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We study the strong coupling (SC) limit of the anisotropic Kardar-Parisi-Zhang (KPZ) model. A
systematic mapping of the continuum model to its lattice equivalent shows that in the SC limit,
anisotropic perturbations destroy all spatial correlations but retain a temporal scaling which shows
a remarkable cross-over along one of the two spatial directions, the choice of direction depending
on the relative strength of anisotropicity. The results agree with exact numerics and is expected to
settle the long-standing SC problem of a KPZ model in the infinite range limit.
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A topic of much interest in the field of non-equilibrium
statistical physics in the past few years has been the
ubiquitous Kardar-Parisi-Zhang (KPZ) model [1–3]. Al-
though many of the theoretical issues concerning the weak

coupling (WC) regime of the model, the regime amenable
to perturbation theories, have generally been well stud-
ied [2–7], the same can not be said about the strong cou-

pling (SC) regime. Barring occasional studies [8–13], this
regime has largely remained unexplored mainly due to
a lack of theoretical tools in dealing with such a non-
perturbative system, as well as due to the inherent com-
plex character of the problem. Perturbative field theo-
ries [4, 9, 10] could probe the system close to the SC-WC
phase boundary but not the SC regime itself.

Three open problems concerning the SC regime are
well known: 1) what is the nature of the universality
class in this regime, that is if one exists? 2) what is the
value of the upper critical dimension dc beyond which
the dynamic exponent z = 2 and the roughness expo-
nent χ = 0? 3) what is the effect of anisotropic per-
turbations on the SC regime as well as on dc? Starting
with the latter, the role of anisotropy is a well-studied
problem but mostly in the WC regime and that too with
contradictory outcomes, eg. Wolf [14] claims the trivial-
ity of such fluctuations whereas Täuber-Frey [9], Tang-
Kardar-Dhar [15], Mukherji-Bhattacharjee [16] and Hwa
[17] claim quite the opposite. The issue of the upper crit-
ical dimension has also remained a highly debated issue
all along. Claims toward its existence [11, 19–22] have
been refuted by equally powerful arbitrations toward the
opposite [9, 10, 13, 18]. The question concerning the
universality class of KPZ-type models in the SC regime
has remained largely unexplored though (exceptions are
[11, 13, 18]).

The model we study in tackling all three contentious
issues together is the anisotropic KPZ model [2] and the
theoretical approach we rely upon is a generalization of
the ”infinite range mean-field” (IRMF) technique popu-
larized by Marsili and Bray [8] for a standard KPZ model.
To achieve such goals, we use a direct mapping of the con-

tinuum model to its discretized lattice equivalent [23] and
study the resultant Fokker-Planck type master equation
thereof [8]. This has the advantage of a non-perturbative
approach to the problem which could be profitably used
to study the SC phase. The analytical results are later
complemented by a direct numerical simulation of the
spatially anisotropic equations of motion. With respect
to the spatial directions x and y, the anisotropic KPZ
model can be represented as
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where terms have their usual meanings and the noise
η(x, y, t) is white with strength D. Our interest is in
the d > dc, λi > λi

critical regime (i = x, y). Resort-
ing to IRMF, we now map the continuum model defined
in eqn (1) to a square lattice model considering only
nearest-neighbor (nn) interactions. For a 2+1 dimen-
sional Euclidean space, this means the number N of the
nn sites is equal to 4 (=2d). If ht

α,β ≡ h(x, y, t) repre-
sents the height at the lattice point (α, β), an ensemble
averaging along x (i. e. along α) gives < ht(α) >x =
1
N

∑N
α=1 h

α,β(t) while that along y (i. e. along β) gives

< ht(β) >y = 1
N

∑N
β=1 h

α,β(t). We now introduce the lo-
cal height fluctuation operators respectively along x and
y at (α, β): ψx(t) = hα,β(t) − < ht(α) >x and ψy(t) =
hα,β(t) − < ht(β) >y. Using a Taylor expansion up to
the discretized second derivative, the h-description can
now be mapped over to the ψi-description: ∂x

2ht(α) =

−ψx(t), ∂y2ht(β) = −ψy(t) and 2|∂xht|2 =< ψ2
x(α) >t

+ψ2
x, 2|∂yht|2 =< ψ2

y(β) >t +ψ2
y [8]. Further symmetry

properties of (ψx, ψy) eg. < ψx(α) >x = < ψy(β) >y = 0

& < ψx(β) >y = −< ψy(α) >x, etc assume non-trivial
significance in defining the structure of the potential
function Φ (eqn 4). As already shown in [8, 24], non-
linear equations of motion of the type do not have a sta-
tionary state: ψi → ∞ (i = x, y) as t → ∞. To avoid
such inconsistencies, one can resort to a regularization
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scheme involving the introduction of dimensionally “ir-
relevant operators” in the free energy of the model as in
[8], thereby generating a modified equation of motion
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It is easy to see that the surface tension and “irrele-
vant” terms together contribute in renormalizing ν, effec-
tively amounting to a smoothening of the growing sur-
faces. In the infinite-range limit, this allows the h ↔ ψ
mapping to define a coupled set in (ψx, ψy):

∂tψi = Γi[µ(t) − Φ(ψx, ψy, ξ)] + ηi (i = x, y) (3)

where Γx = 1 and Γy = 1
ξ . The white noises (ηx, ηy)

are related to η through a renormalized noise strength
DN−1/2 while the potential
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and the system parameters are as follows

ζx = 1, ζy = ξ, µ(t) = < Φ >x,y (5a)

sxy
t = < ψxψy >x,y, si
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2 >i (5b)
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the coupled eqns in (3) can now be represented as a
Fokker-Planck set:

∂tψi = Γi
∂Vtot

∂ψi
+ ηi (i = x, y) (7)

subject to the condition

ξ2[(1+sy)−2gyψy+3ψy
2] = (1+sx)−2gxψx+3ψx

2 (8)

sx
∞, sy

∞ and µ∞ can be evaluated by studying
the stability properties of Vtot using the Hessian [H =
(
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] description, in the low noise limit.

The resultant analyzes suggest optima for the system at

(ψx
±, ψy

±) where ψi
± = (

gi±
√
gi

2−4(1+si)

2 (i = x, y).

ψi
± represent minima if ξ(= gx

gy
) > 1 and vice versa.

As we will shortly see, this leads to a cross-over along y
(for ξ > 1) or along x (ξ < 1), a trait not to be found in
the isotropic model.

In the limit D → 0+, the equilibrium potential is
given by (1 + ξ)V∞(ψx, ψy; ξ) = Ṽ +

∑x,y
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ing to the stationary state probability distribution func-
tion P∞(ψx, ψy, ξ) = α
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−), where α, β are

probabilities of transitions between “pure” (φx
±, φy

±)
and “mixed” (φx

±, φy
∓) states respectively. Together

with identities like < ψi >∞ = 0, this gives us si
∞ =

−ψi+ψi− (i=x,y) and µ∞ = − gx

6 sx
∞ − ξ

gy

6 sy
∞. The

key signature of anisotropicity is, however, encapsu-
lated in the non-zero value of the cross-coupling cor-
relator sxy. It ensures that fluctuations along x can

influence those along y, thereby leading to sxy
∞ =

− 1
4 (ψx

+ +ψx
−)(ψy

+ +ψy
−), or as in the low noise limit:

sxy
∞(gx, gy, D → 0+) = − 1

9gxgy.

We now address the question of spatio-temporal scal-
ing (or the lack of it) by studying the two-point struc-

ture function < (h− < h >) >
2

=< ψi
2 > (i = x, y)

away from the stationary state. For the temporal prob-
ability distribution, we propose a structure similar to
P∞(ψx, ψy; ξ), though now with time dependent transi-
tion probabilities (αt,βt) defined against time-dependent
states (ψx,t, ψy,t): Pt(ψx,t, ψy,t, ξ) = αt

2 δ(ψx,t −
ψx,t

−)δ(ψy,t − ψy,t
−) + (1−αt)

2 δ(ψx,t − ψx,t
+)δ(ψy,t −
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+)+ βt

2 δ(ψx,t−ψx,t
−)δ(ψy,t−ψy,t+)+ (1−βt)

2 δ(ψx,t−
ψx,t

+)δ(ψy,t − ψy,t
−). As opposed to a single parameter

description for the isotropic case, anisotropy involves two
parameters (β 6= 0) implying non-zero transition proba-
bilities. This added complication renders an asymmetric
(ψx,t ↔ ψy,t) structural form resulting in

αt =
F (ψx,t

±, ψy,t
±)

2N(ψx,t
±, ψy,t

±)
, βt =

H(ψx,t
±, ψy,t

±)

2N(ψx,t
±, ψy,t

±)
(9)

where F, H and N are functions of ψi
±(t). As in

the t → ∞ case, we find that sx,t = −ψx,t+ψx,t−
and sy,t = −ψy,t+ψy,t−. These relations leave us with
only two independent variables determining the non-
stationary state dynamics as follows
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FIG. 1: (Color online) Variations of αt and βt with time t on
a log-log scale. The former shows a cross-over behavior while
the latter depicts a steady scaling. The result is typical of the
strong coupling regime.

dαt
dt

= exp
[

− V (ψx,t
−, ψy,t

−) − V (ψx,t
+, ψy,t

+)

D

]

(10a)

dβt
dt

= exp
[

− V (ψx,t
−, ψy,t

+) − V (ψx,t
+, ψy,t

−)

D

]

(10b)

Equations (10a) and (10b) are of critical importance
in that they define the probabilities of transition between
two ”pure” minima and two ”mixed” states respectively.

We numerically solved the coupled set of equations
(10a, 10b) for the parameter values ξ = 10, D = 0.5
(the conclusions remain unchanged over a considerable
range of parameters) and arrived at a remarkable result
as in Fig. 1: the ln αt vs t plot shows a cross-over from
the temporal exponent ζ1 ∼ 0.5 to ζ2 ∼ 1/3 whereas
the ln βt versus t graph shows a steady scaling ζ1 ∼ 0.5.
Such a cross-over is unknown in the weak coupling regime

(ζ = 0.5) [2, 26].
In an attempt to understand the true implication of

this scaling structure as well as to check the consistency
of our results, we numerically integrated eqns (3) up to
106 time steps for ξ > D and found this sensational scal-
ing tenable in the strong coupling regime over six or-

ders of magnitudes (Fig.2). The plot clearly confirms
the cross-over scaling behavior obtained from the non-

perturbative theory (Fig. 1). For the special case of
gx = gy (ξ = 1), we recover the Marsili-Bray result [8]:

st = (lnt)
1/3

.
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FIG. 2: (Color online) Variations of ln sx(t) and ln sy(t) with
ln t using simulation data of eqns (3) and (4) for ξ = 10, D =
0.5. The ln sy(t) graph shows a cross-cross-over scaling akin to
the ln αt graph in Fig. 1 thereby reconfirming our theoretical
result. The inset plots ln sx(t) against ln t for a steady scaling
exponent 0.5.

The spatial correlation function, on the other hand,
shows an exponential decay as evident from Fig. 3
that confirms the absence of any spatial scaling in the
anisotropic SC regime. These two figures, Fig. 2 and
Fig. 3 combined, reveal a startling fact about the strong
coupling regime – although the SC regime exhibits a most
interesting temporal scaling behavior, there is no spatial
scaling. In other words, there is an absence of an under-
lying renormalization group fixed point in the SC regime
so far as spatio-temporal scaling is concerned.

The overall absence of a ”true scaling” in the strong
coupling KPZ model is a singularly striking result and
contradicts previous predictions [8, 9]. We attribute
such a difference in conclusion to the non-exactness
that accompanies a perturbative evaluation in a non-
perturbative regime [9] as opposed to our case where
the entire analysis relies on the stability behaviors of a
non-perturbative potential function around the points of
stability, generally the attractors. The spatio-temporal
spectrum in the SC regime further allows us to make a
prediction concerning the upper critical dimension dc be-
low which WC scaling holds (and above which χ = 0).
A lack of spatial scaling, as evident from Fig. 3, simply
renders this number as infinite and can be directly re-
lated to the fact that both α(t), β(t) are always greater
than zero. It might be noted that for an isotropic system
where β = 0, the argument still holds, giving dc = ∞.
The result agrees with earlier predictions [3, 9, 14] al-
though, admittedly, disagrees with many others [11, 19–
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FIG. 3: (Color online) Spatial correlation function as obtained
from exact simulation data (dotted line) for ξ = 10, D = 0.5.
The solid line is an exponential fit. The results show a typical
exponential decay predicting a lack of spatial scaling in the
strong coupling regime.

22]. Our numerical studies of other non-linear models in
the SC regime reconfirm the lack of spatial scaling and
an asymmetry dependent transition in temporal scaling.
One must be a bit cautious about the approximations
though. A nearest-neighbour interaction in mapping the
continuum model to its discrete equivalent and overall
dynamic scaling, our basic assumptions, could be quan-
titatively non-trivial (amounting to modified values of ex-
ponents) although the qualitative outcomes should still
remain unaffected. A problem that is worth pursuing is a
study of the behaviors of similar strongly-coupled models
in the presence of a multiplicative noise, especially for a
quenched system (SC equivalent of [27]).
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[4] M. Lässig, Phys. Rev. Lett. 80, 2366 (1998); D. E. Wolf

and J. Kertész, Europhys. Lett. 4, 651 (1997).
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