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Thesis summary 

Alzheimer’s Disease (AD) is the most common form of dementia currently affecting 
more than 35 million people worldwide. Hypometabolism is a major feature of AD and 
appears decades before cognitive decline and pathological lesions. This has a 
detrimental impact on the brain which has a high energy demand.  
 
Current models of AD fail to mimic all the features of the disease, which has an 
impact on the development of new therapies. Human stem cell derived models of the 
brain have attracted a lot of attention in recent years as a tool to study 
neurodegenerative diseases. 
 
In this thesis, neurons and astrocytes derived from the human embryonal carcinoma 
cell line (NT2/D1) were utilised to determine the metabolic coupling between neurons 
and astrocytes with regards to responses to hypoglycaemia, neuromodulators and 
increase in neuronal activity. 
 
This model was then used to investigate the effects of Aβ(1-42) on the metabolism  
of these NT2-derived co-cultures as well as pure astrocytes. Additionally primary 
cortical mixed neuronal and glial cultures were utilised to compare this model to a 
widely accepted in vitro model used in Alzheimer’s disease research. 
Co-cultures were found to respond to Aβ(1-42) in similar way to human and in vivo 
models. Hypometabolism was characterised by changes in glucose metabolism, as 
well as lactate, pyruvate and glycogen. This led to a significant decrease in ATP and 
the ratio of NAD+/NADH. These results together with an increase in calcium 
oscillations and a decrease in GSH/GSSG ratio, suggests Aβ-induces metabolic and 
oxidative stress. This situation could have detrimental effects in the brain which has a 
high energy demand, especially in terms of memory formation and antioxidant 
capacity.  
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Chapter 1: Introduction 

1.1 The overview/prevalence of Alzheimer’s Disease 

 

Alzheimer’s disease (AD) is a neurodegenerative disease and is the most common 

form of late-life functional mental deterioration in humans. According to the World 

Alzheimer’s Report currently more than 35 million people live with Alzheimer’s 

disease globally, as well as other types of dementia. These numbers are predicted to 

double every 20 years, reaching 65.7 million in 2030 and 115.4 million in 2050 

(International, 2009). 

 

1.2 Symptoms and pathology 

 

Symptoms of AD include progressive memory loss, impaired cognitive function, 

decline in language function, changes in behaviour that includes agitation, 

aggression, paranoia, delusion and apathy (Selkoe, 2001). 

 

These symptoms are associated with the presence of two types of lesions in the 

brain, neurofibrillary tangles (NFTs) and amyloid (neuritic) plaques. NFTs are 

composed of tau protein, which are localized within neurons and were discovered in 

the early investigations of the disease by silver staining. Amyloid plaques are 

extracellular depositions of fibrillar amyloid-beta (Aβ) and were discovered by the use 

of Congo Red dye (Puchtler et al., 1962). However, in recent years it has become 

clear that amyloid plaques and neurofibrillary tangles are only ‘tombstones’ marking 

the site of neuronal death (Selkoe, 2001). 

 

Alzheimer’s disease, unlike other neurodegenerative diseases such as Parkinson’s 

disease, does not affect a single transmitter class and is highly heterogeneous 

(Selkoe, 2001). Some studies suggest that Aβ deposition drives tau aggregation 
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(Gotz et al., 2001). The accumulation of both tau and Aβ results in oxidative stress 

and inflammation which in turn cause energetic failure and synaptic dysfunction 

(Querfurth and LaFerla, 2010). Furthermore, increased oxidative stress, impaired 

protein-folding, together with a deficiency in clearance of damaged proteins, combine 

to increase the accumulation of amyloid and tau proteins (Hoozemans et al., 2009, 

López Salon et al., 2000). 

 

1.2.1 Neuritic plaques 

 

Neuritic plaques or amyloid plaques are one of the two pathologic lesions found in 

postmortem brains of Alzheimer’s patients and are composed of fibrillar Aβ (Glenner 

and Wong, 1984). 

 

Amyloid plaques are associated with dystrophic neurites which are found within the 

plaque and around it. Dystrophic neurites are characterized by the presence of 

enlarged lysosomes, multiple mitochondria and paired helical filaments (Selkoe, 

2001). Plaques are also surrounded by other types of cells such as astrocytes and 

microglia. Both types of cells express markers characteristic for their activation i.e. 

CD45 and HLA-DR for microglia and a dramatic increase in glial fibrillary acidic 

protein (GFAP) for astrocytes. Microglia are usually found close to the amyloid core 

while astrocytes often surround the plaque, with some of the processes extending 

towards the core of the plaque (Nagele et al., 2004). The length of time it takes to 

accumulate Aβ(1-42) and form plaques in AD brains is unknown, but they are 

thought to form gradually over months or years (Nagele et al., 2004). 

 

The neuritic plaques are mainly composed of A(β1-42) which is a slightly longer and 

more hydrophobic and therefore prone to aggregation (Snyder et al., 1994). The size 
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of the plaque varies widely from 10 to 120 µm in diameter (Selkoe, 2001). Aβ and its 

aggregation will be further discussed in chapter 2. 

 

1.2.2 Neurofibrillary tangles 

 

Neurofibrillary tangles (NFTs), the intracellular aggregates that occur in AD and other 

neurodegenerative diseases termed tauopathies, are formed by paired helical 

filaments (PHFs) (Kurt et al., 1997). The major component of PHFs was identified in 

the 1980’s as the microtubule-associated protein tau (Grundke-Iqbal et al., 1986). 

Normally tau is a soluble and abundant protein in axons and is involved in 

stabilization of microtubules and vesicle transport. However, in Alzheimer’s Disease, 

tau is hyperphosphorylated which makes the protein insoluble and prone to self-

association (Grundke-Iqbal et al., 1986). Additionally, hyperphosphorylation of tau 

leads to a decrease in the binding of tau to microtubules. The degree of tau 

phosphorylation depends on the balance between the activities of protein kinases 

and phosphatases. The abnormal tau hyperphosphorylation seen in AD could be 

cause by either an upregulation of tau kinases or a downregulation of tau 

phosphatases. Tau kinases include glycogen synthase kinase-3 (GSK-3), mitogen 

activated protein kinase (MAPK), cyclin-dependent kinase 5 (CDK5), protein kinase 

C (PKC), Jun N-terminal kinases or calcium/calmodulin-dependent protein kinase 

(CaMKII). Tau phosphatases include protein phosphatase-1 (PP-1), protein 

phosphatase-2 (PP-2) and protein phosphatase-5 (PP-5) (Huang and Jiang, 2009).  

It is unclear whether there is an association between Aβ and hyperphosphorylated 

tau. However, there is a growing body of evidence that Aβ can interact with tau and 

accelerate formation of NFTs as well as induce its hyperphosphorylation. Aβ has 

been shown to induce activation of both GSK-3 isosymes. As GSK-3β is one of the 

tau kinases, thus its activation can lead to hypephosphorylation of tau (Kremer et al., 

2011).  
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However, it has also been found that tau deficiency prevents Aβ-induced cognitive 

defects (Shipton et al., 2011). In addition, tau appears to be necessary for amyloid to 

disrupt axonal transport in vitro (Vossel et al., 2010). However, the relationship 

between Aβ and tau in onset and progression of Alzheimer’s Disease requires further 

investigation.  

 

1.3 APP processing 

 

The 37-43 amino acid amyloid-beta (Aβ) peptide is derived from Amyloid Precursor 

Protein (APP) by sequential proteolytic cleavage in a physiologically normal pathway 

(Shoji et al., 1992, Haass et al., 1993a). APP comprises a heterogeneous group of 

type I membrane glycoproteins which are ubiquitously expressed. This 

heterogeneous group arises from alternative splicing, yielding three major isoforms of 

695, 751 and 770 residues. These isoforms are also post-translationally modified to 

include N- and O-linked glycosylation, phosphorylation, sulphation and complex 

proteolysis (Weidemann et al., 1989, Hung and Selkoe, 1994). Isoforms of 751 and 

770 residues are widely expressed in non-neuronal cells as well as neurons. 

However, neuronal cells express higher levels of the 695 amino acids isoform which 

are expressed at a low level in non-neuronal cells (Haass et al., 1991). The 751 and 

770 isoforms contain an additional exon which codes for 56-amino acid motif 

homologous to the Kunitz-type serine protease inhibitors (KPI). Isoforms such as 

751/770 are found in human platelets and can act as inhibitors of factor XIa which is 

a serine protease in the coagulation pathway (Smith et al., 1990). APP is highly 

conserved and found in all mammals and is a member of a larger gene family, the 

amyloid precursor-like proteins (APLPs) (Slunt et al., 1994). 

APP is a membrane protein with an amino terminus orientated to the 

lumen/extracellular space and its carboxyl terminus within the cytosol (Dyrks et al., 
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1988). APP has been shown to be initially targeted into the secretory pathway; 

however, it is processed proteolytically at other sites within the cell (Weidemann et 

al., 1989). APP can be processed by three proteases called α-, β- and γ-secretases 

(Haass, 2004) during two processing pathways: the amyloidogenic pathway and the 

non-amyloidogenic pathway (Fig. 1.1). Non-amyloidogenic processing of APP 

involves γ-secretase and α-secretase which cleaves approximately in the middle of 

the Aβ sequence thus abolishing its production (Nunan and Small, 2000). This 

cleavage generates the truncated carboxy-terminal fragment (C83), which lacks the 

amino-terminal region of Aβ. Subsequent processing within a membrane by γ- 

secretase produces a peptide called p3 (Haass et al., 1993b) as well as APP 

intracellular domain (AICD) (Gu et al., 2001) which is released into the cytosol. AICD 

has been found to have a function in nuclear signaling (von Rotz et al., 2004) (Fig. 

1.1). 

 

Aβ is generated via the amyloidogenic pathway by the consecutive action of β- and 

γ-secretases (Haass, 2004) (Fig. 1.1). The main β-secretase in the human brain is β-

site APP cleaving enzyme (BACE) 1, which cleaves full length APP at Asp1 of the 

amyloid beta sequence (Nunan and Small, 2000). The cleavage of APP by BACE1 

leads to shedding of the APP ectodomain (sAPPβ) and generation of a C-terminus 

fragment, C99 which is sequentially cleaved by γ- secretase. The latter cleavage 

occurs within the hydrophobic environment of cell membranes. The γ- secretase 

cleavage of C99 fragment results in the formation of the Amyloid Precursor Protein 

Intracellular Domain (AICD) fragment and two Aβ variants, either 40 or 42 amino 

acids in length (Cole and Vassar, 2007). These are released to extracellular fluids 

such as plasma or cerebrospinal fluid (CSF) (Seubert et al., 1992) (Fig. 1.1). 
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Figure 1.1 APP processing via non-amyloidogenic and amyloidogenic pathway. 
Diagram reproduced from Debby Van Dam & Peter Paul De Deyn (2006) 
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1.3.1 β-secretase 

 

Following its identification, β-secretase was given several different names including 

memapsin, aspartyl protease 2 or BACE1 (β-site APP cleaving enzyme-1) (Vassar et 

al., 1999). BACE1 is a membrane-bound aspartyl protease which has its active site in 

the lumen/extracellular space (Hong et al., 2000). In addition to BACE1, a 

homologous protease, BACE2 has been identified (Cole and Vassar, 2007). BACE2 

does not play a role in the amyloidogenic pathway and has been shown to have an 

anti-amylodogenic activity in non-neuronal cells (Farzan et al., 2000). 

 

BACE1 is ubiquitously expressed, with the highest levels found in the brain and 

pancreas. BACE1 mRNA levels are highest in neurons but this enzyme is also found 

at lower levels in glia (Cole and Vassar, 2007). The physiological function of BACE1 

is not well understood. High expression of BACE1 postnatally (Willem et al., 2006) 

has been found to be related to myelination (a process which occurs after birth). It 

has been shown that BACE1 knockout mice demonstrate a significant 

hypomyelination (Willem et al., 2006). Other physiological roles of BACE1 such as 

regulation of voltage-dependent sodium channels are currently under investigation 

(Kim et al., 2007). 

 

BACE1 is translocated into the endoplasmic reticulum (ER) as an immature pro-

enzyme. During maturation it undergoes post-translational modifications which 

include N-glycosylation and palmitoylation (Capell et al., 2000). Once the pro-peptide 

is removed from the immature BACE1, it reaches the PM and is enriched in lipid rafts 

(Riddell et al., 2001). BACE1 is then internalized and is recycled to trans-Golgi 

network (TGN) via endosomes (Walter et al., 2001). As an aspartyl protease, BACE1 

has an acidic pH optimum and has optimal activity at about 4.5. This limits 

localization of BACE1 activity to acidic compartments of the secretory pathway (Cole 
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and Vassar, 2007). Additionally, BACE1 can cleave APP within late Golgi 

compartments (Haass et al., 2012). 

 

1.3.2 γ-secretase 

 

γ-secretase mediated cleavage of APP occurs within the transmembrane domain 

(TMD). γ-secretase is a protease complex and consists of four core components – 

endoproteolyzed presenilin (a heterodimer of N- and C-terminal fragments), nicastrin 

(NCT), anterior pharynx defective (APH)-1α or APH-1β and the PS enhancer (PEN)-

2. PS1 and PS2 contain two critical aspartyl residues which form a catalytic subunit 

of γ-secretase (Wolfe et al., 1999). 

 

 All four of these components are necessary for full γ-secretase activity (Edbauer et 

al., 2003) however, little is known about NCT, APH-1 and PEN-2 function. NCT is 

thought to act as a substrate-binding receptor of γ-secretase (Shah et al., 2005) and 

PEN-2 is involved in PS endoproteolysis and stabilization (Prokop et al., 2004). Very 

little is currently known about APH-1 function. 

 

The processing of APP by γ-secretase involves multiple steps. It has been shown 

that γ-secretase substrates are cleaved several times within their transmembrane 

domains. Cleavages at ε-, ζ-, and γ-sites have been described (Sastre et al., 2001, 

Weidemann et al., 2002). Additionally, the final γ-cleavage can occur at different 

sites, between 37 and 43 amino acids of the Aβ sequence. This produces Aβ 

proteins that differ in length and are more prone to aggregation and toxicity such as 

Aβ(1-42) (Haass and Selkoe, 2007). 

 

γ-Secretase has been found to cleave APP at the plasma membrane (PM) as well as 

in endosomal/lysosomal system (Pasternak et al., 2004, Kaether et al., 2006). 
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However, it has been shown the ε-cleavage differs in endosomes and PM (Fukumori 

et al., 2006), possibly due to different pH or lipid composition. Due to the complex 

morphology of neurons, little is known about subcellular site of γ-secretase 

processing (Haass et al., 2012). γ-secretase is present in synapses and distal axons 

(Frykman et al., 2010) but the precise site of processing by both β-, and γ-secretases 

has yet to be determined. 

 

1.3.3 α-secretase 

 

Anti-amyloidogenic processing of Aβ involves cleavage by proteases called α-

secretases. This enzyme cleaves within Aβ domain, between Lys16 and Leu17 

residues (Wang et al., 1991). This cleavage produces large APP amino-terminal 

domain (sAPPα) and C83. α-secretases are plasma membrane (PM)-bound 

proteases (Sisodia, 1992) and include several zinc metalloproteinases such as 

ADAM9, ADAM10, TACE/ADAM17 and ADAM19 (Allinson et al., 2003). However, 

studies suggest that in neurons the main α-seretase is ADAM10 (Kuhn et al., 2010) 

and its expression has been found throughout the cortex and hippocampus 

(Marcinkiewicz and Seidah, 2000). Other substrates for α-secretase include Notch 

receptors, tumor necrosis factor α, cadherins and IL-6 receptor. Due to the wide 

variety of α-secretase substrates cleavage is considered to be sequence 

independent and depends upon the proteins α-helical conformation as well as the 

distance of the hydrolyzed bond from the membrane (Sisodia, 1992). 

 

In neurons the predominant pathway for processing of APP appears to be the 

amyloidogenic pathway due to higher expression of BACE1, whilst in other cells the 

non-amyloidogenic pathway dominates (Haass et al., 2012). However, neuronal 

overexpression of ADAM10 reduces amyloidogenic processing of APP and Aβ 

production (Postina et al., 2004).  
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APP processing via amyloidogenic or anti-amyloidogenic pathways can be 

modulated by activation of receptors such as serotonin/5-hydroxytrypamine (5-HT4) 

receptor, metabotropic glutamate receptors as well as muscarinic acetylocholine 

receptors (Allinson et al., 2003). Signalling downstream of these receptors regulates 

sAPPα and Aβ secretion via intermediates that include protein kinase C, inositol 

1,4,5-triphosphate and cytosolic calcium (Allinson et al., 2003).  

 

1.4 Biosynthesis and trafficking 

 

APP undergoes post-translational modifications during its transit from the ER to PM. 

However, only a small number of APP molecules reach the PM (~10%), whilst the 

majority localizes to the Golgi apparatus and trans-Golgi network (TGN) (Haass et 

al., 2012). Once APP reaches the PM it can be processed by α- and γ-secretases. 

APP that is not cleaved immediately, is internalized as it contains “YENPTY” 

internalization motif near its carboxy-terminal region (Lai et al., 1995). Once 

internalized, APP is delivered to endosomes (Haass et al., 2012).  

 

It has been shown that in non-neuronal polarized cells APP is targeted to the 

basolateral side of the cell (Haass et al., 1994). Secretases are also differentially 

sorted, with BACE1 being targeted to the apical surface (Capell et al., 2002) and 

ADAM10 being targeted basolaterally (Wild-Bode et al., 2006). γ-secretase has been 

found on both apical and basolateral surfaces (Capell et al., 2002). This suggests 

that Aβ generation is markedly reduced in polarized cells (Capell et al., 2002). 

However, it has been found that the Swedish mutation that occurs just before BACE1 

cleavage site (Fig. 1.2) affects the sorting of APP. The Swedish mutant version of 

APP when expressed in the polarized MDCK cell line was sorted to the apical 

surface, increasing both sAPPβ and Aβ generation (De Strooper et al., 1995). 
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Neuronal cells are highly polarized into soma, axons and dendrites and each of these 

compartments has different physiological functions (Haass et al., 2012). A complex 

system of microtubules, kinesin and dynein motor proteins and sorting signals 

ensures a highly controlled delivery of specific proteins to different compartments in 

neurons (Haass et al., 2012) and disturbances in this system has been previously 

linked to AD (Morfini et al., 2009).  

 

Polarized trafficking of APP in neurons is poorly understood. In the soma the 

trafficking of APP appears to be similar as in nonneuronal cells. APP is transported 

from ER to Golgi and then to the TGN. However, once APP leaves the TGN it is then 

transported to axons and dendrites in post-Golgi transport vesicles (Kins et al., 

2006). This delivery relies upon the use of the fast axonal transport system (Koo et 

al., 1990). In contrast to non-neuronal cells, in neurons the basolateral sorting signal 

in APP sequence appear to have no known function.  

 

1.5 Genetics of familial Alzheimer’s Disease 

 

Investigation into the inherited forms of AD has provided insights into the processes 

and genes associated with this disease. AD is inherited in the autosomal dominant 

fashion and accounts for about 5-10% of all AD cases (Selkoe, 2001). However, it is 

believed that the majority of sporadic AD patients have genetic determinants which 

could predispose them to the disease as opposed to directly causing it. Very often 

these two forms of AD are indistinguishable from each other, except for the earlier 

onset of the diseases in the familial AD. Presently, inherited alterations in four genes 

have been credibly linked to increases in the production and/or the cerebral 

deposition of the Aβ peptides - APP, PS1, PS2 and ApoE (Selkoe, 2001). 
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Families carrying missense mutations in the APP gene generally have an early onset 

of the disease before the age of 65. Some missense mutations in APP affect 

cleavage sites and are located either immediately before the β-secretase site, or just 

after the α-secretase or γ-secretase cleavage sites (Fig. 1.2). Mutations at the amino 

terminus of the Aβ region that affect the β-secretase site (such as the Swedish 

mutation) increase the production of Aβ(1-42) and Aβ(1-40) by favoring cleavage by 

β-secretase as opposed to α-secretase (Citron et al., 1992). Mutations affecting the 

γ-secretase site (located just beyond the carboxyl terminus of Aβ) such as Austrian, 

Iranian, London or Florida mutations selectively enhance the production of Aβ 

species ending at residue 42 which aggregate more rapidly (Selkoe, 2001). 

Mutations such as Arctic (Nilsberth et al., 2001) or Dutch (Levy et al., 1990) which 

are found in mid region (Fig. 1.2), affect the sequence of Aβ and were found to 

change its structure, and thus increase its aggregation (Haass et al., 2012). 

 

Missense mutations in the presenilin genes are the most common cause of familial 

AD. They cause the earliest and most aggressive forms of AD with early symptoms 

showing at the age of 50 and death of patients in their 60s. Presently 75 missense 

mutations have been identified in the presenilin1 gene which is located on 

chromosome 14, while only 3 in presenilin-2 gene on chromosome 1 (Selkoe, 2001). 

Mutations in the presenilins leads to a 1.5 – 3-fold increase in the number of plaques 

compared to sporadic cases of AD (Lemere et al., 1996). 

 

e4 allele of apolipoprotein E (ApoE4) was discovered in human cerebrospinal fluid as 

a protein that binds immobilized Aβ peptides. The inheritance of one or two e4 alleles 

of ApoE increases the probability of developing AD and results in an earlier mean 

age of onset than in subjects carrying e2 and or e3 alleles (Corder et al., 1993). The 

mechanism by which ApoE4 interacts with Aβ is not known. It is possible that this 
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isoform somehow enhances the deposition of Aβ or affects its clearance leading to 

increased numbers of plaques in the brain (Castellano et al., 2011).  

 

1.6 Risk factors for late onset Alzheimer’s Disease and treatments 

 

The primary risk factor for Alzheimer’s disease and most forms of dementia is 

advanced age. After the age of 65 the prevalence of disease doubles every five 

years (International, 2009). 

 

Late-onset Alzheimer’s disease (LOAD) is also associated with genetic factors. One 

of the biggest genetic factors discovered is the ApoE4, where one allele results in a 

2.5-fold increase in risk, whilst two alleles cause a 16-fold increase.  

 

Results from four large genome-wide association studies (GWAS) have discovered 

nine novel loci associated with the late-onset form of the disease. These include 

clusterin (CLU), phosphatidylinositol-binding clathrin assembly protein (PICALM), 

complement receptor 1 (CR1), bridging integrator 1 (BIN1), ATP-binding cassette 

transporter (ABCA7), membrane-spanning 4-domains subfamily A (MS4A cluster), 

CD2-associated protein (CD2AP), sialic acid-binding immunoglobulin-like lectin 

(CD33) and ephrin receptor A1 (EPHA1) (Harold et al., 2009, Lambert et al., 2009, 

Seshadri et al., 2010, Naj et al., 2011, Hollingworth et al., 2012). These ten genes 

have been found to be associated with three biological pathways, which include; 

immune system function (CLU, CR1, ABCA7, MS4A cluster, CD33, EPHA1), 

cholesterol metabolism (APOE, CLU, ABCA7) and synaptic dysfunction and cell 

membrane processes (PICALM, BIN1, CD33, CD2AP, EPHA1) (Morgan, 2011).  
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Figure 1.2 Representative APP mutations. Reproduced from Debby Van Dam & 
Peter Paul De Deyn (2006) 

 

 

 

 

 

 



	  
	  

31	  

In addition to genetic factors, some epidemiological studies also suggest that 

environmental factors such as education or head injury may also be involved in the 

onset of Alzheimer’s Disease (International, 2009). 

 

No treatments are currently available that could cure, or slow down or prevent the 

progressive course of dementia. Treatments available are at best partially effective, 

as they can only ameliorate the symptoms of the disease to some extent 

(International, 2009). The scarcity of effective treatments could be due in part to lack 

of realistic or relevant models of the disease which translate into a limited 

understanding of the cellular processes that are at the root of the early stages of the 

disease. 

 

1.7 Mitoenergetics and oxidative stress in Alzheimer’s Disease 

 

Decreased brain metabolism is a feature of AD that is present before the onset of 

clinical symptoms and cognitive decline. Emerging evidence from studies on 

mitochondrial function, demonstrate changes in activities of enzymes involved in 

oxidative phosphorylation and TCA cycle in AD. In addition, mutations in mtDNA and 

changes in morphology of mitochondria may be responsible for the apparent 

hypometabolism and oxidative stress that is seen in the brains of AD individuals. 

 

1.7.1 Mitochondria 

 

Mitochondria are essential in many cellular processes, which include energy 

metabolism, oxidation of fatty acids, calcium homeostasis, apoptosis and cell 

signalling (Anandatheerthavarada and Devi, 2007). As neurons have a high-energy 

demand, mitochondria are crucial for their functioning, especially at the synapses. 

Synapses are enriched with mitochondria and by producing ATP and sustaining 
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calcium homeostasis play an important role in neurotransmission 

(Anandatheerthavarada and Devi, 2007).  

 

1.7.2 Intracellular Aβ 

 

Many studies have focused on the intracellular Aβ and have revealed that the 

majority of intracellular Aβ is the 1-42 form (Gouras et al., 2000), which is mainly 

produced within membranes such as the plasma membrane (Kaether et al., 2006), 

the secretory pathway (Khvotchev and Sudhof, 2004) or endosomal compartments 

(Pasternak et al., 2004). However, due to the orientation of APP and the secretases 

involved in its cleavage it has been difficult to explain the presence of Aβ in the 

cytosol. Some studies have shown that Aβ integrates into lipid membranes (Arispe et 

al., 1993) which can lead to a loss of membrane integrity in endosomal 

compartments and the subsequent leakage of Aβ into the cytosol (Yang et al., 1998). 

 

1.7.3 Mitochondria in AD 

 

In early AD, Aβ induces oxidative stress which is associated with mitochondrial 

dysfunction (Manczak et al., 2006). Both APP and Aβ have been found within 

mitochondrial membranes where they can block transport of nuclear-encoded 

proteins. Aβ has also been shown to affect the electron-transport chain (ETC) but it 

also binds to mitochondrial proteins ultimately causing an increase in ROS 

production and mitochondrial damage (Reddy and Beal, 2008).  It has been 

suggested that mitochondrial dysfunction, low ATP production and oxidative damage 

at the synapses leads to cognitive decline in AD patients (Reddy and Beal, 2008). 
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1.7.4 Aβ and APP inside mitochondrial membranes and matrix 

 

Mitochondria require a large number of proteins for physiological functioning and 

unlike other organelles, contain their own genome. Mitochondrial DNA (mtDNA) only 

codes for 13 polypeptides which are a part of the ETC (Anandatheerthavarada and 

Devi, 2007). Hence, mitochondria depend upon proteins encoded by the nuclear 

genome. It has been shown that about 1500 nuclear-encoded polypeptides are 

transported into mitochondria under normal, physiological conditions (Gabaldon and 

Huynen, 2004). This transport is tightly regulated and in most cases requires 

functional outer and inner-membrane import channels (Anandatheerthavarada and 

Devi, 2007).  

 

An important feature of the proteins that are targeted to mitochondria, is that they 

need to be in an unfolded conformation for the translocation to occur. Translocation 

of proteins to inner membrane and matrix also requires ATP and functional 

mitochondrial membrane potential (Anandatheerthavarada and Devi, 2007).    

 

Many studies have shown the presence of APP and Aβ within mitochondrial 

membranes (Anandatheerthavarada et al., 2003, Devi et al., 2006, Manczak et al., 

2006). Anandatheerthavarada et al. (2003) used in vitro mitochondrial-import and in 

vivo neuronal-expression studies to first demonstrate that both endogenous and 

ectopically expressed wild-type and Swedish APP695 localize to the plasma 

membrane and mitochondria of human HCN-1A neurons. Additionally, it was shown 

that the mitochondrial APP is orientated so that the NH2-terminal faces inside the 

mitochondria while COOH-terminal faces the cytosol and that APP is in contact with 

mitochondrial inner and outer translocase proteins. In the same study, the authors 

demonstrated that the acidic domain (sequence 220–290 of APP) causes 

transmembrane arrest with the 73-kD portion of COOH-terminal facing the 
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cytoplasmic side. Subsequent studies have confirmed this orientation of 

mitochondrial APP (Park et al., 2006).  

 

A study on human brain tissue has also shown a significant increase in full-length 

and C-terminal truncated (lacking Aβ domain) APP accumulation in the mitochondria 

of AD patients in comparison with aged-matched controls (Devi et al., 2006). 

Similarly Aβ has also been found inside mitochondria in neuronal cultures (Manczak 

et al., 2006), transgenic mice (Caspersen et al., 2005, Manczak et al., 2006) and 

human AD brains (Lustbader et al., 2004).  

 

APP arrest across mitochondrial import channels leads to inhibition of the transport of 

nuclear-encoded cytochrome c oxidase subunits IV and Vb. These findings were 

associated with a decrease in cytochrome c oxidase activity as well as increased 

levels of H2O2. (Devi et al., 2006). These results were also in line with previous in 

vitro studies on HCN neuronal cells, where accumulation of APP695 in mitochondria 

was linked to a decrease in mitochondrial membrane potential, ATP levels and 

mitochondrial cytochrome c oxidase activity. 

 

It is still unclear whether Aβ accumulates inside the mitochondrial matrix or 

exclusively in the membrane compartments (Muirhead et al., 2010). Walls et al. 

(2012) have shown that Aβ may be associated with the matrix as it co-localized with 

matrix chaperone Hsp60. Aβ has also been found to interact with other mitochondrial 

matrix proteins such as Abeta-binding alcohol dehydrogenase (ABAD) which suggest 

its localization in the matrix (Lustbader et al., 2004). However, Aβ has not been 

detected in the mitochondrial matrix on its own. One of the possible explanations 

could be the presence of mitochondrial proteinases which could degrade Aβ such as 

PreP or IDE (Qiu et al., 1998, Falkevall et al., 2006). Other studies also found that in 
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rats, mitochondrial Aβ is transported via the translocase of the outer membrane 

(TOM) and localizes in the mitochondrial cristae (Hansson Petersen et al., 2008).  

It is also not understood whether Aβ is produced locally in mitochondria or imported 

from the cytosol. At present evidence supports both possibilities (for review see 

(Muirhead et al., 2010) and requires further investigation. 

 

To summarize, mutant APP and/or Aβ can enter mitochondria and interact with 

mitochondrial proteins, disrupt ETC, increase ROS production and inhibit generation 

of ATP (Reddy and Beal, 2008). 

 

1.7.5 Aβ interactions with mitochondrial proteins 

 

The most well characterized protein interacting with Aβ in mitochondria is Abeta-

binding alcohol dehydrogenase (ABAD). This protein has been previously found in 

ER and mitochondria and is expressed in all tissue types (Yan et al., 1997). ABAD is 

an enzyme which catalyzes reduction of aldehydes and ketones as well as the  

oxidation of alcohols and has a wide range of diverse substrates (Muirhead et al., 

2010). In mitochondria, it is believed to have a function in energy production and 

homeostasis, particularly during the third step of beta-oxidation of fatty acids (He et 

al., 1998). This makes ABAD important during glucose deficiency, where there is a 

need for other energy sources (Du Yan et al., 2000). ABAD was also found to protect 

against neurodegeneration in mouse models of ischaemic stress (Du Yan et al., 

2000) or from the loss of dopaminergic neurons in mice treated with MPTP (Tieu et 

al., 2004). 

 

Both Aβ(1-42) and Aβ(1-40) have been found to interact with ABAD (Lustbader et al., 

2004) and inhibit its activity (Yan et al., 1999) and it has been demonstrated that the 

residues 13-22 of Aβ are critical for this inhibition (Oppermann et al., 1999). Inhibition 
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of ABAD requires micromolar concentrations of Aβ even though binding occurs at 

nanomolar concentrations (Yan et al., 1997). This suggests that aggregation of Aβ 

might be an important aspect of inhibition. However, the cytotoxic effects of Aβ are 

not simply a result of ABAD inhibition. Overexpression of ABAD in its inactive form in 

the presence of Aβ did not increase its toxicity in comparison to Aβ alone (Yan et al., 

1999). This suggests a downstream effect mediated by the active enzyme, which is 

bound to Aβ (Yan et al., 1999). This hypothesis has been supported by studies on 

overexpression of ABAD and Aβ, which resulted in increased DNA fragmentation and 

apoptosis (Yan et al., 1997, Yan et al., 1999) as well as increased levels of hydrogen 

peroxide, decreased mitochondrial function, decreased glucose utilization and ATP 

production and ultimately cell death (Takuma et al., 2005). In addition, inhibition of 

ABAD-Aβ binding has also been found to protect against mitochondrial dysfunction 

and improve spatial memory (Yao et al., 2011). 

 

A second protein that binds to Aβ in mitochondria is cyclophilin D (CypD). It is a 

peptidylprolyl isomerase F that is found in mitochondria where it can translocate to 

the inner mitochondrial membrane during opening of the mPTP (mitochondrial 

permeability transition pore) during oxidative stress (Connern and Halestrap, 1994). 

mPTP has been shown to play a central role in both necrotic and apoptotic cell death 

(Leung and Halestrap, 2008) and some studies have demonstrated that CypD 

deficiency protects against Ca2+ and oxidative stress induced cell death (Schinzel et 

al., 2005). 

 

CypD has been found to bind Aβ with Aβ(1-42) with greater affinity than Aβ(1-40) and 

increased levels of CypD have been reported in AD brains (Du et al., 2008). The 

interaction of Aβ and CypD leads to an increase in ROS production, which in turn 

induces translocation of CypD to the inner mitochondrial membrane and mPTP 

opening and cell death (Du et al., 2008). CypD deficiency in AD transgenic mice 
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protects against Aβ and oxidative stress-induced death and improves learning and 

memory (Du et al., 2008). 

 

1.7.6 Mitochondrial bioenergetics in AD 

 

There is increasing evidence suggesting that mitochondrial bioenergetics and brain 

metabolism affect processing of APP (Gabuzda et al., 1994, Gasparini et al., 1997). 

One of the functions of mitochondria is the oxidation of reduced NADH to NAD+. This 

process is important in other bioenergetics pathways such as glycolysis which 

require NAD+ (Selfridge et al., 2013). NADH is produced during glycolysis, the TCA 

cycle and other reactions is oxidized by complex I through electron donation. 

Additionally, the malate-aspartate shuttle transfers NAD+ reducing agents into 

mitochondria. A number of studies have demonstrated that during mitochondrial 

dysfunction the ratio of NAD+/NADH decreases (Braidy et al., 2011, Stefanatos and 

Sanz, 2011).  

 

NAD+ is utilized or plays an important role in the activation of many enzymes 

including sirtuins. The role of sirtuins in neuroprotection and longevity has been 

intensively studied and they have been considered as a therapeutic targets in AD 

(Lombard et al., 2011, Zhang et al., 2011). Sirtuin 1 has been found to have a role in 

APP processing. It upregulates expression of ADAM10, which encodes α-secretase, 

and co-activates the retinoic acid receptor β (RARβ), which is a regulator of ADAM10 

transcription (Donmez et al., 2010). It has also been shown that in AD mice 

overexpressing SIRT1 there is a reduction in amyloid plaque and Aβ(1-42) burden as 

well as increased levels of α-secretase . On the other hand deletion of SIRT1 results 

in increased mortality at 3-5 months of age. It has been concluded that by decreasing 

the NAD+/NADH ratio and reducing the amount of NAD+ available to sirtuin 1, 
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mitochondrial dysfunction could lead to decreased levels of α-secretase and allow β-

secretase cleavage and production of Aβ(1-42) (Selfridge et al., 2013). 

 

The electron transport chain (ETC) is located in the inner mitochondrial membrane 

and is made up of five complexes (I-V). These complexes consist of multiple subunits 

and all contain subunits encoded by nuclear and mtDNA, with the exception of 

complex II which is only encoded in the nuclear genome (Tomitsuka et al., 2003). All 

five complexes show impairment in AD patients (Mao and Reddy, 2011). Parker et al. 

(1990) demonstrated a reduction in the activity of in cytochrome c oxidase (COX, 

complex IV) in platelets from AD patients, which was later confirmed in AD brains 

(Kish et al., 1992). Since then, COX activity has been shown to be systematically 

reduced in AD (Curti et al., 1997, Wong-Riley et al., 1997, Bosetti et al., 2002). 

However, it is still unclear whether a decrease in COX activity is a result of a genetic 

mutation or toxic insults such as Aβ (Selfridge et al., 2013).  

 

Cytochrome c oxidase has 13 subunits, 10 of which are encoded in the nuclear 

genome and 3 by mtDNA. Swerdlow et al. (1997) used a cybrid approach to 

investigate the mtDNA effect. They isolated platelets from AD patients and controls 

and fused them with human NT2 cells, which were initially depleted of their 

endogenous mtDNA. This study revealed a decrease in the activity of COX and 

mitochondrial membrane potential, as well as an increase in free radicals and 

oxidative stress and activation of apoptosis pathways. Since then other studies using 

cybrid lines with mitochondria from AD patients have shown similar results (Khan et 

al., 2000, Cardoso et al., 2004).  

 

COX inhibition has been shown to reduce non-amyloidogenic APP processing 

(Gabuzda et al., 1994, Gasparini et al., 1997) by preventing α-secretase cleavage 

and allowing β-secretase action. Free radicals have been found to further activate β-
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secretase. However, results from studies on transgenic AD mice expressing mutant 

APP and presenilin 1, but lacking COX in neurons, have shown significantly fewer 

amyloid plaques, reduction in Aβ(1-42) levels and reduced oxidative stress (Fukui et 

al., 2007). This suggests that COX impairment may not be responsible for Aβ 

accumulation in AD brain. 

 

Interestingly, a study on APOE4 carriers demonstrated lower COX activity which was 

low even in the absence of fibrillar Aβ suggesting that either a reduction in COX 

activity appears early in the disease or that mtDNA contributes to it.  

 

The changes in metabolism associated with Alzheimer’s Disease are discussed in 

further detail in section 4.1 

 

1.7.7 Ageing and mitochondria 

 

Ageing is considered the primary risk factor for AD. Mitochondria have long been 

thought to contribute to ageing via the accumulation of mutations in mtDNA and an 

increased production of ROS (Lin and Beal, 2006).  

 

Ageing phenotypes have been linked to mtDNA changes and tissues from aged 

individuals have been shown to have lower respiratory function (Kujoth et al., 2006). 

An increase in the number of point mutations and deletions has also been found in 

cells from aged individuals and evidence has shown that 8-hydroxy-2-

deoxyguanosine (damaged DNA) is also increased (Kujoth et al., 2006). It has been 

suggested that mutations in mtDNA that are involved in ageing phenotypes could 

also contribute to AD (Reddy and Beal, 2008).  
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Age related changes in mitochondria include a decline in ETC function. The activity 

of complex I and IV decreases whilst complex II is preserved (Navarro and Boveris, 

2007). In addition, mitochondrial mass also appears to be affected (Barrientos et al., 

1997) and oxidative stress markers such as protein carbonylation, lipid oxidation and 

mtDNA oxidation increase (Boveris and Navarro, 2008). Oxidation of mtDNA makes 

it very susceptible to mutation as oxidized bases can be misread during replication 

(Ozawa, 1997). Oxidative stress could be a major contributor to the high mutation 

rate of mtDNA which is 10 times the rate of that observed in nuclear DNA (Mecocci et 

al., 1993). 

 

Mitochondrial function and dynamics change with advancing age.  These changes 

affect bioenergetics and metabolism which in turn increase Aβ production and thus 

contribute to the development of AD. 

 

1.7.8 mtDNA in AD 

 

Studies on ageing and mitochondrial function have led to the mitochondrial cascade 

hypothesis of sporadic Alzheimer’s Disease (Swerdlow and Khan, 2004). It proposes 

that a person’s genes determine mitochondrial function and durability, which in turn 

determine how mitochondrial functions change with age and as a result initiate AD 

(Swerdlow and Khan, 2004). As this hypothesis is based on inheritance of mutations, 

the possibility that maternally inherited mtDNA may influence AD has been 

investigated. However, the results are not conclusive. Some studies have shown that 

there is no evidence of maternally-inherited AD risk factor or that it is in fact 

paternally-inherited (Ehrenkrantz et al., 1999). Whereas other studies however have 

demonstrated a strong link between maternal inheritance and AD risk (Edland et al., 

1996). One particular study investigating COX activity in subjects with an AD-affected 

mother, found a 30% decrease in COX activity in comparison to patients with an AD-
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affected father or no history of the disease (Mosconi et al., 2011). Unfortunately, 

these studies cannot directly prove that mtDNA is a risk factor, although they indicate 

that it should be further investigated (Selfridge et al., 2013). 

 

1.7.9 Oxidative stress in AD 

 

The brain is especially sensitive to oxidative damage due to its high lipid content and 

high oxygen metabolism as well as low antioxidant defences (Floyd, 1999). Oxidative 

damage has been found to occur early in AD before Aβ depositions and plaque 

pathology appear (Nunomura et al., 2001). Several studies have demonstrated 

oxidized RNA, nuclear and mtDNA, lipids and proteins in brains of AD patients 

(Mecocci et al., 1994, Sayre et al., 1997, Nunomura et al., 1999). The mechanisms 

underlying the increase in ROS production have been extensively studied and are 

explained in more detail in section 4.1. Oxidative stress was also shown to increase 

the expression of β-secretase and in turn production of Aβ(1-42) by activation of c-

Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) 

(Tamagno et al., 2005) as well as increase tau phosphorylation through activation of 

glycogen synthase kinase 3 (GSK-3) (Lovell et al., 2004). Further investigations have 

shown that activation of JNK leads to upregulation of APP, BACE1 and presenilin 1 

through demethylation of their promoters and histone deacetylation (Guo et al., 

2011).  

 

1.8 Animal models of AD 

 

Alzheimer’s disease is unique to humans. However, it is very difficult to study the 

disease in patients as we do not understand how or when the disease starts. To 

overcome this, a wide range of animal models of the condition has been developed 

and used to study its mechanisms and progression and to develop treatments. Such 
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models of AD can be broadly split into three types: natural, genetic and interventional 

models (Laurijssens et al., 2012).  

 

Natural models include polar bears, dogs, cats, goats, sheep and some of the non-

human primates such as mouse lemurs or rhesus monkeys. These animals 

spontaneously develop some of the pathology related to AD (Van Dam and De Deyn, 

2011). For example, dogs have recently been used as AD model due to the similarity 

in canine and human brain ageing. An additional advantage, is the fact that the Aβ 

sequence is conserved between dogs and humans (Johnstone et al., 1991). Dogs 

have been shown to develop Aβ and diffusible plaque depositions and the extent of 

the Aβ depositions correlates with cognitive impairment (Laurijssens et al., 2012). 

 

Progress in the understanding of the genetic factors that contribute or cause AD have 

resulted in many attempts to develop animal models that overexpress genes, which 

are involved in the familial forms of AD. Transgenic (tg) mouse models are widely 

used to study AD and remain the model of choice for numerous studies (Duff and 

Suleman, 2004). Mice have been extensively used as transgenic models and have 

had an important influence on our understanding of mechanisms involved in Aβ 

production, deposition and clearance. Rodent models have been of a great value for 

studying the disease and mice are relatively easy and cheap to maintain, have short 

life spans and are easy to manipulate genetically. However, their life span makes the 

relevance of the model to diseases of ageing questionable.  

 

In addition, the development of human AD may not be faithfully reflected in the 

mouse models as mice overexpressing APP were found to develop plaques if the 

level of APP is 8-fold over the normal APP level. In comparison, humans with only a 

50 per cent increase in APP (individuals with Down syndrome that have three copies 
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of APP gene) have a very rapid progression of the disease (Duff and Suleman, 

2004). 

 

Due to the complexity of the disease it has been difficult to create an ideal mouse 

model which mimics all aspect of the pathology of the human disease.  Mouse 

models fail to convincingly demonstrate the neuropathological hallmarks of AD 

(Dodart et al., 2002a). Mutant animals either develop plaques (APP or PS mice 

mutants) but no tangles, whereas tau mutants show the presence of tangles but no 

plaques. Several laboratories have created double APP/PS tg mice which showed 

accelerated neuropathology but still have not demonstrated the multiple 

characteristics of AD (Duff and Suleman, 2004). A triple transgenic mouse 

(APP/PS/Tau) was created by Oddo et al. (2003). This model develops extracellular 

plaques as well as neurofibrillary tangles and demonstrates impaired synaptic 

plasticity. This model has been successfully used in studies on inflammation, 

oxidative stress and mitochondrial function in AD (Laurijssens et al., 2012). 

Nevertheless the progressive loss of neurons in hippocampus and specific cortical 

regions is not present in many of the transgenic models, which is a major limitation of 

these models. 

 

Another genetic model often used in studies of AD is Drosophila melongaster. This 

fruit-fly has a well organised brain and despite the differences in anatomical 

organisation to human brain, it has a similar basic cell biology (Sang and Jackson, 

2005). However a major limitation is that hippocampal functions that are impaired 

early in the AD cannot be studied in invertebrates. 

 

Interventional animal models are based on the introduction of substances into the 

brain or the induction of lesions in specific brain regions (Laurijssens et al., 2012). 

These models involve introduction of Aβ peptide into the brain of e.g. rat (Nakamura 
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et al., 2001) or rhesus monkey (Li et al., 2010). However, despite the fact that some 

of the clinical symptoms can be induced in animals, these models lack resemblance 

to AD pathology (Duyckaerts et al., 2008). 

 

1.9 In vitro models of AD 

 

In addition to difficulties in modelling the changes described above in patients as well 

as in vivo, in vitro models often lack the complexity to efficiently recapitulate the 

interactions between brain cells during disease. Such models should at minimum be 

human and be able to produce both neurons and astrocytes individually as well as in 

co-culture. Both cell types should be functional, demonstrating activities such as 

action potential firing as well as responses to both neurotransmitters and 

gliotransmitters and should demonstrate the metabolic coupling that is hypothesised 

to occur in the brain. 

 

Currently many in vitro cell culture systems are used for research and these include 

primary cultures of dissociated or reaggregated neurons and glia, clonal cell culture 

lines and stem cells. 

 

1.9.1 Transformed cells 

 

Transformed cells are continuous cell lines which are derived from neuroblastomas, 

gliomas and pheochromocytomas. Transformed cell lines usually have a life span of 

about 50 divisions, however some have been immortalized. The major advantages of 

transformed cells include their homogeneity and the ease with which they are grown 

and maintained in the laboratory. However, as these cells are derived from neoplastic 

tissue, they are abnormal and as such their similarity to in vivo phenotypes is 

questionable (Harry et al., 1998). 



	  
	  

45	  

A number of transformed cells have previously been used to model AD.  Such lines 

include neuronal (SH-SY5Y), astrocytic (U-373) and monocytic (THP-1) cells. A 

number of studies have utilised these cells to investigate the effect of Aβ on co-

cultures of either neuronal SH-SY5Y cells or astrocytic U373 as well as monocytic 

THP-1 (Klegeris and McGeer, 2001, Messmer and Reynolds, 2005).  

 

Other studies have combined the use of primary cell cultures and transformed cells 

such as human microglia isolated from temporal lobe tissue and the monocytic THP-

1 cell line in order to study the influence of cytokines on SH-SY5Y neuroblastoma 

cells (Klegeris and McGeer, 2005). 

 

Whilst these cells have provided important information about the effects of Aβ these 

cells are derived from neoplastic tissue and continue to divide in culturetheir similarity 

to in vivo phenotypes is questionable (Harry et al., 1998). 

 

1.9.2 Primary cultures 

 

Primary cultures are derived from dissociation of brain tissue. The plating efficiency 

and characteristics depend upon many factors including culture environment, type of 

tissue, and dissociation technique (Harry et al., 1998). One of the major 

disadvantages of primary culture is the accessibility of the tissue samples. 

Additionally, as the cells are fully differentiated and post-mitotic, it is not possible to 

expand them in culture. Additional risks include variability in the state of preservation 

of the source tissue and the risks of handling, in terms of communicable human 

neurological diseases, such as Kuru and Creutzfeld-Jakob disease.  

 

The majority of AD research is based on primary cell culture, which is mainly murine 

in origin, although in some cases human tissue has been used. Cells derived from 
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tissue samples from AD patients are probably the best source of information about 

the disease. However, such samples are not easy to obtain. In the UK several brain 

tissue resources (banks) have been established e.g. by the Medical Research 

Council, the Alzheimer's Society, the Alzheimer's Research UK and Brains for 

Dementia Research (BDR). Nevertheless there is currently a severe shortage of live 

brain tissue available for dementia research.  

 

1.10 Stem cell models of AD 

 

Human stem cells possess almost unlimited self-renewal capacity as well as potential 

to differentiate into any cell type. As such they provide an ideal model for the 

development of postmitotic cells of CNS. The therapeutic potential of stem cells has 

been extensively studied. Stem cells represent also a very dynamic system that 

would be useful for the identification of new molecular targets and the development 

of novel drugs, which can be tested in vitro for safety or to predict or anticipate 

potential toxicity in humans (Wobus and Boheler, 2005).  

 

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSC) 

derived from human patients with Alzheimer’s Disease or Down Syndrome are 

currently used to create models for investigation of Alzheimer’s Disease 

(Nikoletopoulou and Tavernarakis, 2012, Wang and Doering, 2012). hESCs have 

been shown to efficiently differentiate into functional neurons and glia in a similar way 

to in vivo development (Verkhratsky and Butt, 2013, Oberheim et al., 2006). 

However, the excitement and optimism surrounding hESCs has been steadily 

decreasing due to a number of ethical issues surrounding their use. However, recent 

developments in the development of iPS cells overcome any of the ethical issues 

faced by the use of hESC.  
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1.10.1 Induced pluripotent stem cells 

 

An important limitation in Alzheimer’s Disease research is the availability of live 

human, patient specific cells. However, the development of iPS cell technology 

makes it possible to study human CNS neuronal cells, that carry information from 

patients with specific mutations or disease (Wang and Doering, 2012).  

 

In most cases iPS cells are produced from primary fibroblasts cultured from a skin 

biopsy. The transduction of the fibroblasts with retroviruses encoding Oct4, Sox2, 

Klf4 and cMyc converts the cells into a pluripotent state (Takahashi and Yamanaka, 

2006). These reprogrammed cell lines appear to divide indefinitely and in theory can 

be differentiated into any cell type of the body. Thus iPS cells can be a source of 

patient specific neurons and glia and be used to created models of disease, 

platforms for drug screening as well as sources for potential cell therapies (Wang and 

Doering, 2012). As the progress in cell reprogramming is accelerating, different 

reprogramming approaches are being tested such as DNA integration-free delivery 

systems as well as different reprogramming factors (Okita et al., 2011). 

 

1.10.1.1 Differentiation 

 

Reliable protocols for differentiation of iPS cells into specific cell types are one of the 

challenges in the field of stem cells. In terms of modelling AD, the cells of interest 

include microglia, neurons and astrocytes. As glutamatergic and basal forebrain 

cholinergic neurons are believed to degenerate early in the disease these cells have 

been of great interest for scientists seeking to model AD.  

iPS cells have been found to readily differentiate into MAP2-positive neurons and 

GFAP-positive astrocytes. However, the cultures also contain a high percentage of 

uncharacterized cells (Israel and Goldstein, 2011). Many groups have focused on 
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differentiating iPS cells into specific neuronal subtypes. Dopaminergic neurons have 

been derived from iPS cells by a combination of SHH, GSK-3β inhibitor and FGF8 

treatments (Xi et al., 2012). In addition, recent studies on motor neurons have shown 

that functionally mature motor neurons can be differentiated from iPS cells by 

protocols involving RA and SHH (Karumbayaram et al., 2009). More recently iPS 

cells have also been directed into cortical fate by dual inhibition of SMAD signalling 

(Chambers et al., 2009) or RA-based multistep protocol (Shi et al., 2012). 

 

1.10.1.2 Modelling neurodegenerative diseases 

 

Disease-specific iPS cells have been successfully generated from a number of 

neurodevelopmental disorders including Rett syndrome, Fragile X syndrome, Down 

syndrome or Angelman syndrome (Wang and Doering, 2012). In addition, iPS cell 

lines have also been generated from inherited neurodegenerative disorders such as 

spinal muscle atrophy, amyotrophic lateral sclerosis, Huntington’s disease, 

Parkinson’s Disease as well as Alzheimer’s disease (Wang and Doering, 2012). 

 

Alzheimer’s disease research has focused heavily upon familial AD (FAD) patients. 

Indeed, iPS cells have been produced from patients with PS1 and PS2 mutations 

(Yagi et al., 2011). These cells were differentiated into neurons, characterized and 

were found to produce higher levels of Aβ(1-42). Aβ(1-42) secretion was blocked by 

a γ-secretase inhibitor which also shows that FAD derived iPS cells can be used as 

an effective model of AD. Other studies have produced iPS cells from patients with 

duplication of the APP gene (Israel et al., 2012). Neurons derived from these cell 

lines demonstrated increased levels of phospho-Tau and active glycogen synthase 

kinase-3β (aGSK-3β). Treatment of the cells with β-secretase inhibitors reduced the 

phospho-Tau and aGSK-3β levels. Neurons differentiated from iPS cells with PS1 

mutation demonstrated a partial loss of γ-secretase function which resulted in lower 
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levels of Aβ(1-40) and an increase in the ratio of Aβ(1-42)/Aβ(1-40) ratio (Koch et al., 

2012). 

 

iPS cells are a very promising platform for modelling neurodegenerative diseases. 

However, they also have some limitations. In cases of disease that is caused by 

known mutations, it is likely that iPS cells derived from these patients will recapitulate 

the phenotype of the disease. It has been shown that cortical neurons derived from 

iPS cells taken from Down syndrome patients, demonstrate  abnormal processing of 

APP and secretion of Aβ(1-42) peptide, which forms extracellular and intracellular 

insoluble aggregates (Oberheim et al., 2009). However, in the case of late-onset 

disease, patient derived iPS cells may not show typical brain pathology, such as 

Lewy bodies in PD or amyloid plaques in AD (Dolmetsch and Geschwind, 2011, Ming 

et al., 2011). Further research in this area may answer important questions as to the 

environmental/epigenetic impact on progression of the disease in these patients. 

 

1.10.1.3 Drug screening 

 

iPS cells could provide a highly desirable platform for discovery and testing of novel 

drugs (Wichterle and Przedborski, 2010, Ming et al., 2011, Wang and Doering, 

2012). However, to make this technology useful it is very important to validate the 

phenotypes of iPS cells, as well as the neurons and glia derived from them. Ensuring 

a uniform population of neurons and glia that will be essential for successful high-

throughput drug screening studies (Wang and Doering, 2012). 

 

1.10.1.4 Cell therapy 

 

In addition to their modelling potential, iPS cells could also provide a source of 

autologous cells for replacement therapies in patients with neurodegenerative 
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diseases. Studies have already been undertaken in animal models and early results 

are very promising e.g. improvement of behavioral symptoms in rat models of 

Parkinson’s Disease (Hargus et al., 2010). In addition, transplantation of glial cells for 

neuroprotection may be possible (Inoue, 2010). In the area of cell therapy there are 

also other challenges that have to be overcome before iPS cells can be successfully 

used. The use of oncogenic genes and retroviruses for cell reprogramming could 

increase the risk of cancer (Ming et al., 2011). However, as mentioned above other 

reprogramming strategies are under investigation. In addition, the purification of the 

specific cell type and improved differentiation protocols are also required. However, 

improved understanding of genetic mutations associated with the neurological 

disease and technologies to correct them is required before the cells could be used 

for replacement therapies (Wang and Doering, 2012). 

 

1.10.1.5 Accessibility 

 

A recent paper by Wray et al. (2012) presents a readily available resource of 

fibroblast cell lines with mutations linked to many different neurological disorders. 

New cell lines are being added to the fibroblast cell bank that has been created at the 

National Institute for Neurological Disorders and Stroke (NINDS) Repository at the 

Cornell Insitute for Medical Research. This initiative represents one of many that has 

been established in the past couple of years and demonstrates how quickly the field 

of iPS cells is progressing. 

 

1.10.2 NT2/D1 line 

 

One form of stem cell that has not been fully explored in the context of Alzheimer’s 

Disease is the NT2/D1 line.  This is a clonally derived embryonal carcinoma (EC) cell 

line, isolated from Tera-2 cells (Andrews et al., 1984), which after treatment with 
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retinoic acid can differentiate into several cell types, including neurons (Andrews, 

1984). 

 

Further studies have shown that NT2/D1 cells have the ability to differentiate into 

both neurons (NT2.N cells) and astrocytes (NT2.A) following treatment with retinoic 

acid and mitotic inhibitors. The presence of mature neurons was previously 

confirmed by the expression of markers such as Neurofilament (NF) and Microtubule-

associated protein 2 (MAP2) (Bani-Yaghoub et al., 1999). NT2.N cells were shown 

previously to possess TTX-sensitive Na+ channels (Rendt et al., 1989) and form both 

glutamatergic excitatory (71%) and GABAergic inhibitory (29%) functional synapses 

(Hartley et al., 1999). This cell line has been also shown to express APP, BACE and 

produce Aβ (Satoh and Kuroda, 2000, Wertkin et al., 1993). The presence of NT2A 

cells was confirmed by Cx43 and GFAP staining (Bani-Yaghoub et al., 1999). Further 

characterization of astrocytes derived from NT2/D1 cell line detected mRNA 

encoding glutamate transporters GLT-1/EAAT2 and GLAST/EAAT1 and the 

functionality of the transporters was confirmed (Sandhu et al., 2002). 

 

A recent report from my laboratory (Hill et al., 2012) has shown that NT2 derived 

neurons and astrocytes interact in co-culture. Investigation of NT2.A cells has shown 

that these cells exhibit glial cell type morphology and appropriate functional 

properties. In particular NT2.A has been found to respond to neuronal activity and 

exogenous neurotransmitters by calcium elevations and also demonstrate 

spontaneous calcium oscillations. Additionally, NT2.A cells generated calcium waves, 

which spread via gap junctions to neighbouring astrocytes in a purinergic dependent 

manner (Hill et al., 2012).  

 

The NT2/D1 cell line has previously been used to study AD, however most research 

has focused on pure neuronal cultures (Satoh and Kuroda, 2000, Turner et al., 1996, 
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Wertkin et al., 1993). As astrocytes have been shown to enhance neuronal survival 

as well as axonal growth and synaptogenesis, it is essential to include them in 

studies on neurological diseases. Additionally, increasing numbers of studies have 

highlighted the important role of astrocytes in the AD (Bushong et al., 2002, Colombo 

and Reisin, 2004). Thus research in this thesis was focused on co-cultures of 

neurons and astrocytes in order to better understand the interactions of the cell types 

in AD. The importance of NT2/D1 derived astrocytes in toxicity screening has 

previously been evaluated (Woehrling et al., 2010). In this study astrocytes appeared 

to support neurons through maintenance of ATP, GSH, mitochondrial membrane 

potential and control of ROS levels following toxic insult. As such it is essential to 

consider them in neurodegenerative research (Woehrling et al., 2010). 

 

As the majority of neurons in the brain are postmitotic it can be considered that the 

proposed co-culture model is more relevant to human CNS structure and function 

than the more commonly used continuous cell lines such as the SH-SY5Y 

neuroblastoma model (Woehrling et al., 2010). Additionally NT2/D1 cell line is 

relatively cheap to maintain and differentiate in comparison to other stem cell lines 

available. The differentiation process is also reproducible and faster than in iPS cells. 

Generation of iPS cells require up to 85 days with further differentiation into 

functional neurons for up to 8 weeks and into GFAP-positive astrocytes up to 3 

months. In comparison, NT2/D1 cells differentiate into co-cultures of functional 

neurons and astrocytes within 2 months. The easy access to the NT2/D1 cell line and 

the previously reported characterisation of the neurons and astrocytes derived from 

these stem cells, are an additional advantage. All these characteristics make the 

NT2/D1 stem cell line a good model to study neuronal and astrocytic interactions as 

well as neurological disease.  
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1.11 Aims and objectives of the study 

 

The aim of this PhD is to create a heterogeneous cellular model of the human 

nervous system for investigating the effects of Aβ on neurons and astrocytes.  

 

As one of the earliest changes in AD is related to changes in metabolism the NT2/D1 

derived neurons and astrocytes will be characterized, in terms of their metabolic 

coupling. The main focus of this part of the study is the astrocyte neuron lactate 

shuttle (ANLS) that has been shown to be involved in memory formation. ANLS has 

not been previously studied in vitro on a human stem cell derived model. As such 

one of the aims of this thesis is to establish whether NT2.D1 derived neurons and 

astrocyte co-cultures are metabolically competent and demonstrate functional 

metabolic coupling. NT2.N/A and NT2.A cells will be investigated for the expression 

of the main components of the ANLS model as well as functional characteristics 

consistent with their neuron-astrocyte metabolic coupling. This study will establish 

whether, stem cell derived astrocytes provide metabolic support to their neuronal 

counterparts, thus providing a human model to study this process and its relationship 

to neurodegeneration. 

 

The effects of chronic exposure of the NT2.N/A to Aβ(1-42) will be studied in order to 

determine its effects of cellular metabolism. Aβ(1-42). Preparations will be 

characterized in order to establish protocols to produce oligomers and also determine 

its aggregation over time in culture. Investigation of the effects of Aβ(1-42) will 

include changes in metabolic markers, gene expression, oxidative stress and 

functionality of astrocytes in terms of calcium responses. These experiments will be 

performed on a mixed NT2.N/A co-cultures as well as pure astrocytes (NT2.A) and 

primary cortical mixed neuronal and glial cultures, which will be used to compare this 

model to a widely accepted cell culture preparation. 
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Chapter 2: Amyloid-beta and Alzheimer’s disease  

2.1 Introduction 

 

2.1.1 Amyloid-beta – discovery and structure 

 

Aβ was first isolated from meningeal vessel walls and was partially sequenced in 

1984 (Glenner and Wong, 1984). This discovery eventually led to the amyloid 

hypothesis proposed by John Hardy and David Allsop (1991). In their original study, 

Glenner and Wong used the chaotropic salt guanidine hydrochloride to solubilize Aβ 

and then enriched it chromatographically (Glenner and Wong, 1984). The monomeric 

amyloid subunit ran as a ~4kDa band on SDS-PAGE gel. In this study Aβ was 

sequenced to residue 24 (Glenner and Wong, 1984).  

 

Many other labs have now independently isolated and sequenced amyloid from 

plaques from AD brains. Several papers have been published on the methods for 

isolation of amyloid plaques, which have been shown to be insoluble in many 

denaturants (Allsop et al., 1983). Masters et al. (1985), used a nonionic detergent 

extraction of brain, followed by a pepsin digestion, and sucrose density gradient 

fractionation to isolate the amyloid plaque core which was partially soluble in 10% 

sodium dodecyl sulphate (SDS) and 2-mercaptoethanol (BME) and fully soluble in 

70% formic acid. The solubilized core was shown to run at ~4 kDa but also at ~8, 12, 

and 16 kDa, demonstrating for the first time the aggregation of the monomeric Aβ 

into SDS-stable oligomers (Masters et al., 1985). A subsequent study by Selkoe et al. 

(1986) estimated the protein content of a single plaque to be 60 – 130 pg. The first 

biochemical analyses of Aβ isolated from meningeal vessels and cerebral plaques 

showed that in both cases the amyloid subunit was a hydrophobic protein of about 

4kDa. It was also shown to have a unique sequence and to be prone to aggregation 

into dimers, trimmers and tetramers, as well as higher oligomers and amyloid fibrils. 
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The complexity of Aβ aggregation is determined by the microenvironment in which it 

is produced. It has been shown that small amounts of Aβ can be produced in the ER 

and other organelles in the secretory pathway. However, the majority of Aβ is 

produced from APP that has been trafficked to the cell surface and is then 

internalized and processed by β- and γ-secretases in the acidic environment of 

endosomes (Haass et al., 2012).  

 

As mentioned above, Aβ has been shown to self-associate and can form a range of 

different aggregated forms, from dimers to fibrils (Powers and Powers, 2008). The 

biochemical properties of Aβ however, vary depending on the residues of the 

hydrophobic carboxyl terminus. Aβ(1-40) is the major species of Aβ that is produced 

in the brain and is far less prone to aggregation than Aβ(1-42). 

 

It was initially proposed that Aβ fibrils mediated Aβ toxicity. However, more recent 

data has demonstrated the toxicity of non-fibrillar, soluble oligomers of Aβ (Shankar 

and Walsh, 2009). Indeed, analysis of AD brains has shown that levels of oligomers 

correlate more strongly with the degree of cognitive impairment and synaptic loss 

than amyloid plaques (Lue et al., 1999, Wang et al., 1999).  

 

2.1.1.1 Aβ fibrils 

 

The molecular structure of Aβ fibrils has been extensively studied. Aβ fibrils have a 

cross-β structure where individual β strands are orientated perpendicular to the long 

axis of the fibril (Ahmed et al., 2010). The Aβ(1-42) unit within the fibril has a U-

shaped structure with two ß-strands connected and Phe19 in contact with Leu34 

(Ahmed et al., 2010). 

 

Kinetic studies of Aβ suggest that its aggregation is characteristic of nucleation-
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dependent polymerization. The process has been shown to start with a lag phase, 

followed by elongation into mature fibrils (Hellstrand et al., 2010a). Studies on 

synthetic Aβ(1-40) and Aβ(1-42) fibrils have demonstrated similar protofilament 

structure with approximately 2.5 peptide per cross-β repeat per protofilament 

(Schmidt et al., 2009). 

 

The conversion of α-helices within normally soluble protein into β-sheet enriched 

aggregates appears to be common in several neurodegenerative diseases (Masters 

and Selkoe, 2012).  

 

2.1.1.2 Aβ oligomers 

 

Over the past decade studies on Aβ have moved from an initial focus on fibrils and 

plaques to the smaller, soluble oligomers which demonstrate toxic effects on 

membranes including synapses (Masters and Selkoe, 2012).  

 

The presence of SDS-stable dimers and trimers in the soluble fractions from isolated 

plaques (Funato et al., 1999, Enya et al., 1999), suggests that these SDS-stable 

oligomers are the building blocks of insoluble amyloid plaques and could mediate 

neuronal dysfunction (Moechars et al., 1999, Mucke et al., 2000). Evidence 

supporting the toxicity of soluble, oligomeric Aβ comes from studies on transgenic 

PDAPP (Aβ precursor protein (APP) mini-gene driven by a platelet-derived (PD) 

growth factor promoter) mice where memory deficits were reversed by a single 

intraperitoneal injection of anti-Aβ antibody (Dodart et al., 2002b). As amyloid 

deposits were not affected, it was suggested that the antibody was acting only on 

soluble oligomers of Aβ and that the clearance of these toxic species reversed 

memory deficits (Dodart et al., 2002b). 
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Many different forms of Aβ aggregates have been described (Masters and Selkoe, 

2012). However, many of these studies have focused on synthetic Aβ and have used 

non-physiological concentrations of single length peptide under in vitro conditions. 

The presence of similar Aβ species in the brain has not been confirmed (Masters and 

Selkoe, 2012). Studies have demonstrated that natural Aβ oligomers isolated from 

AD brain are more potent in cytotoxicity assays than synthetically produced Aβ 

(Lambert et al., 1998). Similarly, natural Aβ oligomers are more toxic than protofibrils 

(Walsh et al., 1997). Protofibrils require high nanomolar concentrations to induce 

toxic effects, suggesting that they contain aggregated forms that do not interact with 

neuronal membranes to the same extent as less aggregated oligomers.  

 

Despite these findings many groups study Aβ aggregation using synthetic peptides at 

supraphysiological concentrations due to difficulties in isolating naturally occurring 

peptides (Castano et al., 1986, Kirschner et al., 1987). The methods used for 

studying the aggregation of Aβ monomers into oligomers vary in terms of 

temperature, salts as well as detergents and metal ions (Sahoo et al., 2009, Ahmed 

et al., 2010).  

 

Another advantage of synthetic peptides is the possibility of introducing amino acids 

substitutions such as those found at Glu22 and Asp23 which mimic “Arctic” and 

“Iowa” FAD mutations (Fig. 1.2) and have been shown to increase the rate of 

aggregation (Peralvarez-Marin et al., 2009).  

 

Recombinant Aβ (produced in bacteria) has been used to study Aβ aggregation 

(Picone et al., 2009, Walsh et al., 2009). This recombinant Aβ has been particularly 

useful in research on low n-oligomers such as dimers and tetramers (Streltsov et al., 

2011). However, as recombinant peptides are derived from bacteria, these 

preparations can contain impurities, which can interact and co-purify with the Aβ. In 
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addition, this recombinant Aβ has been found to aggregate quicker and is also more 

toxic, which raises questions about its similarity to natural Aβ peptides (Finder et al., 

2010). 

 

Natural Aβ oligomers extracted from cortex of AD brains have been shown to inhibit 

long-term potentiation (LTP), enhance long-term depression (LTD) as well as reduce 

dendritic spine density (Shankar et al., 2008). Interestingly amyloid plaque cores from 

the same brains did not affect LTP unless they were solubilized which demonstrates 

that plaques have low toxicity although oligomers released from them remain toxic 

(Shankar et al., 2008). Other studies have shown that Aβ oligomers extracted from 

AD brains can induce hyperphosphorylation of tau. This leads to collapse of the 

microtubule skeleton and dystrophy (Jin et al., 2011). 

 

In addition to studies on dimers and trimers, attention has also turned to the toxic 

effects of nonomers and dodecamers. These species has been found in the brains of 

Tg2576 mice starting at 6 months of age when the first changes in performance on 

the Morris-water maze begin to appear (Lesne et al., 2006). Additionally, when 

dodecamers were purified and injected into the ventricle of normal wild type rats, 

their spatial memory performance decreased (Lesne et al., 2006). However, the 

appearance of dodecamers does not correlate with changes in other types of 

memory or synaptic dysfunction as these changes are seen long before the 

appearance of dodecamers (Jacobsen et al., 2006). 

 

In the brain, a range of different oligomers exists in equilibrium with fibrils and 

plaques. This has been supported by the finding that a halo of dystrophic neuritis 

surrounds plaques, which decrease with distance from the plaque. This halo has 

been shown to be immunoreactive for antibodies that are selective for small 

oligomers (Koffie et al., 2009). 
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In addition to natural brain derived Aβ oligomers, oligomers derived from APP 

transfected cells in vitro have also been investigated. SDS-stable low-n oligomers 

have been detected in medium from a variety of cell lines (Podlisny et al., 1995, 

Townsend et al., 2006), including the Chinese hamster ovarian (CHO) cell line 

expressing mutant human APP (V717F). These cells (renamed to 7PA2) secrete 

nanomolar levels of SDS- stable Aβ oligomers (Podlisny et al., 1995) that have been 

confirmed on SDS gels as dimers, trimers and tetramers (Walsh et al., 2002). 

Injection of the conditioned medium from these cells into the lateral ventricle of the 

wild type rat has been shown to inhibit hippocampal LTP (Walsh et al., 2002). 

Additionally, immunodepletion of the conditioned medium with anti-Aβ antibody 

blocked the effect of oligomers on LTP. Interestingly, pre-treatment of the conditioned 

medium with insulin degrading enzyme (IDE), which degrades monomeric Aβ but not 

oligomers had no effect on the toxic effect of Aβ on LTP (Walsh et al., 2002). In 

addition, cell derived oligomers of Aβ have also been found to decrease the number 

of spines when neurons were incubated with sub-nanomolar levels (Shankar et al., 

2007). 

 

2.1.2 Aβ interactions with other molecules 

 

Aβ has been found to interact with a variety of molecules which include metal ions, 

cell membranes, lipoproteins and membrane-associated proteins. Aβ plaques show 

immunoreactivity with many different molecules. These could arise from different 

cells which are associated with plaque formation such as neurons (axons and 

denrites), reactive astrocytes and microglia (Masters and Selkoe, 2012). Additionally, 

a recent interactome study of APP demonstrated over 200 entities interacting with 

different parts of APP, a significant number of which have been shown to interact 

with Aβ domain (Perreau et al., 2010). 
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2.1.2.1 Metal ions 

 

Metal ions are ubiquitously present in human tissues and as such they have been 

intensively studied for possible Aβ associations. The results of these studies are 

controversial. Some studies have detected increases in Cu, Zn or Fe ions in plaques 

(Rajendran et al., 2009). It has been shown that both APP and Aβ contain sequences 

with metal binding motifs (Faller, 2009, Duce et al., 2010) suggesting the potential to 

interact with metal ions. An interesting overlap between brain regions rich in 

glutamatergic terminals, free vesicular zinc and Aβ plaques have been shown in APP 

transgenic mice (Stoltenberg et al., 2007). 

 

Many metal ions interact with Aβ including copper, zinc and iron. The Kd of Cu2+ for 

Aβ is around 10-10M and that includes both soluble and fibrillar Aβ (Rozga et al., 

2010). This suggests that any proteins with higher affinities will compete with Aβ. 

Such proteins include human serum albumin (Perrone et al., 2010) suggesting that in 

CSF or blood Aβ should be unmetallated (Masters and Selkoe, 2012). Aβ has been 

suggested to have more than one copper binding site (Jun et al., 2009). Additionally, 

depending on its stoichiometry, Cu2+ interaction with Aβ can lead to aggregation 

through oligomer forming or fibril-forming pathways (Olofsson et al., 2009, Tougu et 

al., 2009). The main copper binding region is located within Aβ first 16 residues and 

includes His6, His13 and His14 as well as Asp1 and Ala2 (Drew et al., 2009a, Drew 

et al., 2009b). Additionally Aβ-Cu2+ complex has been found to facilitate the oxidation 

of a biological species and the reduction of molecular oxygen, generating H2O2 

(Jiang et al., 2010). Whilst Cu2+ has been found to induce Aβ aggregation, a 

reduction in intracellular Cu2+ causes inhibition of Aβ oligomer formation (Crouch et 

al., 2009a). 

 

Zn2+ can also bind to Aβ at different regions and drive its aggregation (Miller et al., 
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2010). It has been proposed that the aggregation of Aβ into oligomers can be 

induced by Zn2+ in the vicinity of excitatory glutamatergic synapses and can 

contribute to synaptic degeneration in AD (Deshpande et al., 2009). In addition, zinc 

and Aβ complexes have also been shown to be more resistant to degradation 

(Crouch et al., 2009b) leading to accumulation of Aβ fibrils. 

 

Fe3+ and Aβ complexes have been shown to catalyze the reduction of oxygen and 

production of H202 (Jiang et al., 2009). Additionally, Aβ has been found to have a 

very strong affinity for Fe3+ and Fe2+ which suggests it can compete for iron. This 

could interfere with iron homeostasis, especially as Aβ has 8-times higher affinity to 

Fe2+ than transferrin (Jiang et al., 2009). 

 

2.1.2.2 Other Aβ interactions 

 

As an amphiphilic peptide, once released from a membrane, Aβ can interact with a 

number of different molecules (Masters and Selkoe, 2012). These interactions can be 

caused by phase/interface effects, electrostatic interactions or hydrophobic 

interactions (Masters and Selkoe, 2012). 

 

Most in vitro studies on the aggregation of Aβ are done at supraphysiological 

concentrations. Additionally, microenvironmental conditions in which Aβ aggregates 

in the brain are not taken into account (e.g. high metal ions concentrations at 

synapses). Another variable that is not often considered is the interface between the 

interstitial fluid phase and the surface of the plasma membrane, which is thought to 

be important in aggregation of Aβ. Many studies have shown interface clustering of 

Aβ (Chi et al., 2010) which also affects the speed of fibril formation (Hellstrand et al., 

2010b). The nature of the phase/interface effect strongly influences Aβ folding 

(Kayed et al., 2009) and therefore has to be taken into account in studies on Aβ 
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aggregation (Masters and Selkoe, 2012). 

 

Electrostatic interactions between negatively charged phospholipid head groups or 

sphingolipids and Aβ as well as their effect on aggregation have been extensively 

studied (Kayed et al., 2009, Sureshbabu et al., 2010). It has been shown that smaller 

Aβ oligomers show a tendency to bind charged molecules, while larger oligomers do 

not (Cizas et al., 2010). The electrostatic interaction with phosphatidylserine has 

been shown to mediate the toxicity of Aβ in neuronal cells as the cells can be 

rescued by treatment with Annexin V which has a very high affinity for 

phosphatidylseirine (Ciccotosto et al., 2011). Additionally, gangliosides also have the 

potential to affect the folding of Aβ (Ogawa et al., 2011). 

 

Once Aβ is released from its transmembrane location, it can re-insert itself into the 

hydrophobic lipid bilayer. A number of studies have examined the re-insertion of Aβ 

in order to determine whether this leads to formation of a transmembrane pore or 

whether this re-insertion would cause a disruption in the integrity of the lipid bilayer 

(Masters and Selkoe, 2012). Whilst there have been a number of molecular 

dynamics studies as well as an in vitro artificial lipid membrane models there is a 

significant lack of in vivo studies (Lemkul and Bevan, 2009, Morita et al., 2010). 

It has been previously documented that Aβ interacts with various lipoproteins 

(Apolipoprotein E, A, J) via electrostatic or hydrophobic reactions (Holtzman et al., 

2012). In addition, direct evidence for in vivo interactions of ApoE and ApoA1 with Aβ 

have also been demonstrated (Paula-Lima et al., 2009).  

 

There is also increasing evidence of Aβ interactions with membrane proteins. These 

include NMDA (N-Methyl-D-aspartate) or α7-nicotinic acetylocholine receptors as 

well as cellular prion protein (Hu et al., 2009, Lauren et al., 2009, Liu et al., 2009). 

Many these studies have shown that an antagonist or a downstream regulator of the 
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receptor can prevent the effects of Aβ oligomers (Shankar et al., 2007, Li et al., 

2009). There is no direct evidence of a physical interaction of Aβ with the receptor, 

although, it has been suggested that the binding of Aβ to certain lipids could disturb 

the lipid bilayer and therefore affect membrane associated neuronal receptors 

(Masters and Selkoe, 2012).  

 

2.1.3 Degradation of Aβ 

 

All humans accumulate Aβ during ageing (Funato et al., 1999). The progression from 

normal ageing through mild cognitive disorder to AD is primarily caused by 

acceleration of Aβ accumulation (Saido and Leissring, 2012). Aβ production is 

normally balanced by its degradation by a range of different processes working 

together such as proteolytic degradation, cell-mediated clearance as well as passive 

and active transport. There is increasing evidence to suggest that proteolytic 

degradation is affected in AD and that sporadic forms of AD might develop as a result 

of defective clearance of Aβ (Tanzi et al., 2004). Experiments investigating the rates 

of Aβ production and clearance have shown that in sporadic AD there is a defect in 

clearance of Aβ in CSF (Mawuenyega et al., 2010).  

 

Normally Aβ is degraded by a large number of proteases, each with different 

characteristics. These Aβ-degrading proteases (AβDPs) belong to different families 

such as metallo, serine, aspartyl, cysteine and threonine proteases (Saido and 

Leissring, 2012). AβDPs can be either classified by their enzymological type 

(metalloproteases, aspartyl proteases etc.) or by the species of Aβ they can 

hydrolyze (peptidases, oligopeptidases etc). The metalloproteinases that have been 

found to degrade Aβ include neprilysin, NEP-like peptidases, endothelin- and 

angiotensin-converting enzymes, matrix-metalloproteinases and insulin-degrading 

enzyme. Amongst serine proteases that can degrade Aβ plasmin, acylpeptide 
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hydrolase and myelin basic protein have been described. Cathepsin B (cysteine 

protease) as well as cathepsin D, BACE1 and BACE2 which are aspartyl proteases, 

have also been found to degrade Aβ (Saido and Leissring, 2012).  

 

Whilst Aβ is produced by two proteases which are found in specific subcellular 

compartments of primarily neuronal cells, Aβ degradation involves a large number of 

proteases with different Aβ avidities, optimum pH and subcellular as well as cellular 

localizations (Saido and Leissring, 2012). 

 

AβDPs has been found to be vulnerable to environmental insults and oxidative stress  

(Caccamo et al., 2005). As age is the principal risk factor for AD, and oxidative stress 

has been previously found to increase during ageing (Zhu et al., 2007), it is likely that 

defects in Aβ clearance have a role in AD pathogenesis (Saido and Leissring, 2012). 

 

2.1.3.1 Zinc-metalloproteases – neprilysin 

 

Neprilysin (NEP) is the most well characterized AβDP. It is a member of the M13 

family of zinc-metalloproteases (Hersh and Rodgers, 2008). NEP is a type II 

membrane-associated peptidase with the active site facing the luminal or 

extracellular side of membrane (Roques et al., 1993, Turner et al., 2001). This 

position is ideal for degradation of extracytoplasmic peptides such as Aβ. NEP is 

found almost exclusively in neurons and after its synthesis in the soma, it is axonally 

transported to presynaptic terminals (Fukami et al., 2002). These presynaptic 

terminals and nearby intracellular locations are probably the sites of degradation of 

Aβ by NEP (Iwata et al., 2004). 

 

It has been found that in NEP KO mice levels of both Aβ(1-40) and Aβ(1-42) are 

twofold higher than in controls (Iwata et al., 2001). As such the levels of Aβ 
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correlated with gene dosage of NEP and its activity. It has been suggested that 

intraparenchymal degradation of Aβ by NEP could be as high as ~50% of total 

clearance (Saito et al., 2003). NEP’s therapeutic potential has also been 

investigated. It has been shown that when crossed with a transgenic mouse 

expressing eightfold higher levels of NEP, the J20 APP transgenic mouse 

demonstrated a ~90% reduction in steady-state Aβ with no plaque formation 

(Leissring et al., 2003). However, a more recent study failed to show reversal in 

learning and memory deficits when NEP was overexpressed (Meilandt et al., 2009). 

NEP has been shown to degrade Aβ oligomers in APP-Tg mice (Huang et al., 2006) 

as well as monomers (Saido and Leissring, 2012). Interestingly, in vitro studies have 

shown that NEP is capable of degrading synthetic Aβ oligomers (Kanemitsu et al., 

2003) but not naturally secreted Aβ oligomers (Leissring et al., 2003).  

 

2.1.3.2 Zinc-metalloproteases – insulin degrading enzyme 

 

Another well-studied AβDP is insulin-degrading enzyme (IDE). IDE is another zinc-

metalloproteinase that is mainly found in the cytosol (Authier et al., 1996) and 

mitochondria (Leissring et al., 2004). Due to its unusual structure (clam shell), IDE is 

only able to degrade monomers of Aβ due to its restricted peptidase activity (Saido 

and Leissring, 2012). Other studies have demonstrated its presence in peroxisomes 

(Kuo et al., 1994), endosomes (Hamel et al., 1991) and the endoplasmic reticulum 

(Carpenter et al., 2010). However, these localizations have been less well studied. In 

addition, IDE is also present in the extracellular space (Qiu et al., 1998, Vekrellis et 

al., 2000). 

 

Studies on IDE have shown that it is a major AβDP that is secreted into the medium 

of cells in vitro (Qiu et al., 1998). In primary neuronal cultures, deletion of IDE was 

shown to cause a 90% decrease in the degradation rate of Aβ monomers (Farris et 
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al., 2003). In vivo studies also shown an increase in Aβ levels after IDE deletion, 

however, the increase was less significant than that found in vitro (Farris et al., 

2003). 

 

2.1.4 The importance of Aβ aggregation studies 

 

As discussed above, Aβ aggregation is determined by its microenvironment and has 

been shown to self-associate into different aggregated forms, which differ in their 

toxicity. It is therefore essential to determine what form of Aβ is being used and how 

it will behave in the conditions used in the study. However, many published reports 

do not characterise the form of the peptide that they are using. In many cases the 

characterisation is only limited to the peptide at the initial stage of the study. As AD is 

a chronic disease that develops over decades, it is essential to study the effects Aβ 

following chronic application. As such it is necessary to assess and characterise the 

Aβ preparation and its fate over the experimental period, as changes in the 

aggregation state of Aβ may lead to changes in its toxicity.  

 

2.1.5 Aims and objectives of the study 

 

The aim of this chapter was to investigate the best conditions for preparation and 

aggregation of Aβ(1-42). Several protocols were used to investigate the production of 

oligomers. In addition, western blotting and ThT assays were used to assess the 

stability of these preparations over time. 
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2.2 Material and Methods 

2.2.1 Amyloid – beta 

 

2.2.1.1 Aggregation protocol 

 

Aβ(1-42) and Aβ(1-40) peptides were prepared under conditions to promote its 

solubility and limit the aggregation process (Burdick et al., 1992). Several methods 

for oligomerization of Aβ(1-42) and Aβ(1-40) were investigated. 

 

Aβ(1-42) treated with HFIP (Anaspec, USA) and Aβ(1-40) treated with HFIP 

(Anaspec, USA) were resuspended in 200mM HEPES, pH 8.5 to a concentration of 

100µM. The aliquots were stored at -80°C and used at working concentrations of 0.2, 

2 and 20µM. 

 

Additional methods to make oligomers that were also investigated, including a 

method described by Dahlgren et al. (2002). Briefly Aβ(1-42) treated with HFIP 

(Anaspec, USA) was resuspended in DMSO to a concentration of 5mM. Later phenol 

red-free DMEM was added to the DMSO to bring the peptide to the final 

concentration of 100µM. The peptide was then incubated at 4°C for 24 h. 

 

To obtain the monomeric form of Aβ(1-42), the 5 mM stock in DMSO was diluted 

directly into cell culture media.  

 

2.2.1.2 Aβ(1-42) and Aβ(1-40) aggregation over time 

 

Aggregation of Aβ(1-42) and Aβ(1-40) over time was investigated to determine the 

speed and stability of different protein preparations from section 2.2.1.1 that would be 

expected to form under tissue culture conditions.  
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Aβ(1-42) and Aβ(1-40) prepared in HEPES, Aβ(1-42) prepared in phenol-free media 

and Aβ(1-42) prepared in DMSO were diluted to working concentrations of 0.2, 2 and 

20µM. 100µl of each concentration was added into a 96-well cell culture plate in 

triplicates. The plate was then incubated at 37oC in a humidified atmosphere of 5% 

CO2. Samples were collected at 24, 48, and 72 hours and analyzed using western 

blotting. 

 

2.2.2 Western blotting 

 

To assess the presence of specific aggregates of Aβ following the aggregation 

procedure described in section 2.2.1.1 and 2.2.1.2, polyacrylamide gel 

electrophoresis followed by western blotting was performed on the samples.  

 

2.2.2.1 SDS PAGE 

 

Protein gels were electrophoresed using the Mini Protean® 3 Cell (Biorad, UK). 12% 

gels were cast according to the manufacturer’s guidelines (see Appendix 1). Samples 

were prepared in sample buffer (deionised H2O, 25% glycerol, 62.5mM Tris-HCl pH 

6.8, 2% SDS, 0.01% bromophenol blue and 5% β-mercaptoethanol added fresh) and 

loaded onto the gel, together with PAGE Ruler Plus Prestained Protein Ladder 

(Thermofisher, UK). Electrophoresis was carried out at 200V (fixed), 60mA (max) in 

for approximately 45 minutes until the bromophenol blue reached the bottom of the 

resolving gel. Plates were then carefully separated, and the gel placed in Coomassie 

Brilliant blue stain (0.1% Coomassie, 50% methanol, 7% acetic acid), for 

approximately 1 hour on a slowly rocking platform. Gels were then destained (50% 

methanol, 7% acetic acid) and photographed using G:BOX Chemi HR1.4 (Syngene) 

and GeneSys software (Syngene). 
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2.2.2.2 Discontinuous Native PAGE 

 

Protein gels were electrophoresed using the Mini Protean® 3 Cell (Biorad, UK). 10% 

gels were cast according to the manufacturer’s guidelines (see Appendix 1). Samples 

were prepared in sample buffer (deionised H2O, 40% glycerol, 62.5mM Tris-HCl pH 

6.8, 0.01% bromophenol blue) and loaded onto the gel, together with NativeMark 

Unstained Protein Standard (Life Technologies, UK). Electrophoresis was carried out 

at 200V (fixed), 60mA (max) for approximately 45 minutes until the bromophenol blue 

reached the bottom of the resolving gel. Plates were then carefully separated, and 

the gel placed in Coomassie Brilliant blue stain (0.1% Coomassie, 50% methanol, 

7% acetic acid), for approximately 1 hour on a slowly rocking platform. Gels were 

then destained (50% methanol, 7% acetic acid) and photographed using G:BOX 

Chemi HR1.4 (Syngene) and GeneSys software (Syngene). 

 

2.2.2.3 Western blot transfer. 

 

Proteins for western blot transfer were first separated by SDS PAGE (section 2.2.2.1) 

or native PAGE (section 2.2.2.2). Gels were then equilibrated in transfer buffer 

(25mM Tris, 192mM glycine, 10% methanol) before being transferred to pre-wetted 

(in transfer buffer) nitrocellulose membrane (Millipore, UK) trimmed to the exact 

dimensions of the gel. The gel and nitrocellulose were then sandwiched between four 

pieces of Whatman filter paper and two pieces of sponge, pre-soaked in transfer 

buffer. Transfers were performed using the mini trans-blot electrophoretic transfer 

cell (Biorad, UK) at 30V, 90mA overnight on ice. 
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2.2.2.4 Western blot analysis. 

 

Nitrocellulose membranes (section 2.2.2.3) were blocked in TBS (8g NaCl, 0.2g KCl, 

3g Tris-base in 1 litre H2O) 5% powdered milk for 2 hours at room temperature, then 

rinsed in TBS 0.01% Tween (Sigma-Aldrich, UK). They were then placed in TBS 0.01 

Tween, 3% powdered milk containing appropriate primary antibody and incubated 

overnight at 4°C on a shaking platform. Mouse anti-β-amyloid (1-42) (1:1000-1:3000) 

antibodies (6E10 Covance, UK), were used as primary antibody to detect the Aβ(1-

42) as well as Aβ(1-40). This antibody detects amyloid oligomers up to 24mers as 

well as trace high molecular weight species (Chromy et al., 2003). The following day 

membranes were washed 6X for 5 minutes in 100ml TBS 0.01% Tween, to remove 

unbound antibody, and then placed in TBS 0.01% Tween 3% powdered milk, 

containing appropriate secondary antibody for 1 hour at room temperature, with 

agitation. To detect the anti-β-amyloid (1-42) antibody, the secondary antibody, anti-

mouse IgG HRP (Cell Signaling Technology, USA) was used. After extensive washes 

in TBS 0.01% Tween, and then TBS alone, membranes were placed in 

chemiluminescent substrate (GE Healthcare, UK) for 5 minutes. Membranes were 

then immediately sandwiched between acetates and exposed to photographic film 

(Thermofisher, UK) in a developing cassette. To visualize the bound antibody, 

exposed films were developed using developer (Sigma-Aldrich, UK), and following 

extensive washes, fixed using fixer (Sigma-Aldrich, UK) in a darkroom. 

 

2.2.3 ThT assay 

 

Thioflavin T (ThT) is a benzothiazole dye which is has been used as an amyloid stain 

for senile plaques. ThT binds rapidly and specifically to β-sheets and upon binding 

the dye undergoes 120nm red shift in its excitation spectrum and can be selectively 

excited at 450nm, with the fluorescent signal at 482nm (LeVine, 1993). 
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In this study ThT was added to the Aβ(1-42) and Aβ(1-40) reaction mix during the 

aggregation process and fluorescence was monitored at specific time points. 

 

ThT (Sigma-Aldrich, UK) was dissolved in 50mM glycine-NaOH buffer, pH 8.5 to the 

concentration of 5mM. On the day of the experiment the 5mM ThT was diluted to 

1.25µM with 50mM glycine-NaOH buffer, pH 8.5. Aβ(1-42) and Aβ(1-40) were 

prepared as described in section 2.2.1.1 at concentrations 20, 2 and 0.2µM. 20µl of 

each Aβ preparation at each concentration was added to black 96-well plate (Nunc). 

Then 80µl of 1.25µM ThT was then added to each well (to the final concentration of 

1µM in the total assay volume) and the plate was incubated at 37˚C. The 

fluorescence was then read at time point 0, 6, 24, 48, 72 and 96h using SpectraMAX 

GeminiXS microplate luminometer (Molecular Devices, UK) and SoftMaxPro software 

(excitation: 450nm, emission: 485nm). All readings were corrected for background 

and results were expressed as the mean of three samples ± standard error of the 

mean (SEM). Comparison between different time points and treatments was 

performed using two-way analysis of variance (ANOVA) followed by Bonferroni post-

test using GraphPad Prism Software.  Differences were considered significant for p 

values <0.05. 
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2.3 Results 

 

Aggregation of Aβ can be affected by different environmental conditions such as pH, 

concentration or salts. In this study four different protocols were used to aggregate 

Aβ(1-42) and Aβ(1-40) in order to determine which method produces low-n 

oligomers. An additional aim was to monitor the stability of the Aβ preparations over 

time. Methods that were used to assess Aβ(1-42) and Aβ(1-40) aggregation and 

stability included western blotting and Tht fluorescence assay. 

 

Freshly prepared samples of Aβ(1-42) and Aβ(1-40) at a concentration of 20µM were 

run on a SDS-PAGE gel and analysed using western blotting in order to assess the 

composition of each preparation (Fig. 2.1). Aβ(1-42) prepared in 100mM HEPES at 

pH 8.5 (Fig. 2.1, lane 1) demonstrated a large proportion of monomers at around 

~4kDa and high n-oligomers at the top of the gel (~130-250 kDa). Aβ(1-40) (Fig. 2.1, 

lane 2) which was also prepared in 100 mM HEPES showed large amounts of 

monomers but few oligomers or large aggregates. Aβ(1-42) that was dissolved in 

culture medium and aggregated overnight at 4°C demonstrated a large proportion of 

monomers (~4kDa) as well as a mixture of oligomeric species representing 

monomers, dimers, trimers and tetramers as well as a small amount of larger 

aggregates at the top of the gel (Fig. 2.1, lane 3). Aβ(1-42) that was dissolved in 

DMSO (Fig. 2.1, lane 4) showed a distinct monomeric band as well as a number of 

faint oligomeric bands including dimer, trimers and tetramers.  

 

Amyloid prepared using the four different protocols was used to prepare Aβ solutions 

that were incubated in culture media for up to 72h at 37°C to mimic the conditions of 

cell culture. Samples were taken at 24, 48 and 72 hours and then run on a SDS-

PAGE and native gel and analysed using western blotting. 
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Figure 2.1 Representative western blot analysis of four fresh preparations of 
Aβ(1-42) and Aβ(1-40). Aβ preparations were separated using denaturing non-
reducing conditions. 1) Aβ(1-42) in HEPES, 2) Aβ(1-40) in HEPES, 3) Aβ(1-42) in 
F12 media and aggregated overnight at 4°C, 4) Aβ(1-42) in DMSO. 
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Figure 2.2 Representative western blot analysis of Aβ(1-42) dissolved in F12 
media and aggregated overnight at 4°C. The preparation was then aged for up to 
72h and separated using (A) native, non-reducing conditions, (B) denaturing, non-
reducing conditions. 
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Aβ(1-42) prepared in culture medium and aggregated overnight at 4°C produced a 

range of different sized aggregates at 24h, ranging from ~40kDa to 1236kDa (Fig. 

2.2A). At 48h the pattern of aggregation was similar to that seen at 24h.  However, at 

72h there was a steady increase in aggregation towards higher n-oligomers, with 

more intense staining above 720kDa and much less staining between 66kDa and 

720kDa. On the SDS-PAGE gel there was a similar steady increase in aggregation 

with more low-n oligomers (trimers and tetramers) at around 15kDa band as well as 

larger aggregates above the 35kDa band (Fig. 2.2B). 

 

The analysis of Aβ(1-42) prepared in HEPES and run on a native gel demonstrated 

lower amounts of small oligomers towards the bottom of the gel but with larger 

aggregates above 480kDa (Fig. 2.3A). Again there was a time dependent steady 

increase in the size of aggregation pattern with little staining below 480kDa ladder at 

72h. When analysed on an SDS-PAGE gel over the incubation period there was a 

steady increase in the amount of low-n oligomers (trimers and tetramers) at around 

15kDa with minor increases in the larger aggregates observed (Fig. 2.3B). 

 

Aβ(1-42) that was dissolved in DMSO prior to incubation demonstrated a rapid 

aggregation pattern, with no staining below 480kDa ladder at 24h and at 72h staining 

was only limited to a band at the top of the native gel (1048 and 1236 kDa) (Fig. 

2.6A). Samples run on an SDS-PAGE gel showed a steady increase in oligomers 

and large aggregates over the incubation period (Fig. 2.4B). 

 

Analysis of the aggregation pattern of Aβ(1-40) prepared in HEPES at pH 8.5 by 

SDS-PAGE gel followed by western blotting analysis demonstrated a complete 

absence of oligomers (Fig. 2.5B). At all 3 time points the only band that was present 

was at ~4 kDa. 
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Figure 2.3 Representative western blot analysis of Aβ(1-42) dissolved in HEPES. 
The preparation was then aged for up to 72h and separated using (A) native, non-
reducing conditions, (B) denaturing, non-reducing conditions. 
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Figure 2.4 Representative western blot analysis of Aβ(1-42) dissolved in DMSO. 
The preparation was then aged for up to 72h and separated using (A) native, non-
reducing conditions, (B) denaturing, non-reducing conditions. 
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Figure 2.5 Representative western blot analysis of Aβ(1-40) dissolved in HEPES. 
The preparation was then aged for up to 72h and separated using (A) native, non-
reducing conditions, (B) denaturing, non-reducing conditions. 
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Under native conditions Aβ(1-40) showed a different aggregation pattern over time, 

with more smaller aggregates at around 66kDa and an increase in larger aggregates 

present at the top of the gel. Additionally, the smallest species found on the native 

gel were below 20kDa ladder (Fig. 2.5A). 

 

In order to further characterise ‘aged’ Aβ samples, the different preparations of Aβ 

were analysed using the ThT assay. ThT fluorescence increases upon binding to β-

sheet structures and is therefore is a good indicator of Aβ aggregation. In this 

experiment the different Aβ preparations were incubated with ThT for up to 96h. The 

fluorescence of each sample was measured at 6, 24, 48, 72 and 96 hours (Fig. 2.6-

2.8). At a concentration of 20µM the Aβ(1-42) prepared in DMSO aggregated rapidly, 

with the highest fluorescence at 72h and a slight decrease in fluorescence at 96h 

(Fig. 2.6). Aβ(1-42) prepared in media and pre-aggregated at 4°C showed a similar 

pattern. The highest fluorescence was recorded at 48h with a subsequent decrease 

in fluorescence at 72 and 96h. Aβ(1-42) prepared in HEPES showed a slight 

increase in fluorescence but overall remained stable over time. Aβ(1-40) showed no 

increase in fluorescence which was in line with previous western blotting analysis.  

 

At a concentration of 2µM the Aβ(1-42) prepared in DMSO and in media showed 

very similar pattern with a steady increase in aggregation over time (Fig. 2.7). In 

contrast, Aβ(1-42) and Aβ(1-40) prepared in HEPES showed little aggregation and 

was stable over all 6 time points.  

 

At a concentration of 0.2µM concentration none of the preparations demonstrated 

any increase in fluorescence over time (Fig. 2.8). However, there was a difference in 

the fluorescence displayed by each individual sample. 
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Figure 2.6 Aggregation of 20µM Aβ(1-42) and Aβ(1-40) preparations using ThT 
fluorescence. Each point is an average of 3 replicates ± SEM. p<0.0001 (****). For 
complete ANOVA see Appendix 2. 
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Figure 2.7 Aggregation of 2µM Aβ(1-42) and Aβ(1-40) preparations using ThT 
fluorescence. Each point is an average of 3 replicates ± SEM. p<0.0001 (****). For 
complete ANOVA see Appendix 3. 
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Figure 2.8 Aggregation of 0.2µM Aβ(1-42) and Aβ(1-40) preparations using ThT 
fluorescence. Each point is an average of 3 replicates ± SEM. p<0.05 (*). For 
complete ANOVA see Appendix 4. 
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Aβ(1-42) dissolved in DMSO showed the highest fluorescence, followed by Aβ(1-42) 

prepared in media and Aβ(1-40) prepared in HEPES. Surprisingly Aβ(1-42) that was 

prepared in HEPES showed the lowest level of fluorescence of all four preparations.  
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2.4 Discussion 

 

Numerous studies have demonstrated that Aβ(1-42) can aggregate and form 

oligomers which are toxic to CNS. Indeed, a number of studies have also shown that 

the formation of oligomers is a general phenomenon which applies to multiple 

proteinopathies (Conway et al., 2000, Kirkitadze et al., 2002). Although Aβ(1-42) 

oligomers are specifically associated with AD, an understanding of the aggregation 

process and its impact on pathology may inform other proteinopathies. 

 

Aβ(1-40) and Aβ(1-42) are both produced naturally and are present in the brains and 

CSF of all humans during their life (Haass et al., 1992, Seubert et al., 1992). As such 

the presence of Aβ alone is not the cause of neurodegeneration.  Indeed, a number 

of studies have shown that Aβ aggregation is essential for its toxicity. 

  

Studies have shown that Aβ oligomers are toxic to cells at much lower 

concentrations that fibrils (Lambert et al., 1998) and are also able to rapidly block 

long-term potentiation. In addition, the concentration of oligomers has been shown to 

be up to a 70-fold higher in AD brain compared to controls (Gong et al., 2003). 

 

The experimental handling of Aβ(1-42) is problematic due to its amphipathic 

sequence as well as its propensity to self-aggregate. These characteristics also 

make it very challenging to characterize its structure and function. As the toxicity of 

Aβ relies so heavily on its aggregation and form, it is essential to study and 

characterize different protocols for its preparation. In this study 4 different protocols 

were used in order to determine optimum conditions for oligomer production. 
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2.4.1 Hexafluoroisopropanol treatment (HFIP) 

 

A critical factor for consistent preparation of oligomeric Aβ(1-42) is the ability to 

obtain exclusively monomeric peptide at the start of the process. Failure to eliminate 

fibril-nucleating seeds in previous studies has been shown to result in rapid fibril 

formation (Koo et al., 1999).  

 

In order to minimize variability between different batches of synthetic Aβ and to 

remove any secondary or tertiary structure which could speed up Aβ aggregation, the 

peptide was dissolved in HFIP, a chemical which has been previously used for 

solubilisation of amylin (Nilsson et al., 2001) and prion peptides (Wille et al., 2000). 

This treatment has been found to dissolve higher aggregates, eliminating the 

‘nucleating seeds’ and removing any secondary or tertiary structures (Dahlgren et al., 

2002). Using Aβ(1-42) and Aβ(1-40) treated with HFIP different protocols for 

aggregation were investigated in terms of oligomer production and speed of 

aggregation. 

 

2.4.2 Aβ(1-42) in HEPES  

 

Aggregation of HFIP-treated Aβ(1-42) dissolved in 100mM HEPES led to formation 

of a range of species, including monomers/dimers, low oligomers (trimers/tetramers) 

as well as high oligomers and possibly protofibrils which accumulated at the top of 

the gels. Previous studies have shown that Aβ(1-42) in PBS or HEPES forms a 

broad range of structures including oligomers, protofibrils and fibrils regardless of 

HFIP pre-treatment (Chromy et al., 2003). When Aβ(1-42) is dissolved in HEPES at 

high monomer concentration (100 µM), it aggregates to a mixture of soluble 

oligomers of Aβ (i.e. amyloid-beta derived diffusible ligands, ADDLs) as well as 
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protofibrils. However, at lower concentrations only ADDLs are formed (Chromy et al., 

2003).  

 

Aβ(1-42) dissolved in 100mM HEPES has previously been used (Dineley et al., 

2001) and has been found to activate α7 nicotinic acetylcholine receptors with higher 

concentrations being less effective at the receptor activation. Incubation with the α7 

nicotinic acetylcholine receptor antagonist methyllycaconatine and the agonist 4-OH-

GTS-21 blocked the Aβ induced activation of the receptor (Dineley et al., 2002). In 

addition, Aβ(1-42) has been found to activate the mitogen-activated protein kinase 

(MAPK) cascade via α7 nicotinic acetylcholine receptor and can upregulate 

expression of α7nAChR as well as downregulating the expression of extracellular 

signal-regulated kinase (ERK2) MAPK. As MAPK is known to play an important role 

in hippocampus synaptic plasticity and learning it has been suggested that the effect 

of Aβ(1-42) on this cascade provides a molecular basis for the disruptions of memory 

formation in AD (Dineley et al., 2001). 

 

2.4.3 Aβ(1-42) in F12 media 

 

Aggregation of Aβ(1-42) in fresh culture medium at 4°C overnight (Dahlgren et al., 

2002) is widely used as a preparation method of Aβ. This method has been found to 

produce a mixture of monomers/dimers, trimers and tetramers as well as some large 

aggregates. However, the previous study only investigated aggregation over 24 

hours. In the present study Aβ(1-42) prepared according Dahlgren et al. (2002) 

demonstrated a similar mixture of monomers and oligomers (trimers, tetramers) on a 

SDS-PAGE gel. However, the study by Dahlgren et al. (2002) did not run the Aβ(1-

42) preparation on a native gel, therefore comparison of the results obtained in this 

thesis with the original paper is not possible.  
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Other studies on synthetic Aβ(1-42) prepared in F12 media has shown that the 

ADDLs (amyloid-beta derived diffusible ligands) formed were SDS-stable and 

consisted of trimers, tetramers, pentamers and other species up to 24mer sizes. AFM 

(atomic force microscopy) and gel electrophoresis showed that these ADDLs were 

stable structures that did not rapidly aggregate into protofibrils. When diluted 

solutions were incubated at 37°C for up to 24h, the smaller oligomers (trimer, 

tetramers) aggregated into larger 12-24mer species (Chromy et al., 2003). Both 

SDS-PAGE and native gels analysed using western blotting from this thesis showed 

a slow time-dependent aggregation of the Aβ(1-42) in F12 media. The results 

obtained in this thesis are therefore in agreement with the previous studies. 

 

2.4.4 Aβ (1-42) in DMSO 

 

Aβ(1-42) pre-treated with HFIP, dissolved in DMSO and used immediately has often 

been used in in vitro studies as a method to produce monomers (Kim et al., 2003, 

Cizas et al., 2010). Western blot analysis of the freshly prepared Aβ in DMSO only 

revealed monomeric/dimeric bands at ~4kDa. However, once the Aβ was added to 

culture media and incubated over time, the monomers aggregated rapidly. This very 

rapid aggregation is especially well presented on a native gel. The SDS-PAGE gel 

showed formation of SDS-stable oligomers (trimers/tetramers) which are normally 

toxic to the cells. It is therefore surprising that previous studies that have used Aβ 

dissolved in DMSO as a monomeric preparation, did not report any toxicity (Kim et 

al., 2003). 

 

2.4.5 Aβ (1-40) in HEPES 

 

SDS-stable oligomers were not detected in the HEPES preparations of Aβ(1-40) and 

this is consistent with previous studies (Chromy et al., 2003). In addition, under 
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native conditions Aβ(1-40) formed much smaller aggregates than Aβ(1-42). This 

supports the view that Aβ(1-40) is less prone to aggregation than Aβ(1-42).  

 

2.4.6 Thioflavin T (ThT) fluorescence analysis 

 

Previous kinetic aggregation studies have shown that the Aβ aggregation pattern 

demonstrates a sigmoidal appearance which is characteristic for nucleation-

dependent polymerization. The process normally starts with a lag phase and is 

followed by an elongation and plateau phase once equilibrium is achieved (Hellstrand 

et al., 2010a). In this thesis the Aβ(1-42) aggregation was studied by ThT 

fluorescence in addition to electrophoresis and western blotting.  

 

The study of Aβ(1-42) and Aβ(1-40) aggregation by ThT fluorescence showed a high 

level of reproducibility between replicates of the same solution. Aggregation of Aβ 

was dependent on both the concentration of the peptide, as well as the preparation 

protocol used. At 20µM the Aβ (1-42) dissolved in DMSO aggregated rapidly. This 

was also demonstrated by Aβ(1-42) prepared by the method described by Dahlgren 

et al. (2002). The Aβ(1-42) prepared in HEPES aggregated at a slower rate than the 

other methods tested. Aβ(1-40) demonstrated little aggregation according to ThT 

fluorescence which was in agreement with the results obtained by western blotting. 

At 2µM there was a similar pattern and in the presence of DMSO Aβ(1-42) 

aggregating rapidly. Surprisingly very similar results were obtained from Aβ(1-42) 

prepared in F12 medium. Again Aβ(1-42) in HEPES showed lower levels of 

aggregation over time. At the lowest concentration (0.2µM) the aggregation pattern 

was similar to other concentrations when measured by ThT fluorescence, with Aβ(1-

42) in DMSO showing the highest fluorescence and Aβ(1-42) in HEPES the lowest. 

However, at this concentration the fluorescence was very low. It has been previously 

reported that Aβ(1-42) has a critical concentration below which fibrils cannot be 
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detected (Hellstrand et al., 2010a). Below a concentration of 0.2µM the fluorescence 

has been found to be below the background level (Hellstrand et al., 2010a) and as 

such the ThT assay is not recommended for the study of Aβ(1-42) aggregation at 

concentrations lower than 0.2µM. Previous studies have also shown that the critical 

concentration for Aβ(1-40) is higher, at 0.7-1.0µM (O'Nuallain et al., 2005) which may 

be due to different peptide length and ionic strength. 

 

2.4.7 Conclusion 

 

Gel electrophoresis and western blotting using antibodies against Aβ(1-42) have 

provided evidence that Aβ(1-42) prepared in F12 and HEPES form oligomers with 

little protofibril/fibril formation. Additionally Aβ(1-42) dissolved in HEPES produced 

more 24mer and higher species, whilst Aβ(1-42) freshly prepared in DMSO and 

diluted in medium rapidly aggregates. Electrophoresis in denaturing gels revealed a 

spectrum of SDS-stable oligomers including monomers, dimers, trimers and 

tetramers. Monomers appear to be a major species in both Aβ preparations. 

However, previous studies have shown that when two-dimensional native-SDS 

analysis was applied, the ADDL preparation contained only small amount of 

monomers (Chromy et al., 2003). This suggests that some of the oligomers can 

dissociate into monomers in the presence of SDS.   

 

In all preparations tested, both native and SDS electrophoresis showed that size and 

Aβ aggregation depends on the incubation period as well as the environment. The 

western blot analysis also revealed a time-dependent increase in both oligomers as 

well as higher aggregates.  

 

The ThT fluorescence assay was in agreement with the western blotting data. Aβ(1-

42) dissolved in DMSO aggregated very quickly. According to western blot analysis, 
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both Aβ(1-42) aggregated in F12 medium and prepared in HEPES showed a similar 

aggregation pattern and oligomer formation. However, Aβ(1-42) pre-aggregated in 

F12 showed a more rapid aggregation pattern using the ThT fluorescence assay than 

Aβ(1-42) prepared in HEPES. These results suggested that Aβ(1-42) prepared in 

F12 aggregated much faster and could lead to the production of larger, less toxic 

forms over time. As experiments using cell cultures were planned to last up to 96h it 

was necessary to use Aβ(1-42) that produced more stable oligomers. Based on the 

results from western blotting and ThT assay, Aβ(1-42) in HEPES was therefore 

chosen for NT2.N/A, NT2.A and primary culture treatments.  
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Chapter 3: Astrocyte-neuron metabolic coupling 

3.1 Introduction 

 

Hypometabolism of the brain in AD has been widely accepted as one of the earliest 

signs of the disease. Changes in brain metabolism appear decades before any 

symptoms or pathological lesions. As astrocytes are essential for neuronal survival 

and are responsible for supply of metabolites to neurons from the blood stream, it is 

essential to investigate the astrocyte-neuron metabolic coupling in terms of AD onset 

and progression. 

 

The astrocyte-neuron lactate shuttle (ANLS) was first described in 1994 by Pellerin 

and Magistretti and has since been extensively studied (Pellerin and Magistretti, 

2012). In principle, the hypothesis states that glutamate release from neurons 

triggers a metabolic cascade which results in the production of lactate in astrocytes 

(Fig. 3.1). Lactate is then released for neurons to take up and use as an energy 

source during high activity associated with synaptic transmission (Pellerin and 

Magistretti, 2012). 

 

In neurons, the release of glutamate leads to the activation of AMPA receptors and 

generation of excitatory postsynaptic potential by Na+ entry. Depolarization leads to 

further Na+ entry that activates the Na+/K+ ATPase, thus increasing the neurons’ 

energy demand.  Neuronal ATP is derived from oxidative phosphorylation and 

causes reduced nicotinamide adenine dinucleotide (NADH) levels in mitochondria to 

drop (Kasischke et al., 2004). Subsequent increases in the activity of the TCA cycle 

leads to an increase in NADH levels that support ATP production. This increase in 

TCA cycle activity leads to a drop in cytoplasmic pyruvate levels, which further 

enhances uptake of glucose and lactate (Pellerin and Magistretti, 2012).  

 



	  
	  

92	  

In astrocytes, glutamate is taken up via the glutamate transporters GLAST and GLT-

1. Glutamate is cotransported with Na+ ultimately leading to a buildup of intracellular 

sodium levels and activation of Na+/K+ ATPase. This pump requires ATP which is 

provided by membrane-bound glycolytic enzymes (such as phosphoglycerate kinase; 

PGK) which in turn enhance aerobic glycolysis. An increase in aerobic glycolysis 

initially causes a large increase in cytosolic NADH (Pellerin and Magistretti, 2012). 

However, in order to maintain the glycolytic rate the cofactor nicotinamide adenine 

dinucleotide (NAD+) has to be regenerated. Normally this takes place in mitochondria 

via the malate/aspartate shuttle which oxidizes NADH to NAD+. However, astrocytes 

appear to lack key components of that shuttle and instead use the conversion of 

pyruvate to lactate by lactate dehydrogenase (LDH) to regenerate NAD+ (Pellerin, 

2008). Lactate is then released via monocarboxylate transporters (MCT1 and 4) and 

taken up by neurons via MCT2. 

 

During prolonged stimulation, extracellular glucose levels may be too low to sustain a 

constant supply of energy. Hence, neurons rely upon astrocytes to meet their 

energetic needs.  Indeed, astrocytes are the only cells in the brain that can store 

glycogen and it has been shown that during sustained stimulation astrocytes can 

produce lactate from glycogen to support the high energy demands of neurons 

(Pellerin and Magistretti, 2012). 

 

3.1.1 Astrocytes and neuronal support 

 

In the brain, neurons and astrocytes form a complex and symbiotic network. 

Astrocytes have long been thought to be responsible for supply of energy substrates 

to neurons from the blood stream (Andriezen, 1893).  
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A) 

 

B) 

	  

Figure 3.1 Schematic diagram of the ANLS at A) high brain activity and B) low 
brain activity. Release of glutamate from presynaptic terminal, triggers its uptake into 
astrocytes via glutamate transporters. Na+, which is cotransported with glutamate, is 
then removed from astrocytes via Na+/K+ ATPase. This process is energy dependent 
and triggers glucose uptake or glycogen breakdown and glucose subsequent 
metabolism into lactate. Lactate is then released from astrocytes into the synaptic 
cleft via MCT1/4 and taken up by neuron via MCT2. Lactate acts as energy source in 
neurons during high-energy requirements associated with synaptic transmission. 
During low activity some of the glucose taken up by astrocytes is used to synthesize 
glycogen. 1) GLUT1 (glucose transporter); 2) GLAST/GLT-1 (glutamate transporter); 
3) Na+/K+ ATPase; 4) MCT1/4 (lactates transporter); 5) MCT2 (lactate transporter). 
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Indeed, these cells have a very specialized morphology, which allows them to sense 

and respond to changes in their environment (Allaman et al., 2011). Astrocytes 

extend multiple processes that ensheath synapses or form so called ‘end feet’ that 

surround blood vessels. These structures possess specific glucose transporters 

GLUT1 that allow astrocytes to take up glucose from blood stream and then either 

provide it to the extracellular space or store it as glycogen (Magistretti and Allaman, 

2007). Astrocytes have been shown to be critical in maintaining moderate levels of 

glucose in brain extracellular spaces (i.e. 0.5-1.5mM) (Abi-Saab et al., 2002). 

 

Astrocytes also play an important role in many homeostatic processes, such as 

oxidative stress defence, glycogen storage, tissue repair, synapse remodeling and 

many more (Stevens, 2008, Belanger and Magistretti, 2009). They form a syncytium 

via gap junctions (Giaume et al., 2010) for extracellular homeostasis which includes 

Ca2+, K+, glutamate and glucose buffering (Tabernero et al., 2006). Additionally, 

astrocytic coupling contributes to the energetic support of neurons. Astrocytes also 

express glutamate transporters as well as glutamine synthase which make them an 

essential component in glutamate recycling during synaptic activity (Benarroch, 

2005). 

 

3.1.2 Characteristics of metabolism in neurons and astrocytes 

 

Astrocytes and neurons exhibit different characteristics in terms of their energy 

metabolism. Results from enzymatic studies and transcriptomic studies all suggest 

the prevalence of glycolysis and the glycogen pathway in astrocytes and utilization of 

lactate in neurons (Hyden and Lange, 1962, Lovatt et al., 2007). In particular, 

expression of different lactate dehydrogenase (LDH) and monocarboxylate 

transporter (MCT) isoforms in neurons and astrocytes favour this view (Bittar et al., 

1996, Pellerin et al., 2005). At the same time astrocytes do exhibit oxidative potential 
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that is comparable to neurons (Pellerin and Magistretti, 2012). Lovatt et al. (2007) 

showed that astrocytes express high levels of mRNA encoding TCA cycle enzymes, 

even though the same study provided evidence supporting ANLS.  

 

Neurons also exhibit glycolytic activity (Bittner et al., 2010). However, glycolysis in 

neurons is reduced to a minimum due to continuous degradation of the 6-

phosphofructo- 2 – kinase/fructose 2,6-biphosphatase, isoform 3 (PFKFB 3) which is 

an enzyme that activates phosphofructokinase (a rate-limiting enzyme involved in 

glycolysis) (Herrero-Mendez et al., 2009). In neurons, glucose is mainly metabolized 

through the pentose phosphate pathway that produces reducing equivalents which 

are then used in the removal of ROS (Pellerin and Magistretti, 2012). It has been 

shown that upregulation of PFKFB3 in neurons by either inhibition of Cdh1 (involved 

in proteasomal degradation of PFKFB3) or simply by overexpression of PFKFB3 

increases the rate of glycolysis. However, this study also showed that the flow of 

glucose through pentose phosphate pathway was decreased, which led to increases 

in oxidative stress and apoptosis in neurons (Herrero-Mendez et al., 2009). In 

astrocytes, glycolysis is favoured as these cells demonstrate low expression levels 

for essential components of the malate-aspartate shuttle in mitochondria (Xu et al., 

2007). The importance of glucose utilization in astrocytes and oxidative 

phosphorylation in neurons has been demonstrated by experiments using fluorescent 

deoxyglucose analogs. These studies have shown greater fluorescence signals in 

glial cells than neurons (Barros et al., 2009b). An interesting approach has also been 

used by Kasischke et al. (2004). The group used two-photon fluorescence imaging of 

reduced nicotinamide adenine dinucleotide (NADH) to define metabolic profiles of 

neurons and astrocytes. This method demonstrated a separate activation of oxidative 

phosphorylation in neurons and glycolysis in astrocytes (Kasischke et al., 2004). 



	  
	  

96	  

Neurons and astrocytes also differ in glucose utilization following synaptic activity. 

While there is an increase in glucose uptake in astrocytes, no increase or even a 

decrease has been showed in neurons (Loaiza et al., 2003, Chuquet et al., 2010).  

 

Glucose uptake is facilitated by a sodium-independent transport system which can be 

inhibited by cytochalasin B (Hara et al., 1989) and stimulated by thyroid hormone 

(Roeder et al., 1985), potassium ions (Brookes and Yarowsky, 1985), glutamate 

(Pellerin and Magistretti, 1994), endothelin-1 (Tabernero et al., 1996), arachidonic 

acid (Yu et al., 1993) or phorbol esters (Mudd et al., 1990).  

 

Astroglial cells express hexokinase I which is the primary isoform found in the brain. 

Following phosphorylation by hexokinase I, glucose-6-phosphate becomes an 

intermediate form which forms the basis of a number of processes, namely: 

glycolysis, the pentose phosphate pathway and glycogen metabolism. In astroglial 

cells, the activity of the pentose phosphate pathway is relatively low but can be 

increased during oxidative stress (Ben-Yoseph et al., 1994). 

 

3.1.3 Glycogen 

 

Glycogen is a multibranched polysaccharide that acts as the principal storage form of 

glucose in mammalian systems and can be found in most tissues of the body 

including the brain (Brown and Ransom, 2007). The main deposits of glycogen can 

be found in liver and skeletal muscle. When blood glucose levels are normal, excess 

glucose may be stored as glycogen for when glucose intake is reduced. During 

periods of starvation glycogen in the liver is metabolized to release glucose (Brown 

and Ransom, 2007).  
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The function of glycogen depends on its location. The most widely accepted principle 

is that liver glycogen is used to supply glucose to the whole body, whilst skeletal 

muscle glycogen is for use by that tissue. However, recent studies have also shown 

that during intense exercise systemic blood glucose can drop but lactate levels 

increase almost tenfold. Under these conditions net lactate transfer switches from an 

efflux from the brain to a net uptake into the brain (Secher and Quistorff, 2005) which 

suggests a possible additional role for muscle glycogen (Brown and Ransom, 2007). 

 

Glycogen levels in the brain are lower (6-12µmol) (Cruz and Dienel, 2002) than in 

liver (100-500µmol) (Brown and Ransom, 2007) and skeletal muscle (300-350µmol) 

(Chryssanthopoulos et al., 2004) which suggests that brain glycogen is not useful as 

a source of blood glucose and it seems most probable that it is intended for local use 

only (Brown, 2004). 

 

3.1.3.1 Location of glycogen in the brain 

 

In the adult brain glycogen is only present in astrocytes (Cataldo and Broadwell, 

1986). It can also be stored in embryonic neural tissue (Brown and Ransom, 2007), 

however, this storage decreases as the neurons mature. The nature of glycogen 

stored in these cells is unknown, but it has been suggested that at the stage of 

embryonic development neuronal cells have higher metabolic demands and a less 

secure glucose supply (Brown and Ransom, 2007). 

 

As glycogen is mainly stored in astrocytes, the enzymes that are involved in its 

metabolism such as glycogen phosphorylase or glycogen synthase are also found in 

these cells (Pellegri et al., 1996, Pfeiffer-Guglielmi et al., 2003). 
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Neurons do not usually store glycogen with the exception of some cells in the 

brainstem and peripheral nervous system (Sotelo and Palay, 1968). Surprisingly 

neurons do express glycogen synthase, however, glycogen storage is inhibited by 

two different mechanisms in these cells. First, is a proteasome-dependent 

mechanism which involves the malin-laforin complex that degrades glycogen 

synthase (Vilchez et al., 2007). The second mechanism involves phosphorylation of 

glycogen synthase. If either of these two mechanisms is modified, this leads to 

synthesis of glycogen in neurons, which leads to apoptosis. An interesting example is 

Lafora disease which is characterized by accumulation of glycogen deposits in 

neurons and results in myoclonus epilepsy. This disease is caused by a mutation in 

malin-laforin complex which leads to loss of function (Pellerin and Magistretti, 2012). 

 

Glycogen is not evenly distributed evenly throughout the brain. It appears glycogen 

levels are higher in areas with the greatest synaptic density (Phelps, 1972). However 

some studies have also found high levels of glycogen in white matter that lacks 

synapses (Cruz and Dienel, 2002). Overall most studies have found higher levels of 

glycogen in grey as opposed to white matter (Sagar et al., 1987).  

 

3.1.3.2 Role of astrocytic glycogen 

 

Glycogen levels in the brain are relatively low in comparison to liver and skeletal 

muscle. In the absence of glucose, glycogen would be consumed within a few 

minutes (Brown and Ransom, 2007). It is thought that in these cells glycogen serves 

as an energy source during hypoglycaemia (Brown et al., 2003, Choi and Gruetter, 

2003) but also during periods of high brain activity (Brown et al., 2003). Following 

neuronal activation, the cells release many different astrocytic and vascular 

mediators, which not only activate astrocytes but also initiate a vascular response 

which leads to enhancement of cerebral blood flow, which delivers glucose and O2 
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(Dienel and Hertz, 2001, Gordon et al., 2008). These intermediates include K+, 

glutamate, ammonia, lactate, oxygen, but also NO, H2O2 and superoxide (Turner and 

Adamson, 2011). 

 

However, as active brain tissue has the same metabolic demand as exercising 

muscle, the demand for energy is instant, and there are many factors, which can 

affect energy supply (Shulman et al., 2004). Firstly, the signals to increase blood flow 

are not quick enough to supply glucose and oxygen to the brain. This results in initial 

shortage of glucose which could limit brain function. As astrocytes are ideally 

positioned to share substrates with neurons, they use glycogen as an instant energy 

supply (Brown and Ransom, 2007).  

 

Hexokinase is one of the slower glycolytic enzymes which suggests that the initial 

glucose phosphorylation can be rate limiting (Brown and Ransom, 2007). However, 

glycogen phosphorylase demonstrates high activity and can ensure a rapid 

metabolism of brain glycogen (Shulman et al., 2001). It has been shown that even 

under normal glucose conditions, stimulation of brain tissue results in rapid 

breakdown of glycogen (Brown et al., 2003).  

 

Glycogen is metabolized to glucose-6-phosphate (G6P) which can then be converted 

to lactate and released for neuronal uptake (Dringen et al., 1993a). The expression of 

the enzyme glucose-6-phosphatase in the brain is controversial. Even though some 

publications suggest that astrocytes do not express glucose-6-phosphatase (Brown 

and Ransom, 2007), other studies have demonstrated the presence of glucose-6-

phosphatase in astroglial cells (Forsyth et al., 1993) Irrespective of the results, these 

studies failed to show astrocytic release of glucose derived from glucose-6-

phosphate (Wiesinger et al., 1997). 
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The breakdown of glycogen in astrocytes not only ensures an energy supply to 

neurons in form of lactate, but also increases levels of glucose-6-phosphate in 

astrocytes. This in turn reduces the activity of hexokinase I, thus decreasing the 

phosphorylation of glucose by astrocytes. As such, more glucose from blood may be 

available for neuronal uptake (DiNuzzo et al., 2010). 

 

It has also been shown that glycogenolysis in astrocytes is important for the 

astrocyte-neuron lactate transfer during synaptic plasticity and learning (Suzuki et al., 

2011). Indeed inhibition of glycogenolysis by 1,4-dideoxy-1,4-imino-d-arabinitol 

(DAB) leads to a loss of long-term memory (Walls et al., 2008). Additionally, 

experimental block of lactate transport prevents glycogen from supporting neurons 

(Brown et al., 2003). 

 

3.1.3.3 Glycogen synthesis 

 

Glucose enters the brain via glucose transporter 1 (GLUT1) on luminal and abluminal 

sides of endothelial cells (Brown and Ransom, 2007). As endothelial cells have a 

relatively low metabolic rate, the glucose is not phosphorylated and can pass through 

them freely (Brown and Ransom, 2007). Astrocytic end feet that are in close 

proximity to endothelial cells are well positioned to take up glucose when it enters the 

brain. Astrocytes express GLUT1 (Vannucci et al., 1997) and neurons express 

GLUT3 (Brown and Ransom, 2007). As both neurons and astrocytes have a high 

metabolic rate, they phosphorylate glucose immediately, thus trapping it inside the 

cell (Brown and Ransom, 2007). Glucose-6-phosphate is then converted by 

phosphoglucomutase into glucose-1-phosphate (G-1-P) which then binds to uridine 

triphosphate (UTP) forming UDP glucose, which is the source of glycosyl units that 

are used to build the glycogen molecule. This reaction is catalyzed by UDP glucose 

pyrophosphorylase (UDPGPP). Glycosyl residues bind to glycogenin which forms a 
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skeleton of glycogen in the reaction facilitated by glycogen initiator synthase. 

Subsequently the glycogen is extended by glycogen synthase, which then adds the 

UDP glucose to the glycogen molecule forming α-1,4-glycosidic bonds. This releases 

UDP which is then converted to UTP by nucleoside diphosphate kinase. On every 8-

10th glucosyl residue an enzyme amylo-(α-1,4-α-1,6)-transglycosylase forms a 

branch by creating an α-1,6-glycosidic bond. This makes the formation of glycogen 

more efficient but also allows simultaneous breakdown (Brown and Ransom, 2007). 

 

3.1.3.4 Gluconeogenesis in astrocytes  

 

Glucosyl residues, which are the subunits for building glycogen can be derived from 

substrates other than just glucose. These include lactate, pyruvate and amino acids 

such as alanine, serine, threonine, aspartate and glutamate (Wiesinger et al., 1997). 

 

A wide variety of enzymes are required for gluconeogenesis to proceed. These 

include pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), 

fructose-1,6-biphosphatase (F1,6Pase) as well as the enzymes of the glycolytic 

pathway. At least the presence of PC and F1,6Pase has been recorded in astrocytes 

(Wiesinger et al., 1997). It has also been shown that astrocytes from mouse brain are 

capable of incorporating glycosyl residues derived from labelled [14C] lactate (Dringen 

et al., 1993b) or alanine, aspartate or glutamate (Schmoll et al., 1995) into glycogen. 

 

3.1.3.5 Glycogen breakdown 

 

The breakdown of glycogen is independent of glycogen synthesis. It involves 

glycogen phosphorylase which cleaves α-1,4-glycosidic bond realeasing glucose-1-

phospate. This reaction proceeds until only four glycosyl units are left before a 

branch. Then another enzyme, oligo-(α-1,4-α-1,4)-glucantransferase removes the 
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last three glucosyl units and attaches them to a different end of the glycogen 

molecule. These units are then released by the action of glycogen phosphorylase. 

The last remaining glucosyl unit before the branch is removed by amylo-α-(1,6)-

glucosidase which releases units as glucose (Brown and Ransom, 2007).  

 

3.1.3.6 Glycogen metabolism regulation 

 

The control of the glycogen metabolism is essential for brain function. The regulation 

of glycogen breakdown and synthesis involves phosphorylation of the two key 

enzymes, glycogen synthase and glycogen phosphorylase. Glycogen synthase exists 

in two forms; the phosphorylated form (GSb) which is inactive and a 

dephosphorylated active form (GSa). Dephosphorylation of GS is controlled by a 

family of phosphatases. Protein phosphatase 1 (PP1) is expressed at high levels in 

astrocytes and it binds glycogen through protein targeting to glycogen (PTG) which 

allows it to dephosphorylate glycogen synthase (Brown and Ransom, 2007). 

 

Glycogen phosphorylase also exists in two forms – phosphorylated active form (GPa) 

and dephosphorylated inactive form (GPb). Phosphorylation of glycogen 

phosphorylase is facilitated by phosphorylase kinase (Brown and Ransom, 2007). 

 

There are a number of neurotransmitters and modulators which promote 

glycogenolysis in astrocytes (Magistretti et al., 1981, Magistretti et al., 1986) These 

include noradrenaline (NA), vasoactive intestinal peptide (VIP) and adenosine. In 

addition, IGF I, IGF II and insulin increase glycogen levels in the brain by acting on 

insulin receptors.  Activation of receptor tyrosine kinase phosphorylates protein PP1 

which in turn activates glycogen synthase (Dent et al., 1990). NA and VIP act by 

elevating levels of cyclic AMP (Sorg and Magistretti, 1992). Additionally, an increase 

in Ca2+ can induce glycogen breakdown. Increased Ca2+ and cyclic AMP levels also 
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act on phosphorylase kinases which activate glycogen phosphorylase (Wiesinger et 

al., 1997).  

 

3.1.4 Lactate 

 

Production of lactate is not only important in supporting neurons but also astrocytes. 

As mentioned above astrocytes show low expression of components of mitochondrial 

aspartate/glutamate carrier which reduces their ability to regenerate NAD+ through 

malate/aspartate shuttle (Pellerin and Magistretti, 2012). Instead, NADH is converted 

to NAD+ during conversion of pyruvate to lactate by lactate dehydrogenase (Pellerin 

and Magistretti, 2012). 

 

Monocarboxylate transporters play a key role in influx and efflux of lactate (Aubert et 

al., 2005). There are three known transporters, MCT1, MCT2 and MCT4 and one 

sodium-dependent transporter named sMCT1 (Martin et al., 2006). These different 

transporters are cell specific. MCT1 is mainly expressed in endothelial cells in blood 

vessels and on astrocytes and oligodendrocytes (Gerhart et al., 1997). MCT2 is 

specific for neurons and it is mainly found on axons and dendrites (Pierre et al., 

2002). Dendritic spines appear especially enriched in this transporter (Bergersen et 

al., 2001). MCT4 is only expressed on astrocytes with most transporters 

concentrated on processes that are in close proximity to synapses (Pellerin et al., 

2005). MCTs are also expressed in the neonatal blood brain barrier but the 

expression of these transporters decreases with time (Pellerin et al., 1998). 

 

The transporters differ in their affinity for lactate. MCT2 is a high-affinity transporter 

with a Km of 0.7mmol/L, whilst MCT1 and MCT4 are both low-affinity transporters 

with a Km of 3.5 and 34mmol/L respectively (Pellerin and Magistretti, 2012). This low 

affinity for lactate leads to extrusion and very rarely uptake of lactate at normal 



	  
	  

104	  

extracellular levels of ~2.5mM (Turner and Adamson, 2011). However, at higher 

levels of lactate (5 to 8mM) astrocytes may increase their uptake from the 

extracellular space (Turner and Adamson, 2011). 

 

LDH isoforms also display cell type specificity and are expressed by different cell 

types. The isoform LDH-5 that is encoded by the LDHA gene is found in astrocytes 

whilst the LDH-1 isoform which has 4 subunits encoded by LDHB gene is expressed 

in neurons (Bittar et al., 1996, O'Brien et al., 2007). Neuronal LDH-1 tends to 

facilitate lactate to pyruvate conversion, while LDH-5 in astrocytes conversion of 

pyruvate to lactate (O'Brien et al., 2007). 

 

This differential localization of MCTs as well as the cell specific expression of 

different isoforms of LDH favours the concept that lactate is produced and released 

from astrocytes and taken up by neurons (Pellerin and Magistretti, 2012). 

 

Expression of neuronal MCT2 can be increased by different stimuli such as 

noradrenaline (NA), insulin, insulin-like growth factor-1 (IGF-1) and brain-derived 

neurotrophic factor (BDNF) (Chenal and Pellerin, 2007, Chenal et al., 2008, Robinet 

and Pellerin, 2010). In vitro studies have also shown that the translocation of MCT2 

to the plasma membrane can be affected by exposing cortical neurons to glutamate 

and glycine (Pierre et al., 2009). As changes to expression and location of MCT2 

appear to occur very quickly, they probably represent a process by which neurons 

adapt to their energetic needs (Pellerin and Magistretti, 2012). Studies on synaptic 

plasticity have shown that GluR2, which is known to be involved in synaptic plasticity 

at glutaminergic synapses (Isaac et al., 2007), interacts with MCT2 (Pierre et al., 

2009). It has also been found that MCT2 affects the distribution and expression of 

GluR2 which supports the idea that energy supply is tightly linked to synaptic 

plasticity (Maekawa et al., 2009). Disruption of MCT4 expression can induce loss of 
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long-term memory. This effect is rescued by administration of lactate but not glucose. 

However, when the neuronal lactate transporter MCT2 was blocked the loss of long-

term memory could not be rescued by administration of lactate (Suzuki et al., 2011). 

 

Lactate has been found to be preferred by neurons over glucose as an oxidative 

energy substrate (Bouzier-Sore et al., 2003b, Bouzier-Sore et al., 2006, Ivanov et al., 

2011). This preference appears to be inefficient as one molecule of lactate can only 

yield 17 ATPs during TCA cycle whilst glucose yields 31 molecules of ATP. However, 

lactate cannot substitute glucose completely and fulfill all neuronal requirements such 

as flux through glycolysis or pentose phosphate shunt (Dienel, 2010). Nevertheless, 

lactate has been shown to be important in many different mechanisms such as 

control of respiration (Erlichman et al., 2008), neurovascular coupling (Gordon et al., 

2008), recovery from hypoxia (Schurr et al., 1997) and neuroprotection (Berthet et 

al., 2009). 

 

3.1.5 Glutamate 

 

More than 85% of the neurons within the cortex are glutamatergic. As such glutamate 

represents a major neurotransmitter within this region (Magistretti, 2009). At the 

postsynaptic sites glutamate can interact with three types of receptors. The A-amino-

3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor changes sodium 

permeability upon glutamate binding. In comparison the N-methyl-D-aspartate 

(NMDA) receptor affects both calcium and sodium permeability which invokes 

excitatory postsynaptic potential. The third type of receptors is the metabotropic 

glutamate receptor which modifies changes in calcium signaling through GTP-

mediated processes (Magistretti, 2009). The action of glutamate is terminated by the 

uptake of glutamate by astrocytes (Danbolt, 2001). As glutamate is highly toxic and 

its accumulation can lead to excitotoxicity (Sattler and Tymianski, 2001), it is 
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essential that the astrocytes remove it from the extracellular space. Glutamate 

uptake is carried out by glutamate transporters GLT-1 and GLAST which use the 

extracellular sodium gradient as the driving force. The stoichiometry is that for one 

molecule of glutamate, astrocytes take up 3 ions of sodium (Magistretti, 2009). 

Glutamate also stimulates glucose utilization. Indeed studies have shown that this 

effect is not receptor mediated as various glutamate receptor agonists and 

antagonists have no effect (Pellerin and Magistretti, 1994). However, glucose 

utilization was enhanced after treatment by D-aspartate but not D-glutamate strongly 

suggesting that the effect is mediated by glutamate transport (Magistretti, 2009). This 

finding is supported by experiments, which have shown that inhibition of glutamate 

transporters by threohydroxyaspartate abolishes glucose utilization in astrocytes 

(Pellerin and Magistretti, 1994). 

 

Uptake of glutamate increases sodium levels inside the cell to such a level that 

Na+/K+ ATPase is activated (Pellerin and Magistretti, 1997, Chatton et al., 2000). 

More specifically glutamate transporter activation mobilizes α2 subunit of Na+/K+ 

ATPase, which co-localizes and interacts with glutamate transporters (Cholet et al., 

2002, Rose et al., 2009). In addition, a specific Na+/K+ ATPase inhibitor ouabain 

completely inhibits glutamate stimulated glucose uptake. 

 

The activation of the Na+/K+ ATPase enhances ATP utilization, which in turn 

stimulates glucose uptake and aerobic glycolysis (conversion of glucose into lactate 

in the presence of oxygen) (Pellerin and Magistretti, 1994, Pellerin and Magistretti, 

1997). 

 

There are several pathways by which astrocytes utilize glutamate after its uptake. 

Glutamate can be used as a metabolic intermediate in the TCA cycle. During this 

process astrocytes convert it into α-ketoglutarate in a process mediated by either 
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glutamate dehydrogenase or aspartate amino transferase. In both cases α-

ketoglutarate can then enter TCA cycle (Magistretti, 2009). 

 

Another pathway for glutamate in astrocytes is conversion into glutamine in process 

facilitated by glutamine synthase, which is almost exclusively localized in astrocytes. 

Additionally, astrocytes can use α-ketoglutarate and amino groups from leucine to 

form glutamate which is then converted into glutamine (Magistretti, 2009). Glutamine 

is then released by astrocytes and taken up by neurons where the enzyme 

glutaminase hydrolyzes it back to glutamate thus maintaining the glutamate pool in 

neurons. 

 

Glutamate is also a substrate that can be utilised in the glutathione (GSH) synthesis 

pathway and therefore an important component of the antioxidant system. 

Metabolism of GSH involves two ATP-requiring steps. The first step is catalyzed by 

glutamate-cysteine ligase (GLC) which uses glutamate and cysteine to form γ-

glutamylcysteine (γGluCys). This dipeptide is then combined with glycine by the 

action of glutathione synthetase (GSS) (Fernandez-Fernandez et al., 2012). 

 

As presented in this chapter metabolic coupling between neurons and astrocytes 

involves many complex mechanisms. To date this hypothesis has only been tested in 

models derived from animals. As such relevant human models are required to study 

the complex cross-talk that occurs between these metabolically distinct cell types  

 

3.1.6 Aims and objectives of the study 

 

The aim of this chapter was to investigate the metabolic properties of NT2.N/A and 

NT2.A cultures and establish whether they demonstrate signs of metabolic coupling 

that could be perturbed in AD. The expression of the main components of the ANLS 
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was investigated as well as the ability to store glycogen by NT2.A cultures. The 

responses of the astrocytic network to known neuromodulators such as glutamate, 

potassium and dbcAMP were tested, in terms of glucose uptake and glycogen 

turnover. Finally, in order to establish whether NT2-derived astrocytes provide 

metabolic support to their neuronal counterparts, the modulation of glycogen was 

investigated during electrical stimulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  
	  

109	  

3.2 Materials and Methods 

3.2.1 Cell culture 

 

3.2.1.1 NT-2/D1 cells 

 

Human teratocarcinoma NT2/D1 cells used in this study were kindly donated by 

Professor Andrews (University of Sheffield, UK).  The cells were cultured in 

Dulbecco's Modified Eagle Medium (DMEM) Glutamax high glucose, with pyruvate 

(Life Technologies, UK) containing 10% heat inactivated foetal bovine serum (Life 

Technologies, UK), 100 units/ml penicillin and 100 µg/ml streptomycin. NT2/D1 cells 

were differentiated according to the method described by Woehrling et al. (2007).  

Briefly, following treatment with 10µM retinoic acid for 4 weeks, NT2 cells were 

replated after scraping into fresh 75cm flasks at a lower density (1:3) in RA free 

medium. After 2 days neuronal clusters were detached from undifferentiated cells by 

sharp striking of the flasks against the palm of the hand. Cells were then plated into 

CellBIND 12-well plates (Corning, USA). After 2 days cells were treated with mitotic 

inhibitors to suppress the proliferation of non-neural cell types. To generate an NT2.N 

monoculture cells were treated with 1 µM cytosine arabinoside (ARAC), 10 µM 

fluorodeoxyuridine (FDU) and 10 µM uridine (U) for 1 week followed by 10 µM 

fluorodeoxyuridine (FDU) and 10 µM uridine (U) for a further 2 weeks. To produce 

NT2.N/A co-cultures, cells were treated with 0.1 µM cytosine arabinoside (ARAC) 

3 µM fluorodeoxyuridine (FDU) and 5 µM uridine (U) for 10 days followed by 3 µM 

fluorodeoxyuridine (FDU) and 5 µM uridine (U) for a further 18 days. After this period 

cells were fed twice a week in normal DMEM without mitotic inhibitors and used 

within 1 month. 

 

Cultures of NT2 astrocytes were isolated from co-cultures according to the method 

developed by Woehrling et al. (2010). NT2.N/A cells were washed 3 X using PBS 
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and then dissociated using Accutase (PAA laboratories, UK). Large NT2.N 

aggregates settled quickly leaving a single cell suspension containing astrocytes that 

were replated into a CellBIND 12 well plate (Corning, USA). After incubation for 4h 

any remaining NT2.N cells were washed off the more adherent NT2.A cells using 

media.  All cells were maintained by incubation at 37oC in a humidified atmosphere of 

5% CO2.  

 

3.2.1.2 Cell treatment 

 

During experiments cells were maintained in Krebs-Ringer’s-HEPES buffer  (115mM 

NaCl, 5mM KCl, 1mM MgCl2, 24mM NaHCO3, 2.5mM CaCl2�2H20, 25mM HEPES 

supplemented with 5mM glucose) unless otherwise stated. For the experiments cells 

were treated with 10µM 1,4-dideoxy-1,4-imino-d-arabinitol (DAB; Sigma-Aldrich, UK), 

1mM dbcAMP (Tocris, USA), 100µM isoproterenol (Tocris, USA), 1mM or 0.5mM L-

glutamic acid (Sigma-Aldrich, UK), 60mM or 15mM potassium chloride (Sigma-

Aldrich, UK), 100µM ouabain (Tocris, USA) and 100µM DL-threo-β-benzyloxyaspartic 

acid (TBOA; Tocris, USA) 

 

3.2.2 Immunohistochemistry  

3.2.2.1 GFAP / β-tubulin-III staining 

 

The cells cultured on coverslips were washed with PBS and fixed for 10 minutes with 

4% paraformaldehyde. Following fixation coverslips were washed twice with PBS and 

permeabilized with 0.2% Triton/PBS. Cells were then incubated in 2% 

BSA/0.2%Triton/PBS for 1 hour to block non-specific binding of antibody. 

Subsequently, cells were incubated with different primary antibodies for 1 hour at RT. 

The following primary antibodies were used: mouse anti-GFAP (clone GA5 Millipore, 

1:500) and rabbit anti-β-tubulin-III (Abcam, UK, 1:500).  Following incubation, 
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coverslips were washed three times in 2% BSA/0.2%Triton/PBS and then incubated 

with donkey anti-mouse Rhodamine (1:200, Jackson Immunoresearch, Europe) and 

goat anti-rabbit FITC (1:200; Jackson Immunoresearch, Europe).  

 

After washing the nuclei were visualized by Hoechst 33342 staining (Life 

Technologies, UK) for 15 minutes and mounted with ProLong® Gold Antifade 

Reagent (Life Technologies, UK). The cells were examined using the Zeiss LSM510 

confocal laser-scanning microscope and Zeiss Axiovert 200M fluorescent 

microscope. 

 

3.2.2.2 Glycogen staining 

 

Cytologic localization of glycogen was determined using the periodic acid-Schiff 

method (Rosenberg and Dichter, 1985). Briefly, the cells cultured on coverslips were 

washed with ice-cold PBS and fixed for 5 minutes at room temperature in methanol. 

After fixation coverslips were washed three times with 70% (vol/vol) ethanol. Next the 

cells were incubated for 30 minutes at room temperature with 1% (wt/vol) periodic 

acid dissolved in 70% ethanol. After incubation cells were washed three times with 

70% ethanol and stained for 60 minutes at room temperature with 0.5% (wt/vol) basic 

fuchsin (Sigma-Aldrich, UK) dissolved in acid ethanol (ethanol/water/concentrated 

HCl, 80:19:1). Cells were then washed three times with 70% ethanol and the 

coverslips were counterstained for GFAP/Oct-4 as described in section 3.2.2.1 or 

directly examined using the Zeiss LSM510 confocal laser-scanning microscope and 

Zeiss Axiovert 200M fluorescent microscope. 
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3.2.3 Gene expression analysis 

3.2.3.1 RNA extraction 

 

RNA was isolated from undifferentiated NT2/D1 cells as well as treated/untreated 

NT2.N/A co-cultures. RNA was extracted from samples using Trizol® Reagent (Life 

Technologies, UK), chloroform and isopropanol (Fisher, UK). DNA was then 

precipitated by 75% ethanol and diluted in RNA-free water. 

 

RNA was subsequently purified using RNeasy Mini Kit (QIAGEN, UK) in accordance 

with the manufacturer’s instructions, and subsequently quantified using the Nanodrop 

1000 (Thermofisher, UK).  

 

3.2.3.2 Real-time RT-PCR 

 

1 µg of total RNA was reverse transcribed by reverse transcriptase (Primer Design, 

UK) and oligo dT15 primers (Primer Design, UK). Real-Time PCR: cDNAs were 

amplified in a standard 40-cycle SYBR® green real-time PCR reaction using 

prevalidated primers for GLUT1, GLUT3, MCT2, MCT4, MCT1, GLT-1, GLAST and 

GLUL according to the manufacturer's instructions.  The house keeping genes UBC, 

B2M, EIF4A2 and C14orf133 (supplied by PrimerDesign Ltd, UK) were assayed 

under the same conditions as above. The expression of UBC was found to be 

unchanged under the conditions imposed and was therefore used in the 

normalisation of qRT-CR data.  Cycling conditions were as follows: 10min at 95˚C, 

15s at 95˚C and 1min at 60˚C for 40 cycles, 30s at 95˚C, 30s at 55˚C and 30s at 

95˚C. Fold changes >2 fold were considered significant. 
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3.2.4 Fluorescent glucose analogue 6-NBDG uptake 

 

Uptake of the glucose analogue 6-NBDG in NT2.N/A and NT2.A cultures under 

various conditions was investigated using methods previously described (Loaiza et 

al., 2003). Briefly, before the measurement, culture medium was removed and cells 

were washed with Krebs’–Ringer HEPES (KRH) buffer supplemented with 5mM 

glucose. Then glucose in the medium was reduced to 0.5mM and cells were 

incubated for 5 min. Subsequently, the buffer in each well was changed to KRH 

buffer with 0.5mM glucose, 300µM 6-NBDG and treatments: 1mM glutamate (Sigma-

Aldrich, UK), 20µM cytochalasin B (Sigma-Aldrich, UK), 1mM glutamate and 20µM 

cytochalasin B, 1mM glutamate and 100µM ouabain (Tocris, USA). Cultures were 

excited at 488 nm and imaged at 505–550 nm emission at 60min, 180min and 

360min. The plate was read using SpectraMAX GeminiXS microplate luminometer 

(Molecular Devices, UK) and SoftMaxPro software. 

 

3.2.5 Determination of glycogen levels 

 

The method used to determine levels of glycogen in biological samples was 

previously described by Nahorski and Rogers (1972). It is an enzymatic reaction and 

is based on the breakdown of the glycogen into glucose by the enzyme 

amyloglucosidase. Subsequently, glucose undergoes phosphorylation by hexokinase 

in the presence of ATP. The third step involves oxidation of glucose 6-phosphate to 

gluconate-6-phosphate by glucose-6-phosphate dehydrogenase (G6P-DH). 

Fluorescence of the NADPH formed in the final reaction is then read on a fluorometer 

(excitation: 340 nm; emission: 450 nm). This method allows measurement of 

glycogen as well as glucose and glucose-6-phosphate in cell lysate according to the 

enzymes added. 
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3.2.5.1 Sample preparation  

 

NT2.N/A cultures were prepared as described in section 3.2.1.1. Cultures plated on 

12-well plates were then exposed to a range of reagents described in section 3.2.1.2. 

Next plates were incubated for 60min and 180min in DAB and hypoglycaemic 

conditions, 180min during dbcAMP and isoproterenol treatment and 60min during 

potassium and glutamate treatments. Following the treatment cells were washed 

three times with ice-cold PBS and then scraped in 300µl of 30mM ice-cold HCl. 

Subsequently, samples were sonicated for 15 seconds and used for the glycogen 

assay (section 3.2.5.2) and protein determination (section 3.2.5.3). 

 

3.2.5.2 Protocol  

 

The assay was adapted to a 96-well plate (Sigma-Aldrich, UK). Two 10µl aliquots of 

cell lysate were sampled. To the first aliquot 30µl of acetate buffer (0.1M, pH 4.65) 

was added. To the second 30µl of 0.1mg/ml of amyloglucosidase (Sigma-Aldrich, 

UK) in acetate buffer was added. Both samples were incubated for 30min at room 

temperature. After incubation 200µl of Tris-HCl buffer (0.1M, pH 8.1) containing 

MgCl2 (3.3 mM), ATP (0.33mM), NADP (38µM), hexokinase (4µg/ml) and glucose 6-

phosphate dehydrogenase (2µg/ml) were added to both aliquots and incubated for 

30min at room temperature. The third aliquot was used to determine the protein 

concentration (section 3.2.5.3) 

 



	  
	  

115	  

Standards were prepared using a solution of glucose (1mg/ml; Sigma-Aldrich, UK) 

and 1:2 serially diluted using acetate buffer. Standards were treated as the first 

aliquot i.e. without amyloglucosidase treatment.  

 

The plate was then read using SpectraMAX GeminiXS microplate luminometer 

(Molecular Devices, UK) and SoftMaxPro software. The first aliquot gives the sum of 

glucose and glucose 6-phosphate, and the second the sum of glycogen, glucose and 

glucose 6-phosphate. In this thesis one mole of glycogen corresponds to one mole of 

glycosyl units originating from glycogen. 

 

3.2.5.3 Determination of protein levels 

 

The protein concentration of the sample was determined using the BCA assay 

reagent kit (Thermofisher, UK) in accordance with the manufacturer’s instructions. 

Briefly 25µl of sample, BSA standard (ranging from 25-2000 µg/ml) or 30mM HCl 

which acted as a BSA-free control were added to a 96-well microplate with the 200 µl 

of the working reagent (50:1, Reagent A:B). Reaction was then incubated at 37 °C 

for 30 min and then read at 590nm using a Thermo Multiscan EX 96-well plate reader 

(Thermofisher, UK). 

 

3.2.6 Determination of lactate levels 

 

A Lactate Assay Kit was used to measure lactate levels (Abcam, UK). The method is 

based on the oxidation of lactate by lactate oxidase into pyruvate and hydrogen 

peroxide. The product then interacts with the lactate probe to produce both colour 

and fluorescence. 
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3.2.6.1 Sample preparation  

 

NT2.N/A cultures were prepared as described in section 3.2.1.1. Cultures plated on 

12-well plates were then exposed to a range of reagents described in section 3.2.1.2. 

Next, plates were incubated for 60min and 180min in DAB and hypoglycaemic 

conditions, 180min during dbcAMP and isoproterenol treatment and 60min during 

potassium and glutamate treatments. Following the treatment cell culture media was 

collected and used for the lactate assay (section 3.2.6.2). 

 

3.2.6.2 Protocol 

 

Lactate levels were measured in accordance with the manufacturer’s instructions. 

Briefly, the assay was set up in a 96-well microplate. 50µl of media samples were 

used per well and mixed with 50 µl reaction mix containing 46 µl Lactate Assay 

Buffer, 2 µl Probe and 2 µl Enzyme Mix. 50µl reaction mix was also added to lactate 

standards that were prepared at 0, 0.2, 0.4, 0.6, 0.8 and 1.0 nmol/well. The reaction 

was incubated at room temperature for 30 minutes, protected from light and then 

read at 570nm using a Thermo Multiscan EX 96-well plate reader (Thermofisher, 

UK). All readings were corrected for background and lactate concentration was 

expressed in mM. 

 

3.2.7 Stimulation protocol 

 

Synaptic stimulation was achieved with a computer controlled constant current 

isolated stimulator (STG1002, Multichannel Systems, Germany) and bipolar 

electrodes, which were placed within the petri dish. Stimulation was composed of 

bursts of ten 800µA current pulses delivered at 20Hz every 10s for 30 minutes. Cells 

were maintained in Krebs-Ringer’s-HEPES buffer supplemented with 5mM glucose. 
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For the inhibition of glutamate uptake cells were pre-treated with 100µM TBOA for 

15min and then maintained in Krebs-Ringer’s-HEPES buffer, 5mM glucose and 

100µM TBOA during stimulation 

 

3.2.8 Statistics 

 

Results were expressed as the mean of three samples ± standard error of the mean 

(SEM).  Comparisons between treatments were performed using analysis of variance 

(ANOVA) followed by Dunnet’s or Tukeys post-test or Students T-test using 

GraphPad Prism Software.  Differences were considered significant for p values 

<0.05. 
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3.3 Results 

3.3.1 Characterization of NT2.N/A cultures and components of ANLS 

 

As the astrocyte-neuron lactate shuttle (ANLS) has been shown to be involved in 

memory formation, it is important that models used to investigate Alzheimer’s 

disease and dementia reflect the co-operation of these two cell types. To 

demonstrate the presence of the ANLS in NT2.D1 derived neurons and astrocyte co-

cultures it was essential to establish whether these cells are metabolically competent 

and demonstrate functional metabolic coupling. NT2.N/A and NT2.A cells were 

investigated for the expression of the main components of the ANLS, as well as 

responses of the astrocytic network to known neuromodulators such as glutamate, 

potassium and dbcAMP as well as inhibitors such as ouabain, catachalasin B and 

TBOA. In addition, to establish whether NT2-derived astrocytes provide metabolic 

support to their active neurons, the turnover of glycogen and production of lactate 

were monitored during electrical stimulation. 

 

NT2/D1 derived neurons and astrocytes were identified microscopically by their 

characteristic morphology. Following treatment with retinoic acid and replating, the 

cultures begin to display distinct neuronal and astrocytic morphology. Neurons 

extend axons and dendrites, and astrocytes with projections appear in close 

proximity to aggregations of neuronal perikarya and neurites throughout the culture. 

Under the microscope astrocytes were identified by their flat phase dark appearance, 

whilst neurons were typically phase bright and often seen on top of the astrocytic 

monolayer. These cells were further identified using immunohistochemistry for the 

specific markers GFAP and β-tubulin (Fig. 3.2).  To identify glycogen in NT2/D1 

derived cultures the periodic acid–Schiff method was used to determine the 

localization of glycogen in cultures (Nahorski and Rogers, 1972). Glycogen was 

found to co-localize with GFAP positive cells (Fig. 3.3). No glycogen was found in β-
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tubulin positive cells or undifferentiated Oct-4 positive NT2 cells (data not shown). 

 

Using realtime PCR, cultures were also characterised for the expression of genes 

involved in the astrocyte-neuron lactate shuttle following differentiation. Genes 

included glucose transporters (GLUT1 and GLUT3), monocarboxylate transporters 

(MCT1, MCT2 and MCT4), glutamate transporters (GLT-1 and GLAST) and 

glutamine syntethase (GLUL). A comparison of NT2/D1 stem cells with differentiated 

co-cultures showed a significant upregulation of glutamate transporters (GLAST and 

GLT-1) and a downregulation of GLUT1, MCT1 and GLUT3, whilst other genes 

remained unchanged (MCT4/2 and GLUL) (Fig. 3.4A). However, Ct values for all 

genes tested were relatively low (<30) suggesting a high to moderate expression of 

these genes (Fig. 3.4B). 
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Figure 3.2 Immunofluorescent images of NT2/D1 derived neurons and 
astrocytes. Images showing: (A) β-tubulin positive neurons (green), (B) GFAP (red) 
positive astrocytes, (C) nuclei stained with Hoechst 33342, and (D) an overlay of 
GFAP positive astrocytes and β-tubulin positive neurons (D). Scale bar 40µM. 
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Figure 3.3 Immunofluorescent images of NT2/D1 derived astrocytes.  Images 
showing: (A) GFAP (green) positive astrocytes and staining for (B) glycogen (red) 
using the periodic acid Schiff assay. (C) Representative image of co-localisation of 
glycogen and GFAP (yellow) with nuclei Hoechst 33342 staining (Blue). Scale bar 
33.7µM. 
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Figure 3.4 mRNA expression in NT2/D1 derived neurons and astrocytes in 
comparison to undifferentiated NT2/D1 stem cells.  mRNA expression of Glut1, 
Glut3, MCT2, MCT4, MCT1, GLT-1, GLAST and GLUL as well the house keeping 
gene UBC.  Results are expressed as A) the average fold change ± SEM (n=3) and 
considered significant above 2-fold change B) Ct values ± SEM (n=3). 
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3.3.2 Glutamate stimulates uptake of fluorescent glucose analogue 6-NBDG 

in NT2.N/A cultures  

 

Utilization of glucose in NT2.N/A and NT2.A cultures was monitored using a 

fluorescent glucose analog 6-NBDG. In control cultures dye accumulated 1.68 fold ± 

0.165 over 360min. Following the treatment of the co-cultures with glutamate for 

180min (Fig. 3.5A) 6-NBDG uptake increased 2.09 fold ± 0.144 (p<0.01) and 3.06 

fold ± 0.197 (p<0.001) after 360min. The uptake of 6-NBDG induced by glutamate 

was completely blocked by ouabain, a Na+/K+ ATPase inhibitor, at all 3 time points 

with most significant difference at 360min (glutamate: 3.06 fold ± 0.197; 

glutamate/ouabain: 1.31 fold ± 0.07, p<0.001). Similarly treatment with cytochalasin 

B, a potent inhibitor of GLUT1 and GLUT4 mediated glucose uptake, blocked the 

uptake of 6-NBDG at all time points (Fig. 3.5A). At 360 minutes uptake of glucose in 

cultures with glutamate was increased 3.06 fold ± 0.197 whilst treatment with 

glutamate and cytochalasin B only increased 1.83 fold ± 0.13, p<0.01.  Similar results 

were also obtained in pure astrocyte cultures, with glutamate significantly increasing 

6-NBDG uptake and ouabain and cytochalasin B inhibiting uptake (Fig. 3.5B). 

 

3.3.3 Hypoglycaemia and neuromodulators stimulate turnover of glycogen 

and production of lactate 

 

Lactate release and glycogen levels were measured under hypoglycaemic 

conditions. In order to block glycogen breakdown, cells were also treated with 1,4-

dideoxy-1,4-imino-d-arabinitol (DAB), a selective inhibitor of glycogen phosphorylase. 

Under hypoglycaemic conditions (Fig. 3.6A), cultures released significant amounts of 

lactate (60min: 0.25 ± 0.03, p<0.01; 180min: 0.42 ± 0.05mM, p<0.01) in comparison 

to undetectable levels at time 0 min. In addition, glycogen levels were decreased to 

90.62 ± 2.33% at 60min, p<0.05 and 74.23 ± 4.48% at 180min, p<0.01 (Fig. 3.6B) 
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compared with the control at 0min. DAB treatment reduced the release of lactate in 

comparison to cell without DAB treatment but the decrease was only significant at 

180min (0.24 ± 0.02, p<0.05). Breakdown of glycogen was completely blocked by 

DAB treatment (60min: 102.57 ± 1.28%, p<0.05; 180min: 103.27 ± 0.025%, p<0.01) 

in comparison to cells without DAB treatment.  

 

Treatments with known modulators of glycogen phosphorylase, dbcAMP and the β1 

and β2 adrenergic agonist isoproterenol induced a significant decrease in glycogen 

levels in comparison to non-treated control (dbcAMP: 70.72 ± 2.92%, p<0.001; 

isoproterenol: 77.43 ± 1.54%, p<0.001) (Fig. 3.7B). In comparison, lactate levels 

following exposure to dbcAMP did not show any significant increase (control: 0.77 ± 

0.05mM; dbcAMP: 0.83 ± 0.06mM) whilst isoproterenol treatment resulted in a 

significant decrease in lactate levels to 0.42 ± 0.03mM, p<0.01 in comparison to 

control at 0.77 ± 0.05mM (Fig. 3.7A). 

 

3.3.4 Glutamate and potassium stimulate glycogen breakdown and lactate 

production in NT2.N/A co-cultures 

 

In order to investigate activation of the Na+/K+ ATPase by glutamate, cultures were 

exposed to glutamate in the presence and absence of ouabain (Fig. 3.8). The 

treatment of the cultures with glutamate increased the lactate levels (1mM glutamate: 

0.26 ± 0.01mM p<0.05) but the increase was only significant at the higher 

concentration of glutamate (Fig. 3.8A). Incubation with both 1mM glutamate and 

ouabain blocked the release of lactate (1mM glutamate: 0.26 ± 0.01mM; 1mM 

glutamate + ouabain: 0.18 ± 0.02mM, p<0.01) and reduced the values to control 

levels (control: 0.21 ± 0.01mM).  
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Figure 3.5 Glutamate stimulates uptake of fluorescent glucose analogue 6-
NBDG. A) NT2/D1 derived neuron and astrocyte co-cultures and B) pure 
astrocytes.   The uptake of 300µM 6NBDG was measured using a fluorescent plate 
reader measured at 60, 180 and 360 minutes.  The uptake was measured in the 
presence of glutamate with and without oubain or cytochalasin B.  Results are 
expressed as the mean fold change ± SEM (n=3). p<0.05 (*), p<0.01 (**), p<0.001 
(***). 
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Figure 3.6 Effects of hypoglycaemia on lactate and glycogen levels. Neuron and 
astrocyte co-cultures were starved of glucose for 60 and 180 min in the 
presence/absence of DAB and assayed for A) production of lactate and B) glycogen 
turnover. Results are expressed as A) the mean ± SEM (n=3) and B) the mean 
percentage of control at time 0 ± SEM (n=3). p<0.05 (*), p<0.01 (**), p<0.001 (***). 
ND = not detected. 

 

 

 

 

 



	  
	  

127	  

 

 

 

Figure 3.7 Effects of neuromodulators on lactate and glycogen levels. Neuron 
and astrocyte co-cultures were treated with dbcAMP and the β1 and β2 adrenergic 
agonist isoproterenol for 180min and assayed for A) production of lactate and B) 
glycogen breakdown. Results are expressed as A) the mean ± SEM (n=3) and B) the 
mean percentage of non-treated control ± SEM (n=3). p<0.05 (*), p<0.01 (**), 
p<0.001 (***). 
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Treatment with 0.5mM glutamate with or without ouabain demonstrated similar 

results (p<0.01). In addition, treatment with glutamate caused a significant 

breakdown of glycogen (1mM glutamate: 76.75 ± 2.36, p<0.01; 0.5mM glutamate: 

81.73 ± 1.82%, p<0.05).  This effect was completely blocked by ouabain (0.5mM 

glutamate + ouabain: 99.4 ± 3.04%, p<0.01; 1mM glutamate + ouabain: 99.12 ± 

4.74%, p<0.05) (Fig. 3.8B).  

 

To determine whether the effect seen in NT2/D1 neuron and astrocytes cultures was 

mediated by glutamate transporters and not glutamate receptors (Pellerin and 

Magistretti, 1994), cells were exposed to glutamate in the presence of DL-threo-β-

benzyloxyaspartic acid (TBOA), a potent glutamate transport inhibitor (Fig. 3.9). In 

Fig. 3.9A it is clear that TBOA treatment blocks the release of lactate (1mM 

glutamate: 0.4 ± 0.01mM; 1mM glutamate and TBOA: 0.23 ± 0.01mM, p<0.001), 

reducing the levels to those of the control (control: 0.29 ± 0.02mM). Glycogen 

breakdown in response to glutamate was also attenuated (1mM glutamate: 76.75 ± 

2.36%; 1mM glutamate and TBOA: 96.16 ± 2.83%, p<0.01) (Fig. 3.9B). Similar 

inhibition was also seen with lower concentrations of glutamate (p<0.001). 

 

Potassium has also been shown to directly activate Na+/K+ ATPase (Bittner et al., 

2011). The levels of lactate following treatment with ouabain only were actually 

decreased, suggesting a block of a basal Na+/K+ ATPase activity (control: 0.66 ± 

0.01mM; ouabain: 0.5 ± 0.01mM, p<0.05) (Fig. 3.10A). Treatment with potassium at 

both 15 and 60mM triggered a significant increase in lactate (60mM potassium: 0.77 

± 0.05mM, p<0.001; 15mM potassium: 0.86 ± 0.02mM, p<0.01).  This effect was 

completely inhibited in the presence of ouabain (60mM potassium + ouabain: 0.52 ± 

0.01mM, p<0.001; 15mM potassium + ouabain: 0.57 ± 0.04mM, p<0.001) (Fig. 

3.10A). 
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Figure 3.8 Effects of glutamate on neuron and astrocytes co-cultures. Co-
cultures were treated with glutamate for 60min in the presence/absence of ouabain 
and assayed for A) production of lactate and B) glycogen turnover. Results are 
expressed as A) the mean ± SEM (n=3) and B) the mean percentage of non-treated 
control ± SEM (n=3). p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Figure 3.9 Effects of glutamate on neuron and astrocytes co-cultures. Co-
cultures were treated with glutamate for 60min in the presence/absence of TBOA and 
assayed for A) production of lactate and B) glycogen breakdown. Results are 
expressed as A) the mean ± SEM (n=3) and B) the mean percentage of non-treated 
control ± SEM (n=3). p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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In addition, glycogen levels were significantly reduced following treatment with 

potassium (60mM potassium: 83.25 ± 0.62%, p<0.001, 15mM potassium: 86.28 ± 

0.54%, p<0.01).  This effect was completely blocked with oubain (60mM potassium + 

ouabain: 100.6 ± 2.12%, p<0.001; 15mM potassium + ouabain: 98.29 ± 0.74%, 

p<0.05) (Fig. 3.10B). 

 

3.3.5 NT2.N/A network activity induces glycogen turnover and lactate 

production 

 

In order to investigate whether neuronal activity triggers the breakdown of glycogen 

and release of lactate in NT2.N/A cultures, the cells were stimulated electrically for 

30 minutes in the presence and absence of TBOA (Fig. 3.11). Following electrical 

stimulation, the levels of lactate in the media were significantly increased (0.67 ± 

0.04mM p<0.01) in comparison with control (0.36 ± 0.03mM) (Fig. 3.12A). In addition, 

glycogen levels inside the cells were significantly decreased (77.977 ± 3.62%, 

p<0.01) (Fig. 3.12C). These effects were completely blocked following treatment with 

TBOA (Fig. 3.12B and 3.12C). After pre-treatment of cells with TBOA for 15min and 

electrical stimulation in the presence of TBOA, lactate levels were slightly reduced 

(control: 0.69 ± 0.04mM; stimulation/TBOA: 0.53 ± 0.05mM) although the decrease 

was not significant. Glycogen breakdown was also blocked (stimulation: 77.98 ± 

3.62%; stimulation/TBOA: 109.31 ± 2.9%, p<0.001) and the levels remained similar 

to the control. 
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Figure 3.10 Effects of potassium on neuron and astrocyte co-cultures. Co-cultures 
were treated with potassium for 60min in the presence/absence of ouabain and 
assayed for A) production of lactate and B) glycogen breakdown. Results are 
expressed as A) the mean ± SEM (n=3) and B) the mean percentage of non-treated 
control ± SEM (n=3). p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Figure 3.11 Schematic diagram of the experimental protocol for electrical 
stimulation. 
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Figure 3.12 Effects of induced network activity on glycogen turnover and lactate 
production in neuron and astrocyte co-cultures. Production of lactate (A,B) and 
breakdown of glycogen (C) were measured in response to high frequency electrical 
activity in the presence and absence of TBOA. Results are expressed as A) the 
mean ± SEM (n=3) and B) the mean percentage of non-treated control ± SEM (n=3). 
p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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3.4 Discussion 

 

 glucose uptake glycogen breakdown lactate production 

glutamate é  ê  é  

potassium  ê  é  

hypoglycaemia  ê  é  

dbcAMP  ê  = 

isoproterenol  ê  ê  

electrical 
stimulation  ê  é  

ouabain ✕  ✕  ✕  

DAB  ✕  ✕  

TBOA  ✕  ✕  

cytochalasin B ✕    

 

Figure 3.13 Summary table of chapter 3 results. é = increase; ê = decrease; 
✕ = block;  = no change 

  

 

The astrocyte-neuron lactate shuttle (ANLS) was first proposed by Pellerin and 

Magistretti (1994) and has since been extensively studied. Experiments supporting 

ANLS have been carried out using brain slices, cultured primary neurons and 

astrocytes as well as isolated nerves and sympathetic ganglia from rat, mouse and 

chick (Pellerin, 2003). To the author’s knowledge, these experiments have never 

been carried out on human stem cell derived cultures.  Human studies have been 

limited to brain imaging techniques such as nuclear magnetic resonance 

spectroscopy (NMR), Positron Emission Tomography (PET) or functional Magnetic 

Resonance Imaging (fMRI) (Bouzier-Sore et al., 2003a, Bonvento et al., 2005).  



	  
	  

136	  

Work in our laboratory has previously demonstrated that neuronal networks derived 

from NT2 cells signal to astrocytes, and that astrocytic networks communicate via 

gap junction mediated and gliotransmitter signalling (Hill et al., 2012).  The results of 

this study show for the first time that human stem cell derived astrocytes synthesize 

glycogen and respond to classical neuromodulators that can induce glycogenesis 

and glycogenolysis in these cells as well as induce glucose uptake and lactate 

production. 

 

In the NT2.N/A co-cultures, neurons and astrocytes display distinct differences in 

glycogen localization. The periodic acid-Schiff stain was co-localized with GFAP 

positive cells, while cells that stained for β-tubulin demonstrated no glycogen 

staining. The presence of glycogen as well as markers associated with its 

metabolism would suggest that these cells are well differentiated and resemble 

mature astrocytes (Brunet et al., 2010).  

 

The importance of glucose utilization in astrocytes has been supported by 

experiments using radiolabelled and fluorescent deoxyglucose analogues (Pellerin 

and Magistretti, 1994, Barros et al., 2009a). Experiments presented here using 6-

NBDG, show that NT2.N/A cultures respond to glutamate by increasing glucose 

uptake, an effect that was blocked by both cytochalasin B and ouabain in a manner 

previously shown in mouse cerebral cortical astrocytes (Pellerin and Magistretti, 

1994) as well as rat neuronal and astrocytic cells (Hara et al., 1989, Roeder et al., 

1985). However it should be noted that cytochalasin B, in addition to blocking 

glucose transport, also inhibits rate of actin polymerization and interaction of actin 

filaments (MacLean-Fletcher and Pollard, 1980). This can further lead to inhibition of 

transport of proteins and nucleotides (Plagemann and Estensen, 1972) as well as 

inhibition of cytokinesis (Carter, 1967) and  a reduction in cell motility (Hosaka et al., 

1980). The cells treated with cytochalasin B should therefore be assessed for any 
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toxicity caused by the compound. 

 

The activation of the Na+/K+ ATPase enhances ATP utilization, which in turn 

stimulates glucose uptake and aerobic glycolysis which results in increased lactate 

production (Pellerin and Magistretti, 1994). Lactate production in astrocytes occurs 

not only as a part of the glycolytic part of glucose degradation but also during 

breakdown of glycogen (Dringen et al., 1993a) which is stimulated during brain 

activation and hypoglycaemia (Swanson et al., 1992, Swanson, 1992b, Cruz and 

Dienel, 2002).   

 

In this study, hypoglycaemic conditions induced glycogenolysis in NT2.N/A cells as 

well as increased the production and release of lactate. This response was 

completely blocked by a known inhibitor of glycogen phosphorylase, 1,4-dideoxy-1,4-

imino-d-arabinitol (DAB) (Walls et al., 2008). These results together with glycogen 

staining suggest that NT2.A cells possess the machinery required for glycogen 

synthesis and glycogen breakdown.  

 

ANLS experiments have previously shown that glutamate stimulates glucose 

utilization and that this effect is not receptor mediated, as various glutamate receptor 

agonists and antagonists have no effect on hexose sugar usage (Pellerin and 

Magistretti, 1994).  

 

NT2.N/A cells also demonstrate an increase in lactate production following treatment 

with both glutamate and potassium. This lactate increase was accompanied by a 

decrease in glycogen levels, suggesting that NT2 astrocytes respond to glutamate 

and potassium not only by increasing glucose uptake but also by degrading glycogen 

as demonstrated in vivo and in primary cultures (Hof et al., 1988, Swanson, 1992b, 

Swanson et al., 1992, Cruz and Dienel, 2002) 
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Figure 3.14 Schematic diagram of regulatory factors of ANLS, glycolysis and 
glycogenolysis. Neuromodulators and inhibitors that were used to investigate ANLS 
in NT2.N/A cocultures are highlighted. 
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Previous studies have shown that glutamate transport activates the Na+/K+ ATPase 

(Pellerin and Magistretti, 1997, Chatton et al., 2000), specifically mobilizing the α2 

subunit of Na+/K+ ATPase, which co-localizes and interacts with glutamate 

transporters (Cholet et al., 2002, Rose et al., 2009, Gegelashvili et al., 2007). 

Additional evidence in support of the glutamate induced Na+/K+ ATPase activation 

comes from studies, which have used ouabain, a specific Na+/K+ ATPase inhibitor. 

The use of ouabain completely inhibited the glutamate stimulated glucose uptake 

(Pellerin and Magistretti, 1997). 

 

In NT2.N/A cells, the glutamate and potassium-induced lactate production and 

glycogen breakdown were both inhibited by ouabain and glutamate-induced lactate 

production was also blocked using TBOA. These results provide further evidence for 

the existence of a functional astrocyte-neuron lactate shuttle and activity of NA+/K+ 

ATPase triggered by glutamate uptake in NT2.N/A cultures. 

 

Experiments involving treatments of the co-cultures with dbcAMP and β1 and β2 

adrenergic agonist isoproterenol demonstrated a decrease in glycogen load in the 

cells. dbcAMP, one of cAMP derivatives, activates glycogen phosphorylase through 

activation of protein kinase A leading to glycogen breakdown (Boer and Sperling, 

2004). NA acts in a similar way, by elevating levels of cyclic AMP which in turn 

activates protein kinase A (Sorg and Magistretti, 1992).  Interestingly, although 

isoproterenol increased glycogen turnover in these cultures there was a decrease the 

level of lactate in the media. At the same time dbcAMP also decreased glycogen 

levels but failed to increase lactate levels in the media samples. This is a suprising 

result as both substances act through activation of protein kinase A. However, both 

dbcAMP and isoproterenol have been shown to stimulate glycolysis and it is possible 

that pyruvate produced has been utilised in TCA cycle instead of lactate production 

(Auffermann et al., 1992, Suemori, 1975). Additionally, it has previously been shown 
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that NA enhances the expression of MCT2 in cortical neurons (Chenal and Pellerin, 

2007). As such, it can be hypothesized that the lactate produced by the increase in 

glycogen metabolism may have been taken up by neurons due to increased MCT2 

expression. Future studies will determine the dynamics of this change in expression 

in pure neuronal cultures. 

 

The effect of neuronal activity on the lactate shuttle and glycogen utilization was 

investigated using electrical stimulation. After 30 minutes, glycogen levels 

significantly decreased whilst lactate levels increased. This suggests that lactate is 

released in response to neuronal activity. It has previously been shown in rat optic 

nerve preparations, that when cultured in glucose deprived aCSF, astrocytic 

glycogen was used as the primary source of lactate.  Indeed, glycogen depletion in 

these cultures led to a failure in compound action potential (CAP) generation 

(Wender et al., 2000). In this study, stimulation-induced glycogen breakdown was 

blocked by administration of TBOA, an inhibitor of the glutamate transporter. These 

results indicate that activity-induced neuronal glutamate release and subsequent 

astrocyte uptake, were capable of inducing glycogen breakdown and lactate 

production. 

 

Glycolysis and glycogenolysis are important processes in normal functioning of the 

brain but also in a number of disease processes such as ischaemia (Lowry et al., 

1964) hypoglycaemia (Gruetter, 2003) and Alzheimer’s (Allaman et al., 2010).  This 

study demonstrates for the first time the metabolic coupling of neurons and 

astrocytes in a human derived stem cell model.  This has important implications in 

the study of memory formation, plasticity, and neurodegeneration in vitro. This model 

may facilitate the future study of the active role and emerging understanding of the 

contribution of astrocytes in brain function as well as in neurodegenerative 

conditions, such as Alzheimer’s disease. It is especially important as changes in 
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brain metabolism are one of the first signs of Alzheimer’s Disease and appear 

decades before any other symptoms (Reiman et al., 2004, Mosconi et al., 2008b, 

Mosconi et al., 2009b). As such understanding of Aβ-associated metabolic changes 

in a human model of the disease may provide important insight into the disease 

process. 
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Chapter 4: Metabolism in Alzheimer’s Disease 

4.1 Introduction 

 

Changes in brain metabolism during ageing and Alzheimer’s Disease have been 

extensively studied for the past 30 years (Cunnane et al., 2011). It is now widely 

accepted that AD is accompanied by brain hypometabolism that varies between 

different regions of the brain. A decline in glucose utilization in the brain as well as 

mitochondrial function appear decades before any symptoms or histopathological 

changes occur, making it a useful biomarker of AD (Mosconi et al., 2008a, Mosconi 

et al., 2009a, Mosconi et al., 2009b, Reiman et al., 2004). Some of the evidence from 

kinetic FDG-PET studies suggests that hypometabolism is accompanied by a 

reduction in the rate of glucose transport (25%) and phosphorylation (23%-36%) 

(Mosconi et al., 2007).  

 

Disturbances in brain metabolism could have long term adverse effects on the 

performance and survival of brain cells. Hypometabolism could also lead to 

decreased production of acetyl-coenzyme A (CoA) and ATP as well as acetylcholine 

which depends on availability of acetyl-coenzyme A and insulin (Cunnane et al., 

2011). As impairment of cholinergic neurotransmission is one of the hallmarks of AD 

(Sims et al., 1983, Sims et al., 1981), hypometabolism would offer an interesting 

explanation. A reduction in ATP could also lead to damage in the ER and Golgi/trans-

Golgi network resulting production of misfolded proteins. Energy deprivation could 

further lead to the induction of BACE1 (Velliquette et al., 2005, O'Connor et al., 

2008), which would lead to an increase in Aβ(1-42) levels linking hypometabolism to 

the amyloid cascade.  

 

Of particular interest in this process is the depletion of key metabolic intermediates 

such as nicotinamide adenine dinucleotide (NAD+), which is essential for oxidative 
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phosphorylation-derived ATP. Depletion of NAD+ could be caused by oxidative stress 

as well as the action of enzymes that require it as a substrate such as poly (ADP-

ribose) polymerase (PARP) (Braidy et al., 2008, Alano et al., 2010). Another 

contributing factor of the energy deficit could be a decrease in activities of important 

glycolytic enzymes such as hexokinase or phosphofructokinase (Liguri et al., 1990, 

Sims et al., 1987) as well as enzymes of TCA cycle and oxidative phosphorylation 

such as pyruvate dehydrogenase (Yao et al., 2009), α-ketoglutarate dehydrogenase 

(Gibson et al., 1998) and cytochrome c oxidase (Yao et al., 2009). 

 

4.1.1  Hypometabolism in AD 

 

The cerebral metabolic rate of glucose (CMRg) in a healthy adult brain is 6-

7mg/100g/min (Owen et al., 1967). The most widely used technique to study brain 

metabolism is Positron Emission Tomography (PET) using a tracer called [18F]-

fluorodeoxyglucose (FDG). This tracer is able to mimic both glucose transport as well 

as phosphorylation (Phelps et al., 1979). FDG can be phosphorylated by hexokinase 

however it cannot be further metabolized (Cunnane et al., 2011). As PET has 

relatively poor spatial resolution, it is often combined with magnetic resonance 

imaging (MRI) or computed tomography (CT). This allows investigation of regional 

CMRg in specific areas of the brain (Cunnane et al., 2011).  

 

FDG-PET studies of patients with AD have shown a progressive reduction in CMRg, 

which correlates with severity of the symptoms and cognitive performance (Mosconi, 

2005). In addition, multiple studies have shown that in comparison with healthy age-

matched controls, individuals with AD display a reduction in regional CMRg levels in 

parieto-temporal and posterior cingulate cortices (PCCs) as well as frontal areas in 

advanced disease (Friedland et al., 1983, Minoshima et al., 1997, Foster et al., 

1984). Abnormalities in CMRg in medial temporal lobes (MTL: the hippocampus, 
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transentorhinal and entorhinal cortices, and parahippocampal gyrus) have been 

recently reported in studies that have used more sensitive PET equipment with 

higher spatial resolution (Mosconi et al., 2008a, Mosconi et al., 2007, Mosconi et al., 

2006a, de Leon et al., 2001, Nestor et al., 2003). 

 

One obvious explanation for a decrease in glucose utilization could be neuronal loss, 

which is one of the hallmarks of AD. However, many studies have shown a reduction 

in CMRg before the onset of the disease, in individuals at risk of developing AD such 

as APOE4 carriers, individuals carrying autosomal dominant mutations that are 

responsible for familial AD (FAD) or patients with mild cognitive impairment (MCI) 

(Mosconi et al., 2008b). 

 

4.1.1.1 Familial AD (FAD) 

 

Studies involving patients with FAD are very limited. Kennedy et al. (Kennedy et al., 

1995) showed that presymptomatic FAD individuals have lower CMRg levels than 

age controls but higher than symptomatic FAD patients, suggesting a progression in 

CMRg impairment with the progression of the disease (Kennedy et al., 1995). 

However, as individuals in this study showed a substantial volume loss of the brain, it 

was not clear whether the decrease in CMRg was significant. A further study by 

Mosconi et al. (2006b) examined individuals with the PS1 mutation from families with 

FAD (on average 13 years before estimated disease onset). CMRg levels and 

volumes in several brain regions including hippocampus, entorhinal cortices (EC), 

posterior cingulate cortices (PCC), parietal and temporal cortices and the whole brain 

were measured in patients with FAD and controls. A significant decrease in CMRg 

was seen in all the regions whilst volume reductions were only found in the parietal 

cortex. CMRg was reduced by 12% in hippocampus and 20% in EC. Based on these 

results the authors concluded that FAD presymptomatic patients show widespread 
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CMRg reduction in the brain regions which typically show hypometabolism in 

symptomatic AD patients (Mosconi et al., 2006b). 

 

4.1.1.2 APOE4 carriers 

 

FDG-PET studies on individuals carrying APOE4 allele showed CMRg reduction in 

the same regions affected in AD which included posterior cingulate, parietal, 

temporal and prefrontal regions (Small et al., 1995, Reiman et al., 1996, Small et al., 

2000, Reiman et al., 2001, Reiman et al., 2004, Reiman et al., 1998). However, the 

hypometabolism was not as severe as that seen in AD. In middle-aged APOE4 

carriers hypometabolism was gradual and associated with cognitive performance 

(Small et al., 1995, Reiman et al., 2001). Studies on presymptomatic carriers of 

APOE4 allele aged 50-63 showed a greater reduction in CMRg (25%) than in healthy 

controls over time period of 2 years (Reiman et al., 2001). 

 

4.1.1.3 Mild Cognitive Impairment (MCI)   

 

MCI is widely accepted as an intermediate state between healthy ageing and AD 

(Mosconi et al., 2008b). Indeed, MCI individuals are also at higher risk of developing 

AD (Petersen et al., 2001, Gauthier et al., 2006). It is defined as a state where 

individuals are able to perform normal activities of a daily life but suffer memory loss, 

which isolates them or other difficulties which exceed those of normal ageing 

(Mosconi et al., 2008b).  

 

MCI patients show mild global and regional hypometabolism in the same brain 

regions as AD patients (Mosconi et al., 2008a, Minoshima et al., 1997, De Santi et 

al., 2001, Nestor et al., 2003, Mosconi et al., 2006a, Drzezga et al., 2003, Drzezga et 

al., 2005), although the regional CMRg levels are more variable and are associated 
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more with cognitive abnormalities of individual subjects (Anchisi et al., 2005, Haxby 

et al., 1990). CMRg decreases in the hippocampus are found among most MCI 

patients while hypometabolism in cortices is more diverse (de Leon et al., 2001, 

Mosconi et al., 2008a, De Santi et al., 2001, Mosconi et al., 2006a). Longitudinal 

FDG-PET studies showed that CMRg reduction is more pronounced in patients with 

MCI that eventually develop AD than in those that do not. The accuracy of the 

prediction varies from 75% to 100% (Minoshima et al., 1997, Herholz et al., 1999, 

Arnaiz et al., 2001, Chetelat et al., 2003, Drzezga et al., 2005, Anchisi et al., 2005) 

 

4.1.1.4 Ageing 

 

FDG-PET studies in normal ageing showed a mild CMRg reduction, which mainly 

involved frontal regions (de Leon et al., 2001, Mosconi et al., 2008a, Herholz et al., 

2002). Only a few studies have monitored progression from normal ageing to MCI 

and MCI to dementia (Mosconi et al., 2008a, Jagust et al., 2006). One such study 

has shown that a reduction in CMRg in EC can predict progression to MCI within 3 

years with sensitivity of 83% and specificity 85% (de Leon et al., 2001). Reduction in 

CMRg in EC, hippocampus and lateral temporal cortex has been found during the 

progression to MCI and the reduction was found to be significant even after 

correction for volume loss (de Leon et al., 2001). Further studies have addressed the 

question as to whether these reductions were related to development of AD. In a 

study by Mosconi et al. (2008a) elderly patients were followed for between 6-14 

years. Over this time course, 11 of these patients developed dementia, 6 of whom 

were diagnosed with AD and 19 developed MCI. The reduction in CMRg in the 

hippocampus was the only regional predictor of future cognitive decline (predicting a 

decline from normal to AD with 81% accuracy, from normal to dementia with 77% 

and from normal to MCI with 71% accuracy). Overall these studies provided direct 

evidence of a progression in hypometabolism which originates in MTL during normal 
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ageing and then progresses to PCC at the MCI stage and spreads to parieto-

temporal cortices in AD (Mosconi et al., 2008a). 

	  

4.1.2 Mitochondrial changes 

 

The main risk factor for AD is age and it is important to investigate common 

pathological mechanisms shared by normal ageing and in disease. As 

hypometabolism is the earliest change seen in AD, it indicates that changes in 

energy metabolism are not just a consequence of neuronal loss but they contribute to 

the development and progression of the disease (Yap et al., 2009).  

The energy required for cell functioning in the majority of eukaryotic cells is 

generated by mitochondria during oxidative phosphorylation. Mitochondria play many 

important roles such as energy production, calcium homeostasis, apoptosis and 

cellular signalling through generation of oxidants such as hydrogen peroxide (H2O2) 

(Cadenas, 2004). Mitochondrial dysfunction has been implicated in normal ageing as 

well as many diseases (Storz, 2006). It has been well documented that gradual 

decline in the energetics of mitochondria i.e. production of ATP as well as an 

increase in production of oxidants and oxidative stress are characteristic of ageing 

and age related neurodegeneration (Mattson and Magnus, 2006, Navarro and 

Boveris, 2007, Boveris and Navarro, 2008, Rebrin et al., 2003, Butterfield et al., 

1999, Calabrese et al., 2006).  

 

In addition, a pro-oxidizing shift in glutathione status has been associated with ageing 

in humans and rodents (Rebrin et al., 2003, Jones et al., 2002). Longitudinal studies 

on humans aged 19-85 have demonstrated a chronic increase in oxidative stress 

throughout adulthood (Jones et al., 2002). Indeed, studies have shown a decrease in 

GSH levels and an increase in GSSG levels in AD patients (Calabrese et al., 2006), 
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which was also reflected by increased glutathionylation of proteins in AD brains 

(Newman et al., 2007).  

 

It has been suggested that an age related decline in energy metabolism and the 

redox status of the cell should be viewed as interdependent (Yap et al., 2009). This is 

reflected in the ‘so called’ mitochondria energy – redox axis. The energy component 

includes the entry of glycolytic substrates into the TCA cycle and generation of 

reducing equivalents (NADH, FADH2). The redox component includes mitochondrial 

redox indicators such as glutathione (GSH/GSSG), thioredoxin (Trx(-SH)/Trx-SS), 

glutaredoxin (Grx) and peroxiredoxins (Prx) and therefore mechanisms dependent on 

flux of NADPH. NADPH is generated by a reduction of NADP+ by NADH in 

mitochondria as well as during pentose phosphate pathway when NADP+ is reduced 

to NADPH. A decrease in energy production in the mitochondria would impact redox 

balance in the cell and vice versa.  In addition, altered redox status in the cell could 

lead to post-translational modifications of proteins involved in metabolism (Yap et al., 

2009). 

 

4.1.2.1 Oxidative Phosphorylation 

 

During oxidative phosphorylation NADH produced in TCA cycle is oxidized by the 

mitochondrial electron transport chain (ETC). It has been estimated that the terminal 

electron acceptor, cytochrome oxidase, uses up 95% of oxygen consumed by 

mammalian cells (Yap et al., 2009). As electrons flow through complexes of ETC, 

protons are transported across the inner mitochondrial membrane generating energy. 

The protons then flow back through ATP synthase (complex V), which uses the 

energy to generate ATP from ADP (Nicholls, 2002, Navarro and Boveris, 2007).  

 

The effects of ageing on respiration are more pronounced in tissues composed of 
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post-mitotic cells such as brain, heart and skeletal muscles. Most tissues have a 

constant requirement for ATP, however muscles and neurons have very high and 

variable demand for ATP (Nicholls, 2002). It has been shown that activities of 

complexes I, III and IV decrease with age in mitochondria isolated from brain tissue 

(Navarro and Boveris, 2007). Decrease in activities of these complexes is further 

associated with morphological changes in mitochondria. This ultimately leads to 

neurons being unable to produce ATP during increased energy demand (Navarro 

and Boveris, 2004) 

 

4.1.2.2 TCA cycle 

 

The tricarboxylic acid cycle (TCA) in its most simple form involves a series of 

reactions in which the products of glycolysis are oxidized to generate reducing 

equivalents, NADH and FADH2 (Nelson and Cox, 2005). NADH donates electrons for 

complex I during oxidative phosphorylation and is also important in the generation of 

NADPH, by reduction of NADP+ by either NADP+ dehydrogenase or NADP+ 

transhydrogenase. NADPH is the only electron source for regeneration of glutathione 

and thioredoxin (Rydstrom, 2006). 

 

The activities of several enzymes essential for the TCA cycle and NADH production 

have been shown to be decreased in ageing and AD. Activities of aconitase, α-

ketoglutarate dehydrogenase (αKGDH) and pyruvate dehydrogenase have all been 

shown to decrease in ageing (Zhou et al., 2009).  In addition, a decline in activities of 

α-ketoglutarate dehydrogenase (αKGDH) and pyruvate dehydrogenase (PDH) have 

been associated with AD (Gibson et al., 2000). It has been previously shown that 

aconitase and αKGDH are susceptible to H2O2 levels. In the presence of H2O2 the E2 

subunit of αKGDH has been shown to be glutathionylated which leads to decreased 

activity (Nulton-Persson et al., 2003, Applegate et al., 2008). A reduction in αKGDH 
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activity is associated with a decrease in the production of NADH during oxidative 

stress due to inability to utilize glutamate in TCA cycle (Tretter and Adam-Vizi, 2000). 

Any changes in the activity of TCA enzymes could lead to a decrease in NADH levels 

which results in decreased oxidative phosphorylation as well as a reduction in the 

NADPH pool (Yap et al., 2009). 

 

Succinyl-CoA: 3-oxoacid Co-A transferase (SCOT) a mitochondrial matrix enzyme 

important for ketolysis is also reduced during ageing. Ketone bodies are the only 

alternative source of energy for the brain during hypoglycaemia. As such, a decrease 

in SCOT activity during ageing further increases brain sensitivity to energy deficits 

(Yap et al., 2009).  

 

An overall decline in the activities of enzymes involved in acetyl-CoA production 

(PDH and SCOT) as well as TCA cycle enzymes such as αKGDH can lead to a 

decrease in ATP production as well as affecting the redox balance within the cell 

(Yap et al., 2009). 

 

4.1.3 ROS and antioxidants 

 

Reactive oxygen species (ROS) are generated constantly during oxidative 

phosphorylation (Dringen et al., 2000). They include inorganic molecules such as 

superoxide radical anion, H2O2 and hydroxyl radicals but also organic molecules 

such as alkoxyl and peroxyl radicals. ROS can cause damage to the cell such as 

DNA strand breaks, lipid peroxidation and protein modification. To avoid such 

damage cells have developed mechanisms to prevent generation of ROS or to limit 

the effect of its damage (Dringen et al., 1993a). These include thiol/disulfide redox 

buffers and the H2O2 removal system.   
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The thiol/disulfide exchange involves glutathione, thioredoxin and related enzymes 

and is important in maintaining redox status of the cell as well as the NADPH pool 

(Yap et al., 2009). 

 

Glutathione (GSH) is synthesized in the cytosol by the consecutive action of two 

enzymes, γ-glutamylcysteine (γGluCys) and glutathione synthetase. The former 

enzyme uses glutamate and cysteine as substrates and produces the dipeptide 

γGluCys, the latter enzyme combines γGluCys with glycine to produce GSH (Dringen 

et al., 2000). GSH is present at high levels (~5-10mM) in most cell compartments 

and it has been found to quickly equilibrate between the mitochondria and cytosol 

although the exact mechanism of its transport is not well known (Hurd et al., 2005). 

GSH plays an important role in the removal of H202 generated during oxidative 

phosphorylation. GSH is oxidized to GSSG via a direct reaction of thiol group with 

H202. GSSG is then reduced back to GSH by action of glutathione reductase, an 

enzyme which requires NADPH (Han et al., 2006, Dalle-Donne et al., 2008). Under 

normal conditions GSSG levels are very low, at about 1/100th of the total GSH pool 

(Schafer and Buettner, 2001) (Fig. 4.1).  

 

One of the consequences of altered GSH/GSSG redox status is the formation of 

protein mixed disulfides (glutathionylation). However, cells possess enzymes which 

are able to reduce protein disulfides or glutathionylated proteins such as glutaredoxin 

(Grx2) (Dalle-Donne et al., 2008).  

 

4.1.3.1 ROS formation  

 

As mentioned in section 4.1.2.1 and 4.1.2.2, several enzymes involved in TCA cycle 

and oxidative phosphorylation have been found to have decreased activities in AD 

brain. These include αKGDH and PDH (Gibson et al., 2000). As these enzymes are 
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involved in reduction of molecular oxygen, their decreased activity would increase 

production of ROS, specifically superoxide (Zhu et al., 2005). 

 

 

 

 

 

 

 

Figure 4.1 Schematic diagram showing removal of H202 by GPx and recycling of 
GSH from GSSG by GR.  
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Superoxide is normally converted to H2O2 via the action of Superoxide Dismutase 1 

(SOD1) or 2 (SOD2). Indeed, levels of SOD1 have been found to be elevated in AD 

brains (Serra et al., 2001, Ozcankaya and Delibas, 2002), which together with 

increased O2
- levels lead to an increase in concentration of H2O2 (Braidy et al., 2008). 

 

Oxidants produced in mitochondria as a consequence of oxidative phosphorylation 

(O2
- and H2O2) have been found to play an important role in signalling pathways (Han 

et al., 2009). Many metabolic pathways are regulated by H2O2 through either 

activation/inhibition of redox-sensitive proteins such as glycogen synthase kinase 

(GSK), protein kinase B (Akt) and c-Jun N-terminal kinase (JNK), or through post-

translational modifications of proteins such as aconitase or PDH. O2
- and H2O2 can 

both coordinate responses between cytoplasm and mitochondria. However, during 

ageing and AD ROS production is significantly increased. The increased production 

of O2
- and H2O2 has been shown to dysregulate signalling cascades and cause 

damage to lipids, proteins and DNA (Yap et al., 2009). 

 

O2
- is a precursor for H2O2 and is converted by Mn-SOD (SOD-2) in the mitochondrial 

matrix or Cu/Zn-SOD (SOD-1) in the cytoplasm (Fernandez-Fernandez et al., 2012). 

However, O2
- generated at complex III is released both into the matrix and 

intermembrane space (IMS) where it can modify proteins residing there (Han et al., 

2003b, Han et al., 2001, Han et al., 2003a, Inarrea et al., 2005). 

 

Levels of H2O2 generated in the mitochondria increase with age and changes in 

mitochondria bioenergetics (i.e. NADPH production) may contribute to that increase. 

Glutathionylation of proteins which is a sign of increased ROS production, results in 

an increase in the production of O2
- as seen in complex I of liver mitochondria (Taylor 

et al., 2003). Additionally, glutathionylation increases with age and in AD (Dalle-

Donne et al., 2008) and has been associated with further increases in the generation 
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of O2
- and H2O2 (Yap et al., 2009). 

 

H2O2 diffusion to the cytoplasm may act as a signal for many processes, which are 

regulated through the activation of cytosolic kinases (Cadenas, 2004). Many 

phosphatases and cytosolic kinases such as members of the insulin pathway, 

glycogen synthase kinase (GSK3β), Akt and JNK as well as members of MAP kinase 

family have been found to localize to mitochondria (Horbinski and Chu, 2005). One of 

the examples is translocation of JNK to mitochondria in response to increased H2O2. 

JNK can further regulate metabolism (Zhou et al., 2008, Nemoto et al., 2000) by 

phosphorylation of proteins in the mitochondrial matrix, as well as membranes such 

as pyruvate dehydrogenase E1 subunit (Schroeter et al., 2003). Phosphorylation of 

PDH leads to a decrease in ATP levels (Zhou et al., 2008) and a decrease in PDH 

activity which is an early event in AD and has been associated with cognitive decline 

(Zhou et al., 2008). 

 

In AD, the increase in ROS has also been suggested to be caused by insertion of 

Aβ(1-42) into neuronal and glial membrane (Butterfield, 1997, Varadarajan et al., 

2000). Additionally, the reduction of metal ions such as Fe2+ in the presence of H2O2 

can result in the production of highly reactive HO� which in turn could cause 

significant damage to the cell (Huang et al., 1999). Normally accumulation of metals 

such as Fe2+ is prevented by ferritin and transferrin which bind to them with high 

affinity (Miranda et al., 2000). However, these mechanisms are limited in the brain 

leading to accumulation of Fe2+, thus increasing the risk of metal-induced damage 

(Miranda et al., 2000). Dysfunction of metal homeostasis has been implicated in AD 

(Liu et al., 2006) and elevated levels of Fe2+ have been found in hippocampal 

neurons of AD patients (Smith et al., 1997). 

 

In summary, changes in GSH redox status lead to glutathionylation of proteins such 
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as complex I and the oxidation of proteins. This further increases levels of O2
- and 

H2O2, ultimately leading to dysregulation of signaling cascades such as JNK (Navarro 

and Boveris, 2007).    

 

4.1.4 NAD+/NADH and NADP+/NADPH 

 

NAD+, reduced nicotinamide adenine dinucleotide (NADH), nicotinamide adenine 

dinucleotide phosphate (NADP+) and reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) have long been known to play important roles in energy 

metabolism, reductive biosynthesis and antioxidant activity (Belenky et al., 2007, 

Berger et al., 2004, Pollak et al., 2007). NAD+ and NADH are mainly used by 

enzymes to catalyze oxidation, while NADP+ and NADPH to catalyze reduction 

(Pollak et al., 2007). In recent years numerous studies have shown that pyridine 

nucleotides have numerous functions (Belenky et al., 2007, Berger et al., 2004, 

Pollak et al., 2007). They appear to have a role in ageing via NAD+ -dependent 

histone deacetylase i.e. sirtuins (Blander and Guarente, 2004), oxidative cell death 

via poly (ADP-ribose) polymerase-1 (PARP) (Virag and Szabo, 2002, Ying, 2006), 

mobilization of intracellular calcium stores via cyclic ADP-ribose and nicotinic acid 

adenine dinucleotide phosphate (NAADP)  (Lee, 2001) and generation of ROS via 

NADPH oxidase (Bedard and Krause, 2007).  

 

NADPH is formed in mitochondria via three pathways involving NADP+ isocitrate 

dehydrogenase, malic enzymes and nicotinamide nucleotide transhydrogenase 

(NNT) (Ying, 2008). NNT catalyzes the reaction in mitochondria, which includes 

reduction of NADP+ from NADH. This provides an important link between 

bioenergetics and defence against reactive oxygen species (Yap et al., 2009). 

Additionally NNT activity depends on membrane potential of the mitochondria (Yap et 

al., 2009).  
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NADPH is required for regeneration of GSH in mitochondria and therefore is a 

limiting factor of this system (Rydstrom, 2006, Zhang et al., 2007a). In addition, 

decreases in mitochondrial membrane potential caused by a loss of electron flow 

through ETC as well as decreased availability of NADH might affect the conversion of 

NADP+ to NADPH. 

 

4.1.4.1 NAD+ and PARP-1 

 

Low levels of reactive oxygen species are a part of normal metabolism in the cell 

(Ogino and Wang, 2007) and normally they do not exert any harmful effects due to 

the action of antioxidants. However, an increase in oxidative stress such as that seen 

in AD (Mhatre et al., 2004, Moreira et al., 2005, Zhu et al., 2004) and an imbalance 

between production of ROS and antioxidant mechanisms may lead to cell damage. 

An increase in DNA damage induced by oxidative stress is a major factor associated 

with ageing and AD (Nunomura et al., 1999, Braidy et al., 2008). Therefore, it is 

important for the cell to have efficient repair mechanisms (Braidy et al., 2008). NAD+ 

has been shown to have an important role in DNA repair as well as gene signalling 

pathways (Erdelyi et al., 2005, Malanga and Althaus, 2005).  

 

NAD+ was previously identified as a parent compound in the pyridine family (NADH, 

NADP+ and NADPH), which is involved in several metabolic reactions. NAD+ is also 

an electron transporter in oxidative phosphorylation and ATP production, and is 

involved in glutathione and thioredoxin antioxidant systems via NADPH (Braidy et al., 

2008). Recent studies have also shown evidence that NAD+ is important in DNA 

repair and gene silencing (Rafaeloff-Phail et al., 2004). 

 

NAD+ acts as a substrate for the enzyme poly (ADP-ribose) polymerase (PARP). 

PARP-1 is a DNA binding enzyme, which is activated by breaks in DNA caused by 
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ROS and is critical in the base excision repair (BER) process (Bouchard et al., 2003). 

PARP cleaves NAD+ into adenosine 5’- diphosphoribose (ADPR) and nicotinamide 

and then attaches polymers of ADP-ribose to histones and other nuclear proteins (de 

Murcia et al., 1997). 

 

In addition to its role in PARP activation, NAD+ also acts as a substrate for the sirtuin 

family of enzymes (silent information regulators of gene function) (Sauve et al., 

2006). These enzymes has been implicated in cell survival under conditions of stress 

and toxicity as well as longevity (Yang and Sauve, 2006).  

 

During oxidative stress and increased ROS production, rapid NAD+ depletion caused 

by PARP activation can induce a cellular energy ‘crisis’ by reducing ATP synthesis, 

ultimately leading to cell death (Pacher and Szabo, 2007, Pillai et al., 2005, Alano et 

al., 2004, Wang et al., 2003). Excessive activation of PARP can also lead to a 

decreased SIRT1 deacetylase activity through NAD+ depletion. This in turn leads to 

accumulation of acetylated p53 and cell death (Furukawa et al., 2007). It has been 

shown that PARP-1 activation leads to translocation of the mitochondrial permeability 

transition pore (MPTP) (Alano et al., 2004) and apoptosis-inducing factor (AIF) (Yu et 

al., 2002). Multiple protein kinases have been shown to contribute to PARP-1 

mediated cell death including JNK1, which appears to activate PARP-1 by a direct 

phosphorylation (Zhang et al., 2007b) and therefore is implicated in mitochondrial 

impairment and cell death induced by PARP-1. 

 

These studies have been supported by the positive effect of pyruvate 

supplementation after PARP-1 activation. During hypoglycaemia induced by PARP-1 

activation, the cells are unable to use glucose even when it is restored to normal 

levels. This happens due to absence of NAD+ required for glycolysis. However, the 

cells are able to metabolise pyruvate in the absence of NAD+ and therefore pyruvate 
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supplementation has been found to reduce energy metabolism impairments and cell 

death as well as improving neuronal survival both in vitro as well as in brain slices 

and animal models (Suh et al., 2005, Ying et al., 2002). 

 

Depletion of NAD+ associated with PARP activity has been implicated in AD (Love et 

al., 1999) and Aβ-induced neuronal death (Fonfria et al., 2005). An increase in the 

concentration of poly(ADP-ribose) polymers concentration in the temporal and frontal 

lobes of AD individuals has been shown (Love et al., 1999) suggesting 

overexpression or increased activity of PARP. It has also been shown that oxidative 

damage to DNA has negative effects on metabolism of carbohydrates, which may be 

caused by NAD+ depletion induced by PARP (Braidy et al., 2008).  

 

PARP-1 has been found to interact with cell cycle regulators such as p53 (Braidy et 

al., 2008). p53 induced by oxidative stress has been shown to regulate expression of 

several genes that can induce cell cycle arrest in G1 or prevent DNA replication 

before damage repair or induce apoptotic death (Malanga et al., 1998). Increased 

expression of PARP-1 and p53 have been found in neurons of AD patients as well as 

in cultured neurons treated with Aβ(1-42) (de la Monte et al., 1998, Culmsee et al., 

2001). PARP-1 appears to activate DNA dependent protein kinase which then 

phosphorylate p53. 

 

The combination of sirtuins and caloric restriction has been found to play an 

important role in cell survival during oxidative stress (Sauve et al., 2006). SIRT1 acts 

primarily by deacetylating lysine residues in targeted proteins in the presence of 

NAD+ and therefore releases nicotinamide, acetyl ADP ribose (AADPR) and 

deacetylated substrates (Sauve et al., 2006). Caloric restriction appears to increase 

the NAD+ pool and therefore activates SIRT1 (Sauve et al., 2006). An increase in 

NAD+ levels may be associated with an increased life span as well as the 
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transcriptional silencing of telomeres and ribosomal DNA. Such silencing is seen as a 

way of measuring SIRT1 activity (Anderson et al., 2002). 

 

NAD+ depletion also affects gene expression (Bedalov and Simon, 2004). Indeed, 

increased SIRT1 has been shown to regulate gene expression by targeting 

transcription factors such as p53 (Luo et al., 2001), forkhead-box (FOXO) 

transcription family (Brunet et al., 2004) and NF-κB (Yeung et al., 2004). Depletion of 

NAD+ due to PARP activity would impair SIRT1 and therefore promote p53, FOXO 

and Bax activities, which can trigger apoptosis (Pillai et al., 2005). However, 

enhanced NAD+ levels could induce protective factors (Pallas et al., 2008).  

 

Another factor that could affect NAD+ levels is NADH dehydrogenase which is a part 

of complex I within mitochondria. NADH dehydrogenase oxidizes NADH to NAD+ and 

has been found to have reduced activity in AD brains (Lin and Guarente, 2003). This 

suggests that regulation of NAD+/NADH ratio is further impaired in AD (Braidy et al., 

2008, Lin and Guarente, 2003).  

 

As NAD+ has an essential role in the production of energy, DNA repair and other cell 

functions, depletion of NAD+ caused by oxidative stress in AD, can be an important 

step in development and progression of the disease (Braidy et al., 2008). In addition, 

NAD+ deficit may provide an important target for treatments in AD (Belenky et al., 

2007). 

 

4.1.5 Supplementation 

 

Studies on the use of metabolites to overcome the energy deficit have shown that 

mitochondrial energy substrates such as pyruvate, can have a neuroprotective role 

against oxidative stress (Wang et al., 2007) as well as Aβ toxicity (Alvarez et al., 
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2003). Treatment of neurons under oxidative stress with pyruvate decreased 

mitochondrial membrane depolarization, production of O2
- and prevented caspase 3 

release following Aβ treatment (Alvarez et al., 2003, Wang et al., 2007). Pyruvate 

directly affects mitochondria through the regulation of NADP+ redox status (Alvarez et 

al., 2003). Another promising approach is supplementation of glucose with ketone 

bodies (Henderson, 2008). These are normally produced from fat stores when 

glucose levels decrease. Although glucose is the primary source of energy in the 

brain, cells can metabolize ketones during prolonged fasting (Greene et al., 2003). 

Ketone bodies include acetoacetate and β-hydroxybutyrate and are derived from 

fatty acids in the liver. They are then transported into the brain through the blood-

brain barrier via monocarboxylic transporters (MCTs) (Pellerin et al., 1998). Ketones 

can meet up to ~60% of brain energy requirements (Cahill, 2006). The metabolism of 

ketones in the brain involves conversion of β-hydroxybutyrate to acetoacetate, 

acetoacetate to acetoacetyl CoA, and acetoacetyl CoA to CoA (Cunnane et al., 

2011). Interestingly ABAD has been found to be blocked by Aβ, facilitate the 

utilization of ketone bodies both in vitro and in vivo (Du Yan et al., 2000). 

Unfortunately, ketone bodies cannot completely substitute for glucose as it is 

essential for lactate production (Cunnane et al., 2011). 

 

However, as mentioned above, the activity of the SCOT enzyme is decreased in AD 

which suggests ketolysis is also affected, leading to further reduction in energy 

production in AD (Yap et al., 2009). 

 

4.1.6 Glucose transport 

 

Glucose transport is facilitated by glucose transporters (GLUTs), of which several 

isoforms has been described. GLUT1 is localized on the membrane of blood-brain 

barrier endothelial cells, whilst GLUT3 is localized on neurons and GLUT2 is 
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expressed in astrocytes (Dwyer et al., 2002). Additionally, two more, insulin sensitive 

transporters were have been found to be expressed in neurons – GLUT4 and 

GLUTx1 (Watson and Craft, 2004).  

 

Decreased levels of GLUT1 and GLUT3 have been found in AD brains in several 

regions including the frontal, parietal, occipital and temporal cortical areas as well as 

the caudate nucleus and hippocampus. This suggests that glucose transport may be 

in part responsible for the hypoglycaemia seen in AD patients (Liu et al., 2008). 

 

Insulin sensitive transporters GLUTx1 and GLUT4 are expressed mainly in the 

hippocampus and hypothalamus. A significant overlapping distribution of insulin-

sensitive glucose transporters, insulin receptors and insulin have been found in 

specific regions of the brain which support memory (Apelt et al., 1999). Additionally, 

changes in insulin levels modulate GLUT4 expression in the brain (Vannucci et al., 

1998) suggesting a possible role of insulin in hypoglycaemia and AD (see section 

4.1.8). 

 

4.1.7 Glutamate 

 

L-glutamate is the most common neurotransmitter in the mammalian CNS. Upon 

presynaptic depolarization, glutamate is released from vesicles into the synapse, 

increasing the glutamate concentration almost 1000-fold (Walton and Dodd, 2007). 

Glutamate then binds to postsynaptic receptors, triggering an influx of cations and 

cellular depolarization. Glutamate is then quickly removed from the synaptic cleft by 

high-affinity transporters on astrocytes (Walton and Dodd, 2007). This prevents over-

stimulation and excitotoxicity. In the astrocytes, glutamate is converted into glutamine 

by glutamine synthase. Glutamine is then released from astrocytes and taken up by 

neurons, which convert it back to glutamate by phosphate-activated glutaminase. 
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Glutamate is further packed into vesicles (Walton and Dodd, 2007).  

 

Any changes in glutamate neurotransmission and recycling can have severe 

consequences. Prolonged increases in glutamate levels leads to sustained neuronal 

depolarization, which in turn results in Na+ and Ca2+ influx and further release of 

glutamate. Ca2+ can lead to delayed necrosis and to lesser extent apoptosis (Walton 

and Dodd, 2007). Continuous release of glutamate and the spreading of the process 

is called excitotoxicity, a process that has been previously found to be associated 

with Alzheimer’s Disease (Hynd et al., 2004). 

 

NMDA receptors can be activated by L-glutamate and glycine and are thought to be 

involved in synaptic plasticity and long-term potentiation (LTP). It has been previously 

shown that the density of NMDA receptors decreases with age (Segovia et al., 2001) 

and that a decrease in NMDA function can contribute to neurodegeneration (Olney et 

al., 1998). However, an FDA approved drug for treatment of moderate to severe AD, 

memantine, is a low affinity, non-competitive NMDA receptor antagonist. It competes 

with Mg2+ for binding to ion channel of the NMDA receptor and reduces NMDA 

activation. It has been suggested that memantine may reduce the pathophysiological 

activation of NMDA receptors but still allow physiological activation. Previous studies 

have shown that activation of NMDA leads to dissociation of PP-2A from NMDA 

complex and therefore leads to hyperphosphorylation of tau (Chan and Sucher, 

2001). Treatment of organotypic hippocampal cultures with memantine restores tau 

phosphorylation to physiological levels (Li et al., 2004). 

 

Additionally, studies have shown a decrease in GluR1 and GluR2 subunits of AMPA 

receptors in AD (Armstrong and Ikonomovic, 1996), as well as co-localization of APP 

with GluR2/3 (Thorns et al., 1997). Aβ-treated rat hippocampal neurons have shown 

increased Ca2+ levels and this effect was partially blocked by non-NMDA receptor 
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antagonists (Brorson et al., 1999), suggesting AMPA receptors play a role in Aβ 

induced neurodegeneration. 

 

Numerous studies have also shown a direct interaction of Aβ with NMDA receptors. 

Aβ has been found to bind to NMDA receptors triggering neuronal damage through 

NMDA induced Ca2+ influx (De Felice et al., 2007). Aβ exposure led to an increase in 

intracellular Ca2+ and mitochondrial Ca2+ overload, oxidative stress, depolarization of 

mitochondrial membrane and cell death in rat cortical and hippocampal neurons 

through NMDA and AMPA receptor mechanisms (Alberdi et al., 2010). Neurons from 

transgenic mouse models of AD have also been found to express lower levels of 

NMDA. Despite the decrease in NMDA receptors they have been shown to be over 

reactive in AD (Ferreira et al., 2010). The loss or inactivation of NMDA receptors 

during AD progression has been suggested to be neuroprotective (Walton and Dodd, 

2007).   

 

In addition to glutamate receptors, glutamate transporters have also been found to be 

affected in AD (Walton and Dodd, 2007). Glutamate transporters are essential for the 

maintenance of glutamate levels in mammalian brain. High-affinity uptake is the only 

way to remove glutamate from the synaptic cleft and halt activation of its receptors 

(Logan and Snyder, 1972). Glutamate transport has been found to be significantly 

reduced in temporal, frontal, parietal and hippocampal cortices of AD brains (Masliah 

et al., 1996a). This decrease was associated with an increase in markers of neuronal 

death and decrease in the neuronal marker synaptophysin (Masliah et al., 1996a). 

Additionally, free radicals have been shown to inhibit glutamate uptake. ROS can act 

on transporters directly or through oxidative by-products such as 4-hydroxynonenal 

(HNE) (Volterra et al., 1994). Peroxidation of lipids in the membrane has been shown 

to lead to HNE formation and inactivation of GLT-1 (EAAT2) (Lauderback et al., 

2001). 
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Glutamine synthase (GS) is an enzyme that uses ATP to convert glutamate and 

ammonium to glutamine. In the brain this reaction takes place in astrocytes and is 

essential for glutamate homeostasis (Walton and Dodd, 2007). 

 

Previous studies have shown that GS activity declines with age. This decrease in 

activity is significantly increased in patients with AD (Smith et al., 1991). GS is very 

sensitive to oxidation and increased ROS can lead to conformational change that 

alters its activity (Butterfield et al., 1997). As mRNA changes have not been found 

this suggest that changes occur at protein level (Le Prince et al., 1995). Furthermore, 

a decrease in GS activity may lead to accumulation of glutamate inside the cell and 

therefore a reversal of glutamate transport which would contribute to 

excitotoxicity (Nicholls and Attwell, 1990). GS is normally found in astrocytes in all 

cortical layers. Astrocytic processes that surround capillaries demonstrate intense 

staining for GS. However, in AD GS is significantly reduced in vascular end-feet 

(Robinson, 2001). A decrease in GS activity could be due to a lack of substrate. As 

the activity of the transporters has been shown to be reduced in AD, this may also 

affect the level of glutamate that is taken up by astrocytes (Walton and Dodd, 2007). 

Another important enzyme in glutamate-glutamine cycle is phosphate-activated 

glutaminase (PAG), which in neurons converts glutamine into glutamate (Walton and 

Dodd, 2007). Immunocytochemical staining of AD brains demonstrated a decrease in 

levels of PAG (Akiyama et al., 1989). 

 

Even small disturbances in glutamate homeostasis can have adverse effects. 

Increased levels of glutamate can lead to increased energy requirements (chapter 3), 

ROS production, receptor overstimulation and reduction of excitatory signals 

(Danbolt, 2001). These effects can lead to excitotoxicity and neuronal cell death. AD 

individuals demonstrate a decreased ability to take up and store glutamate.  In 

addition, glutamate transporters have been found to be more sensitive to oxidative 
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stress in AD patients (Begni et al., 2004). 

 

4.1.8 Insulin 

 

Normal healthy individuals demonstrate a tightly controlled relationship between 

glucose metabolism and insulin. Disruption in this relationship can lead to diseases 

such as diabetes mellitus, which is characterized by hyperinsulinaemia and insulin 

resistance. Numerous studies have demonstrated cognitive impairments in 

individuals with type 2 diabetes (T2D) (Ryan and Geckle, 2000).  In addition, T2D 

increases risk of developing vascular dementia and may increase the risk of 

developing AD (Messier, 2003). As such attention has been focussed on the  

possible effects of insulin on neurodegeneration in AD (Watson and Craft, 2004). 

Insulin is a hormone, which is almost exclusively synthesized and secreted by 

pancreatic β cells. Its main role is in regulation of glucose metabolism in peripheral 

tissue (Correia et al., 2012). A large number of studies have shown that insulin is 

transported from the periphery into the brain via blood-brain barrier (BBB) by a 

saturable transport mechanism (Banks, 2004, Woods et al., 2003).  However, whilst 

some evidence supports local synthesis of insulin (Schechter et al., 1994) it is widely 

accepted that little or no insulin is produced in the brain (Woods et al., 2003).  

 

Insulin has an important effect on brain function such as cognition, memory and 

synaptic plasticity as well as processes such as homeostasis or neuronal survival 

(Zhao and Alkon, 2001). Insulin acts through the insulin receptor (IR) with the highest 

insulin binding in specific brain regions, which include olfactory bulb, cerebral cortex, 

hippocampus, hypothalamus, amygdala and septum (Unger et al., 1991). Insulin 

binding to its receptor activates two major signalling pathways: the mitogen-activated 

protein kinase (MAPK) and the phosphoinositide 3-kinase (PI3-K)/Akt (Cardoso et al., 
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2009). It has also been shown that insulin promotes expression of NMDA receptors 

(Skeberdis et al., 2001), which are important in long-term potentiation (LTP).  

It has been proposed that neurodegeneration seen in AD could be caused, at least in 

part, by disruption in insulin signalling (de la Monte and Wands, 2005). This 

hypothesis has been supported by evidence showing reduced insulin levels and 

insulin receptor expression in brains of AD patients (Frolich et al., 1998). In addition, 

progression through AD Braak stages was associated with a decrease in expression 

of IGF-1, IGF-2 and their receptors (Rivera et al., 2005). It has also been shown that 

individuals with AD have increased fasting plasma insulin levels and decreased 

cerebrospinal fluid (CSF) insulin levels (Watson and Craft, 2004) although other 

studies failed to show increase in fasting plasma insulin levels (Umegaki et al., 2002). 

In support of these findings it has been shown that administration of glucose and 

insulin has a beneficial effect on memory in AD patients (Manning et al., 1993). 

 

4.1.8.1 Insulin and Aβ 

 

The effect of insulin on Aβ is somewhat controversial. 

The hormone has been found to modulate Aβ processing in CNS (Watson and Craft, 

2004). One particular study has shown that subjects over 70 years old had increased 

levels of Aβ (1-42) in CSF after administration of insulin and the greatest increase of 

Aβ was associated with reduced memory (Watson and Craft, 2004). It has been 

suggested that the effect of insulin could include modulation of Aβ release and 

clearance (Gasparini et al., 2001). 

 

It has previously been shown that insulin increases Aβ levels by enhancing trafficking 

from ER and trans-Golgi network to the plasma membrane (Gasparini et al., 2001). 

Additionally, insulin can also competitively inhibit insulin-degrading enzyme (IDE), 
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which is a major enzyme that can degrade Aβ (Qiu and Folstein, 2006). As type 2 

diabetes (T2D) is associated with increased levels of insulin in the CSF (Watson et 

al., 2003), this could explain higher incidence of AD in individuals diagnosed with 

T2D (Correia et al., 2012). Interestingly, increased activity of IDE in IDE/APP double 

transgenic mice resulted in decreased levels of Aβ in the brain (Leissring et al., 

2003). 

 

However, insulin signalling has been shown to have beneficial effects on APP and its 

processing by acting on IR and GSK3 activity suppression. This leads to an increase 

in the secretion of sAPPα (Solano et al., 2000). Other reports have also shown that 

inhibition of GSK3β expression or activity prevents Aβ induced neurodegeneration 

(Takashima et al., 1993, Alvarez et al., 1999). Additionally, GSK3α modulates APP 

processing thus increasing secretion of Aβ (Phiel et al., 2003).  

 

4.1.8.2 Insulin in AD 

 

A decrease in the concentration of insulin in the CSF of individuals with AD has been 

suggested to result from the so called “insulin-resistant brain state”.  This includes 

downregulation of blood-brain barrier (BBB) function and IR activity and consequently 

a decrease in insulin transport.  Insulin resistance in the brain results in decreased 

activity of IDE and could lead to a decrease in the degradation of Aβ (Correia et al., 

2012). 

 

The presence of both insulin resistance and insulin deficiency has been proposed to 

be responsible for neurodegeneration in AD (Kroner, 2009). Under normal conditions 

insulin binding to the receptor activates PI3-K/Akt signaling pathway. PI3-Akt in turn 

phosphorylates and therefore inhibits glycogen synthase kinase-3β (GSK-3β). GSK-

3β inhibition results in a reduction of tau phosphorylation, which promotes its binding 
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to microtubules (Hong and Lee, 1997). Insulin resistance in the brain could lead to 

decreased activation of PI3-K/Akt signaling pathway and therefore an increase in 

levels of phosphorylated tau (Schubert et al., 2004). It has been shown that insulin 

resistance potentiates Aβ deposition and hyperphosphorylation of tau leading to 

neuronal dysfunction and death and ultimately cognitive decline (Jolivalt et al., 2008). 

 

4.1.8.3 Insulin and glucose administration and memory 

 

It has previously been shown that acute hyperglycaemia can facilitate memory 

whereas chronic hyperglycemia (such as associated with T2D) may disrupt memory. 

Studies in rodents have demonstrated beneficial effects of glucose on memory (Lee 

et al., 1988, Hughes, 2003) but the effect was most beneficial when glucose was 

administered prior or just after training (Lee et al., 1988, Messier, 1997) as opposed 

to extended periods of time. This suggests that glucose is important in consolidation 

rather than retrieval of information. The positive effect of glucose on memory has 

been suggested to be caused by changes in cholinergic activity in hippocampus 

(Stone et al., 1988, Okaichi and Okaichi, 2000). 

 

Studies on healthy humans have shown that glucose changes can affect memory. 

Severe hypoglycaemia can impair higher cortical functions leading to disruptions of 

memory (Sommerfield et al., 2003). On the other hand acute hyperglycaemia can 

facilitate memory and other cognitive functions (Craft et al., 1992, Sunram-Lea et al., 

2002).  

 

Clinical studies have also shown that treatment with insulin while maintaining 

euglycaemic conditions facilitates memory in patients with AD as well as healthy 

control (Craft et al., 1996, Craft et al., 2003).  
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4.1.9 (β-site APP cleaving enzyme-1) BACE 

 

Previous studies have shown that synaptic activity and brain metabolism have an 

effect on BACE enzyme expression, which is essential in the production of Aβ 

(Struble et al., 2010). Based on this evidence, Struble et al. (2010) suggested a 

hypothesis for the metabolic cause of the AD. 

 

BACE1 protein levels and activity are increased in sporadic AD (Fukumoto et al., 

2002). In addition, BACE expression is also up-regulated as a result of decreased 

metabolism (Yan et al., 2007). Some in vivo studies have used unilateral naris 

closure to block stimuli from reaching olfactory receptors and therefore suppress 

synaptic and metabolic activity in the olfactory bulb. This results in a decline in the 

activity of mitochondrial enzymes such as cytochrome c oxidase and succinic 

dehydrogenase, as well as upregulation of BACE and an increase in production of c-

terminal fragments of AβPP and the Aβ (Yan et al., 2007). Additionally, in mice where 

BACE has been knocked out, unilateral closure also results in a decrease in activity 

of mitochondrial enzymes but without an increase in BACE and Aβ, suggesting that 

metabolic deficits are the initial response to a decline in synaptic activity (Yan et al., 

2007).  

 

Evidence for the role of BACE and Aβ in normal functioning of the brain is limited. It 

has been hypothesized that Aβ modulates neuroplasticity by a concentration-

dependent mechanism (Puzzo et al., 2008). In addition, BACE also has been found 

to modulate synaptic plasticity and synaptogenesis by regulating axonal growth 

(Zhang et al., 2009). 

 

Brain metabolic activity and mitochondrial function begin to decline at around 30 

years of age (De Santi et al., 1995, Petit-Taboue et al., 1998). This decline may 
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result in increases in BACE expression and further lead to increases in Aβ production 

(Struble et al., 2010). As a result Aβ accumulation could further affect mitochondrial 

function and energy metabolism (Uemura and Greenlee, 2001, Atamna and Frey, 

2007) and therefore cause increases in ROS production and a decrease in synaptic 

activity. This may result in a vicious cycle where initial suppression of metabolic 

activity would lead to increases in Aβ production that further affects 

metabolism (Struble et al., 2010). This hypothesis could also account for the 

manifestation of familial AD. As metabolic activity starts to decline at 30 years of age, 

up-regulation of BACE and an increase in Aβ in individuals carrying mutations may 

occur. This would accelerate the onset of the disease, which may not be observed 

earlier, when high metabolism in the brain suppresses BACE activity (Struble et al., 

2010).  

 

4.1.10 Aims and objectives of the study 

 

Within view of the large body of evidence suggesting impaired metabolism in AD, it is 

important to study metabolic changes in a relevant human model. To date most of 

the studies on hypometabolism in AD have used transgenic animals or imaging 

studies of human brain. The aim of this chapter therefore, was to investigate the 

effects of Aβ on metabolism in terms of changes in glucose, glycogen, glutamate and 

lactate metabolism as well as oxidative stress and calcium signalling using a human 

stem cell derived culture of neurons and astrocytes. 
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4.2 Materials and Methods 

4.2.1 Cells 

 

4.2.1.1 Primary cultures 

Mixed cortical neuronal and glial cultures were prepared from Wistar rat pups 2-3 

days post-partum. The pups were killed by cervical dislocation. The cortex was 

dissected and placed in ice-cold Gey’s salt solution (Sigma-Aldrich, UK) containing 

20µg/ml gentamycin (Life Technologies, UK). The tissue was then minced using a 

scalpel and placed in Ca2+-free and Mg2+-free Hanks’ buffered saline solution (Life 

Technologies, UK), containing 0.1 % trypsin (Life Technologies, UK) for 30 min at 

37°C. The trypsin was inactivated by adding Neurobasal medium (Life Technologies, 

UK) containing B27 (Life Technologies, UK), 100 units/ml penicillin and 100 µg/ml 

streptomycin and 10% horse serum (Life Technologies, UK). Cells were then 

centrifuged at 1200rpm (258 x g) for 5 min and then medium was replaced with 5ml 

of fresh Neurobasal medium. Cells were dissociated by trituration with a glass 

Pasteur pipette with a flame-rounded tip and passed through 70µm filter (BD 

Biosciences, UK). Cells were then counted using a haemocytometer and plated onto 

poly-D-lysine coated 12 well plates at a final concentration of 5 x 105 cells/ml. Cells 

were maintained at 37˚C and 5% CO2 and fed twice a week and were used after 5 

days. 

 

Plates for primary cultures were coated with poly-D-lysine (Sigma-Aldrich, UK) at 

concentration of 50µg/ml. Briefly, poly-D-lysine was resuspended in sterile H2O and 

filtered through 0.22µm filter, the wells were coated with 2ml of the solution and 

incubated at 37˚C overnight. The poly-D-lysine was aspirated and plates were rinsed 

with sterile H2O and dried. 
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4.2.2 Immunohistochemistry: GFAP / β-tubulin-III staining  

 

Primary cultures were stained according to protocol described in section 3.2.2.1. 

 

4.2.3. Treatment of NT2.N/A, NT2.A and primary cultures with Aβ(1-42) 

 

NT2/D1 derived co-cultures and pure astrocytes were prepared as described in 

section 3.2.1.1 and primary cultures were prepared according to the protocol outlined 

in section 4.2.1.1. Cultures plated on 12-well plates were treated with 20, 2 and 

0.2µM of oligomeric Aβ(1-42) prepared in HEPES (as described in section 2.2.1.1) 

Subsequently plates were incubated for 6, 24, 48, 72 and 96 hours. Following the 

treatment various assays were performed. 

 

4.2.4 Viability assay 

 

The viability of the cultures following treatment with Aß(1-42) was determined using 

the Cell-titre BlueTM assay (Promega, UK). Following experimental treatment, 

medium was removed from the wells of the 12-well cell-culture plate.  Subsequently 

the plate was washed with 500µl phenol red-free DMEM media, supplemented with 

10% heat inactivated FBS (NT2.N/A, NT2.A) or 10% horse serum (primary cultures), 

100 units/ml penicillin and 100 µg/ml streptomycin and 2mM L-glutamine.  1ml of 

Cell-titre BlueTM reagent was mixed with 10mls of the DMEM medium. 500µl of this 

solution was added to each well of the plate.  The plate was incubated for 3 hours at 

37°C. Following incubation medium was transferred to a 96-well plate and the 

absorbance was measured at 590nm using a Thermo Multiscan EX 96-well plate 

reader (Thermofisher, UK). 
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4.2.5 Gene expression 

 

Changes in gene expression following exposure to Aβ were investigated using 

qRTPCR. Changes in genes associated with AD were monitored using the Human 

Alzheimer’s Disease RT² Profiler™ PCR Array (Qiagen, UK). 

 

The Human Alzheimer’s Disease RT² Profiler™ PCR Array (Qiagen, UK), 

investigated changes in gene expression following treatment of NT2.N/A co-cultures 

with 2µM Aβ for 48h. This array profiles the expression of 84 genes that are 

important in the onset, development, and progression of Alzheimer’s disease such as 

genes contributing to Aβ generation, clearance, and degradation or genes involved in 

Aβ signal transduction leading to neuronal toxicity and inflammation.  

 

In order to determine changes in genes associated with ANLS, oxidative stress and 

cell death following treatment of NT2.N/A co-cultures with 0.2, 2 and 20µM Aβ for 48, 

72 and 96h primers were obtained from PrimerDesign, UK. This method has been 

described in section 3.2.3.2. Primers for GLUT1, GLUT3, MCT2, MCT4, MCT1, GLT-

1, GLAST, GLUL, GPX1, SOD2, CASP3, INSR and HIF1A were used. 

 

4.2.5.1 RNA extraction 

 

RNA was isolated from NT2.N/A cultures following treatment with Aβ(1-42) and 

untreated controls according to protocol described in section 3.2.3.1 
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4.2.5.2 Real-time RT-PCR (Human Alzheimer’s Disease RT² Profiler™ PCR 

Array) 

 

First-strand cDNA synthesis. 1µg of total RNA was reverse transcribed using the RT2 

First strand kit (Qiagen, UK) according to the manufacturer’s instructions. cDNA was 

diluted to 100µl by adding DEPC treated RNase-free water and placed on ice. The 

PCR was carried out using a Stratagene MX3000P Real-time PCR machine.  For 

one 96-well plate of the Alzheimer’s Disease PCR Array (Qiagen, UK), a 2450µl PCR 

master mix (Qiagen, UK) containing RT2 PCR master mix and 98µl of diluted cDNA 

was prepared, and an aliquot of 25 µl was added to each well. For quality control the 

RT² Profiler™ PCR Arrays include built-in positive control elements for the proper 

normalization of the data, for the detection of genomic DNA contamination, for the 

quality of the RNA samples, and for general PCR.  The cycling conditions for the 

PCR reaction were: 10 min at 95 °C, 15 s at 95 °C, 1 min at 60 °C for 40 cycles were 

used. Three replicates were run for each differentiated sample and controls. Genes 

measured in this assay are listed in Appendix 8. 

 

4.2.5.3 Data normalization and analysis (Human Alzheimer’s Disease RT² 

Profiler™ PCR Array) 

 

Five endogenous control genes; Beta-2-Microglobulin (B2M), hypoxanthine 

phosphoribosyltransferase (HPRT1), ribosomal protein L13a (RPL13A), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and β- actin (ACTB) — 

present on the PCR Array were used for normalization. Each replicate cycle 

threshold (CT) was normalized to the average CT of 5 endogenous controls on a per 

plate basis. The comparative CT method was used to calculate the relative 

quantification of gene expression. The following formula was used to calculate the 

relative amount of the transcripts in the chemical treated samples (treat) and the 
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vehicle-treated samples (control), both of which were normalized to the endogenous 

controls. ΔΔCT = ΔCT (treat) – ΔCT (control) for biological RNA samples or ΔΔCT = 

ΔCT (Human Brain Reference RNA, HBRR) – ΔCT (Universal Human Reference 

RNA, UHRR) for reference RNA samples. ΔCT is the difference in CT between the 

target gene and endogenous controls by subtracting the average CT of controls from 

each replicate. The fold change for each treated sample (relative to the control 

sample (or UHRR) = 2–ΔΔCT. 

 

4.2.5.4 Sensitivity detection and identification of differentially expressed genes 

(Human Alzheimer’s Disease RT² Profiler™ PCR Array) 

 

PCR Array quantification was based on the CT number. A gene was considered not 

detectable when CT >32. CT was defined as 35 for the ΔCT calculation when the 

signal was under detectable limits. A list of differentially expressed genes was 

identified using a 2-tailed t-test. The criteria were a p value less than 0.05 and a 

mean difference equal to or greater than 2-fold. The statistical calculation was based 

on ΔCT values. 

 

4.2.6 Determination of glucose levels 

 

Glucose levels were measured using Glucose (HK) Assay Kit (Sigma-Aldrich, UK). 

The assay is based on enzymatic reaction where glucose undergoes phosphorylation 

by hexokinase in the presence of ATP. The next step involves oxidation of glucose 6-

phosphate to gluconate-6-phosphate by glucose-6-phosphate dehydrogenase. 

During the oxidation an equimolar amount of NAD+ is reduced to NADH. The 

increase in absorbance is then read on a spectrophotometer at 340nm. 
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4.2.6.1 Sample preparation 

 

NT2.N/A and NT2.A were prepared as described in section 3.2.1.1 and primary 

cultures as described in section 4.2.1.1. Cultures plated on 12-well plates were then 

exposed to a range of concentrations of Aβ(1-42). Aβ(1-42) was prepared using 

protocol from section 2.2.1.1 and then diluted to 20, 2 and 0.2µM in DMEM Glutamax 

high glucose, with pyruvate (Life Technologies, UK) containing 10% inactivated foetal 

bovine serum (Life Technologies, UK), 100 units/ml penicillin and 100 µg/ml 

streptomycin (for NT2.N/A and NT2.A cultures) or Neurobasal with B27 (Life 

Technologies, UK) with 10% horse serum (Life Technologies, UK) and 100 units/ml 

penicillin and 100 µg/ml streptomycin (for primary cultures). Next plates were 

incubated for 6, 24, 48, 72 and 96 hours. Following the treatment cell culture medium 

was collected and used for the glucose assay. 

 

4.2.6.2 Protocol  

 

The assay was adapted to a 96-well microplate. Briefly, 200 µl Glucose (HK) Assay 

Reagent was added to 40 µl of sample in each well. Standards were prepared using 

a solution of glucose (1 mg/ml) and 1:2 serially diluted using dH2O giving 

concentrations of 500, 250, 125, 62.5, 31.25, 15.625, 7.813 and 3.906 µg/ml. The 

reaction was incubated for 15 minutes at room temperature and absorbance was 

measured at 340nm using a Thermo Multiscan EX 96-well plate reader 

(Thermofisher, UK). All readings were corrected for background and glucose 

concentration was expressed in µg/ml. 
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4.2.7 Determination of glycogen levels 

 

Glycogen levels were measured according to method described in section 3.2.5. 

 

4.2.7.1 Sample preparation 

 

Samples were prepared as described in section 4.2.6.1 

 

4.2.7.2 Determination of protein levels 

 

Protein levels were measured according to protocol described in section 3.2.5.3. 

 

4.2.8 Determination of glucose and glucose-6-phosphate levels 

 

Glucose and glucose-6-phosphate levels inside the cells were measured using 

method described in section 3.2.5. 

 

4.2.8.1 Sample preparation 

 

Samples were prepared as described in section 4.2.6.1 

 

4.2.8.2 Determination of protein levels 

 

Protein levels were measured according to protocol described in section 3.2.5.3. 

 

4.2.9 Determination of lactate levels 

 

Lactate levels were measured according to method described in section 3.2.6. 
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4.2.9.1 Sample preparation 

 

Samples were prepared as described in section 4.2.6.1 

 

4.2.10 Determination of pyruvate levels 

 

A Pyruvate Assay Kit was used to measure pyruvate levels (Abcam, UK). The 

method is based on the oxidation of pyruvate by pyruvate oxidase. The product then 

interacts with pyruvate probe to produce colour (λ= 570 nm) and fluorescence (at 

Ex/Em = 535/587 nm). 

 

4.2.10.1 Sample preparation  

 

Samples were prepared as described in section 4.2.6.1 

 

4.2.10.2 Protocol  

 

Pyruvate levels were measured in accordance with the manufacturer’s instructions. 

Briefly, the assay was set up in a 96-well microplate. 50µl of media samples were 

used per well and mixed with 50µl reaction mix containing 46µl Pyruvate Assay 

Buffer, 2µl Pyruvate Probe and 2µl Enzyme Mix. 50µl reaction mix was also added to 

pyruvate standards that were prepared at 0, 2, 4, 6, 8 and 10 nmol/well. The reaction 

was incubated at room temperature for 30 minutes, protected from light and then 

read at 570nm using a Thermo Multiscan EX 96-well plate reader (Thermofisher, 

UK). All readings were corrected for background and pyruvate concentration was 

expressed in µM. 
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4.2.11 Determination of glutamate levels 

 

Glutamate levels were measured using Amplex® Red Glutamic Acid/Glutamate 

Oxidase Assay kit (Life Technologies, UK). It provides a sensitive method for a 

continuous detection of glutamic acid. In the assay L-glutamic acid undergoes 

oxidation by glutamate oxidase to produce α-ketoglutarate, NH3 and H2O2. L-glutamic 

acid can be regenerated using L-alanine and L-glutamate-pyruvate transaminase by 

transamination of α-ketoglutarate. This creates multiple cycles of the initial reaction, 

thus increasing H2O2 levels. In a reaction catalysed by horseradish peroxidase, H2O2 

reacts with 10-acetyl-3,7-dihydroxyphenoxazine in a 1:1 stoichiometry. This reaction 

generates resorufin which is highly fluorescent.  

 

4.2.11.1 Sample preparation 

 

Samples were prepared as described in section 4.2.6.1 

 

4.2.11.2 Protocol 

 

Glutamate levels were measured in media samples according to manufacturer’s 

instructions. Briefly 50 µl of media samples were used for each reaction. L-glutamic 

acid standards were prepared in 1x reaction buffer at concentrations ranging from 0 

to 20 µM. 1x reaction buffer was used as a negative control and 10 µM H2O2 as 

positive control. Next 50 µl of working solutions of 100 µM Amplex® Red reagent 

containing 0.25 U/ml HRP, 0.08 U/ml L-glutamate oxidase, 0.5 U/ml L-glutamate-

pyruvate transaminase, and 200 µM L-alanine was added to each well. The reaction 

was incubated for 30 minutes at 37°C protected from light. Then the fluorescence 

was read using SpectraMAX GeminiXS microplate luminometer (Molecular Devices, 

UK) and SoftMaxPro software (excitation: 540nm, emission: 590nm). All readings 
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were corrected for background and glutamate concentrations are expressed in µM or 

as a percentage of glutamate in normal full media. 

 

4.2.12 Determination of glutamine levels 

 

Glutamine levels were measured using Glutamine determination Kit (Sigma-Aldrich, 

UK). The method is based on two step reaction. First involves enzymatic deamination 

of L-glutamine by glutaminase that produces L-glutamate. In the second reaction L-

glutamate undergoes dehydrogenation by L-glutamate dehydrogenase to produce α-

ketoglutarate. This step is accompanied by reduction of NAD+ to NADH that results in 

an increase in absorbance at 340nm. In the samples containing both L-glutamine and 

L-glutamate, the endogenous L-glutamate must also be measured. 

 

 

4.2.12.1 Sample preparation 

 

Samples were prepared as described in section 4.2.6.1 

 

4.2.12.2 Protocol 

 

The assay was adapted to a 96-well microplate. To measure L-glutamine levels in 

samples containing both L-glutamate and L-glutamine two 25µl media aliquots were 

examined. To the first aliquot 20µl of Acetate buffer, 10µl of glutaminase and 45µl of 

H2O were added. To the second aliquot 20µl of Acetate buffer and 55µl of H2O were 

added. Standards were prepared as follows. 20µl of Acetate buffer and 10µl of 

glutaminase were added to varying amounts of 2mM glutamine standards and H2O to 
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give standards at concentrations of 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 

mmoles/L. All samples were later incubated for 1 hour at 37°C. After incubation 100µl 

of Tris-EDTA-Hydrazine buffer, 10µl of NAD+ solution, 1µl of ADP solution and 39µl 

H2O were added to each sample. Absorbance was read using a Thermo Multiscan 

EX 96-well plate reader (Thermofisher, UK) at 340nm to obtain background reading. 

Then 2µl of L-glutamic dehydrogenase was added the each well and samples were 

incubated at room temperature for 40 minutes. After incubation absorbance was read 

at 340nm. The readings were corrected for background and L-glutamine levels were 

measured by subtracting endogenous L-glutamate concentration from total L-

glutamate concentration (derived from both L-glutamine and L-glutamate). The 

results were expressed as mmoles/L. 

 

4.2.13 Determination of total glutathione levels 

 

The method to investigate levels of total glutathione (GSH+GSSG) was first 

described by Owens and Belcher (1965). The sensitivity of the assay was then 

improved by Tietze (1969) and it was later adapted to a microplate method  (Clarke 

et al., 1996). This assay is based on enzymatic reaction involving oxidation of GSH 

by 5,5’-dithiobis(2-nitrobenzoic) (DTNB), to produce chromophore TNB which results 

in increases in absorbance at 410nm. The sensitivity is increased by recycling GSH 

by glutathione reductase (GSR) and NADPH. 

 

4.2.13.1 Sample preparation  

 

Samples were prepared as described in section 4.2.6.1. Following the treatment cells 

were washed three times with PBS and then scraped in 1ml of PBS. Samples were 

then centrifuged at 6600g for 2.5 minutes. Next the supernatant was removed and 

the pellet was resuspended in 3.3µl of 100% sulphosalicylic acid (SSA) to precipitate 
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protein. Samples were centrifuged at 13000g for 90 seconds. Next 96.6 µl of stock 

buffer (125mM sodium phosphate, 6.3mM disodium EDTA, pH 7.5) was added to the 

samples and they were centrifuged at 13000g for 90 seconds. Supernatant was then 

used in the total glutathione assay and the pellet for protein determination.   

 

4.2.13.2 Protocol 

 

The assay was designed in a 96-well microplate. Standards were prepared by 

diluting 100mM GSH in H20 and SSA to generate 0, 20, 40, 60 and 80 µM samples. 

150 µl of a 0.35mM NADPH in stock buffer and 50 µl of a 6mM DTNB in stock buffer 

was added to each well. Next 25 µl of samples (from section 4.2.13.1) or standards 

were added to each well and incubated at 30°C for 5 minutes. The absorbance was 

then read using a Thermo Multiscan EX 96-well plate reader (Thermofisher, UK) at 

410nm to obtain background readings. Subsequently 25 µl of GSR (4U/ml) was 

added to each sample and absorbance was read immediately. The absorbance 

readings were taken over a period of 10 minutes. The glutathione levels were 

calculated using standard curve and were corrected for background and expressed 

as nmoles per mg of protein. 

 

4.2.13.3 Determination of protein levels 

 

The pellet from section 4.2.13.1 was used to determine protein levels. The protein 

content was determined using the DC protein assay reagent kit (Bio-Rad, UK), 

according to the manufacturer’s instructions. Briefly, 127µl working reagent A’ was 

added to the protein pellet. The pellet was then vortexed until solubilised. 127µl of 

working reagent A’ was also added to 100µl of BSA standards (125-2000µg/ml) or 

water which acted as a BSA-free control and vortexed. Then 100µl of water was 
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added to the solubilised pellet to correct for volume difference between samples and 

standard curve. The samples and standard solutions were then transferred to a test-

tube and 1ml of reagent B was added. Tubes were then vortexed and incubated at 

room temperature for 15min. The solution was transferred to a 96-well plate and the 

absorbance was measured at 750nm using Multiskan Go microplate 

spectrophotometer (Thermo Scientific, UK) 

 

4.2.14 Determination of NAD+/NADH ratio 

 

A NAD+/NADH Quantification Kit was used to measure NAD+ and NADH levels 

(Abcam, UK). This method allows detection of the intracellular nucleotides: NADH, 

NAD+ as well as their ratio. The method includes NAD cycling enzyme as the cycling 

reaction increases the detection and specificity of the assay. 

 

4.2.14.1 Sample preparation  

 

NT2.N/A were prepared as described in section 3.2.1.1. Cultures plated on 12-well 

plates were then exposed to 2µM Aβ(1-42) (section 2.2.1.1) and then diluted in 

DMEM Glutamax high glucose, with pyruvate (Life Technologies, UK) containing 

10% inactivated foetal bovine serum (Life Technologies, UK), 100 units/ml penicillin 

and 100 µg/ml streptomycin. Next plates were incubated for 6, 24, 48, 72 and 96 

hours. 

 

Following the treatment cells were washed with cold PBS and scraped. Cells were 

then centrifuged at 2000rpm (400g) for 5 min and PBS was removed. 400 µl of 

NADH/NAD+ Extraction Buffer was added to the pellet. NADH and NAD+ were 

extracted by two freeze and thaw cycles (20min on dry-ice and 10min at room 

temperature). Following the extraction, the lystate was vortexed for 10 sec and 
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centrifuged at 12000rpm (13,800g) for 5 min. The supernatant containing extracted 

NADH and NAD+ was transferred to a new tube and used in the assay. 

 

4.2.14.2 Protocol 

 

NAD+ and NADH levels were measured in accordance with the manufacturer’s 

instructions. Briefly, to detect NADt (NADH and NAD+) 50 µl of the extract was 

transferred into 96-well plate in duplicates. To detect NADH, NAD+ is firstly 

decomposed. This was done by aliquoting 200 µl of the extract into microcentrifuge 

tubes and heating at 60˚C for 30min on a heating block. Samples were then cooled 

on ice and 50 µl of the NADH samples were transferred into 96-well plate in 

duplicates. Samples were then mixed with 100 µl of the NAD Cycling Mix that was 

prepared by adding 2 µl of NAD cycling enzymes mix to 100 µl NAD cycling buffer. 

The cycling mix was also added to NADH standards that were prepared at 0, 20, 40, 

60, 80 and 100 pmol/well. Plate was then incubated at room temperature for 5 min to 

convert NAD+ to NADH. 10 µl of NADH developer was added to each well and the 

plate was incubated at room temperature for 1 to 4 hours. The plate was then read at 

450nm using a Thermo Multiscan EX 96-well plate reader (Thermofisher, UK). All 

readings were corrected for background and protein content. NAD+ levels were 

calculated by subtracting NADH readings from NADt. Results were expressed as 

NAD+/NADH ratio. 

 

4.2.14.3 Determination of protein levels 

 

The protein concentration of sample was determined using the Bradford assay 

reagent kit from BioRad in accordance with the manufacturer’s instructions. Briefly 

800µl of diluted sample, BSA standard (ranging from 2-12 µg/ml) or NAD/NADH 

Extraction Buffer which acted as a BSA-free control were added to a microcentrifuge 
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tube with the 200µl of dye reagent concentrate. Each sample was vortex and 

incubated at room temperature for 5 min. The samples and standards were then 

transferred into a 96-well plate and read at 590nm using a Thermo Multiscan EX 96-

well plate reader (Thermofisher, UK). 

 

4.2.15 Determination of ATP levels 

 

The CellTiter-Glo® Luminescent Cell Viability Assay was used to measure ATP 

levels in cell lysate (Promega, UK). This method relies on mono-oxygenation of 

luciferin which is catalyzed by luciferase in the presence of Mg2+, ATP and oxygen. 

 

4.2.15.1 Sample preparation  

 

NT2.N/A were prepared as described in section 3.2.1.1. Cultures plated on 12-well 

plates were then exposed to 2µM Aβ(1-42) which was prepared using protocol from 

section 2.2.1.1 and then diluted in DMEM Glutamax high glucose, with pyruvate (Life 

Technologies, UK) containing 10% inactivated foetal bovine serum (Life 

Technologies, UK), 100 units/ml penicillin and 100 µg/ml streptomycin. Next plates 

were incubated for 6, 24, 48, 72 and 96 hours. 

 

4.2.15.2 Protocol 

 

ATP levels were measured in accordance with the manufacturer’s instructions (see 

Appendix 7). Briefly, following the treatment cells were scraped in 400µl of cell media 

and transferred into a microcentrifuge tube. 400µl of CellTiter-Glo® Reagent was 

added to the cells as well as ATP standards (ranging from 10 – 1000 nM) and the 

tubes were mixed for 2 minutes on a shaker to induce cell lysis. Then the tubes were 

left on a bench for 10min to equilibrate. The luminescence was recorded using 
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SpectraMAX GeminiXS microplate luminometer (Molecular Devices, UK) and 

SoftMaxPro software.  

 

4.2.15.3 Determination of protein levels 

 

Protein levels were measured according to protocol described in section 3.2.5.3. 

 

4.2.16 Enzyme-linked Immunoabsorbant Assay (ELISA) 

4.2.16.1 Sample preparation  

 

For all ELISAs samples were prepared as described in section 4.2.6.1 

 

4.2.16.1 IL-6 ELISA (Bender MedSystems) 

 

An ELISA to detect IL-6 was used in accordance with the manufacturer’s instructions. 

A Maxi-sorp immune-plate (NUNC) was coated by transferring 100µl of coating 

antibody (2.5µg/ml) to each well. The plate was sealed with an adhesive film and 

stored at 4˚C overnight. The next day each well was washed 3 times with 0.05% 

Tween 20 in PBS. The plate was then blocked using 250µl assay buffer (0.5% BSA, 

0.05% Tween 20 in PBS) and incubated for 2 hours at room temperature. After 

blocking the wells were washed twice as previously described. 100µl of standards 

prepared in assay buffer (100, 50, 25, 12.5, 6.25, 3.125, 1.56 pg/ml) were then added 

in duplicates to the plate. 50µl of samples were added per well together with 50µl of 

assay buffer. Biotin-conjugate anti-human IL-6 monoclonal antibody was diluted 

1:1000 in assay buffer and 50µl was added to each well. Plate was then covered with 

adhesive film and incubated at room temperature for two hours. The plate was then 

washed four times as described previously. 100µl Streptavidin-HRP diluted 1:5000 in 

assay buffer was then added to each well. The plate was then sealed and incubated 
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at room temperature for 1 hour. Following incubation the plate was washed four 

times as described above. 100µl of tetramethylbenzidine (TMB) solution was then 

added to each well. The plate was then incubated at room temperature, protected 

from light, until a suitable colour had developed. The reaction was stopped with 50µl 

of 0.5M H2SO4 per well. The absorbance was then read using a Thermo Multiscan 

EX 96-well plate reader (Thermofisher, UK) at 450nm. The results were corrected for 

background. 

 

4.2.16.2 IL-1β ELISA (eBioscience) 

 

An ELISA to detect IL-1β was used in accordance with the manufacturer’s 

instructions. A Maxi-sorp immune-plate (NUNC) was coated by transferring 100µl of 

anti-human IL1-β capture antibody (1:250 dilution in Coating buffer) to each well. The 

plate was sealed with an adhesive film and stored at 4˚C overnight. The next day 

each well was washed 5 times with 0.05% Tween 20 in PBS. The plate was then 

blocked using 200µl 1X Assay Diluent and incubated for 1 hours at room 

temperature. After blocking the wells were washed five times as previously 

described. 100µl of human IL-1β standard protein prepared in 1X Assay Diluent (500, 

250, 125, 62.5, 31.25, 15.625, 7.813, 3.906 pg/ml) and samples were added in 

duplicated to the plate. Plate was then covered with adhesive film and incubated at 

room temperature for two hours. The plate was then washed five times as described 

previously. 100µl of Biotin-conjugate anti-human IL-1β diluted 1:250 in 1X Assay 

Diluent was then added to each well and plated was sealed and incubated for 1 hour 

at room temperature.  The plate was then washed five times as described above. 

Next 100µl of Avidin-HRP diluted 1:250 in 1X Assay Diluent was added to each well 

and plate was covered with adhesive film and incubated for 30 minutes at room 

temperature. The plate was then washed seven times as described previously, 

allowing the wells to soak in Wash buffer for 1-2 minutes. 100µl of 1X TMB solution 
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was added to each well and the plate was incubated at room temperature for 15 

minutes. The reaction was stopped with 50µl of 0.5M H2SO4 per well. The 

absorbance was then read using a Thermo Multiscan EX 96-well plate reader 

(Thermofisher, UK) at 450nm. The results were corrected for background. 

 

4.2.16.3 TNF-α ELISA (R&D Systems) 

 

An ELISA to detect TNF-α was used in accordance with the manufacturer’s 

instructions. A Maxi-sorp immune-plate (NUNC) was coated by transferring 100µl of 

mouse anti-human TNF-α coating antibody (4µg/ml) to each well. The plate was 

sealed with an adhesive film and incubated overnight at room temperature. The next 

day each well was washed 3 times with 0.05% Tween 20 in PBS. The plate was then 

blocked using 300µl Reagent Diluent (1% BSA in PBS) and incubated for 1 hour at 

room temperature. After blocking the wells were washed three times as previously 

described. 100µl of TNF-α protein standards prepared in Reagent Diluent (1000, 500, 

250, 125, 62.5, 31.25 and 15.625 pg/ml) and samples were then added in duplicates 

to the wells. The plate was covered with adhesive film and incubated at room 

temperature for 2 hours. Following incubation each well was washed three times as 

described previously. Biotinylated goat anti-human TNF-α antibody was diluted in 

Reagent Diluent to concentration of 350 ng/ml and 100 µl was added to each well. 

The plate was sealed and incubated for 2 hour at room temperature. Each well was 

then washed three times as described above. Next 100µl of Streptavidin-HRP (1:200 

dilution in Reagent Diluent) was added to each well and plate was covered with 

adhesive film and incubated for 20 minutes at room temperature, protected from light. 

The plate was then washed three times as described previously. 100µl of TMB 

solution was added to each well and the plate was incubated at room temperature for 

20 minutes, protected from light. The reaction was stopped with 50µl of 0.5M H2SO4 
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per well. The absorbance was then read using a Thermo Multiscan EX 96-well plate 

reader (Thermofisher, UK) at 450nm. The results were corrected for background. 

 

4.2.16.4 β-NGF ELISA (R&D Systems) 

 

An ELISA to detect β-NGF was used in accordance with the manufacturer’s 

instructions. A Maxi-sorp immune-plate (NUNC) was coated by transferring 100µl of 

mouse anti-human β-NGF coating antibody (2µg/ml) to each well. The plate was 

sealed with an adhesive film and incubated overnight at room temperature. The next 

day each well was washed 3 times with 0.05% Tween 20 in PBS. The plate was then 

blocked using 300µl Reagent Diluent (1% BSA in PBS) and incubated for 1 hour at 

room temperature. After blocking the wells were washed three times as previously 

described. 100µl of β-NGF protein standards prepared in Reagent Diluent (2000, 

1000, 500, 250, 125, 61.25 and 31.25 pg/ml) and samples were then added in 

duplicates to the wells. The plate was covered with adhesive film and incubated at 

room temperature for 2 hours. Following incubation each well was washed three 

times as described previously. Biotinylated goat anti-human β-NGF antibody was 

diluted in Reagent Diluent to concentration of 50 ng/ml and 100 µl was added to each 

well. The plate was sealed and incubated for 2 hour at room temperature. Each well 

was then washed three times as described above. Next 100µl of Streptavidin-HRP 

(1:200 dilution in Reagent Diluent) was added to each well and plate was covered 

with adhesive film and incubated for 20 minutes at room temperature, protected from 

light. The plate was then washed three times as described previously. 100µl of TMB 

solution was added to each well and the plate was incubated at room temperature for 

20 minutes, protected from light. The reaction was stopped with 50µl of 0.5M H2SO4 

per well. The absorbance was then read using a Thermo Multiscan EX 96-well plate 

reader (Thermofisher, UK) at 450nm. The results were corrected for background. 
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4.2.16.5 BDNF ELISA (R&D Systems) 

 

An ELISA to detect BDNF was used in accordance with the manufacturer’s 

instructions. A Maxi-sorp immune-plate (NUNC) was coated by transferring 100µl of 

mouse anti-human BDNF coating antibody (2µg/ml) to each well. The plate was 

sealed with an adhesive film and incubated overnight at room temperature. The next 

day each well was washed 3 times with 0.05% Tween 20 in PBS. The plate was then 

blocked using 300µl Reagent Diluent (1% BSA in PBS) and incubated for 1 hour at 

room temperature. After blocking the wells were washed three times as previously 

described. 100µl of BDNF protein standards prepared in Reagent Diluent (1500, 750, 

375, 187.5, 93.75, 46.875 and 23.437 pg/ml) and samples were then added in 

duplicates to the wells. The plate was covered with adhesive film and incubated at 

room temperature for 2 hours. Following incubation each well was washed three 

times as described previously. Biotinylated mouse anti-human BDNF antibody was 

diluted in Reagent Diluent to concentration of 25 ng/ml and 100 µl was added to each 

well. The plate was sealed and incubated for 2 hour at room temperature. Each well 

was then washed three times as described above. Next 100µl of Streptavidin-HRP 

(1:200 dilution in Reagent Diluent) was added to each well and plate was covered 

with adhesive film and incubated for 20 minutes at room temperature, protected from 

light. The plate was then washed three times as described previously. 100µl of TMB 

solution was added to each well and the plate was incubated at room temperature for 

20 minutes, protected from light. The reaction was stopped with 50µl of 0.5M H2SO4 

per well. The absorbance was then read using a Thermo Multiscan EX 96-well plate 

reader (Thermofisher, UK) at 450nm. The results were corrected for background. 
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4.2.17 Calcium  

 

NT2.N/A cultures following treatment with 2µM Aβ for 48h as well as controls were 

loaded with Fluo-4 (Life Technologies, UK). The staining was carried out by 

incubating for 60min at 37oC with 5µM of Fluo-4 and 0.01% pluronic acid. The 

recording chamber was mounted on a motorized moveable bridge (Luigs and 

Neumann, Germany) and fluorescence dye was excited using an Optoscan 

monochromator system (Cairn, UK) at excitation wavelength 488nm and emission 

wavelength 516nm, fitted to a Nikon FN1 upright microscope; filter cubes were 

obtained from Chroma (Chroma VT, USA). Images of areas of 444µm x 341µm were 

routinely acquired every 5s for 15 min with a x20 objective lens (NA=0.8) using an 

ORCA ER CCD camera (Hamamatsu) and analysed using Simple PCI software 

(Compix Hamamatsu, Digital Pixel, UK). Statistical analysis was performed using 

GraphPad Prism Software. 

 

4.2.18 Statistics 

 

Results were expressed as the mean of three samples ± standard error of the mean 

(SEM).  Comparisons between treatments were performed using analysis of variance 

(ANOVA) followed by Dunnett’s or Tukeys post-test or Students T-test using 

GraphPad Prism Software.  Differences were considered significant for p values 

<0.05. 
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4.3 Results 

 

The study presented in chapter 3 provided evidence for functional metabolic coupling 

of NT2 derived neurons and astrocytes that is consistent with the ANLS model. 

Based on these results, NT2.N/A and NT2.A cultures were used to investigate 

changes in metabolism caused by treatment with Aβ(1-42). The methods used 

covered a range of biochemical assays that measured extracellular or intracellular 

levels of metabolites such as glucose, glycogen or lactate as well as ATP or reducing 

agents such as NADH. In addition, cells were investigated for signs of oxidative 

stress and calcium changes. The results obtained from NT2 derived cultures were 

compared to commonly used in vitro model, namely rat primary cortical cultures.   

 

4.3.1 Preparation of primary cultures 

 

The primary mixed glial and neuronal cultures were prepared from cortices of Wistar 

rat pups. Initially the cultures were maintained in two different types of media: 

Neurobasal and DMEM F12. Five days after plating the cultures were stained for β-

Tubulin and GFAP and analysed to establish which media combination resulted in 

cultures with highest confluence and cell growth similar to NT2.N/A cultures. As seen 

in Fig. 4.2A and 4.2B the cultures grown in F12 media were sparse in comparison to 

cultures maintained in Neurobasal media. Both cultures displayed typical neuronal 

and astrocytic morphology, with neurons extending axons and dendrites together 

with astrocytes. Cultures grown in neurobasal media in Fig. 4.2C and 4.2D produced 

a large number of astrocytes and networks of neurons with fine processes (Fig. 

4.2B). As these cultures were considered to be most similar to NT2 networks in terms 

of the ratio of neurons to astrocytes these culture conditions were chosen to produce 

cultures for treatment with Aβ. An example of such culture is shown in Fig. 4.3. 
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4.3.2 Viability studies 

 

NT2.N/A co-cultures, NT2.A cultures and mixed rat glial and neuronal cultures were 

treated with different concentrations of Aβ(1-42) (20, 2, 0.2µM) for 6, 24, 48, 72 and 

96h. Following the treatment, viability of the cells was measured using Cell-titre 

BlueTM assay (Promega, UK).  

 

In the co-cultures the only significant change was seen at the highest concentration 

of Aβ(1-42) (Fig. 4.4A). 20µM Aβ caused an increase in viability at 6h (111.84 ± 

4.17%, p<0.05) and a decrease in viability at 48h (88.69 ± 4.29%, p<0.05). In the 

pure astrocytic cultures there was a significant increase in the viability of the cells 

treated with 0.2µM Aβ for 72h (106.07 ± 2.11%, p<0.05) (Fig. 4.4B). Similarly the 

primary cultures did not show any significant cell death over time (Fig. 4.4C). After 

24h treatment with 20µM and 0.2µM the cultures showed an increase in viability 

(20µM: 106.88 ± 1.67, p<0.05; 0.2µM: 107.91 ± 1.25%, p<0.05). The same increase 

in viability was seen after 72h treatment with the highest concentration of Aβ (105.46 

± 0.99%, p<0.05). 

 

4.3.3 Glucose studies 

 

Glucose uptake from the medium was measured using Glucose (HK) Assay Kit 

(Sigma-Aldrich, UK). NT2.N/A, NT2.A and primary cultures all showed a significant 

decrease in glucose uptake following treatment with 2µM and 0.2µM Aβ at all time 

points. Glucose levels in the medium from co-cultures were significantly increased 

(p<0.001) at all time points (Fig. 4.5A). Similar increases in glucose levels were seen 

in primary cultures (p<0.001) at all time points except for 2µM Aβ treatment at 6h 

(p<0.01) (Fig. 4.5C). Astrocytic cultures also demonstrated a decrease in glucose 

uptake although to a lesser extent than neuronal and astrocytic cultures (Fig. 4.5B). 
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At 24h the glucose levels in the media were significantly increased following the 

treatment with Aβ (control: 1829.14 ± 52.73µg/ml; 2µM: 2222.39 ± 16.89µg/ml, 

p<0.001; 0.2µM: 2257.82 ± 44.35µg/ml, p<0.001). Decrease in glucose uptake 

became less significant over time in astrocytes. At 72h the increase in glucose is at 

p<0.05 for both concentrations and at 96h only 0.2µM Aβ treatment cause any 

substantial impact (p<0.05). 

 

The glucose uptake over time differed between the cultures. In all cases the starting 

concentration of glucose in the medium was 4500µg/ml. The NT2.N/A cultures used 

up over 50% of the available glucose in the first 6h (control: 1814.84 ± 34.02 µg/ml) 

(Fig. 4.5A). Pure astrocytic cultures took up less glucose than co-cultures (control: 

2064.3 ± 65.7 µg/ml) whilst uptake in primary cultures was even slower (control: 

2955.77 ± 55.08 µg/ml) (Fig. 4.5B and 4.5C).  

 

The primary cultures were also more sensitive to Aβ treatment and glucose uptake 

was blocked to a greater extent than in NT2.N/A or NT2.A cultures. After 96h primary 

cultures treated with 0.2µM Aβ used up 57.72 ± 1.98% of the glucose from the media 

(control: 98.64 ± 0.25%) while NT2.N/A used up 92.8 ± 0.28% (control: 96.05 ± 

0.05%) and NT2.A 87.54 ± 0.34% (control: 89.1 ± 0.17%). 

 

4.3.4 Glycogen studies 

 

Following the treatment of the cultures with Aβ glycogen levels inside the cells were 

measured at 6, 24, 48, 72 and 96h. NT2.N/A co-cultures showed an initial decrease 

in glycogen levels at 6h (0.2µM: 96.05 ± 0.47%, p<0.001; 2µM: 96.59 ± 0.15%, 

p<0.001) (Fig. 4.6A). Glycogen levels increased, to control levels at 24h, with 

significant (p<0.001) increases at 72hr to 129.3 ± 5.57% when treated with 2µM Aβ 

and 123.35 ± 3.94% with 0.2µM Aβ. At 96h the differences were less apparent with 
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only 0.2µM Aβ having a significant effect (113.24 ± 4.32%, p<0.05) (Fig. 4.6A). 

Primary cultures demonstrated a similar pattern, with glycogen levels increasing at 

48h. However, the increase in glycogen was much more significant and at 96h levels 

of glycogen reached 277.06 ± 16.47% (p<0.001) after treatment with 2µM Aβ and 

258.75 ± 19.97% (p<0.001) when treated with 0.2µM Aβ (Fig. 4.6C). Additionally, 

from 48h there was a decrease in glycogen levels in cells treated with 20µM Aβ 

which was significant at 48h (p<0.001) and 72h (p<0.001).  

 

Pure astrocytes also demonstrated an increase in glycogen levels from 6h (2µM: 

129.99 ± 7.13, p<0.01) (Fig. 4.6B). Increases were observed at all time points, but 

were only significant at 24 and 96h. 
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Figure 4.2 Immunofluorescent images of primary cortical mixed neuronal and 
glial cultures. Images showing (A) GFAP positive astrocytes and (B) β-tubulin 
positive neurons grown in F12 medium and (C) GFAP positive astrocytes and (D) β-
Tubulin positive neurons grown in Neurobasal medium. Scale bar 150µM. 
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Figure 4.3 Immunofluorescent images of primary cortical mixed neuronal and 
glial cultures. Images showing (A) β-tubulin positive neurons (green), (B) GFAP (red) 
positive astrocytes, (C) nuclei stained with Hoechst and (D) an overlay. Scale bar 
24.9µM. 
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Figure 4.4 Viability results following treatment with 20µM, 2µM, 0.2µM Aβ 
measured by CellTitre BlueTM assay. (A) NT2.N/A, (B) NT2.A and (C) primary 
cultures. Viability was measured after 6, 24, 48, 72 and 96h. Results are expressed 
as percentage of non-treated control ± SEM, n=3. p<0.05 (*), p<0.01 (**), p<0.001 
(***). 
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Figure 4.5 Glucose levels in the media following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary cultures. Glucose was measured 
after 6, 24, 48, 72 and 96h. Results are expressed as µg/ml ± SEM, n=3. p<0.05 (*), 
p<0.01 (**), p<0.001 (***). 
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4.3.5 Glucose and glucose-6-phosphate 

 

Glucose and glucose-6-phosphate levels inside the cells were measured after the 

treatment with Aβ. As in previous experiments the effect was restricted to two lower 

concentrations of Aβ, 2µM and 0.2µM. The NT2.N/A co-cultures showed an 

accumulation of glucose and glucose-6-phosphate at all time points (Fig. 4.7A). The 

increase was most significant at 6h (control: 116.29 ± 5.61 nmol/mg protein; 0.2µM: 

171.71 ± 9.06 nmol/mg protein, p<0.01) and 24h time point (control: 84.84 ± 3.93 

nmol/mg protein; 0.2µM: 139.34 ± 14.07 nmol/mg protein, p<0.01). The accumulation 

of glucose and glucose-6-phosphate was more significant and reached higher levels 

in astrocytes than in co-cultures, with 6h (control: 110.01 ± 8.41 nmol/mg protein; 

0.2µM: 213.76 ± 13.95 nmol/mg protein, p<0.001) and 24h time points (control: 142.8 

± 8.58 nmol/mg protein; 0.2µM: 211.36 ± 6.32 nmol/mg protein, p<0.001) showing 

the largest increase (Fig. 4.7B). Similarly primary cultures also showed a very 

significant (p<0.001) accumulation of glucose and glucose-6-phosphate at all time 

points (Fig. 4.7C).  

 

In addition to the effect of Aβ, there was a significant difference in the levels glucose 

and glucose-6-phosphate between control of NT2–derived cultures (N/A and A) and 

primary cultures. In controls primary cultures, levels of glucose and glucose-6-

phosphate decreased with time, reaching very low levels at 96h time point (0.44 ± 

0.29 nmol/mg protein), while in NT2-derived control cultures levels of glucose and 

glucose-6-phosphate decreased more slowly. 
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Figure 4.6 Glycogen levels inside the cells following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary cultures. Glycogen was 
measured after 6, 24, 48, 72 and 96h. Results are expressed as percentage of non-
treated control ± SEM, n=3. p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Figure 4.7 Glucose and Glucose-6-phosphate levels inside the cells following 
treatment with 20µM, 2µM, 0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary 
cultures. Glucose and Glucose-6-phosphate were measured after 6, 24, 48, 72 and 
96h. Results are expressed as nmol/mg protein ± SEM, n=3. p<0.05 (*), p<0.01 (**), 
p<0.001 (***). 
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4.3.6 Lactate studies 

 

Lactate levels in the cell conditioned media following treatment with Aβ were found to 

be significantly decreased in NT2.N/A co-cultures. At 6h there was no significant 

change in lactate levels.  

 

However, after 24h the levels were decreased following treatment with both 0.2µM 

and 2µM Aβ treatments (control: 13.59 ± 0.26mM; 2µM: 10.63 ± 0.11mM, p<0.01; 

0.2µM: 9.47 ± 0.6mM, p<0.001) (Fig. 4.8A). The decrease was also seen at 48h and 

72h, however, at 96h levels of lactate were similar to control levels (control: 19.95 ± 

0.18mM; 2µM: 19.89 ± 0.78mM; 0.2µM: 21.31 ± 0.33mM). Pure astrocytes did not 

demonstrate any change following the treatment with Aβ.  Interestingly, levels of 

lactate in pure astrocyte cultures were much lower than in co-cultures (Fig. 4.8B). In 

primary cultures, the decrease in lactate was very significant and was seen from 6h 

(control: 5.23 ± 0.41mM; 2µM: 3.75 ± 0.10mM, p<0.01; 0.2µM: 3.81 ± 0.10mM, 

p<0.01) through to 96h (control: 19.41 ± 0.97mM; 2µM: 13.30 ± 0.87mM, p<0.001; 

0.2µM: 10.16 ± 1.08mM, p<0.001) (Fig. 4.8C). 

 

Lactate was found to accumulate over time in all cultures. In NT2.N/A cultures and 

primary cultures the lactate levels were much higher than in pure astrocytes. 

Additionally, in NT2.N/A co-cultures the accumulation was slower than in primary 

cultures. NT2.N/A reached 19.95 ± 0.18mM levels at 96h while primary cultures 

reached 20.59 ± 0.84mM levels at 48h after which time the levels remained stable. 

 

 

 

 

 



	  
	  

204	  

4.3.7 Pyruvate studies 

 

The levels of pyruvate level in the medium were measured following the treatment 

with Aβ. The initial pyruvate concentration in NT2.N/A and NT2.A medium supplied 

was 1mM while in primary cultures medium the concentration was 200µM. 

 

All cultures demonstrated a significant reduction in pyruvate levels over time 

regardless of treatment. In NT2.N/A cultures treated with both 0.2µM and 2µM Aβ, 

the levels of pyruvate were higher than in control. The most significant increase was 

seen at 24h (control: 397.55 ± 7.7µM; 2µM: 446.48 ± 15.89µM, p<0.05; 0.2µM: 

460.75 ± 8.34µM, p<0.01) and 48h (control: 326.78 ± 8.71µM; 2µM: 364.02 ± 7.6µM, 

p<0.05; 0.2µM: 379.62 ± 6.97µM, p<0.01) (Fig. 4.9A). However, at 96h the level of 

pyruvate dropped significantly in comparison to control. In pure astrocytes there was 

no change in the concentration of pyruvate after the treatment with Aβ (Fig. 4.9B). 

Primary cultures demonstrated a similar pattern to NT2.N/A co-cultures, with an 

increase in pyruvate concentration that became more significant after 6h (Fig. 4.9C). 

Conversely to NT2.N/A co-cultures there was no decrease at 96h in primary culture 

(control: 4.19 ± 0.44µM; 2µM: 19.62 ± 0.89µM, p<0.001; 0.2µM: 21.0 ± 0.91µM, 

p<0.001). 

 

4.3.8 Glutamate studies 

 

Treatment with Aβ was also found to have an effect on glutamate levels in the media. 

In NT2.N/A co-cultures there was a significant decrease in glutamate levels from 24h 

with the largest decrease at 72h and 96h (control: 22.31 ± 1.19µM; 2µM: 13.33 ± 

0.41µM, p<0.001; 0.2µM: 13.05 ± 1.52µM, p<0.001) (Fig. 4.10A). This decrease 

became more significant with time, as the control and 20µM Aβ treated cells 

accumulated more glutamate in the media. In pure astrocytes, the decrease was also 
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present but to a lesser extent (Fig. 4.10B). Overall the levels of glutamate in the 

media samples were much lower in pure astrocytic cultures than co-cultures of 

neurons and astrocytes. Primary cells also showed a significant decrease in 

glutamate levels after treatment with 2µM and 0.2µM Aβ. The decrease was 

significant from 24h and most significant at 96h (control: 9.08 ± 0.34µM; 2µM: 5.51 ± 

0.37µM, p<0.001; 0.2µM: 5.35 ± 0.43µM, p<0.001) (Fig. 4.10C). 

Additionally when 0.5mM glutamate was added to the NT2.N/A co-cultures in the 

presence of 2µM Aβ, the uptake of glutamate was significantly decreased in 

comparison to controls at both 6h and 48h (Fig. 4.11). 
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Figure 4.8 Lactate levels in the media following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary cultures. Lactate was measured 
after 6, 24, 48, 72 and 96h. Results are expressed as mM ± SEM, n=3. p<0.05 (*), 
p<0.01 (**), p<0.001 (***). 
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Figure 4.9 Pyruvate levels in the media following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary cultures. Pyruvate was measured 
after 6, 24, 48, 72 and 96h. Results are expressed as mM ± SEM, n=3. p<0.05 (*), 
p<0.01 (**), p<0.001 (***). 
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Figure 4.10 Glutamate levels in the media following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary cultures. Glutamate was 
measured after 6, 24, 48, 72 and 96h. Results are expressed as µM ± SEM, n=3. 
p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Figure 4.11 Glutamate levels in the media following treatment of NT2.N/A co-
cultures with 2µM Aβ and 0.5mM glutamate. Glutamate was measured after 6 and 
48h. Results are expressed as µM ± SEM, n=3. p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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4.3.9 Glutamine studies 

 

Glutamine levels in the media samples demonstrated a small increase, which was 

only significant in NT2.N/A co-cultures treated with both 0.2µM and 2µM Aβ for 72h 

(control: 28.51 ± 1.22mM; 0.2µM: 34.33 ± 0.56mM; 2µM: 33.42 ± 0.53mM p<0.05) 

(Fig. 4.12A). Pure astrocytic cultures did not show significant changes except for 72h 

treatment with 0.2µM Aβ (control: 27.95 ± 0.96mM; 0.2µM: 32.13 ± 0.76mM, p<0.05) 

(Fig. 4.12B). Primary cultures showed no increase in glutamine following the 

treatment with Aβ. However, the primary cultures accumulated more glutamine than 

NT2.N/A and NT2.A cultures, with higher levels seen already at 6h (NT2.N/A: 9.33 ± 

1.76mM: NT2.A: 8.67 ± 1.76mM; primary cells: 20.56 ± 1.86mM). 

 

4.3.10 GSH/GSSG ratio 

 

NT2.N/A co-cultures treated with all concentrations of Aβ showed a significant 

decrease in GSH/GSSG ratio at 6 and 24h (Fig. 4.13A). The trend remained similar 

at 48h, 72h and 96h, however, the decrease was not significant. Pure astrocytes also 

showed a decrease in GSH/GSSG ratio from 6h time point (Fig. 4.13B). This 

decrease was significant up to 48h time point. After 72h the GSH/GSSG ratio 

increased to control levels (control: 18.44 ± 1.67; 20µM: 18.65 ± 1.8; 2µM: 23.1 ± 1.8; 

0.2µM: 21.77 ± 1.22). At 96h there was a further increase in the ratio which was 

significant at all three concentrations (p<0.05). 

 

4.3.11 NAD+/NADH and ATP 

 

NAD+/NADH ratios and ATP levels were measured in NT2.N/A co-cultures following 

treatment with 2µM Aβ. The NAD+/NADH ratio followed a bell shaped trend, with an 

increase in the ratio at 24h and then a steady decrease at 48, 72 and 96h (Fig. 
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4.14A). Both Aβ-treated and control cells follow this trend. There was an initial 

increase in NAD+/NADH ratio following the treatment with Aβ was for 24h (control: 

0.66 ± 0.06; 2µM: 0.91 ± 0.02, p<0.05). However, after this time point the ratio was 

much lower following the Aβ treatment and became more significant with time 

reaching its highest levels at 96h (control: 0.52 ± 0.03; 2µM: 0.18 ± 0.01, p<0.001). 

This decrease in ratio was due to a decrease in NAD+ levels (see Appendix 5 and 6). 

At 96h NAD+ levels in control were 819.6 ± 17.5 pmol/mg of protein, whilst after 

treatments with 2µM Aβ 347.5 ± 20.2 pmol/mg of protein.  ATP levels following 

treatment with 2µM Aβ decreased from 6h, becoming significant at 24h (Fig. 4.14B). 

ATP levels reached their lowest levels at 72h and 96h (control: 8.34 ± 0.86nmol/mg 

protein; 2µM: 3.29 ± 0.20nmol/mg protein, p<0.01). 

 

4.3.12 ELISA determinations 

 

Five different types of ELISA were used to analyse samples from NT2.N/A and 

NT2.A cultures, including IL-6, IL-1β, TNF-α, β-NGF and BDNF. No changes were 

found following the treatment with Aβ(1-42) (data not shown). NT2.N/A cultures 

released low levels of IL-6 (48h: 6.07±1.23 pg/ml), however, IL-1β, TNF-α, β-NGF 

and BDNF were not detected by ELISAs. 

 

4.3.13 Calcium imaging studies 

 

As changes in calcium signalling have previously been shown in astrocytes following 

Aβ treatment (Abramov et al., 2003), calcium changes in stem cell derived astrocytes 

were determined following Aβ treatment. Calcium responses were recorded following 

exposure of NT2.N/A co-cultures to 2µM Aβ as well as in controls. The excitability of 

astrocytes which is defined by variations in intracellular calcium (Volterra and 

Meldolesi, 2005) was investigated by fluorescent calcium imaging. 
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Figure 4.12 Glutamine levels in the media following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A, (B) NT2.A and (C) primary cultures. Glutamate was 
measured after 6, 24, 48, 72 and 96h. Results are expressed as mmoles/L ± SEM, 
n=3. p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Figure 4.13 GSH/GSSG ratio inside the cells following treatment with 20µM, 2µM, 
0.2µM Aβ. (A) NT2.N/A and (B) NT2.A. Glutamate was measured after 6, 24, 48, 72 
and 96h. Results are expressed as ratio ± SEM, n=3. p<0.05 (*), p<0.01 (**), p<0.001 
(***). 
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Figure 4.14 NAD+, NADH and ATP levels inside the cells following treatment of 
NT2.N/A with 2µM Aβ. (A) NAD+, NADH and (B) ATP were measured after 6, 24, 48, 
72 and 96h. Results are expressed as ratio ± SEM (A) and nmol/mg protein ± SEM 
(B), n=3. p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Following loading of the cells with the cell permeable calcium indicator fluo-4, the 

activity was recorded over time. 

 

Fig. 4.15 shows a control culture with spontaneously active cells (A) and a graphical 

representation of calcium oscillations in 3 representative astrocytes (B). In control 

cells only 32.29 ± 7.6% of cells demonstrated calcium oscillations (Fig. 4.16A) with 

low oscillation frequency (control: 0.22 ± 0.02 per min; Fig. 4.16B). Following 

treatment with Aβ there was a significant increase in the number of astrocytes 

displaying calcium oscillations (69.55 ± 3.09%; p<0.05; Fig. 4.16A). A representative 

culture treated with Aβ is presented in Fig. 4.15C and D. Additionally, the frequency 

of oscillation in the astrocytes was significantly increased (Aβ: 0.31 ± 0.03 per min; 

p<0.05; Fig. 4.16B) 

 

4.3.14 Gene expression determinations 

 

Changes in gene expression following the treatment with Aβ were investigated. The 

Human Alzheimer’s Disease RT² Profiler™ PCR Array (SABiosciences) was used to 

determine changes in AD associated genes whilst additional qRT-PCR was 

performed to determine changes in genes associated with astrocyte-neuron lactate 

shuttle, oxidative stress and cell death.  

 

Gene arrays were run using samples from control and NT2.N/A co-cultures treated 

with 2µM Aβ for 48h. The results showed significant up-regulation of the following 

genes: A2M (α2-macroglobulin), APBB2 (β-amyloid precursor protein-binding family B 

member 2), BACE1 (β-site APP-cleaving enzyme 1), CASP4 (caspase-4), GAP43 

(growth-associated calmodulin-binding phosphoprotein), GNG8 (guanine nucleotide 

binding protein (G protein), gamma 8), GSK3β (glycogen synthase kinase-type 3, 

isozyme β), IDE (insulin-degrading enzyme), LPL (lipoprotein lipase), SNCA (α-
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synuclein) and downregulation of BCHE (butyrylcholinesterase) (Fig. 4.18). The 

highest fold change was seen in the upregulated genes: GAP43 (10.13), CASP4 

(4.76) and LPL (3.54).  

 

qRT-PCR experiments to determine changes in genes associated with the lactate 

shuttle, oxidative stress and cell death were carried out using RNA samples from 

NT2.N/A co-cultures treated with 20, 2, 0.2µM Aβ for 48, 72 and 96h as well as 

appropriate controls. The results demonstrated no significant changes in any of the 

genes analysed (see Appendix 9, 10 and 11).  
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Figure 4.15 Calcium oscillations in NT2.N/A co-cultures. (A) Image of NT2.N/A 
control co-culture. Yellow circles indicate spontaneously active astrocytes. Scale bar 
100µm. (B) Representative fluorescence time course from 3 different astrocytes from 
image (A). (C) Image of NT2.N/A co-culture treated with 2µM Aβ for 48h. Yellow 
circles indicate active astrocytes. Scale bar 100µm. (B) Representative fluorescence 
time course from 3 different astrocytes from image (A). 
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Figure 4.16 Quantified changes in calcium oscillations in response to 2µM Aβ. (A) 
Bar graph displaying the number of astrocytes responding with calcium elevations to 
2µM Aβ and control. (B) Bar graph displaying frequency of calcium oscillations in 
response to 2µM Aβ and control. Results are expressed as percentage ± SEM (A) 
and oscillation per minute ± SEM (B), n=3. p<0.05 (*), p<0.01 (**), p<0.001 (***). 
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Symbol Well 
Fold Difference t-test 

Fold Up- or 
Down- 

regulation 
Test Sample / 

Control Sample P value Test Sample / 
Control Sample 

A2M A01 2.29 0.0319 2.29 
APBB2 A08 3.50 0.0306 3.50 
BACE1 B04 2.32 0.0318 2.32 
BCHE B06 0.30 0.0487 -3.29 
CASP4 B09 4.76 0.0222 4.76 
GAP43 C10 10.13 0.0433 10.13 
GNG8 D11 2.27 0.0184 2.27 

GSK3B E03 3.41 0.0458 3.41 
IDE E05 3.23 0.0038 3.23 
LPL E09 3.54 0.0454 3.54 

SNCA G08 2.13 0.0165 2.13 
 

Figure 4.17 Changes in the expression of genes associated with Alzheimer’s 
Disease following treatment of NT2.N/A cultures with 2µM Aβ.The table shows the 
fold change in gene expression and p value from a t-test. The change in gene 
expression was considered significant at p<0.05 and fold change ≥ 2. For full list of 
genes and p values see Appendix 8. 

 

 

 

 

 

 

 



	  
	  

220	  

4.4 Discussion 

 

Multiple studies have demonstrated disturbances in glucose uptake and utilization in 

the brains of Alzheimer’s disease patients. This chapter also demonstrates for the 

first time, similar disturbances in neurons and astrocyte cultures derived from human 

stem cells following exposure to Aβ. 

 

 Change 

 NT2.N/A NT2.A primary 

viability no change no 
change no change 

extracellular glucose é é éé 

intracellular glycogen é é éé 

intracellular glucose / glucose-6-
phosphate é é é 

extracellular lactate ê no 
change êê 

extracellular pyruvate é no 
change éé 

extracellular glutamate êê ê êê 

extracellular glutamine no change no 
change no change 

intracellular GSH/GSSG ratio ê ê ✕ 

intracellular NAD+/NADH ratio ê ✕ ✕ 

intracellular ATP ê ✕ ✕ 

intracellular calcium é ✕ ✕ 

 

Figure 4.18 Summary table of chapter 4 results. é = moderate increase; éé = 
high increase; ê = moderate decrease; êê = high decrease; ✕ = no data 
available. 
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4.4.1 Comparison of NT2.N/A cocultures and primary cultures 

 

The results shown in this thesis reveal distinct differences in the severity of response 

from rat primary co-cultures and human NT2 derived co-cultures. Primary cultures 

appear more vulnerable to perturbation by Aβ and the changes in the metabolism are 

also more enhanced. One possible explanation is the use of human Aβ(1-42), which 

could be more toxic to rat cultures than human cells. However, another, more 

plausible explanation could be differences in the cells present in both cultures. 

Astrocytes in particular have been shown to be distinctly different in terms of glial 

function and diversity in humans when compared with rodents (Verkhratsky and Butt, 

2013).  

It has been suggested that increases in the complexity of the mammalian brain and 

intellectual power, are accompanied by an increase in the number and complexity of 

glial cells (Oberheim et al., 2006).  This difference is particularly apparent in human 

brains (Oberheim et al., 2009). Human astrocytes are larger and more complex than 

those found in rodent brains (Verkhratsky and Butt, 2013). The average diameter of a 

human protoplasmic astrocyte is 2.5% larger than an equivalent rat astrocyte 

(Verkhratsky and Butt, 2013). Similarly fibrous astrocytes in white matter are ~2.2 

times larger in human brain than rodent brain (Verkhratsky and Butt, 2013). In 

addition, human protoplasmic astrocytes have ~ 10 times more processes than 

rodent astrocytes and as a result human protoplasmic astrocytes contact ~2 million 

synapses whereas rodent astrocytes only contact ~20,000 – 120,000 synapses 

(Oberheim et al., 2009, Bushong et al., 2002). Primate’s brains also include astroglial 

subtypes that are not found in other vertebrates such as interlaminal astrocytes 

(Colombo and Reisin, 2004, Colombo et al., 1995). Additionally the possibility of 

primary cultures containing microglial cells cannot be ruled out. As microglial cells 

have both positive and negative effects in Alzheimer’s disease (Hanisch and 
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Kettenmann, 2007, Wyss-Coray, 2006), it is possible that they contribute to the 

response seen following Aβ(1-42) treatment. 

In the light of the different effects of Aβ(1-42) on rodent and human NT2 co-cultures it 

will be  necessary to characterize both cell preparations in more detail before any 

conclusions can be drawn. However, these results strongly suggest that human stem 

cell derived neurons and astrocytes could be used to determine the interactions 

between human brain cells in disease. 

 

4.4.2 No change in viability of the cultures 

 

Following treatment with Aβ(1-42) none of the cultures showed any changes in 

viability. Occasional increase or decrease that has been shown to be statistically 

significant, is not necessarly biologically significant. Additionally the nature of the 

Cell-titre BlueTM viability assay should be considered. This assay uses a dye, 

resazurin, which is actively reduced in mitochondria to give a fluorescent resorufin. 

This reaction uses diaphorase as enzymes and requires presence of NAD(P)H 

(Candeias et al., 1998). This assay can be therefore used to study mitochondrial 

metabolic activity. As Aβ(1-42) has been shown to affect metabolism and 

mitochondrial function, other methods should be used to investigate cell death such 

TUNEL assay to look at DNA fragmentation or caspase assay to look at apoptosis.  

 

4.4.2 Decrease in glucose uptake and utilization 

 

The studies described in this chapter have revealed increased levels of glucose in 

media samples from stem cell derived and primary cultures following treatment with 

Aβ. Increased levels of glucose suggest a decrease in uptake and/or utilization. 

These results support previous research including PET studies on patients with 
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Alzheimer’s disease as well as in vivo and in vitro studies using animal models 

(described in detail in chapter 4.1). The mechanisms of glucose uptake inhibition and 

decrease in glucose utilization have been extensively investigated and several 

possible causes have been proposed. A study by Uemura and Greenlee (2001) has 

shown that SNARE complex-mediated docking and fusion of GLUT3 vesicles is 

inhibited by Aβ thus decreasing glucose uptake. Other studies have suggested that a 

decrease in glucose uptake could be due to a decrease in amount of glucose 

transporters in the brain. Studies on AD brains has shown that the amounts of 

GLUT1 and GLUT3, as measured by immunoblotting analysis, were significantly 

decreased in comparison to aged-matched controls (Simpson et al., 1994). However, 

the decrease has also been shown to be associated with translational or post-

translational changes, as mRNA levels of GLUT1 have not been shown to be 

reduced in AD brains (Mooradian et al., 1997). Additionally, deficits in the 

upregulation of GLUT3 protein in response to energy requirements in old rat neurons 

when compared to young rats suggest that age-related changes in glucose transport 

occur during ageing (Patel and Brewer, 2003). In the data presented in this chapter 

gene expression analysis of samples collected from co-cultures of neurons and 

astrocytes did not show any significant changes in expression of either GLUT1 or 

GLUT3.  

 

Conversely, not all published reports have demonstrated a decrease in glucose 

uptake. A recent study by Allaman et al. (2010) demonstrated an increase in glucose 

uptake and various downstream pathways such as glycolysis, TCA cycle and 

pentose phosphate shunt in response to Aβ. Discrepancies between the results from 

this chapter and previous reports could stem from the use of different cell types. In 

their study Allaman et al. (2010) used pure primary astrocytes and pure neuronal 

cultures from mice. Additionally, the protocol for preparation of Aβ differed from the 

one used here, as Allaman et al. (2010) solubilized Aβ in DMSO or sterile deionized 
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water. As shown in Chapter 1, DMSO causes a very rapid aggregation of Aβ which 

could explain differences in results obtained in this study and in paper by Allaman et 

al. (2010). 

 

In this study, a decrease in glucose uptake upon treatment with 2µM and 0.2µM 

Aβ(1-42) could be explained by an accumulation of glucose and glucose-6-

phosphate inside the cells. Previous studies by DiNuzzo et al. (2010) have shown 

that a rapid increase in intracellular glucose-6-phosphate leads to a 40% decrease in 

glucose flow through the hexokinase pathway in astrocytes. This could potentially 

leads to a decrease in glucose phosphorylation in astrocytes and might therefore 

increase the amount of free glucose that is available to neurons in the brain. 

Accumulation of glucose/glucose-6-phosphate inside the cells shown in this thesis 

suggests a block in glucose phosphorylation or pathways downstream glucose 

phosphorylation stage, including glycolysis, the pentose phosphate pathway or 

glycogenesis.  

 

4.4.3 Increase in glycogen load in the cells 

 

An increase in glycogen levels following the treatment with 2µM and 0.2µM Aβ(1-42) 

could be explained by accumulation of glucose-6-phosphate which instead of passing 

through glycolysis is directed through glycogen synthesis pathways.  

 

The metabolism of glycogen is tightly regulated through kinases and phosphorylases.  

One specific phosphatase, protein phosphatase 1 (PP-1) plays an important role in 

the regulation of glycogen metabolism (section 3.1.3.6). Glycogen synthase is 

activated by PP-1 via dephosphorylation. At the same time PP-1 dephosphorylates 

glycogen phosphorylase, thus inactivating it.  An interesting study by Knobloch et al. 

(2007) has shown that impairment of LTP by Aβ(1-42) involves PP-1 and that LTP 
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impairment can be fully reversed by PP1 inhibition in vitro and in vivo. Inhibition of 

PP1 has also been shown to stimulate secretion of sAPP through nonamyloidogenic 

processing. A similar effect has been obtained by treatment of cells with phorbol 

esters via protein kinase C-mediated phosphorylation (da Cruz e Silva et al., 1995). 

These studies therefore suggest a beneficial effect of protein kinases and a 

detrimental effect of protein phosphatases in AD. However, it has been shown that in 

AD brains levels of protein phosphatases such as PP1, PP2A or PP5 are decreased 

while protein kinase levels such as GSK3β or Cdk5 are increased (Chung, 2009). 

GSK3β has been also shown to be responsible for phosphorylation of tau protein and 

formation of tangles as well as has been implicated in Aβ(1-42) toxicity and 

interaction with PS1 (Lucas et al., 2001, Hooper et al., 2008). Interestingly, NT2.NA 

co-cultures treated with 2µM Aβ(1-42) demonstrate an increase in GSK3β 

expression, which is to be expected considering the involvement of GSK3β in AD. 

However, this kinase has the opposite effect to PP-1 as it phosphorylates glycogen 

synthase and therefore inactivates it. Under normal conditions GSK3β inhibits 

glycogen synthesis and glucose uptake, as well as altering the expression of genes 

regulated by insulin (Jope and Johnson, 2004). However, in this chapter, co-cultures, 

pure astrocytes and rat primary cultures demonstrated an increase in glycogen load. 

As phosphorylation of GSK3β influence its activity, an increase in the level of 

expression may not translate to changes in activity. Additionally, glycogen synthase 

(GS) must be pre-phosphorylated by casein kinase II (CKII) for GSK3 to 

phosphorylate GS efficiently and down-regulate its activity (Jope and Johnson, 

2004). Many substrates of GSK3β have been shown to require pre-phosphorylation 

(priming) before phosphorylation by GSK3β. This means that the activity of such 

priming kinases may be a limiting factor in the activity of GSK3β (Hooper et al., 

2008). It is possible that that the expression of GSK3β is increased, however, the 

kinase itself is inactive, or that casein kinase II that is involved in the phosphorylation 
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of glycogen synthase is inactive. Further experiments will aim to determine the 

phosphorylation state of GSK3β following treatment with Aβ in these cultures. 

In addition to an increase in glycogen levels in the cultures, the results also showed a 

small decrease in NT2.N/A cocultures at 6h. This initial decrease in glycogen load in 

cocultures, even though statistically significant, may not reflect biological 

significance. 

 

4.4.4 Changes in glutamate levels 

 

In this chapter glutamate production as well as glutamate uptake was shown to be 

affected by treatments with Aβ(1-42). Glutamate levels in the media were much lower 

when cells were exposed to 2µM and 0.2µM Aβ(1-42). Similar results were also 

obtained from rat cortical cultures. Overall glutamate levels in pure astrocytic cultures 

were lower than in co-cultures. This is not unexpected as the majority of glutamate is 

produced by neurons whilst astrocytes take up the glutamate released by neurons 

and convert it to glutamine. However, it should be noted that astrocytes have been 

shown to produce and release glutamate as well as other gliotransmitters such as 

ATP (Parpura and Zorec, 2010).  

 

Previous studies of AD brains have demonstrated a marked decrease in phosphate-

activated glutaminase (Akiyama et al., 1989) an enzyme which converts glutamine to 

glutamate in neurons. As neurons are unable to synthesise glutamate through 

intermediary metabolism (Waagepetersen et al., 2005), glutaminase is the only 

enzyme which can ensure glutamate production in neurons. In addition, previous 

studies have shown a decrease in glutamine synthase (GS) in AD brain (Smith et al., 

1991, Le Prince et al., 1995, Butterfield et al., 1997). This enzyme converts 

glutamate taken up by astrocytes into glutamine which is then released and taken up 
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by neurons. The reduction in both enzymes would lead to disturbances in glutamate 

production in the AD brain. 

 

Stem cell derived co-cultures in this thesis also demonstrated a decrease in the 

uptake/production of glutamate. When treated with 2µM Aβ(1-42) in the presence of 

0.5mM glutamate, cultures contained higher levels of glutamate in their media than 

cells not exposed to Aβ(1-42). These results are supported by previous studies which 

have shown that Aβ treatment inhibits glutamate uptake in hippocampal astrocytes 

(Harris et al., 1995, Harris et al., 1996, Parpura-Gill et al., 1997).  However, the 

mechanisms causing the inhibition of glutamate transport are not well understood. It 

has been previously suggested that Aβ(1-42) could inhibit glutamate uptake through 

generation of oxygen-dependent free radicals (Harris et al., 1995, Harris et al., 1996). 

Other studies have shown that inhibition of glycolysis blocks glutamate uptake 

(Swanson, 1992a).  Furthermore, the inhibition of glucose uptake by Aβ(25-35)  have 

been found to affect glutamate transport (Parpura-Gill et al., 1997). The decrease in 

the uptake of glucose seen in NT2 co-cultures, pure astrocytes and rat primary 

cultures could be responsible for the decrease in glutamate uptake. However, gene 

expression analysis of the NT2 co-cultures treated with Aβ did not demonstrate any 

changes in the expression of glutamate transporters. 

 

Numerous studies have linked excitotoxicity to the development of AD (Parihar and 

Brewer, 2007). In addition, an increase in NMDA receptor activation by Aβ, a 

downregulation of glutamate transporters in AD brain, inhibition of the glutamate 

uptake by Aβ and increase in hyperphosphorylation of tau following activation of 

NMDA receptors have been reported (Parihar and Brewer, 2007). The efficiency of 

memantine (NMDA receptor antagonist) used in the treatment of AD also supports 

the active role of glutamate and excitotoxicity in AD (Lipton, 2006).  
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In neurodegenerative diseases, uptake of glutamate can be disturbed due to a 

decline in energy metabolism (Parihar and Brewer, 2007). Studies on the use of 

creatine to improve energy metabolism have shown that neurons preloaded with 

creatine were protected from glutamate and Aβ(1-42) toxicity (Brewer and 

Wallimann, 2000). This group hypothesized that long-term energy deficiency can 

lead to a failure in the reduction of intracellular calcium and therefore over-activation 

of NMDA receptors. 

 

Other studies have linked NMDA receptors activation to ROS production (Lafon-

Cazal et al., 1993). Indeed Schulz et al. (2000) have shown that excitotoxicity leads 

to ROS production and depletion of glutathione. It has also been suggested that 

glutamate toxicity may lead to ETC complex defects and mitochondrial dysregulation 

and therefore an increase in the production of free radicals (Halliwell, 1992).  

 

4.4.5 Changes in lactate production and pyruvate uptake  

 

Following exposure to Aβ(1-42) lactate levels were significantly decreased in co-

cultures (both stem cell derived and primary). Under physiological conditions the rate 

of glucose utilization is higher in astrocytes than neurons (Magistretti and Pellerin, 

1996). Glucose taken up by astrocytes is metabolized into lactate, which is then 

released to be taken up by neurons and can sustain synaptic activity (Bittar et al., 

1996). The results shown in this thesis strongly suggest that Aβ(1-42) leads to 

inhibition of the glycolytic pathway which results in the accumulation of glucose-6-

phosphate, decreased uptake of glucose and therefore lactate production. 

Interestingly, this effect is not seen in pure astrocytes. According to the ANLS 

hypothesis, lactate is produced by astrocytes in response to glutamate release from 

neurons and subsequent uptake by astrocytes (Pellerin and Magistretti, 2012). The 
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absence of neurons and low glutamate levels may explain the very low lactate levels 

in the media and thus limit the effect of Aβ(1-42) on lactate production.  

 

Pyruvate is another important energy source in the brain (Nicklas et al., 1971). The 

transport of lactate and pyruvate across the blood-brain barrier is limited and thus it 

cannot substitute for glucose to maintain brain function (Pardridge and Oldendorf, 

1977). However, when produced inside the brain, pyruvate and lactate are useful 

energy sources for neurons (Ide et al., 1969). Media used to grow and maintain both 

stem cell derived co-cultures and primary cultures in the experiments presented here 

contained high levels of pyruvate. However, following treatment with low levels of 

Aβ(1-42) the uptake of pyruvate was decreased in NT2.N/A co-cultures and primary 

cultures, further limiting availability of substrates for TCA cycle. 

 

4.4.6 Aβ(1-42) treatment affects the cellular NAD+/NADH ratio in NT2.N/A co-

cultures 

 

NAD+ is a coenzyme and a parent compound to NADH, NADP+ and NADPH. It is 

involved in many crucial processes for cell survival as a cofactor for enzyme-

catalyzed oxidation (Berger et al., 2004), a donor of electrons for ETC during 

oxidative phosphorylation (Araki et al., 2004) and as a contributor for ATP production. 

NAD+ is mainly located in mitochondrial matrix and together with NADP+ is important 

in signal transduction, DNA repair, glutathione metabolism and recycling and the 

thioredoxin system (Ziegler and Schulz, 2000). 

 

As the treatment of the cells with Aβ leads to a decrease of substrates available for 

entry into the TCA cycle, it was necessary to investigate changes in NAD+/NADH 

ratio. Co-cultures demonstrated an initial increase in NAD+/NADH ratio in both control 

and Aβ treated cells and this was followed by a significant decrease, particularly in 
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Aβ treated cells. Increases in the NAD+/NADH ratio seen in the control is possibly a 

result of increased glycolysis and subsequent production of lactate following feeding 

of the cells. During this process NAD+ is reduced to NADH. However, in order to 

allow aerobic glycolysis to continue in astrocytes NADH must be oxidised back to 

NAD+ via the production of lactate by lactate dehydrogenase As Aβ treatment 

partially blocks glucose uptake, this could lead to a decrease in the NAD+/NADH ratio 

in comparison to control. 

 

A decrease in the availability of substrates (glucose, pyruvate) and an increase in the 

requirement for NAD+ can lead to NAD+ depletion. This scenario is typical of both 

acute and chronic neurodegenerative diseases (Parihar and Brewer, 2007). The level 

of NAD+ in mitochondria can be affected by different factors such as ROS and Ca2+ 

via permeability transition pore (PTP) opening (Di Lisa et al., 2001). PTP opening can 

result in release of NAD+ to the cytoplasm where it is rapidly consumed by enzymes 

which are abundant in the cytoplasm e.g. glycohydrolases which hydrolyse NAD+ into 

ADP-ribose and nicotinamide. Glycohydrolases could also catalyze formation of 

cADP-ribose which triggers release of Ca2+ from sarcoplasmic reticulum causing 

further opening of PTP and subsequent release of NAD+ (Dodoni et al., 2004). 

However, these mechanisms as well as their association with AD and ageing are 

poorly understood (Parihar and Brewer, 2007).  

 

Another enzyme which relies heavily upon accessibility of NAD+ is PARP. PARP-1 

activity has been found in neuronal and also non-neuronal cells in CNS. In addition, 

excessive PARP-1 activity has been shown to have detrimental effects in cells due to 

a reduction in NAD+ (Ha, 2004). As described in section 4.1.4.1, PARP has been 

previously detected in frontal and temporal cortex of AD patients which suggests an 

increase in the consumption of NAD+ (Love et al., 1999). PARP-associated depletion 

of NAD+ has been found in conditions linked to increased ROS and DNA damage 
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(Schraufstatter et al., 1986). A decrease in NAD+ stores, leads to a heavy demand on 

ATP stores for synthesis of new NAD+ (Pieper et al., 1999). This can lead to an 

energy crisis in the cell which can cause further cell death via necrosis (Ha and 

Snyder, 1999).  

 

NAD+ is also required for Sir2 activity which has been found to increase life span in 

C. elegans and S. cerevisiae (Kaeberlein et al., 1999). In humans SIRT1 is involved 

in chromatin remodeling and regulation of transcription factors such as p53 (Luo et 

al., 2001). However, SIRT1 and the Sir2 family as well as PARP require NAD+ for 

their nuclear activities. An increase in NAD+ synthesis and activation of SIRT1 has 

been previously found to protect against axonal degeneration (Araki et al., 2004). As 

such a decrease in NAD+ could lead to neurodegeneration.   

 

NAD+ is a precursor for NADH and it is converted into NADH mainly during the TCA 

cycle. This NADH is then required for the phosphorylation of ADP by ATP synthase 

during oxidative phosphorylation. As such there is a relationship between the rate of 

ATP production and the ratio of NADH to NAD+ (redox ratio) whereby a decline in 

NAD+ can limit ATP synthesis through the TCA cycle.  

 

It has been shown that in 24 month old rats there is an age related decline in 

NAD(P)H (Parihar and Brewer, 2007). Additionally, exposure to glutamate causes an 

influx of Ca2+ which results in a much faster decline of NAD(P)H in old neurons in 

comparison to middle aged or embryonic neurons.  This has been suggested to be a 

result of complex I activity attempting to meet the requirement for electrons which 

power proton gradient and ATP production (Parihar and Brewer, 2007). As such low 

NAD(P)H levels in aged neurons could explain the vulnerability of cells to metabolic 

stress (Brewer, 1998).  
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Another factor that could influence NADH to NAD+ ratio is NADH dehydrogenase 

(part of complex I). In AD it has been shown that there are changes in expression of 

mitochondrial and nuclear genes encoding NADH dehydrogenase, specifically a 

down-regulation of mitochondrial genes in temporal cortex of AD (Manczak et al., 

2004). Additionally, activity of NADH dehydrogenase was also shown to be impaired 

in homogenates of plaques (Mattson, 2000). 

 

4.4.7 Effect of Aβ on ATP production 

 

Experiments in this chapter have demonstrated changes in glycolysis as well as the 

availability of substrates for entry into the TCA cycle and the ratio of NAD+/NADH. As 

such it was important to establish whether there was a subsequent effect on 

production of ATP. NT2 derived co-cultures treated with Aβ demonstrated a 

decrease in ATP from 6h, which became most significant at 72 and 96h. This 

demonstrates a detrimental effect of Aβ on the metabolism of the cells and is in line 

with previous studies. Studies of AD brains have shown a reduction in the activities of 

enzymes involved in glycolysis such as hexokinase (Liguri et al., 1990) and 

phosphofructokinase (Sims et al., 1987) but also in mitochondrial components such 

as pyruvate dehydrogenase complex (PDHC), α-ketoglutarate dehydrogenase 

complex (KGDHC) and cytochrome oxidase c (COX). A reduction in the activity of 

key enzymes of the TCA cycle, KGDHC and PDHC, has long been associated with 

neurodegeneration and AD (Sorbi et al., 1983, Blass, 2000). The reduction in 

KGDHC could be responsible for a general decline in brain metabolism and its 

activity has been found to have a higher correlation with cognitive decline than 

amyloid plaques or neurofibrillary tangles (Gibson et al., 1999). Some studies of AD 

brains have also demonstrated that decreased activity of PDHC is not only found not 

only in damaged regions of the brain but also in those showing no neuropathological 

changes (Butterworth and Besnard, 1990). COX has also been shown to have 



	  
	  

233	  

abnormal kinetics but its activity is also decreased in AD brain and peripheral tissue. 

Additionally, it has been shown that the localization of such decreases in COX levels 

correspond to pre-mortem decreases in glucose metabolism (Rapoport et al., 1991). 

Decreases in COX activity have also been linked to a decrease in neuronal firing, a 

decrease in Na+/K+-ATPase activity and therefore a decrease in utilization and 

demand for ATP (Wong-Riley, 1989). 

 

The decrease in ATP levels following exposure to low concentrations of Aβ 

presented in this thesis is also supported by previous studies on mitochondria 

isolated from rat brains. These studies show a direct effect of micromolar levels of Aβ 

on mitochondrial respiration (Canevari et al., 1999), ATP synthesis (Moreira et al., 

2003) as well as the activities of various enzymes associated with energy transfer 

(Shoffner, 1997, Casley et al., 2002). It has been suggested that Aβ can interact 

directly with mitochondrial membranes causing changes in mitochondrial function 

(Parihar and Brewer, 2007) but also the inhibition of COX activity that is seen in AD 

(Canevari et al., 1999). Indeed, other studies have also shown a concentration-

dependent decrease in ATP/O ratio (moles of ATP produced per g-atom of oxygen 

consumed), ETC inhibition, increase in production of ROS and COX release in 

response to Aβ (Aleardi et al., 2005). 

 

4.4.8 Antioxidant defence and ROS production 

 

The brain is very susceptible to oxidative damage particularly due to its high 

metabolic rate, high levels of unsaturated lipid levels and a limited ability to 

regenerate (Andersen, 2004).  In addition, oxidative stress and damage have been 

previously linked to AD (Perry et al., 1998, Butterfield, 2002). 
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For normal functioning of the brain it is essential to maintain the balance between 

generation of ROS and antioxidant defence mechanisms. Endogenous antioxidants, 

which protect from ROS damage include enzymatic systems and cellular molecules 

(Aliev et al., 2008). Three primary enzymes include SOD, catalyse and glutathione 

peroxidase (GPx), but there are also secondary enzymes involved such as 

glutathione reductase (GR), glucose-6-phosphate dehydrogenase, and cytosolic GST 

(Aliev et al., 2008). The function of these enzymes is to decrease peroxide levels or 

to maintain supply of intermediates such as glutathione (GSH) or NADPH	  

(Vendemiale et al., 1999). GSH reacts directly with free radicals in a nonenzymatic 

reactions and is also an electron donor in the process of reduction of peroxides 

catalyzed by GPx. The product of this reaction is GSSG which is subsequently 

converted back into GSH by the action of glutathione GR which uses NADPH as a 

cofactor (Scott et al., 1963). In a healthy cell, GSSG levels rarely exceed 10% of total 

cellular GSH (Aliev et al., 2008). The ratio of GSH/GSSG has been therefore used as 

an indicator for oxidative stress in vivo (Asensi et al., 1999). 

 

In the work presented here NT2.N/A and NT2.A cultures were investigated for 

changes in GSH and GSSG following treatment with Aβ. Pure astrocytic cultures 

demonstrated a decrease in total GSH levels and an increase in GSSG levels which 

translated into a decrease in GSH/GSSG ratio. After 48h the ratio increased 

suggesting a recovery from the initial insult. A similar decrease in the GSH/GSSG 

ratio was seen in co-cultures at 6 and 24h. After 24h there still appears to be a 

decrease in GSH/GSSG ratio, however, it is not significant at any of the later time 

points. Nevertheless, we can conclude that treatment with Aβ leads to a decrease in 

GSH and an increase in GSSG levels. This suggests increased oxidative stress and 

is in line with previous studies. It has been shown that GSH levels decrease in red 

blood cells during normal ageing as well as in AD (Liu et al., 2004) and that GSSG 

levels are increased in AD (Benzi and Moretti, 1995). A study by Abramov et al. 
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(2003) performed on rat mixed hippocampal neuronal and glial cultures as well as 

pure cortical astrocytes linked sporadic [Ca2+]c signals caused by Aβ to GSH 

depletion. These sporadic fluctuations of [Ca2+]c were only seen in astrocytes and led 

to a decrease in GSH in those cells. As astrocytes supply neighbouring neurons with 

precursors for GSH (Sagara et al., 1993), a reduction in GSH levels in astrocytes 

could cause a decrease in GSH levels in neurons. This could further impair neuronal 

viability as neurons become vulnerable to oxidative stress (Abramov et al., 2003). 

 

A decrease in GSH has also been associated with downregulation of glutamate 

cysteine ligase (GCL), which is the first enzyme involved in de novo synthesis of 

GSH (Liu et al., 2004). This group have also demonstrated age-related decreases in 

the activity and mRNA content of glutathione synthase (GS), the second enzyme 

involved in the synthesis of glutathione (Liu et al., 2004). In addition they were also 

able to show that a decrease in GSH levels in red blood cells from male AD patients 

was linked to decrease in GCL and GS activity (Liu et al., 2004). 

 

In this chapter, gene expression analysis did not show any significant changes in 

antioxidant enzymes, such as GPx or SOD following treatment of NT2.N/A cells with 

Aβ. Further analysis of the expression and activity of enzymes associated with GSH 

synthesis is required before conclusions can be drawn on the impact of Aβ on the 

oxidative status of the cultures. 

 

Increases in GSSG levels following treatment with Aβ in this study suggest an 

increase in ROS production. Mitochondria are a major source of ROS, which at low 

levels are beneficial to the cell (Gericke, 2006) but can cause cell damage and lead 

to cell death at higher levels (Parihar and Brewer, 2007). It has been shown that 

during ageing, ROS levels increase as well as antioxidant activity which suggests 

upregulation of self-protective mechanisms (Pratico and Delanty, 2000).  Evidence 
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from experiments on isolated mitochondria supports the hypothesis of oxidative 

stress in ageing (section 1.7). As ageing is the major risk factor in AD, it has been 

suggested that increases in ROS production associated with ageing is a major 

contributor to the development of the disease (Parihar and Brewer, 2007). 

 

An increase in Aβ has been found to induce oxidative stress in AD transgenic mice 

(Matsuoka et al., 2001) and also leads to an increase in production of H2O2 in 

cultured cells (Behl et al., 1994). Together these studies demonstrate an association 

between oxidative stress and Aβ production, however it is not possible to determine 

which process occurs first in the development of the disease (Parihar and Brewer, 

2007). 

 

Results from post-mortem tissue of AD patients have shown markers for lipid 

peroxidation and protein nitration in the cortex and hippocampus (Butterfield and 

Lauderback, 2002). They have also demonstrated increases in the levels of protein 

carbonyls in AD compared to age matched controls (Smith et al., 2000). In addition, 

markers for oxidative damage of DNA (8-hydroxy-2’-deoxyguanosine) have been 

found in the CSF of AD patients. The accumulation of ROS could have a significant 

effect not only on nuclear DNA but also on mtDNA. mtDNA damage has been 

implicated in AD and could lead to mitochondrial dysfunction and a decline in ATP 

production (Parihar and Brewer, 2007). Additionally, free radicals may increase levels 

of oxidized proteins (section 4.1.3), which could lead to altered conformation and 

activity of enzymes involved in oxidative phosphorylation and the ETC such as 

cytochrome oxidase c (section 4.1.3). Oxidative stress can also lead to a reduction in 

the expression of metabolic enzymes by signalling pathways involving redox 

sensitive transcription factors, kinases and phosphatases (Thannickal and Fanburg, 

2000). These changes associated with ROS production could lead to further 

mitochondrial dysfunction (Parihar and Brewer, 2007).  
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4.4.9 Calcium changes 

 

Calcium release in cells has a very significant effect on cellular functioning, including 

mitochondrial energy metabolism. It can activate mitochondrial matrix 

dehydrogenases which produce more NADH and therefore donate electrons through 

ETC as well as affecting ATP production (McCormack et al., 1990). Calcium influxes 

can depolarize mitochondrial membrane potential (Vergun, 2007) but they also 

activate neurotransmitter release after action potential firing in neurons (Khvotchev et 

al., 2000). In addition, increases in calcium levels can affect enzymes such as protein 

kinases and phospholipases (Clapham, 2007), integrity of the cytoskeleton 

(Schlaepfer and Zimmerman, 1985) as well as play important role in excitotoxicity 

which is a major feature of neurodegenerative diseases (Parihar and Brewer, 2007). 

 

Dysregulation of intracellular calcium signalling in AD has been intensively studied 

(Mattson, 2004). Increases in intracellular calcium has been found to cause 

accumulation of Aβ and hyperphosphorylation of tau and can lead to neuronal death 

(LaFerla, 2002). Presenillin 1 has also been linked to calcium homeostasis and it has 

been shown that mutations in PS1 can cause changes in inositol triphosphate-

coupled intracellular calcium stores and calcium pathways (Yoo et al., 2000). 

Dysregulation of calcium homeostasis has been confirmed in both fibroblast and 

neurons from AD patients and transgenic mice with PS1 mutations (Huang et al., 

2005).  

 

The effects of Aβ on [Ca2+]c signalling has been extensively studied. However, the 

results of these studies are controversial, as Aβ has been found to increase and 

decrease [Ca2+]c, modulate Ca2+ channel activity or alter the dynamic of [Ca2+]c 

signals. In this thesis, Aβ increased calcium oscillations as well as the number of 

activated astrocytes. Abramov et al. (2003) demonstrated that in mixed neuronal and 
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astrocytic co-cultures Aβ had no effect on [Ca2+]c in neurons but triggered complex 

and sporadic [Ca2+]c fluctuations in astrocytes (Abramov et al., 2003). In addition, 

they demonstrated that the calcium changes were dependent on extracellular 

calcium and independent of the ER calcium stores. This suggests that Aβ causes 

Ca2+ influx selectively into astrocytes (Abramov et al., 2003). This supports the 

suggestion that Aβ can form pores in cell membranes that allow influx of Ca2+ (Lin et 

al., 2001). Additionally, the same study found that Aβ induces ROS generation in 

astrocytes and that this leads to GSH depletion in both neurons and astrocytes, in a 

calcium-dependent manner (Abramov et al., 2003). 

 

ROS production was found to be dependent upon activation of NADPH oxidase 

which generates oxidative stress and depletion of GSH (Abramov et al., 2004). 

Astrocytes can withstand this insult and are resistant to cell death, whilst neurons 

have been found to die within 24h after exposure (Abramov et al., 2003). As GSH 

depletion was blocked by glutathione precursors and NADPH oxidase inhibitors, it 

was suggested that neuronal death is a result of oxidative stress (Abramov et al., 

2004). In a recent study, neuronal death was shown to be mediated by overactivation 

of PARP-1 in response to oxidative stress, NAD+ depletion and loss of mitochondrial 

membrane potential Abeti et al. (Abeti et al., 2011). 

 

Increases in calcium oscillations and the number of cells that were activated in this 

study as well as decrease in NAD+/NADH and GSH/GSSG ratio are in agreement 

with studies done by Abramov et al. (2003,2004,2011). In addition, this study 

provides a link between Aβ and oxidative stress and changes observed in cellular 

metabolism. 
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4.4.10 Gene expression changes 

 

Changes in gene expression following exposure to 2µM Aβ(1-42) were investigated 

using the Human Alzheimer’s Disease RT² Profiler™ PCR Array (QIAGEN, UK). This 

array profiles the expression of 84 genes that are important in the onset, 

development, and progression of Alzheimer’s disease such as genes contributing to 

Aβ generation, clearance, and degradation or genes involved in Aβ signal 

transduction leading to neuronal toxicity and inflammation.  

 

Analysis showed significant upregulation and downregulation of several genes which 

have been previously shown to be associated with AD. However as the gene 

expression analysis was only performed on NT2.N/A co-cultures, it is impossible to 

determine whether the changes affected only one specific cell type or both. As such 

further investigation of pure cultures is required. 

 

4.4.10.1 Upregulation of A2M 

 

A2M is a gene that encodes α2-macroglobulin (α2M) which is a 718 kDa glycoprotein 

of a similar structure and function to a group of proteins called α-macroglobulins 

(Kovacs, 2000). It is found at high levels in the serum and cerebrospinal fluid (CSF) 

(Borth, 1992). It is also produced in the brain where it binds different extracellular 

ligands which are internalized by neurons and astrocytes (Kovacs, 2000). The most 

well characterised function of α2M is its pan-protease inhibitory activity (Barrett and 

Starkey, 1973). α2M binds to proteases and entraps them (Borth, 1992). The 

proteases are unable to dissociate from α2M, however they are still active and able to 

cleave small substrates (Lauer et al., 2001). 

 

In AD, α2M has been found to be associated with amyloid plaques (Kovacs, 2000)  as 
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well as binding to soluble Aβ (Hughes et al., 1998). Binding of α2M to Aβ has been 

shown to inhibit Aβ fibril formation and neurotoxicity (Hughes et al., 1998) as well as 

promoting its degradation by proteases already bound to α2M (Lauer et al., 2001). 

Additionally, α2M/Aβ complexes can undergo LPR-mediated endocytosis and 

lysosomal degradation (Narita et al., 1997). However, large amounts of α2M can be 

neurotoxic (Kovacs, 2000) and it has also been found to be a risk factor for late onset 

AD genes such as APOE. A DNA polymorphism in A2M gene has been associated 

with AD and increases in amyloid plaque formation in AD brains (Blacker et al., 

1998). However, subsequent studies have not consistently confirmed this positive 

association (Wavrant-DeVrieze et al., 1999, Myllykangas et al., 1999). The 

connection of A2M polymorphism to late onset AD is still controversial. 

 

Gene expression analysis following exposure of NT2.N/A cells to Aβ show that A2M 

is significantly upregulated. This is in line with previous studies that have shown an 

increase of α2M in cortical and hippocampal senile plaques as well as intracellular 

staining of hippocampal neurons (Bauer et al., 1991). 

 

4.4.10.2 Upregulation of APBB2 

 

Gene expression analysis demonstrated an increase in expression of APBB2 gene. 

This gene codes for β-amyloid precursor protein-binding family B member 2 which is 

an adaptor protein that can bind the cytoplasmic domain of βAPP (Golanska et al., 

2008). It is believed to be involved in the βAPP processing. Previous experiments 

have shown that overexpression of APBB2 increases γ-secretase processing of 

βAPP thus promoting Aβ production (Chang et al., 2003). 
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4.4.10.3 Upregulation of BACE1 

 

Gene expression analysis of NT2.N/A cells exposed to Aβ demonstrated an 

upregulation of BACE1. This gene codes for the β-site APP-cleaving enzyme 1 

(Sinha et al., 1999), a type 1 transmembrane aspartic protease. BACE1 is highly 

expressed in neurons (Sinha et al., 1999), and it is involved in APP processing and 

production of Aβ (described in detail in section 1.4.1). It has previously been shown 

that overexpression of BACE1 leads to an increase in Aβ production whilst BACE1 

knockdown abolishes Aβ production (Vassar et al., 1999). BACE1 has been found to 

cleave APP with the Swedish familial mutation ~10-fold to 100-fold more efficiently 

than normal APP (Sinha et al., 1999, Vassar et al., 1999). Interestingly, it has been 

proposed that hypometabolism can affect BACE1 expression (section 4.1.9). 

 

Recent studies have shown that BACE1 can also affect metabolism in the SH-SY5Y 

cell line. Stable overexpression of BACE1 has led to impairment of utilization of 

glucose and lactate as well as reduction in activities of hexokinase and pyruvate 

dehydrogenase (Prof. M. Ashford: personal communication). 

 

Results discussed above suggest that hypometabolism seen in NT2.N/A, NT2.A and 

primary cultures treated with Aβ could lead to increases in expression of BACE1.  

This could lead to further increases in Aβ production as well as hypometabolism 

seen in the cells. However, this link requires further investigation. 

 

4.4.10.4 Downregulation of BCHE 

 

BCHE gene encodes butyrylcholinesterase (BChE) which together with 

acetylcholinesterase (AChE) is a part of cholinesterases (ChEs) family. AChE is a 

key component of the cholinergic brain synapses and its function is to terminate 
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nerve impulses by rapid hydrolysis of acetylocholine (ACh) (Ul-Haq et al., 2010). In 

the human brain, BChE plays a secondary role in hydrolysis of ACh as AChE is the 

more active enzyme (Greig et al., 2002). According to the cholinergic hypothesis, 

sporadic AD is caused by a deficiency in cholinergic function. Levels of ACh have 

been found to be very low in the hippocampi and cortexes of AD patients (Terry and 

Buccafusco, 2003). Additionally, many of the available treatments focus on improving 

ACh levels either by replacement of ACh precursors (choline or lecithin) or the use of 

AChE inhibitors (physostigmine). Other treatments include specific M1 muscarinic or 

nicotinic agonists, M2 muscarinic antagonists. 

 

The function of BChE is not fully known but it appears to be involved in regulation of 

cell proliferation and differentiation during early neuronal development but also acts 

as a scavenger in the detoxification of certain chemicals, and is involved in 

lipoprotein (very-low-density lipoprotein; VLDL) metabolism (Ul-Haq et al., 2010). 

Some neurons also demonstrate BChE activity in the hydrolysis of ACh (Wright et al., 

1993). Studies on AChE and BChE activity in the AD brain have shown that, with 

progression of the disease, the activity of AChE decreases while BChE levels 

increase (Perry et al., 1978, Arendt et al., 1992). This suggests that BChE might be 

compensating for decrease in AChE activity (Giacobini, 2003). 

 

However, the gene expression analysis presented in this study showed a decrease in 

expression of BChE. Differences may stem from a relatively short exposure to Aβ in 

comparison to development and progression of disease in AD brains. 

 

4.4.10.5 Upregulation of CASP4 

 

CASP4 gene encodes human caspase-4 which is an inflammatory caspase. It is 

located in the ER and is activated by proteolytic cleavage when cells are exposed to 
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ER stress-inducing reagents (Hitomi et al., 2004). Activation of caspase-4 has been 

shown to trigger either apoptosis or an inflammatory response (Salminen et al., 2009) 

and may be associated with neuronal stress in AD (Katayama et al., 2004). It has 

also been shown that mutations in PS2 mutation can trigger cleavage and activation 

of caspase-4 and subsequently activation of caspases 3 and 9 (Yukioka et al., 2008). 

Additionally, some studies have shown that exposure of cells to Aβ activates both 

caspase-4 and 12 (Katayama et al., 2004). In AD, the amyloidogenic cleaving of APP 

has been associated with a negative feedback on caspase-4 activation. The release 

of AICD and its interacting partner, FE65 transcription factor, leads to its 

translocation to the nucleus where the AICD-FE65 complex can bind to the promoter 

region of caspase-4 thus blocking its action (Kajiwara et al., 2009). In the gene 

expression analysis CASP4 gene was significantly upregulated suggesting an initial 

ER stress-related response to Aβ treatment. 

 

4.4.10.6 Upregulation of GAP43 

 

GAP43 encodes a 43 kDa growth-associated calmodulin-binding phosphoprotein 

(GAP-43, neuromodulin, B50). GAP-43 is mainly found in neurons (Basi et al., 1987), 

and is particularly concentrated in growth cones (Nelson et al., 1989). GAP-43 has 

been shown to be involved in axonal growth and is often used as a marker of 

synaptogenesis (Benowitz and Routtenberg, 1997).  

 

It is regulated by phosphorylation via protein kinase C (PKC) and there appears to be 

a correlation between GAP-43 phosphorylation state and enhancement of LTP 

(Gianotti et al., 1992) as well as behavioural learning (Young et al., 2002).  

 

GAP-43 has been shown to be affected in AD, although the nature of these changes 

remains controversial. An early study has suggested a “trend” towards an increase in 
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GAP-43 levels in hippocampus of AD brains. The authors of this study suggested 

that it was a sign of neuritic sprouting (Masliah et al., 1991). More recent studies 

have shown a decrease in GAP-43 in the cortex and hippocampus (Bogdanovic et 

al., 2000). These results were in line with other studies that have shown aberrant 

localization and a decrease in GAP-43 levels in different areas of AD brains (de la 

Monte et al., 1995). Another study which tried to address controversy around GAP-43 

analysed hippocampal samples within short post-mortem times (Rekart et al., 2004). 

The authors of this study demonstrated an increase in GAP-43 in AD patients and 

again suggested that it may represent a sign of axonal sprouting. 

 

In the study presented here gene expression analysis showed a significant increase 

in GAP-43 expression following exposure to Aβ.  

 

4.4.10.7 Upregulation of GSK3Β 

 

GSK3β gene encodes glycogen synthase kinase-type 3, isozyme β (GSK3β). GSK3 

was initially described as a regulator of glycogen metabolism. It phosphorylates 

glycogen synthase and therefore inhibits its activity and glycogen synthesis (Embi et 

al., 1980). The effects of GSK3β on metabolism and glycogen turnover were 

discussed in details in sections 4.4.2 and 4.1.8. 

 

GSK3β is localized in neuronal and astrocytic compartments, in rough endoplasmic 

reticulum, free ribosomes, mitochondria and within post-synaptic densities in 

dendritic spines (Perez-Costas et al., 2010). This kinase has been associated with 

NMDA-dependent long-term potentiation (LTP) and long-term depression (LTD). The 

signaling cascade involved in regulation of LTP and LTD includes PI3K/AKT/GSK3 

mechanisms, which lead to phosphorylation of GSK3β and inhibition of its activity. 

This pathway has been shown to be critical for LTD or LTP formation (Hooper et al., 
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2007). GSK3β also plays a role in NMDA receptor trafficking (Chen et al., 2007) and 

pre-synaptic functions in developing and mature nerve terminals (Smillie and Cousin, 

2011). 

 

GSK3β has been previously shown to play an important role in development of AD. 

and has been identified as a key kinase which is able to phosphorylate tau both in 

vitro and in vivo (Ishiguro et al., 1993, Terwel et al., 2008). GSK3β transgenic mice 

have been shown to display hyper-phosphorylation of tau and neurodegeneration 

(Lucas et al., 2001). 

 

The upregulation of GSK3β following the treatment with Aβ is consistent with 

previous studies. 

 

4.4.10.8 Upregulation of IDE 

 

The IDE gene codes for insulin-degrading enzyme (IDE, insulysin), a 110kDa thiol 

zinc-metalloendopeptidase. It is located in cytosol, peroxisomes, endosomes and 

also on the cell membrane (Duckworth et al., 1998). IDE cleaves small proteins 

which share one characteristic, i.e. formation of β-pleated sheet-rich amyloid fibrils. 

These proteins include amyloid β-protein (Aβ), insulin, glucagon, amylin, atrial 

natriuretic factor, and calcitonin (Kurochkin, 2001). As IDE is a major enzyme that 

can degrade Aβ (Qiu and Folstein, 2006) in both neuronal and microglial cultures 

(Qiu et al., 1997, Vekrellis et al., 2000), it can thus eliminate its neurotoxic effects 

(Mukherjee et al., 2000). The link between insulin, IDE, AD and diabetes has been 

described in detail in section 4.1.8 The upregulation of IDE following exposure of NT2 

co-cultures to Aβ suggests an activation of a protective mechanism in these cells.  

 

 



	  
	  

246	  

4.4.10.9 Upregulation of LPL 

 

The LPL gene encodes lipoprotein lipase, an enzyme which catalyzes the hydrolysis 

of triacylglycerol, but also mediates uptake of lipoproteins by acting as a bridging 

molecule between lipoproteins and sulphated glycosaminoglycans (GAGs) (Williams 

et al., 1992). It has previously been shown that LPL is highly expressed in the brain 

(Goldberg et al., 1989). In AD it has been shown that LPL accumulates in amyloid 

plaques (Rebeck et al., 1995). Additionally, SNPs in the LPL gene have been found 

to be associated with an increased risk of AD (Blain et al., 2006). A recent study by 

Nishitsuji et al. (2011) has shown that LPL forms a complex with Aβ, leading to an 

increase in uptake and lysosomal degradation of Aβ in astrocytes. The upregulation 

of LPL gene after exposure to Aβ in NT2 co-cultures suggests that multiple 

mechanisms of Aβ clearance may be active in these cells. 

 

4.4.10.10 Upregulation of SNCA 

 

The SNCA gene encodes α-synuclein, a 18-20 kDa peptide (Spillantini et al., 1995). 

Synucleins are highly expressed in the central nervous system as well as, skeletal 

muscles and spleen (Hong et al., 1998). In the brain, they are localized in the 

neocortex, hippocampus, and substantia nigra (Suh and Checler, 2002). α-Synuclein 

has been shown to be a key molecule involved in Parkinson's disease (PD) and 

dementia with Lewy bodies (DLB). Whilst very rare, inherited cases of PD appear to 

be associated with mutations in α-synuclein gene (Kruger et al., 1998). In AD α-

synuclein is associated with amyloid plaques. Apart from amyloid β-peptides, the 

plaques are also composed of a component known as non-Abeta component (NAC) 

(Masliah et al., 1996b). NAC has been shown to be derived from a precursor protein, 

which was later determined to be α-synuclein (Ueda et al., 1993). The expression of 

α-synuclein in the brain appears to correlate with the severity of AD cases (Iwai et al., 
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1996). It has also been shown that aged transgenic mice overexpressing APP have 

amyloid plaques, which were immunoreactive to α-synuclein (Yang et al., 2000). 

However, the specific role of α-synuclein in AD still remains to be determined. The 

upregulation of SNCA gene in NT2 cultures shows that Aβ treatment alone is 

sufficient to trigger an increase in the expression of α-synuclein and suggests an 

important role of this protein in AD. 

 

4.5 Conclusion 

 

Data presented in this chapter provides evidence for a detrimental effect of Aβ on 

cellular metabolism. Cultures treated with low concentrations of Aβ showed a clear 

hypometabolism, particularly with regards to changes in glucose, lactate, pyruvate 

and glycogen metabolism. Interference with metabolic pathways led to a deficit in 

ATP production as well as NAD+/NADH ratio. This effect would have serious 

implications in the brain which has a high energy demand, especially in terms of 

memory formation and antioxidant mechanisms. An increase in calcium responses 

as well as a decrease in GSH/GSSG ratio, all point towards Aβ-induced metabolic 

and oxidative stress. In addition, gene expression analysis suggests an increase in 

factors involved in the clearance and degradation of Aβ.  

 

 

 

 

 

 

 

 



	  
	  

248	  

Chapter 5: Conclusions and future experimental approaches 

 

As numerous cell types interact during the progression of Alzheimer’s disease, it is 

important that any in vitro model of the disease reflects this arrangement. The model 

described here has previously been used in our laboratory to model neurotoxicity and 

has demonstrated the importance of including astrocytes to realistically model toxic 

effects. During the course of this project this model was utilised in order to study the 

response of neurons and astrocytes to Aβ(1-42). 

 

Previous studies in our laboratory have demonstrated that NT2.D1-derived neurons 

and astrocytes are functional and can generate action potentials (neurons) as well as 

spontaneous and induced calcium oscillations (astrocytes) (Hill et al., 2012). This 

human model of functional neurones and astrocytes therefore offers a unique 

opportunity to investigate functional changes in response to toxic Aβ(1-42). In 

addition, changes in biochemical endpoints such as metabolites, cellular viability and 

calcium responses can also be demonstrated. Such an advanced and relevant model 

has not thus far been applied to the study of the aetiology of Alzheimer’s Disease.  

 

This study has demonstrated for the first time metabolic coupling between neurons 

and astrocytes derived from human stem cells. The ANLS hypothesis proposes that 

during neuronal activity, glutamate released into the synaptic cleft is taken up by 

astrocytes and triggers glucose uptake, which is converted into lactate and released 

via monocarboxylate transporters for neuronal use. Using NT2 derived co-culture it 

was possible to successfully model this in vitro. 

 

In this study, mixed cultures of NT2.N/A cells were utilised to investigate the 

metabolic properties of these cells and measured the response of the astrocytic 

network to well characterised neuromodulators. Using expression analysis and 
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metabolic approaches it was shown that NT2.N/A cells express the main tenets of 

the ANLS model and display functional characteristics consistent with their neuron-

astrocyte metabolic coupling. This study shows that NT2.N/A cultures modulate their 

glucose uptake in response to glutamate, an effect that was blocked by cytochalasin 

B and ouabain. Additionally, the experiments presented that in response to increased 

neuronal activity and under hypoglycaemic conditions, co-cultures modulate 

glycogen turnover and increase lactate production. Similar results were also shown 

following treatment with glutamate, potassium, isoproterenol and dbcAMP.  Together 

these results demonstrate that NT2 human stem cell derived co-culture model is 

metabolically competent and demonstrates a functional astrocyte neuron lactate 

shuttle (ANLS). This study therefore lays the foundation for further development of 

stem cell derived neurons and astrocytes to better understand the metabolic coupling 

between neurons and astrocytes and its relationship to plasticity and 

neurodegeneration. 

 

Changes in metabolism of the brain during ageing and Alzheimer’s Disease has been 

extensively studied.  It is now widely accepted that AD is accompanied by brain 

hypometabolism that varies between different regions of the brain. 

 

Analysis of the effects of Aβ(1-42) on co-cultures of neurons and astrocytes revealed 

a significant changes in the metabolism of cells that is analogous to that seen both in 

human studies and animal models. A major feature of this cellular response is a clear 

hypometabolism particularly with regards to glucose as well as changes in the 

metabolism of pyruvate, lactate and glycogen, which can act as alternate sources of 

fuel during hypoglycaemia. These changes lead to a reduction in ATP production 

which suggests a significant energy deficit in the cultures (Fig. 5.1A). This has 

serious implications in the brain which has a very high energy demand, particularly 

with regard to memory formation and protection from oxidative stress in neurons. 
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A) 

 

B) 

 

Figure 5.1 Summary conclusion figure showing Aβ(1-42) induced metabolic 
changes (A) and oxidative stress (B). Figure A) shows changes in ANLS, glycolysis 
in astrocytes and oxidative phosphorylation in neurons. Figure B) represents 
changes in the pentose phosphate shunt pathway in neurons and astrocytes as well 
as antioxidant defence (GSH/GSSG recycling pathway). 
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Indeed, Aβ(1-42) has also been shown to increase oxidative stress, trigger calcium 

responses and decrease NAD+ availability (Fig. 5.1B). This would not only affect the 

antioxidant defence of the cells but also the ability to produce ATP and repair DNA 

via PARP. As the effect was less pronounced in pure astrocytic cultures this study 

suggests that the astrocytes are able to cope with the Aβ(1-42) insult, whilst in the 

presence of neurons which require protection, astrocytes are put under higher 

metabolic and antioxidant demands.  

 

At present, models of AD fail to recapitulate all of the major features of the disease.  

This may also be reflected in the fact that many of the new therapies for the 

treatment of AD have failed to have a significant impact on the development of the 

disease.  Human stem cell derived models of the brain are increasingly proving to 

provide useful tools in the study of human disease. 

 

Overall, this project presents a unique departure from standard experimental models 

of the brain. It provides a realistic model of basic human neuronal and astrocytic 

interactions which can be used to simulate human neurodegeneration in vitro. 
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5.1 Future experimental approaches 

 

The ability to control the aggregation state of Aβ(1-42) is a crucial step, as 

monomers, oligomers and fibrils have different toxicity profiles. In the study 

presented here Aβ(1-42) and Aβ(1-40) were monitored using two experimental 

techniques – western blotting and ThT assay. However, more studies should be 

performed to ensure a replicable process of Aβ(1-42) aggregation such as Atomic 

Force Microscope (AFM) which has been previously used (Dahlgren et al., 2002). An 

additional advantage for future studies on effects of Aβ(1-42) would be the use of 

natural peptide as opposed to a synthetic one This could be achieved by 

overexpression human APP or expressing human APP with Swedish mutation in a 

cell line e.g. SY5Y or NT2. As natural forms of Aβ(1-42) are more toxic than 

synthetically derived peptides this would ensure an appropriate modelling of the 

disease (Lambert et al., 1998).  

 

To fully understand how Aβ(1-42) causes metabolic changes in NT2.N/A cultures, it 

is necessary to investigate changes in enzyme expression and activity e.g. 

hexokinase or pyruvate dehydrogenase. These enzymes have been found to 

decrease in AD (Gibson et al., 1998) and it is essential that it is confirmed whether a 

similar effect is seen in NT2.N/A cultures. Additionally, more advanced method could 

be used to investigate metabolic trafficking between neurons and astrocytes. One of 

such methods is in vitro 13C-NMR spectroscopy. As it does not require isolation of 

metabolites due to incorporation of the label into specific carbon positions, it provides 

information about many different metabolites and metabolic pathways. The use of 

this method would allow investigation of the fate of the glucose and glutamate, not 

only in terms of ANLS but also glutamate-glutamine cycling. It would be 

advantageous to study metabolic changes following the treatment with Aβ(1-42) in 

real-time. This could be achieved by the use of specialized equipment such as 
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Seahorse Bioscience XF Extracellular Flux analyser. This system measures the 

oxygen consumption rate (a measure of mitochondrial respiration) as well as 

extracellular acidification rate (a measure of glycolysis) and fatty acid oxidation.  

Additionally it is able to measure mitochondrial stress (by determining basal 

respiration, ATP turnover, proton leak, and maximal respiration) and glycolysis stress 

(by determining glycolysis, glycolytic capacity, and glycolytic reserve).  

 

It is probably important to mention that the experiments presented in this thesis 

should also be performed on pure neuronal and astrocytic cultures. Studying the cells 

in isolation as well as in co-culture would allow to determine how each cell type is 

affected by Aβ(1-42) treatments. 

 

In addition, more focus should be directed to mitochondrial function. This could be 

done by determining mitochondrial membrane potential, using lipophylic cationic dye 

such as JC-1.  

 

An interesting hypothesis linking hypometabolism and Aβ production has been 

previously described (Struble et al., 2010). It proposes a possible impact of 

hypometabolism on BACE1 expression. Creation of NT2.N/A cultures overexpressing 

APP or mutated APP would allow investigation into the effects of APP processing on 

metabolic endpoints in these cells. In addition, RNAi or shRNA could be used to 

silence particular genes in order determine their involvement in response to Aβ. As 

changes in glycogen metabolism have not been described in vivo it would be useful 

to determine, glycogen load in transgenic mice during the disease progression. 

 

Further functional studies of neurons and astrocytes should also be carried out. The 

stimulation and recording of electrical activity from cultures following exposure to 

Aβ(1-42) using multi-electrode array (MEA)  analysis would be of great value. 
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The results obtained in this thesis on NT2.D1 derived cultures of neurons and 

astrocytes provide a good foundation for future experiments on more patient-specific 

platforms such as iPS cells. The progress in reprogramming and differentiation of iPS 

cells makes them an ideal candidate for studies on metabolic coupling between 

neurons and astrocytes in Alzheimer’s Disease. As iPS cells are derived from patient, 

they therefore express factors associated with AD at physiological levels that cannot 

be carried simulated overexpression studies or via the application of exogenous Aβ. 

 

Patient specific models of AD could be generated from fibroblasts taken from patients 

with APP/presenillin mutations as well as controls (Wray et al., 2012). iPS cells could 

be differentiated into mixed cultures of  neurons and astrocytes. Such cultures could 

then be monitored for changes in metabolism using 13C-NMR or the Seahorse 

Bioscience XF Extracellular Flux analyser. Additionally changes in glycogen, 

NAD+/NADH ratio and ATP could be investigated as well as antioxidant defences 

using GSH assay.  

 

Alzheimer’s disease is devastating neurodegenerative condition with no beneficial 

treatment available. This is in part, due to a lack of relevant human models of the 

brain. Stem cells such as the NT2/D1 cell line or iPSC provide advantegous 

alternatives to animal models. These cells allow investigation of more than one cell 

type in a co-culture as well as individually, thus creating a more comprehensive 

approach. The ability to investigate functional postmitotic neurons and astrocytes 

could significantly enhance our understanding of neurodegenerative diseases, which 

could translate into better treatments. In addition, the use of patient specific iPSC 

would allow a more tailored patient (genotypic) specific approach to new treatments. 
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Appendix 1. Mini-PROTEAN Tetra Cell (Electrophoresis) protocol (Bio-rad) 
 

 

 
 
 
 

pH and pI

The pH of the electrophoresis buffer must be within the pH range over which the protein
of interest is stable and retains biological activity. In addition, the pH of the buffer must
impart sufficient charge to the protein for it to move through the gel. Changes in pH will
affect both the charge and size (hydrodynamic volume) of the protein of interest and will
affect migration rates. For example, a buffer with a pH greater than the pI of the protein will
impart a negative charge on the protein and it will migrate toward the positive electrode
(anode). Conversely, a buffer with a pH lower than the pI of the protein will impart a positive
charge and the protein will migrate to the negative electrode (cathode). A pH equal to the pI
will result in no net charge in the protein and it will not migrate in an electric field.

Protein mobilities are best modified by the buffer's pH. Buffers with a pH closer to the pI
will provide the best resolution. However run times may be lengthy. Conversely, buffers
with a pH further from the pI will migrate quickly but resolution may be compromised. The
choice of pH becomes a tradeoff between separation and speed.

How to Choose a Native PAGE system

1. Discontinuous Buffer Systems (Ornstein-Davis2)

This discontinuous buffer system should be the first nondenaturing gel system tried.
Detailed protocols are provided in Section 4.2. The advantage of a discontinuous system
is the use of a stacking gel to concentrate dilute protein samples. However, the stacking
phenomena can also cause aggregation of some proteins and interfere with resolution.
If protein aggregation occurs, a continuous buffer system should be used.

Note: The pH attained in the resolving gel of the Ornstein-Davis system approaches pH
9.5, which may be outside the range of stability for some proteins, causing denatura-
tion. Additionally, the pI of the protein of interest may be too close to or above the
Ornstein-Davis buffer pH (9.5), which may result in a very low net charge or a positive
net charge that may significantly reduce or even prohibit migration to the anode.
Alternative discontinuous systems can be found in an article by Chrambach and Jovin.3

Note:  It is very desirable to know the pI of the protein of interest before selecting a
buffer system.

2. Continuous Buffer Systems

A continuous buffer system will be required if discontinuous systems cannot be used
due to stacking-induced protein aggregation. In a continuous system the same buffer is
used in the upper and lower electrode chambers as in the gel. Since stacking does not
occur, proteins migrate in bands at least as wide as the applied sample. Consequently,
sample volumes should be minimized. The mobility of proteins in a continuous system
is dictated by pH rather than by sieving through the polyacrylamide gel. For this reason,
6% polyacrylamide gels are recommended for most applications. For very large proteins,
4% or 5% gels may be used. McLellan describes various continuous buffer systems
from pH 3.8–10.2.4 Detailed protocols are provided in Section 4.3.

Section 4
Reagent Preparation and Stock Solutions

4.1  Volumes Required Per Gel
The volumes listed are required to completely fill a gel cassette. Amounts may be

adjusted depending on the application (with or without comb, with or without stacking gel,
etc.).

13Gel Thickness (mm) Volume (ml)
0.5 2.8 
0.75 4.2
1.0 5.6
1.5 8.4

Note: 10 ml of monomer solution is sufficient for two stacking gels of any thickness.

4.2  SDS-PAGE (Laemmli)1 Buffer System

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4°C in the dark (30 days 
maximum).
or use:
Preweighed acrylamide/bis, 37.5:1 mixture (30%T, 2.67% C)
(Bio-Rad catalog #161-0125, 150 g)
30% acrylamide/bis solution, 37.5:1 mixture (30%T, 2.67% C)
(Bio-Rad catalog #161-0158, 500 ml)
(Bio-Rad catalog #161-0159, 2 x 500 ml)

2. 10% (w/v) SDS
Dissolve 10 g SDS in 90 ml water with gentle stirring and bring to 100 ml with deionized
water. Alternatively, 10% SDS solution (250 ml) can be used (Bio-Rad catalog #161-0416).

3. 1.5 M Tris-HCl, pH 8.8

27.23 g Tris base (18.15 g/100 ml)
80 ml deionized water

Adjust to pH 8.8 with 6 N HCl. Bring total volume to 150 ml with deionized water and
store at 4°C. Alternatively, 1.5 M Tris-HCl, pH 8.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0798).

4. 0.5 M Tris-HCl, pH 6.8

6 g Tris base
60 ml deionized water

Adjust to pH 6.8 with 6 N HCl. Bring total volume to 100 ml with deionized water and
store at 4°C. Alternatively, 0.5 M Tris-HCl, pH 6.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0799).

5. Sample Buffer (SDS Reducing Buffer)

3.55 ml deionized water
1.25 ml 0.5 M Tris-HCl, pH 6.8
2.5 ml glycerol
2.0 ml 10% (w/v) SDS
0.2 ml 0.5% (w/v) Bromophenol Blue
9.5 ml Total volume

Store at room temperature.
Use: Add 50 µl β-mercaptoethanol to 950 µl sample buffer prior to use. Dilute the sample
at least 1:2 with sample buffer and heat at 95°C for 4 minutes.

14



	  
	  

299	  

 

 
 
 
 

Gel Thickness (mm) Volume (ml)
0.5 2.8 
0.75 4.2
1.0 5.6
1.5 8.4

Note: 10 ml of monomer solution is sufficient for two stacking gels of any thickness.

4.2  SDS-PAGE (Laemmli)1 Buffer System

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4°C in the dark (30 days 
maximum).
or use:
Preweighed acrylamide/bis, 37.5:1 mixture (30%T, 2.67% C)
(Bio-Rad catalog #161-0125, 150 g)
30% acrylamide/bis solution, 37.5:1 mixture (30%T, 2.67% C)
(Bio-Rad catalog #161-0158, 500 ml)
(Bio-Rad catalog #161-0159, 2 x 500 ml)

2. 10% (w/v) SDS
Dissolve 10 g SDS in 90 ml water with gentle stirring and bring to 100 ml with deionized
water. Alternatively, 10% SDS solution (250 ml) can be used (Bio-Rad catalog #161-0416).

3. 1.5 M Tris-HCl, pH 8.8

27.23 g Tris base (18.15 g/100 ml)
80 ml deionized water

Adjust to pH 8.8 with 6 N HCl. Bring total volume to 150 ml with deionized water and
store at 4°C. Alternatively, 1.5 M Tris-HCl, pH 8.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0798).

4. 0.5 M Tris-HCl, pH 6.8

6 g Tris base
60 ml deionized water

Adjust to pH 6.8 with 6 N HCl. Bring total volume to 100 ml with deionized water and
store at 4°C. Alternatively, 0.5 M Tris-HCl, pH 6.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0799).

5. Sample Buffer (SDS Reducing Buffer)

3.55 ml deionized water
1.25 ml 0.5 M Tris-HCl, pH 6.8
2.5 ml glycerol
2.0 ml 10% (w/v) SDS
0.2 ml 0.5% (w/v) Bromophenol Blue
9.5 ml Total volume

Store at room temperature.
Use: Add 50 µl β-mercaptoethanol to 950 µl sample buffer prior to use. Dilute the sample
at least 1:2 with sample buffer and heat at 95°C for 4 minutes.

146. 10x Electrode (Running) Buffer, pH 8.3 (makes 1 L)

30.3 g Tris base
144.0 g glycine
10.0 g SDS

Dissolve and bring total volume up to 1,000 ml with deionized water. Do not adjust pH
with acid or base. Store at 4°C. If precipitation occurs, warm to room temperature
before use. Alternatively, electrophoresis running buffer 10x Tris/glycine/SDS, 5 L cube
(Bio-Rad catalog #161-0772) can be used.
Use: Dilute 50 ml of 10x stock with 450 ml deionized water for each electrophoresis run.
Mix thoroughly before use.

7. 10% (w/v) APS (fresh daily)
100 mg ammonium persulfate 
Dissolve in 1 ml of deionized water.

Gel Formulations (10 ml)
1. Prepare the monomer solution by mixing all reagents except the TEMED and 10%

APS. Degas the mixture for 15 minutes.

30% Degassed
DDI H2O Acrylamide/Bis Gel Buffer* 10% w/v SDS

Percent Gel (ml) (ml) (ml) (ml)

4% 6.1 1.3 2.5 0.1

5% 5.7 1.7 2.5  0.1

6% 5.4 2.0 2.5 0.1

7% 5.1 2.3 2.5 0.1

8% 4.7 2.7 2.5 0.1

9% 4.4 3.0 2.5 0.1

10% 4.1 3.3 2.5 0.1

11% 3.7 3.7 2.5 0.1

12% 3.4 4.0 2.5 0.1

13% 3.1 4.3 2.5 0.1

14% 2.7 4.7 2.5 0.1

15% 2.4 5.0 2.5 0.1

16% 2.1 5.3 2.5 0.1

17% 1.7 5.7 2.5 0.1

* Resolving Gel Buffer – 1.5 M Tris-HCl, pH 8.8 

* Stacking Gel Buffer – 0.5 M Tris-HCl, pH 6.8

2. Immediately prior to pouring the gel, add:

For 10 ml monomer solution:
Resolving gel: 50 µl 10% APS and

5 µl TEMED
Stacking gel: 50 µl 10% APS and

10 µl TEMED
Swirl gently to initiate polymerization.

15
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6. 10x Electrode (Running) Buffer, pH 8.3 (makes 1 L)

30.3 g Tris base
144.0 g glycine
10.0 g SDS

Dissolve and bring total volume up to 1,000 ml with deionized water. Do not adjust pH
with acid or base. Store at 4°C. If precipitation occurs, warm to room temperature
before use. Alternatively, electrophoresis running buffer 10x Tris/glycine/SDS, 5 L cube
(Bio-Rad catalog #161-0772) can be used.
Use: Dilute 50 ml of 10x stock with 450 ml deionized water for each electrophoresis run.
Mix thoroughly before use.

7. 10% (w/v) APS (fresh daily)
100 mg ammonium persulfate 
Dissolve in 1 ml of deionized water.

Gel Formulations (10 ml)
1. Prepare the monomer solution by mixing all reagents except the TEMED and 10%

APS. Degas the mixture for 15 minutes.

30% Degassed
DDI H2O Acrylamide/Bis Gel Buffer* 10% w/v SDS

Percent Gel (ml) (ml) (ml) (ml)

4% 6.1 1.3 2.5 0.1

5% 5.7 1.7 2.5  0.1

6% 5.4 2.0 2.5 0.1

7% 5.1 2.3 2.5 0.1

8% 4.7 2.7 2.5 0.1

9% 4.4 3.0 2.5 0.1

10% 4.1 3.3 2.5 0.1

11% 3.7 3.7 2.5 0.1

12% 3.4 4.0 2.5 0.1

13% 3.1 4.3 2.5 0.1

14% 2.7 4.7 2.5 0.1

15% 2.4 5.0 2.5 0.1

16% 2.1 5.3 2.5 0.1

17% 1.7 5.7 2.5 0.1

* Resolving Gel Buffer – 1.5 M Tris-HCl, pH 8.8 

* Stacking Gel Buffer – 0.5 M Tris-HCl, pH 6.8

2. Immediately prior to pouring the gel, add:

For 10 ml monomer solution:
Resolving gel: 50 µl 10% APS and

5 µl TEMED
Stacking gel: 50 µl 10% APS and

10 µl TEMED
Swirl gently to initiate polymerization.

15

Note: Prepare any desired volume of monomer solution by using multiples of the 10 ml
recipe. The volumes of APS and TEMED must be adjusted accordingly.

Warning: The catalyst concentration is very important! Webbing and incomplete well
formulation can result from inaccurate catalyst concentration.

4.3  Discontinuous Native PAGE (Ornstein-Davis)2

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4°C in the dark (30 days 
maximum).
or, use:
Preweighed acrylamide/bis, 37.5:1 mixture
(Bio-Rad catalog #161-0125, 150 g)
30% acrylamide/bis solution, 37.5:1 mixture 
(Bio-Rad catalog #161-0158, 500 ml)
(Bio-Rad catalog #161-0159, 2 x 500 ml)

2. 1.5 M Tris-HCl, pH 8.8

27.23 g Tris base (18.15 g/100 ml)
80 ml deionized water

Adjust to pH 8.8 with 6 N HCl. Bring total volume up to 150 ml with deionized water and
store at 4°C. Alternatively, 1.5 M Tris-HCl, pH 8.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0798).

3. 0.5 M Tris-HCl, pH 6.8

6 g Tris base
60 ml deionized water

Adjust to pH 6.8 with 6 N HCl. Bring total volume up to 100 ml with deionized water and
store at 4°C. Alternatively, 0.5 M Tris-HCl, pH 6.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0799).

4. Sample Buffer

5.55 ml deionized water
1.25 ml 0.5 M Tris-HCl, pH 6.8
3.0 ml glycerol
0.2 ml 0.5% (w/v) Bromophenol Blue
10.0 ml Total volume

Store at room temperature.
Use:  Dilute the sample at least 1:2 with sample buffer and heat at 95°C for 4 minutes.

5. 10x Electrode (Running) Buffer, pH 8.3

30.3 g Tris base (15 g/L)
144.1 g glycine (72 g/L)

Bring total volume up to 1,000 ml with deionized water. Do not adjust pH. Alternatively,
electrophoresis running buffer 10x Tris/Glycine, 1 L (Bio-Rad catalog #161-0734) can
be used.

Usage: Dilute 100 ml of 10x stock with 900 ml deionized water for each electrophoresis
run.

16
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Note: Prepare any desired volume of monomer solution by using multiples of the 10 ml
recipe. The volumes of APS and TEMED must be adjusted accordingly.

Warning: The catalyst concentration is very important! Webbing and incomplete well
formulation can result from inaccurate catalyst concentration.

4.3  Discontinuous Native PAGE (Ornstein-Davis)2

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4°C in the dark (30 days 
maximum).
or, use:
Preweighed acrylamide/bis, 37.5:1 mixture
(Bio-Rad catalog #161-0125, 150 g)
30% acrylamide/bis solution, 37.5:1 mixture 
(Bio-Rad catalog #161-0158, 500 ml)
(Bio-Rad catalog #161-0159, 2 x 500 ml)

2. 1.5 M Tris-HCl, pH 8.8

27.23 g Tris base (18.15 g/100 ml)
80 ml deionized water

Adjust to pH 8.8 with 6 N HCl. Bring total volume up to 150 ml with deionized water and
store at 4°C. Alternatively, 1.5 M Tris-HCl, pH 8.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0798).

3. 0.5 M Tris-HCl, pH 6.8

6 g Tris base
60 ml deionized water

Adjust to pH 6.8 with 6 N HCl. Bring total volume up to 100 ml with deionized water and
store at 4°C. Alternatively, 0.5 M Tris-HCl, pH 6.8 (1 L) premixed buffer can be used
(Bio-Rad catalog #161-0799).

4. Sample Buffer

5.55 ml deionized water
1.25 ml 0.5 M Tris-HCl, pH 6.8
3.0 ml glycerol
0.2 ml 0.5% (w/v) Bromophenol Blue
10.0 ml Total volume

Store at room temperature.
Use:  Dilute the sample at least 1:2 with sample buffer and heat at 95°C for 4 minutes.

5. 10x Electrode (Running) Buffer, pH 8.3

30.3 g Tris base (15 g/L)
144.1 g glycine (72 g/L)

Bring total volume up to 1,000 ml with deionized water. Do not adjust pH. Alternatively,
electrophoresis running buffer 10x Tris/Glycine, 1 L (Bio-Rad catalog #161-0734) can
be used.

Usage: Dilute 100 ml of 10x stock with 900 ml deionized water for each electrophoresis
run.

16Gel Formulations (10 ml)

1. Prepare the monomer solution by mixing all reagents except the TEMED and 10%
APS. Degas the mixture for 15 minutes.

30% Degassed
Percent DDI H2O Acrylamide/Bis Gel Buffer*
Gel (ml) (ml) (ml)

4% 6.2 1.3 2.5

5% 5.8 1.7 2.5

6% 5.5 2.0 2.5

7% 5.2 2.3 2.5

8% 4.8 2.7 2.5

9% 4.5 3.0 2.5

10% 4.2 3.3 2.5

* Resolving Gel Buffer – 1.5 M Tris-HCl, pH 8.8 

* Stacking Gel Buffer – 0.5 M Tris-HCl, pH 6.8

2. Immediately prior to pouring the gel, add:

50 ml APS and 
TEMED (5 µl for resolving gels; 10 µl TEMED for stacking gels) 
Swirl gently to initiate polymerization. 
Note: Prepare any desired volume of monomer solution by using multiples of the 10 ml
recipe. The volumes of APS and TEMED must be adjusted accordingly.

4.4  Continuous Native PAGE

Stock Solutions and Buffers

1. Acrylamide/Bis (30% T, 2.67% C)

87.6 g acrylamide (29.2 g/100 ml)
2.4 g N'N'-bis-methylene-acrylamide (0.8 g/100 ml)

Make to 300 ml with deionized water. Filter and store at 4°C in the dark (30 days 
maximum.)
or use:
Preweighed acrylamide/bis, 37.5:1 mixture
(Bio-Rad catalog #161-0125, 150 g)
30% acrylamide/bis solution, 37.5:1 mixture 
(Bio-Rad catalog #161-0158, 500 ml)
(Bio-Rad catalog #161-0159, 2 x 500 ml)

2. Sample Buffer

1.0 ml electrophoresis Buffer
3.0 ml glycerol
0.2 ml 0.5% Bromophenol Blue
5.8 ml Deionized water
10.0 ml Total volume

3. Continuous Buffers (McLellan)4

17
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 Aβ(1-42) / DMSO Aβ(1-42) / 
HEPES Aβ(1-42) / F12 Aβ(1-40) / 

HEPES 
6h >0.05 >0.05 >0.05 >0.05 

24h <0.0001 >0.05 <0.05 >0.05 
48h <0.0001 >0.05 <0.0001 >0.05 
72h <0.0001 >0.05 <0.0001 >0.05 
96h <0.0001 >0.05 <0.01 >0.05 

 
Appendix 2 Two-way ANOVA followed by Bonferroni post-test (Graphpad Prism). 
Aggregation of 20µM Aβ(1-42) and Aβ(1-40) preparations using ThT fluorescence. 
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 Aβ(1-42) / DMSO Aβ(1-42) / 
HEPES Aβ(1-42) / F12 Aβ(1-40) / 

HEPES 
6h <0.001 >0.05 <0.0001 >0.05 

24h <0.0001 >0.05 <0.0001 <0.01 
48h <0.0001 >0.05 <0.0001 >0.05 
72h <0.0001 <0.001 <0.0001 >0.05 
96h <0.0001 <0.05 <0.001 >0.05 

 
Appendix 3 Two-way ANOVA followed by Bonferroni post-test (Graphpad Prism). 
Aggregation of 2µM Aβ(1-42) and Aβ(1-40) preparations using ThT fluorescence. 
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 Aβ(1-42) / DMSO Aβ(1-42) / 
HEPES Aβ(1-42) / F12 Aβ(1-40) / 

HEPES 
6h >0.05 >0.05 >0.05 >0.05 

24h >0.05 >0.05 >0.05 >0.05 
48h >0.05 >0.05 >0.05 >0.05 
72h <0.05 >0.05 >0.05 >0.05 
96h >0.05 >0.05 <0.05 >0.05 

 
Appendix 4 Two-way ANOVA followed by Bonferroni post-test (Graphpad Prism). 
Aggregation of 0.2µM Aβ(1-42) and Aβ(1-40) preparations using ThT fluorescence. 
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Appendix 5 NAD+ and NADH inside control NT2.N/A cultures.  
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Appendix 6 NAD+ and NADH levels inside the cells following treatment of 
NT2.N/A with 2µM Aβ. 
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Appendix 7. CellTiter-Glo® Luminescent Cell Viability Assay (ATP) 
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Appendix 8. Gene table for Human Alzheimer’s Disease RT² Profiler™ PCR 
Array 
 

Symbol Well 

Fold Difference T-TEST 
Fold Up- or 

Down-
Regulation 

Test Sample 
/Control Sample p value 

Test Sample 
/Control 
Sample 

A2M A01 2.29 0.0319 2.29 
ABCA1 A02 0.75 0.4299 -1.34 
ACHE A03 0.87 0.6613 -1.15 
ADAM9 A04 1.75 0.0123 1.75 
APBA1 A05 1.18 0.6563 1.18 
APBA3 A06 0.82 0.4701 -1.22 
APBB1 A07 1.00 0.9942 -1.00 
APBB2 A08 3.50 0.0306 3.50 
APH1A A09 1.22 0.2494 1.22 
APLP1 A10 1.33 0.7060 1.33 
APLP2 A11 1.53 0.4551 1.53 
APOA1 A12 0.45 0.4840 -2.22 
APOE B01 0.89 0.8389 -1.13 
APP B02 1.27 0.5442 1.27 
NAE1 B03 1.18 0.5426 1.18 
BACE1 B04 2.32 0.0318 2.32 
BACE2 B05 1.10 0.7037 1.10 
BCHE B06 0.30 0.0487 -3.29 
BDNF B07 1.34 0.6582 1.34 
CASP3 B08 0.99 0.9686 -1.01 
CASP4 B09 4.76 0.0222 4.76 
CDC2 B10 0.51 0.2628 -1.98 
CDK5 B11 1.70 0.1146 1.70 
CDKL1 B12 1.80 0.4642 1.80 
CHAT C01 1.11 0.8317 1.11 
CLU C02 0.87 0.6690 -1.15 
CTSB C03 1.15 0.3800 1.15 
CTSC C04 1.01 0.9690 1.01 
CTSD C05 0.65 0.2725 -1.54 
CTSG C06 0.44 0.4181 -2.26 
CTSL1 C07 1.40 0.7344 1.40 
EP300 C08 1.77 0.3431 1.77 
ERN1 C09 0.45 0.2607 -2.20 
GAP43 C10 10.13 0.0433 10.13 
GNAO1 C11 1.86 0.1740 1.86 
GNAZ C12 1.66 0.0180 1.66 
GNB1 D01 1.10 0.7504 1.10 
GNB2 D02 1.07 0.8499 1.07 
GNB4 D03 1.18 0.4869 1.18 
GNB5 D04 1.00 0.9925 -1.00 
GNG10 D05 1.02 0.9263 1.02 
GNG11 D06 0.79 0.6561 -1.27 
GNG3 D07 1.57 0.1256 1.57 
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GNG4 D08 1.76 0.2165 1.76 
GNG5 D09 1.06 0.6924 1.06 
GNG7 D10 0.68 0.0893 -1.48 
GNG8 D11 2.27 0.0184 2.27 
GNGT1 D12 1.02 0.9623 1.02 
GNGT2 E01 0.42 0.2975 -2.39 
GSK3A E02 0.79 0.5520 -1.27 
GSK3B E03 3.41 0.0458 3.41 
HSD17B10 E04 1.01 0.9243 1.01 
IDE E05 3.23 0.0038 3.23 
IL1A E06 0.92 0.8771 -1.09 
INS E07 1.12 0.9042 1.12 
INSR E08 1.56 0.2286 1.56 
LPL E09 3.54 0.0454 3.54 
LRP1 E10 0.90 0.7607 -1.11 
LRP6 E11 1.65 0.1952 1.65 
LRP8 E12 1.02 0.9547 1.02 
MAP2 F01 1.73 0.1401 1.73 
MAPT F02 1.67 0.1709 1.67 
MPO F03 0.42 0.3312 -2.36 
NCSTN F04 1.11 0.8218 1.11 
PKP4 F05 0.86 0.5506 -1.16 
PLAT F06 1.44 0.2120 1.44 
PLAU F07 1.00 0.9993 1.00 
PLG F08 0.33 0.1175 -3.02 
PRKCA F09 1.00 0.9987 1.00 
PRKCB F10 1.00 0.9940 1.00 
PRKCD F11 0.63 0.2562 -1.59 
PRKCE F12 2.12 0.0897 2.12 
PRKCG G01 0.84 0.7726 -1.20 
PRKCI G02 1.61 0.0949 1.61 
PRKCQ G03 0.99 0.9796 -1.01 
PRKCZ G04 1.03 0.8931 1.03 
PSEN1 G05 1.17 0.6064 1.17 
PSEN2 G06 0.77 0.3168 -1.30 
SERPINA3 G07 1.52 0.5953 1.52 
SNCA G08 2.13 0.0165 2.13 
SNCB G09 0.86 0.7436 -1.17 
UBQLN1 G10 1.15 0.6545 1.15 
UQCRC1 G11 0.71 0.0768 -1.41 
UQCRC2 G12 0.88 0.3827 -1.14 
B2M H01 1.00 0.9789 -1.00 
HPRT1 H02 0.65 0.0241 -1.53 
RPL13A H03 1.09 0.6664 1.09 
GAPDH H04 0.88 0.2542 -1.14 
ACTB H05 1.60 0.0174 1.60 
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Appendix 9 Gene expression in NT2.N/A cultures following treatment with 20µM 
Aβ(1-42) for A) 48h, B) 72h, C) 96h. Results are expressed as the average fold 
change ± SEM (n=3) and considered significant above 2-fold change. 
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Appendix 10 Gene expression in NT2.N/A cultures following treatment with 2µM 
Aβ(1-42) for A) 48h, B) 72h, C) 96h. Results are expressed as the average fold 
change ± SEM (n=3) and considered significant above 2-fold change. 
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Appendix 11 Gene expression in NT2.N/A cultures following treatment with 0.2µM 
Aβ(1-42) for A) 48h, B) 72h, C) 96h. Results are expressed as the average fold 
change ± SEM (n=3) and considered significant above 2-fold change. 
 

	  


