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Abstract

The emergence of pen-based mobile devices such as PDAs and tablet PCs pro-

vides a new way to input mathematical expressions to computer by using hand-

writing which is much more natural and efficient for entering mathematics. This

paper proposes a web-based handwriting mathematics system, called WebMath,

for supporting mathematical problem solving. The proposed WebMath system is

based on client-server architecture. It comprises four major components: a standard

Web Server, Handwriting Mathematical Expression Editor, Computation Engine

and Web Browser with Ajax-based Communicator. The Handwriting Mathematical

Expression Editor adopts a progressive recognition approach for dynamic recogni-

tion of handwritten mathematical expressions. The Computation Engine supports

mathematical functions such as algebraic simplification and factorization, and in-

tegration and differentiation. The Web Browser provides a user-friendly interface

for accessing the system using advanced Ajax-based communication. In this paper,

we describe the different components of the WebMath system and its performance

analysis.
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1 Introduction

Most high schools in Singapore provide mobile networks within its premises

to support e-learning for many subjects including mathematics and science.

However, these are done in the form of data repositories in its web portals

for teachers to place their teaching materials, and students to retrieve the

materials for learning. This form of learning is quite passive. Most of the

learning materials are in the form of multiple choices for easy data input and

grading. This is especially so for mathematics as the input of mathematical

expressions using traditional keyboards is inconvenient and cumbersome.

The recent development of pen-based mobile devices such as PDAs and tablet

PCs provides a new way to input mathematical expressions to computer us-

ing handwriting. In comparison with the traditional methods using keyboards,

this approach is much more natural and efficient for entering mathematics, as

human has traditionally been using pen and paper to write mathematical ex-

pressions. On the other hand, the use of computer algebra systems (CAS) such

as Maple or Mathematica has become more popular nowadays especially for

university students to help solve mathematical problems. But, it is still difficult

for high school students to use such systems due to its mathematical syntax.

With the advance of both handwriting and mathematics technologies, the

current trend on integrating these two technologies to provide a handwriting

mathematics environment will certainly improve the learning of mathematics

for students.

There are currently a number of academic and commercial handwritten mathe-

matical expression editors such as the Freehand Formula Entry System (FFES,
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2005), Natural Log (Matsakis et al., 2003), Infity Editor (Fujimoto et al.,

2007), MathJournal (XThink, 2007) and JMathNotes (Rodrguez, 2003). Some

of these systems have also provided the mathematical computation capabil-

ity based on computer algebra systems. However, these systems are mainly

standalone applications which require the installation of the system on each

individual computing device before it can be used. It is quite inconvenient for

users especially when new updates of the systems are required.

To tackle this problem, we aim to develop a web-based handwriting math-

ematics system that provides a flexible and mobile environment for math-

ematical problem solving. One of the major challenges to supporting web-

based handwriting mathematics is the recognition of handwritten mathemat-

ical expressions. Mathematical expressions often contain a wide range of sym-

bols such as alphanumeric characters, Greek characters, mathematical opera-

tors, and arrows. Further, mathematical expressions are arranged in a two-

dimensional structure with sophisticated grouping rules making structural

analysis of mathematical expressions difficult. Another challenge is on the de-

livery of mathematics over the Web. Moreover, the incorporation of handwrit-

ing mathematics into a web-based environment is also not a straight-forward

issue.

In this research, we have developed a web-based handwriting mathematics sys-

tem, called WebMath, for supporting mathematical problem solving. A novel

progressive recognition approach is proposed for dynamic recognition of hand-

written mathematical expressions. And the web-based delivery of handwriting

mathematics is based on client-server architecture with advanced Ajax-based

(Garrett, 2005) communication. The proposed system also supports mathe-

matical computations based on a computer algebra system. In this paper, we
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present the design and implementation of the WebMath system.

The rest of the paper is organized as follows. Section 2 reviews some of the

current handwriting mathematics systems. In Section 3, we discuss the pro-

gressive recognition approach for handwritten mathematical expression recog-

nition and its performance analysis. Section 4 discusses the web-based design

for progressive recognition. In Section 5, we describe the system architecture

of the WebMath system and its individual components. Finally, Section 6

concludes the paper.

2 Handwriting Mathematics Systems

Currently, several handwriting mathematical expression editor systems such

as Infty Editor, JMathNotes, Freehand Formula Entry System (FFES) and

Natural Log have been developed. These systems are developed based on their

own underlying recognition algorithms. Most of these systems are able to

achieve quite satisfactory recognition results. Most of them also provide a

user-friendly interface.

The Infty Editor (Fujimoto et al., 2003; Kanahori et al., 2004; Suzuki et al.,

2003) supports online handwritten expression recognition. In symbol recogni-

tion, it combines a generic commercial Optical Character Recognition (OCR)

engine with a character recognition engine specifically for mathematical sym-

bols, whereas in structural analysis, it uses an optimization framework. Infty

Editor has achieved good performance of 98.51% accuracy in symbol recog-

nition and 89.6% accuracy for the overall recognition process. JMathNotes

(Rodrguez, 2003) was developed based on Java. The user interface is quite
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friendly and allows user to tune several parameters on Symbol Recognizer,

Math Interpreter, etc. The Symbol Recognizer is implemented using the Sup-

port Vector Machine (SVM) algorithm which has achieved very low error rate

(1.348%). The structural analysis is implemented based on minimum spanning

tree construction and symbol dominance (Tapia and Rojas, 2003, 2005). Free-

hand Formula Entry System (FFES) (Smithies et al., June 1999, 2001; FFES,

2005) is another pen-based equation editor implemented in C++ and Tcl/Tk.

The user interface is quite simple. In symbol recognition, FFES uses an on-

line recognition algorithm based on nearest-neighbor classification in a feature

space of approximately 50 dimensions. The structural analysis is based on a

graph rewriting method (Lavirotte and Pottier, 1997; Blostein and Grbavec,

1996).

Unlike the systems discussed above which are implemented as standalone ap-

plications, Natural Log (Matsakis et al., 2003; Matsakis, May, 1999) is imple-

mented as a Java applet which can run over the Web. Natural Log also provides

a user-friendly interface with tunable parameters and graphical representation

of expressions. In Natural Log, symbol recognition is implemented using a

statistical approach based on Gaussian Density Estimation, while structural

analysis is implemented using geometric grammar.

Although the standalone implementations of mathematical expression editors

such as the Infty Editor and JMathNotes are quite common, they do have some

drawbacks. These systems require the installation of the applications on users’

machines and they are platform dependent. And it would be quite troublesome

to re-install the system when updates are required. On the other hand, the Java

applet approach adopted by Natural Log is much more convenient. However,

to run the system, it needs the installation of Java Runtime Environment on
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the client machine.

In this research, instead of using Java applet, which is essentially an applica-

tion by itself, we propose another web-based approach based on client-server

architecture. To support an efficient web-based design, we use a new technol-

ogy called Ajax for data communications between the client and server. In

addition, we also adopt a progressive recognition approach which is able to

provide immediate recognition result for each written symbol. Furthermore,

rather than providing just a simple mathematical expression editor, we in-

corporate a computation engine into the system for mathematical problem

solving.

3 Progressive Recognition

In this research, we have proposed a novel progressive recognition approach for

dynamic recognition of handwritten mathematical expressions (Vuong et al.,

2008). It recognizes a user’s handwritten mathematical expression dynami-

cally while he is writing that expression. This approach has an advantage that

it helps a user to identify any recognition error after he has written a sym-

bol, and enables him to correct the error immediately. As such, users do not

need to wait until they finish writing the whole expression before knowing any

recognition errors. Compared with traditional recognition approaches, the pro-

gressive recognition approach is much more efficient and user-friendly. To the

best of our knowledge, no similar algorithms have been proposed before. Our

approach is graphical-based which is fundamentally different from syntactic-

based approaches such as the one proposed by Chan and Yeung (1998).
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The proposed progressive recognition approach consists of three processes:

Progressive Expression Partitioning, Symbol Recognition and Progressive Struc-

tural Analysis.

(1) Progressive Expression Partitioning: It gathers the written strokes and

identifies progressively all the strokes for a symbol.

(2) Symbol Recognition: It recognizes the symbol from the group of strokes

given by Progressive Expression Partitioning. An extended elastic match-

ing algorithm is implemented for mathematical symbol recognition.

(3) Progressive Structural Analysis: It accepts the latest recognized symbol

from Symbol Recognition, updates the symbol in the corresponding math-

ematical expression tree and returns the recognized mathematical expres-

sion to the client browser for display. The user is allowed to correct any

errors made during recognition.

3.1 Symbol Recognition

In the past few decades, there have been many techniques such as Hidden

Markov Model (HMM) (Kosmala and Rigoll, 1998), structural matching (Chan

and Yeung, 2000b) and neural networks (Brown, 1992) proposed for symbol

recognition. Most of these techniques are able to obtain quite satisfactory re-

sults. In this research, we extend the conventional elastic matching algorithm

(Chan and Yeung, 1998) for symbol recognition. Elastic matching has many

advantages for symbol recognition. It can achieve very high recognition rate as

discussed in (Chan and Yeung, 1998), and able to cope with irregularities in

writings. Further, elastic matching is fast when compared with other symbol

recognition approaches.
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In conventional elastic matching, it calculates the distance between input sym-

bols and the stored sample symbols of known classes. During matching, every

point in the input symbol pattern is matched against that in the sample symbol

pattern in order to decide the class of the input symbol. However, the con-

ventional elastic matching only considers Euclidean distance between points

without analyzing the slopes and curvatures at those points. As such, it has

difficulties in recognizing curly symbols such as ”8” and ”∞”, as information

on slopes and curvatures play a more important role than Euclidean distance

in these symbols. Therefore, apart from Euclidean distance between points,

the extended elastic matching algorithm also considers slope and curative in-

formation during its matching process.

The Symbol Recognition process comprises two processes: Sample Symbols

Generation and Recognition.

3.1.1 Sample Symbols Generation

In Sample Symbols Generation, it aims to generate a database of sample sym-

bols to be used for elastic matching purposes. The symbols are collected as a

representative set of stroke data (in sequences of points with x and y coordi-

nates) rather than images. To standardize the collected data, they are prepro-

cessed with size normalization, smoothing, re-sampling, stroke re-orientation

and stroke re-ordering. Then, symbol features such as number of strokes, the

initial and end points, and the initial and end angles are extracted. Based

on the extracted features, sample symbols can be categorized into different

groups and stored in the symbol database. In addition, users can also specify

symbols for personalization. In this case, a user can specify a written symbol
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with its actual identity and store the specified symbol into his personalized

symbol database which can be used together with the symbol database for

elastic matching.

3.1.2 Recognition

In Recognition, user input symbol is also preprocessed and features are ex-

tracted as in Sample Symbols Generation. After that, the input symbol is

matched against each sample symbol using the extended elastic matching al-

gorithm. Note that only those symbols in the same classified group with the

input symbol are used for matching. This helps to reduce the size of the sample

set of symbols to be matched against the input symbol. In addition, we also

pass the input symbol to the Microsoft Tablet SDK (Microsoft, 2007) for sym-

bol recognition. The Microsoft Tablet SDK is a character recognition library

provided by Microsoft for Windows Tablet operating system. It is able to rec-

ognize standard handwriting symbols including alphabetical characters, digits

and common arithmetic operators. However, it is unable to recognize mathe-

matical symbols and Greek characters. As such, the extended elastic matching

algorithm is used for recognizing mathematical related symbols, while the Mi-

crosoft Tablet SDK is used for recognizing standard characters. Finally, based

on the confidence level of the two matching results, we decide the identity of

the input symbol.

3.2 Progressive Expression Partitioning

A mathematical symbol may comprise more than one stroke. It is necessary

to identify the strokes that belong to one symbol before Symbol Recognition.
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Expression partitioning aims to partition strokes correctly into symbols. The

main challenge of expression partitioning is that it does not have any obvious

rules to group the strokes that belong to a symbol. Furthermore, mathematical

expressions are in two-dimensional structure which further complicates the

expression partitioning process. For example, the bounding box technique is

difficult to deploy for symbols such as the
√

sign which usually contains

other symbols within its structure. Spatial distance feature cannot be applied

for expressions containing superscripts or subscripts due to its small font sizes.

In our approach, when there is a new stroke written, this new stroke will be

grouped with some previously written strokes to form different stroke groups.

We assume that users always complete all strokes of one symbol before writing

the next symbol, and they do not make any corrections to previously written

symbols. Therefore, we only group consecutively written strokes. We further

assume that all users are well-informed about this assumption. Our experi-

ments show that users can easily adapt their writing style to what the system

requires in just a few minutes of getting familiar to the system. After a list

of stroke groups is created, each group is passed to Symbol Recognition. The

stroke group with the highest confidence will be chosen and the corresponding

symbol is returned.

3.3 Progressive Structural Analysis

Structural analysis is the process of analyzing the 2-dimensional structural

of mathematical expressions to create a structural representation of the ex-

pressions. As mathematical symbols are usually arranged in a complex two-

dimensional structure, possibly of different sizes and in recursive manner, this

10



makes structural analysis a challenging problem even when all symbols are

recognized correctly. In structural analysis, many issues such as symbol rela-

tionships, symbol grouping rules and context-dependent symbol groups need

to be tackled.

Many techniques have been investigated for structural analysis for handwrit-

ten mathematical expression recognition. These include grammar-based ap-

proaches (Chou, 1989; Fateman et al., 1996; Chan and Yeung, 2000a; Toyota

et al., 2006), tree transformation (Zanibbi et al., 2002), Hidden Markov Mod-

els (HMMs) (Kosmala and Rigoll, 1998) and Minimum Spanning Tree (Tapia

and Rojas, 2003, 2005). Some of the techniques such as the grammar-based

approaches are slow, while others are sensitive to users’ writing errors. In the

Progressive Structural Analysis (PSA) approach, it recognizes progressively a

user’s handwritten mathematical expression while he is writing that expres-

sion.

In mathematical expressions, input symbols are related. The relationships

could be superscript like a
2, subscript like b3, and above and under like

b
∑

a
, etc.

And one symbol can form different relationships with other different symbols.

There could also be different ways of interpreting a relationship between two

specific symbols. Therefore, we need to identify the most plausible relationship

between input symbols. In addition, mathematical expressions are organized

in a recursive structure. One expression may contain symbols and in turn each

symbol may contain other expressions as its superscript, subscript, prescript,

etc.

In PSA, we focus on determining the relationships between two symbols and

the grouping of related symbols. To do this, we define Mathematical Expres-
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sion Tree (MET) to represent mathematical expressions. In the PSA approach,

whenever a new symbol from the input mathematical expression is processed,

the relationship and grouping properties of that symbol will be identified.

These properties are then updated into the MET of the corresponding expres-

sion.

Figure 1 shows the overall process of the PSA approach which consists of

three processes: Related Symbol Identification, MET Update and Representa-

tive Format Conversion. Examples of MET update process for the expression

“a2 +b
2” are also illustrated. The shaded nodes are expression nodes. The root

node of a MET is always an expression node. All other expression nodes rep-

resent sub-expressions in that expression. Every expression node except the

root has a symbol node as its parent. The unshaded nodes are symbol nodes.

Each symbol node represents one symbol. Every symbol node has an expres-

sion node as its parent. All symbols represented by sibling symbol nodes have

row relationship. These symbols are on the dominant baseline of their parent

expression.

Progressive Structural Analysis

Mathematical Expression Tree (MET)


a
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2
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root
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+
b
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+


superscript


2


Expression from user


Expression in

representative format


Fig. 1. Overall process of Progressive Structural Analysis.

• Related Symbol Identification. After the latest symbol S is recognized from
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Progressive Expression Partitioning, the related symbol R of S will then be

identified. The related symbol R is a symbol that has already been inserted

into the MET before S is written. It is useful for inferring the position in

MET that S will be inserted into. For example, in Figure 1, ‘a’ is the related

symbol of ‘+’, and ‘+’ is the related symbol of ‘b’. Assuming that ‘+’ is the

latest input symbol and its position in the MET has not yet been identified.

If ’a’ is identified as the related symbol of ‘+’, then from their relationship

(i.e., row relationship), it can be inferred that they share the same parent

expression. Thus, ‘+’ is assigned as the next sibling of ‘a’ in its position in

the MET.

To determine the related symbol, we first find the previous symbol P

which is written just before S chronologically. If P is not found, there is no

related symbol R. It means that S is the first input symbol. If P can be

found, then we create a list of symbols residing at the path from the root

of the MET to P . Each symbol in the list will be tested on its likelihood of

being S’s adjacent neighbor or S’s direct ancestor based on its relationship

with S (e.g., row, superscript, subscript, inside, above or under). Finally,

the symbol with the highest likelihood is chosen as the related symbol of S.

• MET Update. In MET Update, the position of the latest input symbol S in

the MET will be determined. If S is the first symbol of the expression, then

S will be assigned as the root of MET. Otherwise, S will be assigned as

adjacent neighbor or direct child of R in MET according to its relationship

with the related symbol. In addition, this process also groups meaningful

consecutive symbols in MET into mathematical units such as trigonometric

functions of sin, cos and tan.

• MET To Representative Format Conversion. The last step in the PSA ap-

proach is to convert MET into a representative format such as MathML
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or Latex. These formats help to render the expression graphically for view-

ing. In WebMath, we convert MET into the MathML format, as we display

mathematical expressions on Web browsers.

3.4 Performance Analysis

To evaluate the effectiveness of the proposed progressive recognition approach,

we have conducted an experiment using a number of different expressions

extracted from the “CRC standard Math tables and formulae” (Zwillinger,

2003). These expressions are grouped into six domains, namely Elementary

Algebra, Number Theory, Trigonometric Functions, Geometry, Differential

Calculus and Integration. Each domain contains ten expressions of different

types except Number Theory which contains only three expressions. This is

because that the expressions in Number Theory provided by the “CRC stan-

dard Math tables and formulae” are quite simple and similar. Thus, only one

example from each group of similar expressions was selected which resulted in

only three expressions in this domain. There are totally fifty-three expressions

in the six domains. Some examples are shown in Table 1.

Ten users were involved in this experiment. Each user was first given a short

introduction on the WebMath system. Then, they spent ten minutes to get

familiar with the functions provided by WebMath and experiment it with a

few simple expressions of different types. These simple expressions are differ-

ent from those used for testing in the experiment. After that, each user was

asked to write all the expressions from the test data set of expressions, with

each expression written only once. To evaluate the performance, we measure

the accuracy of the combined Symbol Recognition and Progressive Expression
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Table 1

Example mathematical expressions.

Domain Example

Elementary Algebra

b2c2−4b3d−4ac3+18abcd−27a2d2

a4

(a ± b)4 = a4 ± 4a3b + 6a2b2 ± 4ab3 + b4

a4 + b4 =
(

a2 +
√

2ab + b2
) (

a2 −
√

2ab + b2
)

Number Theory

(

a
n

)

=
k
∏

i=1

(

a
pi

)bi

xk + yk

√
d =

(

x + y
√

d
)k

x
1−x2 + 1

1−x4 + x2

1−x4 = 1
1−x

Trigonometric Functions

sin (α ± β) = sinα cos β ± cos α sinβ

sin 2α = 2 sinα cos α = 2 tan α
1+tan2 α

cos α
2 = ±

√

1+cos α
2

Geometry

y−y1

x−x1
= y0−y1

x0−x1

(

kx1+(100−k)x0

100 ,
ky1+(100−k)x0

100

)

1
4

√

4p2q2 − (b2 + d2 − a2 − c2)2

Differential Calculus

d
dx

(

1
u

)

= − 1
u2

du
dx

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x)

d2

dx2 (f (u)) = df
du

(u) · d2u
dx2 + d2f

du2 (u) ·
(

du
dx

)2

Integration

∫ 1√
x2±a2

dx = log
(

x +
√

x2 ± a2
)

b
∫

a
f (x) dx +

c
∫

b

f (x) dx =
c
∫

a
f (x) dx

∞
∫

0

xp−1

1+x
dx = π

sin pπ15



Partitioning, and Progressive Structural Analysis.

In Symbol Recognition and Progressive Expression Partitioning, the accuracy is

calculated as the proportion of mis-recognized symbols from the total number

of symbols written by users. In Progressive Structural Analysis, the accuracy

is calculated as the proportion of mis-recognized expressions from the total

number of expressions written by users. To make this process independent

of Symbol Recognition, we assume that symbols are recognized correctly. To

ensure this, after writing each stroke, the users are required to correct manually

the mis-recognized symbols with the correct ones. These incorrectly recognized

symbols are not counted to the overall performance.

Table 2

Experimental results.

Accuracy(%)

Symbol Recognition and Progressive

Progressive Expression Partitioning Structural Analysis

Elementary Algebra 98.7 94

Number Theory 98.5 90

Trigonometric Functions 96.2 97

Geometry 97.3 93

Differential Calculus 96 97

Integration 94.6 96

All Domains 96.67 94.53

16



The experimental results are given in Table 2. In Symbol Recognition and Pro-

gressive Expression Partitioning, the average recognition rate for all domains

is 96.67%. This is the recognition rate achieved without using personalization.

If personalization is used, the recognition rate can further be improved to a

higher value even up to 100% for some users. As shown from Table 2, Elemen-

tary Algebra and Number Theory have achieved the highest recognition rates

of 98.7% and 98.5% respectively. It is reasonable as most of the symbols used

in these domains are mainly common alphanumeric symbols. Differential Cal-

culus and Integration have achieved low recognition rates of 96% and 94.6%

respectively. It is because these domains contain more complex mathematical

symbols such as ∞,
∫

, π, etc.

In Progressive Structural Analysis, the average accuracy for all domains is

94.53%. Among the six domains used in the experiment, Trigonometric Func-

tions and Differential Calculus have achieved the highest recognition rate of

97%, while Number Theory has the lowest recognition rate of 90%. On aver-

age, the recognition rates for all the domains are above 90%. We have also

observed that expressions in domains with lower recognition rates are more

complex than other domains in terms of the number of symbols and their

mathematical structures.

4 Web-based Design for Progressive Recognition

As mentioned in Section 2, there are a number of standalone handwritten

expression recognition systems. However, to our knowledge, there is no client-

server web-based system available for online handwriting mathematical com-

putation. The web-based design offers a number of advantages. Firstly, it offers
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a high level of mobility. Users can run the web-based handwriting system any-

time and anywhere as long as the computer supports Web browsers and the

Internet. Secondly, it does not require a specific system or operating system.

Therefore, it can run on any browser-supported machines. Thirdly, all program

codes are stored at the server. As such, any updated version of the system can

be run when the user invokes the system. Finally, it is safe to the clients’

machines as no installation is required at the clients.

In the classic “click and wait” web applications, user actions trigger an HTTP

request back to a web server. The server performs some processing such as

retrieving data, formatting the data, communicating with legacy systems, and

then returns the updated HTML page to the client. As a result, the entire

web page needs to be reloaded in order to display the returned results. This

mechanism has two main drawbacks: (1) Even when the amount of submitted

data and returned data is small, the entire web page which may include images,

sound or video clips needs to be reloaded. This wastes a lot of bandwidth. (2)

Users are unable to do any other useful tasks while the page is being reloaded

that may take a few seconds up to a few minutes.

Due to the above drawbacks, traditional Web is not suitable for applications

which require instantaneous response and continual data flow between the

client and the server. The Java Applet approach adopted by Natural Log helps

to provide a partial solution to this problem. In this approach, the Java Applet

code at the server is downloaded and executed at the client machine. Although

this approach offers mobility and instant update, it does not provide users

with the look and feel Web page. Furthermore, this approach requires Java

Runtime Environment to be installed on client machines which is not always

possible. In this paper, we have implemented the communication mechanism
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between the client and server in the WebMath system using Ajax (White,

2006). The term Ajax stands for “Asynchronous JavaScript and XML”. It

allows all interactions between the client and server to be carried out in the

background, thereby overcoming the drawbacks of the traditional Web. It

basically uses the XMLHttpRequest object to create a tunnel from the client’s

browser to the server and transmit information back and forth without having

to refresh the page to support asynchronous data retrieval. The data can

be transmitted in XML format since it may be in complex structure rather

than plain text. Ajax has recently become one of the popular techniques for

developing Web applications. Many popular web sites such as the Google

Maps (Google, 2007b), Google Mail (Google, 2007a), Google Suggest (Google,

2007c), Zuggest (Shanahan, 2006) and Meebo (Meebo, 2007) have used Ajax

for their implementations. Our approach makes the system behave exactly like

a Web page with the advantages of Web application such as mobility, instant

update while maintaining the look and feel style. In addition, it only requires

a Web browser and network connections, and thus ensures client machines’

safety. Note that our system is not targeted to run on the entire Web. Instead,

it is intended to be used at organizational levels such as universities, schools,

companies etc where reliable networks are available.

5 System Architecture

Figure 2 shows the overall architecture of the WebMath system which consists

of the following components: Handwriting Mathematical Expression Editor,

Computation Engine, Web Browser with Ajax-based Communicator. These

components are organized in client-server architecture according to its func-

19



tionalities.

Server

Web Server

Client

Client

Mathematical
Expression Editor

Computation
Engine

Symbol
Database

Fig. 2. System architecture of WebMath.

The client computers provide a user-friendly interface for users to enter math-

ematical inputs and view the computation outputs based on Web browsers.

Figure 3 shows the user interface of the WebMath system which contains

three windows: Expression Window, Recognition Window and Computation

Window.

5.1 Handwriting Mathematical Expression Editor

The Handwriting Mathematical Expression Editor is the major component of

the WebMath system for supporting progressive recognition. It receives data

inputs from the client’s Web browser for processing and recognition. As dis-

cussed in Section 3, we use the extended elastic matching algorithm for symbol

recognition and progressive structural analysis algorithm for structural anal-

ysis. A symbol database which stores the sample symbols is also maintained

at the server for symbol recognition purpose. The user input expressions are

displayed graphically in the Expression Window of the user interface, while

the recognition results are displayed in the Recognition Window.
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Fig. 3. User interface.

5.2 Computation Engine

The Computation Engine performs the calculation of the input mathematical

expressions. The computation functions are provided by Maple (Maplesoft,

2007). Many mathematical functions such as algebraic simplification and fac-

torization, and differentiation and integration are supported. The results are

displayed in the Computation Window of the browser interface through the

Mathematical Markup Language (MathML) representation (W3C, 2007a).

5.3 Web Browser with Ajax-based Communicator

To support efficient communication between the client and server, Ajax is

adopted for the implementation. Ajax helps maintain continual data flow be-
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tween the client and server without the need of refreshing the web page on

the browser. It makes the web-based system behave exactly like a desktop ap-

plication. Figure 4 shows the Ajax-based interactions between the client and

server in WebMath for expression recognition and mathematical computation.

Fig. 4. Ajax-based Communicator.

5.3.1 Expression Recognition

The Expression Window accepts user inputs on handwriting mathematical

expressions from either a mouse or an electronic pen. It is responsible for cap-

turing input data including strokes (represented by a sequence of points) and

user interactions such as pen-down, pen-up and pen-move events. In addition,

it is also responsible for displaying output data in graphical form on the Web

browser. To capture strokes and user interactions, an event-driven JavaScript

object is created. It is able to capture all interactions between users and the

client, convert the pen-move data into sequences of points and initiate the

communication with the server. It should be noted that the WebMath system

supports progressive recognition. Thus, whenever a user creates a stroke data
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(a pen-up event occurs), the JavaScript object collects data for that stroke

and sends it to the server for recognition. To support graphical display, SVG

(Scalable Vector Graphics) (W3C, 2007b) is embedded inline with HTML Web

pages. SVG is an XML standard which enables drawing on the Web. Netscape

and Firefox browsers have built-in features to render SVG while Internet Ex-

plorer requires an additional plug-in.

During expression recognition, the stroke data is sent from the Expression

Window to the Ajax-based Communicator after a pen-up event. Then, the

communicator creates an HTTP request which encapsulates the stroke data

and sends it to the server. At the server side, the stroke data in the new

request is combined with all the previously written strokes from that particular

user. They are then processed by Symbol Recognition, Progressive Expression

Partitioning and Progressive Structural Analysis to generate the progressive

recognition result. After that, the server stores the new stroke data into a

temporary cache for subsequent processing and returns the recognition result

in XML format back to the Ajax-based Communicator. The recognition result

is then displayed in the Recognition Window.

The Recognition Window renders mathematical expression graphically. Since

basic HTML does not support the rendering of mathematical expressions

in graphical forms, we use the Mathematical Markup Language (MathML)

(W3C, 2007a) representation to display mathematical expressions. Similar to

SVG, MathML is also treated as an external object. It is supported by Firefox,

but using it with Internet Explorer requires an additional plug-in.
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5.3.2 Mathematical Computation

In mathematical computation, it operates in a very similar way as in expression

recognition. The input expression and computation command are sent from

the Computation Window to the Ajax-based Communicator. These data are

then transmitted to the server by a HTTP request. The Computation Engine

at the server performs the calculation. The results are then sent back to the

communicator. It is then displayed graphically on the Computation Window.

The Computation Window supports a number of computation commands such

as algebraic factorization and simplification, and differentiation and integra-

tion. The Computation Engine provides the computational capability of the

WebMath system. In our design, we use Maple (Maplesoft, 2007) for the im-

plementation. To do this, the input mathematical expression and the corre-

sponding command are sent to Maple, and the resultant expression is calcu-

lated and returned to the client. Since Maple supports step-by-step problem

solving, the WebMath system is also able to offer this functionality to provide

a step-by-step solution to the given mathematical problem.

6 Conclusions

In this paper, we have presented the design and implementation of Web-

Math, a web-based handwriting mathematics system. The web-based design

enhances mobility, platform independence and system security compared with

standalone applications. The proposed WebMath system adopts a progressive

recognition approach to provide dynamic recognition of handwritten mathe-

matical expressions. This technique enables users to observe the recognition
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process and make immediate corrections if any errors are occurred during the

recognition process. The WebMath system provides a user-friendly interface

that supports the input of mathematical expressions, and mathematical ex-

pression recognition and computation over the Web. Mathematical computa-

tion is provided by a computer algebra system called Maple. This feature can

be used as a problem solving tool for high school mathematics. The WebMath

system has been evaluated which has achieved very satisfactory performance.

It is possible to embed the WebMath system into a tutoring and learning

system for mathematics. The system first generates a problem based on the

curriculum it stores. Students could use WebMath to work out the solutions.

The tutoring system could then compare its solution with that of the student

and performs a diagnosis based on the differences. After giving feedback, the

system reassesses and updates the student skills model and the entire cycle

is repeated. As the system is assessing what the student knows, it is also

considering what the student needs to know, which part of the curriculum is to

be reinforced, and how to present the material. By engaging student-centered

learning and providing a handwriting mathematics environment, WebMath

can help students to practice mathematical problems in their own pace. As

such, WebMath is useful in supporting high school students in mathematical

problem solving.
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