability also has a strong influence on the 

productivity of the plant (Wood, 2005), and with species receptive to rainfall variation (Pateman, 

2012), it is important that these two variables are considered together in the research. 

 

5.3.2 Baseline data  

The selection of the 1961-90 baseline for UKCP09 projections was based on user preference; UKCP09 

carried out a consultation with users on which baseline period they would prefer and the vast 

majority opted for the 1961-90 baseline.  The reasons given for this choice were because previous 

studies have used this baseline and it allows for comparisons to be made with old studies using the 

new projections.   

 

The Met Office provides the gridded baseline data sets to be used in combination with the UKCP09 

data.  Perry and Hollis (2005) provide a detailed description of the methods used for creation of the 
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baseline data, a synopsis of which is given here.  As archival records for weather observations are 

created at the 5x5km grid square level, the 25x25 km grid box baseline values for UKCP09 have been 

produced by averaging the original 5x5 km grid cell values that fall within it over the 30 year time 

period.  Regression and inverse-distance weighted (IDW) interpolation are combined to generate the 

original values, with consideration of latitude and longitude (to capture spatial variations), altitude 

and terrain shape, coastal influence and urban land use factors.  The distance-weighted method was 

selected as it captures local variations well.    

 

The station network is irregular, with limited network coverage in sparsely populated areas like the 

Scottish Highlands, and the density of stations has changed over time, as figure 5.2 shows, although 

temperature station density is relatively constant.  Certain climate variables are represented more so 

than other variables at different stations across the network.  As there is a high amount of variability 

in daily precipitation, stations were not input into the grid for interpolation if there was data missing 

in the month.  The measures in place to prevent unbiased results, along with the Met Office’s quality 

control procedures, permit a high level of credibility to the data. 

 
Figure 5.2 Station network density between 1961-2001, for precipitation, temperature and sunshine 

(Perry & Hollis, 2005) 
 

To assess the accuracy of the method for predicting values between station locations, a 10% random 

set of stations were excluded from the analysis.  The calculated values from grid interpolation were 

then compared with the actual observed values at these stations.  The best method for each variable 

could consequently be utilised dependant on these results, i.e. the smaller the difference, the more 

accurate that model was at predicting the value.  Temperature and precipitation had relative low 

error values; the reader is referred to the report by Perry and Hollis (2005) for more information.  It 

can therefore be deduced that the interpolated 25km grid of baseline values produced for use in 

UKCP09 has a good degree of accuracy.   
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5.3.3 Selection of Emission Scenario 

The UKCP09 use three of the Intergovernmental Panel on Climate Change (IPCC) emission scenarios 

from the special report on emission scenarios (SRES): A1F1, A1B and B1, high, medium and low 

respectively, all of which are described in section 2.10.2.  Selection of an emission scenario cannot be 

based on the relative likelihood of one scenario occurring, as there is no agreed method of assigning 

probability to future greenhouse gas emission storylines (UKCP09, 2012a). 

 

The IPCC scenarios were developed in 2000, and as no appreciable changes had occurred by 2007, 

they were consequently used in the IPCC’s fourth assessment report (AR4) and thus UKCP09 (Murphy 

et al., 2009).  Although demographic studies since have shown that population projections are now 

lower in some countries and higher in others than they were in 2000, the full range of emission 

scenarios from the SRES, by the IPCC (Nakicenovic et al., 2000) are still  deemed to be representative 

of the range of probable outcomes.  

 

In a study by Grubler et al. (2004), it was found that the turn-over of capital stock in the energy 

sector was not as rapid, and investment into new and advanced technologies was not as prosperous 

as originally anticipated.  Resultantly an expected decrease in energy intensity and increases in 

technological change are not following their projected trend, but the gain in emissions here is 

counterbalanced by those emissions lost through population projections. 

 

Medium emission scenario selection 

For reasons given below, the UKCP09 medium emission scenario (IPCC SRES - A1B) was selected for 

the basis of this research project, the projections of which are used to drive the general circulation 

model (GCM) utilised by UKCP09 to develop the climate scenario.  The decision to use this scenario in 

this research was made in 2009.   

The A1 narrative depicts a future world that quickly achieves high economic development, with a 

population that peaks in 2050 at 8.7 billion, before declining to 7.1 billion in 2100 (Nakicenovic et al., 

2000).  New and efficient technologies quickly emerge on the scene, with the income gap between 

regions decreasing greatly.  The subgroup A1B represents a balance between fossil fuel and 

renewable energy sources. 

 

The International Energy Agency (IEA) (2009) believe that it is increasingly likely that governments 

globally will take rigorous action to address central energy challenges including those relating to 

climate change, with sustainability playing a key role in their decisions.  It is unexpected for the ‘do 
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nothing’ scenario to be followed.  With socio-economic growth rapidly developing in countries such 

as India and China, it is clear that this will contribute significantly to the amount of greenhouse gas 

emissions released, and have a high level effect on the world’s climate as a whole.  It is reasonable to 

allow such countries to develop economically, but it means that the medium emission scenario is 

more suitable to use than the low emission scenario when exploring projections for the future 

climate. 

  

Although fossil fuels still play a heavy role as an energy source in the future, measures are being 

implemented to mitigate emission levels.  The international carbon trading scheme, a governing tool 

deployed under the Kyoto Protocol, is one such measure, but as it only came into force in 2005, it is 

too early to judge the effect this is having on the carbon balance of the atmosphere (Hulme, 2009a).  

The UN programme ‘Reducing Emissions from Deforestation and Degradation’ (REDD), set up in 

2008, aims to offer incentives to tropical countries to maintain the status of tropical forests as carbon 

sinks, with limits imposed on deforestation activities (Hulme, 2009a).  These are all examples of 

climate mitigation schemes and shows international co-operation is being pursued on the matter.  

Investments are also being made for renewables and energy efficient infrastructure, but because of 

the recent recession, funding has declined (IEA, 2009). 

 

For the above reasoning, the medium emission scenario was selected for this research.  Other studies 

which have also used the medium emission scenario include (UKCP09, 2010b): 

 De Montfort University studying the impact of climate change on the built environment; 

 Oxford City Council for decision making purposes, with reasons for selection being to be 

neither too cautious nor too dramatic; 

 For the assessment of flood risk by the Environment Agency (EA) and JBA Consulting; 

 Predicting changes in flow duration curve by the EA and Reading University. 

 

5.3.4 UKCP09 Sampled Data Selection. 

The projection data downloaded for this research, from the UKCP09 User Interface, was the ‘sampled 

data’.  This data, in excel format, provides 10,000 equally probable model responses for each variable 

for each month derived from the computational procedure, discussed in chapter 3 of the online 

climate change projections report (Murphy et al., 2009).  The climate variables used were from Batch 

1 (UKCP09, No date). 
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The responses are equi-probable, as the sampling was based on weight (‘a relative measure of how 

well an individual model variant compares to observations’) from a much larger number of samples 

generated by the UKCP09 probabilistic statistical methodology.  This method of sampling allows 

model variants which reflect the past climate more accurately than others to be selected a number 

of times within the sampled data set.  This means responses from the same model variant can 

produce an identical mean climate change value, i.e. a value can occur more than once out of the 

10,000 responses, but the variation is in how the noise was sampled.   

 

Each of the 10,000 responses represents a plausible climate change projection, and consequently 

there is great variability amongst the responses.  In relation to the research this means that for a 

given 25km grid square, under the medium emission scenario for the time period 2040-2069 there 

are 10,000 responses given for each variable (temperature and precipitation), for each month.  On 

the User Interface, this request would be actioned through the following criteria: 

Variables? Mean temperature, mean precipitation 

Climate change or future climate? Climate change  

Emission Scenario? Medium 

Location? 25 km grid box 1628 (London) 

Time period? 2040- 2069 

Temporal average? Jan, Feb, Mar... 

 

By using sampled data as oppose to the also available Cumulative Distribution Function (CDF) data, 

the full range of uncertainty in the projections is considered and thus a more accurate reflection of 

the projections is given.  It also allows more than one variable to be sampled, which is preferable 

given that two variables were selected in this research; the sampling procedure captures how these 

variables depend on each other, an important element.   As mean temperature and precipitation 

were sampled by UKCP09 in the same batch (Batch 1) in a multivariate analysis, it means that joint 

probabilities associated with these two variables can be explored.  This would not have been possible 

with the CDF data.  The two EA case studies listed in section 5.3.3 also used the sampled data to carry 

out their assessments for climate change. 

 

The UKCP09 recommend using “more than just the central estimate from the probability distribution, 

users should not limit their values to a single value – leads to acceptance of a higher risk than 

necessary...need to recognise the level of uncertainty”.  In excel the 10th, 50th (median) and 90th 

percentiles of the 10,000 responses for a variable were calculated and selected as the range to be 
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used in this research.  A sub-sample was essentially selected, but the whole data range was 

considered.  Unlike the mean, the median is not influenced by outliers at the extremes of the data 

set. With the UKCP09 data having extreme values, these could greatly influence the mean and distort 

what might be considered typical. 

 

The distribution of the sampled data and the percentiles for an increase in temperature on the 

baseline, for a given grid square is illustrated in figure 5.3.  Based on the histogram: 

 There is a 10% probability (i.e. very unlikely) that the temperature increase will be 0.1°C or 

less, or 90% probability that it will be more than 0.1°C. 

 There is a 50% probability that the temperature increase will be 1.6°C or more, or 50% 

probability that it will be less than 1.6°C. 

 There is a 90% probability (i.e. very likely) that the temperature increase will be 3.2°C or less, 

or 10% probability that it will be more than 3.2°C. 

The same principle would apply to the precipitation variable, but the values were in relation to a 

percentage change on the baseline. 

 

 

Figure 5.3 The temperature increase for a given UKCP09 grid square based on a cumulative 
distribution, indicating the 10%, 50% and 90% probability levels. 

 

The future climate change 10 – 90% range values would subsequently be added to the Met Office 

baseline value to produce the future climate 10 – 90% values.  This value for a given grid square is 

then ready to be entered into the GIS to search for areas in Europe which currently experience a 

climate within this range.  See section 5.5.1 for more detail on this part of the methodology. 
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5.4 Current European Climate Date 
The GIS was used to display the current European baseline data only, but eventually it would be 

beneficial to create a GIS of the UK climate change projection data to develop the tool.  The Climatic 

Research Unit (CRU) Climatology CL 2.0 10 minute-arc resolution gridded global data set for the 

period 1961-1990 (Ref: (New et al., 2002) was used here.  10’ resolution is equal to about 18km x 

18km at the equator, ‘with the east-west dimension decreasing to ~16 and ~9 km at 30 and 60° N 

and S respectively’.  The data-set was found on the CRU University of East Anglia website (CRU, 

2002), the University of which is linked to the Tyndall Centre known worldwide for their climate 

change research. 

 

5.4.1 New et al.’s Methodology for Creation of European Climate Data  

New et al. (2002) constructed the 10’ (10 min arc) latitude/longitude data set of mean monthly 

surface climate over global land areas, data of which was collated at the Climatic Research Unit 

(CRU).  Climate variables were interpolated from a data set of station means for the period based on 

1961-1990.  The eight climate elements include precipitation, wet-day frequency, temperature, 

diurnal temperature range, relative humidity, sunshine duration, ground frost frequency and wind 

speed.  The 10’arc gridded climatology is an improvement on a previous coarser 30’arc 

latitude/longitude resolution data set for the same time period, as along with a finer resolution, 

there are increased station observations and incorporation of local elevation effects as a result of a 

finer grid.  For more information on the methods the reader is referred to New et al. (2002). 

 

There were inconsistencies in data retrieved from countries in Africa and Southeast Asia with few or 

no climatological normals (a climatic average for a defined period) provided, but data from other 

time periods were used.  When the time period contributing to a mean was unknown, a lower weight 

was allocated to the value in the interpolation stage.  As this research is based on matching to places 

in Europe, there is less concern about these issues, but from a global perspective climate data is 

under-represented in many countries.   

 

Measurement practices and reporting procedures of climate variables varied within and between 

countries; methods were used to correct for biases in precipitation, but a more consistent approach 

to measuring mean temperature was found across the world – the average of the mean maximum 

and minimum temperature delineated this variable.  The distribution and number of stations 

representing each variable differed greatly across the globe with precipitation and temperature 

being the most common variables monitored.  Mean precipitation was recorded at 27,075 stations 



126 

 

and mean temperature was recorded at 12,782 stations - for distribution see figures 5.4 and 5.5 

respectively.  Quality control checks were carried out on all the data for consistency within and 

between variables. 

 

Interpolation of station climate data was performed using thin-plate smoothing splines, with 

elevation, latitude and longitude as autonomous predictors.  The use of elevation here increases the 

aptitude of the interpolation as it enables ‘topographic controls on climate that are resolved by the 

station data to be captured’. 

 

 
Figure 5.4 Distribution of stations with mean precipitation records (New et al., 2002) 

 

 
Figure 5.5 Distribution of stations with mean temperature records (New et al., 2002) 
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5.4.2 CRU Data Download 

The CRU data-set for the temperature and precipitation variables were downloaded individually into 

MS Excel and the files consisted of the variable values for each location point of the globe, i.e. 

latitude/longitude co-ordinates.  By applying column headers to the latitude and longitude values, it 

was in a format that could be uploaded onto a GIS based on x and y co-ordinates (Grid reference 

system: WGS84).  As inferred the CRU data-set is global and so consequently the climate data points 

were clipped so that only the European climate data points were displayed.  The temperature and 

precipitation data points were then spatially joined by their co-ordinates, using the join function, so 

that the two variables could be queried on together.  The GIS could now be used to identify areas 

which currently experience a climate that is predicted for the UK, the method for which is discussed 

in section 5.5.2. 

 

5.5 Detailed Method Breakdown  
Here a detailed breakdown of the overall process will be given, incorporating the climate data 

discussed in section 5.3 and 5.4: 

 

5.5.1 (i) Determine the Future Climate of the UK 

The future climate of the UK was determined using the Met Office baseline values (1961-1990) and 

the UKCP09 climate change projection data for the mean monthly precipitation (mm) and 

temperature (°C) variables.   The precipitation values are a percentage change value on the baseline, 

i.e. +/-48% on the baseline.  Projections were based on the medium emission scenario for the time 

period 2050 (2040-2069) at the 25km grid square level, of which there are 434 for the UK. 

 

The 10%, 50% and 90% probability values of change were calculated from the 10,000 sampled data 

responses for each variable and then consequently added to the baseline value; a process in Matlab 

calculated the vast amount of data, i.e. for each UK grid square, for both variables, for each month.  

The process for a given grid sqaure is shown here: (T stands for temperature and P stands for 

precipitation.) 

 

T Baseline + 10% T climate change value = Future 10% T value  

T Baseline + 50% T climate change value = Future 50% T value   

T Baseline + 90% T climate change value = Future 90% T value  

  

P Baseline + 10% P percentage change value = Future 10% P value 

P Baseline + 50% P percentage change value = Future 50% P value 

P Baseline + 90% P percentage change value = Future 90% P value 



128 

 

Figure 5.6 shows the utilisation of climate change data in diagrammatical form. 

 

 

Figure 5.6 Formulation of Climate Change Projections 

 

5.5.2 (ii) Match the Climate Data of the Development Site to Europe using a GIS. 

Current climate data (for precipitation and temperature) for Europe was obtained from the CRU 

climatology records, for the period 1961-1990, based on the latitude/longitude of an area at the 10’ 

resolution, as discussed in section 5.4. 

 

The climate data was imported into a GIS to spatially display the points across the globe.  Each month 

was a separate layer.  The location and climate attributes are stored in the GIS database.  As the 

~18km data points were based on latitude/longitude reference it meant that the outline of Europe 

was visually displayed on the GIS, further emphasised by applying the Food and Agricultural 

Organization’s (FAO) Country boundaries. 

 

The database was then queried to visually display the areas which currently experience the UK’s 

future climate; the ‘select by attributes’ function was used to search for areas that matched the 

climate that a given development site in the UK will have in 2050, based on their UKCP09 grid square 

future climate projection 10 – 90% values.  In the GIS for a given UKCP09 grid square for January with 

a future temperature value between 4.68 and 8.13°C (10-90% range), and a precipitation value 

between 49.87 and 75.19mm it appeared as such:  

“Jan” >=4.68 AND “Jan” <=8.13 AND “Jan1” >=49.87 AND Jan1 <=75.19 

“Jan” being temperature and “Jan1” being precipitation 
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The GIS then selected/highlighted those European points whereby there was a match, i.e. an area in 

Europe whose temperature value in January was between 4.68 and 8.13°C, and whose precipitation 

was between 49.87 and 75.19mm.  One could then visually identify where in Europe that was.  These 

were the ‘selected features’.   

 

Using the identify feature (a tool in GIS), verified by the world degree system, one could know exactly 

where that match was, i.e. the latitude/longitude of the area. 

 

As the months of the year were displayed on separate layers of the GIS, they needed to be combined 

so that the overall number of months matched for a particular grid square could be identified, i.e. to 

know how many months climate at one given point on the GIS were similar to that of the UK’s grid 

square future climate.   The GIS points were therefore converted into a Raster (cell size of 0.1666°), 

as raster cells store values.  A value of 1 was applied to a cell if, for example, it had a January 

temperature value and a precipitation value that fell within the grid square’s January temperature 

and precipitation 10-90% future climate values range, and if not, a 0 was applied to that cell.  The 

condition is essentially either met or not.  By converting the layers to raster it allowed these values to 

then be totalled up using the raster calculator.  If one location, for instance, matched the grid 

squares climate for all 12 months then a 12 was displayed for the cell.  A colour coding scheme was 

then used for each value between 1 and 12, visually displaying the best matched areas for a given 

UKCP09 grid square.  This data can then be presented as maps, an example of which is shown in 

figure 5.7. 

 

 

 

 

Figure 5.7 The climate matched visual output from the GIS for a given grid square 

 

It must be noted that the monthly precipitation values used in this research do not consider the soil 

moisture variation, soil drainage properties or the rainfall intensity within the month.  Each month’s 
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precipitation is essentially an independent event with no transferral of properties between one 

month and the next.  Any precipitation held within the soil is thus not factored into the method. 

 

The results of the climate matching are shown in chapter 8; the areas well matched i.e. with a high 

value, were further investigated by visual inspection of the overall climate through the creation of 

graphs displaying exactly where the European climate value fell within the 10 – 90% probability 

future climate range for a given grid square.  Consideration for being a suitable match was also 

decided by other factors like altitude. 

 

5.5.3 (iii) Explore Current Species and Habitats 

For a given matched location: 

In order to explore the current species and habitats at the analogous climate location contact was 

made with ecologists/botanists in the country of interest.  Guidance was sought on the general 

ecological information of these areas and field work was undertaken to obtain data on the flora 

present.  Standard procedures for carrying out survey work, e.g. quadrat sampling in the various 

habitats were followed (discussed in detail in chapter 9).  As field work was limited in its extent, 

accessible resources were consulted, e.g. archival records, online databases, to acquire published 

data and species lists relating to these areas.   

 

A summary of these data collection methods: 

By carrying out field work, direct observations are made.  One can observe the data in real time and 

understand the spatial extent of the flora.  There are however negatives with such data collection: it 

is time consuming; it is costly from a travelling point, hours needed by those undertaking the field 

work and any costs for external specialists, e.g. expert ecologists/botanists; the process of recording 

data is selective as it is not feasible nor practicable to collect plant species data for all locations, 

extent of fieldwork is therefore limited and biased. 

 

The source to obtain online species data will be country-specific websites, e.g. country level natural 

history museum online archives or botanical websites relating to specific areas of a country with 

atlases detailing species present.   National Historical Collections (NHC) hold vast data on many taxa 

of species including their diversity and distributions over time, with records continually expanding 

the database (Graham et al., 2004).  NHC data is utilised across many fields and they are important 

resources for use in biodiversity studies (Lister, 2011); the available information provided through 

these online resources will inform this research. 
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The strengths of using archival records is that they are collected records, the data is stable (Yin, 2003) 

in that it can be reviewed repeatedly.  They have been created for the function of providing botanic 

accounts of an area, they are exact (often containing names, references – the recorder, and details), 

with an often broad coverage of countries in such online resources, which will aid in furthering the 

framework.   

 

Disadvantages: if the website was disabled or was updated then records are lost (temporarily) and 

retrieval is not possible.  Access may also become blocked.  It is not known when the last extensive 

survey was undertaken and how often the results are updated.  The online resource will more than 

likely be in a foreign language, but most web browsers allow for translation, albeit not perfect.  The 

main data required, however, is the plant species - scientific names of which are universally 

understood. 

 

Other limitations are that one is reliant that the taxonomy of the species has been identified 

correctly, and there are more than likely biases associated with the spatial coverage of data 

collection (Graham et al., 2004).  There is the possibility that data may no longer be present at a 

historical collection site. 

 

In relation to creating the framework, this would involve a lengthy process of initially carrying out the 

climate matching, identifying areas which are suitable, visiting the areas if possible, and searching the 

country specific website for data available on the area of interest.  Data pertaining to the area(s) of 

interest must match up to the initial grid squares matched based on the latitude/longitude, and 

collecting the relevant online species data. 

 

5.5.4 (iv) Produce Species List 

The creation of planting lists for climate change comes from the collection of primary and secondary 

data, with some convergence between the data sources, e.g. some species were present in both the 

field data and the online data.   

 

The field data and online data should be collated for the matched area and a suite of suitable 

habitats/lists created based on the broad habitat types of the flora present and/or original habitat 

proposals for a given site, as well as sorting on Ellenberg conditions re-calibrated for the country of 

interest.  The habitats originally designated for the development site should be consulted and 

matched at the habitat level if possible.  The vulnerability and suitability of the species should be 

considered – identify any rare species, species on IUCN lists, species listed under WCA 1981 schedule 

9 and Habitats regulations. 
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Advice from an expert (e.g. botanist/ecologist) on the final species lists should be sought, with 

regards to the community composition and their suitability for planting on development sites. 

 

5.6 Case Study Approach 
In order to the test the above method it was necessary to adopt a case study approach so that all 

aspects of the process could be trialled.  In particular, plant regimes would only be available for sites 

being developed.   

 

5.6.1 Case Study Requirements  

A variation of case study sites was needed across the UK.  Varying location was one of the main 

objectives, as it was assumed that the climate matching of sites would reveal different locations on 

the continent.  Thus the final plant selections would be different dependant where in the UK the site 

was, illustrating the flexibility of the framework.   Other requirements included: 

- Brownfield development site, any kind of soil, 

- Ideally within the last 5 years, can have already been completed or still in progress, 

- Large scale where there is a requirement for biodiversity/habitat creation/landscape design 

e.g. large scale housing development, building of a factory in a non-urban environment. 

- More than just ornamental planting, 

- Need to have access to documents on the site conditions, intended use of site, planting 

documents; it therefore needs to be at this stage in the planning process. 

With this range of criteria, it was decided a practical number of 5 sites should be found to fully 

explore the method. 

 

5.6.2 Site Selection 

Planning application documents for development sites held on local council websites were 

investigated for their potential to be a case study, i.e. matched the requirements stated above.  

Knowledge of the site is paramount, as knowing the conditions of the site, and the habitats typically 

planned for the site will dictate the species selected when vegetation matching is performed at that 

stage in the framework.   These documents are freely accessible by an online searching portal.  One 

case study was already in place before the research commenced, which formed the basis of this 

research, as discussed in section 1.3.  Documents held at Middlemarch Environmental Ltd (MEL) 

were therefore utilised to obtain the relevant information. Overall, there were five case study sites 

selected which are listed below, and discussed in more detail in chapter 7.  Figure 5.8 shows the 

locations of these sites in the UK on the UKCP09 25km grid square layout. 
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- Eastern Quarry, Swanscombe, Kent (pink square on fig 5.8) 

- Olympic Village, Stratford, London (yellow square on fig 5.8) 

- Brogborough Landfill site, Central Bedfordshire (light blue square on fig 5.8) 

- Minworth Sewage Works,  Birmingham (white square on fig 5.8) 

- Wheatley Hall Road, Doncaster (dark blue square on fig 5.8) 

 

 

Figure 5.8 The UKCP09 25km grid square layout showing the location of the five case studies. 

 

5.7 Questionnaire 
Qualitative data on the research was obtained via an online questionnaire which was sent out to all 

members of the Association of Local Government Ecologists (ALGE) entitled ‘planting assemblages 

for a changing climate’.  ALGE is an association of professional ecologists working in local government 

in the UK.  With the aim to develop good standards of nature conservation, their opinions on the 

research topic were both valuable and credible.   

 

5.7.1 Purpose of Questionnaire 

The purpose of sending the questionnaire was to gauge the perception of ecologists when 

considering climate change and biodiversity; how much it is considered in their field of work; what 

action, if any, they can take; and what their thoughts are on introducing non native species into the 

planting assemblages on brownfield sites, and to creating resilient sites robust to climate change.  

Foddy (1994), involved in many sociology disciplines, believes it is reasonable for the researcher to 

treat respondents as peers, and that seeking feedback from the respondents is acceptable. 

 

The overall outcome of this research was to provide planting lists which incorporate species of a non-

native provenance into planting assemblages; the purpose of the questionnaire was not to divert the 
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research away from this or guide it.  However, by obtaining the ecologists’ views, knowledge of their 

attitude towards this approach could be gained, with an idea of how this research would be accepted 

by practitioners and others in the field.  It was envisaged that the qualitative data collected here 

would contribute to the case study development, provide direction and add value to this research.  

By observing the participant’s perspective one discovers new information that will ‘contribute to the 

development of empirical knowledge’ (Corbin and Strauss, 2008).   

 

5.7.2 Questionnaire Form 

Due to the large member base within ALGE, and their varied locations across the UK, a self-

completion online questionnaire was created, whereby respondents could reply in their own time.  

The number of replies would not have been matched if face to face to interviews had been 

constructed, as these require a greater degree of planning and more time from both parties.  The 

questionnaire was created using Bristol Online Surveys (BOS), with the  web link attached to an email 

sent out to all ALGE members detailing the research aims and what was required of the respondents.  

The respondents were informed that their identity would remain anonymous to avoid question 

threat (i.e. unease in answering a question) and to avoid respondents providing incorrect or biased 

answers (Foddy, 1994). 

 

The main problem with self completion questionnaires is that the interviewer cannot clarify 

questions; the respondent needs to understand the question, as stated by Foddy (1994) ‘in the way 

intended by the researcher’ and equally ‘the answer given by the respondent must be understood by 

the researcher in the way intended by the respondent’.  In order for this to happen, people must 

attribute the same values and meanings to words, and understand the structural component 

imbedded in the question.  This may not always be the case, and is another flaw associated with 

questionnaires of this manner.  More detail on the questionnaire design, content and the analysis 

can be found in chapter 6, with a copy of the questionnaire in appendix 1. 

 

5.8 Conclusion 
The methodology proposed aims to create species lists which will be able to tolerate the future 

climate better than current recommended habitat design.  In formulating this process, a climate 

matching technique has been developed to identify areas in Europe which currently experience the 

climate the UK is likely to incur in the future, utilising the most up-to-date projections to do so.  

Under a medium emission scenario for 2050, the 10-90% probability climate change projection range 

for temperature and precipitation have been calculated and combined with a baseline to create the 

future climate values.  For visualisation purposes a GIS has been incorporated into the methodology; 
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those areas climatically matched in Europe are displayed and the most suitable location can then be 

found on closer inspection of the overall climate match.   

 

Once a suitable location has been found vegetation data can then be sought from these locations 

through a combination of field work and published data sources.  A case study approach was 

employed in the methodology, to demonstrate its utilisation for any given development site in the 

UK, with the outcome to meet the long term objectives required for biodiversity at these sites.  A 

questionnaire was developed to inform the research with regards to vegetation matching and 

planting design, the results of which are discussed in the next chapter.   
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6. Questionnaire Design, Results and Analysis 

6.1 Questionnaire Design 
As mentioned in section 5.7 an online questionnaire was sent out to all members of the Association 

of Local Government Ecologists (ALGE) entitled ‘planting assemblages for a changing climate’.  The 

purpose of doing so was to gauge the perception of ecologists when considering climate change and 

biodiversity, with the outcomes of the questionnaire informing the research. 

This section describes the reasoning behind the questionnaire design and content.  The 

questionnaire was divided into four parts and is presented in appendix 1. 

6.1.1 Section 1 - About You  

The first section of the questionnaire ‘About You’, subsection ‘Your Work and Climate Change’, was 

designed to enable an understanding of the respondent’s role and their location.  It consisted of 5 

single answer closed questions, and one unstructured open ended question.  Even though all 

respondents did not necessarily have ‘ecologist’ in their job role title, this would be the term used 

throughout this chapter, for ease of reading. 

 

The purpose of Q5, an open ended question, was to see if the respondents had noticed any 

significant biodiversity changes attributable to climate change during the time they had been in this 

area of work.  As discussed in chapter 4, the literature indicates that climate change is having an 

effect on biodiversity, so it would be interesting to see if ecologists active in the field were observing 

changes and if there are any similarities between those in the literature and those observed by the 

respondents.  This was not specifically aimed at changes to plants, but all of biodiversity, as it would 

be interesting to note the changes observed across all taxa, if any. 

 

The point of Q6 was to find out the degree of flexibility the respondents’ respective councils allowed 

in making decisions relating to climate change adaption.  The responses given would indicate the 

approach taken by councils and whether there were strict rules staff must adhere to when it comes 

to decision making.   

 

6.1.2 Section 2 - Development Sites and Planning Involvement 

The second section of the questionnaire ‘Development Sites and Planning Involvement’, subsection 

‘Brownfield Sites’, relates to issues important to this research.  To maximise biodiversity on 

brownfield sites that are to be developed, developers need to be pro-active, as well as there being 

full involvement of the planning ecologist, to ensure all biodiversity aspects are considered.   
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Q7 would divulge how often developers, through the ‘ecologists’ eyes, willingly maximise biodiversity 

on a development site.  The responses would highlight whether developers are actively striving to 

maximise biodiversity on a site, or whether they chose to do the bare minimum to fulfil planning 

requirements.  

 

Q8 is an important question as it would relay the stage of development the ecologist is typically 

involved in.  The biodiversity of a site ideally needs to be considered before site plans and designs are 

created; biodiversity needs to be built in at the first stage, in the pre-application stages, especially if 

mitigation is an element of the plan.  Some ecologists are solely deployed in the construction phase 

of the development, i.e. as clerk of works, so it is expected that these stages would also be selected 

in responses.  The respondent could check more than one response, as it is assumed that many are 

involved in more than one stage.  In relation to this research, the incorporation of non-native species 

into planting regimes would need to be considered fairly early, for sourcing purposes, and the 

designing of the plant schedule.  

 

The attitude of respondents to the use of species of non-native provenance into new planting 

schedules for brownfield sites, as ascertained in Q9, is central to this research.  The outcomes of this 

research would involve using species of a non-native provenance, based on the climate matching as 

described in chapter 8.  By finding out the ALGE members’ feelings on this topic, would be a good 

indicator of the acceptance of this research and its outcomes. 

 

‘Action to Take’ is a subsection of this section of the questionnaire.  The action respondents would 

take to tackle the impacts of climate change on biodiversity was explored in Q10. The options given 

reflect a range of actions which are practised in the field or stipulated in the literature (e.g. 

translocation is an action used when saving vulnerable or BAP plant species) or actions taken when 

planning for biodiversity consideration and migration.  The responses to this, as in relation to Q9, 

would reveal the respondents’ feelings towards aspects of adapting to climate change.  The various 

actions given would reflect how open minded, or conversely, how cautious, a respondent was 

towards adaption.  By knowing the general consensus, will give an indication of how likely it would 

be that the outcomes of this research would be utilised in the field.   

 

6.1.3 Section 3 – Planting Selections 

The third section of the questionnaire ‘Planting Selections’, subsection ‘Planting Decisions’, contains 

one question which has multiple parts to it.  The first part is a dichotomous question to screen out 
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those not involved in selecting planting regimes for brownfield sites. This is followed by 3 linked 

questions. 

 

The aim was to understand more about the planting selection process, as creating planting 

assemblages is a stage of this research.  In Q11a respondents could select which factors/documents 

they consult when making these decisions. Three of the options – BAP recommendations (sect. 3.5), 

Landscape Character Assessments (LCAs) (sect.7.2) and schedule 9 of the WCA (sect. 3.3.2.4) can be 

consulted by local authorities to consider the surrounding landscape/species of interest.  It is, 

however, not compulsory that they are utilised, apart from the WCA which prohibits the use of 

certain non-native plants.  The NVC lists, provided as an option, describe communities typically found 

in the natural environment, which ultimately vary across the UK.  They are sometimes re-created in 

nature conservation projects.  Soil characteristics and aspect of site were listed as these options are 

common criteria which are examined when a site is to be developed, often dealt with on a site by site 

basis.  The respondents could also select ‘other’ as an option and specify which other 

factors/documents they consult. 

 

The purpose of Q11b, a likert scale question, was to see whether an ecologist could change decisions 

made by the landscape architects, who tend to be the ones responsible for devising the planting 

schedules.  This would be applicable, in relation to this research, if the architects have not considered 

species which are resilient to climate change, and the ecologist wishes to modify the lists.  From the 

case studies investigated, when wildlife trusts are consulted, they usually opt for strictly native 

planting regimes, and it is anticipated that they would be strongly against lists containing non-native 

provenances. 

 

The open ended unstructured question, Q11c, which concludes this section, aimed to discover what 

the respondents feel were the most important factors to consider when selecting planting regimes. 

By knowing what is critical to the selection process, one can make sure it is used in this research as a 

guiding factor. 

 

6.1.4 Section 4 – Biodiversity and Climate Change  

The fourth section of the questionnaire ‘Biodiversity and Climate Change’ subsection ‘Your Opinion’ 

consists of 3 questions. 



139 

 

Since the 2010 EU target to halt biodiversity loss was not achieved, Q12 related to the new 2020 

target that has been set, to bring current political agendas into the questionnaire.  This was included 

to see if the respondents felt biodiversity loss could be halted through the use of translocation and 

intervention measures (e.g. assisted colonisation), in order to compensate for those species that will 

become vulnerable to climate change. 

 

In Q13 in order to understand the attitude of the respondents in relation to resilient landscapes 

being the best way to tackle climate change when considering biodiversity, a likert scale was used. It 

is important to define key concepts (Foddy, 1994), as what people think of as a resilient landscape 

may differ from person to person, so a ‘More Info’ button was present so that all respondents could 

collectively see what was meant by this.  It stated ‘Resilience is the ability of a landscape to maintain 

its functions and characteristics after being disturbed or damaged. By including a matrix of both 

native and non-native species in new planting regimes for brownfield sites, it is hoped a resilient 

landscape will be formed.’  The second sentence in this statement was to assist in the respondent’s 

understanding of how resilience could be created on development sites. 

 

Q14, an open ended unstructured question, ascertained what the respondent felt would make a 

resilient landscape.  This question was included to see if there was agreement with how to tackle the 

issue.   

Subsection ‘Comments’, the last section of the questionnaire had an optional question (Q15) for 

respondents to leave their comments or thoughts with regards to this research.  The respondents 

could also leave their contact details if they wished to receive a copy of the results or were willing to 

be contacted for further questioning. 

 

Throughout the questionnaire there are four open ended questions and two questions which 

enabled respondents to leave a reply if they selected ‘other’.  These questions allow respondents to 

speak their mind ‘without being influenced by suggestions from the researcher’ (Foddy, 1994), it was 

therefore a clear decision to have these questions included. 

  

6.1.5 Sample Size and Distribution 

The online questionnaire was sent out to 329 email addresses, which were taken from the ALGE 

member database.  ALGE members are based throughout the United Kingdom covering 160 
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authorities over 12 regions; the number of ALGE members varies across the regions of the UK.  

Around 50 emails were undeliverable or failed to send, several were out of office and a couple were 

on maternity leave.  The questionnaire was sent out the 24th April 2012 and closed just after 15 

weeks, by which point 81 members had completed the questionnaire; this represented 29% of the 

whole organisation.  The next section aims to analyse and decipher the relevant information from 

the questionnaire to aid the research. 

 

6.2 Questionnaire Results and Analysis  

6.2.1 Section 1 ‘About You’ 

The professional job titles given by the respondents in Q1, and shown in figure 6.1 ranged 

from biodiversity officer through landscape architect to carbon landscapes co-ordinator.  With such a 

diverse range of job roles, it would be worthy to note the scope of opinions that were given, and how 

collective the general opinions were. 

 

Figure 6.1 Results graph for Q1 - What is your professional job title? 

 

Respondents who worked from all areas of ecology answered the questionnaire, as reflected in the 

results of Q2, shown in figure 6.2, suggesting the results will not be biased towards one kind of taxa.  

The same could be said for Q5 as respondents referred to all taxa when giving examples of changes 

to biodiversity due to climate change.  20% of the respondents stated that they covered all areas of 

ecology. 
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Figure 6.2 Results graph for Q2 - What area of ecology is your work focused on? 

 
As shown in figure 6.3 the largest number of responses was from the south west and south east 

regions, with 12 from each.  There were only 3 responses from Northern Ireland, Scotland and the 

North East and only 2 from London.  This could be down to fewer ALGE members represented in 

these areas or fewer council areas in these regions, and/or the technical problems with the email 

distribution as mentioned earlier.   

 

Figure 6.3 Results graph for Q3 - Which region of the UK is your work based in? 

 

67% of the respondents had been working in an ecology related field for 10+ years, with all 

respondents having worked for longer than a year in ecology (see figure 6.4).  Responses were 

therefore largely informed from experience gained over time. 
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Figure 6.4 Results graph for Q4 - How long have you been working in an ecology related field? 

 

72% of the respondents had noticed significant biodiversity changes attributed to climate change 

during their time as an ‘ecologist’ as shown in figure 6.5.  This is in accord with observations reported 

in the literature in section 4.5. 

The relationship between length of time in service and changes observed is shown in figure 6.5.  82% 

of the 10+ years working in an ecology related field category replied ‘yes’ to noticing significant 

biodiversity changes.  There were more ‘no’ replies to observed changes in the 1-3 year and 3-5 year 

categories, but these respondents may not have been in the job long enough to notice changes in 

biodiversity characteristics. 

 

Figure 6.5 Results graph for Q4 cross tabulated with Q5 - Have you noticed any significant 
biodiversity changes, attributed to climate change, during this time? Against no. of years in an 

ecology related discipline. 
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The results from the open ended component of Q5 were tallied into appropriate headings 

summarising the thoughts of the respondents.  The results are shown in figure 6.6. There is more 

variability in open ended questions than closed ones, but the best way to approach these results is to 

categorise them into common themes with the main points acknowledged. 

 

Species distribution was mentioned by 23 respondents, with the following phrases and terminology 

being assigned to this category – ‘‘spread and contraction of species’‘, ‘‘species moving north’‘, 

‘‘range increase’‘, ‘‘arrival from the south”, ‘‘changes in range/distribution”, and ‘‘increased levels of 

species at the northern limit of their ranges”.  When changes were referred to in relation to specific 

species, it included the following: dragonflies (2 times), Orthoptera (3 times, inc. Roesel’s Bush 

Cricket, short and long winged Coneheads), butterflies (8 times including Speckled Wood and Holly 

Blue), wintering waders, breeding birds, bats, the spread of plant pathogens, invertebrate 

movements (4 times), moths (2 times) and plants (2 times). One respondent mentioned that the 

Gunnera plant on Skye and the Western Isles had spread particularly; “it used to be hard to keep 

alive in Skye as it died off in the winter, now it is spreading along road ditches and becoming quite 

obvious”.  If this is an observation in Scotland, then it would be expected that places further south, 

where climate change is likely to be more apparent (UKCP09, 2009), would also be experiencing 

similar events. 
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Figure 6.6 Results graph for Q5.a. - If Yes, what changes have you noticed? 

 

Phenological changes were noted by 15 respondents, and when specified, included: earlier 

amphibian breeding/spawning times; flycatcher breeding times, the sightings of bats in January; a 

change in migrant arrival times; species growing/becoming active earlier/later in the year, 

consequently with species often out of synchrony with flowering times etc; changes in timings of 

bud-burst and flower emergence of certain plants; early laying of nesting birds and thus a longer bird 

nesting season; and seasonal changes - onset and length.  One respondent commented that the 

extended autumn and early spring has led to a shorter dormant period for woody plants, 

consequently shortening the planting season for barerooted stock. The phenology of insects has 

changed, and there have been noted arrival fluctuations of Hirundines. 

Decline in species was noticed by 11 respondents with reference to: insects, reptiles, 

amphibians, nightjar, invertebrates (mentioned twice, with likely migration to the north), butterflies 

(mentioned twice), freshwater plant species (in relation to saline incursion), and nesting birds. This 

may be due to the recent succession of poor (wet) years. Decline in species may also be down to 

pesticide use and habitat destruction.  One respondent has noticed the decline in fruiting of many 
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fungi.  The decline in species noticed in some areas could be linked to the change in species’ ranges, 

as opposed to a drop in numbers, as they leave the southerly ranges of their distribution in response 

to climate change or other pressures.  A respondent from Scotland states that “many common 

species of plants and animals are far less frequent and also seem to be in general decline, and many 

species frequently associated as being southern species, are increasingly being recorded in the 

various habitats they manage”.  Species in Scotland may run out of future suitable climate space (a 

concept discussed in chapter 4), with nowhere else for them to go and an increased possibility of 

extinction.   

An increase in species population, i.e. abundance, has been noticed by 10 respondents, with 

increases in species such as Banded Demoiselle (dragonfly), Orange Tip (butterfly) and Bombus 

hypnorum (garden bumble bee) being observed by a respondent from Yorkshire & Humberside.  A 

respondent from the South West states there is also an increasing number of colonising 

invertebrates e.g. Lepidoptera, Odonata, and possibly the invasive Harlequin ladybird.  There has also 

been increased numbers of little egret and hummingbird hawk moth observed in this region.  

Speckled Wood and Comma butterflies are becoming more commonplace at the furthermost edge of 

their range as commented by a respondent from East Midlands.  One respondent from East Anglia 

states that as a child “dragonflies were considered one of the groups that had suffered most in our 

countryside, largely as a result of changes in farming practices and pollution. But now, probably as a 

result of climate change, we have several more species breeding regularly in the UK, we have more 

new additions than lost species in earlier times”.  Two more observations from respondents in the 

South West included an increase in N tolerant plants, lichens and fungi, and plants such as Cortedaria 

sellonana have produced viable seed which previously had not occurred.  A possible reason for this 

may be the warmer temperatures permitting the reproductive phase of the plants life cycle and thus 

the production of seeds (Huntley, 1991), which previous temperatures did not allow. 

Observations of both species decline and increase could be a result of species expanding 

their ranges.  Ecologists are thus observing an increase in numbers locally as they migrate polewards 

with climate change, as opposed to a nationwide increase in numbers. 

New colonisation of invertebrate species from Europe had been observed by one 

respondent.  New species, including breeding birds and dragonflies have been observed by five 

respondents. In the South East they are starting to get breeding invertebrates normally associated 

with Central Europe. In the West Midlands, new species have been recorded including the Lesser 

Horseshoe bat, and several rare invertebrates.  Isolated populations of dragonflies are also 

expanding.  
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Difficult breeding conditions for wildlife have been observed by 3 respondents, probably as a 

result of extreme weather events.  One respondent remarked on the recent 5-6 bad summers and 1 

very severe winter which occurred when temperatures reached -20°C for weeks.  One respondent 

stated that there was less predictability in relation to river flows, and the natural filling of lakes.  On a 

similar topic, another respondent stated that a drought in early spring meant that when a river rose 

later on, a swan’s nest was washed away before the signets had hatched. 

The effect of extreme weather patterns on habitats has been observed by 4 respondents. 

One respondent stated that the influence of landslips on the landscape was not something they had 

ever heard of when they were a child 30 years ago, but they are now quite common on a small to 

medium scale. This may be due to soil erosion as a result of more frequent heavy rainfalls. In the 

Western Highlands, over the last 7+ years there has been a trend of dry springs to the point where 

the bog pools start to dry out, in some cases completely. The same respondent mentions that “also 

in the west highlands, in the spring and summer, there has been a greater tendency for a very high 

rainfall over a short period causing gravel to be washed out of the rivers, with burns reducing 

spawning habitat for salmonids.  All these events have been caused by the warming trend we have 

been experiencing for the last 40 years causing more extreme weather events at unusual times of the 

year”.  A rise in wildfire incidents has also been observed by another respondent, causing damage to 

biodiversity (e.g. heathlands) due to the “uncontrolled nature of burn and intensity”.  The likelihood 

of unpredictable weather patterns and extreme events becoming more frequent may leave 

biodiversity vulnerable to the consequences.   

The death of certain tree species may be linked to climate change providing suitable 

conditions for fungal attack, as noticed by 2 respondents.  One respondent would consider “the 

various problems and pests of elm, oak and horse chestnut etc to have some climatic connection”.  

The issue of tree death and the more recent ash dieback are discussed in section 10.2.1. 

Salt marsh erosion has been observed, with one respondent stating that “the accelerated 

rate of this could possibly be linked to climate change induced storminess/wave intensity”.  Another 

respondent has stated that “coastal squeeze has affected the quality and extent of saltmarsh, 

mudflat and intertidal habitats”.  With changes in sea level, coastal areas in particular, will be 

vulnerable to the effects of climate change.    

 

Figure 6.7 shows the cross tabulation of Q3 and Q5, and although there were more respondents from 

the SE and SW that completed the questionnaire, more of these respondents have noticed changes 

than not.  With the South already experiencing greater changes in climate than the rest of the UK, it 

hints to changes in biodiversity correlating with the changes in climate. 



147 

 

 

Figure 6.7 Results graph of Q5 cross tabulated with Q3 –‘Have you noticed any significant biodiversity 
changes, attributed to climate change, during this time?’ against ‘Which region of the UK is your 

work based in?’ 

 

Figure 6.8 shows that 83% of respondents’ individual thoughts towards climate change are always or 

sometimes allowed to influence their work; a high percentage, therefore, can have a say over the 

biodiversity of their area.  In relation to this research, if ecologists could have a say over the plant 

selection for a development site, then headway could be made in creating resilient landscapes 

through the selection of appropriate species. 

 

Figure 6.8 Results graph for Q6 - Are your individual thoughts towards adapting to climate change 
allowed to influence your work? 
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6.2.2 Section 2 - Development Sites and Planning Involvement 

Nearly half of the respondents (44%) for Q7 answered that only in 1-20% of their cases do developers 

willingly want to maximise the biodiversity of a brownfield site (see figure 6.9), with ‘None’ being the 

second most common response (20%).  This reflects how more pressure/encouragement needs to be 

placed on developers to actively enhance or increase the biodiversity aspects of their site, relating to 

the planning issue discussed in chapter 3, where developers will most often just do the minimum 

required to obtain planning consent.  Some developers do however go further, but this appears only 

to be a small percent, as reflected in the results of Q7.   

 

Figure 6.9 Results graph for Q7 - Have you noticed developers willingly wanting to maximise the 
biodiversity of a brownfield site, if so, in how many of your cases? 

 

Question 8 revealed that 73% of respondents are typically questioned on the ecological/biodiversity 

aspects of a site during the pre-application stage, and as respondents were allowed to select more 

than one option, a greater percent (81%) stated that they are questioned during the application 

process (see fig 6.10).  This demonstrates that professionals are consulted before the application gets 

taken to the design stage, which is crucial for ensuring that biodiversity is incorporated into the 

development site plans.  The 10 respondents that put during the ‘operational stage’, which by itself is 

too late down the line to consider biodiversity effectively, had also put other stages of development 

and not just this stage. Those involved during the operational stage normally undertake the 

monitoring and management of biodiversity on site, e.g. the clerk of work duties. 
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Figure 6.10 Results graph for Q8 - At what stage are you typically questioned on 
ecological/biodiversity aspects of a site? 

 

Only 12% of the respondents were in favour of introducing species of a non-native provenance into 

new planting schedules for brownfield sites (Q9), as shown in figure 6.11, with 43% against. 45% of 

respondents were undecided on the matter.  These views may well have been influenced by the 

many bad connotations associated with non-native species, their potential invasive tendencies and 

ability to cause damage to native biodiversity, and the costs associated with remediation.   

 

Figure 6.11 Results graph for Q9 - How do you feel about introducing species of a non-native 
provenance into new planting schedules for brownfield sites? 
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had a greater percent for the ‘for it’ response over the other responses.  As those in the south have 

already observed significant biodiversity changes, as evidenced in figure 6.7, this may well have 

influenced the responses from those in that region.  Scotland recently passed an act which prevents 

the planting of species outside their native range (Scotland Wildlife and Natural Environment Act, 

2011). 

 

Figure 6.12 Results graph for Q3 cross tabulated with Q9 – ‘How do you feel about introducing 
species of a non-native provenance into new planting schedules for brownfield sites?’ Against ‘Which 

region of the UK is your work based in?’ 

 

The respondent could tick more than one of the actions to tackle the impact of climate change on 

biodiversity in Q10, the results of which are shown graphically in figure 6.13.  The action ‘ecological 

corridors, stepping stones’ was selected by 69 of the respondents, exemplifying that there is a strong 

support for connecting the biodiversity throughout the country.  ‘Intervention – translocation of both 

native and non native’ was selected by 14 of the respondents, 15 respondents were for ‘intervention 

– translocation of only native species’, and 18 people were for strict conservation practices (native at 

all costs). This illustrates that there are mixed views regarding respondents views for biodiversity 

when considering climate change.  However, it also confirms the results for Q9 that the respondents 

are more in favour of maintaining native habitats rather than introducing non-native species.   
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Figure 6.13 Results graph for Q10 - Which of the following actions do you feel should be taken to 
tackle the impacts of climate change on biodiversity? 
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identified:  

(1) More research and data on the scenarios and implications of climate change, before valid 

decisions are made (6 of 31 respondents) - as one respondent says ‘‘there is no point introducing 
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introduce a species into an environment if their suitability were not assessed and, as discussed in 

section 10.2.1, Plantlife (2010) have already created a risk assessment tool for non-native species. 

(2) Larger conservation efforts (11 of 31 respondents); maintaining/enhancing what biodiversity we 

have, creating biodiversity networks to connect ecological areas, and monitoring habitat/species 

change.  Lawton’s principle of more, bigger, better and joined from the Making Space For Nature 

report (Lawton et al., 2010), as discussed in section 3.8.1, was mentioned or inferred by the 

respondents, with buffer zones also brought up.  One respondent stated that a robust 

methodology needs to be developed for monitoring landscape change. This theme of larger 

conservation efforts  was the most common topic mentioned, illustrating that respondents 

believe a major way to tackle the impacts of climate change on biodiversity, would be by 

strengthening what we currently have, and essentially, creating more of a connected ecological 
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section 4.6, so larger efforts are needed to conserve and re-connect landscapes across the 

country. 

(3) Suitable climate resilient species (6 of 31 respondents); a few of the respondents are keen to 

consider species which will be resilient to future climatic shifts, with one respondent stating that 

only ‘‘native, local species that *should be* resilient” should be selected.  Another respondent 

believes that we should ‘‘consider future climate space for species and their current UK range” a 

thought which is also echoed in a respondent from the north west who stated ‘‘we are not averse 

to considering species that may be more southern to the UK being used”.  Conversely, some 

respondents are keen to identify those native species whose ranges extend into Europe, with one 

respondent stating that we should ‘‘introduce individuals from the more southerly extents of their 

range”, and another respondent with similar views stating we should ‘‘encourage phenotype 

resilience when selecting plants, as some native species have a European range”.  These 

comments are positive in relation to this research.  A few respondents are cautious, and correct in 

being so, when they say ‘‘only where a clear case is a made” in reference to the introduction of 

non-natives.  As one respondent says, it is not about native versus non-native as ‘‘species will 

often change their own natural range, and we won’t have much control over those that are 

mobile anyway”; what naturally occurs as the climate changes will be interesting to note, and as 

mentioned in section 4.4.1, it is likely non-analogue communities will form.  

(4) Natural progression (1 of 31 respondents); one respondent believes nature should be left to take 

its own course of action and not to interfere, one should just ‘‘manage the physical nature of the 

site, substrate, topography, bodies of water etc, then leave alone”.  However, this raises the 

question that if species from the continent arrive naturally in the UK and end up on protected 

sites, would these be accepted and allowed to establish there, or would conservationists 

intervene.  This is also a point raised in the BRANCH project, discussed in section 4.12.6, with 

regards to the conservation measures on designated sites. 

(5) Society and planning (7 of 31 respondents); one respondent believes a ‘‘change in society and the 

way we think” is needed in order to tackle such problems.  This is a pertinent observation, as all 

those with an interest need to be in agreement in order to make a concerted effort and prevent a 

collapse in biodiversity, with a gain in biodiversity by 2020.  A couple of respondents believe we 

can tackle this problem indirectly by targeting those that have influence/power: ‘‘at a political 

level, tackle the false assumption that economic growth can continue indefinitely within a finite 

world”, or by changing habits of excess energy consumption, and consumption generally, 

including use of land.  A few responses relate to the methods employed for the planning of the 

environment; green infrastructure plans need to be developed and implemented, sustainable 

urban drainage systems (SUDs) need to be installed, and invasive non-natives species removed.  

Agricultural environment schemes were also mentioned with regard to maintaining and 
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enhancing networks across the farmed environment, which can be linked to the connectivity issue 

of point (2) above.  Agri-environment schemes have bettered some aspects of the environment, 

with incentives given to farmers in return for this. 

 

6.2.3 Section 3 - Planting Selections 

As ascertained by Q11, 72% of the respondents are involved in selecting planting regimes for 

brownfield sites, which is a significant number. Of those that are not involved, from their job role one 

would not expect them to be involved in this activity, i.e. coastal officer, carbon landscapes co-

ordinator, natural resources manager. 

 

In relation to Q11, Q11.a and figure 6.14 shows which factors/documents people consider when 

selecting planting regimes.  Of the 58 that are involved in planting selections, 52 use BAP habitats 

and species recommendations to help make their decisions.  Soil characteristics and the aspect of the 

site were also highly ranked, as these vary from site to site.  Out of the 58, 26 respondents use 

National Vegetation Classification lists (NVCs), the same proportion as use Landscape Character 

Assessments (LCAs).  The use of NVCs illustrates that respondents are for re-creating natural habitats 

on sites.  It is felt that authorities which consult NVCs and try to recreate these communities are 

enhancing the biodiversity of a site at a more natural level, i.e. avoiding typical ornamental shrubs 

used on development sites, with a much better outcome for the biodiversity of the site.  The use of 

LCAs reflects how respondents like to retain the character of the surrounding area, and ensure that 

local biodiversity/use of local species are a consideration of the selections.  About half of the people 

who are involved in planting selections also use schedule 9 of the WCA.  In using this guide it could 

be assumed that non-natives are being used, and the ecologists are merely checking that they are 

not on the prohibited list. 



154 

 

 

Figure 6.14 Results graph for Q11.a - In making these choices which factors/documents do you 
consider? 

 

28 of the respondents took advantage of the option in Q11a to enter ‘other’ documents/factors 

considered.  The responses were tallied into common themes, and the results are shown in figure 

6.15.  A third of the people mentioned that local species/biodiversity to the area should be 

considered to help make planting decisions, with one respondent commenting that they “usually 

base new species mixes on the pre-existing site and that can also be sourced (seed collection or 

habitat pallets) from the original site”.  By keeping the seed mix local, it means the genetic pool is 

maintained, and seed banks will be reasonably near for establishment purposes.  One respondent 

stated that local species should be used but that this “does not exclude non-natives” which 

correlates with another respondent’s acknowledgement of the wildlife value of non-native species.  

If a non-natives species does not bring any benefits to a habitat, or its advantages do not outweigh 

the negatives, then such species would not be considered.  Pre development conditions were also 

mentioned, as well as the maintenance and management requirements of the site, and the future 

use of the site.  If there is not enough budget for long term management/monitoring then low 

maintenance biodiversity schemes are used, as one respondent stated there is  ‘‘no point in creating 

a habitat which cannot be adequately managed”.  Another respondent commented that “Trees from 

seed gathered in more southerly locations to try and build in resilience to climate change” should be 

used.  This is a reflection of what this research is trying to create – habitats resilient to climate 

change, based on species ranges and climate suitability.  Westonbirt Arboretum has a section of 

trees which are of Mediterranean origin, as an example of the trees which are adapted to the climate 

likely to be experienced in the UK over the next couple of decades. 
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Figure 6.15 Results graph for Q11.a. option – other. 
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Figure 6.16 Results pie chart of Q11.b - Are you able to have an influence over the landscape 
architect's planting selections? 

 

The responses to Q11c were similar to those for Q11a. It is an open ended question and 54 people 

commented, including those that replied they were not involved in selecting planting regimes, 

demonstrating that ALGEs members have an opinion on this matter regardless of their job role.  

Responses were once again tallied into re-occurring themes with all the results shown in figure 6.17.  

The most common response was consideration of the local biodiversity, the surrounding landscape; 

this is a key consideration as what is planted on site needs to be appropriate and complementary to 

the adjacent habitats and landscape forms - as one respondent stated the planting needs to be 

“enhancing local landscape character”.  This again links to the LCAs, and will be considered in this 

research as a guide for the planting selections created for the case studies.   In relation to this 

themed response, a sites position in the ecological/green network was mentioned by a couple of the 

respondents.  These kinds of networks are becoming more common and implemented by planners as 

a way of understanding the ecological zones in their area, and the best way of connecting them.  This 

again echoes Lawton’s principles, with ‘joined’ zones created as a way of improving the countries 

biodiversity.  

The second most common response was consideration of the pre-development habitats and 

the scope for enhancing/retaining these habitats.  If the development plans allow for habitats to be 

kept, then enhancing such habitats will inevitably be the best course of action, as this causes the 

least disruption.  Species suitable for the sites condition and location was stated by 15 respondents; 

depending on the underlying conditions of the site – the soil, the geology, the topography, the 

drainage, possible contamination.  Five respondents mentioned that species should be selected to 

maximise invertebrate potential, with “plant diversity leading to invertebrate diversity”. 
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A lack of clarification of this research was discovered here, as 9 of the respondents all believe 

that the first consideration should be assessing whether planting is appropriate, and to leave the 

brownfield site to naturally colonise.  They state that brownfield sites should be left alone as they are 

a diverse kind of habitat “Brownfield sites are often most interesting because they represent early 

successional habitats…the best option might well be to allow natural regeneration, colonisation and 

succession to occur, managing only problematic species – or to manage to maintain a certain kind of 

habitat.’  Other comments included ‘‘Is it likely to be developed?”  This is all true but this research is 

looking at planting for brownfield sites which are development sites, i.e. a lot of the site will be 

destroyed for creating new developments e.g. residential developments, and new planting regimes 

are required on areas where biodiversity has been lost to the development. 

Although 2 of the 54 respondents would only plant native species or native species of local 

provenance, another 2 were more open to the use of non-natives.  One respondent stated that as 

long as there were no problems with compensating for the loss of biodiversity on site then they were 

“happy for non-invasive, wildlife-friendly non natives to be used as part of an urban/sub-urban 

planting scheme”, and another observed that “avoidance of alien invasive species, depending on 

priority species on site, could include non-native nectar/pollen bearing plants”. Two respondents also 

made reference to having species which are “climate change resilient”, and “robust native species”, 

demonstrating that species which are more resilient/robust/hardy may be considered.  In deciding 

which species these are, one would need to know the vulnerability of the species under debate. 

BAP habitats were mentioned in relation to “target species” that the site could be planted 

with, as a way of delivering biodiversity gain “current biodiversity value – opportunities for BAP 

enhancement”.  This links to Q11a when 52 of the respondents indicated that they use BAP habitats 

when making planting selections for brownfield sites. 

An interesting comment was made by one respondent, which relates to the way people view 

conservation and the biodiversity of our country: “…but there can be too much emotional 

attachment to ruderal/transient brownfield site flora, and a longer term picture is required.”  There 

seems to be contradicting views between ecologists/conservationists and the extent of protection 

certain habitats should be awarded, and whether species that are not normally associated with an 

area should be allowed to be introduced.  As one horticulturalist once said ‘‘we need more joy in our 

habitats’‘ (Hitchmough, 2011), and if this can be achieved by using flora not normally associated with 

the area then some thought should be given to this idea.   



 

 

                                 

Figure 6.17 Results graph of Q11.c. On brownfield sites, what do you think are the most important factors to consider when selecting planting regimes? Response – Other.
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6.2.4 Section 4 - Biodiversity and Climate Change  

The results of Q12 show that there is a mixed view from the respondents in regards to achieving no 

net loss of biodiversity by translocation and intervention.  43% of respondents were undecided on 

the matter, whilst 36% actually believed no net loss of biodiversity could be achieved via this 

approach, 21% thought that this was not achievable with such measures.  

 

In Q13 none of the respondents disagreed that a resilient landscape is the best way to tackle climate 

change when considering biodiversity, with the majority either strongly agreeing or agreeing, as 

shown in figure 6.18.  This is a positive response.  Respondents probably have different views of what 

a resilient landscape is, as suggested by their answers to Q14.  

 

Figure 6.18 Results graph for Q13 - Do you agree a resilient landscape is the best way to tackle 
climate change when considering biodiversity? 

 

80% of the respondents (65) left a response to the open ended Q14 in relation to what will create a 

resilient landscape.  The positive response rate reflects their passion on the topic.  Many of the 

respondents gave quite lengthy answers, but these could be categorised into prevalent themes 

running throughout the responses.   

The main response was for the use of ecological corridors and connectivity between habitats, 

both mentioned 14 times.  Respondents were keen for these to be more commonplace as they allow 

for species to move naturally throughout the landscape.  The landscape needs to be repaired after 

years of heavy fragmentation, as one respondent stated, we need to ‘reverse’ fragmentation.  There 

were 7 references to the Lawton report and his principles (i.e. bigger, better, more and joined up 

areas), with respondents wanting “bigger, better quality habitat creation and restoration schemes”, 
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to include protected areas and local wildlife sites. Some respondents noted that maximising habitat 

potential/ecological value should be applied to all areas of green space, including urban 

environments, agricultural land, natural environments, roadsides and developments.  A couple of 

respondents mentioned the use of buffers as a way of enhancing current special sites/nature 

reserves – “ancient woodland surrounded by ‘protective planting’”, and again the concept of 

management and maintenance was rife throughout, with the notion that if habitats are well 

managed then resilience is maximised.   

Eight respondents commented that there should be a mosaic of habitats which would 

provide diversity and variety and thus create resilience, and that the answer is “not necessarily 

planting non-native species”.  A range of plants with different traits are more likely to survive a 

disturbance than habitats which are uniform and of limited diversity.  Linking with this notion was 

respondents’ views that there should be ‘a core of species that can tolerate extremes of weather’.   

Another theme related to the issue of water.  With extremes of weather expected with 

droughts and heavy rainstorms/flooding, water availability will fluctuate and cause some major 

problems for habitats.  As one respondent commented, the changes in water over time need to be 

accounted for, particularly for wetland habitats, in order to maintain resilience to climate change.  

Another stated that abstraction from chalk rivers should be reduced and in relation to flooding there 

should be a reduction in solid hard surfaces, which relates to another’s view that we should use SUDs 

where appropriate.  A strict land-use comment from one respondent was to “stop all employment 

and housing development in flood risk zone 3 and restore river corridors”, and in relation to coastal 

areas another respondent believes sea level rise should be planned for with “managed realignment 

of flood defences”. 

A third theme was that of acceptance and adaptation to climate change.  Several 

respondents were of the belief that change should be accepted and worked with, with one 

respondent even stating that plant species “from more southerly communities in clearly defined 

circumstances” should be planted.  Another respondent concisely stated that to create landscapes 

resilient to climate change “intervention, management and appropriate resilient species selection for 

schemes” is needed.  Cautious comments made by some respondents were, firstly, in relation to 

maintaining the genetic variability of flora and fauna as “to allow the best chance to respond to 

changing conditions” linking to the earlier mention of plant diversity and the inherent resilience 

provided.  Secondly, better understanding of the likely impacts is needed “so they can be mitigated 

e.g. to prevent such devastating effects like that of the Dutch Elm Disease in the 1970s”. 

Land use as a limiting factor for landscape resilience was brought up quite often, and one 

respondent stated that a resilient landscape “will require considerable effort given the intensity of 
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(competing) land uses”.  This links to another respondent’s view that reducing fragmentation will be 

very difficult “due to increasing pressures on land for development and intensive agricultural 

production”.   With agriculture land occupying over 70% of the UK land surface (Foresight, 2010), the 

better managed it is for improving biodiversity then the more chance there is of achieving no net loss 

of biodiversity.  Development sites should also be better managed and contribute to biodiversity gain 

across the landscape, echoed in the National Planning Policy Framework (NPPF), where they suggest 

biodiversity should be enhanced where the opportunity exists. 

A few responses were in relation to the attitude of the government, and the priority that is 

given to biodiversity in planning policies, as one respondent put it, there needs to be “better 

integration of biodiversity into policy” and another believed we should ensure “that the environment 

is given sufficient weight as part of the planning process”.  The NPPFs principle objective, as 

discussed in section 3.9.2 is for sustainable development, and sometimes this will have positive 

consequences for biodiversity, and other times negative.  Consideration of biodiversity over the last 

couple of decades has no doubt improved, but more can be done to ensure it is protected.   

Two of the respondents thought that there should be greater financial incentives to 

landowners for biodiversity enhancement, which inevitably would increase biodiversity across the 

landscape, but this needs to be in conjunction with other gains for biodiversity.  Another two 

respondents believed that there needs to be “maximised investment” and a “greater appreciation” 

of biodiversity conservation in the wider countryside, so government funding needs to be delivered 

here for landscapes to become resilient.  Twelve conservation projects were recently launched across 

the UK as a result of the Lawton report (Lawton et al., 2010) with the creation of nature 

improvement areas, illustrating that biodiversity loss is being addressed. 

A few respondents favoured natural processes/natural regeneration as the best way of 

creating resilience against climate change, with one respondent stating that there needs to be 

“capacity to evolve naturally with minimal intervention”.  Another respondent had similar beliefs but 

was in favour of preparing to adapt to climate change along the coast, where areas are predicted to 

be negatively impacted.  It is felt that the risk of losing more species could increase if nature is left to 

take its course, as some species will not be able to migrate in time and track the unprecedented rate 

of climate change.   

Community involvement was another theme raised in the responses, and one respondent 

stated that if the landscape provides key services to local residents then “they are more likely to look 

after it” and ultimately management and after-care are key to securing biodiversity longevity.  Along 

similar lines another respondent believed local community resilience projects are the answer, such as 

woodland creation, food growing, local renewable energy and cultural heritage enhancements.   
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Good planning was a theme in the responses, along with biodiversity friendly farming, as a way of 

creating resilience.   

 

The respondents were given the opportunity to leave comments or thoughts on the research in Q15 

and 42 did so, with about a quarter of the respondents interested in the research and the results.  A 

few found the research useful and relevant with one respondent stating that the outcomes “should 

aim to influence policy and decision makers”.  Some of the feedback was informative, giving direction 

and pointers, and some were critical of the research.   

 A couple commented on the topic of translocation, with one respondent stating that 

translocation would “be a last resort for very vulnerable species, and by their very vulnerability, 

translocation may not be a practical option because habitats may not be specific enough for them”.  

Another also stated that translocation would be “ok in limited circumstances where there is a good 

chance it will work”.  One respondent made a very pertinent observation about how “climatically 

appropriate non-natives will have a higher probability of becoming invasive, especially if they are 

naturally limited in their home environment by specific controlling species (e.g. specialist 

invertebrate herbivores)”, a factor which is considered in this research.   

 One respondent stated “engagement with the landscape design and construction industry 

will be key, as the dominant aim of landscaping still appears to be limited to visual amenity” which 

enforces the matter of trying to create areas of high biodiversity on development sites, rather than 

just for visual amenity purposes.  The fact that non-natives are currently used in planting schemes on 

development sites was brought up, and one respondent stated that a native versus non-native 

approach is not the approach to be taking, but trying to achieve “maximum ecological gain or benefit 

whether with or without native species” is encouraged.  A respondent with strong views stated that 

they “do not want to see our local biodiversity evolve into that of another country”, and are against 

the careless design used by landscape architects when they include such species as Laurel and 

Rhododendron.  They also felt that the robust native plants, such as hedgerows and trees are not 

suffering as a result of climate change, this situation, however, may be different in 2050.  Other 

respondents were very concerned about the inappropriate planting of non-natives. 

 

6.3 Questionnaire Evaluation and Conclusions 

Although only 29% of the ALGE members responded to the questionnaire, their responses were 

nonetheless valuable and informative for the research.  Possible limitations of the questionnaire 

relate to a lack of clarification on the term ‘brownfield land’, as some have misinterpreted this as 

referring to brownfield habitats which are often of high ecological value.  However, this research 
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relates to brownfield land to be newly developed with new habitat creation, their opinions on some 

questions are therefore irrelevant to this research.  As found by Foddy (1994) misinterpretation is a 

common problem with the collection of data through a questionnaire survey.  The 6 open ended 

questions in the questionnaire produced a large quantity of data to sort through; this could have 

been narrowed, and the respondent be asked only for the main reason and not all reasons to provide 

succinct responses.   

The questionnaire has, however, highlighted that the majority of ecologists in the field are 

noticing changes to biodiversity, but that their means and ways of dealing with the impacts of 

climate change on biodiversity vary considerably.    All respondents believe that some kind of action 

is required to tackle the problem of climate change, but many are in favour of maintaining native 

habitats rather than introducing non-native species to create resilience; only 12% were in favour of 

introducing species of a non-native provenance into new planting assemblages for development 

sites.  A few respondents were also not averse to considering species southern to the UK, 

acknowledging that some species have a European range.  Some respondents are cautious when it 

comes to non-native species, but only suitable species of a non-native provenance, as selected 

through the framework, would be recommended in this research.  The benefits of non-native 

species, including a longer flowering season, need to be recognised, with many non-native species 

already accepted as part of the natural scenery.   

Of those involved with planting selections for development sites, the majority consult the 

BAP habitat and species recommendations for their species selections.  The use of the BAP is 

important, as its existence stems from international biodiversity legislation, but with many BAP 

species unlikely to be suitable for climate change, their inclusion in current planting schedules should 

be re-assessed.  When considering the suitability of species chosen to create resilience, a judgement 

needs to based on all considerations, i.e. LCAs, so that the best option for the site is created.  The 

next chapter identifies the site conditions and proposed developments, including the current 

planting lists, for the case studies selected to test the methodology of this research. 
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7. Case Studies 

7.1 Introduction 
As discussed in section 5.6, five case studies have been identified in the UK to understand the current 

practice with regards to biodiversity requirements on development sites and by which to test the 

proposed methodology.  Using online documents the relevant details pertaining to the case studies 

were investigated for the biodiversity aspects of each site, particularly the planting regimes and 

assemblages for each development.  Figure 7.1 shows the areas in the UK where the case studies are 

located.   

 

Figure 7.1 The Location of the Case Study Sites across England  

 

In this chapter each case study is discussed in relation to the site history, site conditions, 

development plans and biodiversity elements of the site.  UK and Local Biodiversity Action Plan (BAP) 

broad and priority habitat areas will be looked at for the area, as well as the National Character Area 

that the development falls in, an overview of which is discussed in 7.2.  Each case study varies in 

length of detail discussed, depending on the development type and site conditions, and the 

documents that were accessible to the public through online portals.  The extent of biodiversity 

elements on each site also varies. 

 

7.2 National Character Areas 
England has been classified into 159 National Character Areas (NCAs), as illustrated through the use 

of colours in figure 7.2,  each of which describe the landscape of the country based on natural lines 

that shape the landscape, as oppose to administrative boundaries (Natural England, No date, b).  

Minworth Sewage Works, Birmingham 

Wheatley Hall Road, Doncaster 

Brogborough Landfill Site, Central Beds 

Olympic Village, London 

Eastern Quarry, Kent 
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Character, in this case, refers to the differential features between landscapes which makes them 

distinct and recognisable.  NCAs provide a framework, based on the natural and cultural features of 

an area, which facilitate decisions regarding the natural environment to be made.  In the 

questionnaire, 26 of the 58 respondents involved with planting selections for development sites said 

they considered Landscape Character Assessments (LCAs) in their decision making process.  LCAs 

have not been developed for every area in the UK, these are often carried out at a smaller scale than 

the NCA, and it all depends on whether the local authority decides to undertake an assessment for 

their respective region.   

 

NCAs, although at a slightly larger scale than LCAs, are however important in understanding the 

landscape of the area and for the wider biodiversity objectives.  The information given for each area 

is therefore different depending on the character and the objectives for that NCA.    The NCA profiles 

typically contain information on the land use, geology, settlements, characteristic habitats, farming 

productivity etc, but only the biodiversity aspects of the NCA and possible influences on plant 

selection are discussed for each case study in this chapter.  However, they are currently being 

updated and consequently the extent of detail varies for each NCA profile.  

 

 

Figure 7.2 The National Character Areas for England (Natural England, No date, b) 
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7.3 Eastern Quarry, Kent 

7.3.1 Site Location 

Eastern Quarry (EQ) is located to the south of Swanscombe, in the Ebbsfleet Valley in Kent.  The 

towns of Dartford and Gravesend lie either side of the development, with the A2(T) to the south, and 

the River Thames 2Km north of the site. It is approximately centred at NGR TQ 603 734 and is one of 

the largest development sites in the Thames Gateway and a major component of the Kent Thameside 

Development Area (Land Securities, 2007b).   

Figure 7.3 Eastern Quarry Site Location 

 

7.3.2 Site History and Description 

The quarrying of chalk, for cement and other purposes, at EQ2 has been ongoing since the 1920s, 

with cessation towards the end of the last decade (Land Securities, 2007b).  It presently occupies an 

area of c. 240 hectares. 

A large hole in the ground has formed from the quarrying activities, with steep cliffs between 20 and 

50m high forming the border on the southern, western and north-western boundaries (Middlemarch 

Environmental Ltd, 2010).  The deposition of overburden has left artificial ground levels in parts of 

the site.  Craylands Gorge, which is also part of the site, extends northwards from the north-west 

corner as a narrow spur.  It is a site of nature conservation interest (SNCI), and was formerly 

excavated for chalk.  It now includes a mosaic of woodland, scrub and grassland. 
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7.3.3 Proposed Development  

EQ2 will be re-developed into a mixed use development (see fig 7.4) including 6,250 residential 

dwellings across 3 villages, as well as offices, retail, leisure, hotel and community uses, with the total 

development being 870,000m2 (87ha) (Land Securities, 2007b). 

 

Figure 7.4 EQ Site Wide Master Plan (Land Securities, 2007b) 
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7.3.4 Soils and Geology 

EQ has chalk soils but Soilscapes revealed that the wider area consists of freely draining slightly acid 

loamy soils (see fig 7.5).  The presence of Thanet may influence this composition. 

Thanet sands was the main soil overlying the chalk at EQ.  Whilst some of this was removed as 

overburden during the quarrying activities, some still remains in parts of the site.  Near the surface, 

the pH is 6.5, whilst deeper down the horizon it climbs to 8.5 (Middlemarch Environmental Ltd, 

2007).  The leaching of basic salts from the top layer may have contributed to this.  Overall the soils 

are poor in nitrogen with variable drainage properties, due to the varying quantities of silt and clay 

present. 

Figure 7.5 EQ Soilscapes Map (NSRI, No date) 

 

7.3.5 The Ecological Context 

The ecological context, i.e. the surrounding landscape, county BAP and NCA would typically influence 

the choice of planting for a development, an outcome ascertained by the literature, field experience 

and the questionnaire findings of chapter 6.  They are therefore discussed in relation to EQ as they 

inform the proposed planting design specified in section 7.3.6. 
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7.3.5.1 The Surrounding Landscape 

The quarry and surrounding area to EQ are part of the Dartford and Gravesend Fringes LCA, with the 

region being heavily industrialised and built-up (Land Securities, 2003b).  The influence of humans 

here is very strong, the excavation of chalk at EQ being one example.  Fragmentation of land by 

urban development and transport corridors is also very evident.  Electricity pylons and tall chimneys 

are prominent features of the landscape in this area, and the chalk quarries contribute to the post-

industrial setting of the area.  In a transition of land-use, open countryside composed of farmland 

and woodland lies to the south of the A2(T), comprising the rural fringe of the area.   

 

Figure 7.6 shows the habitats in and surrounding EQ, as created by Magic (Natural England, 2013), an 

interactive tool for observing the natural environment.  Darenth Woods, ancient semi-natural 

woodland SSSI, an area of high conservation value, is located less than 1km south west of the site, as 

well as many Deciduous Woodland BAP Priority habitats, some of which border the development and 

which are to be retained onsite. 

 

Figure 7.6 Habitats surrounding EQ as displayed by Magic (Natural England, 2013) 
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7.3.5.2 National Character Area 113: North Kent Plains 

EQ falls into the North Kent Plains NCA which lies between the Thames Estuary to the north and the 

chalk of the Kent Downs to the south (Natural England, 2012).  The land is open, low and gently 

undulating and characterised by high quality, fertile, loamy soils giving rise to a heavily agricultured 

landscape.  Orchards are a feature in the west of the NCA, but generally the landscape is open and 

treeless with lines of pylons.  A diverse range of coastal habitats to the East are also a definitive 

feature of the NCA.  Palaeogene clays and sands make up the geology of the area, underlain by Chalk 

and Coal measures.  The chalk is exposed in sea cliffs and inland quarries like that of Eastern Quarry.  

EQ will be developed on the chalk bed of a former quarry. 

 

Swanscombe Skull Site on the boundary of the EQ development is a SSSI and NNR, designated 

because of the pieces of skull (Swanscombe man) that were discovered in the gravel pits there.  

These human fossil remains are some of the earliest found in the British Isles, and it is a significant 

Pleistocene area in Britian.  The SSSI designation is therefore for cultural and heritage reasons as 

opposed to the flora/habitats present. 

 

As part of the NCAs statement of environmental opportunity to create new areas of green space and 

green corridors, they see a potential action for this could be through restoring disused mineral 

workings, like that of EQ, through extensive creation of semi-natural habitats and integrating these 

into the wider landscape, thereby enhancing biodiversity.  The geology exposed in the quarry is to be 

retained for its attribute to geodiversity of the NCA, allowing communities to connect with their local 

heritage.  

 

Climate change Effects on the NCA: 

The SE climate change projections by UKCP09 (the central estimate under the medium emission 

scenario) indicate that by 2050  the mean temperature in winter will increase by 2.2°C, and 2.8°C in 

summer, and precipitation will increase by 16% in winter and decrease by 19% in summer.  Overall 

impacts on the biodiversity of the NCA would be (Natural England, 2012): 

 alteration in woodland composition with likely droughts affecting Beech populations, as well 

the impact on the habitat from an increase in invasive species.  Tree species may also have to 

contend with introduced pests and diseases; 

 consequences for wetland habitats with hotter, drier summers and 

 deterioration of coastal features and habitats with rising sea levels. 

BAP habitats present in the NCA include those listed in table 7.1. 
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Table 7.1 BAP habitats present in the North Kent Plain NCA 

Habitat Area (ha) % of NCA 

Floodplain grazing marsh 1,307 2 

Coastal sand dunes 472 1 

Lowland Heathland 77 <1 

Maritime cliff and slope 93 <1 

Fens 40 <1 

Lowland meadows 33 <1 

Lowland calcareous grassland 27 <1 

Reedbeds 14 <1 

Mudflats 6 <1 

Coastal vegetated shingle 2 <1 

Saline lagoons 1 <1 

 

7.3.5.3 Kent BAP 

As the NCA only refers to parts of north Kent, the inclusion of all priority habitats for Kent are not 

addressed.  For the district of Kent, as a whole, therefore the habitats as shown in table 7.2 have 

action plans and are considered important to the area and/or worthy of protection: 

Table 7.2 Kent Priority BAP Habitats 

Kent Priority BAP Habitats 

Lowland Dry Acid Grassland 

Ancient Species-rich Hedgerow 

Lowland Calcareous Grassland 

Native Woodlands 

Lowland Wood Pasture and Parkland 

Built up Areas and Gardens 

Lowland Heath 

Lowland Fen 

Reedbeds 

Lowland Meadow 

Standing Open Water 

 

The target for action by Kent County Council (2006) is to ‘ensure that development contributes to 

delivery of biodiversity targets’ and does not significantly increase the fragmentation of wildlife 

habitats.  Given the discussions in chapters 3 there is need to implement such measures to prevent 

species loss.  Kent County Council is actively seeking to address this problem through planning and 

development. 

Given the surrounding ecology and BAP recommendations, such factors would typically influence the 

planting design and ecology proposals for a development.  The majority of the respondents in the 

questionnaire who were involved with planting selections stated that they use BAP habitat and 

species recommendations to guide species selections, illustrating their importance at the local level.    

The ecology proposed for EQ is discussed in the next section. 
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7.3.6 The Ecology at EQ 

Quarrying has destroyed many of the habitats that were originally present on the site, but some 

remain on the periphery alongside habitats which have established more recently as and when 

quarrying finished (Land Securities, 2003b).  A scheme-specific BAP (Land Securities, 2003a) was 

created for EQ due to the size of the development and the need to reaffirm biodiversity 

commitments.  The main habitats represented at the site consist of arable land, bare and disturbed 

ground, semi-natural broadleaved woodland, planted woodland, scrub, improved grassland, semi-

improved calcareous and acid grassland, wetland and cliffs.  The diverse range of habitats present is a 

result of the varied history of the site and the disturbance to different parts of the site from 

quarrying, followed by recolonisation.  Some of these habitats are to be retained on the site for their 

conservation value, but as the BAP states the majority of the habitats if left undisturbed would 

eventually become scrub through natural succession.  The ecology of the areas bordering the 

development has been valued as worthy of protection and enhancement, and therefore they form 

part of the retained landscape of the site (Land Securities, 2007b).  These include the upper slopes of 

regenerated scrub and woodland vegetation on the prominent chalk cliffs, a feature of the 

development, as well as the existing hedgerows and woodland along the northern site boundary. 

Most of the woodland to be lost is relatively young secondary (Land Securities, 2007b). 

 

The wooded areas of Craylands Gorge still remain harbouring a range of scarce plant species 

including round-leaved wintergreen (Pyrola rotundifolia), ivy broomrape (Orobance hederae) and 

green-flowered helleborine (Epipactis phyllanthes) (Middlemarch Environmental Ltd, 2010).   Dense-

flowered fumitory, also present at EQ is recognised as being scarce, and there are plans to enhance 

the populations of this species, as well as wintergreen and establish arable weed populations within 

a designated area of the site.  The BAP aims to create extensive areas of habitat, with biodiversity 

being an important aspect of the overall development; wildlife corridors and boundary landscapes 

will link key ecological reserves (Land Securities, 2003a). 

 

Mitigation proposals for the site include the creation of habitats to support species that would 

otherwise be lost.  The ES indicates that seed collection and sowing and/or translocation of certain 

species including arable weeds, round-leaved wintergreen as well as mosses and liverworts, are 

possible measures for this mitigation. 

 

In the development’s sustainable development strategy (Land Securities, 2007c), it states that EQ will 

be a ‘good practice sustainable development’, which illustrates the developer’s commitment to 
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creating a development site that implements sustainable measures in both the built and natural 

environment.  The developers want to go beyond the ideal and this emphasises the point made in 

chapter 3 that biodiversity is now regarded as an important consideration, and can be more than just 

a requirement to satisfy planning guidelines.  A statement in the document which is of particular 

relevance to this research is that the developers want to ‘sustain biodiversity, and in doing so 

recognise that the distribution of habitats and species will be affected by climate change’.  This 

demonstrates that there will be an element of flexibility in the management of the site when 

considering climate change, and thus potentially utilising the outcomes of the research.   

 

The objectives for nature conservation at EQ are to (Land Securities, 2007c): 

 enhance the current level of biodiversity; 

 ensure long-term conservation value; 

 continue to uphold conservation status of important species as favourable; 

 provide connectivity between habitats; and 

 re-create habitats already found at EQ, including those which have been dug up as a result of 

quarrying, to continue to support similar species and communities. 

 

Specific objectives in relation to habitats and features include to: 

 enhance or create a diversity of wetlands; 

 incorporate wildlife potential into SUDs; 

 enhance the biodiversity of grasslands on site; 

 integrate bare and sparsely vegetated habitats into the landscape design. 

 promote the wildlife potential of linear features; 

 utilise new building external space for novel biodiversity features; 

 allow birds and bats to roost in new buildings; 

 maximise private gardens and allotments for biodiversity benefit; 

 promote biodiversity amongst residents of EQ; 

 make use of neighbourhood parks and school grounds for biodiversity gain. 

The habitat proposals in bold are considered in the vegetation matching discussed in chapter 9. 

 

 

 



174 

 

Planting 

Most of the planting species selected are native and have been proposed after discussions held 

between the developer’s ecological advisors and Kent Wildlife Trust (Land Securities, 2007a).  The 

planting assemblages currently for the development can be found in appendix 2 for the habitats of 

woodland, grassland, meadow, aquatic and marginal.  Castle Hill & Weldon is one of the 3 villages to 

be built on EQ and the village which has been designed and planned for first.  Many of the planting 

documents, therefore, are in relation to this part of EQ.   

The habitat proposals for EQ would be taken into consideration when creating species lists suitable 

for the future climate at the site.  By following the original landscape design, those features which 

are important to the site/local area can be maintained when developing the new assemblages. 

 

7.4 Olympic Park, Stratford, London 

7.4.1 Site Location 

The Olympic Park is located in East London around the lower valley of the River Lea (see figure 7.7), 

with the A12 on the northern boundary, extending southwards to Stratford High Street (ODA, 

2011e).  The River Thames is over 2km south of the site.  Its grid reference is approximately TQ 377 

848. 

 

Figure 7.7 Olympic Park Site Location (Natural England, 2013) 

7.4.2 Site History and Description 

Formerly railway tracks and the location of tanneries, the site was heavy utilised during the industrial 

revolution, as well as being used as a dumping ground for demolition rubble from the Blitz (ODA, 

2011c).  Consequently the site is heavily contaminated with petrol, oil, tar and heavy metals such as 
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arsenic and lead.   Until construction of the site began, most of the land was derelict.  The 

Sustainable Development Strategy (SDS) states that ‘Remediation of the contaminated land on site 

will bring hitherto inaccessible polluted land back into public use’ (ODA, 2011e).  The overall size of 

the site is 2.5km2, and Stratford has an average altitude of 12m.   

 

7.4.3 Proposed Development 

When the development was proposed it was to be the centrepiece of the London 2012 Olympic and 

Paralympic Games – the Olympic Parklands, with the aim to be the most sustainable games ever held 

(LDA Design, 2011).  Amongst the venues an urban park would be created to accommodate the vast 

numbers of visitors to the park, with the intention to make the landscaping an attraction itself.  The 

overall site is 2.5km2, but the target for the amount of green space to be created on the park, as 

stipulated in the Environmental Statement, was 45 hectares.  In the legacy phase, the park is to be 

transformed into metropolitan open land with permanent parkland totalling 102 hectares. 

 

7.4.4 Soils and Geology 

Soilscapes has identified the area where the site is located as having loamy soils with naturally high 

groundwater (see figure 7.8), which with the area being in the Thames floodplain is expected. 

 

Figure 7.8 Olympic Park Soilscapes Map (NSRI, No date) 

 

Most of the soils on the development were cleaned onsite to remove tannery and heavy metal 

contamination, but due to the sheer amount the soil was capped 80m below ground.  At this point a 
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drainage system was incorporated to prevent groundwater contamination (Landscape Institute UK, 

2012).  Clean soil was applied to this artificial ground layer and modified depending on the desired 

outcome.  The soils vary over the site dependant on the topography, the drainage conditions and the 

type of habitat to be created; the soils have essentially been manipulated dependant on this latter 

criterion.  Due to the large amounts of soil required and the timescale, it was not feasible to use 

natural soils, they were consequently manufactured. 

 

There were 7 major soil types used for the Olympic Park, subsoil and 6 types of topsoil including 

multi-purpose topsoil, high permeability topsoil for the likes of the spectator lawn, urban tree soils, 

and low fertility soils for the perennial meadows to prevent competitive grasses growing.   

 

7.4.5 The Ecology  

Using the format for EQ as a model example, the ecological context, i.e. the surrounding landscape, 

county BAP and NCA would typically influence the choice of planting at the Olympic Park, as per EQ.  

They are therefore not discussed in relation to the Park as they only inform the proposed planting 

design specified in this section. 

Biodiversity was one of the five headline themes set out in the sustainability policy for the aim of 

protecting and enhancing the biodiversity and ecology of the Lower Lea Valley, and other venue 

locations (ODA, 2011d).  By investing so much in biodiversity, the SDS aimed to encourage the sport 

sector generally to contribute to nature conservation and enhancing the natural environment.   

The three main objectives for the ecology of the site were: 

- to protect any retained habitats; 

- to provide suitable off-site mitigation; and 

- to deliver new and enhanced habitats. 

 

Existing habitats on the site included brownfield habitats of ephemeral and ruderal vegetation, as 

well as more developed habitats like grassland, scrub and woodland (ODA, 2011d).  Invasive species - 

Giant Hogweed along the River Lea, and Japanese Knotweed were present onsite and would need to 

have been eradicated.  The ecological value of the river corridors and associated habitats was high, 

consisting of mudflats, reedbeds and marginal vegetation and species affiliated with these.  The need 

to remediate and recontour the site would lead to loss of most habitats with only a few high value 
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sites like waterside and woodland areas being retained.  Temporary habitats and sites of wildlife 

refuge would be created to limit the impact and loss of species. 

 

The target for 45ha of habitat creation on the Park was to compensate for the existing designated 

sites of nature conservation value, sites of Borough importance that would be destroyed in creating 

the development.  PPS9 and the local plans stipulate that recreated habitat must equal that lost to 

construction, both in size and quality of habitat (ODA, 2011a).  The creation and enhancement of 

habitats would aim to provide both recreational aspects for the area, as well as ecological benefits 

(ODA, 2011d).  A fundamental aim was connectivity between habitats, both terrestrial and aquatic 

habitats, and maintenance of these corridors.  As part of the habitat creation, over four thousand 

semi-mature trees would be planted, along with over a quarter of a million wetland plants to 

improve the river banks and appearance of the water courses (LDA Design, 2011).  Figure 7.9 shows 

the habitat creation for the games and for the legacy, with an increase in habitat size for the latter.  

 

The site is divided into two halves, with lots of green space and natural settings in the North Park, in 

comparison to the South Park which has a more urban concourse.  Improved river restoration works 

connect the two parts.    The River Lea in this part would be returned to its previous more natural 

state, and through a mosaic of habitats created, including wetland, swales, wet woodland, dry 

woodland, and meadow, the flood protection measures of this area have been improved and 

ecological value enhanced (LDA design, 2011).  The site has been designed to accommodate a 6mm 

per year sea level rise due to climate change and has increased flood protection measures (ODA, 

2011d).   
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Figure 7.9 Habitat creation during the games (left) and for the legacy (right) 

 (ODA, 2011b) 
 

The species selected would predominantly be native species, of local origin and appropriate to the 

region.  The SDS (ODA, 2011d) states that seed would be collected from existing habitats before 

construction begins.  Habitats would include existing native mature woodland, scrub, woodland edge 

(including tall herbs), wetlands (including reed bed and wet woodlands) and various species-rich 

grasslands which would require low nutrient substrate.  Habitats and hibernacula would also be 

managed for reptiles and colonisation by reintroduced amphibians.  Buildings would also be designed 

to increase biodiversity opportunities - park wide targets include the provision of nest boxes for black 

redstarts, house sparrows, starlings, swifts and bats, and the creation of 0.4ha biodiverse living roofs 

(ODA, 2011a). 

 

BAP 

On a development of such size with many aspirations for biodiversity, a scheme-specific BAP was 

produced to ensure commitments made in the Environmental Statement were implemented onsite.  

It was a requirement of the section 106 deed of agreement ‘to help achieve biodiversity objectives 

and protect habitats and species’ (ODA, 2008).  In preparing the BAP the National Habitat and 

Species Action Plans prepared by the UK Biodiversity partnership for the UK, PPS9 and the NERC Act 

2006 were consulted, along with other policy documents relevant to London and the South East.  The 
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surrounding boroughs have combined as one unit to jointly address the problems, plans and actions 

for the development. 

 

Targets were set in the BAP for the creation of a variety of specific habitats, which are shown in table 

7.3 along with the 6 UK BAP broad habitat types that they belong to (shown in bold), and their target 

size.  A mosaic of riverine, wetland, terrestrial and urban habitats along river corridors and 

throughout the Parklands are intended to support a range of species specified in the BAP.  The BAP 

(ODA, 2008) has action plans for 28 species including Black Poplar (Populus nigra betulifolia), a tree 

of the floodplain forest largely at threat across the UK due to drainage schemes and destruction of 

this habitat.  It is listed in the British Red Databook as a species of least concern (category LC) and is a 

London BAP priority species and had been propagated from the original sample onsite (Shearer, 

2012). 

Table 7.3 Olympic Park BAP Habitats 

The BAP criteria underpins the planting lists, but the NVC lists have been consulted to guide plant 

compositions that work well together and provide good conditions for invertebrates (Shearer, 2012).   

 

In a discussion with Shearer (2012) from LDA Design, the principle landscape architects for the 

Olympic Parklands, with regards to consideration of climate change, she states that measures to 

alleviate flooding have been taken on the development, as well as avoiding species vulnerable to 

climate change.  Willow, Poplar and Alder have been selected to withstand flooding, with only 

selective use of Ash and Beech, i.e. in free draining soils, due to their vulnerability.  Birch stem 
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woodland has been created, but so there was less reliance on Birch, a species susceptible to the 

impacts of climate change, Oak and Cherry, have also been planted for their longevity.  Through 

appropriate ecological design, London, in this area, has been adapted to climate change (ODA, 2008). 

 

Separate from the more natural settings, the Olympic Gardens are four sections of planting 

representing the flora from different parts of the world including the north Americas, the southern 

hemisphere, Europe and Asia.  The ornamental gardens have been created as a horticultural 

celebration and for the recognition of ‘unintentional biodiversity’ that has been created in urban 

areas, as stated by Hitchmough (2011), horticulturist for the parklands.  With South Africa 

experiencing similar seasons to the UK, species from this area have been planted in the gardens to 

illustrate the joyous flora from such destinations.  He believes the notion that all non-natives are 

aliens needs to be challenged, a statement pertinent to this research and its wider outcomes.  Plant 

species in the Gardens will be able to tolerate the change in weather conditions likely with future 

climate change (ODA, 2011b). 

 

The use of non-natives in some habitats has been allowed, particularly in the Olympic gardens, and 

with a key outcome of the planting strategy being ‘a reasoned justification for the use of appropriate 

non-native species to broaden the ecological value, visual spectacle and interpretation/education 

benefits of the planting’ (ODA, 2011d), the benefits of non-native species have been recognised at 

this level of quality landscaping.  A selection of non-native species are included in the annual 

meadow mix as they flower for longer than natives and provide excellent nectar and other food 

sources; a diverse range of invertebrates and birds therefore benefit greatly (ODA, 2011b).  Although 

there is a strong emphasis on the use of natives, the ‘wider ecological functionality’ of non-natives 

has been recognised on this development, particularly in its urban settings, and shows them in a 

positive light. 

 

The habitat proposals for the Olympic Park would be taken into consideration when creating species 

lists suitable for the future climate at the Park.  By following the original landscape design, those 

features which are important to the site/local area can be maintained when developing the new 

assemblages. 
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7.5 Brogborough Landfill Site, Central Bedfordshire  

7.5.1 Site Location 

Brogborough landfill site is situated in the low lying Marston Vale, 13km southwest of Bedford, in the 

Central Bedfordshire district, as shown in figure 7.10.  Its grid reference is SP 966 400.  Brogborough 

Lake, a flooded clay pit, lies close to the southeast of the site, with the remainder of the site 

bordered by agriculture land and sections of woodland (Waste Recycling Group Ltd, 2005a).  Marston 

Thrift, a local nature reserve and SSSI, is located adjacent to the northeast boundary and Holcot 

wood is situated just west of the site. 

Figure 7.10 Brogborough Landfill Site Location (Natural England, 2013) 

 

7.5.2 Site History & Description 

The site was originally used for agricultural purposes until the 20th century when the extraction of the 

mineral clay from the ground begun to depths of about 25-30m (Waste Recycling Group Ltd, 2005a).  

This was through the weathered Oxford Clay (Callow) and into the unweathered Oxford clay (Knotts).  

The clay was used for brick making with the brickworks (London Brick Company) located on site; 

planning and restoration conditions for continuation of this activity in 1981 were for the filling of the 

excavated areas.  Landfilling of waste therefore commenced in 1983 in accordance with those 

provisions, but further planning applications resulted in more clay being extracted from un-worked 

land in 1998.  The main activities of the landfill site were waste disposal, leachate collection and re-

circulation, and landfill gas collection and electricity generation.  Landfilling ceased in 2008 with a 

programme of restoration works to follow.  The site is approximately 194 hectares with an average 

elevation of 55m AOD.  Clay extractions throughout the area have consequently created a distinctive 

local character. 
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7.5.3 Proposed Development 

A programme of planting and maintenance, along with aftercare and management of the restored 

site were conditions of the agreement for landfilling.  A policy of the Bedfordshire and Luton 

Minerals and Waste Local Plan states that “all minerals and waste proposals in the Marston vale 

should contribute to the improvements of the environment of the vale” (Watts, 2008), which shows 

the consideration of the environment is important to the area.  The site will be restored to post-

settlement levels through phasing, soil handling and landscaping schemes.  In the interests of nature 

conservation there will be a mixture of restoration habitats created including species-rich meadows, 

extensive sections of woodland, woodland rides, hedgerows, grazing land and reed bed and marginal 

aquatic habitats (Waste Recycling Group Ltd, 2005a) as shown in figure 7.11  The development will 

contribute to the Marston Vale community forest, an environmental regeneration programme in the 

Bedfordshire region to improve the landscape, wildlife and recreational aspects of the region.  

Around the edge of the site balancing lagoons will also be established as part of the overall proposed 

restoration scheme to further enhance the wildlife aspect of the site. 

 



 

 

Figure 7.11 Brogborough Proposed Development (Waste Recycling Group Ltd, 2004) 

(Solely use key to inspect image detail)

1
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3
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7.5.4 Soils and Geology 

Soilscapes (NSRI, No date) has identified the area the site falls within as having slowly permeable 

seasonally wet slightly acid but base-rich loamy and clayey soils, as shown in figure 7.12.  As 

discussed the site was used for clay extraction.  

 

Figure 7.12 Brogborough Soilscapes Map (NSRI, No date) 

 

The underlying geology is unlikely to affect the plantings proposed for the site, as an engineered cap 

of clay material will be used to isolate the landfill material from the restoration works.  The 

developers state they have most of the capping and restoration material (approx 1.6 million cubic 

metres) available on site, but a further 200,000m3 of soil would need to be imported (Waste 

Recycling Group Ltd, 2008).   

 

The restoration cap is placed over the engineering cap and provides a growing medium for the 

restorative planting works planned for the site.  This layer will be 1.0m in depth, or 1.5m where the 

woodland and hedges are to be planted.  The heavy texture of the clay will provide adequate soil 

moisture for the sites intentions and with the incorporation of bio-solids to improve soil quality, 

vegetation can establish and grow (Waste Recycling Group Ltd, 2008). 
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7.5.5 Ecology 

Using the format for EQ as a model example, the ecological context, i.e. the surrounding landscape, 

county BAP and NCA would typically influence the choice of planting at Brogborough landfill site, as 

per EQ.  They are therefore not discussed in relation to the landfill site, as they only inform the 

proposed planting design specified in this section. 

 

The landscape surrounding the site and the sites position within the Marston Vale Community Forest 

area are acknowledged in the restoration scheme.  The ash-maple-oak composition of the adjacent 

woodlands will be reflected in the sites woodland structure, although it is envisaged that the species 

mix of these woodlands will influence any future colonisations of the site (Waste Recycling Group 

Ltd, 2005c). 

 

Central to planning is that the ecology of the area is enhanced, and brings connection to the current 

fragmented landscape of the Vale, thus improving the nature conservation value of the area (Waste 

Recycling Group Ltd, 2005b). 

 

There are two important nature conservation areas nearby to the landfill site – Marston Thrift Nature 

Reserve, a SSSI, and Holcot Wood – an ancient semi-natural woodland.  Marston Thrift is an oak-ash-

maple woodland, a habitat which has limited cover in Bedfordshire and generally over its natural 

range in lowland England.  It also supports the only colony in Bedfordshire of a nationally rare 

butterfly species – the Black Hairstreak butterfly (Waste Recycling Group Ltd, 2005c).  This butterfly is 

in decline in the UK owing to its dependency on Blackthorn that is managed on a long coppice cycle, 

but Blackthorn is more often managed on a short coppice cycle.  The spinney woodland already 

existing on the landfill site will therefore be kept, as well as there being a new area of scrub planting 

with a high blackthorn content to ensure the provision of suitable habitat to maximise the chance of 

colonisation by the butterfly; this will enhance the value of the site. 

 

Holcot Wood is mature deciduous woodland, 23ha in size, with damp ash-field maple habitat which 

has developed on heavy boulder clay (Waste Recycling Group Ltd, 2005c).  The environmental 

statement states that there will be no direct impact upon the SSSI or Holcot Wood from the 

proposed development.  Noise and dust impact on ecological receptors outside of the site will be 

mitigated for. 
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As the landscape is currently of low ecological quality, the restoration plans for the site and 

peripheral areas seeks to enhance the quality and extent of the existing habitats present, along with 

a more diverse array of habitats including creation of (Waste Recycling Group Ltd, 2005c): 

 New standing water and wetland habitats, which will develop and benefit dragonfly and 

amphibian communities 

 A flower rich grassland which will attract invertebrates including butterflies 

 90ha of broad-leaved native woodland with rides and glades on the landfill, along with 30ha 

of species-rich meadow.  Species-rich meadows have declined greatly over the last 50 years 

so this creation will contribute to enhancing the coverage of the habitat, as well as improving 

the ecological value of the area. 

 

The restoration programme also entails formation of a wildlife corridor of continuous woodland and 

scrub habitats between Holcot Wood and Marston Thrift SSSI, which will benefit small mammals and 

birds, as well as increase the wildlife diversity in the area over time (Waste Recycling Group Ltd, 

2005c).  The extensive consideration of biodiversity in the planning conditions exemplify that Central 

Beds council were undertaking their duty for biodiversity and enhancing it where possible.  

Restoration schemes like that of Brogborough landfill is an exemplar of good practice. 

 

The habitat proposals for Brogborough landfill would be taken into consideration when creating 

species lists suitable for the future climate at the site.  By following the original landscape design, 

those features which are important to the site/local area can be maintained when developing the 

new assemblages. 
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7.6 Minworth Sewage Works, Birmingham 

7.6.1 Site Location 

The sewage works are located south east of the village of Minworth, to the north-east of Birmingham 

in the West Midlands region (see figure 7.13), and the River Tame flows south of the site.  The site is 

located at grid reference SP 162 915. 

Figure 7.13 Minworth sewage works site location (Nathaniel Lichfield & Partners Ltd, 2005a) 

 

7.6.2 Site History & Description 

Since 1886 sewage has been treated at Minworth sewage works.  Sewage sludge drying beds and an 

operational sewage treatment plant currently occupy the site.  The overall site is 300ha but the 

proposed development is approximately 42.35ha (Nathaniel Lichfield & Partners Ltd, 2005c).  The 

topography of the site is relatively flat, at an average 80m AOD (Nathaniel Lichfield & Partners Ltd, 

2005b). 

 

7.6.3 Proposed Development 

As a result of technological advances since the sewage works was established, less space is now 

required for operations at the site.  The non-technical summary states that the old sludge drying 

beds at Minworth sewage works will be redeveloped for a mixture of employment development, 

accommodating buildings for storage and distribution, general industry and business use (Nathaniel 

Lichfield & Partners Ltd, 2005c).  There is also a proposed environmental buffer to be created on the 

northern bank of the River Tame, which runs south and south east of the site.  A bypass road to 

Minworth village will also be constructed (see figure 7.14). 
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Figure 7.14 Midpoint Park II Minworth, Landscape Plan (Nathaniel Lichfield & Partners Ltd, 2007) 

 

7.6.4 Soils and Geology 

The underlying solid geology of the site comprises rocks of the Mercia Mudstone Group (MMG) - 

mudstones, siltstones and sandstone beds, and River Terrace Deposits (comprised of sands and 

gravels) overlie the MMG, and cover much of the site (Nathaniel Lichfield & Partners Ltd, 2005b).  A 

silty clay alluvium, which is locally peaty, overlies the MMG in proximity to the river and south of the 

River Tame.  Soilscapes (NSRI, No date) identified the area as having loamy soils with naturally high 

groundwater as shown in figure 7.15. 
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Figure 7.15 Minworth Soilscapes Map (NSRI, No date) 

Due to the nature of the site, reclamation and remediation works of ground contamination will be 

necessary; the land will be returned back into a useful and safe environment for future use by others 

(Nathaniel Lichfield & Partners Ltd, 2005c).  Site investigations revealed that the dried out sludge was 

fit for end use, i.e. for commercial purposes, and that a programme of sludge removal was necessary 

to ensure stability for the proposed development.  The presence of elevated copper and zinc levels in 

the underlying made ground also meant a development platform was to be created using an inert 

infill material to prevent any likely instability problems. 

 

7.6.5 Ecology 

Using the format for EQ as a model example, the ecological context, i.e. the surrounding landscape, 

county BAP and NCA would typically influence the choice of planting at Minworth sewage works, as 

per EQ.  They are therefore not discussed in relation to the sewage works as they only inform the 

proposed planting design specified in this section. 

 

Over time, a patchwork of habitats have formed across the lagoons on the site, reflecting the various 

cycles of the sewage sludge process, e.g. the filling, drying and dredging of the sludge beds.  These 

have benefitted a range of biodiversity, but the habitats tend to be widespread and are therefore not 

of high ecological value (Nathaniel Lichfield & Partners Ltd, 2005b).  Areas of swamp and willow 
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scrub located in the proposed development are, however, of greater conservation interest.  The 

developers point to the fact that the vegetation present in the lagoons have only colonised due to 

the operating processes of the works, i.e. they are artificial habitats.  The less frequent use of the 

lagoons has also meant that the vegetation in this part of the development has changed into a 

generic scrub habitat of little ecological value, and would de-value more if left unattended.  The 

importance of the site for a number of notable wetland birds would also decline over time with scrub 

progression in the lagoons.  In terms of the potential impact the development will have on 

vegetation therefore, as required by the EIA regulations, has to be assessed considering the future do 

nothing scenario, i.e. if the development was not to proceed (Nathaniel Lichfield & Partners Ltd, 

2005c). 

 

There are notable plant species  of local ecological interest on site including Cyperus sedge (Carex 

pseudocyperus), Club-rush species (Scirpus sp.), Greater pond sedge (Carex riparia), Aspen (Populus 

tremula) and Wood small read (Calamagrostis epigejos), but these will not be adversely affected by 

the proposed development (Nathaniel Lichfield & Partners Ltd, 2005b).  Features of the landscape to 

be retained include the majority of the trees on the perimeter of the site, as well as those along the 

River Tame, with further native trees to be planted to enhance the woodland habitat present on site.  

Compensation measures for the loss of habitats in the lagoons will be to create a new backwater 

channel on the River Tame which will help control flooding, as well as enhance the environment for 

riparian plants and animal species (Nathaniel Lichfield & Partners Ltd, 2005c).   

 

The Environmental Statement declares that the river restoration works will benefit foraging bats of 

several species and be more appealing for water vole, a recovering species (Nathaniel Lichfield & 

Partners Ltd, 2005b).  The remediation of contaminated land and the proposed landscaping plans will 

also provide adequate refuge for amphibians, but there will be a minor negative impact for 

invertebrates as a result of the development.  The development is justified for its long term benefits 

‘The residual ecological impact on habitats and vegetation is judged to be minor negative in the 

short-term, but potentially strong positive when compared to the alternative longer-term scenarios’ 

(Nathaniel Lichfield & Partners Ltd, 2005b). 

 

The environmental corridor to be created along the River Tame will include extensive landscaping, as 

well as restoring the river in that part to its natural state.  It currently has limited benefit to 

biodiversity due to being deepened, straightened and constrained in the past to increase flow rate 

(Nathaniel Lichfield & Partners Ltd, 2005d).  The creation of semi-natural riparian habitats are 
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intended to significantly improve the nature conservation interest and functioning of the river 

section, as well as provide a boundary between the buildings on site and the river (Nathaniel Lichfield 

& Partners Ltd, 2005c).  One of the aims is to integrate the development into the surrounding 

landscape and enhance the quality, as has already been created by a similar development at nearby 

Midpoint Park.  The planning statement remarks that the development will make a ‘positive 

contribution to the landscape character’ (Nathaniel Lichfield & Partners Ltd, 2005c), which highlights 

the developers have considered the NCA. 

 

7.6.5.1 Planting 

The structural landscaping will include adequate space for plants to establish and thrive, and provide 

a degree of consistency throughout with valuable habitats contributing to the framework of the 

development (Nathaniel Lichfield & Partners Ltd, 2007).  Once the vegetation has established the 

development will be screened from nearby residences.  Evergreen species (often non-native 

varieties) have been included in the planting mix here to provide screening over winter, but the 

majority are native deciduous tree and shrub species.   

 

Plant species for the perimeter of development plots will be wildlife-friendly, native or semi-native 

species, linking to native species already present and the proposed structural landscape.  In contrast 

the internal areas of the plot landscape will provide colour, texture and form throughout the year 

through the use of ornamental or semi-ornamental plant species.  ‘Bold and imaginative’ semi-native 

and semi-ornamental species will be included in the planting scheme for the internal distributor road 

between the development site perimeter landscape and the more ornamental planting of the 

development plots.   The buffer zone will be comprised of riparian habitats to provide a corridor for 

wildlife, as well as increase the flood protection measures of the River Tame. 

 

The habitat proposals for Minworth sewage works would be taken into consideration when creating 

species lists suitable for the future climate at the site.  By following the original landscape design, 

those features which are important to the site/local area can be maintained when developing the 

new assemblages. 
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7.7 Wheatley Hall Road, Doncaster 

7.7.1 Site Location 

The site is located 2.7km north-east of Doncaster in South Yorkshire, and south of the River Don as 

shown in figure 7.16.  It is approximately centred at NGR SE 593 056. 

 

Figure 7.16 Wheatley Hall Road Site Location (Rapleys, 2010a) 

 

7.7.2 Site History and Description 

The site is 41ha with an elevation approximately between 8m and 12m AOD.  In the environmental 

statement (Rapleys, 2010b), a desk study indicated the site had over the years formerly been 

occupied by a farm, a foundry, a depot, engineering works, buildings of unknown use, and until 

recently McCormick Tractors.  It was also used during the Second World War for the manufacturing 

of small arms.  Two landfills occupy the land in the north-eastern and north-western areas of the site. 

 

There is mixture of industry and residential units in the surrounding area.  Wheatley Cut or River Dun 

Navigation Channel, a section of the River Don which was canalised, runs close to the northern 

boundary of the site.  Associated broadleaved woodland occurs on the north western boundary 

along with immature regenerating woodland (Rapleys, 2010b).  The Old River Don oxbows can be 

found in two individual areas of the site, the northwest and the northeast corners.  The oxbows and 

their surrounding habitats contribute to these areas of the site being classed as a Site of Scientific 

Interest (SSI).   Acid grassland habitat is found in the northeast part of the site, along with 

regenerating scrub including bramble and birch, allotment gardens also adjoin the site here (Rapleys, 

2010b). 
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The Environmental Statement (Rapleys, 2010b) describes the broadleaved woodland habitats as 

dominated by Sycamore (Acer pseudoplatanus) with other species including Oak, Elm, Horse 

Chestnut and grass areas with regenerating Silver Birch (Betula pendula).  The woodland is protected 

by a Woodland Preservation Order.  The central and southern parts of the site mainly consist of 

existing and former industrial areas including car parking and building.  Cherry, lime and birch line 

the roadside south of the development, on Wheatley Hall Road, for screening purposes. 

 

7.7.3 Proposed Development 

The development seeks to demolish the existing structures and create a mixed use development 

comprised of storage and distribution, general industry and business units, residential buildings, a 

retirement village, community hub, leisure use facilities and open space with associated access 

(Rapleys, 2010b).  The masterplan is shown in figure 7.17. 

 

7.7.4 Soils and Geology  

The underlying solid geology is the red sandstones of the Triassic Sherwood Sandstone Group, and 

the drift geology is alluvial.  Soilscapes (NSRI, No date) has identified the area the site falls within as 

having freely draining slightly acid sandy soils (see figure 7.18).  The site is however contaminated. 
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Figure 7.18 Wheatley Hall Road Soilscapes Map (NSRI, No date) 

Chemical testing carried out on selected soil, groundwater and surface water samples from across 

the site revealed the following contaminants (Rapleys, 2010b): 

 Elevated concentrations of copper, zinc, chromium, nickel, benzo(a)pyrene, naphthalene, 

leachable PAH and PAH species within the made ground 

 Localised elevated concentrations of arsenic, copper, nickel, benzo(a)pyrene, naphthalene, 

TPH, leachable mercury and speciated PAHs within the made ground 

 Asbestos fibres within the made ground 

 Locally elevated concentrations of sulphate and TPH within the groundwater 

 Elevated concentrations of ammonia within both the groundwater and surface water. 

 

Gas monitoring discovered locally elevated concentrations of methane, carbon dioxide and VOCs in 

wells installed into both the made and natural ground.  The level of contamination is considered to 

be able to be remediated to an acceptable standard for development. 

 

The remedial strategy deals with the requirements to mitigate the potential impacts to end users, 

controlled waters and the built environment.  The presence of asbestos in the shallow made ground 

in certain areas of the site render mitigation measures necessary to prevent a high health risk to 

proposed end users/construction workers (Rapleys, 2010b).  This typically involves the use of a 
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subsoil/topsoil cap of at least 1m for gardens/soft landscaping with a dense granular ‘no dig’ layer 

along its base or an inert substrate such as clay to isolate the contamination.  Soils contaminated 

with hydrocarbons are to be excavated and treated (e.g. by bioremediation or disposed of in a 

special landfill facility).  This goes beyond the remit of this research and is not discussed any further.   

 

7.7.5 Ecology 

Using the format for EQ as a model example, the ecological context, i.e. the surrounding landscape, 

county BAP and NCA would typically influence the choice of planting at Wheatley Hall Road, as per 

EQ.  They are therefore not discussed in relation to the site as they only inform the proposed 

planting design specified in this section. 

 

Although over 160 higher plants were identified on site in the botanical surveys undertaken as part 

of the ES, many were introduced plants and there were no nationally rare or scarce species (Rapleys, 

2010b).  Most of the habitats present on contaminated substrates are nonetheless to be removed, 

regardless of conservation value, with soils to be remediated.  This is in the health interests of end 

users of the site, as new access rights to the site will be created as part of the development.   

 

Acid grassland (NVC - U1 Festuca ovina–Agrostis capillaries–Rumex acetosella grassland), in the north 

east of the site is a species-rich assemblage of invertebrates and plants, and due to the national 

scarcity of the habitat, it is a UK BAP priority habitat, a habitat of county level conservation 

importance, and a Doncaster LBAP habitat (Rapleys, 2010b).  Lowland dry acid grassland is also listed 

as a habitat of Principle Importance under Section 41 of the NERC ACT 2006.  Its permanent loss as a 

result of the development and the need to remediate soils will cause a significant adverse effect at 

the County level.  Two sedge species also found on the U1c acid grassland, sand sedge (Carex 

arenaria) and prickly sedge (Carex muricata ssp. lamprocarpa) are locally rare; sand sedge (also on 

the Doncaster LBAP) is only found at a few inland locations being a predominate coastal species, and 

prickly sedge, common throughout Britain, is scarce in the Doncaster area.   

 

Doncaster is particularly keen on enforcing strict biodiversity practices especially when mitigation is 

not possible for the loss in area of a designated site.   Compensation measures must therefore be put 

in place for the loss of the acid grassland habitat, with the Doncaster Local Development Framework  

Interim SPD for Biodiversity Mitigation and Compensation stipulating:  
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“Compensation should be of greater extent that what is being replaced to make up for the fact that 
as an artificially created habitat it is of lower biodiversity value. This increased amount is set at 25% 
above the area to be replaced.” (Rapleys, 2010b) 
 

The loss of 7.2ha of acid grassland will be part-mitigated for by the creation of 3ha of new acid 

grassland within the proposed development, along with other habitat creation measures in the 

interests of nature conservation.  The translocation of propagules and/or the collection and sowing 

of seed by hand of prickly sedge and sand sedge, as part of an acid grassland seed mix (including 

species typical of U1 grassland) will be carried out to provide mitigation for the two sedge species 

(BSG, 2010).  These will form a new area of acid grassland on the north-western boundary of the site, 

of which ecological value is low.  A programme of management will be needed for its survival.  

Immature Birch woodland is currently in this area, but its ecological value is low, and the vegetation 

would need to be removed regardless as the existing contaminated topsoil is to be capped to reduce 

risk to human health (Rapleys, 2010b).  Doncaster have specified an NVC habitat for habitat design, 

as opposed to broad planting which exemplifies their consideration of the need to create as natural 

assemblages as possible.   

 

According to the habitat creation method statement (BSG, 2010), a free draining and sandy soil with 

a very low nutrient content and a pH that is below 5.0 will likely be the best substrate for 

establishment of the new acid grassland habitat.  Green compost material (10% of total volume) will 

be mixed with the substrate to encourage plant growth, and overall be a depth of approx 0.15m for 

root capacity.  It is a bespoke mix of species, similar in composition to the existing acid grassland and 

sourced locally to ensure its familiarity to local growing conditions. 

 

In response to the habitat action plan target to halt depletion of mixed broadleaved woodland in the 

UK, a new woodland plantation of native broadleaved trees and shrubs will be planted where 

currently Japanese Knotweed stands; a programme is in place for their eradication (Rapleys, 2010b).  

Although woodland habitat is to be retained on site, the additional planting will increase its extent, 

and contribute to the connectivity of woodland cover between the SSI area of woodland and the 

riparian woodland strip alongside the River Dun Navigation Channel.  The Old River Don Ox-bows are 

a designated SSI due to the mosaic of habitats that have formed in and around them; the plantation 

will contribute to the SSI and the overall nature conservation value of the site.  Selected non-native 

trees and shrubs will be cleared from the plantations to encourage the natural regeneration of native 

woodland flora (Rapleys, 2010b). 
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The loss of certain habitats due to their presence on contaminated land has resulted in ecological 

measures being put in place, including habitat creation, conservation management of retained 

habitats and the provision of local community access to open green space.  Echoing the discussion in 

chapter 3 for biodiversity requirements on development sites, the proposed development will not be 

allowed to go ahead, according to Doncaster’s planning guidelines and the stipulations of the then 

PPS9 (now the NPPF), unless biodiversity is mitigated and/or compensated for. 

 

The habitat proposals for Wheatley Hall Road would be taken into consideration when creating 

species lists suitable for the future climate at the site.  By following the original landscape design, 

those features which are important to the site/local area can be maintained when developing the 

new assemblages. 

 

7.8 Conclusion 
This chapter has presented the site conditions, including planting proposals for the five case study 

sites used in this research.  Four of the sites are contaminated with procedures in place to cap the 

soil or create new manufactured soils.  The extent of planting varies between the sites, but they all 

consider the surrounding landscape as part of their proposals, with some authorities going above and 

beyond the legal requirement for planning consent through pioneering habitat design, as was the 

case with the Olympic Park.  The next chapter presents the results of the climate matching for each 

of the case study sites; the locations in Europe are identified, which currently have an analogous 

climate to that which each site will experience in 2050. 

 

 

 

 

  



198 

 

8. Climate Matching Results 
As discussed in chapter 5, climate change projection data produced for the UK by UKCP09 has been 

developed using the IPCC SRES (Nakicenovic et al., 2000).  This section looks at the projected climate 

(mean temperature and precipitation) of the case study areas for 2050 under a medium emission 

scenario (SRES A1B).  The identification of European locations which currently have an analogous 

climate to that expected for areas in the UK have been obtained through the use of a Geographical 

Information System (GIS) and are based on the World’s 1961-1990 climate means (New et al., 2002). 

 

8.1 Introduction 
The methodology for the climate matching is discussed in more detail in chapter 5, but for 

convenience a recapitulation will be given here.  European baseline climate values (i.e. the 30 year 

mean) exist as a layer on the GIS in point data with a ~18km resolution.  The values are assigned to a 

location, i.e. a latitude/longitude position, making the regions of Europe visible on the GIS.  As a 

climate match, in location, could be better for one parameter than the other, the temperature and 

precipitation data behind the points have been spatially joined, so that they exist together and can 

be queried together.  Temperature and precipitation measurements together describe an areas 

climatology relatively well, as discussed in section 5.3.1, and so these variables are considered 

together to develop the outcomes of this research.   

 

8.1.1 The UKCP09 Grid and Case Study Sites 

The UKCP09 25km-resolution grid climate projection data were utilised in this research, and 

comprise of 434 25 x 25 km grid squares making up the land areas of the UK, with projections 

provided for each grid square if interrogated.  The case studies and their location in the UK are 

shown as coloured squares on the UKCP09 25 km grid square layout in figure 8.1. Table 8.1 shows the 

latitude and longitude of each case study site, the 25 km grid square number that they fall into and 

the latitude/longitude of this corresponding square, which is taken from the centre of the grid 

square. 
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Figure 8.1 The UKCP09 25km grid (see table 8.1 for site identification) 

 
Table 8.1 Case Study Properties 

Case Study 
Location 

Altitude AOD Latitude/Longitude 
(centre of site) 

UKCP09 25km grid 
square no. 

Latitude/Longitude 
(centre of grid 
square) 

Eastern Quarry, 
Swanscombe, Kent 
(pink sq) 

33m 51.43732, 0.2963 1668 51.41884, 0.29365 

Olympic Village, 
Stratford, London 
(yellow sq) 

12m 51.5428, -0.0124 1628 51.58008, -0.13359 

Brogborough 
Landfill Site, Central 
Bedfordshire 
(light blue sq) 

77m 52.04998, -0.59272 1549 51.95296, -0.65189 

Minworth Sewage 
Works, Birmingham 
(white sq) 

82m 52.52437, -1.75361 1430 52.4796, -1.61932 

Wheatley Hall 
Road, Doncaster 
(dark blue sq) 

11m 53.54136, -1.10880 1277 53.49898, -0.93631 

 

 

8.1.2 UKCP09 Probabilistic Climate Projections 

UKCP09 create probabilistic climate projections which means likelihood factors are applied to the 

projections; i.e. a 10% probability means that, for the relevant parameter, there is 10% likelihood 

that it will be equal to or less than a given value.  The 10 to 90% probability range of climate 

projection values have been used in this research.  When analysing the analogous climate locations 
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for each case study, where it is stated that a good match has been found, it refers to the location 

having a climate which is around the 50% probability projection value for the case study, for reasons 

described in chapter 5.  How the results were obtained is explained in detail in relation to one case 

study, EQ (section 8.2).  The same procedure was employed to obtain the results for each 

subsequent case study.  All projections are given in relation to the time period the 2050s (2040-2069) 

and under the medium emission scenario (IPCC SRES A1B). 

 

8.1.3 Altitude 

Since the main purpose of the climate matching is to identify the vegetation which currently exists in 

a specific location, as well as matching the climate of the case study site in 2050, other factors, like 

altitude also need to be considered.  As altitude can affect plant growth and give rise to differing 

plant communities, the altitude of the site under consideration and its analogous climate location 

must therefore be relatively similar - see table 8.1 for case study altitude. Incident sunlight, which 

can promote photosynthesis and hence plant growth, increases with elevation (Gale, 2004).  Altitude 

will also affect humidity and evaporation, hence transpiration rates and soil moisture.  Plant 

communities found at higher altitudes therefore tend to differ in composition to the communities 

found at lower altitudes at similar locations.  Areas in Europe which had several months matched to 

the case study areas, but were found to be at a significantly different altitude were consequently 

rejected.   

 

8.1.4 Important Months for Plants 

Certain months of the year are more important for plants than others, i.e. for growth cycles and 

reproduction.  As Menzel & Sparks (2006) comment the year is broken into growth and non-growth 

periods, specifically over the winter months (a period of endo-dormancy or (true) dormancy) plants 

tend to be dormant and less affected by the climate.  The most critical months are those of the 

spring; the warmer temperatures experienced in early-full spring, during the exo-dormancy period, 

results in bud-breaking and by May, in late spring, the plants go through a growth phase till the end 

of July.  The agreement between the case study projection and the matched location, particularly in 

the spring months, will therefore take this into account when squares are investigated. 

 

8.2 Eastern Quarry, Kent 
Eastern Quarry falls into grid square 1668 and its projected mean monthly temperature and 

precipitation are shown in tables 8.2 and 8.3, where for each month the baseline value is given, along 

with the change value and the absolute projection value.  The projected temperature of EQ will 
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increase under all probability levels with the greatest change being under the 90% probability level in 

July, with a 5.2°C increase on the baseline.  This is also illustrated in figure 8.2 

 

Table 8.2 EQ’s Temperature 10-90% Projection Range in 2050. 

  
Temperature Change Projection °C Temperature Projection °C 

  
Probability Level Probability Level 

Month Baseline 
Temp °C 10% 50% 90% 10% 50% 90% 

Jan 3.99 0.69 2.42 4.14 4.68 6.41 8.13 

Feb 4.09 0.90 2.23 3.56 4.99 6.32 7.65 

Mar 6.05 0.80 1.97 3.15 6.85 8.02 9.20 

Apr 8.19 1.08 2.26 3.43 9.27 10.45 11.62 

May 11.58 1.26 2.64 4.03 12.84 14.22 15.61 

Jun 14.68 1.19 2.60 4.01 15.87 17.28 18.69 

Jul 16.78 0.98 3.11 5.24 17.76 19.89 22.02 

Aug 16.56 1.09 2.95 4.80 17.65 19.51 21.36 

Sep 14.33 1.19 2.67 4.15 15.52 17.00 18.48 

Oct 11.14 1.44 2.71 3.99 12.58 13.85 15.13 

Nov 6.91 1.23 2.64 4.04 8.14 9.55 10.95 

Dec 4.89 1.02 2.39 3.75 5.91 7.28 8.64 

 

 

Figure 8.2 EQ’s Temperature Projection Range in 2050 

 

Rainfall patterns are generally more uncertain; the precipitation range expected at EQ is a lot wider 

than the temperature projections, with the range of probabilities showing a decrease on the baseline 

value for all months at the 10% probability level, but an increase across all at the 90% probability 

level, as exemplified in figure 8.3.  The precipitation trend overall indicates an enhanced seasonal 

variation with lower volumes in the summer and the greatest increase in the winter.  The greatest 
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monthly change is projected for July at the 10% probability level with a decrease on the baseline of -

57.37%.   At the 90% probability level the greatest change on the monthly baseline is in February, 

with a 43.10% increase in precipitation.   

Table 8.3 EQ’s Precipitation 10-90% Projection Range in 2050 

 
 

 

Precipitation Projection 
Change 

Precipitation Projection 
(mm/month) 

  Month Baseline Precipitation 
(mm/month) 

Probability Level Probability Level 

10% 50% 90% 10% 50% 90% 

Jan 57.04 -12.57% 9.62% 31.82% 49.87 62.53 75.19 

Feb 37.8 -5.56% 18.77% 43.10% 35.70 44.90 54.09 

Mar 47.74 -11.49% 2.90% 17.29% 42.25 49.12 55.99 

Apr 46.8 -8.52% 2.50% 13.52% 42.81 47.97 53.13 

May 48.67 -21.96% -4.87% 12.22% 37.98 46.30 54.62 

Jun 48.9 -41.62% -14.10% 13.42% 28.55 42.00 55.46 

Jul 47.12 -57.13% -15.83% 25.48% 20.20 39.66 59.12 

Aug 48.36 -57.37% -22.30% 12.75% 20.62 37.57 54.52 

Sep 57.6 -34.38% -6.63% 21.10% 37.80 53.78 69.76 

Oct 56.73 -15.04% 0.71% 16.45% 48.20 57.13 66.06 

Nov 59.7 -16.20% 10.51% 37.22% 50.03 65.98 81.92 

Dec 60.45 -4.89% 12.58% 30.05% 57.50 68.06 78.62 

 

 

Figure 8.3 EQ’s Precipitation Projection Range in 2050 

The projected 10 to 90% probability level range of temperature and precipitation for each month for 

EQ were entered into the GIS as a query, to identify locations in Europe that currently experience 

these meteorological conditions.  This was done for each month of the year, thus creating 12 layers 

on the GIS.   
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To find out how many of EQs’ months were represented (climate matched) at each European grid 

square, point data were converted to raster data, and assigned a number 1 for a month match and a 

0 for a non-month match; a match defined as the current mean temperature and precipitation for a 

month falling within the comparable prediction range of 10%-90%.  The number of months of 

agreement for each square could then be totalled up and displayed using a colour key corresponding 

to the number of months that matched EQs’ climate projections.   The visual output is shown in 

Figure 8.4.   

 

 

 

 

 



 

 

Figure 8.4 Climate matched areas for EQ (red dot)
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Table 8.4 shows how successfully, in terms of months matched, European grid squares correspond to 

the predicted meteorological conditions at EQ, i.e. there are 6481 grid squares which match one 

month of EQ’s future climate.  There are no European grid squares which match EQ’s climate 

projection for the full 11 or 12 months, with the best match being 10 months in north western 

France.  There are four grid squares with 9 months matched - the Puglia and Tuscany regions in Italy 

and the Spanish autonomous community of Navarre.  These matches were however not investigated 

further as they were at higher altitudes (300 and 650m) than EQ (33m). 

 

Table 8.4 The number of European grid squares matched to EQ’s climate 

No of months matched No of grid 
squares 

1 6481 

2 3422 

3 1860 

4 819 

5 323 

6 188 

7 58 

8 22 

9 4 

10 1 

11 0 

12 0 

 

 

Figure 8.5 shows the locations in north-western France, specifically in the Ille-et-Vilaine and the 

Maine-et-Loire departments, where a cluster of 7 and 8 month matches were found.  The elevation 

of these areas ranged from 54m south of Rennes in Saint-Thurial, to 19m east of Angers in Beaufort-

en-vallee, making them compatible with EQ.  Consequently because of the density of the number of 

months matched, and the altitude similarity, these areas were investigated further for their 

suitability to EQs climate, by seeing where the temperature and precipitation values fall within the 

range of climate projections for the case study area.   
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Ille-et-Vilaine Department 
Rennes 
 
Maine-et-Loire Department 
Angers  
 

 

 

Figure 8.5 Suitable European Areas for EQ Climate Comparison. 

 

The 6 grid squares numbered in Figure 8.5 are examples for discussion; these were not the only 

squares studied, but they represent the spatial range across the cluster.  Table 8.5 lists the properties 

and the relevant figure to refer to in relation to the 6 selected squares.  Figures 8.7 to 8.12 are graphs 

of the current 30-year average temperature and precipitation at each of the selected grid squares in 

France, together with the projected values for EQ.  For each location temperature and precipitation 

are shown on a separate figure, but these two variables were considered together in determining the 

degree of agreement.  For example, in figure 8.7 there is a good temperature match for all 12 

months, but only a 10 month match for precipitation.  

Table 8.5 EQs matched squares for analysis 

Square no. Latitude/Longitude No. Matched months Figure No. 

1 48.083, -1.917 8 8.7 

2 48.083, -1.75 10 8.6 

3 47.583, -0.75 8 8.8 

4 47.417, -0.75 7 8.9 

5 47.417, -0.25 8 8.10 

6 47.417, -0.083 7 8.11 

 

1 2 

3 
4 5 6 
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Analysis 

The area with the best match for EQ’s temperature and precipitation is just east of the city of Rennes 

(square no 2, table 8.5), in the Ille-et-Vilaine department of north-western France, where there are 

10 matched months.  As shown in figure 8.6a the current average temperature falls predominantly 

nearer the 10% probability projection for EQ, thus indicating it is lower than is expected at EQ in 

2050.  The temperatures fall within the 10% to 90% range for all 12 months.  The precipitation shown 

in figure 8.6b tends to fall in between the 50% and 90% probability levels, indicating a closer match 

for the precipitation than for the temperature.  However, the precipitation is higher than the 90% 

range in the months of February and May by 4.21 and 7.98mm respectively.   

 

Square 1, adjacent to square 2, has 8 months matching EQ, as shown in figure 8.7a, and has a similar 

temperature pattern to that of square 2, in that it falls close to the 10% probability level, but for May 

falls outside the range by 0.04°C.  The precipitation pattern is also similar to square 2, but has Feb, 

Mar, May and Oct precipitation slightly higher than the probability projection rate for EQ, as shown 

in figure 8.7b, and thus unlikely to be experienced at EQ.  A similar pattern of trends occurs for the 

other areas with 7 or more months matching EQ in the Ille-et-Vilaine department. 

 

The cluster of 8 and 7 month matches further south of Rennes, in the Maine-et-Loire department of 

France has been looked at.  Even though 8 months (combined) is the maximum which match EQ 

here, the area does overall appear to be in better agreement than the squares in the Ille-et-Vilaine 

department.  For square nos 3 and 5, located near Angers, the mean temperature (see figure 8.8a 

and 8.10a) is closer to the 50% probability projection than the 10% projection, with November and 

December consistently being the two months that do not match, for example in figure 8.8a they fall 

lower than the range by 0.24 and 0.51°C respectively.  This pattern for temperature match is similar 

in all the 8 months squares identified in the Maine-et-Loire department.  The 7 month matches 

(represented by squares 4 and 6) are also similar, but the temperature for January also falls out the 

probability range, as illustrated in figures 8.11a, but this month is when plants are dormant. 

 

Precipitation for Angers, under the 8 month matches, falls predominantly in between the 50% and 

90% probability levels, as shown in figures 8.8b and 8.10b, matching the trend over the year quite 

well.  February and May do have higher rainfall than the range, which is by 5.71 and 2.88mm 

respectively in figure 8.8b, but this is not as large a difference as the Rennes matches (squares 1 and 

2).  The 7 month matches are matched less by one month in square 4, the one represented in figure 

8.9b, with March rainfall only 0.1mm higher than the 90% probability value.  The other 7 month 

matches in the region actually have 10 months matched for precipitation, as shown in figure 8.11b.  
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A similar analysis was undertaken for all squares with 7 month matches or better, for the French 

departments. 

 

As plants are normally dormant during November, December, January and February there is less 

concern over the temperature discrepancies in these regions when considering plant suitability.  In 

terms of visiting a location and/or obtaining plant data in an area climatically matched, the Ille-et-

Villaine department is excluded as the Maine-et-Loire climate is in better agreement with EQ’s 

climate projections, with the match being closer to the 50% projection.  Although the temperature in 

Ille-et-Vilaine is more consistent with few outside the range, there is a better match during the 

growing season for the Maine-et-Loire region.  There was effectively no difference between the 

precipitation of the two regions, with higher than expected rainfall in Feb/May, but the Maine-et-

Loire had a more consistent pattern.  As no match was going to be perfect, a judgement had to be 

made, but the May precipitation discrepancy should be considered when making decisions regarding 

vegetation selections. 
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Figure 8.6 Climate 
comparison of existing 
conditions at square 2 
and EQ projections.  

(a) Temperature 

 

 
 
 
 

(b) Precipitation 

 

 

 

 

 

 

 

Figure 8.7 Climate 
comparison of existing 
conditions at square 1 
and EQ projections.  

(a) Temperature 

 

 

 
 
 
(b) Precipitation 
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Figure 8.8 Climate 
comparison of existing 
conditions at square 3 
and EQ projections.  
 
(a) Temperature 
 
 
 
 
 
 
 

 
(b) Precipitation 
 
 
 
 
 
 
 
 
 

 

Figure 8.9 Climate 
comparison of 
existing conditions at 
square 4 and EQ 
projections. 

 (a) Temperature 

 

 
 
 
 
 
 
                                     

 (b) Precipitation 
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Figure 8.10 Climate 
comparison of existing 
conditions at square 5 
and EQ projections.  

(a) Temperature 

 

 

 

 

(b) Precipitation 

 

 

 

 

 

 

Figure 8.11 Climate 
comparison of 
existing conditions at 
square 6 and EQ 
projections.  

(a) Temperature 

 

 

 

 

(b) Precipitation 
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8.3 Olympic Park, London 
The Olympic Park is located in grid square 1628 and its projected mean monthly temperature and 

precipitation are shown in tables 8.6 and 8.7.  Figure 8.12 shows the areas in Europe and the number 

of months which have a climate that falls within these projections. 

 

Table 8.6 Olympic Park’s Temperature Projection range in 2050 

  

Temperature Change  
Projection °C 

Temperature Projection °C 

  
Probability Level Probability Level 

Month Baseline 
Temp °C 10% 50% 90% 10% 50% 90% 

Jan 4.26 0.68 2.39 4.11 4.94 6.65 8.37 

Feb 4.44 0.89 2.21 3.53 5.33 6.65 7.97 

Mar 6.51 0.81 1.97 3.14 7.32 8.48 9.65 

Apr 8.79 1.07 2.25 3.43 9.86 11.04 12.22 

May 12.25 1.25 2.63 4.01 13.50 14.88 16.26 

Jun 15.39 1.19 2.59 3.99 16.58 17.98 19.38 

Jul 17.45 0.99 3.12 5.26 18.44 20.57 22.71 

Aug 17.15 1.11 2.99 4.88 18.26 20.14 22.03 

Sep 14.82 1.19 2.68 4.17 16.01 17.50 18.99 

Oct 11.57 1.43 2.70 3.97 13.00 14.27 15.54 

Nov 7.22 1.22 2.63 4.03 8.44 9.85 11.25 

Dec 5.15 1.01 2.37 3.73 6.16 7.52 8.88 

 
Table 8.7 Olympic Park’s Precipitation Projection range in 2050 

  
Precipitation Projection  

Change 
Precipitation Projection 

 (mm/month) 
  Month Baseline 

Precipitation 
(mm/month) 

Probability Level Probability Level 

10% 50% 90% 10% 50% 90% 

Jan 56.42 -13.73% 10.61% 34.94% 48.67 62.40 76.13 

Feb 38.08 -5.53% 19.81% 45.16% 35.97 45.63 55.28 

Mar 50.22 -8.89% 6.14% 21.16% 45.76 53.30 60.84 

Apr 48.3 -7.26% 2.44% 12.14% 44.79 49.48 54.17 

May 52.39 -23.11% -5.03% 13.06% 40.28 49.76 59.23 

Jun 52.8 -42.37% -14.60% 13.17% 30.43 45.09 59.75 

Jul 49.29 -55.62% -15.41% 24.79% 21.88 41.69 61.51 

Aug 54.87 -58.45% -22.97% 12.50% 22.80 42.26 61.73 

Sep 55.2 -34.15% -6.30% 21.54% 36.35 51.72 67.09 

Oct 59.21 -15.03% 0.75% 16.54% 50.31 59.66 69.00 

Nov 59.7 -17.38% 11.58% 40.54% 49.33 66.61 83.90 

Dec 60.76 -4.54% 13.57% 31.69% 58.00 69.01 80.01 



 

 

 
 

Figure 8.12 Climate matched areas for Olympic Park (red dot)
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Table 8.8 shows the number of European grid squares which match each category.  There were no 

areas which matched all 12 months, with the best match being 11 months near ‘Gravina in Puglia’ in 

South East Italy (40.917, 16.417).  Although there was a relatively good climatic match here, the area 

had an altitude of 383m AOD and was consequently rejected.  The 10 month matches near 

Ripacandida in south Italy (40.917, 15.75) and near Larraga in northern Spain (42.583, -1.917) also 

had differing altitudes to the case study site - 497m and 308m respectively.  The altitude of the 8 and 

9 month matches, which occurred predominantly in Italy and Spain, were also too high to be 

considered, or were scattered in isolated matches.  The areas therefore which were further 

investigated in relation to the Olympic Park’s climate projections, include the cluster of 7 month 

matches in the Maine-et-Loire department in north-western France, the same area that matched  EQ 

relatively well. 

 

Table 8.8 The number of European grid squares matched to Olympic Park’s climate 

No of months matched No of grid squares 

1 4978 

2 3285 

3 2453 

4 1402 

5 425 

6 220 

7 108 

8 30 

9 13 

10 2 

11 1 

12 0 

 

Figure 8.13 shows the cluster of 7 month matches and the 4 grid squares which have been selected 

as examples for discussion.  They are located in and around Angers, the main town in the Maine-et-

Loire, extending south towards Saumur.  The altitude at Angers is 41m, and 24m at Saumur, making 

them an ideal match to the altitude at Olympic Park (12m). 
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Figure 8.13 Suitable European Areas for Olympic Park climate comparison 

 

 

Table 8.9 Olympic Park matched squares for analysis 

Square no. Latitude/Longitude No. Matched months Figure No. 

1 47.583, -0.583 7 8.14 

2 47.417, -0.583 7 8.15 

3 47.417, -0.083 7 8.16 

4 47.25, -0.083 7 8.17 
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All of the squares with 7 months matching have a similar pattern in that the temperature in Angers 

(and surrounding) falls within the 10 to 90% range but tend to be near the 10% probability projection 

values.  This suggests that the temperature currently experienced in Angers overall is, based on 

probability projections, is slightly lower than what will be expected at the Olympic Park in 2050.  The 

temperature for October, November, December and January in Angers falls just out of the range as 

shown in figure 8.14a by 0.3°C, 0.54°C, 0.76°C and 0.14°C respectively.  As already discussed, these 

months are less important for plant growth, but the temperature in March, a more important month, 

falls in between the 10% and 50% projection values which is more ideal.  The surrounding squares, as 

shown in figure 8.13, with 6 months matching overall, experience a temperature in May lower than 

the range of projections. 

 

The precipitation at Angers (and its surrounding area) is a better match than that of the temperature, 

falling nearer the 50% projection values and in between the 50% and 90% range, as shown in figures 

8.14-17b. Angers overall appears to have more precipitation across the year, than that expected at 

the Olympic Park, but this is only really noticeable in February and May.  February is the only month 

which has a higher precipitation than the range projections, for example as in figure 8.16b, when it 

experiences 4.42mm more rainfall a month than the 90% projection range.  This is not a significant 

amount, particularly spread over the month, but with a higher than average rainfall generally, when 

matching the plant selection choices this should be kept in mind. 

 

Given that there is only one region investigated here and all the squares are relatively similar, this 

area would be accepted as the match for the Olympic Park.  It is not perfect as the temperature in 

particular is closer to the 10% projection, but it does however stay within the range during the 

growing season.  
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Figure 8.14 Climate 
comparison of 
existing conditions 
at square 1 and 
Olympic Park 
projections.  

(a) Temperature  

 

(b) Precipitation  

Figure 8.15 Climate 
comparison of 
existing conditions 
at square 2 and 
Olympic Park 
projections.  

(a) Temperature  

 

(b) Precipitation  
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Figure 8.16 Climate 
comparison of existing 
conditions at square 3 
and Olympic Park 
projections.  

(a) Temperature  

 

(b) Precipitation  

 

Figure 8.17 Climate 
comparison of 
existing conditions at 
square 4 and Olympic 
Park projections.  

(a) Temperature  

 

(b) Precipitation  
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8.4 Brogborough Landfill Site, Central Beds 
Brogborough Landfill Site is located in grid square 1549 at an altitude of 77m, and its projected mean 

monthly temperature and precipitation are shown in tables 8.10 and 8.11.  Figure 8.18 shows the 

areas in Europe which have a climate, or part of a climate, that exists within these projections. 

Table 8.10 Brogborough landfill’s Temperature Projection range in 2050 

  

Temperature Change 
Projection °C 

Temperature Projection °C 

  
Probability Level Probability Level 

Month Baseline 
Temp °C 10% 50% 90% 10% 50% 90% 

Jan 3.38 0.67 2.37 4.06 4.05 5.75 7.44 

Feb 3.44 0.87 2.18 3.48 4.31 5.62 6.92 

Mar 5.46 0.80 1.96 3.12 6.26 7.42 8.58 

Apr 7.64 1.06 2.24 3.42 8.70 9.88 11.06 

May 10.95 1.24 2.60 3.96 12.19 13.55 14.91 

Jun 14.02 1.17 2.52 3.87 15.19 16.54 17.89 

Jul 16.04 0.97 3.04 5.12 17.01 19.08 21.16 

Aug 15.85 1.10 2.97 4.85 16.95 18.82 20.70 

Sep 13.62 1.18 2.65 4.13 14.80 16.27 17.75 

Oct 10.46 1.42 2.68 3.94 11.88 13.14 14.40 

Nov 6.18 1.21 2.59 3.98 7.39 8.77 10.16 

Dec 5.15 0.07 1.41 2.75 5.22 6.56 7.90 

 

Table 8.11 Brogborough landfill’s Precipitation Projection range in 2050 

  
Precipitation Projection 

Change 
Precipitation Projection 

mm/month 
  Month Baseline 

Precipitation 
(mm/month) 

Probability Level Probability Level 

10% 50% 90% 10% 50% 90% 

Jan 53.94 -14.04% 11.08% 36.19% 46.36 59.92 73.46 

Feb 39.48 -4.66% 19.72% 44.10% 37.64 47.27 56.89 

Mar 51.77 -9.30% 7.17% 23.65% 46.95 55.48 64.02 

Apr 49.5 -6.08% 2.16% 10.39% 46.49 50.57 54.64 

May 52.39 -22.40% -5.08% 12.24% 40.66 49.73 58.80 

Jun 52.2 -36.02% -9.75% 16.51% 33.40 47.11 60.82 

Jul 50.53 -51.45% -14.67% 22.10% 24.53 43.12 61.70 

Aug 56.11 -58.20% -23.04% 12.12% 23.45 43.18 62.91 

Sep 52.2 -36.04% -8.48% 19.08% 33.39 47.77 62.16 

Oct 56.11 -13.32% 0.59% 14.49% 48.64 56.44 64.24 

Nov 56.7 -16.55% 11.31% 39.18% 47.31 63.11 78.91 

Dec 60.76 -4.75% 14.80% 34.36% 57.87 69.75 81.63 



 

 

 
Figure 8.18 Climate matched areas for Brogborough landfill (red dot)
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Table 8.12 shows the number of European grid squares which match each category.  There were no 

areas across Europe which matched Brogborough’s climate projection for 11 or 12 months, with the 

best match being 10 months near the municipality of Navarette in the autonomous community of La 

Rioja in northern Spain (42, 417, -2.75).  Although there was a relatively good climatic match here, 

the area had an altitude of 479m AOD and was consequently rejected.  The 9 month match square 

adjoining this grid square (42.417, -2.583) was also eliminated from further investigation for the 

same reason.  The areas therefore which will be further investigated in relation to the landfill sites’ 

climate projections, include the large patch of 8 and surrounding 7 month squares spread across 

several departments in north-central France, just south of Paris.  

 

Table 8.12 The number of European grid squares matched to Brogborough landfill’s climate 

No of months matched No of grid squares 

1 7523 

2 3025 

3 1433 

4 677 

5 276 

6 146 

7 70 

8 13 

9 1 

10 1 

11 0 

12 0 

 

 

Figure 8.19 shows the cluster of 8 and 7 month matches and the 6 grid squares which have been 

selected as examples for discussion.  They are located in the Essonne, Seine-et-Marne and Loiret 

departments of France.  The altitude across these areas varied from 34m at Evry in Essonne, to 82 at 

Nemours in the Seine-et-Marne , to 119m at Pithiviers in Loiret.  The altitude at Brogborough is 77m 

making these areas appropriate with regard to altitude. 
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Figure 8.19 Suitable European Areas for Brogborough landfill’s climate comparison 

 

Table 8.13 shows the latitude/longitude and relevant figure to refer to in relation to the 6 grid 

squares numbered on figure 8.19. 

Table 8.13 Brogborough landfill matched squares for analysis 

Square no. Latitude/Longitude No. Matched months Figure No. 

1 48.583, 2.417 8 8.20 

2 48.417, 2.417 7 8.21 

3 48.25, 2.583 8 8.22 

4 48.25, 2.75 8 8.23 

5 48.083, 2.25 7 8.24 

6 47.917, 2.25 7 8.25 

 

 

 

 

 

 Essonne 

 Loiret 

 Seine-et 
-Marne 1 
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Across the 6 grid squares selected there is a good temperature agreement overall, and the months 

which are more important for plants (Mar, Apr, May) have a temperature which is close to the 

Brogborough 50% projection.  The temperature in January, November and December falls lower than 

the range - for example, in figure 8.20a (square 1) the temperature falls lower in these months by 

0.35°C, 0.25°C and 0.72°C respectively, with the other squares out by a similar amount, but slightly 

increasing the further south travelled.  The lower temperature in October makes grid squares 2, 5 

and 6 less in agreement, as shown in figures 8.21a, 8.24a and 8.25a, but this is only by a small 

amount, e.g. 0.06°C lower in figure 8.21a.  Other than this difference, these squares are very similar 

to the 8 month matched squares.   

 

Across all 6 grid squares the precipitation overall is higher than the 50% probability projection, but 

below the 90% projection, particularly at the end of spring and over the summer months (see figures 

8.20b - 8.25b).  In all 7 and 8 month matches the precipitation in May is higher than the range - for 

example, by 5.93mm in grid square 1 (fig 8.20b).  This difference increases the further south of here, 

and in square 3 by 9.23mm (figure 8.22b).  Square 6 has a precipitation amount in October that goes 

over the 90% projection by 0.08mm, but this does not occur in all the 7 month match grid squares.  

The spring months are relatively well matched to Brogborough’s projections, it is only the 

precipitation in May which is higher and this should be considered when selecting plants. 

 

These areas are all relatively similar in compatibility, but as pointed out the difference increases the 

further south travelled.  It would therefore be suitable to select the more northern squares in the 

Essonne and Seine-et-Marne departments (7 and 8 month matches) to obtain species data from, as 

better matches exist here. 
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Figure 8.20 Climate 
comparison of 
existing conditions 
at square 1 and 
Brogborough Landfill 
projections.  

(a) Temperature  

 

(b) Precipitation  

Figure 8.21 Climate 
comparison of 
existing conditions 
at square 2 and 
Brogborough Landfill 
projections.  

(a) Temperature  

 

(b) Precipitation  



225 

 

 
 

 

 
 

 

Figure 8.22 Climate 
comparison of 
existing conditions 
at square 3 and 
Brogborough Landfill 
projections.  

(a) Temperature  

 

Figure 8.23 Climate 
comparison of 
existing conditions 
at square 4 and 
Brogborough Landfill 
projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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Figure 8.24 Climate 
comparison of 
existing conditions 
at square 5 and 
Brogborough Landfill 
projections.  

(a) Temperature  

 

Figure 8.25 Climate 
comparison of 
existing conditions 
at square 6 and 
Brogborough Landfill 
projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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8.5 Minworth Sewage Works, Birmingham 
Minworth Sewage Works is located in grid square 1430, altitude 82m, and its projected mean 

monthly temperature and precipitation are shown in tables 8.14 and 8.15.  Figure 8.26 shows the 

areas in Europe which have a climate, or part of a climate, that exists within these projections. 

Table 8.14 Minworth sewage work’s Temperature Projection range in 2050 

  

Temperature Change 
Projection °C 

Temperature Projection °C 

  
Probability Level Probability Level 

Month Baseline 
Temp °C 10% 50% 90% 10% 50% 90% 

Jan 3.25 0.66 2.33 4.01 3.91 5.58 7.26 

Feb 3.28 0.86 2.13 3.41 4.14 5.41 6.69 

Mar 5.33 0.79 1.95 3.12 6.12 7.28 8.45 

Apr 7.54 1.06 2.23 3.39 8.60 9.77 10.93 

May 10.81 1.22 2.59 3.95 12.03 13.40 14.76 

Jun 13.92 1.12 2.43 3.74 15.04 16.35 17.66 

Jul 15.89 0.92 2.92 4.93 16.81 18.81 20.82 

Aug 15.58 1.05 2.87 4.70 16.63 18.45 20.28 

Sep 13.3 1.14 2.58 4.01 14.44 15.88 17.31 

Oct 10.1 1.39 2.63 3.88 11.49 12.73 13.98 

Nov 6 1.19 2.56 3.93 7.19 8.56 9.93 

Dec 4.07 0.98 2.31 3.65 5.05 6.38 7.72 

 

Table 8.15 Minworth’s sewage works Precipitation Projection range in 2050 

  
Precipitation Projection 

Change 
Precipitation Projection 

mm/month 
  Month Baseline 

Precipitation 
(mm/month) 

Probability Level Probability Level 

10% 50% 90% 10% 50% 90% 

Jan 58.9 -10.92% 19.28% 49.48% 52.47 70.26 88.04 

Feb 47.6 -6.08% 18.55% 43.17% 44.71 56.43 68.15 

Mar 52.08 -9.90% 8.28% 26.45% 46.92 56.39 65.86 

Apr 49.8 -8.84% 1.31% 11.47% 45.40 50.45 55.51 

May 54.87 -19.09% -5.15% 8.79% 44.39 52.04 59.69 

Jun 57.6 -39.42% -13.48% 12.46% 34.90 49.84 64.78 

Jul 49.6 -44.45% -13.21% 18.03% 27.55 43.05 58.54 

Aug 66.03 -61.16% -28.01% 5.14% 25.64 47.54 69.43 

Sep 54.3 -34.94% -5.22% 24.50% 35.33 51.47 67.60 

Oct 53.63 -13.50% 2.05% 17.60% 46.39 54.73 63.07 

Nov 58.8 -15.89% 10.82% 37.53% 49.46 65.16 80.87 

Dec 65.72 -5.50% 14.15% 33.79% 62.11 75.02 87.93 



 

 

 
 

Figure 8.26 Climate matched areas for Minworth sewage works (red dot)
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Table 8.16 shows the number of European grid squares which match each category.  There are 8 grid 

squares which match Minworth’s climate projection for all 12 months, located in the Maine-et-Loire 

department in north-western France. The area surrounding this patch also spans out in a pattern to 

11 month blocks, 10 month blocks and so on, extending as far north as the coast of Ille-et-Villaine, 

with 8 month matches stretching as far east as the Seine-et-Marne department near Paris.  This 

illustrates that this area has a good agreement with Minworth’s climate projection.  The altitude over 

the best matched area (the 12 and 11 month cluster) ranges between 73m and 24m which would be 

comparative with the case studies elevation of 82m.  There are a few 10, 9 and 8 month matches in 

the UK, on the south coast and in London, but as they are isolated patches, in comparison to the find 

in France, these are not considered further.  It is however, worth noting that these climate matches 

in the south of the UK have only appeared with the northern case studies. 

 

Table 8.16 The number of European grid squares matched to Minworth sewage work’s climate 

No of months matched No of grid squares 

1 7722 

2 4622 

3 1993 

4 857 

5 390 

6 229 

7 134 

8 161 

9 92 

10 59 

11 27 

12 8 

 

Figure 8.27 shows the large section which is climatically matched with Minworth, and the 8 grid 

squares which span the range and have been selected as examples for discussion.  They are located 

in the Mayenne, Maine-et-Loire, Indre-et-Loire and Loiret departments of France.  The average 

altitude across these areas varied from 41m in Angers to 114m in Orleans.  
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Figure 8.27 Suitable European Areas for Minworth sewage work’s climate comparison 

 

Table 8.17 shows the latitude/longitude and relevant figure to refer to in relation to the 8 grid 

squares numbered on figure 8.27. 

 

Table 8.17 Minworth sewage work’ matched squares for analysis 

Square no. Latitude/Longitude No. Matched months Figure No. 

1 47.917, -0.75 11 8.28 

2 47.917, -0.583 11 8.29 

3 47.583, -0.417 12 8.30 

4 47.417, -0.417 12 8.31 

5 47.417, 0.583 10 8.32 

6 47.417, 0.75 10 8.33 

7 47.917, 1.917 8 8.34 

8 47.917, 2.083 8 8.35 

 

 Mayenne 
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The temperature of the 12 month match grid squares are in very good agreement with Minworth’s 

projected climate over the year, matching around the 50% probability projection for most of the 

year, with it veering near the 10% projection over the winter months as shown in figures 8.30a and 

8.31a.  The precipitation is also in good agreement with Maine-et-Loire experiencing slightly more 

rainfall in May, October and November, but they still fall within the range, as shown in figures 8.30b 

and 8.31b.  The climate pattern is similar for the 11 month matches, but as shown in figures 8.28b 

and 8.29b it is the higher amount of precipitation in October which makes the match fall outside the 

range, e.g. by 4.23mm in figure 8.28b – across the range this is probably the maximum that it falls 

over by.  Across the 11 month spread, sometimes it is the precipitation in May which falls higher than 

the range, a month which persistently has generally higher rainfall in comparison to April and June, 

throughout the Maine-et-Loire region.  The temperature in December also in a few grid squares 

north east of Angers, has a temperature slightly lower than Minworth’s projections. 

 

The 10 month matches in the Indre-et-Loire department are overall in good agreement, apart from 

the winter temperatures being near the 10% projection.   In December the temperature falls lower 

than the range by 0.35°C in figures 8.32a and 8.33a, which is not significant for the purposes of the 

research.  The precipitation here is also in good agreement, apart from December when it is nearer 

the 10% projection, and in May when Indre-et-Loire experiences more rainfall than the range by 

3.21mm, as shown in figure 8.32b.  The other 10 month matches across the spread also experience 

higher rainfall in October, as well as in May, but this is not by significant amounts. 

 

The 8 month matches in the far east of the matched area experience a similar temperature pattern, 

but the months of January, November and December have a lower temperature than Minworth’s 

projected range falling under by 0.61°C, 0.39°C and 1.05°C respectively (figure 8.34a).  The 

precipitation is a good match amongst most months, but the winter months and the start of spring 

have a rainfall in between the 10 and 50% projection range, with it falling out of the range by 

8.21mm in December (figure 8.34b).  Conversely the precipitation in May is higher than the range by 

5.71mm in this same square.  As mentioned before, with May being an important month for plants in 

the phenological calendar, this must be considered when making the plant selections.  
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Figure 8.28 Climate 
comparison of 
existing conditions at 
square 1 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

Figure 8.29 Climate 
comparison of 
existing conditions at 
square 2 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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Figure 8.30 Climate 
comparison of 
existing conditions at 
square 3 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

Figure 8.31 Climate 
comparison of 
existing conditions at 
square 4 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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Figure 8.32 Climate 
comparison of 
existing conditions at 
square 5 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

Figure 8.33 Climate 
comparison of 
existing conditions at 
square 4 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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Figure 8.35 Climate 
comparison of 
existing conditions at 
square 8 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

Figure 8.34 Climate 
comparison of 
existing conditions at 
square 7 and 
Minworth Sewage 
Work projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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8.6 Wheatley Hall Road, Doncaster 
Wheatley Hall Road is located in grid square 1277, altitude 27m, and its projected mean monthly 

temperature and precipitation are shown in tables 8.18 and 8.19.  Figure 8.36 shows the areas in 

Europe which have a climate, or part of a climate, that exists within these projections. 

Table 8.18 Wheatley Hall Road’s Temperature Projection range in 2050 

  

Temperature Change 
Projection °C 

Temperature Projection °C 

  
Probability Level Probability Level 

Month Baseline 
Temp °C 10% 50% 90% 10% 50% 90% 

Jan 3.4 0.65 2.32 4.00 4.05 5.72 7.40 

Feb 3.5 0.85 2.13 3.41 4.35 5.63 6.91 

Mar 5.53 0.79 1.96 3.12 6.32 7.49 8.65 

Apr 7.66 1.06 2.21 3.37 8.72 9.87 11.03 

May 10.83 1.21 2.54 3.87 12.04 13.37 14.70 

Jun 13.95 1.05 2.29 3.52 15.00 16.24 17.47 

Jul 15.75 0.86 2.72 4.59 16.61 18.47 20.34 

Aug 15.68 0.96 2.63 4.30 16.64 18.31 19.98 

Sep 13.49 1.09 2.44 3.79 14.58 15.93 17.28 

Oct 10.29 1.34 2.55 3.76 11.63 12.84 14.05 

Nov 6.1 1.16 2.50 3.84 7.26 8.60 9.94 

Dec 4.13 0.97 2.30 3.63 5.10 6.43 7.76 

 

Table 8.19 Wheatley Hall Road’s Precipitation Projection range in 2050 

  
Precipitation Projection 

Change 
Precipitation Projection 

mm/month 
  Month Baseline 

Precipitation 
(mm/month) 

Probability Level Probability Level 

10% 50% 90% 10% 50% 90% 

Jan 46.19 -14.06% 11.10% 36.25% 39.69 51.32 62.94 

Feb 35.84 -3.42% 15.52% 34.46% 34.61 41.40 48.19 

Mar 45.57 -13.16% 4.00% 21.17% 39.57 47.39 55.22 

Apr 47.1 -10.02% 2.01% 14.03% 42.38 48.04 53.71 

May 49.29 -21.29% -4.56% 12.18% 38.79 47.04 55.29 

Jun 51.9 -33.98% -11.33% 11.33% 34.26 46.02 57.78 

Jul 50.53 -43.82% -12.31% 19.21% 28.39 44.31 60.23 

Aug 58.28 -54.06% -24.10% 5.87% 26.77 44.24 61.70 

Sep 48.6 -28.30% -4.32% 19.66% 34.85 46.50 58.16 

Oct 45.26 -15.25% 2.17% 19.58% 38.36 46.24 54.12 

Nov 51.9 -16.15% 10.45% 37.04% 43.52 57.32 71.12 

Dec 51.15 -5.11% 9.98% 25.06% 48.54 56.25 63.97 



 

 

 

Figure 8.36 Climate matched areas for Wheatley Hall Road (red dot)
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Table 8.20 shows the number of European grid squares which match each category.  The best match 

is an area in North London (51.583, -0.083) with 9 months matching Wheatley Hall Road’s 10 to 90% 

probability projection.  The altitude is around 24m here and comparative with the case studies 

elevation of 27m.  There are no grid squares which match the projections for 10, 11 and 12 months.  

As can be seen in figure 8.36 and up closer in figure 8.37 there are 2 areas in north-central France 

with a cluster of 7 and 8 month matches, and as the altitude is similar here to the case study site –

the area surrounding Paris will be further investigated.  The altitude varies here from 42m in Creteil 

to 79m in Fontainebleau. 

 

Table 8.20 The number of European grid squares matched to Wheatley Hall Road’s climate 

No of months matched No of grid squares 

1 8269 

2 3283 

3 1351 

4 510 

5 252 

6 208 

7 42 

8 4 

9 1 

10 0 

11 0 

12 0 

 

Figure 8.37 shows the 6 grid squares which have been selected as examples for discussion.  They are 

located in the Essonne, Seine-et-Marne and Loiret departments of France, and in London in the UK.   
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Figure 8.37 Suitable European Areas for Wheatley Hall Road’s climate comparison 

 
 
Table 8.21 shows the latitude/longitude and relevant figure to refer to in relation to the 6 grid 

squares numbered on figure 8.37. 

 

Table 8.21 Wheatley Hall Road’s matched squares for analysis 

Square no. Latitude/Longitude No. Matched months Figure No. 

1 51.583, -0.083 9 8.38 

2 48.75, 2.417 8 8.39 

3 48.583, 2.417 7 8.40 

4 48.417, 2.75 8 8.41 

5 48.25, 2.75 7 8.42 

6 48.25, 2.083 7 8.43 

 

 

 

1 

 

 

4 

 Loiret 

 Essonne 
 Seine-et-

Marne 2 
3 

5 
4 

6 



240 

 

The UK match in figure 8.38a has a temperature which tends to fall nearer the 10% projection with 

April, October and November falling under the range by 0.02°C, 0.03°C and 0.06°C respectively.  The 

precipitation generally is higher in this area of the UK in comparison to Wheatley Hall Road’s 50% 

projection, but it is only greater than the range in October when it experiences 3.98mm more rainfall 

over the month (figure 8.38b). 

 

The matches in France are better overall and similar to what is projected for Wheatley Hall Road in 

2050.  In figure 8.39a and 8.41a there is a relatively good match for temperature bar the winter 

months with the temperature in January and December falling out the range by 0.15°C and 0.4°C 

respectively (figure 8.39a).  The precipitation generally tends to be higher than the 50% projection 

with higher rainfall than the 90% projection in May and November by, for example 3.91mm and 

2.28mm respectively in figure 8.39b.  Conversely the rainfall in April in this area of France is close to 

Wheatley Hall Road’s 10% projection.  The 7 months are matched less by one month in November 

when the temperature is 0.06°C lower than the range (figure 8.40a).  Further south, the precipitation 

in February is higher than the range by 0.81mm (figure 4.42b), along with May.  North of the Loiret 

department the climate pattern is similar as shown in figure 8.43a and b. 
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Figure 8.38 Climate 
comparison of 
existing conditions at 
square 1 and 
Wheatley Hall Road 
projections.  

(a) Temperature  

 

Figure 8.39 Climate 
comparison of 
existing conditions at 
square 2 and 
Wheatley Hall Road 
projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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Figure 8.40 Climate 
comparison of 
existing conditions at 
square 3 and 
Wheatley Hall Road 
projections.  

(a) Temperature  

 

Figure 8.41 Climate 
comparison of 
existing conditions at 
square 4 and 
Wheatley Hall Road 
projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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Figure 8.42 Climate 
comparison of 
existing conditions at 
square 5 and 
Wheatley Hall Road 
projections.  

(a) Temperature  

 

Figure 8.43 Climate 
comparison of 
existing conditions at 
square 6 and 
Wheatley Hall Road 
projections.  

(a) Temperature  

 

(b) Precipitation  

(b) Precipitation  
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8.7 Conclusion 
The climate matching process, as described in this chapter, has enabled areas across Europe to be 

identified which are currently experiencing a similar climate to that expected by the case studies in 

2050 across the UK.  By further analysing these matches it is clear that overall those areas in better 

agreement with the case studies exist in north-western and north central France, particularly in the 

Pays de la Loire and the Ile-de-France regions of France.   

A trend throughout has shown that often the precipitation in May at the matched locations is 

higher than the 90% projection range, which will need to be considered when investigating the 

vegetation in these areas – May is an important month in the growing cycle of plants. The 

temperature over the winter months in these areas of France tends to be lower than the projected 

ranges, but plants are often dormant during this period and so this is less of a concern.  Overall there 

is a good agreement between the case study’s projected climate and the climate in these areas of 

France.   

The next chapter will explore the vegetation present in these matched areas and examine 

the suitability of this flora for incorporation into plant mixes in the UK, with the outcome being the 

creation of resilient planting assemblages capable of thriving under the projected climate change. 
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9. Vegetation Matching 
The climate matching results of chapter 8 revealed that the cases studies have suitable matches in 

northern France.  EQ in Kent, the Olympic Park in London and Minworth sewage works in 

Birmingham all have relatively strong matches in north-western France, particularly the Maine-et-

Loire department.  Conversely Brogborough Landfill in Central Bedfordshire and Wheatley Hall Road 

in Doncaster have good matches in north-central France, particularly the Essonne, Seine-et-Marne 

and Loiret departments, which are all just south of Paris.   

 

Having identified suitable matched areas, the next step was to obtain species lists for the vegetation 

present at those locations. In order to obtain vegetation data for these locations, there were two 

ways of doing so, as discussed in chapter 5: 1) obtain field data by visiting the areas and identifying 

the vegetation; and 2) sourcing published data.  Once suitable data has been obtained, plant species 

currently present at the matched locations can be investigated for their suitability for inclusion in 

planting schedules resilient to climate change, for the individual UK development sites.   

 

The UK predominantly use the National Vegetation Classification (NVC), phase one habitat 

classification or the broad habitat classification to classify vegetation communities, whereas the 

French have their “Cahiers d’Habitats” – which are four habitat books for the communities found in 

France.  As matched sites could occur anywhere in Europe, and there is no standard vegetation 

classification system, with each country typically employing their own method, a case study approach 

was adopted for obtaining the species lists. The object of this was to develop guiding principles that 

could be applied no matter where the analogous climate location occurred for any UK development 

site.  EQ was consequently selected as the pilot study for this research. 

 

9.1 Site Visits 
Areas of ecological interest in EQs’ matched areas (see figure 8.4), including Natura 2000 sites, were 

sought through online searching and studying Google Maps, which highlight natural parks etc.  

Ideally habitats typically created on development sites (e.g. woodland, wildflower meadow) were 

sought, and since this would require local knowledge, the help of botanists was sought who could 

recommend locations that would be suitable to visit.  Consequently, several French botanical 

societies were contacted – the European base of Society of Ecological Restoration (SER), the Society 

of French Ecology (SFE), the Botanical Society of France, the National Botanical Conservatoire for the 

Parisian Basin and Tela Botanica.  Correspondence was sent both in English and French to attract a 

greater interest.  The emails generated some response, mainly from people interested in the 
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outcomes of this research and those who had useful information. One of the societies also advertised 

this research in their weekly newsletter.  A student botanist from Paris, Jonathan Locqueville, 

responded and was interested and able to assist, and an Associate Professor in Botany from Angers 

(Maine-et-Loire department), Valéry Malécot, offered to provide knowledge and assistance.  

 

The botanist in Angers created an inventory of suitable locations within and around Angers, as this 

area had an overall good agreement with EQ’s climate.  The four sites visited for data collection 

included (see table 9.1 for site details): 

 Chandelais Forest (broadleaved woodland),  

 Longuenee Forest (broadleaved woodland),  

 Etang St Nicolas (heathland), 

 Jarze (Meadow). 

 

The field work was carried out in mid June to coincide with the flowering season.  In identifying the 

flora, Helen Miller, an experienced ecologist assisted, along with Valéry.  Due to the size of the areas 

surveyed and time constraints a procedure of random quadrat sampling was adopted to obtain 

vegetation data.  Given the array of different vegetation types, the method involved an initial walk-

over of the site to delimitate stands of homogenous vegetation (i.e. stands of uniform structure and 

species), followed by quadrat sampling.  The JNCC guidelines (JNCC, 2006) for choosing the size of 

samples state the following: 

 2x2 m for short, herbaceous vegetation, dwarf-shrub heaths; 

 4x4 m for short woodland field layers, tall herbaceous vegetation, heaths, open vegetation; 

 10x10 m for dense scrub, tall woodland field layers and species poor herbaceous vegetation; 

 50x50 m for woodland canopy and shrub layers and sparse scrub. 

The sample sizes used were appropriate to the habitats being sampled, but they were not always 

square in shape.  Representative samples of the selected stands were taken, with the percentage 

cover of species present within the quadrat recorded.  Five samples were taken from different 

positions within the habitat of each vegetation type - five being a customary number (JNCC, 2006).  

Soil moisture was also recorded, along with an estimation of soil pH and soil type.   Due to time and 

financial constraints, only limited field work was possible, but it provided an insight into, and 

appreciation of, the types of habitat and flora present in the analogous climate location, as well as 

what was required to obtain a sensible list of species. 
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9.2 Analysing field data with MAVIS 
Modular Analysis of Vegetation Information System (MAVIS) is an analytical computer programme 

which determines National Vegetation Classification (NVC) communities based on the data input into 

the system (CEH, 2000).  The possibility of using this programme was explored as it was initially 

thought that it could be employed to identify the NVC communities that were present in France and 

to see if there was a change in community as a result of the differing climates.   

 

Difficulties were encountered, however, as several species were not recognised by the system, and it 

was discovered that unless extensive data is collected, MAVIS may give results that are misleading 

and inconclusive. The NVC, and thus MAVIS, are very UK centric and were developed for natural 

communities across the breadth of the UK. The NVC is, thus, unlikely to be applicable when 

incorporating non-native species.  On testing the system, it was found that there were some 

similarities, but given the uncertainties surrounding the validity of the outcomes, the NVC was 

discounted as a viable tool to aid in species selection.   Having rejected the NVC, no alternative 

analytical tool could be found that incorporated both UK and European vegetation data. 

 

9.3 Online Data 
As time and money were limited, the field data collected was not adequate enough on its own and 

other measures for developing species lists for the French sites were sought.  As discussed in section 

5.5.3 data from online resources pertaining to the biodiversity aspects of the area of interest are 

often reliable and important sources of data.  The French habitat books mentioned would require 

translation and someone familiar with the community types if they were to be utilised in the study, it 

was therefore decided against this type of published material. 

 

9.3.1 CORINE Online Data 

Co-ordination of Information on the Environment (CORINE) biotopes data for Europe (EEA, 2003) 

were investigated as a possible avenue for online species data collection.  CORINE biotopes are a 

habitat classification system developed to describe sites of nature conservation importance across 

Europe, with a biotope defined as ‘an area of land or a body of water which forms an ecological unit 

of community significance for nature conservation, regardless of whether this area is formally 

protected by legislation or not (Commission of the European Communities, 1994).  When querying 

the Access dataset by entering the latitude and longitude of the Maine-et-Loire department, results 

were generated for 13 habitats. However, on further inspection only one of the sites had plant data 

associated with it, and this comprised only 3 species.  The other sites were found not to be important 
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for plants, but for other taxa/species of interest like amphibians and invertebrates.  The CORINE 

biotopes have now been superseded by the Palaearctic habitat classification and European Nature 

Information System (EUNIS) Habitat classification (EEA, No date), which on investigation also gave 

the same outcome.  These however, should be considered for other development sites with matches 

across Europe, as relevant data may be present for other sites. 

 

9.3.2 France’s National Museum of Natural History 

The Inventaire National da Patrimoine Naturel (INPN) website (National Museum of Natural History, 

2013) is France’s national inventory of natural heritage and is an extensive nature inventory 

programme, integrating all the data on species, natural habitats, protected areas and geological 

heritage present on French territory.  The National Heritage Service (NPS), part of the national 

museum of natural history in France, organises the management, validation and dissemination of this 

data.  Government, scientists, local authorities, naturalists and conservation associations make this 

inventory of France’s natural heritage possible, with data voluntarily uploaded for public access.  

Given the size of some of the sites, and the relatively small number of botanists, however, it is 

possible that not all the species for an area will be collected and thus it will not appear in the 

database (Locqueville, 2012).   

 

9.3.3 ZNIEFFs 

Online inventories can be searched on the INPN website, which for natural areas includes their 

designated Natural Areas of Ecological Fauna and Flora (ZNIEFFs), Natura 2000 sites (European-wide 

preservation sites) and protected areas which included national parks, reserves, Ramsar sites etc.  

One is also able to search for species present or otherwise in regions, departments and communes, 

but this generates impractically large species lists. Following detailed investigation of the INPN 

website, for the purposes of this research the ZNIEFFs present in France were further investigated, as 

these provided adequate species lists (at a more manageable level) for all taxa, including plants.   

 

The ZNIEFF inventory was launched in 1982 with the aim to identify and describe areas with strong 

biological capabilities and a good state of conservation.  They are classified into two types: 

 ZNIEFF type I: areas of great biological or ecological interest; 

 ZNIEFF type II: large, rich natural assemblages which have been little modified, offering 

important biological potential.   
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There are nearly 15,000 zones across the whole of the French territory (12915 type I and 1921 type 

II), and the inventory is now a major consideration in nature protection policies and must be 

consulted in spatial planning projects (National Museum of Natural History, 2013).   

 

With so many ZNIEFFS across France, the search for relevant data was narrowed by looking at those 

locations present within the Pays de la Loire region (see figure 9.1 for screenshot).  By translating the 

search page into English, key words in the title of the ZNIEFFs could be searched for, including woods, 

forest, meadow, heathland, grassland etc.  The resulting ZNIEFFs, based on the latitude/longitude 

provided, were investigated to see whether they were suitable for further study.  If there were no 

plant species data available then those sites were rejected, but otherwise the ZNIEFFs relevant plant 

species data was downloaded - this included a list of key species.   

 

 

Figure 9.1 Screenshot of INPN website and ZNIEFF search 

 

After exploring the ZNIEFFs, sites were accepted only if they were situated within or near the cluster 

of grid squares which had a climate match of 7 or 8 months. Three of the four sites visited in Angers 

(section 9.1) were actually part of ZNIEFFs themselves, and so the relevant data was downloaded.  

The details and location of all the sites for which data had been collected (including data from those 

visited and online data) can be seen in table 9.1, and figure 9.2 shows an enlarged image of the grid 

squares in France and the locations of the ZNIEFFs and the one non-ZNIEFF site. 
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The species present in the ZNIEFFs which are already included in the planting lists at EQ will be 

adapted to the future climate and hence appropriate for planting, whereas those that are not 

matched will require further assessment regarding their suitability.   

 

Table 9.1 Details and location of the sites with data collection 

ZNIEFF (type) Latitude/ 
Longitude 

Altitude  
(min – max) 

No. of months 
matched 

Longuenee Forest (II)*  47.56°, -0.75° 72-103m 8 

Chandelais Forest (II)* 47.51°, -0.03° 65-101m 6 

Small Meadow (I)  47.35°, -0.54° 70-73m 8 

Wood, Moors & Peat Bogs 
of Chaumont-D’Anjou (II)*  

47.54°, -0.29° 36-80m 7 

Wood and heathland 
between Gennes and 
Cunault (II)  

47.31°, -0.22° 58-91m 6 

Non-ZNIEFF    

Etang St.Nicolas*  47.48, -0.59 41 8 

*parts of these habitats were visited during the site visits 

 

 

 

 
 

Figure 9.2 The locations of the 6 sites in the Maine-et-Loire where species data (from both site visit 
and online) was collected from (see table 9.1 for red symbol key) 

 

Maine-et-Loire Dept. 



251 

 

9.4 Ecological Characteristics of EQ Species 
The ecological characteristics of the species listed for planting at EQ were input into an Excel 

spreadsheet as a way of classifying the data and for assessing the species’ traits.  The range of 

characteristics input included: status; world distribution; northern limit in Britain; broad habitat class; 

Ellenberg values for light, moisture, nitrogen, reaction; January and July mean temperatures;   annual 

precipitation; count of 10km squares in Great Britain, response to frost, both seedlings and non-

woody tissue; response to drought; aspect and conservation status.  These characteristics were 

accessed from various sources, including the Ecological Flora of the British Isles database (Fitter and 

Peat 1994), which is funded by the British Ecological Society (BES) and NERC, the Online Atlas of the 

British Flora (BSBI, 2013), whose contributions include BSBI and JNCC, and the vascular plant red data 

list (Dines et al., 2005). However, not all the characteristics listed above were available for every 

plant species.   

 

9.5 Data Compilation 
The data gathered from the field work, the online resources and the EQ planting list were 

subsequently compiled into one spreadsheet and sorted alphabetically.  Columns included the 

various locations and a ‘1’ was used to identify if a particular species was present in that location, as 

shown in figure 9.3.  Once duplicate species were removed, 498 species remained.  The status of the 

species was also recorded to see if the French species are native in the British Isles, as well as their 

conservation status, if any.  Species which are present in France, but on the WCA schedule 9 (e.g. 

Canadian waterweed), noxious weeds on the Weeds Act 1959 listing (e.g. Common Ragwort), and 

invasive species like Japanese Knotweed etc., were also noted on the spreadsheet, as the French 

genotype of the species may share similar characteristics.  Species also in decline, on the red data 

waiting lists, or species with a particular habitat niche were also flagged up, as these may not be 

suitable for development site planting or be unlikely to establish. 
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Figure 9.3 Screenshot of data compilation from all sites 

 

9.6 Data Sort 
The INPN use the CORINE biotopes classification system to describe the communities present within 

the ZNIEFFs, even though they have now been superseded.  For a particular ZNIEFF the main 

biotopes or ‘critical environments’ are listed, along with other environments, with there typically 

being more than one community type within a ZNIEFF.  The percentage cover of these biotopes is 

given, but the plant species listed are not differentiated into the communities they fall within.  On 

further investigation of these classified habitats types on the CORINE biotopes database, it was found 

that characteristic species are seldom listed in their description.  The species lists could therefore not 

separated into their relevant communities. 

 

As a form of classifying the species into habitat types, the JNCC terrestrial and freshwater biodiversity 

Broad Habitat Classifications were used, of which there were 20 relating to the species data set.  

These classifications were developed by the UK Biodiversity Group in 1998. In creating the priority 

habitats and species as part the UK’s commitment to biodiversity, they needed to be set within the 

context of the UK’s land surface and marine environments, and thus the broad habitats, defined in 

report 307 (Jackson, 2000), were produced.  The report contains correspondence tables between the 

broad habitats and the EC Habitats Directive Annex I habitat types, and in most cases several EC 

classified habitats fall under one JNCC broad habitat, which indicates how broad these classifications 

are.  Although the JNCC classification system is for UK species, as the classifications are broad, it has 

been assumed that French species would be allocated similar appropriate habitat classifications.   
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To narrow the species set to contain only species which are found in habitats typically created on 

development sites, and in this case at EQ, four category habitats were created – woodland, 

grassland, hedgerows and aquatic.  Table 9.2 shows the broad habitats which have been assigned to 

these four categories and consequently applied to the species data set.  Some species belong to 

more than type of habitat type and will therefore appear in multiple lists. 

 

Table 9.2 The allocation of Broad Habitats into habitat categories 

Habitat category Broad Habitat 

Woodland Broadleaved, mixed and yew 
woodland (BMYW) 

Grassland Acid grassland (AG)  

Calcareous grassland (CG) 

Neutral grassland (NG) 

Hedgerows (linear 
features) 

Boundary and linear features 
(BLF) 

Aquatic and 
marginal 

Fen, marsh and swamp (FMS) 

Standing water and canals (SWC) 

 

9.6.1 Ellenberg Values 

To further narrow the species set to create potential species assemblages for EQ, it was decided to 

use the Ellenberg indicator values to enable the organisation of the data into relevant species groups.  

Ellenberg (Ellenberg et al., 1991) in classifying the ecological requirements and grouping of species, 

derived 7 indicator values (see Table 9.3) for nearly 2000 vascular plants across Central Europe. In 

the Ellenberg system, each species is assigned a value for each factor representing their ideal 

position along an environmental gradient, based on where it is most abundant, i.e. its realised 

ecological niche.  For most of the factors, the values are over a 9 point scale where for each factor ‘1’ 

signifies a low value and ‘9’ a very high value (See table 9.3).  A study by Hill and Carey (1997) 

comparing experimental treatments of annual yield with Ellenberg Nitrogen values (N) (i.e. for 

productivity), found them to be well correlated and that the use of such values was acceptable.   

 

Most species can tolerate a wide range of conditions, but Ellenberg lists provide a species ideal.  

Different factors are more important for different species/communities, for example Melampyrum 

pratense is able to tolerate both acidic and limestone soils (R) as long as other factors, in this instance 

light availability (L), are high, and that the habitat is sparsely occupied (Ellenberg, 1988).  The 
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presence of competitors does however play a deciding role in the composition of the community, 

particularly in woodlands and meadows. 

 

Table 9.3 Ellenberg indicator values and their gradient (Ellenberg, 1988; Hill and Carey, 1997) 

Factor Gradient 

Light value (L) Occurrence in relation to the relative light intensity = R.L 

1 = plant in deep shade 

9 = plant in full light, found mostly in full sun 

Temperature (T) Occurrence in the temperature gradients from the Mediterranean to the Arctic 
and from lowland to alpine levels 

1 = Cold indicator plants, found only in high mountains or in the boreal-arctic 
regions                                                                                                                                         
9= Indicate extreme warm conditions, spreading only into the warmest sites in 
Central Europe from the Mediterranean. 

Continentality 
(K) 

Occurrence in the gradient from the Atlantic coast to the inner parts of Eurasia 

1 = Extreme oceanic, only in a few outposts of Central Europe 

9 = Extreme continental 

Moisture value 
(F) 

Occurrence in the gradient from dry shallow-soil rocky slopes to marshy ground; 
also from shallow to deep water 

1 = indicator of extreme dryness, restricted to soils that often dry out for some 
time 

12 = submerged plant, permanently or almost constantly under water 

Reaction value 
(R) 

Occurrence in the gradient of soil acidity and lime content 

1 = indicator of extreme acidity, never found on weakly acid or basic soils 

9 = indicator of basic reaction, always found on calcareous or other high pH soils  

Nitrogen value 
(N) 

Occurrence in the gradient of available nitrogen during the growing period 

1 = indicator of extremely infertile soils (low in available mineral nitrogen NH4 
and NO3) 

9 = indicator of extremely fertile situations 

Salt tolerance (S) 0 = absent from saline sites 

9 = species of extremely saline conditions 

 

Of the available sources for understanding the ecological requirements of plants, Ellenbergs are 

known to be one of the most useful (Firbank et al., 2000) and have been used across central Europe 

as well as outside the defined region for which they were developed (Thimonier et al., 1994; 

Diekmann, 1995), although some have argued their inappropriateness when used in these instances 

(Hill et al., 2000).  They have been utilised in many studies from monitoring change in British 



255 

 

vegetation (Firbank et al., 2000), to assessing the needs of a vegetation class or species group (Hill 

and Carey, 1997).  With there being numerous species in common across north-western Europe, and 

the ‘relatively similar latitudinal distribution’ there use across Europe, to some extent has been 

justified (Godefroid and Dana, 2007).  However, in some cases the values have been recalibrated to 

reflect the situation in different countries, as has been done for the British Isles (Hill et al., 2000) and 

France (Julve, 2013).  Hill et al. (2000) states that:  

“several species have differing ecological requirements across their range, so that some degree of 
alteration of the central European values to take account of local preferences is inevitable”. 

 

The French Ellenberg values have been used in this research to classify the French species, and were 

accessed through the Base Floristic (Baseflor) online database (Julve, 2013).  There are obviously 

discrepancies between the requirements of plants in the different countries, but with the aim to 

create habitats from analogous climate locations, i.e. France, it was decided that the French values 

would be the most appropriate as the species currently exist in that particular climate and 

environment.  Four of the seven indicator values were deemed relevant and used in the research – 

moisture (F), reaction (acidity) (R), nitrogen (N) and relative light intensity (L).  These values are 

particularly important for plant growth, for reasons discussed in section 9.6.2, but temperature (T) 

and continentality (K) are not suitable for an oceanic climate like that of Britain (Hill et al., 2004) they 

are more geographical qualities than climatic, and were therefore not used.  Given that EQ and the 

sites in France are generally not affected by salt intrusion, the Ellenberg salinity values were also not 

considered. 

 

9.6.2 Factors important for plant growth 

As already discussed, different species and communities have different requirements, so the habitat 

categories in the spreadsheet were filtered on the Ellenberg values to produce species lists.  The 3 

soil variables – moisture (F), reaction (acidity) (R) and nitrogen (fertility) (N) are important factors for 

plant growth and are interlinked to some extent.  A plant can obtain nutrients from the weathering 

of the parent material, or deposited from another source, or by plant decay, decomposition and 

bacterial action (Money, 1972).  Climatic conditions affect the moisture of the soil and the 

weathering processes.  The acidity of the soil influences the availability of certain nutrients, and the 

attenuation properties of the soil dictate the availability of water for plants; good soil moisture 

improves nutrient uptake (Ashman and Puri, 2002).  Ellenberg (1988) also states that fertility is ‘more 

or less correlated with the acidity’.   
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The Ellenberg values for the four factors considered (F, N, R, and L) have been categorised into the 

groups shown in Table 9.4, and the species sorted accordingly.  The value ranges specified have been 

used to allow for natural tolerances and variations in niche. For each habitat category the species 

have been sorted depending on the habitat’s requirements, using Ellenberg values, as discussed in 

the next four sections.   

Table 9.4 Ellenberg value groups based on a likely tolerance range 

Ellenberg values Value tolerance range 

Moisture (F) Dry (1-3), Moist (4-6), Damp (7-9), Wet (10-12) 

Nitrogen (N) Infertile (1-3), Intermediate fertility (4-6), Fertile 

(7-9) 

Reaction (R) Acid (1-3), Neutral (4-6), Alkaline (7-9) 

Light (L) Shade (1-3), Semi-shade (4-6), Partial shade – full 

sun (7-9) 

 

9.6.3 Grassland 

Ellenberg values for moisture will be the first filter to sort the grassland habitat species.  Meadow 

species typically like full sun light and thus they are well suited for south facing aspects, the moisture 

regime consequently would be dry-moist dependant on the overall climatic conditions.  If wet 

meadows are to be created, which often depends on the site’s drainage, groundwater level and 

locality to water sources, then the respective species can be targeted.  Here it is important to 

consider the moisture regime for the site as future climate change will bring less precipitation over 

the summer for most areas.   

 

Calcareous grasslands and acidic grasslands are BAP habitats, and are often selected for creation.  

Although some species can tolerate a wide range of conditions, there are specific calcicolous and 

calcifugous species; the meadow habitat species were therefore filtered, at the second tier, for 

Acidity (R).  Species rich grasslands are often found on soils which are infertile (i.e. low in nutrients), 

as highly competitive species are unable to grow and out-compete the other plants.  Therefore lists 

were also broken down to this level – N, to observe the ideal species for such communities.   

 

9.6.4 Woodland  

The growth and yield of trees is determined primarily by the soil conditions, in particular their 

moisture and fertility (Ellenberg, 1988).  In competing for nutrients and water, trees which are able 
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to reach heights are more successful as their canopy casts shade on the surrounding area.  The tree 

component of the woodland will therefore be classified firstly by moisture (F) and then by fertility 

(N), but the acidity preferences (R) of trees will also be taken into account.  Large shrubs (small trees) 

will also be included with the trees. 

 

Trees live in an environment different from that of the understory (Ellenberg, 1988), but again water 

and nutrients have a deciding role in the overall composition of the latter, and therefore will be 

filtered accordingly.  Light (L) will also be a filter as this affects the small scale distribution on the 

woodland floor.  Ellenberg (1988) states that “there are no real woodland shrubs, that is species 

which flourish better in the shade than in the open.  Some species however can tolerate shade quite 

well and are found more often in woods than in full sunlight”.  It may be more appropriate to plant 

the understory once the canopy has established, but species will naturally colonise the area. 

 

9.6.5 Hedgerows (linear features) 

Species characteristic of woodlands are also characteristic of hedgerows, and therefore this habitat 

type will be filtered by moisture (F), fertility (N) and then acidity (R). 

 

9.6.6 Aquatic and Marginal 

The species under this habitat type were filtered first on their moisture value (F) due to the varying 

gradient of moisture preferred by these plants; some plants prefer shallow water and some 

submerged.  Fertility (N) was the next filter, based on the wetland communities typically created 

considering this factor e.g. mesotrophic.  Acidity (R) will also be considered at the third tier. 

 

9.7 Vegetation Results 
For the grassland habitat, table 9.5 shows the species list created, including the comprehensive list, 

as well as the breakdown of the list based on appropriate Ellenberg values.  This process has been 

carried out for the other 3 habitats – woodland, aquatic and marginal, and hedgerows and can be 

seen in appendix 3. The species lists include the variety of habitats and environmental preferences 

that would be appropriate for a development site.  Selection of those relevant to the area would be 

through identifying the factor relevant to what habitat trying to achieve, e.g. calcareous search for 

alkaline under reaction (R). 
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The species lists created currently contain all the species that were in the Maine-et-Loire, including 

invasive species like Japanese knotweed and Canadian waterweed, they are thus not recommended 

for species lists.  Consult CD 9.1 - on the excel sheets these species are clearly shown in red writing.  

Species labelled with a * or + are either a UK BAP species, Kent BAP species or have a conservation 

status attached to them, as can also be found in the excel sheet.  With planting design guided by the 

BAP the non-native form of them may be appropriate to the area, but this would depend on the 

ecologist’s expert opinion.  Ash and Elm species are also on the lists, and with Ash currently banned 

from being imported, these species would be excluded. 

 

Table 9.5 Grassland Species List  

Complete List Moisture (F) Reaction (R) Nitrogen (N) 

 
Agrostis vinealis  

Hippocrepis comosa  

Euphorbia cyparissias  

Galium verum 

Helianthemum 
nummularium  

Rumex acetosella  

Jasione Montana  

Luzula campestris  

Campanula 
rotundifolia 

Hieracium pilosella, 

(Pilosella officinarum)  

Myosotis discolour  

Hypochaeris radicata  

Potentilla argentea*  

Juniperis communis+  

Polygala serpyllifolia  

Deschampsia flexuosa  

Galium saxatile  

Danthonia decumbens  

Lathyrus linifolius var. 
Montanus            

Carex pilulifera          

Veronica officinalis  

Dry 

Agrostis vinealis  

Hippocrepis comosa 

Euphorbia cyparissias 

Galium verum  

Helianthemum 
nummularium 

 

 

 

 

Moist 

Rumex acetosella  

Jasione Montana  

Luzula campestris 

Campanula 
rotundifolia  

Hieracium pilosella 
(Pilosella officinarum) 

Myosotis discolor 

Hypochaeris radicata 

Potentilla argentea* 

Juniperis communis+ 

Polygala serpyllifolia 

Deschampsia flexuosa 

Galium saxatile  

Acid 

Agrostis vinealis  

 

Alkaline 

Hippocrepis comosa 

Euphorbia cyparissias 

Galium verum  

Helianthemum 
nummularium 

 

 

Acid 

Rumex acetosella  

Jasione Montana  

Luzula campestris

 

Neutral 

Campanula 
rotundifolia  

Hieracium pilosella 
(Pilosella officinarum) 

Myosotis discolor 

Hypochaeris radicata 

Potentilla argentea* 

Juniperis communis+ 

Polygala serpyllifolia 

Low fertility 

Agrostis vinealis  

 

Low fertility 

Hippocrepis comosa 

Euphorbia cyparissias 

Galium verum  

Helianthemum 
nummularium 

 

 

Low fertility 

Rumex acetosella  

Jasione Montana  

Luzula campestris

 

Low fertility 

Campanula 
rotundifolia  

Hieracium pilosella 
(Pilosella officinarum) 

Myosotis discolor 

Hypochaeris radicata 

Potentilla argentea* 

Juniperis communis+ 

Polygala serpyllifolia 



259 

 

Euphrasia nemorosa  

Potentilla erecta  

Luzula multiflora  

Peucedanum gallicum 

Stachys officinalis  

Echium vulgare  

Orobanche minor  

Crepis capillaris  

Asphodelus albus 
subsp.Albus          

Digitalis purpurea  

Agrostis capillaries  

Anthoxanthum 
odoratum             

Chamaemelum 
nobile*+  

Stellaria graminea  

Viola riviniana  

Conopodium majus  

Festuca rubra 

Linaria repens         
Vicia hirsuta           

Holcus lanatus  

Achillea millefolium  

Malva moschata  

Cynosurus cristatus  

Phleum pratense  

Veronica chamaedrys  

Bellis perennis  

Gaudinia fragilis   

Odontites vernus 
subsp.vernus            

Plantago lanceolata  

Rumex acetosa  

Trifolium repens  

Vicia sativa subsp 
Nigra  

Leontodon saxatilis 
subsp.saxatalis   

Danthonia decumbens 

Lathyrus linifolius var. 
montanus  

Carex pilulifera 

Veronica officinalis 

Euphrasia nemorosa 

Potentilla erecta 

Luzula multiflora 

Peucedanum gallicum 

Stachys officinalis 

Echium vulgare  

Orobanche minor 

Crepis capillaris  

Asphodelus albus 
subsp.Albus 

Digitalis purpurea 

Agrostis capillaris 

Anthoxanthum 
odoratum  

Chamaemelum 
nobile*+  

Stellaria graminea 

Viola riviniana 

Conopodium majus 

Festuca rubra 

Linaria repens  

Vicia hirsuta  

Holcus lanatus  

Achillea millefolium  

Malva moschata 

Cynosurus cristatus 

Phleum pratense 

Veronica chamaedrys 

Bellis perennis 

Gaudinia fragilis  

Odontites vernus 
subsp.vernus  

Plantago lanceolata 

Deschampsia flexuosa 

Galium saxatile  

Danthonia decumbens 

Lathyrus linifolius var. 
montanus  

Carex pilulifera 

Veronica officinalis 

Euphrasia nemorosa 

Potentilla erecta 

Luzula multiflora 

Peucedanum gallicum 

Stachys officinalis 

Echium vulgare  

Orobanche minor 

Crepis capillaris  

Asphodelus albus 
subsp.Albus 

Digitalis purpurea 

Agrostis capillaris 

Anthoxanthum 
odoratum  

Chamaemelum 
nobile*+  

Stellaria graminea 

Viola riviniana 

Conopodium majus 

Festuca rubra 

Linaria repens  

Vicia hirsuta  

Holcus lanatus  

Achillea millefolium  

Malva moschata 

Cynosurus cristatus 

Phleum pratense 

Veronica chamaedrys 

Bellis perennis 

Gaudinia fragilis  

Odontites vernus 

Deschampsia flexuosa 

Galium saxatile  

Danthonia decumbens 

Lathyrus linifolius var. 
montanus  

Carex pilulifera 

Veronica officinalis 

Euphrasia nemorosa 

Potentilla erecta 

Luzula multiflora 

Peucedanum gallicum 

Stachys officinalis

 

Medium fertility 

Echium vulgare  

Orobanche minor 

Crepis capillaris  

Asphodelus albus 
subsp.Albus 

Digitalis purpurea 

Agrostis capillaris 

Anthoxanthum 
odoratum  

Chamaemelum 
nobile*+  

Stellaria graminea 

Viola riviniana 

Conopodium majus 

Festuca rubra 

Linaria repens  

Vicia hirsuta  

Holcus lanatus  

Achillea millefolium  

Malva moschata 

Cynosurus cristatus 

Phleum pratense 

Veronica chamaedrys 

Bellis perennis 
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Hypericum perforatum  

Leucanthemum 
vulgare  

Trifolium dubium  

Daucus carota        

Lolium perenne  

Prunella vulgaris    

Ranunculus acris  

Trifolium pratense  

Vicia sepium           

Ranunculus paludosus  

Scorzonera humilis*  

Plantago coronopus  

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea)  

Cirsium arvense  

Dactylis glomerata  

Senecio sylvaticus  

Heracleum 
sphondylium  

Poa annua  

Vicia sativa      

Sanguisorba minor  

Filipendula vulgaris  

Geranium sanguineum  

Agrimonia eupatoria  

Bromus hordeaceus  

Linaria vulgaris  

Pastinaca sativa  

Origanum vulgare  

Brachypodium 
pinnatum  

Fragaria vesca        

Lathyrus pratensis  

Orchis mascula   

Galium mollugo  

Tragopogon pratensis  

Lithospermum 

Rumex acetosa 

Trifolium repens 

Vicia sativa subsp 
Nigra  

Leontodon saxatilis 
subsp.saxatalis  

Hypericum perforatum 
St.John's Wort 

Leucanthemum 
vulgare  

Trifolium dubium 

Daucus carota  

Lolium perenne  

Prunella vulgaris 

Ranunculus acris 

Trifolium pratense 

Vicia sepium  

Ranunculus paludosus 

Scorzonera humilis* 

Plantago coronopus 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Cirsium arvense 

Dactylis glomerata 

Senecio sylvaticus  

Heracleum 
sphondylium 

Poa annua 

Vicia sativa 

Sanguisorba minor 

Filipendula vulgaris 

Geranium sanguineum 

Agrimonia eupatoria 

Bromus hordeaceus 

Linaria vulgaris 

Pastinaca sativa 

Origanum vulgare 

Brachypodium 
pinnatum 

subsp.vernus  

Plantago lanceolata 

Rumex acetosa 

Trifolium repens 

Vicia sativa subsp 
Nigra  

Leontodon saxatilis 
subsp.saxatalis  

Hypericum perforatum 
St.John's Wort 

Leucanthemum 
vulgare  

Trifolium dubium 

Daucus carota  

Lolium perenne  

Prunella vulgaris 

Ranunculus acris 

Trifolium pratense 

Vicia sepium  

Ranunculus paludosus 

Scorzonera humilis* 

Plantago coronopus 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Cirsium arvense 

Dactylis glomerata 

Senecio sylvaticus  

Heracleum 
sphondylium 

Poa annua 

Vicia sativa 

 

 

 

Alkaline 

Sanguisorba minor 

Filipendula vulgaris 

Geranium sanguineum 

Agrimonia eupatoria 

Gaudinia fragilis  

Odontites vernus 
subsp.vernus  

Plantago lanceolata 

Rumex acetosa 

Trifolium repens 

Vicia sativa subsp 
Nigra  

Leontodon saxatilis 
subsp.saxatalis  

Hypericum perforatum 
St.John's Wort 

Leucanthemum 
vulgare  

Trifolium dubium 

Daucus carota  

Lolium perenne  

Prunella vulgaris 

Ranunculus acris 

Trifolium pratense 

Vicia sepium  

Ranunculus paludosus 

Scorzonera humilis* 

Plantago coronopus

 

High fertility 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Cirsium arvense 

Dactylis glomerata 

Senecio sylvaticus  

Heracleum 
sphondylium 

Poa annua 

Vicia sativa

 

Low fertility 

Sanguisorba minor 

Filipendula vulgaris 

Geranium sanguineum
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officinale  

Cardamine pratensis  

Potentilla reptans  

Arrhenatherum elatius  

Cruciata laevipes  

Cirsium vulgare    

Viola odorata       

Carex hirta      

Lobelia urens     

Gentiana 
pneumonanthe     

Succisa pratensis  

Juncus effusus        

Bromus racemosus  

Deschampsia cespitosa  

Lysimachia 
nummularia     

Blackstonia perfoliata  

Ranunculus repens  

Rumex crispus      

Alopecurus pratensis  

Poa trivialis          

Silaum silaus     

Equisetum 
ramosissimum  

Anacamptis laxiflora  

Fritillaria meleagris*  

Festuca arundinacea  

Oenanthe silaifolia*  

Pulicaria dysenterica  

Agrostis stolonifera  

Alopecurus geniculatus  

Potentilla anserine  

Mentha pulegium*+  

Ranunculus sardous  

Fragaria vesca 

Lathyrus pratensis 

Orchis mascula   

Galium mollugo  

Tragopogon pratensis  

Lithospermum 
officinale 

Cardamine pratensis 

Potentilla reptans 

Arrhenatherum elatius 

Cruciata laevipes 

Cirsium vulgare   

Viola odorata  

Carex hirta  

 

 

 

 

 

 

 

 

 

  

 

Damp 

Lobelia urens  

Gentiana 
pneumonanthe   

Succisa pratensis 

Juncus effuses 

Bromus racemosus 

Deschampsia cespitosa  

Lysimachia 
nummularia 

Blackstonia perfoliata 

Ranunculus repens 

Rumex crispus  

Bromus hordeaceus 

Linaria vulgaris 

Pastinaca sativa 

Origanum vulgare 

Brachypodium 
pinnatum 

Fragaria vesca 

Lathyrus pratensis 

Orchis mascula   

Galium mollugo  

Tragopogon pratensis  

Lithospermum 
officinale 

Cardamine pratensis 

Potentilla reptans 

Arrhenatherum elatius 

Cruciata laevipes 

Cirsium vulgare   

Viola odorata  

Carex hirta  

 

 

 

 

 

Acid 

Lobelia urens 

 

Neutral 

Gentiana 
pneumonanthe   

Succisa pratensis 

Juncus effuses 

Bromus racemosus 

Deschampsia cespitosa  

Lysimachia 
nummularia 

Blackstonia perfoliata 

 

Medium fertility 

Agrimonia eupatoria 

Bromus hordeaceus 

Linaria vulgaris 

Pastinaca sativa 

Origanum vulgare 

Brachypodium 
pinnatum 

Fragaria vesca 

Lathyrus pratensis 

Orchis mascula   

Galium mollugo  

Tragopogon pratensis  

Lithospermum 
officinale 

Cardamine pratensis 

Potentilla reptans

 

High fertility 

Arrhenatherum elatius 

Cruciata laevipes 

Cirsium vulgare   

Viola odorata  

Carex hirta     

     

 Low fertility 

Lobelia urens         

  Low fertility 

Gentiana 
pneumonanthe   

Succisa pratensis

 

Medium fertility 

Juncus effuses 

Bromus racemosus 

Deschampsia cespitosa  

Lysimachia 



262 

 

Alopecurus pratensis 

Poa trivialis  

Silaum silaus  

Equisetum 
ramosissimum  

Anacamptis laxiflora 

Fritillaria meleagris* 

Festuca arundinacea 

Oenanthe silaifolia* 

Pulicaria dysenterica 

Agrostis stolonifera 

Alopecurus geniculatus 

Potentilla anserina 

Mentha pulegium*+ 

Ranunculus sardous 

 

Ranunculus repens 

Rumex crispus  

Alopecurus pratensis 

Poa trivialis 

 

 

 

 

  Alkaline 

Silaum silaus  

Equisetum 
ramosissimum  

Anacamptis laxiflora 

Fritillaria meleagris* 

Festuca arundinacea 

Oenanthe silaifolia* 

Pulicaria dysenterica 

Agrostis stolonifera 

Alopecurus geniculatus 

Potentilla anserina 

Mentha pulegium*+ 

Ranunculus sardous 

nummularia 

Blackstonia perfoliata

 

High fertility 

Ranunculus repens 

Rumex crispus  

Alopecurus pratensis 

Poa trivialis  

 

 

Low fertility 

Silaum silaus 

 

Medium fertility 

Equisetum 
ramosissimum  

Anacamptis laxiflora 

Fritillaria meleagris* 

Festuca arundinacea 

Oenanthe silaifolia* 

Pulicaria dysenterica 

Agrostis stolonifera 

Alopecurus geniculatus

 

High fertility 

Potentilla anserina 

Mentha pulegium*+ 

Ranunculus sardous 

 

There are 25 species without Ellenberg values, listed next, and these would be shown to the ecologist 

for inspection for suitability 
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No Ellenberg Values: 

Aira praecox  

Aphanes australis  

Bromus hordeaceus subsp. hordeaceus  

Cardamine pratensis L. subsp. pratensis  

Cerastium fontanum  

Dactylorhiza fuchsii  

Daucus carota L.subsp. carota 

Erodium cicutarium  

Geranium columbinum  

Herniaria glabra   

Leontodon hispidus  

Lotus corniculatus L. subsp. corniculatus  

Lotus corniculatus  

Luzula multiflora (Ehrh.) Lej. subsp. multiflora 

Medicago lupulina  

Ornithopus perpusillus  

Primula veris  

Ranunculus bulbosus  

Saxifraga granulata   

Taraxacum campylodes  

Taraxacum erythrospermum  

Teesdalia nudicaulis*  

Trifolium arvense  

Trifolium subterraneum  

Vicia sativa subsp. Sativa 

 

Table 9.6 summarises the vegetation data across the 4 habitats, including a column for those native 

species in the UK, currently recommended for EQ, that respond to drought.  See CD 9.1 and the excel 

sheets within the workbooks to identify which species are referred to in table 9.6.  If a species has a 

conservation status this can also be observed.  A blank square indicates no data was available, in 

relation to Ellenberg and native status. 
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Table 9.6 Vegetation data summary for the habitats recommended 

Habitat Sort 
criteria 

No. 
species 
found 

Native 
to GB 

No. new 
species 

Currently 
recommended 
for EQ 

EQ species 
response to 
drought  

Woodland 
(Trees) 

1st F 

2nd N 

3rd R 

31 23  4 16 2 resist, 

1 wilts and 
recovers 

Woodland 
(Under-
storey) 

1st F 

2nd N 

3rd R 

4th L 

78 72 4 8 1 wilts and 
recovers, 

1 wilts 

Grassland 1st F 

2nd R 

3rd N 

144 131 5 22 4 resist, 

1 wilts & 
recovers, 

1 wilts & dies 

Hedgerows 1st F 

2nd N 

3rd R 

138 100 4 16 1 resists, 

1 wilts and 
recovers 

Aquatic 
and 
marginal 

1st F 

2nd N 

3rd R 

139 119 7 17 1 resists 

 

Discussion 

Many of the species currently growing in the Maine-et-Loire department are also native to Great 

Britain.  However, their genotype may not be able to adapt or survive in the likely future climate, and 

thus species of a French provenance will be more appropriate.  Apart from the new species and the 

native species, the rest of the species exist in the UK either as neophytes, archaeophytes or they are 

naturalised.  The number of completely new species is relatively small, but in theory all the species 

are new as they are of a non-native provenance and will provide robustness to climate change. 

 

The non-native species which are currently recommended for EQ, albeit in their native form (to GB), 

indicate 2 things: 1) if the species share similar characteristics then they may be able to survive 

future climate change, but this would all depend on the plants genes; 2) as these species were 

originally recommended for EQ, then it means that the visual effect wanted from the plants can still 

be achieved by using the non-native species, but there is the added benefit of resilience to climate 

change.  However, those native plants which have been recorded as resistant to drought, or could 
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recover from drought (an event which will likely become more common under climate change with 

drier summers as seen in the 2003 heat wave (Jolly et al., 2005)), then they should ultimately be 

recommended for planting as they are more likely to survive than those natives which are 

vulnerable. 

 

With the habitat species lists created, an experienced ecologist would be required to refine the lists 

and ensure the most suitable species are selected for inclusion in the final planting list.  Developers 

normally recruit ecology consultants to take care of the biodiversity aspects of the site and advise 

accordingly.  At this point the ecologist would select the appropriate species to be used from the 

analogous climate locations.  This may be in combination with native species as a mosaic of species, 

as often this leads to increased species diversity and a greater resilience to climate change.   

 

9.8 Conclusion 
The vegetation matching process discussed, albeit novel, aims to provide resilience to species list, 

which may be achievable with current native species recommendations. 

As there is no habitat classification system or one that details the associated plant species across 

Europe, an alternative approach has been devised, which, although requires little plant knowledge, 

considers the environmental preferences of the species.  An expert ecologist is essential to ensure 

the planting lists created are appropriate to the environment, based on their extensive field 

knowledge. 

In terms of the case study approach, the Ellenberg values have been recalibrated for several 

European countries, but this has not been done for Spain.  In determining if the Ellenberg calibrations 

for Italy and Greece could be used in other Mediterranean regions, Godefroid and Dana (2007) 

believe that this would not be ideal.  If Spain turned out to be a suitable match for a development 

site’s climate projections, then an alternative method would need to be employed.  An expert 

ecologist would also be consulted for advice on the best course of action.  A case-by-case approach is 

therefore the best way to deal with the likely variation in vegetation matching that would be 

encountered across the continent. 
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10. Discussion 
Through the use of published climate change model output data, the future climate at specific UK 

development sites was predicted. Subsequently, through the use of a GIS, the predicted rainfall and 

temperature were matched to locations in Europe, which currently experience similar meteorological 

conditions. Theoretically, the vegetation present at these locations would be suitable for compiling a 

planting list for development sites that would be resilient to climate change. This premise was 

explored through considering the EQ case study. 

 

10.1 Introduction 
The vegetation selected for the case study site at EQ, as discussed in chapter 9, has created a list of 

species which considers both the climatic and environmental preferences in anticipation that the 

species population will survive and flourish at the development site, increasing resilience to climate 

change.  This chapter will identify the implications of the research within its field, as well as the 

limitations of the research outcomes. 

 

10.2 Issues Surrounding the Research 

10.2.1 Non-native Species 

Advocating certain non-native species to be used in development site planting lists, would essentially 

be assisted colonisation, which goes against conventional conservation practices.  When it occurs, 

the introduction of non-natives is typically only carried out for rare or threatened species on the 

edge of extinction. However, in the face of climate change such limited practices may result in 

biodiversity loss of a much wider range of species, i.e. more than those rare/threatened, particularly 

if climate projections surpass 3°C (Hoegh-Guldberg et al., 2008).  The use of non-natives outside their 

native range does bring with it the added risks, for example of invasion, as species may lose their 

natural enemies, such as pests, predators and diseases, typically found in their native environment 

(Defra, 2003; Hulme, 2009b). 

 

Not all non-native species manage to establish when they are introduced, and many do not become 

invasive; only a minority have a significant negative effect, and this tends to be at the local scale in 

Britain as oppose to the landscape scale (Carey et al., 2008).  There are many long-established non-

native species which provide substantial social and economic benefits, including the use of species in 

agricultural, horticultural and forestry activities, amongst other sectors (Defra, 2003).  Many are 

valued by society and now exist as part of the native scenery.  The majority of established non-native 

species in GB are higher plants (1,377 out of 1,875) (Roy et al., 2012), which is not surprising when 
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over 70,000 different types of non-native plants are grown in Britain, many of which can be 

purchased in garden centres (Plantlife, 2010). 

 

A species potential for invasion can be assessed using a decision framework; it would highlight those 

species of a high risk and those which are safe, through the assessment of various traits.  Where 

factors which make up such a framework include experimental trials, they have been questioned 

(Ruesink et al., 1995), as this would be costly and time consuming given the vast numbers of species 

introduced or imported annually. Assuming all non-natives are invasive, i.e. guilty till proven 

innocent, would affect a range of global markets and is impractical.  Other frameworks developed to 

assess risk have looked at the available data on a species including the species characteristics 

(Ruesink et al., 1995), since a good predictor of a species capability for invasion is if it has successfully 

invaded other parts of the world (Williamson, 1999).   

 

The horticultural trade contributes greatly to plant invasions through the number of species which 

escape cultivation.  Dehnen Schmutz (2011) has therefore proposed a ‘green list’ for ornamental 

species, i.e. species which are less likely to escape cultivation, with the aim to target large scale 

planting and landscaping projects.  The list would detail species that have undergone a risk 

assessment based on four factors – residence time, propagule pressure, no previous invasion 

elsewhere, and hardiness.  The IUCN guidelines (2012) for planned introductions also recommend 

assessing the likelihood of the species reaching numbers that may pose a threat to the environment, 

and the probability of invasion into other habitats. In relation to this research, it is recommended 

that the species selected for new planting schedules resilient to climate change, be subject to some 

form of risk assessment.  This would screen out any likelihood of invasiveness and re-assure 

developers, planners etc that the plants have been screened and are unlikely to cause damage to the 

surrounding environment. 

 

Plantlife (2010), a wild plant conservation charity, have also devised a rapid risk assessment screening 

process for quickly assigning a broad level of invasive threat to a non-native plant.  This process has 

been applied to nearly 600 plants that are grown or sold in the UK or are present at the moment but 

not yet widespread in the wild.  The system is based on the internationally well-received tool for 

invasive threat detection - the Australian Weed Risk Assessment.  Those identified under the risk 

assessment system as critical or urgent, i.e. on the brink of becoming invasive, are flagged for further 

investigation.  Plantlife states that that these plants are ‘likely to become a major established pest in 

the coming decades...becoming a major nuisance in years to come’.   In their list of ‘ones to watch’ 

there are species which are currently on planting lists for development sites in the UK, including Tree 
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of Heaven (Ailanthus altissma), and clearly the use of such species needs to be avoided and planting 

lists rethought. 

 

Potentially invasive species present in the assemblages created during this research could include 

purple loosestrife which although non-invasive in the UK, is invasive in the US (Ruesink et al., 1995) 

and there are certain families (e.g. the Poaceae and Asteraceae in plants) and genera (e.g. Bromus, 

Cirsium, Poa) that contain many species which are problematic globally (Mack, 1996).  Wild Oat 

(Avena fatua), which was present in the French habitats, is also one of the five species to which a 

third of the costs for dealing with established invasive non-natives is targeted (Hulme, 2013). These 

species would need to be risk assessed prior to their introduction. 

 

A further potential problem with the importation of non-native species is the potential for the 

introduction of diseases, currently not present in the UK. Dutch Elm disease was introduced from 

imported timber. Its second outbreak in the UK, of which was in the 1970s, created a major problem 

and highlighted the need for tighter regulations on imported tree stock (Everett, 2012).  However, 

the most recent pest outbreak in 2012 has been that of Ash dieback, a disease caused by the fungal 

pathogen Chalara fraxinea affecting native Ash in recently planted woodlands across GB, nursery 

stock and established woodlands in southern and eastern Britain.  As a result, Environment Secretary 

Owen Paterson, in October 2012, prohibited the movement of Ash planting material (seeds, plants 

and trees) into and within GB.  Ash, in parts of continental Europe, has been plagued with the disease 

since as early as the 1990s and it is believed to have originated from the nursery trade, highlighting 

failures in monitoring imported material.  Other pests include the Oak Processionary moth and Red 

Band Needle Blight.  New in 2013 was the requirement for statutory notifications for imports of Ash, 

Sweet Chestnut, London Plane and Oak.   

 

The examples given above illustrate the ecological threats associated with imported non-native 

species. Consequently, in relation to this research, imported plant material of French provenance 

recommended for resilient planting assemblages in the UK should be inspected to ensure they 

comply with regulations, with assurance from the supplier that they are free from potential pests, 

and should be subject to risk assessments to ensure they do not become invasive. 

 

10.2.2 Climate Change and Non-Natives 

Climate change is driving species’ range extensions, and new species have already been observed to 

date.  For the measures in place to deal with non-native species that develop invasive characteristics, 
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i.e. the Invasive Non-native Species Framework Strategy for GB (INNS) framework strategy, they state 

that there will need to be more deliberation on the topic of non-natives arriving due to a changing 

climate, both on the policy front as well as the science one (Defra, 2012).  

 

Several researchers are against the idea of assisted colonisation (Davidson and Simkanin, 2008; 

Alyokhin, 2011) and some organisations promote a strictly native only policy in their conservation 

work, e.g. the RSPB, whilst others have a more flexible approach to the topic.  The Woodland Trust 

(2008) are not opposed to non-natives, their main concern is whether the species have a detrimental 

impact on the environment and/or surrounding species, additional to that from climate change, a 

similar viewpoint is also reiterated by Davis et al. (2011).  Good practice guidelines are available for 

introducing species, like that of the IUCN (2012), illustrating that such customs are acceptable. 

 

Professor Hitchmough (2011), horticulturalist for the Olympic gardens, believes that there is a 

conceptual idea that we do not want to change the native flora, yet biodiversity can be maximised if 

a diverse range of species, including non-natives are included.  He sees there is a need to challenge 

current conventions and believes there are benefits associated with the introduction of non-invasive 

non-natives.  The benefits being that they flower and thus produce nectar later in the year, providing 

better provisions for invertebrates than most natives.  Hitchmough (2011) comments that native 

invertebrates are not fussed whether the plant is exotic or native, and that gardens which are full of 

non-natives are rich in invertebrates. 

 

The need for change and a more flexible approach in conservation management practices to allow 

communities to respond to climate change has been recognised by some organisations.  CEH (2008), 

for example, remark that previous approaches for promoting diversity may not be applicable in the 

future and a more dynamic view will be necessary for conservation objectives.  With regards to 

assisted migration, a case by case evaluation is recommended and should only proceed if barriers 

prevent a species from naturally migrating there.  The spatial project, BRANCH, (discussed in section 

4.12.6) made it clear that adaption measures to climate change need to be put in place to prevent 

species loss, given the highly fragmented landscape across north-western Europe hindering species 

tracking their climate space.  Species from neighbouring countries would spread naturally into GB 

under predicted warming given that there was not a sea obstructing their path.  The need for more 

flexibility in the Birds and Habitats Directive was also highlighted in BRANCH as conservation 

objectives for certain species may not be necessary if species distribution encroach on designated 

land.  
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Species from a lower latitude, as suggested for the case study development sites, are adapted to the 

predicted climate conditions in 2050 in the UK, and given the geographical barrier between the UK 

and mainland Europe which exacerbates species migration ability, assisted colonisation appears to be 

a feasible option, particularly for the south of England, where the impacts of climate change will 

likely be of a greater magnitude.  As long as the habitat is suitable and matches the species’ 

requirements, facilitation of a specie’s distribution should be a success.  Hoegh-Guldberg et al. (2008) 

argues that we need to ‘move beyond the preservation or restoration of species and ecosystems in 

situ’ and apply assisted colonisation given it is a low risk situation.   

 

With the outcome of this research being resilient planting assemblages for climate change, it fulfils 

the requirements of various planning objectives, including adapting biodiversity for climate change 

(an NPPF objective), and the need to consider links between biodiversity and its response to climate 

change under the biodiversity duty.  If local authority ecologists are involved with habitat creation for 

development sites, then utilisation of the lists would be seen as fulfilling part of their duty.  In many 

instances the landscape architect develops the planting lists, so they would need to be aware of 

these recommendations.  It was determined in the questionnaire, however, that the majority of 

ecologists are allowed to have an influence on the architects’ selections.  The utilisation of the 

planting assemblages however requires the acceptance of non-natives in habitat creation.  

Depending on the region and the authority in charge, non-natives are commonly planted on 

development sites, but the research aims to ensure that the species selected are appropriate and 

suitable to the future climate.  

 

Calow (2009) suggested local BAP reviews should consider climate change when selecting species, as 

some may become vulnerable under climate change whilst others become more suitable.  Drayson 

and Thompson (2012) in analysing 42 EIA reports, found that the majority (95%) did not consider or 

even mention climate change impacts in their assessments on site biodiversity, even though this is a 

topic discussed greatly in many publications including England’s Biodiversity Strategy.  They 

recommend that drought tolerant species in habitat creations could be a measure to lessen the 

impact.  Along with the point raised here, this analysis highlights that researchers believe climate 

change adaption measures should be incorporated into EIAs as a way of considering biodiversity and 

protecting its future.  Overall there are mixed attitudes to the use of non-native species, with some 

accepting the need for change in response to climate change, whilst others resist the idea.  Current 

attitudes are therefore a barrier to implementing planting regimes resilient to climate change.   

 



271 

 

10.2.3 The Need to Adapt Now 

The importance to consider and implement adaptive action to climate change now, has been 

highlighted in the forestry sector (Broadmeadow and Ray, 2005). The long time frame associated 

with tree life cycles, typically maturation times of 50-200 years, indicates that due thought needs to 

be applied to the planting decisions of today.  Research has been carried out on the use of non-

natives, through provenance trials, to assess the suitability of non-native provenances to the UK, 

primarily in relation to advising silvicultural practice, i.e. for timber production, but would also 

benefit woodland management for recreational purposes etc.   

 

Although native species are recommended in forestry, as well as by many conservation bodies, non-

native provenances from warmer climates may be considered, given that they are able to perform 

under the future climate predicted for the UK, as well as the current climate (Hubert and Cottrell, 

2007).  Many of the guidelines which recommend the use of local stock were created before the 

scale and implications of climate change were fully understood.  Speculation is, however, that non-

natives are likely to be maladapted to local conditions.  More southerly European provenances may 

be susceptible to frost damage if they burst bud early (Hubert and Cundall, 2006), or as experienced 

in 2012 such provenances may not be able to cope with the occasional extreme precipitation 

patterns in the UK (Pilbeam, 2012). 

 

10.2.3.1 Non-native genotypes 

The conservation of genetic material within woodland may not equip the local population to adapt to 

climate change, and as the local environment changes with time the question is raised of whether 

local (provenance) is still best (Hubert and Cottrell, 2007).  There needs to be the appropriate genetic 

variation within populations, as non-natives of a southerly provenance will be better adapted to the 

future climate and thus genetic diversification could be positive for survival of the species.  It is 

feared however that there could be a loss of biodiversity through changes in the gene pool if related 

non-native and native species hybridize (Manchester and Bullock, 2000) and that stock may be less 

suited to the British environment or affect the species palatability to native insects (Defra, 2012).  

The stress caused to trees, however, as a result of climate change may make native species more 

susceptible to pests and diseases (Broadmeadow, 2002). 

 

As the majority of British tree populations have migrated from glacial refugia in southern Europe, 

when the UK was part of mainland Europe (Hubert and Cottrell, 2007), it may mean that there are 

better suited genotypes unable to migrate and add to the adaptive genetic variation (increase 
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resilience to climate change).  It was also found by Petit et al. (2002) that UK and French stands of 

oak had the same chloroplast DNA haplotypes and originated from the same glacial refugium.  

Woodlands in the south of England may decline in diversity, as new material is prevented from 

migrating there, due to the English Channel, and assisted migration may be a suitable option to 

overcome this, increasing the chances that the woodland will prosper under impending change.  As 

Hubert and Cottrell (2005) state: 

“There is a general need to accept that there is no single answer and that the situation is a dynamic 
one which requires potentially different approaches through time”. 

 
The best option for a site will differ dependant on the objective. For example, if the objective was to 

extend or restore ancient woodland, then in comparison to planting for timber production, the use of 

non-native provenances would not normally be acceptable (Blakesley and Buckley, 2010).   

 

In relation to this research the objective is to create habitats resilient to climate change on 

development sites, whereby practices for planting selection are less strict and often contain non-

native species.  Hubert and Cundall (2006) also state that it is feasible to use non-local provenances 

in the creation of an ecologically functional woodland.  The research undertaken by the forestry 

sector is obviously only on trees, but these observations may be applicable to other flora as well, 

which would be beneficial to the aims of this research. 

 

10.2.3.2 Provenance Trials 

In trying to identify the correct provenance of tree species that would be suited to the growing 

conditions of the UK, and help adapt forests for climate change, trials have been carried out by 

numerous researchers.  Where species of French provenance have performed well or poorly, this has 

been noted.  Worrell (1992) observed only a small difference in height growth between UK and 

continental sessile oak provenances, in trails in the UK, and it appeared that French provenances 

from northwest France had slightly better form and out-performed the GB provenance.  In contrast 

Cundall et al. (1993) reported that in their trials sessile oak of French seed had below average 

performance.  Four of the five Ash trials of the same provenance conversely demonstrated good 

early vigour.  Cundall et al. (1993) therefore stated:  

“such inter-specific differences in patterns of genetic variation demonstrate the importance of field 
testing before making recommendations on the choice of provenances for forest use”  

This statement has more pertinence to the forestry sector, given the economic cost associated with 

their trade, but trials would be recommended for the research species to test suitability of 

provenance selection. 
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Trials on pedunculate and sessile oak assessed for height at years 6-8 and 10-13 (Hubert, 2005) found 

that British selected seed had a consistent good measurement on most of the sites in England and 

Wales, near continental sources were average in performance, in contrast to the Danish and eastern 

European provenances which demonstrated poor performance and would consequently not be 

recommended.  Hubert and Cundall (2006) stated that seed from northern France would be 

acceptable in the southern half of Britain.   

 

Recent analysis (Pilbeam, 2012) of 3 year old saplings at a site in Kent, with different provenances of 

Ash, Oak, Cherry and Sweet Chestnut, as selected from the climate matching technique discussed in 

section 5.5, found good survival and growth across species of French provenance from predicted 

2050 climates.  Material from Italian provenance for predicted 2080 UK climates, however, showed 

poor adaption to current conditions in the UK.  Pilbeam (2012) consequently recommends the French 

provenance material as suitable for ‘buffering against climate change’.  The Italian provenance 

material for all species except cherry had the earliest budburst date, which is typical given that 

certain phenotypic traits vary on a scale with latitude (Broadmeadow, 2002).  The outcomes from 

Pilbeam’s study were similar to that of Worrell’s (1992) who concluded provenances greater than 4° 

south of the planting site demonstrated poor performance.  In relation to latitude variation, the 

distance covered to achieve this kind of latitude difference is relatively small; Edinburgh to London 

represents this latitudinal extent.  Plant selections for climate adaption would thus be within a small 

latitudinal range based on this conclusion.  Overall, the analysis by Pilbeam (2012) is inconclusive 

given the young age of trees, and as Hubert and Cottrell (2007) remark, caution should be shown 

when considering provenance trials which have covered little time, as only a small part of a much 

larger life cycle has occurred. 

 

Consideration of the geographical proximity of a proposed non-native species is not always priority, 

as if the provenance displays good phenotypic quality (Hubert, 2005), and the site conditions are 

matched (Hubert and Cottrell, 2007), then the likelihood of success is high.   

 

In view of the above discussions, trials would be recommended for the species selected in the 

research to ensure their suitability in the UK, as the above studies only apply to trees.  These 

experiences, however, illustrate that non-native provenance can fair well to the climate of the UK, 

which is essential for survival. 
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10.3 Evaluation of the Research 
Given that certain elements of the research are highly topical subjects (e.g.: climate change 

modelling), there is a mass of published research available, with often advanced knowledge 

associated with them.  There are other areas, however, where understanding is much less well 

developed (e.g.: vegetation migration in response to climate changes).  The most current knowledge 

therefore, was employed at the time each aspect of this research was undertaken, and as a 

consequence it is recognised that there are limitations within it. 

 

10.3.1 The Climate Data 

The Baseline 

The UKCP09 climate change projections relative to the 1961-1990 baseline period were employed as 

this was recommended by a UKCP09 user panel.  For the 25km gridded data, only this baseline 

selection was available.  With 23 years having elapsed since the end of this time frame, a certain 

degree of climate change has already occurred, and so the projections given may not be as accurate 

if they had been made relative to a more recent time frame.  The degree of change in the projections 

should also not be referred to as from today’s climate.  If a linear trend is assumed then it would be 

possible to calculate the rate of change since the baseline period and subtract this from the 

projections, but this technique would add more uncertainty to the projections.  It was therefore 

decided to use the 1961-1990 baseline. 

 

The CRU data for the current day European values were also the average of the same time period 

1961-1990, and thus do not reflect the current situation.  However, by using this baseline there is 

consistency between the UK and European current values, and although there is a data set for the 

time period ending more recently 1950-2000, as discussed in the next section, the CRU data set has 

been used in recent studies (Doxford and Freckleton, 2012) adding to its credibility.   

 

After carrying out this research it was discovered that there was a higher resolution data set of 

climate surfaces for 1950 to 2000 by Hijmans et al. (2005) that could have been used for the 

European current day climate values (the GIS layer).  This data set had a resolution of approximately 

1km (30 arc-seconds spatial resolution) in comparison to New et al.s (2002) of approximately 18km 

(10 arc-minutes).  The comparison Hijmans et al. (2005) did between their data and New et al.’s 

(2002) data showed ‘overall agreement, but with significant variation in some regions’.  A higher 

resolution would be more beneficial in mountainous and other areas with steep climate gradients 

(Hijmans et al., 2005).   
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Hijman et al.’s (2005) methods for creating global climate surfaces were similar to New et al. (2002), 

but they incorporated more climate station records with improved elevation data.  Locations with 

few recording stations were where the main differences emerged (Hijmans et al., 2005), but as 

station density for Europe does not appear to be low, e.g. see figure 5.4, it can be assumed that the 

use of Hijman et al.’s (2005) data in this research, based on the differences between these two data 

sets, would not have greatly affected the outcomes.  Figure 10.1 shows that that the climate is in 

general similar in most regions, but there are some clear large variations.  The area of interest for the 

research – Europe, had maximum differences in precipitation of -50 to -500mm.  This should be 

taken into consideration when using the outcomes of this research. 

 

Although Hijmans et al. (2005) data is at a higher resolution, other studies utilising surface climate 

over global land areas, e.g.  (Thuiller et al., 2005; Doxford and Freckleton, 2012), also use New et al.’s 

(2002) CRU 10’ resolution data. 

 

 
Figure 10.1 Difference between Hijmans et al. (2005) climate surfaces and those of New et al. (2002) 

for mean annual temperature and annual precipitation (Hijmans et al., 2005) 
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Scale 

The climate projection values are at the 25km grid level which is considerably larger than the case 

study sites. Furthermore, given that the elevation over an area will affect the local climate, the 

climate projections given may not accurately reflect the future micro-climate at the case study, since 

the values used are an average of readings from across the 25km square.  Due to the large scale 

inaccuracy of the climate models however, as discussed in chapter 2, there will be inherent 

uncertainty with the climate values, but this was the best available option at the present time.  

 

Emission Scenario Selection 

The decision to use the medium emission scenario for the climate projections was made in early 

2010. However, there is now speculation that the high emission scenario pathway may be more 

likely, reasons for which are discussed below.   

 

The increase rate of CO2 emissions was 1.1% per year between 1990-1999, but this elevated to 

greater than 3% per year between 2000-2004 (Raupach et al., 2007), a rate at which sustained would 

put us on an emission pathway higher than those produced in the SRES.  In a study by Peters et al. 

(2012), it was found that observed emission trends are on track with SRES A1F1, A1B and A2 

pathways (A1B being the scenario used in this research), but that greater mitigation efforts would be 

needed to curb the temperature increase within the 2°C limit and prevent even higher emission rates 

happening.  Anderson and Bows (2008) and New et al. (2011) have also deduced similar findings 

based on global emission reduction policies. 

 

The 400ppm atmospheric CO2 level was recorded at the Mauna Loa Observatory in Hawaii in 2013, 

with a 2ppm rise in concentrations occurring every year for the last few decades (New Scientist, 

2013).  The pre-industrial levels were 280ppm, and in the early 20th century levels were around 

300ppm, rising to 350ppm in the late 1980s.  This continual rise illustrates the effect man is having on 

the concentration of ghg in the atmosphere, and that action needs to be taken to keep these levels 

within reasonable limits to prevent ‘dangerous’ climate change and the higher emission scenarios 

being reached. 

 

The US Energy Information Administration Data published in the Guardian (Guardian, 2012b), reveals 

that since the first Rio summit of 1992, based on 2010 figures, the world now discharges 48% more 

CO2 from the consumption of energy.  In 2012 the total global figure was 35.6billion tonnes. 
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The growth of emissions from Asia and Africa is apparent in the data; their continued consumption of 

fossil fuels means that non-renewables will remain to dominate the global energy mix (IEA, 2012), 

whilst Europe’s emissions have plateaued.  China’s CO2 emissions have rocketed by 240% since 1992, 

emitting 8.3bn tonnes of CO2 in 2010, and producing 48% more CO2 than the USA, who it overtook in 

the league charts in 2006.  China is responsible for a quarter of the worlds’ emissions, partly because 

they are one of the main consumers of coal.  After a drop in emissions when the recession hit, US 

emissions have now resumed upward path (Peters et al., 2012), illustrating the positive relationship 

between pollution and ‘economic success’ (Guardian, 2012b).  

 

By 2035 the IEA (2012) believe renewables will become globally the main source for power 

generation.  This will only happen, however, if enough subsidies contribute to their investment and 

deployment, which during the recession, declined in the UK (IEA, 2012).  Interest in the future of 

nuclear power has been somewhat dampened since the Fukushima Daiichi catastrophe of 2011, but 

its role in the energy mix is still projected to increase, led by China, Korea, India and Russia.  Analysis 

carried out by the IEA showed that unless the potential for a conversion towards global energy 

efficiency is realised ‘two thirds of the economically viable potential to improve energy efficiency will 

remain unrealised through to 2035’.  Energy efficiency measures are required if the lower-medium 

emission scenario pathways are to be realised. 

 

The recent increase of ‘fracking’ in the US, the process of blasting dense rocks apart to release the 

fossil fuels stored within them, has raised concerns.  Although this secures some of the US’s energy 

independence, fossil fuels are being exploited to an extent which will prevent the global climate 

change target from being reached (Guardian, 2012a).  

 

The thawing of permafrost in the Arctic and the release of methane trapped within it (BBC, 2013) is 

an example of a natural event which will also have an effect on the future climate.  Even though 

methane has a shorter life cycle than CO2, it is a more powerful greenhouse gas, the release from 

frozen tundra could therefore bring forward the imminent 2°C warming increase. 

 

Global climate negotiations are one of the main mechanisms for emission mitigation measures.  At 

the UN climate deal talks at the end of 2012, where nearly 200 countries gathered in Doha, Qatar, 

the key outcomes were (UN, 2012): 

 To reach a legally binding global climate change agreement by 2015; 



278 

 

 To extend the Kyoto protocol which was due to end 31 December 2012; this is the only 

current and binding agreement under which developed countries pledge to cut ghg; 

 For developed countries to continue their commitment to long-term climate funding support 

to developing nations, as well as provision of infrastructure. 

 

Although the US and China refused to sign the Kyoto agreement, they have agreed, along with other 

big producers of CO2 like India, Brazil and South Africa, to negotiate on a global treaty by 2015 

(Telegraph, 2012).  This exemplifies that the need to tackle climate change has been recognised by 

those most responsible, but due to the inertia of the climate system the globe is already committed 

to a certain degree of climate change. 

 

Given the current situation emissions appear to be on a par with that of the high scenario, rather 

than the medium scenario employed in this research.  The UKCP09 high emission scenario (SRES 

A1F1) climate projections were consequently entered into the GIS to see what difference this would 

have on the climate matching for the EQ case study.  It was found (Fig 10.2) that the areas identified 

as good matches before, i.e. north-western France, northern Spain and south-eastern Italy (see Fig 

8.4), increased in size, i.e. larger areas with a well correlated climate were matched.  This was 

particularly evident in the Mediterranean regions, where more grid squares had a better agreement 

with EQs’ projections for 2050.  The conclusion from this is that as temperatures increase, under a 

higher emission scenario, the climate is likely to become more similar to that of southern Europe, 

with greater consequences for biodiversity. 



 

 

 

Figure 10.2 EQ’s climate matches under a high emission scenario

2
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The 2013 IPCC Climate Scenarios 

In the latter half of 2013 the IPCC published the draft for their fifth assessment report on the physical 

science basis (IPCC, 2013).  It reconfirmed the impacts that climate change is having on the 

atmosphere, the oceans, sea level and the cyrosphere, but they now state that it is extremely likely 

that human influence has been the dominant cause of the global warming since the 1950s, as 

opposed to the phrase very likely used in the AR4.  A new set of four scenarios for the climate model 

simulations have also been developed, the Representative Concentration Pathways (RCPs), which 

replace the SRES used in the TAR and AR4.   

 

These four scenarios are different from the SRES, in that they cover a range of climate intervention 

policies spanning the 21st century, and they are defined by the radiative forcing which they will exert 

in 2100.  RCP2.6 is the lowest forcing level due to it being a mitigation scenario, whereas RCP4.6 and 

RCP6 are stabilisation scenarios.  RCP8.5 represents the largest radiative forcing by 2100 due to the 

very high emissions of greenhouse gases associated with this scenario.  The climate models produced 

in the new report have improved on the last report with temperature patterns and trends over many 

decades being accurately reproduced, thereby adding confidence to the models and their associated 

projections.   

 

Although this research project uses the SRES scenarios for the climate projections, the framework 

created is still valid and the new scenarios could replace the ones employed once probabilistic 

projections by the likes of UKCP09 have been developed. 

 

Climate Model Confidence 

There is of course uncertainty in the climate projections themselves, owing to the complex climate 

system and the interactions which are considered in order to create them.  Recent analysis of the 

climate change over the past 15 years has, however, discovered that forecasts of rising global 

temperatures were very closely matched to recent observations (Allen et al., 2013).  This instils 

confidence in the climate model predictions and the scientific basis behind them, which have been 

subject to a lot of speculation and doubt previously.   

 

10.3.2 Climate Variables Limitation 

The use of only two climate variables – temperature and precipitation, has potentially limited the 

accuracy of the climate matching.  Although these two variables are important for describing the 
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general climate of an area and for plant growth, other variables are important for plant growth 

including minimum/mean temperature of the coldest month (explains distribution of the different 

types of woody plants based on their lower growth limits and requirement for chilling to ensure bud 

burst in the spring), and growing degree days (>5°C) is also important (Thuiller et al., 2005).  Although 

UKCP09 provides the minimum daily temperature, the CRU data for the current European values, 

however, do not have the corresponding data. 

 

Potential evapotranspiration (PET) was not considered in the climate matching of this research, yet it 

is a good indicator of the available soil moisture, a variable which affects plant growth. Potential 

evapotranspiration is how much evapotranspiration could occur if sufficient soil moisture was 

available to avoid plant stress. As it is an important factor, the difference between the PET at the 

case study site of EQ and its analogous climate location in the Maine-et-Loire has been examined.   

 

Evapotranspiration is the combination of the amount of water (vapour) lost from the soil surface 

(evaporation) as well as the uptake of water by vegetation and the consequent loss of it through 

stomata (transpiration) (Allen et al., 1998).  The amount lost depends mainly on four climatological 

variables: 

 Solar radiation 

 Ambient air temperature 

 Vapour pressure (Air humidity) 

 Wind speed (at 2m above ground) 

 

Solar radiation is determined by latitude and season, and so the higher the latitude of the location 

the less radiation there is reaching per unit area of land surface and the lower the evapotranspiration 

rate will be, as shown in figure 10.3  For vegetated land surfaces, evapotranspiration will vary 

dependant on the vegetation characteristics, but typically in the earlier stages of growth water is 

predominantly lost by soil evaporation, which continues until the vegetation occupies more soil area 

with time, and then transpiration will have a larger effect on the overall rate (Allen et al., 1998). 
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Figure 10.3 Global map of reference evapotranspiration (FAO-UN, 2004) 

 

The FAO-UN (FAO-UN, 2004) have developed a dataset and associated maps showing the global 

monthly reference evapotranspiration at a spatial resolution of 10 arc-minutes.  It provides the mean 

monthly values for global land areas, for the period 1961-1990.  The Penman-Monteith method has 

been used in calculating the dataset with input data from the CRU.  The reference crop 

evapotranspiration (ET0) represents the evapotranspiration from a standardised vegetated surface – 

it is the ‘climatic parameter expressing the evaporation power of the atmosphere’ (Allen et al., 1998) 

and is calculated independently of crop characteristics and management practices.  ET0 provides the 

evapotranspiration rate from a reference surface which is a hypothetical grass reference crop with 

specific characteristics, the soil of which has sufficient moisture.  The values from different locations 

can be compared as they use the same reference surface.  On inspection of the monthly maps 

produced, the values for the areas of interest have been noted and are shown in table 10.1.  The bold 

values highlight where the differences lie between EQ and the Maine-et-Loire, both in their current 

climate conditions. 
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Table 10.1 The ET0 differences between EQ and Maine-et-Loire 

Month EQ (mm/month) Maine-et-Loire (mm/month) 

January 0 - 25 0 - 25 

February 0 - 25 0 - 25 

March 25 - 50 25 - 50 

April 50 - 100 50 - 100 

May 50 - 100 50 - 100 

June 50 - 100 100 - 150 

July 100 - 150 100 - 150 

August 50 - 100 100 - 150 

September 50 - 100 50 - 100 

October 25 - 50 25 - 50 

November 0 - 25 0 - 25 

December 0 - 25 0 - 25 

Year 500  - 750 mm/year 750 – 1000 mm/year 

 

The ET0 values are similar between the two areas, which was expected with the UK and north-

western France being of the same biogeographical region (the Atlantic).  As the value for the year 

shows, it is slightly higher in Maine-et-Loire, which may be due to it being at lower latitude than EQ.  

PET indirectly affects soil moisture; if this was different in France then species selected for EQ may 

not be able to establish due to differing conditions.  As the PET is similar though, the vegetation 

should be able to grow in the UK conditions. 

 

Given that GB and north-western France are part of the same biogeographical region then it is 

expected differences in some variables would not be large.  It is only when species of a 

Mediterranean origin are considered that larger differences would start to emerge. If a development 

site was paired with a more southerly climate, and the altitude was similar, then more consideration 

should be given to PET, with projections calculated to observe the comparison that exists between 

the UK site and the matched site. 

 

A quote of pertinence to the research project from Doxford and Freckleton’s (2012) study is: 

“A change of several degrees in temperature may not result in distribution change if it is within a 
species tolerance limits; however, a small temperature change in another instance may reach a biotic 
threshold forcing a response to climate through distribution change”.   

 
Optimal physiological temperature data is rarely available for species and this makes decisions 

harder when trying to see which plants are closer to reaching their climatic tolerances, and thus 

more vulnerable to climate change than others.  A potential flaw may be that the climate is not 

limiting species distribution, as discussed in chapter 4.  Although the climate preferences of the 



284 

 

species are considered, other important factors, for example, the abiotic factors or its biotic 

interactions with other species which have led to a particular species being able to survive in a 

particular environment, have not wholly been considered.  The species selected may therefore not 

be able to survive/establish at a given site.  To cater for a species’ environmental preferences, the 

Ellenberg indicator values have been used to classify the species accordingly, but this will not take 

into account a species complete interaction with the surrounding environment. 

 

10.3.3 Similar Methods 

The climate matching technique used by Forest Research, as discussed in section 4.13, uses the least 

squares method to identify locations which have the smallest difference overall for the year between 

a specific set of future projections for a site with current conditions at a matched location.  This 

structured statistical approach seems a legitimate, accurate way to carry out the climate matching, 

and by narrowing their range they can increase the accuracy of their agreements.  The underlying 

principles of the climate matching technique used by Forest Research and that presented in this 

research are the same, but a visual inspection is involved to observe the overall climatology of the 

matched locations in this research.  In this way the months that are more important for plants can be 

inspected for closeness to fit.  A greater number of matched locations were identified in this 

research, because a wide range (10-90% probability range) of climate projections are considered for 

each monthly climate variable, as it is deemed best not to be too specific given the uncertainty 

provided with the climate change projections. 

 

Altitude was not considered for seed collection in the FR trials, which may yield unsuitable 

provenances due to differing conditions.  The reasons for considering altitude are discussed in 

section 8.1.3.  In both this research and that of Forest Research, however, the fact that energy 

balances change with latitude needs to be a major consideration when selecting seed material to use 

from areas of lower latitudes, as suitability may be questionable.   

 

10.3.4 Soil Limitations 

Soils are a fundamental part of the overall ecosystem and provide many services.  In relation to this 

research, generally restored soils are employed on development sites to support plant growth; they 

provide the medium through which plants can establish and contribute to biodiversity improvement 

on site.  Their importance is also recognised in international policies like the 2010 Aichi Targets (as 

discussed in chapter 4).  With the online data used for vegetation matching, the website did not state 

the soils on site, which inevitably has implications for the habitat creation proposals for the case 
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study development site. The use of manufactured soils, however, as in the case with the Olympic 

Park, is a common approach that is employed on development sites for increasing the quality of the 

soil and reducing the requirement for natural soils, which are a scarce resource.  When development 

sites are built on contaminated land, the protocol is to cap the soil to isolate the contamination, as 

observed in some of the case studies.  The subsoil/topsoil, or the extra capacity required, is then 

either taken from uncontaminated areas of the site, from stockpiles/overburden, or if needed the 

soils are imported.  Manufactured soils offer a sustainable alternative. 

 

Manufactured soils are typically a mixture of organic substrates like green waste compost and a 

mineral fraction like sand, with the ratio of these two substrates depending on the planting 

requirements of the site, (Stanley, 2011).  Sufficient organic substrate can improve the physical, 

chemical and biological properties of the soil and allows for the soils to adapt to the surrounding 

vegetation.  The mineral component is normally taken from overburden waste from sand and gravel 

quarries which tend to have a good proportion of sand, silt and clay (Landscape Institute UK, 2012).  

If drainage is required the soil is made more permeable, but if drainage is not required then more 

clay like soils are used.  The soils can be altered accordingly over the years if required, so that plants 

have an opportunity to successfully establish (Stanley, 2011). 

 

Publicly Available Specification (PAS) 100 green compost waste and paper mill crumb (PMC) were 

two substrates used in the manufacture of subsoils for the restoration of Lambton Coke Works in 

County Durham (Palmer and Davies, 2008), as there was a shortage of subsoils on site.  The study 

undertaken there found that both a 50:50 and 80:20 ratio of compost to PMC both resulted in 

successful establishment of trees, and the importance of loose-tipping was also demonstrated.  In 

relation to soil food webs and plant communities de Vries et al. (2012) studied fungal-based food 

webs and found that they increase the resilience of soil to drought by reducing the loss of nitrogen 

from the soil and thus facilitating a better recovery.  With droughts more likely under future 

predicted climate conditions, this knowledge and its application may better prepare soils, and 

indirectly plant communities, for climate change. 

 

The manufacture of soils has become increasingly popular on development sites as they (Stanley, 

2011; Boulden, 2012): 

 Reduce use of, and disruption of native topsoil which is scarce; 

 Reduce the amount of unsuitable soils to be exported off site to landfill, so both a 

sustainable best practice and an economic cost issue; 



286 

 

 Involves the recycling of materials; 

 Comply with British Standards for Topsoils; 

 Are of a consistent quality. 

 

In relation to EQ, the soils are not contaminated, but with climate change the soil quality may 

worsen, whereas manufactured soils would allow for sustained conditions and a well functioning soil 

ecosystem.  Through using these soils the below-ground biodiversity is enhanced allowing for more 

successful above ground interactions; such objectives are key priorities for development sites and 

reclaimed land (Boulden, 2012).  As certain plant species prefer particular soil characteristics, this is 

taken into consideration through matching of the manufactured soil to the relevant Ellenberg 

indicator values – the soils are essentially tailor made to the plants preferences.  The underlying 

geology of the site should also be taken into consideration as this will affect soil conditions, 

particularly acidity, but as shown through the case studies, development sites with contamination 

problems often cap the soil to separate the contamination from the proposed development plans 

and thus the soil is not influenced by the geology. 

 

10.3.5 Vegetation Decisions  

A comprehensive species list for Maine-et-Loire the area was not available. The species list produced 

from the field and online data was not extensive; there will be other species present in the area 

which have not been accounted for, but would be suited to the climate at EQ in 2050.    The data, 

however, is manageable and allowed a list for varying habitat and soil conditions to be compiled, 

giving an example of how the framework can be used to create resilience in planting lists for UK 

development sites. 

 

The vegetation matching method is novel and requires a broad sense of perspective.  Classification of 

the vegetation data was not straight forward owing to: 

 there being no habitat classification standard across Europe, or at least none with sufficient 

plant data available;  

 the online plant data for the ZNIEFFs were not categorised into appropriate habitats; 

 differing definitions between EU and UK habitats.  

 

The UK broad habitat classification was applied to the plant species and then subsequently the 

species were filtered based on their French Ellenberg values, as discussed in section 9.6.1, to create 
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communities of similar preferences.  There were limitations of using Ellenberg as some of the species 

were not assigned values for every indicator, resulting in these species being removed from 

consideration and  limiting the size of the list.  The approach was also mechanical, and thus the lists 

do not fully take into account species tolerances (albeit a range of 3, for example for F - dry (1-3)), 

given that some species can tolerate a wider range of conditions than others.  The lists produced are 

thus the species ideal, but this aims to achieve habitats that will successfully establish on the 

development site as their preferences are matched.   

 

At a smaller scale the inclusion of additional environmental data, like aspect and slope for the 

vegetation data would have been ideal as this affects the micro-distribution of species on a site.  This, 

however, can be decided upon by an ecologist or on further investigation of the plants’ 

requirements.  Given the limitations of the methodology, it would be advisable to consult an 

appropriate ecologist with expert botany knowledge to refine the created lists.    In examining the 

species lists, they would be able to select species which thrive together in the habitat, i.e. unlikely to 

compete with each other for resources.   

 

A lack of time prevented the method from being tested on more than just the EQ case study.  The 

principles, nonetheless, would be the same regardless of the site under consideration and the 

method created could perhaps be further refined, with, for example, inclusion of more 

characteristics.  It is debateable, though, whether this would be worthwhile given the current 

uncertainty surrounding the climate projections, and what is actually known about plant interactions 

and their ability to respond to climate change. 

 

The approach employed to create the species lists using Ellenberg characteristics is mechanical and 

only requires a limited knowledge of plant botany to apply.  As discussed above, it is restricted to 

those species where the Ellenberg parameters have been published. An alternative approach would 

be to employ an expert ecologist to use their specialist knowledge to create planting lists directly 

from the comprehensive species list. This would have the advantages of an expert who has 

knowledge from the field and would select plants that thrive together and would be unlikely to 

compete. 

 

10.4 The Framework 
Despite the limitations of this research, a methodology has been developed that aims to future-proof 

species selection for development sites given the impending climate change.  Albeit novel, it is a 
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proactive adaption approach to ensure the long term robustness of the biodiversity element of 

development sites, and considers the plant species climatic and environmental preferences.  Figure 

10.4 provides a diagrammatic representation of the methodology created.  Given a development 

site, to apply the process, one must first ascertain: 

 the predicted future climate at the site; 

 Site and soil conditions; 

 What is guiding species selection in the area – i.e. BAPs, NCAs - and hence the habitats to be 

created. 

 

The future climate predictions for the development site are dictated by climate models which give 

projections for temperature and precipitation in 2050.  Climatically matched areas in Europe, which 

currently experience this future climate are then identified through the use of a GIS.  A suitable 

match location is then found through a closer inspection of these areas’ climatology and altitude.  

Vegetation species data from the selected location can then be acquired through either site visits or 

online published data, and compiled into a database for ease of management.   

 

Natural soils can be used, which will influence the species selected, or the soils can be created, in 

which case the soils are tailor made to the plant/habitat preferences.  Dependant on the habitat 

proposals for the site, or the schemes guiding the biodiversity decisions (e.g. BAP/NCA 

recommendations), the species database can be searched for the relevant plants to create the 

desired planting lists. At this point either an expert ecologist can select species from the 

comprehensive list, or alternatively they can refine the list once it has been filtered using broad 

habitat classifications and Ellenberg values for moisture, acidity, fertility and light.   A plant list is then 

generated for each of the habitats proposed for the given development site. 
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Figure 10.4 Proposed methodology for planting lists resilient to climate change 
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10.5 Conclusion 
In conclusion, this research has produced a methodology which offers biodiversity elements of 

development sites resilience to climate change, through the selection of species from southerly 

latitudes which match the future climate of the UK.  There are barriers to its implementation, 

particularly as some organisations and authorities enforce strictly native policies for landscaping. 

However, given the rate and likely magnitude of climate change action needs to be taken now to 

ensure plant species and communities can survive.  There needs to be recognition of the need for 

change in conservation practices, and that species would naturally migrate to parts of the UK, if there 

were not geographical barriers preventing this.  Certain non-native species offer great benefits, 

including longer flowering seasons, and there are many established non-natives which people 

already accept as part of the natural scenery.   

 

 Inevitably there are limitations to this research method, but the decisions taken to reach the 

outcomes are deemed acceptable and credible given the surrounding literature and the context 

within which and when the decisions were made.  As only climate variables have been used to 

identify the flora likely to survive the future meteorological conditions of the UK, it has thus been 

assumed that the climate is limiting the distribution of the species selected.  However, there may be 

other abiotic factors or interactions which have not been considered in the climate matching 

technique, which would prevent a species surviving in the UK.  As areas in north-western Europe fall 

under the same biogeographic region as the UK, the conditions are relatively similar, but if the 

species were from a more Mediterranean origin, then greater attention should be paid to a wider 

range of climate variables and how good the match is.   

 

All in all the method aims to inform the biodiversity requirements of a development site, with 

recommendations for planners and developers, ensuring the site’s sustainability for years to come, 

with the creation of resilient planting assemblages for the impending climate change.   
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11. Conclusions and Future Recommendations 

In concluding this research, there is a discussion on how the aims and objectives were met, and on 

the process developed to enable planners and developers to select plant species for sites subject to 

climate change.  Recommendations for further research to enhance the procedure will also be 

discussed. 

 

11.1 Project Aim  
The aim of the project was... 

“to develop a process to enable the production of species lists for the habitat creation 

and planting design associated with large scale development sites subject to climate 

change.” 

In adopting a case study approach, the project aim was successfully met and a methodology 

developed which, for a given development site in the UK, would recommend appropriate species for 

planting design that would be robust to future climate change.   

 

11.1.1 Origin of the Problem 

The original idea for this research was proposed by Middlemarch Environmental Ltd, who are often 

appointed ecological consultants for a number of large scale brownfield development sites.  In order 

to provide the most appropriate environmental and financial solutions, given the long term 

objectives for such sites, Middlemarch saw a need for habitat proposals and planting design to be re-

considered given their likely susceptibility to climate change.  The plant species often recommended 

for development site planting include designated BAP species, or species characteristic of the 

surrounding area, but these species are suited to the current climate and may not be appropriate or 

survive the climate expected over the course of the 21st century.  Species better suited to the future 

climate would be a sustainable investment for developers and ensure biodiversity can survive and 

flourish on the site.   

 

11.1.2 Meeting the Aim through the Objectives 

The aim of the research was met through the undertaking the objectives detailed in section 1.3.2, 

which will be further discussed here. 

The literature review (Objective i)  revealed that it is evident in the climate records that the climate is 

changing at an unprecedented rate (EEA, 2004) and that anthropogenic agents are partly responsible 
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for such events given the drastic increase in CO2 emissions since the industrial revolution began.  CO2 

is one of the greenhouse gases which absorbs heat radiating from the earth, thus raising the global 

temperature (Hulme, 2009a).  Global circulation models, which mimic the complex interactions of 

the climate system, simulate the future climate based on a range of likely emission scenarios over 

the 21st century (Randall et al., 2007).  Although the degree of change varies between models, 

dependant on the methods employed, many models predict a climate warming. 

 

Without the necessary global action required to curb greenhouse gas emissions, there will be 

disastrous consequences for biodiversity, as well as for economies, and therefore the need to take 

action is pivotal.  Although there are international agreements in place to implement mitigation 

measures (Hulme, 2009a), the earth is already committed to a certain degree of climate change and 

it has been estimated that at the current emissions rate, the earth may be exposed to the higher 

emission scenarios propounded in IPCC’s Fourth Assessment Report (New et al., 2011).  The Fifth 

Assessment report, to be published next year, will place more onus on anthropogenic forcings 

contributing to the climate change. 

 

Regarding objective iii, the literature provides many examples of the effect climate change is having 

on biodiversity, both historically, and recently, with species typically migrating polewards to follow 

their suitable climate space (Thomas et al., 2004).  Species were able to migrate at the end of the last 

glacial over 10,000 years ago, but there are uncertainties as to the dispersal rate at which this 

occurred (McLachlan et al., 2005; Clark et al., 1998).  The rate of climate change today is of a greater 

magnitude, and given the poor permeability of the landscape to allow species to migrate, the rate of 

habitat loss (predominantly due to human activity) and the uncertainty surrounding species ability to 

disperse long distances, biodiversity may consequently be lost.  As well as species expanding their 

northern ranges to follow their suitable climate space, other observed phenology changes include 

earlier flowering dates, which coincide with an earlier onset of spring (Sparks and Smithers, 2002).  

Species models have incorporated the distribution of species and their climate tolerances to identify 

future climate spaces across a range of taxa.  For many, the necessary future climate space exists, but 

their ability to reach such destinations is questioned (Pearson and Dawson, 2003).  Areas which will 

be affected the most include the Mediterranean and Euro-Siberian landscapes (Thuiller et al., 2005), 

with Europe likely to incur many plant extinctions.  These climate models are, however, limited in 

their recommendations given that a species may not be limited in distribution by climate, and other 

factors may dictate its existence in a particular community.  They also expect vegetation to snap to 

these new suitable environments, when in reality their dispersal limits this notion. 
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Recognition of the importance of the environment did not really occur until post WW2 when 

regulations imposed limits on development (Bell and McGillivray, 2008).  The designation of sites 

worthy of protection occurred in the 1980s, and for those ratified to the UNFCCC agreement there 

was a requirement for conservation and sustainable use of biological diversity, as stipulated by the 

Convention on Biological Diversity (CBD).  The important services provided by biodiversity also gained 

more attention, and the recent NPPF now requires the environment to be given equal consideration 

as economic and social factors to ensure sustainable development (DCLG, 2012).  Developers are also 

required to consider the biodiversity of a site when carrying out an EIA; they must mitigate 

accordingly for any damage and implement compensation measures.  It is also at the discretion of 

the local authority to ensure they have regard for biodiversity and act accordingly when making 

decisions on planning proposals.  Some developers, however, proactively want to enhance the 

biodiversity of a site and make it a principle feature of the development, which is encouraging and 

allows green space for both aesthetic purposes, but also to facilitate the surrounding species and 

provide connection between areas.  This, however, is not always the case as ascertained by the 

questionnaire (chapter 6), with ecologists responding that most developers do not willingly want to 

maximise the biodiversity on their sites. 

 

Local government ecologists were consulted to determine their views on this research (objective v), 

their attitudes towards non-natives, as well as general information on the practices they employ for 

planting selections.  In furthering the observations of recent changes to biodiversity in the literature, 

many ecologists have also observed changes in species’ distributions relative to their local area, 

exemplifying that species are expanding their ranges at a local scale.  For those involved with the 

planting selections, the majority recommend species for planting in accordance with BAP habitats, 

but as mentioned, such species may be unlikely to survive the future climate change.  Species need 

to be selected that can withstand the likely climate pattern of the future. 

 

To develop the framework for suitable species selection, a case study approach was adopted 

(objective iv).  Suitable brownfield sites from across the UK were sought, all with a requirement for 

biodiversity and a planting schedule available.  The methodology could then be applied to each site 

for the acquisition of species which will be better suited to the future climate at that given site.  For 

the case study of Eastern Quarry, a chalk quarry in North Kent, the climate change expected in 2050 

for the UK was required in accordance with objective ii.  The most recent climate projections by 

UKCP09 were therefore employed to predict the climate variables temperature and precipitation 

under a medium emission scenario for the time period 2050 (2040-2069).  The Met Office baseline 
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was then combined with the projection data at the 10, 50 and 90% probability levels and the 

probabilistic range of future climate values for each grid square of the UK was calculated.   

 

To meet the requirements of objective iv, the current mean European rainfall and temperature 

values were uploaded into a GIS. Subsequently, by inputting the projected climate range for EQ, and 

using an appropriate query, areas were identified in Europe which currently experience this expected 

climate.   The GIS allowed for a visual display of the analogous climate locations across Europe, and 

those which had the best match, i.e. a greater number of months in agreement, could then be 

further investigated to ensure suitability. Areas in north-western France, northern Spain and 

southern Italy were well matched for the case study of EQ, but on further investigation of the climate 

match, by considering other factors such as altitude, north-western France was identified as the 

better match overall.    

 

Species lists were obtained from the respective areas in the selected location through site visits and 

by sourcing online published data (objectives vii and viii).  National natural history museums are 

important resources for a wide range of species, and published data from the likes of these are 

validated by the extensive records they hold (Graham et al., 2004).  In classifying the species into 

manageable, understandable lists, they were classified according to the broad habitats that they 

reside within, based on those typically created on development sites, e.g. woodland, meadows, 

aquatics and marginal.  To cater for species environmental preferences the lists were further sorted 

using the French Ellenberg values for moisture, fertility, acidity and light, to create habitat lists which 

would be appropriate for a given development site’s criteria (i.e. calcareous grassland, wet meadow), 

dependant on the original habitat proposals and/or the surrounding areas characteristics.  A 

limitation here was that the Ellenberg values were not available for all plants.  The final step would 

be for an ecologist to use their specialist knowledge to further refine the selection (objective ix).  The 

outcome would then be relevant species lists for planners and developers who are seeking to 

maintain the biodiversity longevity of their site. Time, however, did not permit for this objective to 

be successfully met, and the list created would need refining before recommendation to planners.  

An ecologist, nonetheless, did advise on the selection process and assisted during site visits. 

 

It was found that many of the species on the new lists created, i.e. native to France, were also native 

to the UK, but the UK provenance may not be suitable for the expected climate change of the future.  
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The acceptance of non-native species in conservation practices is varied, with some bodies operating 

a strictly native only approach.  Others, however, recognise that species will naturally migrate and 

appear in new environments. Efforts to conserve the native flora may be wasted by focusing on 

current native species, and consequently there needs to be worthwhile investment into suitable 

resilient planting practices, otherwise biodiversity may be lost.  From the questionnaire distributed to 

local government ecologists, it was found that nearly half of the respondents were against the 

introduction of non-natives to new planting lists for  development sites, with most of the remaining 

respondents being undecided on the matter. This limits the implementation of this research, as 

ultimately they have an influence on planting lists.  There perhaps needs to be awareness that not all 

non-native species are invasive, that many provide benefits and some are already accepted as part of 

natural scenery.  When introducing non-native species, there is a possibility that they may become 

invasive as they lose their natural enemies associated with their native community, but ideally the 

species selected would undergo a risk assessment to identify any potential invasive species prior to 

their use. 

 

The methodology produced for development site planting creates a species selection resilient to 

climate change, as summarised in Fig 10.4. It is recognised that there are limitations associated with 

this research methodology, but given the period of time this study was undertaken, and the time 

constraints of a study of such breadth, a suitable framework has been developed.  Species lists need 

to be created which, for a given development site, are able to survive and provide resilience to future 

climate change, the possibility of which has been shown through a case study approach.  This 

research has previously not been undertaken, and the proposed methodology is a new process for 

creating resilience on development sites, an issue given little attention to date.  The outcomes, if 

utilised, would provide a sustainable investment for the long term biodiversity objectives of a given 

development site, buffering them against climate change. 

 

11.2 Future Recommendations 
To further develop the methodology for the creation of species list suitable for development sites 

subject to climate change, it is recommended that the underlying principles are updated as and when 

they become available.  This applies to the climate projections, in terms of new emission scenarios 

and climate projections developed by the IPCC, given that information published to date relating to 

the IPCC’s Fifth Assessment Report indicates that the earth may be committed to much higher 

emission levels than originally thought, unless serious reduction measures are implemented.   
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It would be ideal to determine whether temperature is limiting the species distribution or whether 

other factors are involved, given that only temperature and precipitation have been utilised in this 

research.  An experimental approach is therefore recommended for the non-native species identified 

by the methodology developed, to ascertain factors controlling their distribution.  Assessment of the 

suitability of the provenance to the UK of the range of species selected for planting would also be 

recommended through trials, such as those being undertaken by the forestry commission for trees. 

 

It would be interesting to establish the distribution range of the species in France (i.e. for the species 

identified, if they are at their northern or southern margin), as this may have implications for their 

ability to survive in the UK.  Data on their distribution can be accessed through online resources, 

including the INPN website utilised in this research to identify the ZNIEFFs.  The distribution range of 

species in southern England would also reveal the factors controlling their distribution and the 

potential future shape of the landscape under a changing climate. 

 

These recommendations would further enhance the framework proposed in this research, resulting 

in the creation of more refined resilient biodiversity plantings for infrastructure developments. 
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Appendix 2: EQ Planting scheme 

Northern Boundary Planting list 

Trees 
 Species Common name 

Acer campestre Field maple 

Alnus glutinosa Alder 

Betula pendula Silver birch 

Carpinus betulus Hornbeam 

Fraxinus excelsior Ash 

Pinus sylvestris Scots pine 

Populus tremula Aspen 

Prunus avium Gean/wild cherry 

Quercus robur English oak 

  Screen planting 
 Trees 40% 
 Alnus glutinosa Alder 

Betula pendula Silver birch 

Carpinus betulus Hornbeam 

Quercus robur English oak 

Shrubs 60% 
 Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crategus monogyna Hawthorn 

Ilex aquifolium Holly 

Sambuca nigra Elder 

Virburnum lantana Wayfaring tree 

  Native Shrub planting 
 Clematis vitalba Wild clematis 

Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crategus monogyna Hawthorn 

Ligustrum vulgare Wild privet 

Prunus spinosa Blackthorn 

Rosa canina Dog rose 

Sambuca nigra Elder 

  Aquatic planting 
 Juncus effusus Soft rush 

Mentha aquatica Watermint 

Typha angustifolia Lesser bulrush 

Lythrum salicaria Purple loosestrife 

Iris pseudacorus Yellow flag 

  Emergent perennials 
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Alisma plantago aquatica Water plantain 

Butomus umbellatus Flowering rush 

  Floating aqautic 
 Polygonum amphibium Amphibious bistort 

  

  Open water with submerged oxygenators over 10% of 
area 

Ceratophyllum demersum Hornwort 

Myriophyllum spicatum Water milfoil 

Callitriche stagnalis Water starwort 

  Dry perennial wildflower meadow 
 Native grasses 80% 
 Cynosurus cristatus Crested dogs-tail 

Festuca rubra ss rubra Slender red fescue 

Festuca ovina Sheeps fescue 

commutata Chewings fescue 

Anthoxanthum odoratum Sweet vernal grass 

Agrostis capillaris Common bent 

Deschampsia flexuosa Wavy hairgrass 

Native wildflowers 20% 
 Achillea millefolium Yarrow 

Centauria nigra Common knapweed 

Daucus caroto Wild carrot 

Echium vulgare Vipers bugloss 

Leucanthenum vulgare Ox-eye daisy 

Lotus corniculatus Birdsfoot Trefoil 

Malva moschata Musk mallow 

Plantago lanceolata Ribwort plantain 

Primula veris Cowslip 

Ranunculus acris Meadow buttercup 

Silene vulgaris Bladder campion 

Silene alba White campion 

Agrostemma githago Corncockle* 

Centaura cyanus Cornflower* 

Sow at 5g per m2 
 * = annuals 
 

  Hedgerow 
 Shrubs 
 Betula pendula Silver birch 

  

  Perennial mass planting 
 Grasses 30% 
 Deschampsia cespitosa Tussock grass 
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Molinia caerulea Purple moorgrass 

Schizachyrium scoparium Little blue stem 

Flowers 70% 
 Verbena bonariensis Verbena 

Salvia x superba Ornamental sage 

Sanguisorba officinalis Great burnet 

Tanacetum vulgare Tansy 

Rudbackis subfomentosa Coneflower 

Echinacea purpurea Purple cone flower 

Monarda fistulosa Wild bergamot 

Monarda didyma Bergamot 

Solidago rigida Rigid golden rod 

Persicaria amplexicaulis 
Mountain fleece 
flower 

Helianthus mollis Ashy sunflower 

Silphium perfoliatum Cup plant 

Silphium laciniatum Compass flower 

Silphium integrifolium Rosin weed 

Sow at 5g per m2 
  

Weldon Interim Landscape 

Planting Plan no.1 

Tree and Shrub block planting 

Species  

Betula pendula 

Salix alba subsp vitellina Britzensis 

Salix viminalis 

 

 Perennial planting 

Species 

Crop strip 1 

Grasses 

Avena fatua 

Deschampsia cespitosa 

Flowers 

Gaura lindheimeri 

Papaver rhoeas 

Verbena bonariensis  

Sow at 5g/m2 

 Crop strip 2 Purple mix 

Grasses 

Deschampsia cespitosa 

Molinia caerulea 

Schizachyrium scoparium 

Flowers 
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Achillea millefolium 

Echinacea purpurea 

Salvia x superba 

Sanguisorba officinalis 

Verbena bonariensis 

Sow at 5g/m2 

 Crop strip 3 yellow spring/purple summer 

Brassica nepus 

Lathyrus odoratus 

Sow at 2g/m2 

 Crop strip 4 - Yellow mix 

Grasses 

Deschampsia cespitosa 

Molinia caerulea 

Schizachyrium scoparium 

Flowers 

Achillea 'cerise' 

Helianthus mollis 

Rudbeckia subtomentosa 

Solidago rigida 

Tanacetum vulgare 

Sow at 5g/m2 

 Crop strip 5 - Yellow spring/blue-purple summer 

Lotus corniculatus 

Lupinus polyphyllus 

Sow at 2g/m2 

 Ornamental grass strip Type A 

Calamagrostis x acutiflora 'Karl Foerster' 

Ornamental grass strip Type B 

Miscanthus sinensis Zebrinus 

 Wildflower meadow planting 

DRY  

Grasses 

Cynosurus cristatus 

Festuca ovina 

Festuca rubra 

Flowers 

Achillea millefolium 

Centauria nigra 

Centaurea scabiosa 

Daucus caroto 

Knautia arvensis 

Leucanthemum vulgare 
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Linum catharticum 

Myosotis arvensis 

Papaver rhoeas  

Ranunculus acris 

Sow at 5g/m2 

 

 Wet wildflower meadow mix (swales) 

Grasses 

Cynosurus cristatus 

Festuca rubra ss rubra 

Flowers 

Digitalis purpurea 

Geranium pratense 

Lychnis flos cuculi 
Lythrum salicaria 

Ranunculus acris 

Sow at 5g/m2 

 Amenity grassland 

Perenial ryegrass 

Rhizomatous tall fescue 

Tufted tail fescue 

Sow at 50g/m2 

 Planting Plan no.2 

 Orchard 
Prunus avium cullivers transplanted from East Mailing research 
centre. 

OR 

Prunus avium 'Plena' 

 Main Street Tree planting 

Platanus x hispanica 

Tilia cordata 'Greenspire' 

Liquidambar styraciflua 

Fraxinus excelsor 'Westhof's Glorie' 
 

Central Swale Planting mix 

Tree and shrub planting 
 Screen planting - Native trees and shrubs 
 Species  Common name 

Trees 
 Alnus glutinosa Alder 

Betula pendula Silver birch 

Carpinus betulus Hornbeam 
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Fraxinus excelsior Ash 

Prunus avium Gean/Wild cherry 

Quercus robur English oak 

Sorbus aucuparia Rowan 

Shrubs 
 Corylus avellana Hazel 

Crategus monogyna Hawthorn 

Virburnum opulus Guelder rose 
Screen planting at 1.5cm centres random single species in groups of 16.25 
 

Trees in Grassland 
 Alnus glutinosa Alder 

Betula pendula Silver birch 

Betula utilis 'Jacquemontii' Himalyan birch 

Carpinus betulus Hornbeam 

Fraxinus excelsior Ash 

Populus tremula Aspen 

Prunus avium 'Plena' Wild cherry cultivar 

Quercus robur English oak 

Varieties of apples from Kent 
 Malus domestica 'George Neal' Apple 'George Neal' 

  Aquatic planting 
 Native marginal perennials 
 Carex pendula Pendulous sedge 

Caltha palustris Marsh marigold 

Digitalis purpurea Foxglove 

Iris pseudacorus Yellow flag iris 

Juncus effusus Soft rush 

Lythrum salicaria Purple loosestrife 

  Native emergent perennials 
 Butomus umbellatus Flowering rush 

Schoenoplectus lacustris Common club rush 

  Submerged oxygenators 
 Callitriche stagnalis Water starwort 

Ceratophyllum demersum Hornwort 

Myriophyllum spicatum Water milfoil 

Weighted bunches in unplanted areas of pools up to 1.0m depth 

Grasslands and Meadows 
 Amenity grassland 
 Barenbrug Bar 10 RTF 
 Seed Barlennium Perennial ryegrass 

Seed RTF Rhizomatous tall fescue 

Seed Barlexas II Tufted tall fescue 

Sow at 50g per m2 
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Dry perennial wildflower meadow 
 Native grasses 80% 
 Agrostis capillaris Common bent 

Anthoxanthum odoratum Sweet vernal grass 

Cynosurus cristatus Crested dog's-tail 

Deschampsia flexuosa Wavy hairgrass 

Festuca ovina Sheeps fescue 

Festuca rubra ss commutata Chewings fescue 

Festuca rubra ss rubra Slender red fescue 

Native wildflowers 20% 
 Achillea millefolium Yarrow 

Agrostemma githago Corncockle* 

Centaurea cyanus Cornflower* 

Centauria nigra Common knapweed 

Daucus carota Wild carrot 

Echium vulgare Viper's bugloss 

Leucanthenum vulgare Ox-eye daisy 

Lotus corniculatus Birdsfoot trefoil 

Malva moschata Musk mallow 

Plantago lanceolata Ribwort plantain 

Primula veris Cowslip 

Ranunculus acris Meadow buttercup 

Silene alba  White campion 

Silene vulgaris Bladder campion 

Sow at 5g/m2 *=annuals 
 

  Wet perennial wildflower meadow 
 Native grasses 80% 
 Cynosurus cristatus Crested dogs-tail 

Festuca rubra ss rubra Slender red fescue 

Native wildflowers 20% 
 Ajuga reptans Bugle 

Anthriscus sylvestris Cow parsley 

Filipendula ulmaria Meadowsweet 

Lychnis flos cuculi Ragged robbin 

Lythrum salicaria Purple loosestrife 

Ranunculus acris Meadow buttercup 

Silene dioca Red campion 

Succisa sylvatica Devil's-bit-scabious 

Sow at 5g/m2 
  

Eastern Batter 

Native tree and shrub planting 
 Native trees 
 Carpinus betulus Hornbeam 

Fraxinus excelsior Ash 

Sorbus aucuparia Rowan 
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  Native shrubs 
 Clematis vitalba Wild clematis 

Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crataegus monogyna Hawthorn 

Ligustrum vulgare Wild privet 

Prunus spinosa Blackthorn 

Rosa canina Dog rose 

Sambuca nigra Elder 

  Native trees 
 Betula pendula Silver birch 

Sorbus aucuparia Rowan 

Native shrubs 
 Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crataegus monogyna Hawthorn 

Rosa canina Dog rose 

Salix caprea Goat willow 
 

East Swale 

Tree and Shrub planting 
 

Native trees in grassland 
 Species  Common name 

Betula pendula  Silver Birch 

  Aquatic planting 
 Native marginal perennials 
 Carex pendula Pendulous sedge 

Caltha palustris Marsh marigold 

Iris pseudacorus Yellow flag iris 

Juncus effusus Soft rush 

Lythrum salicaria Purple loosestrife 

Sparganium erectum Branched bur reed 

  Native emergent perennials 
 Eleocharis palustris Spike-rush 

  Native floating aquatic (rooted) 
 Polygonum amphibium Amphibious bistort 

  Native submerged oxygenators 
 Potamogeton  crispus Curfed pondweed 

Ceratophyllum demersum Hornwort 

Myriophyllum spicatum Water milfoil 
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Weighted bunches in unplanted areas of 0.1-1.0 below WL 

  Wildflower meadows 
 Dry perennial wildflower meadow 
 Native grasses 80% 
 Agrostis capillaris Common bent 

Anthoxanthum odoratum Sweet vernal grass 

Cynosurus cristatus Crested dog's-tail 

Deschampsia flexuosa Wavy hairgrass 

Festuca ovina Sheeps fescue 

Festuca rubra ss commutata Chewings fescue 

Festuca rubra ss rubra Slender red fescue 

Native wildflowers 20% 
 Achillea millefolium Yarrow 

Agrostemma githago Corncockle* 

Centaurea cyanus Cornflower* 

Centauria nigra Common knapweed 

Daucus carota Wild carrot 

Echium vulgare Viper's bugloss 

Leucanthenum vulgare Ox-eye daisy 

Lotus corniculatus Birdsfoot trefoil 

Malva moschata Musk mallow 

Plantago lanceolata Ribwort plantain 

Primula veris Cowslip 

Ranunculus acris Meadow buttercup 

Silene alba  White campion 

Silene vulgaris Bladder campion 

Sow at 5g/m2 *=annuals 
 

  Plan 2 
 Tree and Shrub planting 
 Native trees in grassland 
 Betula pendula  Silver Birch 

Betula pubescens Downy birch 

Salix alba White willow 

  Native wetland shrubs 
 Crategus monogyna Hawthorn 

Salix alba var vitellina 'Britzensis' Osier willow 

Sambuca nigra Elder  

Virburnum opulus Guelder rose 

Bark mulch applied to shrub areas to a depth of 50mm 
 

Observatory Bluff 

Tree and shrub planting 
 Orchard trees 
 Species  Common name 
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Malus domestica 'Beauty of Bath' Apple 'Beauty of Bath' 

Malus domestica 'Discovery' Apple 'Discovery' 

Malus domestica 'Ellison's orange' Apple 'Ellison's orange' 

Malus domestica 'Egremont Russet' Apple 'Egremont Russet' 

  Prunus avium 
 Prunus avium Gean/Wild cherry 

  Structure planting - Native trees and shrubs 

Trees 
 Acer campestre Field maple 

Alnus glutinosa Alder 

Carpinus betulus Hornbeam 

Fagus sylvatica Beech 

Fraxinus excelsior Ash 

Ilex aquifolium Holly 

Malus sylvestris Crab apple 

Populus tremula Aspen 

Prunus avium Gean/Wild cherry 

Quercus robur English oak 

Sorbus aucuparia Rowan 

Sorbus torminalis Wild service tree 

  Shrubs 
 Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crataegus monogyna Hawthorn 

Prunus spinosa Blackthorn 

Sambucus nigra Elder 

Virburnum lantana Wayfaring tree 

Virburnum opulus Guelder rose 

  Structure planting - Native trees - specimens 

Betula pendula Silver birch 

Betula pendula Silver birch 

  Native Hedgerow 
 Acer campestre Field maple 

Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crataegus monogyna Hawthorn 

Ilex aquifolium Holly 

Ligustrum vulgare Wild privet 

Malus sylvestris Crab apple 

Prunus spinosa Blackthorn 

Rosa canina Dog rose 

Virburnum opulus Guelder rose 
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Wildflower meadows 
 Native grasses 70% 
 Agrostis capillaris Common bent 

Anthoxanthum odoratum Sweet vernal grass 

Cynosurus cristatus Crested dog's-tail 

Deschampsia flexuosa Wavy hairgrass 

Festuca rubra ss rubra Slender red fescue 

Native wildflowers 30% 
 Achillea millefolium Yarrow 

Agrostemma githago Corncockle 

Anthriscus sylvestris Cow parsley 

Centaurea cyanus Cornflower 

Centauria nigra Common knapweed 

Daucus carota Wild carrot 

Digitalis purpurea Foxglove 

Leucanthenum vulgare Ox-eye daisy 

Lotus corniculatus Birdsfoot trefoil 

Plantago lanceolata Ribwort plantain 

Ranunculus acris Meadow buttercup 

Silene dioca Red campion 

Sow at 5g per m2 
 

  Perennial wildflowers (with annuals) 100% wildflowers 

Native wildflowers 100% 
 Agrostemma githago Corncockle 

Centaurea cyanus Cornflower 

Centauria nigra Common knapweed 

Daucus carota Wild carrot 

Digitalis purpurea Foxglove 

Knautia arvensis Field scabious 

Leucanthenum vulgare Ox-eye daisy 

Lychnis flos-cuculi Ragged robin 

Silene dioca Red campion 

Verbascum thapsus Great mullein 

Sow at 1g per m2 
 

  

  Willow spilling 
 Willow poles 
 

Salix caprea, Salix fragilis, Salix alba, or similarly approved willow 
Goat willow, Crack willow, 
White willow 

Willow rods 
 

Salix alba x fragilis 'Flanders red', Salix viminalis, or similarly 
approved willow 

White willow and Crack willow 
cross, Common osier 

  Plan 2 
 Tree and shrub planting 
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Orchard trees 
 Prunus avium cultivars transplanted from East Malling reseacrh 

centre Cherry cultivars 

OR 
 Prunus avium 'Plena' Cultivar of Gean/Wild cherry 

  Ornamental Hedgerow 
 Shrubs 
 Cornus sericea 'Flaviramea' Golden twig dogwood 

Cornus sanguinea 'Midwinter Fire' Midwinter fire dogwood 

  Ornamental Grass planting 
 Ornamental grass strip 
 

Calamagrostis x acutiflora 'Karl Forester' 
Feathered reed grass 'Karl 
Forester' 

 

North East Local Park 
 
Woodland and Playground 

 

  Semi mature trees 
 Species  Common name 

Betula utilis 'Jacquemontii' Himalayan birch 

Fagus sylvatica Beech 

Fraxinus angustifolia 'Raywood' Ash 

Quercus robur English oak 

Prunus avium Wild cherry 

Pyrus calleryana 'Chanticlear' Ornamental pear 

  

  Trees in Screen and Woodland Planting 

Betula pendula Birch 

Carpinus betulus Hornbeam 

Fraxinus excelsior Ash 

Malus sylvestris Crab apple 

Prunus avium Gean/Wild cherry 

Sorbus aucuparia Rowan 

  

  Screen Planting 
 Trees 50% 
 Acer campestre Field maple 

Carpinus betulus Hornbeam 

Fraxinus excelsior Ash 

Quercus robur English oak 

Shrubs 50% 
 Acer campestre Field maple 

Cornus sanguinea Dogwood 
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Corylus avellana Hazel 

Crataegus monogyna Hawthorn 

Ilex aquifolium Holly 

Virburnum lantana Wayfaring tree 

  

  Woodland planting 
 Trees 35% 
 Acer campestre Field maple 

Betula pendula Birch 

Carpinus betulus Hornbeam 

Fraxinus excelsior Ash 

Shrubs 65% 
 Cornus sanguinea Dogwood 

Corylus avellana Hazel 

Crataegus monogyna Hawthorn 

Prunus spinosa Blackthorn 

Virburnum lantana Wayfaring tree 

Virburnum opulus Guelder rose 

  

  Ornamental shrub planting Childrens playground 

Hedge 
 Fagus sylvatica Beech hedge 

Large shrubs 
 Amelanchier lamarckii June berry 

Cornus alba 'Sibirica' Dogwood 

Philadelphus coronarius Mock orange 

Medium-small shrubs 
 Hypericum x moseriznum Rose of Sharon 

Rosa pimpinellifolia Scotch rose 

Hebaceous & Groundcover 
 Geranium x catabrigiense 

'Blokovo' Geranium 

Vinca major Large periwinkle 

  Amenity grass 
 Barenbrug Bar 10 RTF 
 Seed Barlennium Perennial ryegrass 

Seed RTF Rhizomatous tall fescue 

Seed Barlexas II Tufted tall fescue 

Sow at 50g per m2 
 

  Wildflower mix 
 Grasses 70% 
 Cynosurus cristatus Crested dogstail 

Festuca ovina Sheep's fescue 

Festuca rubra Slender creeping red 
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fescue 

Wildflowers 30% 
 Achillea millefolium Yarrow 

Centauria nigra Common knapweed 

Centaurea scabiosa Greater knapweed 

Daucus carota Wild carrot 

Knautia arvensis Field scabious 

Leucanthenum vulgare Ox-eye daisy 

Linum catharium Fairy flax 

Myosotis arvensis Forget me not flower 

Papaver rhoeas Poppies 

Ranunculus acris Meadow buttercup 

Sow at 5g per m2. No topsoil 

  Shady meadow mix (for woodland glades) 

Grasses 80% 
 Cynosurus cristatus Crested dogstail 

Festuca rubra 
Slender creeping red 
fescue 

Wildflowers 20% 
 Agrimonia eupatoria Common agrimony 

Alliaria petiolata Hedge garlic 

Anthriscus sylvestris Cow parsley 

Centaura nigra Lesser knapweed 

Digitalis purpurea Foxglove 

Filipendula ulmaria Meadowsweet 

Gallium mollugo Hedge bedstraw 

Geum urbanum Wood avens 

Hyancinthoides non-scripta Bluebell 

Hypericum perforatum St.John's Wort 

Leucanthenum vulgare Ox-eye daisy 

Silene dioca Red campion 

  

  Plan 2 
 Semi-mature trees 
 Fraxinus excelsior Ash 

Quercus robur English Oak 

Prunus avium Wild cherry 

Prunus avium'Plena' Cherry cultivar 

Prunus x yedoensis Tokyo cherry 

  

  Ornamental shrub planting Teenage playground 

Large shrubs 
 Philadephus coronarius Mock orange 

Medium-small shrubs 
 Rosa pimpinellifolia Scotch rose 
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Herbaceous and ground cover 

Vinca major Large periwinkle 
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Appendix 3: Planting Lists for Habitat Design 

Woodland – Trees 

Complete List Moisture (F) Nitrogen (N) Reaction (R) 

Pinus pinaster  

Mespilus germanica  

Betula pendula  

Pinus nigra       

Ilex aquifolium  

Castanea sativa   

Quercus pubescens  

Viburnum lantana  

Quercus pyrenaica  

Sorbus torminalis   

Quercus petraea  

Pyrus pyraster      

Fagus sylvatica   

Carpinus betulus  

Prunus avium      

Quercus robur    

Tilia cordata   

Crataegus monogyna  

Corylus avellana  

Cornus sanguine  

Euonymus europaeus  

Taxus baccata  

Acer campestre      

Ulmus minor subsp. 
procera  

Ulmus minor   

Salix atrocinerea    

Frangula dodonei 
subsp.dodonei     

Betula pubescens  

Alnus glutinosa  

Fraxinus excelsior  

Moist 

Pinus pinaster  

Mespilus germanica  

Betula pendula  

Pinus nigra       

Ilex aquifolium 
Castanea sativa   

Quercus pubescens  

Viburnum lantana  

Quercus pyrenaica  

Sorbus torminalis   

Quercus petraea  

Pyrus pyraster      

Fagus sylvatica   

Carpinus betulus  

Prunus avium      

Quercus robur    

Tilia cordata   

Crataegus monogyna  

Corylus avellana  

Cornus sanguine  

Euonymus europaeus  

Taxus baccata  

Acer campestre      

Ulmus minor subsp. 
procera  

Ulmus minor   

Salix atrocinerea    

 

 

 

 

 

 

Low fertility 

Pinus pinaster  

Mespilus germanica  

Betula pendula  

Pinus nigra     

 

 

 

Medium fertility 

Ilex aquifolium 
Castanea sativa   

Quercus pubescens  

Viburnum lantana  

Quercus pyrenaica  

Sorbus torminalis   

Quercus petraea  

Pyrus pyraster      

Fagus sylvatica   

Carpinus betulus  

Prunus avium      

Quercus robur    

Tilia cordata   

Crataegus monogyna  

Corylus avellana  

Cornus sanguine  

Euonymus europaeus  

Taxus baccata  

Acer campestre     

 

 

 

 

 

High fertility 

Neutral 

Pinus pinaster  

Mespilus germanica  

Betula pendula  

 

Alkaline 

Pinus nigra       

 

Acid 

Ilex aquifolium 

 

Neutral 

Castanea sativa   

Quercus pubescens  

Viburnum lantana  

Quercus pyrenaica  

Sorbus torminalis   

Quercus petraea  

Pyrus pyraster      

Fagus sylvatica   

Carpinus betulus  

Prunus avium      

Quercus robur    

Tilia cordata   

Crataegus monogyna  

Corylus avellana 

 

Alkaline 

Cornus sanguine  

Euonymus europaeus  

Taxus baccata  

Acer campestre      

 

Akaline 
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Damp 

Frangula dodonei 
subsp.dodonei     

Betula pubescens  

Alnus glutinosa  

Fraxinus excelsior  

Ulmus minor subsp. 
procera  

Ulmus minor   

Salix atrocinerea    

 

Low fertility 

Frangula dodonei 
subsp.dodonei     

Betula pubescens  

 

Medium fertility 

Alnus glutinosa  

Fraxinus excelsior 

Ulmus minor subsp. 
procera  

Ulmus minor   

Salix atrocinerea    

 

Neutral 

Frangula dodonei 
subsp.dodonei     

Betula pubescens  

 

Neutral 

Alnus glutinosa  

Alkaline 

Fraxinus excelsior 

 

No Ellenberg: 

Populus tremula 
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Woodland – Ground flora list 

Complete list Moisture (F) Nitrogen (N) Reaction (R) Light (L) 

Agrostis vinealis  

Hylotelephium 
telephium (Sedum 
telephium) 

Melampyrum 
pratense 

Rubus fruticosus 

Blechnum spicant  

Holcus mollis 

Luzula forsteri 

Rubia peregrina 

Geum urbanum  

Glechoma 
hederacea 
Peucedanum 
gallicum  

Ranunculus 
auricomus 

Geranium 
robertianum 

Pteridium 
aquilinum 

Ceratocapnos 
claviculata 

Dryopteris affinis 
subsp. affinis  

Dryopteris affinis 
subsp. borreri  

Dryopteris 
carthusiana 

Dryopteris 
dilatata 

Polystichum 
setiferum 

Dryopteris filix-
mas   

Hedera helix  

Sanicula 
europaea 

Ruscus aculeatus 

Dry 

Agrostis vinealis  

Hylotelephium 
telephium (Sedum 
telephium) 

 

 

 

Moist 

Melampyrum 
pratense 

Rubus fruticosus 

Blechnum spicant  

Holcus mollis 

Luzula forsteri 

Rubia peregrina 

Geum urbanum  

Glechoma 
hederacea 
Peucedanum 
gallicum  

Ranunculus 
auricomus 

Geranium 
robertianum 

Pteridium 
aquilinum 

Ceratocapnos 
claviculata 

Dryopteris affinis 
subsp. affinis  

Dryopteris affinis 
subsp. borreri  

Dryopteris 
carthusiana 

Dryopteris 
dilatata 

Polystichum 
setiferum 

Low fertility 

Agrostis vinealis  

Hylotelephium 
telephium (Sedum 
telephium)  

 

 

 

Low fertility 

Melampyrum 
pratense 

Rubus fruticosus 

Blechnum spicant  

Holcus mollis 

Luzula forsteri 

Rubia peregrina 

Geum urbanum  

Glechoma 
hederacea 
Peucedanum 
gallicum  

Ranunculus 
auricomus 

Geranium 
robertianum 

 

 

 

 

 

Medium fertility 

Pteridium 
aquilinum 

Ceratocapnos 
claviculata 

Dryopteris affinis 
subsp. affinis  

Dryopteris affinis 

Acid 

Agrostis vinealis 

 

Neutral 

Hylotelephium 
telephium (Sedum 
telephium)  

 

Acid 

Melampyrum 
pratense 

Rubus fruticosus 

Blechnum spicant  

Holcus mollis

 

Neutral 

Luzula forsteri 

Rubia peregrina 

Geum urbanum  

Glechoma 
hederacea 
Peucedanum 
gallicum 

 

Alkaline 

Ranunculus 
auricomus 

Geranium 
robertianum 

 

 

Acid 

Pteridium 
aquilinum 

Ceratocapnos 
claviculata

 

Neutral 

Dryopteris affinis 

Partial shade-full 
sun 

Agrostis vinealis 

 

Partial shade-full 
sun 

Hylotelephium 
telephium 

 

Semi-shade 

Melampyrum 
pratense 

Rubus fruticosus 

Blechnum spicant  

Holcus mollis

 

Semi-shade 

Luzula forsteri 

Rubia peregrina 

Geum urbanum  

Glechoma 
hederacea 
Peucedanum 
gallicum 

 

Semi-shade 

Ranunculus 
auricomus 

Geranium 
robertianum 

 

 

Semi-shade 

Pteridium 
aquilinum 

Ceratocapnos 
claviculata

 

Shade 

Dryopteris affinis 
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Luzula sylvatica  

Lonicera 
periclymenum 

Teucrium 
scorodonia 

Viola riviniana 

Stellaria holostea 

Conopodium 
majus   

Pulmonaria 
longifolia 

Anemone 
nemorosa 

Hyacinthoides 
non-scripta 

Melica uniflora 

Polygonatum 
multiflorum 

Carex sylvatica  

Euphorbia 
amygdaloides  

Primula vulgaris 
subsp. vulgaris 

Narcissus 
pseudonarcissus 

Veronica 
chamaedrys 

Potentilla sterilis 

Juncus tenuis 

Ajuga reptans 

Moehringia 
trinervia 

Arum italicum* 

Scrophularia 
nodosa 

Hypericum 
androsaemum 

Ranunculus 
ficaria 

Geranium 
robertianum 
subsp. 
purpureum  

Dryopteris filix-
mas   

Hedera helix  

Sanicula 
europaea 

Ruscus aculeatus 

Luzula sylvatica  

Lonicera 
periclymenum 

Teucrium 
scorodonia 

Viola riviniana 

Stellaria holostea 

Conopodium 
majus   

Pulmonaria 
longifolia 

Anemone 
nemorosa 

Hyacinthoides 
non-scripta 

Melica uniflora 

Polygonatum 
multiflorum 

Carex sylvatica  

Euphorbia 
amygdaloides  

Primula vulgaris 
subsp. vulgaris 

Narcissus 
pseudonarcissus 

Veronica 
chamaedrys 

Potentilla sterilis 

Juncus tenuis 

Ajuga reptans 

Moehringia 
trinervia 

Arum italicum* 

Scrophularia 
nodosa 

Hypericum 

subsp. borreri  

Dryopteris 
carthusiana 

Dryopteris 
dilatata 

Polystichum 
setiferum 

Dryopteris filix-
mas   

Hedera helix  

Sanicula 
europaea 

Ruscus aculeatus 

Luzula sylvatica  

Lonicera 
periclymenum 

Teucrium 
scorodonia 

Viola riviniana 

Stellaria holostea 

Conopodium 
majus   

Pulmonaria 
longifolia 

Anemone 
nemorosa 

Hyacinthoides 
non-scripta 

Melica uniflora 

Polygonatum 
multiflorum 

Carex sylvatica  

Euphorbia 
amygdaloides  

Primula vulgaris 
subsp. vulgaris 

Narcissus 
pseudonarcissus 

Veronica 
chamaedrys 

Potentilla sterilis 

Juncus tenuis 

subsp. affinis  

Dryopteris affinis 
subsp. borreri  

Dryopteris 
carthusiana 

Dryopteris 
dilatata 

Polystichum 
setiferum 

Dryopteris filix-
mas   

Hedera helix  

Sanicula 
europaea 

Ruscus aculeatus 

Luzula sylvatica  

Lonicera 
periclymenum 

Teucrium 
scorodonia 

Viola riviniana 

Stellaria holostea 

Conopodium 
majus   

Pulmonaria 
longifolia 

Anemone 
nemorosa 

Hyacinthoides 
non-scripta 

Melica uniflora 

Polygonatum 
multiflorum 

Carex sylvatica  

Euphorbia 
amygdaloides  

Primula vulgaris 
subsp. vulgaris 

Narcissus 
pseudonarcissus 

Veronica 
chamaedrys 

Potentilla sterilis 

subsp. affinis  

Dryopteris affinis 
subsp. borreri  

Dryopteris 
carthusiana 

Dryopteris 
dilatata 

Polystichum 
setiferum 

Dryopteris filix-
mas   

Hedera helix  

Sanicula 
europaea

 

Semi-shade 

Ruscus aculeatus 

Luzula sylvatica  

Lonicera 
periclymenum 

Teucrium 
scorodonia 

Viola riviniana 

Stellaria holostea 

Conopodium 
majus   

Pulmonaria 
longifolia 

Anemone 
nemorosa 

Hyacinthoides 
non-scripta 

Melica uniflora 

Polygonatum 
multiflorum 

Carex sylvatica  

Euphorbia 
amygdaloides  

Primula vulgaris 
subsp. vulgaris 

Narcissus 
pseudonarcissus 

Veronica 
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Rosa canina 

Crataegus 
monogyna 

Neottia nidus-
avis*  

Daphne laureola 

Dioscorea 
communis 

Fragaria vesca 

Orchis mascula 

Rhamnus 
cathartica 

Stellaria neglecta 

Ligustrum vulgare 

Lithospermum 
officinale 

Listera ovata  

Scirpus sylvaticus 

Athyrium filix-
femina  

Deschampsia 
cespitosa  

Ribes rubrum 

Osmunda regalis 

Carex pendula 

Thelypteris 
palustris 

Juncus tenageia  

Circaea lutetiana 

Poa trivialis 

Rumex 
sanguineus 

Cucubalus 
baccifer  

Allium ursinum 

androsaemum 

Ranunculus 
ficaria 

Geranium 
robertianum 
subsp. 
purpureum  

Rosa canina 

Crataegus 
monogyna 

Neottia nidus-
avis*  

Daphne laureola 

Dioscorea 
communis 

Fragaria vesca 

Orchis mascula 

Rhamnus 
cathartica 

Stellaria neglecta 

Ligustrum vulgare 

Lithospermum 
officinale 

Listera ovate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ajuga reptans 

Moehringia 
trinervia 

Arum italicum* 

Scrophularia 
nodosa 

Hypericum 
androsaemum 

Ranunculus 
ficaria 

Geranium 
robertianum 
subsp. 
purpureum  

Rosa canina 

Crataegus 
monogyna 

Neottia nidus-
avis*  

Daphne laureola 

Dioscorea 
communis 

Fragaria vesca 

Orchis mascula 

Rhamnus 
cathartica 

Stellaria neglecta 

Ligustrum vulgare 

Lithospermum 
officinale 

 

 

 

 

 

 

 

 

 

 

 

Juncus tenuis 

Ajuga reptans 

Moehringia 
trinervia 

Arum italicum* 

Scrophularia 
nodosa 

Hypericum 
androsaemum 

Ranunculus 
ficaria 

Geranium 
robertianum 
subsp. 
purpureum  

Rosa canina 

Crataegus 
monogyna

 

Alkaline 

Neottia nidus-
avis*  

Daphne laureola 

Dioscorea 
communis 

Fragaria vesca 

Orchis mascula 

Rhamnus 
cathartica 

Stellaria neglecta 

Ligustrum vulgare 

Lithospermum 
officinale 

 

 

 

 

 

 

 

 

chamaedrys 

Potentilla sterilis 

Juncus tenuis 

Ajuga reptans 

Moehringia 
trinervia 

Arum italicum* 

Scrophularia 
nodosa 

Hypericum 
androsaemum 

Ranunculus 
ficaria

 

Partial shade-full 
sun 

Geranium 
robertianum 
subsp. 
purpureum  

Rosa canina 

Crataegus 
monogyna

 

Shade 

Neottia nidus-
avis* 

 

Semi-shade 

Daphne laureola 

Dioscorea 
communis 

Fragaria vesca 

Orchis mascula 

Rhamnus 
cathartica 

Stellaria neglecta

 

Partial shade-full 
sun 

Ligustrum vulgare 

Lithospermum 
officinale
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Damp 

Scirpus sylvaticus 

Athyrium filix-
femina  

Deschampsia 
cespitosa  

Ribes rubrum 

Osmunda regalis 

Carex pendula 

Thelypteris 
palustris 

Juncus tenageia  

Circaea lutetiana 

Poa trivialis 

Rumex 
sanguineus 

Cucubalus 
baccifer  
Allium ursinum 

 

High fertility 

Listera ovata  

 

 

Medium fertility 

Scirpus sylvaticus 

Athyrium filix-
femina  

Deschampsia 
cespitosa  

Ribes rubrum 

Osmunda regalis 

Carex pendula 

Thelypteris 
palustris 

Juncus tenageia  

 

 

 

 

 

 

 

High fertility 

Circaea lutetiana 

Poa trivialis 

Rumex 
sanguineus 

Cucubalus 
baccifer  
Allium ursinum 

 

Alkaline 

Listera ovata  

 

 

Acid 

Scirpus sylvaticus

 

Neutral 

Athyrium filix-
femina  

Deschampsia 
cespitosa  

Ribes rubrum 

Osmunda regalis 

Carex pendula 

Thelypteris 
palustris 

Juncus tenageia  

 

 

 

 

 

Neutral 

Circaea lutetiana 

Poa trivialis

 

Alkaline 

Rumex 
sanguineus 

Cucubalus 
baccifer  
Allium ursinum 

 

Shade 

Listera ovata  

 

 

Semi-shade 

Scirpus sylvaticus

 

Shade 

Athyrium filix-
femina 

 

Semi-shade 

Deschampsia 
cespitosa  

Ribes rubrum 

Osmunda regalis 

Carex pendula 

Thelypteris 
palustris

 

Partial shade-full 
sun 

Juncus tenageia 

 

Semi-shade 

Circaea lutetiana 

Poa trivialis

 

Semi-shade 

Rumex 
sanguineus  

Allium ursinum 

 

Partial shade-full 
sun 

Cucubalus 
baccifer  

 
 

No Ellenberg: 
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Brahypodium sylvaticum  

Polypodium interjectum  

Polypodium vulgare 

Potentilla montana  
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Hedgerow list 

Complete List Moisture (F) Reaction (R) Nitrogen (N) 

Euphorbia cyparissias 

Hylotelephium 
telephium (Sedum 
telephium) 

Helminthotheca 
echioides  

Rubus fruticosus 

Carex ovalis  

Holcus mollis 

Potentilla argentea* 

Mespilus germanica 

Melampyrum 
cristatum*+ 

Epilobium lanceolatum 

Cytisus scoparius 

Arrhenatherum elatius 
subsp. bulbosum 

Pyrus cordata*  

Ruscus aculeatus 

Equisetum arvense 

Linaria repens  

Pulmonaria longifolia 

Vicia hirsuta  

Phleum pratense
  

Prunus spinosa  

Quercus robur  

Rosa canina 

Veronica chamaedrys 

Veronica serpyllifolia 

Apera spica-venti* 

Matricaria recutita 

Corylus avellana 

Gaudinia fragilis  

Hedera helix  

Juncus tenuis  

Dry 

Euphorbia cyparissias 

Hylotelephium 
telephium (Sedum 
telephium) 

Helminthotheca 
echioides  

 

 

 

 

 

Moist 

Rubus fruticosus 

Carex ovalis  

Holcus mollis 

Potentilla argentea* 

Mespilus germanica 

Melampyrum 
cristatum*+ 

Epilobium lanceolatum 

Cytisus scoparius 

Arrhenatherum elatius 
subsp. bulbosum 

Pyrus cordata*  

Ruscus aculeatus 

Equisetum arvense 

Linaria repens  

Pulmonaria longifolia 

Vicia hirsuta  

Phleum pratense 

Prunus spinosa  

Quercus robur  

Rosa canina 

Veronica chamaedrys 

Veronica serpyllifolia 

Low fertility 

Euphorbia cyparissias 

 

Medium fertility 

Hylotelephium 
telephium (Sedum 
telephium) 

 

High fertility 

Helminthotheca 
echioides  

 

Low fertility 

Rubus fruticosus 

Carex ovalis  

Holcus mollis 

Potentilla argentea* 

Mespilus germanica 

Melampyrum 
cristatum*+ 

 

 

 

 

Medium fertility  

Epilobium lanceolatum 

Cytisus scoparius 

Arrhenatherum elatius 
subsp. bulbosum 

Pyrus cordata*  

Ruscus aculeatus 

Equisetum arvense 

Linaria repens  

Pulmonaria longifolia 

Vicia hirsuta  

Phleum pratense 

Alkaline 

Euphorbia cyparissias 

 

Neutral 

Hylotelephium 
telephium (Sedum 
telephium) 

 

Alkaline 

Helminthotheca 
echioides    

  

  Acid  

Rubus fruticosus 

Carex ovalis  

Holcus mollis

 

Neutral 

Potentilla argentea* 

Mespilus germanica

 

Alkaline 

Melampyrum 
cristatum*+

 

Acid 

Epilobium lanceolatum 

Cytisus scoparius

 

Neutral 

Arrhenatherum elatius 
subsp. bulbosum 

Pyrus cordata*  

Ruscus aculeatus 

Equisetum arvense 

Linaria repens  

Pulmonaria longifolia 
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Myosotis arvensis  

Plantago major  

Arum italicum* 

Crepis biennis 

Geranium molle 

Lolium perenne 

Scrophularia nodosa 

Vicia sepium  

Plantago coronopus 

Salix atrocinerea 

Vicia cracca  

Cerastium glomeratum 

Hypericum 
androsaemum  

Ranunculus ficaria 

Campanula 
rapunculus* 

Viburnum lantana 

Dioscorea communis 

Viscum album  

Ligustrum vulgare 

Melampyrum arvense  

Crepis setosa  

Geranium 
Rotundifolium 

Lactuca serriola  

Linaria vulgaris 

Muscari comosum 

Pastinaca sativa 

Reseda luteola  

Silene dichotoma 

Lithospermum 
officinale 

Acer campestre 

Brachypodium 
pinnatum  

Cornus sanguine 

Rhamnus cathartica 

Apera spica-venti* 

Matricaria recutita 

Corylus avellana 

Gaudinia fragilis  

Hedera helix  

Juncus tenuis  

Myosotis arvensis  

Plantago major  

Arum italicum* 

Crepis biennis 

Geranium molle 

Lolium perenne 

Scrophularia nodosa 

Vicia sepium  

Plantago coronopus 

Salix atrocinerea 

Vicia cracca  

Cerastium glomeratum 

Hypericum 
androsaemum  

Ranunculus ficaria 

Campanula 
rapunculus* 

Viburnum lantana 

Dioscorea communis 

Viscum album  

Ligustrum vulgare 

Melampyrum arvense  

Crepis setosa  

Geranium 
Rotundifolium 

Lactuca serriola  

Linaria vulgaris 

Muscari comosum 

Pastinaca sativa 

Reseda luteola  

Silene dichotoma 

Lithospermum 

Prunus spinosa  

Quercus robur  

Rosa canina 

Veronica chamaedrys 

Veronica serpyllifolia 

Apera spica-venti* 

Matricaria recutita 

Corylus avellana 

Gaudinia fragilis  

Hedera helix  

Juncus tenuis  

Myosotis arvensis  

Plantago major  

Arum italicum* 

Crepis biennis 

Geranium molle 

Lolium perenne 

Scrophularia nodosa 

Vicia sepium  

Plantago coronopus 

Salix atrocinerea 

Vicia cracca  

Cerastium glomeratum 

Hypericum 
androsaemum  

Ranunculus ficaria 

Campanula 
rapunculus* 

Viburnum lantana 

Dioscorea communis 

Viscum album  

Ligustrum vulgare 

Melampyrum arvense  

Crepis setosa  

Geranium 
Rotundifolium 

Lactuca serriola  

Linaria vulgaris 

Vicia hirsuta  

Phleum pratense 

Prunus spinosa  

Quercus robur  

Rosa canina 

Veronica chamaedrys 

Veronica serpyllifolia 

Apera spica-venti* 

Matricaria recutita 

Corylus avellana 

Gaudinia fragilis  

Hedera helix  

Juncus tenuis  

Myosotis arvensis  

Plantago major  

Arum italicum* 

Crepis biennis 

Geranium molle 

Lolium perenne 

Scrophularia nodosa 

Vicia sepium  

Plantago coronopus 

Salix atrocinerea 

Vicia cracca  

Cerastium glomeratum 

Hypericum 
androsaemum  

Ranunculus ficaria

 

Alkaline 

Campanula 
rapunculus* 

Viburnum lantana 

Dioscorea communis 

Viscum album  

Ligustrum vulgare 

Melampyrum arvense  

Crepis setosa  
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Geranium lucidum 

Papaver rhoeas  

Stellaria neglecta 

Cichorium intybus  

Geranium dissectum 

Medicago arabica 

Rubus caesius  

Epilobium tetragonum 

Cymbalaria muralis  

Silene alba (Silene 
latifolia) 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Bromus sterilis  

Epilobium 
angustifolium 
(Chamerion 
angustifolium) 

Cirsium arvense 

Elytrigia repens 
subsp.repens 

Glechoma hederacea 

Heracleum 
sphondylium  

Poa annua 

Robinia pseudoacacia 

Anthriscus sylvestris 

Matricaria discoidea 

Rumex obtusifolius 

Stellaria media 

Urtica dioica  

Reynoutria japonica 

Convolvulus arvensis 

Sison amomum 

Hordeum murinum 

Malva sylvestris  

Arrhenatherum elatius 

Avena sativa 
subsp.fatua  

officinale 

Acer campestre 

Brachypodium 
pinnatum  

Cornus sanguine 

Rhamnus cathartica 

Geranium lucidum 

Papaver rhoeas  

Stellaria neglecta 

Cichorium intybus  

Geranium dissectum 

Medicago arabica 

Rubus caesius  

Epilobium tetragonum 

Cymbalaria muralis  

Silene alba (Silene 
latifolia) 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Bromus sterilis  

Epilobium 
angustifolium 
(Chamerion 
angustifolium) 

Cirsium arvense 

Elytrigia repens 
subsp.repens 

Glechoma hederacea 

Heracleum 
sphondylium  

Poa annua 

Robinia pseudoacacia 

Anthriscus sylvestris 

Matricaria discoidea 

Rumex obtusifolius 

Stellaria media 

Urtica dioica  

Reynoutria japonica 

Convolvulus arvensis 

Sison amomum 

Muscari comosum 

Pastinaca sativa 

Reseda luteola  

Silene dichotoma 

Lithospermum 
officinale 

Acer campestre 

Brachypodium 
pinnatum  

Cornus sanguine 

Rhamnus cathartica 

Geranium lucidum 

Papaver rhoeas  

Stellaria neglecta 

Cichorium intybus  

Geranium dissectum 

Medicago arabica 

Rubus caesius  

Epilobium tetragonum 

Cymbalaria muralis  

 

 

 

 

 

High fertility 

Silene alba (Silene 
latifolia) 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Bromus sterilis  

Epilobium 
angustifolium 
(Chamerion 
angustifolium) 

Cirsium arvense 

Elytrigia repens 
subsp.repens 

Glechoma hederacea 

Geranium 
Rotundifolium 

Lactuca serriola  

Linaria vulgaris 

Muscari comosum 

Pastinaca sativa 

Reseda luteola  

Silene dichotoma 

Lithospermum 
officinale 

Acer campestre 

Brachypodium 
pinnatum  

Cornus sanguine 

Rhamnus cathartica 

Geranium lucidum 

Papaver rhoeas  

Stellaria neglecta 

Cichorium intybus  

Geranium dissectum 

Medicago arabica 

Rubus caesius  

Epilobium tetragonum 

Cymbalaria muralis   

 

Neutral 

Silene alba (Silene 
latifolia) 

Jacobaea vulgaris (Syn. 
Of Senecio jacobaea) 

Bromus sterilis  

Epilobium 
angustifolium 
(Chamerion 
angustifolium) 

Cirsium arvense 

Elytrigia repens 
subsp.repens 

Glechoma hederacea 

Heracleum 
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Clematis vitalba 

Laspana communis 

Sonchus asper  

Verbena officinalis 
Vervain 

Veronica persica 

Valerianella carinata 

Alliaria petiolata 

Chaerophyllum 
temulum 

Cirsium vulgare 

Lamium purpureum 

Sambucus nigra  

Galium aparine 

Senecio vulgaris  
Groundsel 

Sonchus oleraceus 

Dipsacus fullonum 

Hypericum humifusum 

Athyrium filix-femina 

Bromus racemosus 

Mentha suaveolens 

Parentucellia viscosa 

Equisetum x litorale 
Kuhlew. ex Rupr  

Ranunculus repens 

Poa trivialis  

Rumex crispus  

Solanum dulcamara  

Cucubalus baccifer 

Stachys sylvatica 

Bryonia cretica subsp. 
dioica  

Ranunculus sardous 

Persicaria maculosa 

 

Hordeum murinum 

Malva sylvestris  

Arrhenatherum elatius 

Avena sativa 
subsp.fatua  

Clematis vitalba 

Laspana communis 

Sonchus asper  

Verbena officinalis 
Vervain 

Veronica persica 

Valerianella carinata 

Alliaria petiolata 

Chaerophyllum 
temulum 

Cirsium vulgare 

Lamium purpureum 

Sambucus nigra  

Galium aparine 

Senecio vulgaris  
Groundsel 

Sonchus oleraceus 

Dipsacus fullonum 

 

 

 

 

 

 

 

 

 

 

 

 

 

Damp 

Hypericum humifusum 

Heracleum 
sphondylium  

Poa annua 

Robinia pseudoacacia 

Anthriscus sylvestris 

Matricaria discoidea 

Rumex obtusifolius 

Stellaria media 

Urtica dioica  

Reynoutria japonica 

Convolvulus arvensis 

Sison amomum 

Hordeum murinum 

Malva sylvestris  

Arrhenatherum elatius 

Avena sativa 
subsp.fatua  

Clematis vitalba 

Laspana communis 

Sonchus asper  

Verbena officinalis 
Vervain 

Veronica persica 

Valerianella carinata 

Alliaria petiolata 

Chaerophyllum 
temulum 

Cirsium vulgare 

Lamium purpureum 

Sambucus nigra  

Galium aparine 

Senecio vulgaris  
Groundsel 

Sonchus oleraceus 

Dipsacus fullonum 

 

 

Low fertility 

sphondylium  

Poa annua 

Robinia pseudoacacia 

Anthriscus sylvestris 

Matricaria discoidea 

Rumex obtusifolius 

Stellaria media 

Urtica dioica  

Reynoutria japonica

 

Alkaline 

Convolvulus arvensis 

Sison amomum 

Hordeum murinum 

Malva sylvestris  

Arrhenatherum elatius 

Avena sativa 
subsp.fatua  

Clematis vitalba 

Laspana communis 

Sonchus asper  

Verbena officinalis 
Vervain 

Veronica persica 

Valerianella carinata 

Alliaria petiolata 

Chaerophyllum 
temulum 

Cirsium vulgare 

Lamium purpureum 

Sambucus nigra  

Galium aparine 

Senecio vulgaris  
Groundsel 

Sonchus oleraceus 

Dipsacus fullonum

 

Neutral 

Hypericum humifusum
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Athyrium filix-femina 

Bromus racemosus 

Mentha suaveolens 

Parentucellia viscosa 

Equisetum x litorale 
Kuhlew. ex Rupr  

Ranunculus repens 

Poa trivialis  

Rumex crispus  

Solanum dulcamara  

Cucubalus baccifer 

Stachys sylvatica 

Bryonia cretica subsp. 
dioica  

Ranunculus sardous 

Persicaria maculosa 

 

Hypericum humifusum

 

Medium fertility 

Athyrium filix-femina 

Bromus racemosus 

Mentha suaveolens 

Parentucellia viscosa 

Equisetum x litorale 
Kuhlew. ex Rupr 

 

High fertility 

Ranunculus repens 

Poa trivialis  

Rumex crispus  

Solanum dulcamara  

Cucubalus baccifer 

Stachys sylvatica 

Bryonia cretica subsp. 
dioica  

Ranunculus sardous 

Persicaria maculosa 
 

 

Neutral 

Athyrium filix-femina 

Bromus racemosus 

Mentha suaveolens 

Parentucellia viscosa 

Equisetum x litorale 
Kuhlew. ex Rupr 

 

Neutral 

Ranunculus repens 

Poa trivialis  

Rumex crispus  

Solanum dulcamara  

Alkaline 

Cucubalus baccifer 

Stachys sylvatica 

Bryonia cretica subsp. 
dioica  

Ranunculus sardous 

Persicaria maculosa 
 

 

No Ellenberg: 

Conyza canadensis 

Crassula tillaea  

Crepis sancta  

Dianthus armeria*+ 

Dianthus armeria L. subsp. armeria 

Filago vulgaris* 

Geranium columbinum 

Lapsana communis L. subsp. communis 

Stellaria media. subsp. media 

Trifolium campestre  

Umbilicus rupestris  
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Veronica arvensis 

Vulpia myuros 

Vulpia myuros subsp..sciuroides (syn of Vulpia Bromoides) 
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Aquatic and marginal list 

Complete list Moisture (F) Nitrogen (N) Reaction (R) 

Veronica serpyllifolia 

Juncus tenuis 

Salix atrocinerea 

Vicia cracca 

Cardamine pratensis 

Listera ovata  

Dipsacus fullonum 

Pinguicula lusitanica  

Agrostis canina 

Veronica scutellata 

Scutellaria minor  

Galium palustre 
subsp.debile 

Isolepis fluitans 

Cyperus flavescens 

Juncus conglomeratus 

Lysimachia tenella 

Carex viridula 
subsp.oedocarpa  

Carum verticillatum 

Juncus acutifloris 

Cirsium dissectum  

Carex panicea  

Ranunculus flammula 

Hydrocotyle vulgaris 

Littorella uniflora 

Eleocharis multicaulis 

Juncus heterophyllus 

Baldellia 
ranunculoides*  

Carex viridula 
var.viridula  

Dactylorhiza elata var. 
sesquidpedalis  

Dactylorhiza incarnata  

Epipactis palustris 

Moist 

Veronica serpyllifolia 

Juncus tenuis 

Salix atrocinerea 

Vicia cracca 

Cardamine pratensis 

Listera ovata  

Dipsacus fullonum 

 

 

 

 

 

Damp 

Pinguicula lusitanica  

Agrostis canina 

Veronica scutellata 

Scutellaria minor  

Galium palustre 
subsp.debile 

Isolepis fluitans 

Cyperus flavescens 

Juncus conglomeratus 

Lysimachia tenella 

Carex viridula 
subsp.oedocarpa  

Carum verticillatum 

Juncus acutifloris 

Cirsium dissectum  

Carex panicea  

Ranunculus flammula 

Hydrocotyle vulgaris 

Littorella uniflora 

Eleocharis multicaulis 

Juncus heterophyllus 

Baldellia 

Medium fertility 

Veronica serpyllifolia 

Juncus tenuis 

Salix atrocinerea 

Vicia cracca 

Cardamine pratensis 

 

 

 

High fertility 

Listera ovata  

Dipsacus fullonum

 

Low fertility 

Pinguicula lusitanica  

Agrostis canina 

Veronica scutellata 

Scutellaria minor  

Galium palustre 
subsp.debile 

Isolepis fluitans 

Cyperus flavescens 

Juncus conglomeratus 

Lysimachia tenella 

Carex viridula 
subsp.oedocarpa  

Carum verticillatum 

Juncus acutifloris 

Cirsium dissectum  

Carex panicea  

Ranunculus flammula 

Hydrocotyle vulgaris 

Littorella uniflora 

Eleocharis multicaulis 

Juncus heterophyllus 

Baldellia 

Neutral  

Veronica serpyllifolia 

Juncus tenuis 

Salix atrocinerea 

Vicia cracca 

 

Alkaline 

Cardamine pratensis

 

Alkaline 

Listera ovata  

Dipsacus fullonum

 

Acid 

Pinguicula lusitanica  

Agrostis canina 

Veronica scutellata 

Scutellaria minor  

Galium palustre 
subsp.debile 

Isolepis fluitans

 

Neutral 

Cyperus flavescens 

Juncus conglomeratus 

Lysimachia tenella 

Carex viridula 
subsp.oedocarpa  

Carum verticillatum 

Juncus acutifloris 

Cirsium dissectum  

Carex panicea  

Ranunculus flammula 

Hydrocotyle vulgaris 

Littorella uniflora 

Eleocharis multicaulis 
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Liparis loeselii* 

Spiranthes aestivalis* 

Triglochin palustris 

Juncus anceps  

Scirpus sylvaticus 

Cirsium palustre  

Achillea ptarmica  

Juncus effusus  

Equisetum palustre 

Gnaphalium 
uliginosum  

Lychnis flos-cuculi 
(Silene flos-cuculi) 

Oenanthe crocata 

Angelica sylvestris 

Eleocharis uniglumis  

Jacobaea aquatica 
(syn. of Senecio 
aquaticus)  

Juncus bufonius  

Lythrum portula 

Filipendula ulmaria 

Lysimachia 
nummularia 

Cyperus esculentus 

Lythrum salicaria  

Trifolium patens  

Elatine hexandra 

Lotus pedunculatus 

Osmunda regalis 

Galium palustre 

Carex disticha 

Cyperus fuscus*  

Eleocharis palustris 

Juncus articulatus 

Oenanthe fistulosa*+ 

Equisetum x litorale 
Kuhlew  

Myosotis laxa 

ranunculoides*  

Carex viridula 
var.viridula  

Dactylorhiza elata var. 
sesquidpedalis  

Dactylorhiza incarnata  

Epipactis palustris 

Liparis loeselii* 

Spiranthes aestivalis* 

Triglochin palustris 

Juncus anceps  

Scirpus sylvaticus 

Cirsium palustre  

Achillea ptarmica  

Juncus effusus  

Equisetum palustre 

Gnaphalium 
uliginosum  

Lychnis flos-cuculi 
(Silene flos-cuculi) 

Oenanthe crocata 

Angelica sylvestris 

Eleocharis uniglumis  

Jacobaea aquatica 
(syn. of Senecio 
aquaticus)  

Juncus bufonius  

Lythrum portula 

Filipendula ulmaria 

Lysimachia 
nummularia 

Cyperus esculentus 

Lythrum salicaria  

Trifolium patens  

Elatine hexandra 

Lotus pedunculatus 

Osmunda regalis 

Galium palustre 

Carex disticha 

ranunculoides*  

Carex viridula 
var.viridula  

Dactylorhiza elata var. 
sesquidpedalis  

Dactylorhiza incarnata  

Epipactis palustris 

Liparis loeselii* 

Spiranthes aestivalis* 

Triglochin palustris 

Juncus anceps  

 

 

 

 

Medium fertility 

Scirpus sylvaticus 

Cirsium palustre  

Achillea ptarmica  

Juncus effusus  

Equisetum palustre 

Gnaphalium 
uliginosum  

Lychnis flos-cuculi 
(Silene flos-cuculi) 

Oenanthe crocata 

Angelica sylvestris 

Eleocharis uniglumis  

Jacobaea aquatica 
(syn. of Senecio 
aquaticus)  

Juncus bufonius  

Lythrum portula 

Filipendula ulmaria 

Lysimachia 
nummularia 

Cyperus esculentus 

Lythrum salicaria  

Trifolium patens  

Juncus heterophyllus 

Baldellia 
ranunculoides* 

 

Alkaline 

Carex viridula 
var.viridula  

Dactylorhiza elata var. 
sesquidpedalis  

Dactylorhiza incarnata  

Epipactis palustris 

Liparis loeselii* 

Spiranthes aestivalis* 

Triglochin palustris 

Juncus anceps 

 

Acid 

Scirpus sylvaticus 

Cirsium palustre 

 

Neutral 

Achillea ptarmica  

Juncus effusus  

Equisetum palustre 

Gnaphalium 
uliginosum  

Lychnis flos-cuculi 
(Silene flos-cuculi) 

Oenanthe crocata 

Angelica sylvestris 

Eleocharis uniglumis  

Jacobaea aquatica 
(syn. of Senecio 
aquaticus)  

Juncus bufonius  

Lythrum portula 

Filipendula ulmaria 

Lysimachia 
nummularia 

Cyperus esculentus 
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subsp.cespitosa  

Caltha palustris  

Mentha aquatica 

Carex cuprina var. 
cuprina  

Scutellaria galericulata 

Glyceria fluitans 

Thelypteris palustris 

Carex acutiformis 

Carex vesicaria 

Glyceria notata  

Rorippa amphibia 

Lycopus europaeus 

Althaea officinalis 

Epilobium parviflorum 

Mentha arvensis 

Equisetum telmateia 

Pulicaria dysenterica 

Myosotis scorpioides 

Salix viminalis 

Cladium mariscus 

Samolus valerandi 

Carex pseudocyperus 

Carex elata  

Carex riparia  

Lysimachia vulgaris 

Ranunculus 
ophioglossifolius* 

Solanum dulcamara 

Phragmites australis  

Eupatorium 
cannabinum   

Bidens cernua 

Epilobium hirsutum 

Calystegia sepium 

Bidens frondosa 

Glyceria declinata  

Mentha pulegium *+ 

Cyperus fuscus*  

Eleocharis palustris 

Juncus articulatus 

Oenanthe fistulosa*+ 

Equisetum x litorale 
Kuhlew  

Myosotis laxa 
subsp.cespitosa  

Caltha palustris  

Mentha aquatica 

Carex cuprina var. 
cuprina  

Scutellaria galericulata 

Glyceria fluitans 

Thelypteris palustris 

Carex acutiformis 

Carex vesicaria 

Glyceria notata  

Rorippa amphibia 

Lycopus europaeus 

Althaea officinalis 

Epilobium parviflorum 

Mentha arvensis 

Equisetum telmateia 

Pulicaria dysenterica 

Myosotis scorpioides 

Salix viminalis 

Cladium mariscus 

Samolus valerandi 

Carex pseudocyperus 

Carex elata  

Carex riparia  

Lysimachia vulgaris 

Ranunculus 
ophioglossifolius* 

Solanum dulcamara 

Phragmites australis  

Eupatorium 

Elatine hexandra 

Lotus pedunculatus 

Osmunda regalis 

Galium palustre 

Carex disticha 

Cyperus fuscus*  

Eleocharis palustris 

Juncus articulatus 

Oenanthe fistulosa*+ 

Equisetum x litorale 
Kuhlew  

Myosotis laxa 
subsp.cespitosa  

Caltha palustris  

Mentha aquatica 

Carex cuprina var. 
cuprina  

Scutellaria galericulata 

Glyceria fluitans 

Thelypteris palustris 

Carex acutiformis 

Carex vesicaria 

Glyceria notata  

Rorippa amphibia 

Lycopus europaeus 

Althaea officinalis 

Epilobium parviflorum 

Mentha arvensis 

Equisetum telmateia 

Pulicaria dysenterica 

Myosotis scorpioides 

Salix viminalis 

Cladium mariscus 

Samolus valerandi 

Carex pseudocyperus 

Carex elata  

Carex riparia  

Lysimachia vulgaris 

Lythrum salicaria  

Trifolium patens  

Elatine hexandra 

Lotus pedunculatus 

Osmunda regalis 

Galium palustre 

Carex disticha 

Cyperus fuscus*  

Eleocharis palustris 

Juncus articulatus 

Oenanthe fistulosa*+ 

Equisetum x litorale 
Kuhlew  

Myosotis laxa 
subsp.cespitosa  

Caltha palustris  

Mentha aquatica 

Carex cuprina var. 
cuprina  

Scutellaria galericulata 

Glyceria fluitans 

Thelypteris palustris 

Carex acutiformis 

Carex vesicaria 

Glyceria notata  

Rorippa amphibia 

Lycopus europaeus

 

Alkaline 

Althaea officinalis 

Epilobium parviflorum 

Mentha arvensis 

Equisetum telmateia 

Pulicaria dysenterica 

Myosotis scorpioides 

Salix viminalis 

Cladium mariscus 

Samolus valerandi 
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Phalaris arundinacea 

Ranunculus sardous 

Chenopodium rubrum 

Alisma plantago-
aquatica  

Iris pseudacorus  

Rumex hydrolapathum 

Sparganium erectum  

Rumex maritimus 

Rumex palustris  

Typha latifolia 

Luronium Eleocharis 
acicularis natans 

Hypericum elodes 

Myriophyllum 
alterniflorum 

Utricularia australis 

Utricularia vulgaris 

Equisetum fluviatile 

Schoenoplectus 
lacustris 

Callitriche brutia var. 
hamulata Intermediate  

Lemna minor 

Potamogeton natans  

Potamogeton 
gramineus  

Potamogeton trichoid  

Callitriche stagnalis 

Alisma lanceolatum 

Typha angustifolia 

Nymphaea alba  

Nuphar lutea 

Potamogeton 
pectinatus  

Elodea canadensis  

Potamogeton crispus 

Potamogeton lucens 

Myriophyllum 

cannabinum   

Bidens cernua 

Epilobium hirsutum 

Calystegia sepium 

Bidens frondosa 

Glyceria declinata  

Mentha pulegium *+ 

Phalaris arundinacea 

Ranunculus sardous 

Chenopodium rubrum 

Alisma plantago-
aquatica  

Iris pseudacorus  

Rumex hydrolapathum 

Sparganium erectum  

Rumex maritimus 

Rumex palustris  

Typha latifolia 

 

 

 

 

 

 

 

 

 

 

 

 

Wet 

Luronium Eleocharis 
acicularis natans 

Hypericum elodes 

Myriophyllum 
alterniflorum 

Utricularia australis 

Utricularia vulgaris 

 

 

 

High fertility 

Ranunculus 
ophioglossifolius* 

Solanum dulcamara 

Phragmites australis  

Eupatorium 
cannabinum   

Bidens cernua 

Epilobium hirsutum 

Calystegia sepium 

Bidens frondosa 

Glyceria declinata  

Mentha pulegium *+ 

Phalaris arundinacea 

Ranunculus sardous 

Chenopodium rubrum 

Alisma plantago-
aquatica  

Iris pseudacorus  

Rumex hydrolapathum 

Sparganium erectum  

Rumex maritimus 

Rumex palustris  

Typha latifolia 

 

 

 

Low fertility 

Luronium Eleocharis 
acicularis natans 

Hypericum elodes 

Myriophyllum 
alterniflorum 

Utricularia australis 

Utricularia vulgaris 

Carex pseudocyperus 

Carex elata  

Carex riparia  

Lysimachia vulgaris

 

Neutral 

Ranunculus 
ophioglossifolius* 

Solanum dulcamara 

Phragmites australis 

 

Alkaline 

Eupatorium 
cannabinum   

Bidens cernua 

Epilobium hirsutum 

Calystegia sepium 

Bidens frondosa 

Glyceria declinata  

Mentha pulegium *+ 

Phalaris arundinacea 

Ranunculus sardous 

Chenopodium rubrum 

Alisma plantago-
aquatica  

Iris pseudacorus  

Rumex hydrolapathum 

Sparganium erectum  

Rumex maritimus 

Rumex palustris  

Typha latifolia

 

Acid 

Luronium Eleocharis 
acicularis natans

 

Neutral 

Hypericum elodes 

Myriophyllum 
alterniflorum 
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spicatum  Equisetum fluviatile 

Schoenoplectus 
lacustris 

Callitriche brutia var. 
hamulata Intermediate  

Lemna minor 

Potamogeton natans  

Potamogeton 
gramineus  

Potamogeton trichoid  

Callitriche stagnalis 

Alisma lanceolatum 

Typha angustifolia 

Nymphaea alba  

Nuphar lutea 

Potamogeton 
pectinatus  

Elodea canadensis  

Potamogeton crispus 

Potamogeton lucens 

Myriophyllum 
spicatum  

 

 

 

Medium fertility 

Equisetum fluviatile 

Schoenoplectus 
lacustris 

Callitriche brutia var. 
hamulata Intermediate  

Lemna minor 

Potamogeton natans  

Potamogeton 
gramineus  

Potamogeton trichoid  

Callitriche stagnalis 

Alisma lanceolatum 

Typha angustifolia 

Nymphaea alba  

Nuphar lutea 

 

 

High fertility 

Potamogeton 
pectinatus  

Elodea canadensis  

Potamogeton crispus 

Potamogeton lucens 

Myriophyllum 
spicatum  

Utricularia australis 

Utricularia vulgaris

 

Neutral 

Equisetum fluviatile 

Schoenoplectus 
lacustris 

Callitriche brutia var. 
hamulata Intermediate  

Lemna minor 

Potamogeton natans  

Potamogeton 
gramineus  

Potamogeton trichoid  

Callitriche stagnalis

 

Alkaline 

Alisma lanceolatum 

Typha angustifolia 

Nymphaea alba  

Nuphar lutea

 

Neutral 

Potamogeton 
pectinatus  

Elodea canadensis 

 

Alkaline 

Potamogeton crispus 

Potamogeton lucens 

Myriophyllum 
spicatum  

 

No Ellenberg: 

Baldellia ranunculoides (L.) Parl. subsp. Ranunculoides* 

Baldellia ranunculoides subsp..repens  

Cardamine pratensis L. subsp. pratensis 

Dactylorhiza fuchsii  
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Galium palustre L. subsp. palustre 

Juncus bufonius L. subsp. bufonius 

Juncus bulbosus L. subsp. bulbosus 

Persicaria amphibia  (Polygonum amphibium) 

 

 
 

 


