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Summary 

 

The standard reference clinical score quantifying average Parkinson’s disease (PD) symptom 

severity is the Unified Parkinson’s Disease Rating Scale (UPDRS). At present, UPDRS is 

determined by the subjective clinical evaluation of the patient’s ability to adequately cope 

with a range of tasks. In this study, we extend recent findings that UPDRS can be objectively 

assessed to clinically useful accuracy using simple, self-administered speech tests, without 

requiring the patient’s physical presence in the clinic. We apply a wide range of known 

speech signal processing algorithms to a large database (~6,000 recordings from 42 PD 

patients, recruited to a six-month, multi-centre trial) and propose a number of novel, 

nonlinear signal processing algorithms which reveal pathological characteristics in PD more 

accurately than existing approaches. Robust feature selection algorithms select the optimal 

subset of these algorithms, which is fed into non-parametric regression and classification 

algorithms, mapping the signal processing algorithm outputs to UPDRS. We demonstrate 

rapid, accurate replication of the UPDRS assessment with clinically useful accuracy (about 2 

UPDRS points difference from the clinicians’ estimates, � � 0.001). This study supports the 

viability of frequent, remote, cost-effective, objective, accurate UPDRS telemonitoring based 

on self-administered speech tests. This technology could facilitate large-scale clinical trials 

into novel PD treatments. 
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1. Introduction 

 

Parkinson’s disease (PD) is a common neurodegenerative disorder with prevalence rates 

exceeding 100/100,000 (von Campenhausen et al. 2005). Furthermore, it is possible that 

these statistics underestimate the problem, since an additional 20% of people with 

Parkinson’s (PWP) are not diagnosed (Schrag et al. 2002). Given that age is the single most 

important risk factor for PD onset, particularly after age 50 (Elbaz et al. 2002), and the fact 

that the population is growing older, these figures could rise further in the near future.  

PD is believed to be due to substantial dopaminergic neuron reduction in a brain region 

known as the basal ganglia, and its aetiology is unknown (hence it is often referred to as 

idiopathic PD). Parkinsonism exhibits similar PD-like symptoms, but these can be attributed 

to known causes, such as drugs or exposure to neurotoxins. The constellation of PD 

symptoms includes tremor, rigidity and general movement disorders, as well as cognitive 

impairment (Pahwa and Lyons 2007). Speech disorders are amongst the earliest indicators of 

PD onset (Harel et al. 2004), and are reported in about 90% of PWP (Ho et al. 1998); 

moreover 29% of the patients themselves regard speech impairment as one of their most 

troublesome symptoms (Hartelius and Svensson 1994). In addition, there is ample empirical 

evidence for speech degradation as the disease progresses (Harel et al. 2004; Holmes et al. 

2000; Skodda et al. 2009), typically attributed to reduced voice amplitude (hypophonia), and 

increased breathiness (noise) in the PWP’s voice (Ho et al. 1998; Pahwa and Lyons 2007). 

At present, there is no cure for PD, although medication and surgical intervention may 

alleviate some of the symptoms and improve quality of life for most (Singh et al. 2007). 

However, early diagnosis and frequent disease tracking are critical to maximizing the effect 

of treatment (Tolosa et al. 2009; Pahwa and Lyons 2007). PD symptom tracking is currently 

achieved via regular physical visits by the PWP to the clinic, and the subjective assessment of 

the subject’s ability to perform a range of empirical tests as observed by expert clinical raters. 

Nevertheless, despite the clinicians’ experience and the available guidelines, PD symptom 

assessment often varies between experts (inter-rater variability) (Ramaker et al. 2002; Post et 

al. 2005) accentuating the need for an objective clinical tool to track average PD symptom 

progression. 

As part of the clinical assessment, the PWP’s ability to complete the requested empirical 

tasks is mapped to a rating scale specifically designed to follow disease progression. Of the 

various rating scales for monitoring PD progression, the Unified Parkinson’s Disease Rating 
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Scale (UPDRS) is the most widely used for quantifying symptom severity (Ramaker et al. 

2002). For untreated patients the UPDRS comprises a total of 44 sections where each section 

spans the numerical range 0-4 (0 denotes healthy and 4 denotes severe symptoms), and the 

final UPDRS is the summation of all sections (numerical range 0-176, with 0 representing 

perfectly healthy individual and 176 total disability). The UPDRS consists of three 

components: (1) Mentation, behavior and mood (4 sections); (2) Activities of daily living (13 

sections), assessing whether PWP can complete daily tasks unassisted; and (3) Motor (27 

sections), addressing muscular control. We refer to all three components collectively as total 

UPDRS. The third component commonly referred to as motor UPDRS, includes the sections 

18-44 and ranges from 0-108, with 0 indicating no motor symptoms (such as tremor, rigidity, 

posture, stability, bradykinesia) and 108 denoting total lack of motor control. Speech appears 

explicitly in two sections: once in section 5 (understandable speech – part of the second 

UPDRS component) and once in section 18 (expressive speech – part of the third UPDRS 

component), and ranges between 0-8 with 8 being unintelligible. The medical rater assesses 

the subject’s speech performance (quantifying how understandable and expressive speech is) 

during casual discussion. Figure 1 presents succinctly the details of the UPDRS metric. 

Telemonitoring-based health care is an emerging field combining medical care and 

Internet-enabled technology. On the one hand, it facilitates fast, frequent, remote tracking of 

disease progression, minimizing the need for regular and inconvenient visits to the clinic. On 

the other hand, it significantly alleviates the burden on national health systems of excessive 

workload and the large, associated costs of clinical human expertise. Recently, Intel 

Corporation’s novel telemonitoring system, known as the At-Home Testing Device (AHTD), 

was developed (Goetz et al. 2009). This device facilitates remote, non-invasive self-

administered tests, which are specifically designed to track PD progression and include 

manual dexterity and speech tests. The speech tests consist of running speech and sustained 

vowel phonations; in this study we concentrate on the latter. The use of sustained vowels, 

where the subject is requested to hold the frequency of phonation steady for as long as 

possible, builds on empirical evidence that healthy subjects can elicit steady phonation, 

whereas subjects with some form of vocal impairment cannot (Titze 2000). The use of 

sustained vowels to assess the extent of vocal symptoms avoids some of the known 

confounding effects of articulatory movement in running speech (Schoentgen and De 

Gucteneere 1995), and is therefore common in general speech clinical practice (Titze 2000). 

Previous studies used speech signals aiming to separate PWP from healthy controls (Harel 

et al. 2004; Little et al. 2009), and in the past year some authors highlighted the importance 
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of exploring the topic of mapping speech signals to UPDRS (Skodda et al. 2009; Goetz et al. 

2009) in future studies. Motivated by these studies, we have recently used a number of well 

known speech signal processing algorithms which are traditionally used by clinical speech 

scientists to characterize dysphonias (malfunctions in voice production) and demonstrated the 

feasibility of using statistical machine learning techniques to map the results of these 

algorithms (features) to motor-UPDRS and total-UPDRS (Tsanas et al. 2010a; Tsanas et al. 

2010b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the clinical metric that quantifies average Parkinson’s disease symptom 

severity, the Unified Parkinson’s Disease Rating Scale (UPDRS). Speech appears explicitly twice. 

 

In this study, we expand our analysis to introduce and investigate a range of speech signal 

processing algorithms which have not previously been used to characterize PD voices. 

Moreover, we present some novel nonlinear speech signal processing measures, which 

uncover many useful properties and characteristic patterns of PD dysphonia, that to-date, 
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remained concealed due to limitations of existing speech signal processing algorithms. In 

addition, we show that splitting the data into male and female data subsets (data partitioning) 

reveals distinct speech PD progression characteristics in males and females and this 

tentatively suggests different pathological patterns in these two groups. We demonstrate that 

we can replicate the clinicians’ UPDRS estimates to within 2 points, that is, with greater 

accuracy than the inter-rater variability (4-5 UPDRS points) (Post et al. 2005). These new 

findings significantly improve on previous studies which introduced the concept of using 

speech signals to replicate the clinicians’ UPDRS assessment, where the reported UPDRS 

accuracy was within 7.5 points. 

This proposed objective machine learning framework using speech signals offers a 

promising approach to automating subjective UPDRS tracking, which would otherwise 

require the dedicated time of a clinical rater. This innovative approach is less cumbersome for 

patients since it reduces the need for frequent physical visits to the clinic. It is therefore also 

cost-effective for national health systems, and replicates the clinicians’ estimates very 

accurately. We envisage this method being used to regularly and remotely track PD symptom 

progression by UPDRS, and facilitating large scale clinical trials into novel PD treatments. 

Lastly, the proposed signal processing features could be useful in affiliated research fields 

that use acoustic analysis of speech signals to assess various voice production pathologies. 

 

  

2. Data 

 

We use data collected in the study of Goetz et al. (2009), recently summarized in Tsanas et al. 

(2010a). In short, 52 subjects diagnosed with idiopathic PD within the previous five years at 

the time of a baseline clinical visit, were recruited into a trial of the AHTD. All subjects gave 

written informed consent, remained un-medicated for the six-month duration of the study and 

were asked to complete a range of tests weekly. Subjects were diagnosed with PD if they had 

at least two of the following symptoms: rest tremor, bradykinesia (slow movement), or 

rigidity, without evidence of other forms of Parkinsonism. No exclusion criteria related to 

specific PD symptoms (e.g. depression) were used. We disregarded data from 10 recruits – 

two that dropped out the study early, and a further eight that did not complete at least 20 valid 

study sessions during the trial period. Thus, this study concentrates on 42 PWP, and their 

details are summarized in Table 1. 
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Table 1: Summary of the AHTD data for the recruited male and female subjects. 

 MALES (28 subjects) FEMALES (14 subjects) 

Age 

(years) 

Mean ± standard deviation: 64.8 ± 

8.1, min. 49, max. 78, median 65 

Mean ± standard deviation: 63.6 ± 

11.6, min. 36, max. 85, median 64 

Weeks since PD 

diagnosis 

Mean ± standard deviation: 63.0 ± 

61.9, min. 1, max. 260, median 48  

Mean ± standard deviation: 89.7 ± 

81.2, min. 4, max. 252, median 60 

Motor-UPDRS 

(baseline, 

3-months, 

6-months) 

Mean ± standard deviation: (20.3 ± 

8.5, 21.9 ± 8.7, 22.0 ± 9.2), min. (6, 

6, 5), max. (36, 38, 41), median (21, 

22, 20)  

Mean ± standard deviation: (17.6 ± 

7.4, 21.2 ± 10.5, 20.1 ± 9.4), min. 

(6, 6, 8), max. (32, 38, 38), median 

(18, 18.5, 19.5) 

Total-UPDRS 

(baseline, 

3-months, 

6-months) 

Mean ± standard deviation: (27.5 ± 

11.6, 30.4 ± 11.8, 31.0 ± 12.4), min. 

(8, 7, 7), max. (54, 55, 54), median 

(27, 28.5, 26.5) 

Mean ± standard deviation: (24.2 ± 

9.1, 27.4 ± 12.1, 26.8 ± 10.8), min. 

(10, 7, 10), max. (42, 46, 49), 

median (25, 28, 24.5) 

 

 

Table 2: Specifications of the At-Home Testing Device (AHTD) speech data collection interface. 

AHTD instructions 
Audible prompts prior to each test; visual prompts on the liquid 

crystal display, additional detailed help (text) available if needed 

Microphone 

High quality head-mounted, placed 5 cm from the subject’s lips, 

Polarity: cardioid, typical dynamic range: 96 dB, 1 kHz at 

maximum sound pressure level, signal to noise ratio 58 dB, 1 kHz 

at 1 Pa, Frequency response: 100-13,000 Hz, Low frequency roll-

off: 80 Hz, 18 dB/octave 

Analogue-to-digital 

conversion 
24 kHz at 16 bits resolution 

Storage Data recorded directly onto the AHTD USB data stick 

Recording conditions Subjects are required to be in a quiet place at home 

Transmission Data encrypted, transmitted over the internet to dedicated server 
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Figure 2 Schematic diagram of the steps from the data acquisition up to UPDRS estimation. The 

device that collects the data from the Parkinson’s disease (PD) patient is known as the At-Home-

Testing-Device (AHTD). The red box (steps 6-8) is the focus of this study. 

 

A schematic diagram of the speech data acquisition process using the AHTD and the 

UPDRS estimation is presented in figure 2, and specifications of equipment are summarized 

in Table 2. The subjects in the study successfully completed a period of training in usage of 

the AHTD and used the device at their homes to self-collect the data. On each day the test 

was performed, the AHTD recorded six phonations: four at comfortable pitch and loudness 

and two at twice the initial loudness (but without shouting). The AHTD uses audible and 

visual prompts instructing the user to undertake specific tasks, including how to wear the 

head-mounted headset and the use of twice the initial loudness in the two final phonations. 

Although this latter aspect was not explicitly quantified, it has been empirically found that 
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paying conscious attention to speech articulation results in vocal performance improvement 

(Ho et al. 1999). Further details of the AHTD trial can be found in Goetz et al. (2009). 

After initial screening to remove flawed phonations (too short, patient coughing, failure to 

capture phonation onset), we processed 5,875 sustained vowel “ahh…” signals. All signal 

processing and machine learning algorithms were implemented in the Matlab software 

package. 

 

3. Methods 

 

The methodology of this study can be succinctly described in three steps: 1) extracting 

features characterizing the underlying patterns of the speech signals using signal processing 

algorithms (feature extraction), 2) selecting a parsimonious subset of these features 

comprising relevant and minimally overlapping information with regard to UPDRS 

prediction (feature selection), and 3) mapping the feature subset to UPDRS using 

classification and regression methods (statistical mapping) in a standard supervised learning 

setup. Ultimately, we want to use the speech signals to replicate the clinicians’ UPDRS 

assessment. In doing this, we tacitly assume that voice degradation is attributed solely to PD. 

It is conceivable that vocal performance could have been affected by confounding factors (for 

example emotional state) or pathological conditions (for example a disorder of voice 

production not related to PD). However, it is highly unlikely that these confounding factors 

affect more than a small minority of the AHTD subjects, thus contaminating only a few of the 

available recordings. Another source of error might be equipment tolerance. However, the 

speech data acquisition equipment is more than sufficient for the requirements of reliable 

speech signal processing (for details of the minimum requirements see (Titze 2000)), and 

thorough tests before the AHTD trial data acquisition process verified that the high-quality 

equipment used in the device lead to accurate recordings. 

 

3.1 Feature extraction 

 

The duration between two successive openings (or closures) of the vocal folds defines a 

vocal fold cycle (or simply cycle), where the vocal fold oscillation pattern (vocal fold 

opening and closure) is typically considered nearly periodic in healthy voices. That is, the 

intervals of time where the vocal folds are apart or in collision remain almost equal between 
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successive cycles. Speech scientists typically refer to those oscillation intervals as pitch 

period or fundamental frequency �� (reciprocal of pitch period – see figure 3). Whereas in 

healthy voices the vocal folds collide and remain together for a fixed portion of the cycle, in 

voice pathologies this pattern may be severely affected. In addition, a common manifestation 

of vocal impairment is incomplete vocal fold closure, resulting in excessive breathiness 

(noise). This imbalanced vocal fold movement also results in turbulent noise and the 

appearance of vortices in the airflow from the lungs, increasing the energy at higher energy 

components (Godino-Llorente et al. 2006). In general, people with voice disorders cannot 

elicit steady phonations (Titze 2000), and speech signal processing algorithms attempt to 

quantify this inefficiency at converting steady airflow from the lungs into stable voice. 

 

 

Fig. 3 (a) Typical sustained vowel phonation signal. (b) The same signal magnified in the time axis. 

The horizontal axes are time in seconds and the vertical axes amplitude (no units). Clear overall 

amplitude decay over the duration of the phonation can be seen in panel (a). A careful look at the 

magnified signal (b) reveals that it is not exactly periodic, a characteristic that many dysphonia 

measures aim to address. 
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The aim is to analyse the digitized acoustic signal using signal processing algorithms that 

take into account the pathophysiological implications outlined above, so that useful clinical 

information can be extracted. These algorithms are collectively known as dysphonia 

measures in the speech literature. Each of those measures is applied to each of the 5,875 

recordings used in the study, resulting in a scalar value or a vector with a few entries per 

recording. Many algorithms work on time windows (small portions of the original speech 

signal). The output of those algorithms is then typically the average or some form of 

normalized average of the computed values on each of the time windows.  

Previously, we had used the freely available Praat software package (Boersma and 

Weenink 2009) to extract 13 commonly-used measures (Tsanas et al. 2010a; Tsanas et al. 

2010b) and three new measures we had proposed recently (Little et al. 2007; Little et al. 

2009). In this study, all algorithms were implemented in Matlab using the equations described 

in the Electronic Supplementary Material (Section 1). In addition to the classical dysphonia 

measures, we introduce a range of novel nonlinear measures which we demonstrate convey 

important additional information useful in replicating the clinicians’ UPDRS estimates. The 

outputs of the signal processing algorithms are concatenated into a feature vector which 

characterizes each of the 5,875 phonations. 

 

3.2 Data exploration and statistical analysis 

 

The UPDRS values of this study were obtained at baseline, three-month and six-month times 

in the trial, but the voice recordings were obtained weekly; therefore we need to obtain 

weekly UPDRS values to associate with each phonation. There is strong empirical evidence 

that average PD symptom progression in the early stages of the disease (up to about five 

years) is almost linear in non-medicated patients as observed in clinical metrics (Schüpbach 

et al. 2010; Maetzler et al. 2009). Therefore, given that the AHTD study recruits were in the 

early PD stages and remained non-medicated, a straightforward piecewise linear interpolation 

going exactly through the measured baseline, three-month and six-month motor-UPDRS and 

total-UPDRS scores is the most parsimonious and sensible approach to derive weekly values 

(Tsanas et al. 2010a; Tsanas et al. 2010b). The tacit assumption is that symptom severity did 

not fluctuate wildly within the three-month intervals in between which the UPDRS scores 

were obtained.  

Correlation coefficients are the first quantities we explored in attempting to assess the 
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strength of association of the dysphonia measures with the linearly interpolated UPDRS 

values. The data was non-normal, so we used the non-parametric Spearman correlation 

coefficient. We also computed p-values (at the 95% level) of the null hypothesis against each 

dysphonia measure being uncorrelated with motor-UPDRS and total-UPDRS. In addition, we 

calculated the Spearman correlation coefficients between different dysphonia measures to 

assess the extent to which they contain overlapping information. We have also used the 

mutual information (MI) 	
�, 
�, where �, 
 are random variables (Cover and Thomas 2006), 

as a more inclusive, robust estimator of the association strength between the measures and 

UPDRS. The mutual information is non-negative, and is not upper bounded; therefore for 

ease of comparison we normalized 	
�, 
� by dividing it through with 	

, 
�: hence, the 

reported mutual information in this study lies in the range zero (no dependence between �, 
) 

to one (� determines 
 completely). Both the correlation coefficients and the mutual 

information are used to express the association strength (relevance) of each measure with 

UPDRS. 

 

3.3 Feature selection 

 

A ubiquitous problem in data analysis is the curse of dimensionality: the presence of a large 

number of features occludes the elucidation of useful patterns underlying the data, and is 

often detrimental in the subsequent learning process (see Section 3.4). This occurs because 

the required samples to adequately populate the feature space grow exponentially with the 

number of features, and typically is considerably more than the available data. Following the 

general principle of parsimony, which simply means that given several models with equal 

predictive power, we should prefer the model that uses the least number of features, it is 

desirable to reduce the number of features (hence produce a sparse model) in the analysis and 

still obtain an accurate estimate of the UPDRS. Selecting a subset of features may or may not 

improve the model’s prediction accuracy; however it always enhances the model’s 

interpretability. This is because we can infer the predominant characteristics of the dataset 

from the properties (latent factors) that the selected features represent, and a small number of 

features promote understanding of the causal relationship between those properties and 

UPDRS. 

Searching through all possible combinations of features is unfeasible because it is 

computationally intractable in principle, giving rise to the need for computationally efficient 



13 

 

feature selection algorithms. We have used two generic, powerful feature selection methods: 

the least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), and a 

popular LASSO extension, the elastic net (Zou and Hastie 2005). Details of these algorithms 

and their promising sparsity-promoting properties can be found in (Tibshirani 1996; Zou and 

Hastie 2005; Hastie et al. 2009). For both algorithms we computed the entire regularization 

solution paths (Hastie et al. 2009). 

 

3.4 Regression and classification: mapping dysphonia measures to UPDRS 

 

The analysis in Section 3.2 provides preliminary indication of the association strength of each 

measure with UPDRS. However, the ultimate aim of this study is to combine the dysphonia 

measures to predict motor-UPDRS and total-UPDRS so that the absolute difference between 

the estimated and the linearly interpolated UPDRS is minimized. That is, we need to form a 

functional relationship �
�� � � which maps the dysphonia measures � � 
�1… �M�, where 

M is the number of input variables, to the UPDRS output y. This is the classical supervised 

learning setup, which for the problem in question can be tackled using either regression or 

classification mapping techniques. Following the linear interpolation described earlier, the 

UPDRS spans the range of positive real values, i.e. � � ��, which is what we use as the 

mapped quantity (also known as outcome measurement or response variable) in the 

regression scheme. For the classification schemes we used the rounded � scores and treat 

each integer UPDRS value as a different class. 

Previous studies have shown the limitations of classical linear regression methods in this 

application (Tsanas et al. 2010a; Tsanas et al. 2010b), indicating that nonlinear methods may 

be more appropriate. In particular, we have experimented with Classification and Regression 

Trees (CART), and Random Forests (RF). Both CART and RF were tested working in both 

regression and classification modes.  

CART was the method of choice in Tsanas et al. (2010a) because it has been described as 

the best off-the-shelf mapping algorithm in supervised learning contexts (Hastie et al. 2009). 

It partitions the feature space into hyper-rectangles, assigning a value to each of the hyper-

rectangles that is as close as possible in value to the response variable in that region of the 

feature space (typically the mean or the median of the response values in that hyper-

rectangle). This can be viewed as a tree growing process, where each partition splits in two 

branches. To avoid overfitting, i.e. capturing noisy fluctuations in the data at the expense of 
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the underlying structure of the mapping, an internal pruning level parameter is used to 

remove excessive detail in the partitioning of the feature space. The optimal pruning level 

value is typically determined by cross-validation. For further details on the advantages of the 

method and its mathematical foundations, we refer to Hastie et al. (2009). 

A natural extension of CART is random forests (RF), a method comprising of many de-

correlated trees, and can be thought of as ensemble learning, that is, integrating the ‘opinion’ 

of many weaker individual learners (Breiman 2001). The procedure is essentially the same as 

CART regarding the training of the trees (hyper-rectangle feature space partition described 

above); the only difference is that a random subset of the input features is chosen for each 

tree. The tree-growing process is the same as in CART, and there is no pruning; the prediction 

result of the RF learner is an average of the prediction from each tree. Breiman convincingly 

demonstrated that random forests are effective in various prediction tasks, whilst they do not 

overfit as more trees are added to the RF (Breiman 2001). For more information on RF we 

refer the reader to Hastie et al. (2009). 

It is possible that partitioning the data may provide improved classification and regression 

accuracy in statistical machine learning applications. We partitioned the PWP according to 

gender, to investigate whether PD progression can be captured more accurately. That is, 

instead of building a 5,875×M  matrix of feature vectors with all the data (design matrix), we 

used a design matrix of size 4,010×M for male and 1,865×M for female PWP. These design 

matrices contained no invalid or missing entries. Prior to feature selection, we have 132 

dysphonia measures (i.e. initially, M = 132). 

 

3.5 Cross validation and model generalization 

 

We used 10-fold cross-validation to test the generalization performance of the learners used 

in this study. This represents our best estimate of UPDRS estimation performance on what 

we might expect on a new dataset, assuming the new dataset has similar characteristics to the 

AHTD data. Specifically, the initial dataset consisting of N (4,010 for males and 1,865 for 

females) phonations was split into a training subset of 0.9 · � (3,609 and 1,679) phonations 

and a testing (out of sample) subset of 0.1 · � (401 and 186) phonations. We repeated the 

process a total of 100 times, randomly permuting the data before splitting into training and 

testing subsets. Similar to our previous work (Tsanas et al. 2010a; Tsanas et al. 2010b), we 
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compared model performance on the basis of mean absolute error (MAE) for each of the 100 

runs for the training and testing subsets: 

 ��� � 1
� � |�!" # �"|"$%

 (1) 

where �!"  is the predicted UPDRS and �"  is the actual UPDRS for the i
th

 entry in the training 

or testing subset, N is the number of phonations in the training or testing subset, and Q 

contains the indices of that set. Errors over the 100 cross-validation realisations were 

averaged. 

 

 

4. Results 

 

4.1  Data exploration 

 

We began the exploration of the data by computing the relevance of speech features to 

UPDRS. Speech appears explicitly in two sections of the UPDRS, which can be combined to 

form the ‘speech-UPDRS’ quantity. Then, the relationships between speech-UPDRS and 

motor-UPDRS are (p < 0.001), Spearman R = 0.464, MI = 0.153 for males, and (p < 0.05), 

Spearman R = 0.323, MI = 0.199 for females. Similarly, the relationships between speech-

UPDRS and total-UPDRS are (p < 0.001), Spearman R = 0.552, MI = 0.22 for males, and (p 

< 0.05), Spearman R = 0.323, MI = 0.168 for females. These preliminary statistical results 

offer good indication that speech and UPDRS are actually linked. Table 3 summarizes the 

dysphonia measures with the largest relevance to UPDRS for male PWP; similarly Table 4 

for female PWP. All measures were significantly correlated (p < 0.001) with linearly 

interpolated motor-UPDRS and total-UPDRS, and some of these measures are quite strongly 

associated with UPDRS, particularly for the female PWP. In addition, figure 4 presents 

scatter plots of the most highly correlated dysphonia measures against UPDRS, giving a 

visual impression of the distribution of the dysphonia signal processing values and their 

relationship to UPDRS. 
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Fig. 4. Scatter plots of the most relevant dysphonia measures against motor UPDRS and total UPDRS 

for males and for females, using the measures presented in Tables 3 and 4. The horizontal axes are the 

normalized dysphonia measures and the vertical axes correspond to UPDRS. The gray lines are the 

best linear fit obtained using Iteratively Reweighted Least Squares – see (Tsanas et al. 2010) for 

details. 

 

We can see that most of the times, large absolute correlation coefficient values correspond 

to large normalized MI values in Tables 3 and 4. However, some dysphonia measures have 

low absolute correlation coefficients and relatively large normalized MI (for example the 7
th

 

MFCC coefficient in Table 3). This indicates that those dysphonia measures are associated 

with UPDRS in a nonlinear non-monotonic way, which needs to be characterised using higher 

order moments (the Spearman correlation coefficient fails to quantify these relationships). 

Conversely, given two dysphonia measures (for example the VFER-NSRTKEO and the 8
th

 

delta MFCC coefficient in Table 3), a higher absolute value correlation coefficient might 

correspond to a lower normalized MI. This indicates that the extent of the association 

strength between the 8
th

 delta MFCC coefficient and UPDRS can be adequately quantified 

using a monotonic relationship, whereas the extent of the association strength between the 
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VFER-NSRTKEO and UPDRS relies more on higher order moments. 

 

Table 3: Maximum relevance and correlations of dysphonia measures with UPDRS for males. 

Measure Description 

Motor-UPDRS  

relevance and correlation 

        MI          Spearman R 

Total-UPDRS  

relevance and correlation 

        MI          Spearman R 

VFER-NSRTKEO 

Ratio of the sum of the log-transformed mean 

TKEO of the band-pass signals for frequencies 

>2.5 kHz to the sum of the mean TKEO of the 

band-pass signals for frequencies <2.5 kHz 

0.105 0.159 0.132 0.187 

DFA 

Characterizes the extent of turbulent noise, 

quantifying its stochastic self-similarity (Little 

et al. 2007) 
0.078 -0.162 0.115 -0.205 

7th MFCC coef 
7th Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.079 -0.066 0.108 0.0070 

6th MFCC coef 
6th Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.106 -0.277 0.102 -0.294 

��,&'( #
��,)*+),-).  

Mean difference of the cycle-to-cycle 

�� estimate (extracted using Sun’s algorithm) 

and the average expected  �� in age- and sex- 

matched healthy controls 

0.088 0.097 0.101 0.018 

Log energy 
Estimate of the logarithmic energy (Brookes 

2006) 
0.090 0.149 0.099 0.169 

4th MFCC coef 
4th Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.088 -0.082 0.098 -0.061 

0th MFCC coef 
0th Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.079 0.171 0.099 0.197 

8th MFCC coef 
8th Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.106 0.276 0.095 0.259 

8th delta MFCC 

coef 

8th delta Mel Frequency Cepstral Coefficient 

(First derivative of 8th MFCC) (Brookes 2006) 
0.073 0.181 0.093 0.205 

The ranking was determined by the mutual information (MI) with the total UPDRS (for clarity, only the 10 most relevant 

measures are presented here). Relevance denotes the association strength of each feature with UPDRS expressed using the 

MI. The reported MI is normalized (i.e. MI lies between 0-1, where 0 denotes that UPDRS is independent on the dysphonia 

measure, and 1 indicates that UPDRS is completely determined by the dysphonia measure - see Section 3.2 for details). All 

results were rounded to the nearest third decimal digit. The UPDRS relevance and correlation columns are  the MI where the 

probability density functions were computed with kernel density estimation with Gaussian kernels, and the Spearman non-

parametric correlation coefficients between each measure and piecewise linearly interpolated motor and total UPDRS. All 

measures were statistically significantly correlated (p < 0.001) with motor-UPDRS and total-UPDRS. All speech signals 

from the male PWP were used to generate these results (N = 4,010 phonations). The �� subscript text refersto the algorithm 

used to extract it. 

 

The overall impression we take from Tables 3 and 4 is that the most highly associated 

dysphonia measures with UPDRS are some of the MFCCs in males, and ��-related measures 

for females. Specific MFCCs coefficients do not have particular physical meaning, but a 

more general interpretation is possible: lower MFCCs reflect the amplitude and envelope 

spectral fluctuations, and higher MFCCs convey mostly information about harmonic 

components (see the Electronic Supplementary Material for more information on MFCCs). 

The MFCCs in Table 3 are in the mid-range, and they are not easily interpretable since they 



18 

 

fall in neither category. We defer elaboration of the ��-related measures for females for the 

Discussion. 

 
 

Table 4: Maximum relevance and correlations of dysphonia measures with UPDRS for females. 

Measure Description 

Motor-UPDRS  

relevance and correlation 

        MI          Spearman R 

Total-UPDRS  

relevance and correlation 

        MI          Spearman R 
Std ��,/"*-'0) Standard deviation of the extracted  ��,/"*-'0) 0.205 0.475 0.216 0.470 

Std ��,12+- Standard deviation of the extracted  ��,12+- 0.174 0.437 0.195 0.434 

GQclosed 
Standard deviation of the duration that the 

vocal folds remain closed 
0.211 0.236 0.195 0.250 

0th MFCC coef 
0th delta Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.200 -0.327 0.187 -0.344 

��,3022-
# ��,)*+),-). 

Mean difference of the cycle-to-cycle �� 

estimate (extracted using Praat’s algorithm) 

and the average expected  �� in age- and sex- 

matched healthy controls 

0.198 0.103 0.176 0.034 

1st MFCC coef 
1st delta Mel Frequency Cepstral Coefficient 

(Brookes 2006) 
0.135 -0.047 0.170 -0.031 

Log energy 
Estimate of the logarithmic energy (Brookes 

2006) 
0.179 -0.458 0.170 -0.487 

��,/"*-'0)
# ��,)*+),-).   

Mean difference of the cycle-to-cycle 

��estimate (extracted using the mixture 

algorithm) and the average expected  �� in age- 

and sex- matched healthy controls 

0.181 0.019 0.164 -0.055 

��,12+-
# ��,)*+),-). 

Mean difference of the cycle-to-cycle �� 

estimate (extracted using Rapt’s algorithm) and 

the average expected  �� in age- and sex- 

matched healthy controls 

0.173 0.022 0.158 -0.054 

4
���+0,5 5th percentile of the TKEO of the fundamental 

frequency values, obtained with the mixture 

algorithm 

0.177 -0.411 0.153 -0.369 

The ranking was determined by the mutual information (MI) with the total UPDRS (for clarity, only the 10 most relevant 

measures are presented here). Relevance denotes the association strength of each feature with UPDRS expressed using the 

MI. The reported MI is normalized (i.e. lies between 0-1, where 0 denotes that UPDRS is independent of the dysphonia 

measure, and 1 indicates that the UPDRS is completely determined by the measure - see Section 3.2 for details). All results 

were rounded to the nearest third decimal digit. The UPDRS relevance and correlation columns are  the MI where the 

probability density functions were computed with kernel density estimation with Gaussian kernels, and the Spearman non-

parametric correlation coefficients between each measure and piecewise linearly interpolated motor and total UPDRS. All 

measures were statistically significantly correlated (p < 0.001) with motor-UPDRS and total-UPDRS. All speech signals 

from the female PWP were used to generate these results (N = 1,875 phonations). The �� subscript text refers to the 

algorithm used to extract it. 

 

4.2  Feature selection and statistical mapping of features to UPDRS 

 

As described in Section 3.3, the LASSO and the elastic net can be used to determine the 

dysphonia measures that may be optimally included in a learner for UPDRS prediction. The 

feature selection process in this report used 10-fold cross validation (we experimented with 

100 runs), where we recorded the selected features across all runs. The sparsity pattern of 

both the LASSO and the elastic net was very stable for the first 10 (and quite stable for the 
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first 15) selected features across the 100 realisations of the 10-fold cross validation. That is, 

the order of the initially selected features was almost the same across each cross-validation 

realisation used in feature selection. In Section 2.1 of the Electronic Supplementary Material 

we compare the 15 most important features selected by the two algorithms. 

 

Table 5: Selected dysphonia measure subsets for males and females 

MALES (33 dysphonia measures) FEMALES (33 dysphonia measures) 

Dysphonia measure 
Motor UPDRS 

MI        R 

Total UPDRS 

MI        R 
Dysphonia measure 

Motor UPDRS 

MI        R 

Total UPDRS 

MI        R 

6
th

 MFCC coef 0.106 -0.277 0.102 -0.294 Log energy 0.179 -0.458 0.170 -0.487 

8
th

 MFCC coef 0.106 0.276 0.095 0.259 Std ��,12+- 0.205 0.475 0.216 0.470 

VFERSNR,TKEO 0.077 -0.076 0.077 -0.108 10
th

 MFCC coef 0.112 0.239 0.107 0.250 

VFERmean 0.076 0.154 0.089 0.13 PPE 0.118 0.436 0.105 0.396 

8
th

 delta MFCC 0.073 0.181 0.093 0.205 12
th

 MFCC coef 0.094 0.204 0.088 0.261 

12
th

 delta MFCC 0.048 0.172 0.054 0.167 IMFSNR,TKEO 0.075 -0.127 0.067 -0.067 

0
th

 MFCC coef 0.079 0.171 0.097 0.197 8
th

 MFCC coef 0.114 -0.341 0.092 -0.255 

2
nd

 MFCC coef 0.082 -0.149 0.084 -0.182 11
th

 MFCC coef 0.078 0.127 0.100 0.187 

3
rd

 MFCC coef 0.071 0.091 0.077 0.067 IMFNSR,SEO 0.099 -0.117 0.065 -0.058 

2
nd

 delta MFCC 0.047 0.130 0.050 0.125 GNEmean 0.090 0.035 0.086 -0.062 

3
rd

 delta MFCC 0.046 0.169 0.054 0.161 3
rd

 delta MFCC 0.070 0.149 0.064 0.119 

Std ��,&'( 0.046 0.144 0.050 0.129 HNRstd 0.072 0.224 0.066 0.195 

9
th

 MFCC coef 0.075 -0.194 0.073 -0.153 5
th

 MFCC coef 0.113 0.173 0.115 0.188 

7
th

 MFCC coef 0.079 -0.066 0.108 0.007 2
nd

 delta MFCC 0.055 0.172 0.056 0.206 

4
th

 delta MFCC 0.041 0.001 0.044 0.007 GNESNR,TKEO 0.036 0.038 0.042 0.033 

GNESNR,TKEO 0.023 0.074 0.024 0.089 10
th

 delta MFCC 0.071 -0.064 0.066 -0.079 

ShimmerA0,abs 0.042 -0.079 0.058 -0.135 GQopen 0.061 0.256 0.057 0.248 

4
���65-7 +)0,)(-"8)  0.074 -0.136 0.078 -0.056 GQclosed 0.211 0.236 0.194 0.25 

IMFSNR,TKEO 0.045 -0.122 0.054 -0.151 4
th

 MFCC coef 0.19 0.329 0.140 0.242 

ShimmerPQ1,K=5 0.041 -0.065 0.056 -0.113 4
���95-7 +)0,)(-"8) 0.162 0.413 0.137 0.361 

ShimmerPQ3,K=11 0.043 -0.071 0.057 -0.116 OQ5-95 percentile 0.005 -0.216 0.001 -0.231 

11
th

 MFCC coef 0.081 -0.006 0.070 0.021 6
th

 delta MFCC 0.073 0.152 0.066 0.086 

Jitter-��,2:; 0.061 0.103 0.064 0.045 Std ��,3022- 0.146 0.352 0.132 0.316 

ShimmerdB 0.040 -0.066 0.054 -0.113 DFA 0.115 -0.059 0.094 -0.023 

GNENSR,TKEO 0.035 0.098 0.033 0.11 VFERSNR,SEO 0.130 -0.253 0.084 -0.175 

RPDE 0.040 0.003 0.044 0.064 Std  4
��� 0.170 0.325 0.152 0.269 

5
th

 MFCC coef 0.082 0.010 0.081 -0.039 VFERSNR,TKEO 0.085 -0.143 0.086 -0.112 

HNRstd 0.068 0.058 0.086 0.134 5
th

 delta MFCC  0.052 0.075 0.059 0.073 

Jitterpitch period% 0.048 0.070 0.052 0.039 7
th

 MFCC coef 0.086 0.036 0.077 0.044 

13
th

 delta MFCC 0.038 0.114 0.043 0.134 9
th

 MFCC coef 0.084 0.157 0.073 0.147 

DFA 0.078 -0.162 0.112 -0.205 3
rd

 MFCC coef 0.151 -0.132 0.117 -0.058 

VFERNSR,TKEO 0.105 0.159 0.132 0.187 6
th

 MFCC coef 0.169 0.137 0.145 0.084 

12
th

 delta-delta 

MFCC 
0.035 0.066 0.049 0.058 4
���<5-7 +)0,)(-"8)  0.078 0.067 0.072 0.089 

The order of the features in the subsets is the order with which they were selected in the LASSO algorithm (features that 

were initially selected and subsequently dropped in the LASSO path are not included). The selected feature subsets were 

determined using the one standard error rule (see text for details). The Table also presents the mutual information (MI) and 

Spearman R (relevance and correlation) of the selected features with respect to the motor-UPDRS and total-UPDRS. The 

reported MI is normalized (i.e. MI lies between 0-1, where 0 denotes that UPDRS is independent on the dysphonia measure, 

and 1 indicates that the UPDRS is completely determined by the dysphonia measure - see Section 3.2 for details). 

Descriptions of the dysphonia measures appear in Section 1 of the Electronic Supplementary Material. 
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Then, we used one feature subset at a time (experimenting with the feature subsets 

selected by the LASSO or the elastic net) as input to the CART and RF learners to train and 

test each of the four learners’ performance. Additionally, all the dysphonia measures were 

used as inputs into the learners in order to have a (potentially over-complex) MAE 

benchmark against which we could compare our findings. The pruning level of the CART 

learners was determined by manual checks to minimize the MAE. By default, we used 500 

trees in the RF learners.  

In order to select the best feature subset, we have used the “one-standard-error” rule 

(Hastie et al. 2009): we pick the most parsimonious subset in which the MAE is no more than 

one standard deviation above the MAE of the best subset. The selected feature subsets for 

males and females are summarized in Table 5. In all cases, the RF working in classification 

mode outperformed the other learners. Table 6 presents the out-of-sample MAE using the RF 

learner in classification mode for the feature subsets of Table 5, and compares these findings 

with those in Tsanas et al. (2010a) and Tsanas et al. (2010b). The generalization ability of the 

models is verified by the fact that the in-sample and out-of-sample errors were similarly low.  

 

Table 6: Summary of the Mean Absolute Error (MAE) results of this study, and 

comparison with the results of previous studies. 

Measures MAE for motor-UPDRS  MAE for total-UPDRS 

Selected feature subset for 

males in Table 5  
1.62 ± 0.17 1.96 ± 0.23 

Selected feature subset for 

females in Table 5 
1.72 ± 0.16 2.20 ± 0.21 

Selected feature subset in 

Tsanas et al. (2010a) 
5.95 ± 0.19 7.52 ± 0.25 

Selected feature subset in 

Tsanas et al. (2010b) 
6.57 ± 0.16 8.38 ± 0.23 

The reported MAE results were obtained with the Random Forests (RF) working in classification mode. The errors are 

reported in the form mean ± standard deviation. In Tsanas et al. (2010a) and Tsanas et al. (2010b) we had pooled together all 

the available phonations (no separation between male and female groups). The inter-rater variability (difference in clinical 

symptom assessment between trained clinicians) is about 4-5 UPDRS points (Post et al. 2005) and the results in this study 

demonstrate, for the first time, that a machine learning approach can do better than this benchmark. 

 

 We use the Wilcoxon rank sum test to demonstrate the significance of these findings by 

comparing the UPDRS results obtained using the methodology of this study against some 

benchmarks. We compared the distribution of the MAE for motor-UPDRS and total-UPDRS 
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against the MAE that are obtained using the mean motor-UPDRS and mean total-UPDRS 

(which are used as benchmarks, respectively) for males and for females. The null hypothesis 

is that the medians of the distributions are equal. The Wilcoxon rank sum test rejected the 

null hypothesis and the results are statistically significant (� � 0.001� for all four cases. In 

addition, we use as another benchmark the UPDRS value for each subject at baseline (that is, 

the UPDRS estimate is assumed constant for each subject at the baseline score), and compute 

the MAE distributions of motor-UPDRS and total-UPDRS by using this value. In this case, 

the null hypothesis is that the medians of the MAE distributions using the methodology of 

this study, and the MAE distributions using the baseline value for the individuals are equal. 

The Wilcoxon rank sum test rejected the null hypothesis and the results are statistically 

significant (� � 0.001� for all four cases. 

 With the exception of Tsanas et al. (2010a) and Tsanas et al. (2010b), we are not aware of 

any previous studies that have focused on replicating the average PD symptom severity when 

this is quantified by a clinical metric, such as the UPDRS. A recent study has attempted to 

replicate three aspects of the UPDRS metric (tremor, bradykinesia, and dyskinesia), using 

accelerometers (Patel et al. 2009). We refer to the Electronic Supplementary Material for 

details and a comparison of the results using the methodology of this study and Patel et al. 

(2009) in replicating the clinical evaluation (UPDRS assessment by the clinical rater) of those 

three elements. Not surprisingly, it appears that accelerometers are better suited compared to 

speech signals to replicate the clinicians’ assessment of average severity in those three motor 

symptoms. Although these three elements are important, they do not encompass the breadth 

of PD symptoms which are expressed in the diverse UPDRS metric, and therefore do not 

actually reflect the average PD symptom severity which we try to quantify in our work. 

 

4.3  Six month UPDRS tracking for the AHTD trial 

 

So far, we have focused on randomly selecting phonations and estimating the UPDRS 

without working on specific individuals for a period of time (UPDRS prediction). In this 

Section, we aim to test the model’s ability for UPDRS tracking (weekly UPDRS estimation 

of an individual for the six month duration of the trial using the speech recordings). One 

approach is to train the learner using the dysphonia measures computed from all subjects 

without including the dysphonia measures from the specific subject whose UPDRS we want 

to predict. However, this is a very unstable scheme due to the finiteness of the data (there are 
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only 42 subjects in the AHTD trial), and we elaborate further on this issue in the Discussion. 

For that reason, we have used the UPDRS tracking approach that we describe next. 

On every day the PWP took the AHTD tests, six sustained vowel phonations were 

recorded. Thus, as a proxy for leaving out all the dysphonia measures from a single subject 

for the 6-month duration of the AHTD trial (~140 speech signals × M dysphonia measures), 

we can leave out the dysphonia measures derived from one of the weekly tests, and test the 

learner’s out-of sample tracking ability using these dysphonia measures (~25 × M). However, 

we have noticed that our algorithms occasionally deliver quite large UPDRS differences 

using the out-of sample dysphonia measures derived from each of the six sustained vowel 

tests of individuals which were captured on the same day. This suggests that spurious 

artefacts pertaining to one or more of the six weekly recorded phonations may not be 

representative of the weekly UPDRS estimate of the patients. Therefore, we propose training 

the learner using the dysphonia measures from all the sustained vowel phonations of all 

patients, with the exception of the dysphonia measures derived from the first of each of the 

weekly phonations for a selected individual (about 20-25), which are used for testing. 

Subsequently, we repeat the same methodology training the system with all the dysphonia 

measures from all patients, excluding the dysphonia measures derived from the selected 

individual involving successively either the second, third, fourth, fifth or sixth sustained 

vowel phonation test. The six weekly out-of-sample MAE results are then averaged, resulting 

in a single UPDRS estimate. Our experiments suggest that the scheme with weighting the 

average UPDRS estimates from the dysphonia measures of the six weekly phonations is a 

more robust method compared to randomly selecting the dysphonia measures computed from 

one of the six weekly phonations.   

Figure 5 presents the UPDRS tracking of a male and a female PWP using the combination 

of the best feature subset and RF working in classification mode. We have purposefully 

chosen male and female PWP with uncharacteristic UPDRS patterns (whereas the norm for 

PWP is progressive increase in symptom severity) to demonstrate that the proposed methods 

can follow larger, unexpected UPDRS changes. The actual UPDRS of the presented male 

PWP increased slightly in the 3-month visit and subsequently reduced on the 6-month visit, 

whereas the female PWP shown here is the subject with the most irregular UPDRS pattern in 

the AHTD trial (sharp UPDRS increase in the 3-month visit and subsequent sharp decrease in 

the 6-month visit). The female subject in figure 5b is the individual we have used previously 

(Tsanas et al. 2010a). Inspection of figure 5c, 5d and the tracking figure of Tsanas et al. 

(2010a) verifies the superiority of the approach developed in the current study in remotely  
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Figure 5 Motor-UPDRS and total-UPDRS tracking over the 6-month trial period for a male and a 

female subject with irregular UPDRS pattern. The ‘baseline’, ‘3-month’ and ‘6-month’ UPDRS 

scores are shown. The out-of-sample MAE and the standard deviation of MAE computed for the 

subjects presented in this figure are also quoted. The computation of the out-of-sample MAE and the 

confidence intervals reported in this figure were estimated from the average MAE of the six weekly 

error estimates throughout the six month duration of the trial for the specific individual. 
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following UPDRS symptom severity when this is expressed in UPDRS terms. We remark 

that the proposed models replicate quite accurately the linearly interpolated motor-UPDRS 

and total-UPDRS scores in figure 5. Generally, UPDRS increases monotonically for most of 

the patients, and the algorithm’s tracking is even more precise in those cases. 

 

 

5. Discussion 

 

We have investigated the potential for using speech signals to estimate average PD 

progression with the standard reference clinical score, UPDRS. We stress that this study 

focused on PD telemonitoring and not PD diagnosis, which is a more difficult and subtle 

problem (to qualify as a diagnostic tool the methodology of this study should be applied in 

datasets that include healthy controls and, in addition, subjects with various neurological 

disorders that typically present PD-like symptoms). A wide range of known and novel speech 

signal processing algorithms (collectively known as dysphonia measures) have been 

implemented in order to uncover potentially concealed patterns in the PWP’s voice and 

establish a functional mapping of these patterns to UPDRS. We have experimented with 

feature selection algorithms, aiming to select a parsimonious model with good prediction 

accuracy. The out of sample MAE were 1.6 points for males and 1.7 points for females for 

the motor UPDRS (which spans the range 0-108), and 2.0 points for males and 2.2 points for 

females for the total UPDRS (which spans the range 0-176), suggesting that the proposed 

methodology can accurately replicate the linearly interpolated UPDRS scores based on 

clinicians’ subjective ratings. The new MAE results drastically improve upon Tsanas et al. 

(2010a) and Tsanas et al. (2010b) where the UPDRS was estimated to within 7.5 points. The 

improvement in the UPDRS estimation of this study is attributed to two factors: a) more 

sophisticated speech signal processing algorithms which uncover novel PD dysphonia 

patterns, b) the use of random forests, which clearly outperform CART in this application. 

We address each of these points later. We stress that we can replicate the clinicians’ UPDRS 

estimates with accuracy that is considerably greater than the inter-rater variability (4-5 

UPDRS points) (Post et al. 2005), a benchmark clinicians might want to refer to. These 

promising new results could convince more clinicians about the practical effectiveness of the 

proposed approach, and consequently lead to the adoption of the AHTD in larger clinical 

trials. 
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We started the exploration of the data by combining the two UPDRS sections with explicit 

“Speech” headings to form a composite speech-UPDRS score, and reported the association 

strength of speech-UPDRS with motor- and total-UPDRS. These results are built upon the 

idea that slight changes in the voice reflect some change in PD symptom severity. It is also 

highly likely that speech changes occur due to natural biological variation since humans do 

not produce identical outputs under identical conditions. Such sources of intrinsic variation in 

voice are, however, irrelevant to the systematic component of the relationship between voice 

and PD symptom severity: as we have demonstrated in this study and others, such intrinsic 

biological variability does not preclude prediction of PD symptom severity. It would however 

be of interest to understand such intrinsic biological variability of the voice for other 

purposes. The results of this study provide good statistical evidence that speech impairment 

and average, overall PD symptom severity are inherently linked, and intuitively justify the 

premise that UPDRS can be predicted by analysing speech signals alone.  

Previous studies had only computed some of the commonly used dysphonia measures to 

investigate the potential of using sustained vowels to track average PD symptom progression. 

In this study, we have significantly reinforced earlier findings using additional speech signal 

processing algorithms, and proposing a number of novel algorithms which are able to detect 

previously hidden patterns in PWP’s speech degradation. The new measures rely mainly in 

the physiological understanding that pathological voices exhibit increased tremor and high-

frequency noise, and attempt to quantify these characteristics using energy and entropy 

concepts. The fact that the feature selection algorithms showed heavy bias towards selecting 

the non-classical measures is compelling evidence that these new measures quantify 

clinically useful information in PD voices which may not be captured by the classical 

dysphonia measures. We elaborate further on the issue of dysphonia measures in PD in the 

discussion Section of the Electronic Supplementary Material. 

Interestingly, our experiments demonstrate that there are substantially different PD effects 

in the voices of male and female PWP. The mutual information and correlation coefficients for 

males in Table 3 and females in Table 4 reveal some interesting, and slightly surprising attributes. 

In particular, measures directly extracted from the fundamental frequency (both the standard 

deviation of the estimated �� and the absolute difference to the population average �� for 

matched healthy controls) appear strongly associated with UPDRS in females but apparently 

there is no similar distinctive pattern for males. We had previously reported that PPE, a measure 

which relies on the log-transform of the fundamental frequency, is one of the most important 

measures for predicting UPDRS (Tsanas et al. 2010). In fact, we have now established that this is 
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because PPE is an excellent predictor for UPDRS tracking in females, but is quite ineffective in 

males. Ultimately, the gender differentiation supports a tentative physiological conclusion: 

that the underlying processes of degradation in PD speech may be different in men and 

women. Moreover, the association strength of the dysphonia measures with UPDRS is much 

larger in females (Tables 3 and 4). In brief, we speculate this is because there is a distinct 

signature (pattern) characterising voice pathologies in females, whereas this pattern is masked 

in males due to the physiology of natural male voice production. Since higher fundamental 

frequencies tend to have lower perturbations (Baken and Orlikoff 2000), and given that 

women have higher average �� (Titze 2000), it is plausible that even slight distortions in vocal 

performance (for example aperiodic ��) reflect voice pathology in females with high 

probability, whilst similar distortions in males’ vocal performance can be attributed (at least 

partly) to normal vibrato. Thus, voice degradation quantified using some of the dysphonia 

measures (particularly those related to ��� could represent general symptom degradation in 

females, whereas similar quantification of the voice perturbations in males could be part of 

the variability in normal voice production mechanisms.  

We have experimented with nonlinear, nonparametric learners: CART and RF. We have 

used CART and RF working in both regression and classification modes, since the problem 

tackled in this study is amenable to both interpretations. In all simulations, RF outperformed 

CART, typically in excess of 1 UPDRS point. Our study agrees with Breiman’s findings 

(Breiman 2001) that RF perform better in classification mode. The reported MAE estimates 

come from the 100 runs 10-fold cross-validation scheme and reflect our best estimate of the 

asymptotic out-of-sample prediction error given the available data. As we have argued 

previously (Tsanas et al. 2010a), the reliability of the cross-validation implicitly assumes 

independence between samples, which may be violated since we have typically about 140 

samples from each of the 42 patients, and approximately 6,000 samples overall. However, 

any patient-specific validation scheme is unstable because there is not enough hold-out data 

to form reliable estimates of the learners’ performance. This was verified in our experiments 

with a leave-one-patient-out cross validation scheme, where the standard deviations around 

the computed MAE were almost as large as the error. A simple test that goes some way 

towards determining whether the samples are truly independent is to use as an additional 

input feature (along with the selected subset of the dysphonia measures) the patient index: if 

there is large dependency between samples from the same patient, the out-of-sample MAE of 

the learners will be noticeably reduced. In doing this simple experiment we noticed a 
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marginal MAE reduction of about 0.2 UPDRS points, which is statistically insignificant. This 

evidence supports the interpretation that there is no strong dependence between samples from 

each patient.  

Telemonitoring in healthcare is fast emerging, and is particularly important for PWP 

because it is often extremely awkward for those patients to make frequent visits to the clinic. 

Our findings could be useful in clinical trials, offering a novel approach to tracking average 

PD symptom severity by UPDRS remotely, and at frequent intervals. We envisage this 

technology finding application in future clinical trials of novel treatments which will require 

high-frequency, remote, and very large study populations. 
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