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ABSTRACT 

Background: Heterochromatic flicker photometry (HFP) is a psychophysical technique used to 

measure macular pigment optical density (MPOD). We used the MPS 9000 (MPS) HFP device. 

Our aim was to determine if the repeatability of the MPS could be improved to make it more 

suitable for monitoring MPOD over time.  

Methods: Intra-session repeatability was assessed in 25 participants (aged 20-50). The resulting 

data was explored in detail, e.g., by examining the effect of removal and adjustment of data with 

less than optimal quality parameters. A protocol was developed for improved overall reliability, 

which was then tested in terms of inter-session repeatability in a separate group of 27 participants 

(aged 19-52).  

Results: Removal and adjustment of data reduced the intra-session coefficient of repeatability (CR) 

by 0.04, on average, and the mean individual standard deviation by 0.004. Raw data observation 

offered further insight into ways of improving repeatability. The proposed protocol resulted in an 

inter-session CR of 0.08. 

Conclusions: Removal and adjustment of less than optimal data improved repeatability, and is 

therefore recommended. To further improve repeatability, in brief we propose that each patient 
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perform each part of the test twice, and a third time where necessary (described in detail by the 

protocol). Doing so will make the MPS more useful in research and clinical settings. 

Keywords: age-related macular degeneration; heterochromatic flicker photometry; macular 

pigment; macular pigment optical density
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INTRODUCTION 

Macular pigment (MP) is the collective name for three carotenoids, lutein (L), zeaxanthin (Z) and 

meso-zeaxanthin (MZ), which are found at high concentrations in the central macula, to the 

exclusion of all other carotenoids.1 It has received attention in recent years because of its possible 

links with the prevention of, and/or slowing the progression of, age-related macular degeneration 

(AMD). Lutein, Z and MZ are only available to the body by dietary intake of foods or supplements 

containing them,2,3 and it is possible to increase their concentration in the macula by regular 

consumption of foods and/or supplements rich in these carotenoids.4-6 

 

Macular pigment is predominantly a blue light filter; its absorption spectrum peaks around 460 

nm.7-10 It is well placed in the retina to reduce the amount of blue light reaching the photoreceptors; 

the higher the MP optical density (MPOD), the greater the amount of blue light filtering that will 

occur.11,12 It is also proposed that MP protects against oxidative stress, with evidence showing that 

L and Z have antioxidant properties.13,14 Since blue light and oxidative stress have been implicated 

in the pathogenesis of AMD,15,16 a high level of MP could reduce the risk for AMD, and there is an 

increasing amount of evidence to support this.11,17-20 

 

Heterochromatic flicker photometry (HFP) is a psychophysical technique that makes use of the 

spectral absorption properties and retinal location of MP in order to measure MPOD.21 HFP 

determines MPOD by presenting a light stimulus of two alternating wavelengths at the fovea and at 

an eccentric retinal area (technically the parafovea or perifovea but often referred to 

interchangeably as either the parafoveal or peripheral measure), with the aim of achieving a 

perception of no or minimal flicker; this occurs when the luminances of the two wavelengths 

appear equal to the observer.22,23 The wavelengths are chosen so that one is a short-wavelength 

blue light that is maximally absorbed by MP, and the other is a longer-wavelength green to yellow 

light that is not absorbed by MP. In traditional HFP, the blue-green alternation frequency remains 

constant as the radiance of the blue light is increased or decreased until minimal flicker is 

reported.24-26 The procedure is carried out with the subject looking directly at the stimulus (i.e., the 

foveal measure), and then with the subject looking away from the stimulus so that the eccentric 
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measure (where MP is assumed to be negligible) can be made.21 The presence of MP in the fovea 

(with subsequent absorption of some of the blue light before it reaches the photoreceptors) means 

that a greater radiance of blue light is required here for minimal flicker than at the eccentric point. 

The log ratio of the radiance of blue light needed at the fovea (Bfov) compared with that needed at 

the parafovea (Bref) gives a measure of MPOD, i.e., MPOD = log(Bfov/Bref).21 It should be noted 

that the chief (but not only) purpose of the eccentric measure is to cancel out the effect of any blue 

light absorption by the crystalline lens (which happens as a consequence of age-related lens 

yellowing) so that the final density value is a representation of MP alone, and not MP plus lens 

yellowing.27 

 

The MPS 9000 (also known as M|POD or QuantifEye; Tinsley Ophthalmic, Surrey, UK – referred to 

as the MPS from now on) adopts a novel approach to measurement of MPOD by HFP. Instead of 

responding to minimal or no flicker, subjects respond to the appearance of flicker as the blue-green 

alternation rate is automatically decreased in steps of 6 Hz from a starting level of 60 Hz.28 This is 

above the critical flicker fusion frequency for the test conditions and therefore subjects do not 

perceive any flicker initially. Rather than the radiance of one wavelength being adjusted by the 

subject, a sequence of blue-green ratios is used, and these are inverse-yoked to ensure that 

overall luminance remains constant. The instrument also offers the possibility of estimating MPOD 

from a central measure alone, the peripheral measure being estimated from the age of the subject 

and their expected level of lens yellowing.27 

 

We have previously reported that the inter-session coefficient of repeatability (CR) of the MPS, 

when used in a clinical setting according to manufacturer guidelines, is between 0.28 and 0.33.29 

We were keen to find out if this could be improved. In this paper we present techniques and data 

that show how the CR can be reduced to levels that make the instrument more suitable for 

monitoring MPOD over time. 

 

MATERIALS AND METHODS 

Subjects 



	 5

For an initial intra-session repeatability study, 25 healthy participants (4 males, 21 females) were 

recruited from staff and students of Aston University, with an age range of 20 to 50 years 

(mean±SD: 29.4±6.9 years). Refractive error (best vision sphere, BVS) was between +1.00DS and 

-10.50DS (mean±SD: -2.25±3.25 DS – all eyes averaged). Visual acuity (VA) was measured under 

standard testing conditions using a logMAR chart; all eyes had VAs of 0.06 logMAR (Snellen 

6/7.5+2) or better. Nine of the subjects had prior experience with the MPS. 

 

Following the intra-session study, a separate group of 27 healthy participants (11 males, 16 

females) took part in an inter-session repeatability study. Their ages ranged from 19 to 52 years 

(mean±SD: 29.9±10.1 years), BVS was between +3.00 DS and -8.75 DS (mean±SD: -1.50±3.00 

DS) in the eye being tested (the right eye for all but one subject), and VA was 0.14 logMAR 

(Snellen 6/7.5–2) or better. Thirteen of these subjects had prior experience with the MPS. 

 

Aston University’s Ethics Committee approved the studies. All subjects signed an informed 

consent form, and all procedures adhered to the tenets of the Declaration of Helsinki. 

 

Data Collection 

The MPS is a small, portable device that has been described in detail elsewhere.28 In brief, for the 

foveal (‘central’) test, subjects look directly at a central target composed of blue and green light-

emitting diodes (LEDs). The alternation rate of the blue and green LEDs is decreased until the 

subject presses a response button to register their first awareness of the stimulus flickering. This 

plots a point on a graph that is visible to the operator via a linked computer screen. The process 

then starts again. The first five responses are used to establish the flicker sensitivity of the subject 

so that the test can then be conducted at the flicker frequency best suited to each individual 

subject. Based on this, the main part of the test begins automatically, with the subject responding 

to their first perception of flicker throughout a series of green-blue ratios, until a V-shaped curve is 

plotted on the screen (figure 1) – the minimum point on the curve corresponds to equiluminance of 

the blue and green lights.28 The process is repeated for the perifoveal (‘peripheral’) test where the 

subject’s gaze is directed to a red target that is eight degrees eccentric from the centre, but the 
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task is still to respond to their first awareness of flicker in the central stimulus. An internal algorithm 

calculates the MPOD using the difference between the central and peripheral minima (the larger 

the difference, the higher the MPOD), although this can also be calculated manually if necessary. 

 

Figure 1 here 

 

In the current investigations, all subjects were tested by the same investigator (OH). They were 

directed to rest their forehead on the upper part of the instrument’s eyepiece, such that the eye 

being tested was comfortably centered on the appropriate target. An explanation of how to perform 

the MPS test was given verbally, using an instruction sheet. Subjects wore their habitual distance 

spectacles/contact lenses, if appropriate, and the eye not being measured was occluded to avoid 

distraction. The test room was occupied only by the operator and subject, providing a quiet, calm 

environment. 

 

For the intra-session repeatability study, each participant had their right eye (RE) and left eye (LE) 

assessed alternately, with three repeats per eye, i.e., R1, L1, R2, L2, R3, L3. The RE was always 

tested first, and before the central and peripheral tests of R1 and L1, a short practice test was 

conducted (the practice option is part of the MPS software). The total procedure time, including 

regular, short breaks to help avoid fatigue, was approximately 45 minutes. 

 

For the inter-session repeatability study, after the short central and peripheral practices, each 

participant completed between two and three central and peripheral tests at each visit (visits were 

7-14 days apart), according to the protocol described later. The total procedure time per visit was 

between 10 and 20 minutes. 

 

Post-Data-Collection Secondary Analysis 

Because the MPS generates a visible curve as subjects respond to flicker, it provides a way for the 

operator to assess whether the curve adheres to the expected V-shape, and hence gives an 

indication as to the accuracy of the MPOD value produced. Many of the curves generated by 
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participants in the intra-session study did not conform to the ideal V-shape with a clearly-defined 

minimum, but they still produced an MPOD value and were considered acceptable by us at the 

time, based on knowledge acquired from the product manual (‘MPOD QuantifEye Reference Guide 

and Technician Training’). We assessed the influence on repeatability of data from these less than 

optimal curves. Hence, further careful observation of all subjects’ curves took place; MPOD values 

generated from curves without a clear-cut minimum area were removed, and MPOD values 

generated from curves with questionable minima were adjusted (see figure 2 and table 1). It should 

be noted that the product literature advises that MPOD values from graphs that are “scattered 

significantly” should not be relied upon as accurate, but the visual examples of unacceptable 

graphs are far removed from anything resembling a V-curve, and therefore it was difficult for us to 

determine what the cut-off point for significant scatter was, particularly as very few subjects 

exhibited consistently ‘perfect’ curves. During the data collection, the operator did discard and 

repeat any tests that were judged (subjectively) to be of unacceptable quality at the time. 

 

Figure 2 here 

 

Table 1 here 

 

Statistics 

Microsoft Excel and IBM SPSS were used for data analysis. Simple calculations were used to 

derive mean individual standard deviations. Test-retest repeatability (intra- and inter-session) was 

determined using Bland-Altman analysis.30 The differences between the intra-session CRs before 

and after data removal/adjustment were assessed by one-way repeated measures ANOVA (each 

data set was normally distributed). 

 

Accurate analysis of test-retest data can be achieved using the CR,30 which gives the 95% 

confidence limits for the difference between two sets of results. It is calculated as 1.96 multiplied 

by the standard deviation of the differences between two sets of data, and indicates the amount of 

change that can occur between readings and still be classed as measurement noise. In other 
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words, only increases or decreases in MPOD greater than the CR should be classed as clinically 

detectable. 

 

For the intra-session data, a one-way repeated measures ANOVA was conducted to analyse the 

original CR values (O), the CR values after data removal (R), and the CR values after data 

removal and adjustment (RA). Mauchly’s test indicated that the assumption of sphericity was not 

met, and as a result, degrees of freedom were corrected using the Greenhouse-Geisser estimate 

of sphericity. 

 

RESULTS 

Table 2 here 

 

The intra-session mean individual standard deviations of the MPOD values are given in table 3 for 

each test condition. In other words – taking ‘CP RE’ as an example – the standard deviation of 

each individual’s three CP (central and peripheral testing) RE MPOD values was worked out, 

followed by calculation of the mean of all 25 standard deviations. After adjustment of MPOD values 

as appropriate (minima adjustment), the standard deviations were slightly lower in all categories. 

Note that three MPOD values were obtained for each test condition, and no data was removed for 

this particular analysis.  

 

Table 3 

 

The intra-session CR values for MPOD, before and after data removal and minima adjustment, are 

shown in table 4. There was a statistically significant improvement in repeatability (F(1.2,8.4) = 

11.09, p=0.008). Pairwise comparisons (Bonferroni corrected) indicated a statistically significant 

difference between O and RA (p<0.05), and between R and RA (p<0.05), but not between O and R 

(p>0.05). Figures 3 and 4 illustrate in graphical format (Bland-Altman plots) the repeatability for the 

various data sets. 
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Table 4 here 

 

Figure 3 here 

 

Figure 4 here 

 

Table 5 here 

 

The original raw intra-session MPOD difference data was also considered. It was calculated that 

with the CP MPOD data, between 64% (R1 vs R2) and 80% (L2 vs L3) of participants’ MPOD 

values were within 0.09 of each other from one test to the next. With the C-only (central testing 

only, age-based peripheral estimate provided by the MPS) MPOD data, between 84% (R1 vs R2) 

and 92% (R2 vs R3, L1 vs L2, and L2 vs L3) were within 0.09 of each other from one test to the 

next. These reasonably high percentages imply that our CR values may be influenced by 

individuals who simply struggle to perform the flicker test well. Indeed, taking into account the 

removed MPOD values, plus the adjusted values, the above percentages increased to 80-91% and 

86-100%, for CP MPOD and C-only MPOD respectively. To explore this further, table 5 is a 

subject-specific breakdown of where and how much data was removed. It shows that few subjects 

had more than one central minimum value or one peripheral minimum value removed, thus 

indicating that most subjects achieved at least two optimal central and peripheral curves per eye 

(albeit with some later adjustments), and this was seemingly irrespective of whether subjects had 

some previous experience of using the MPS or not. One subject, in particular, clearly struggled 

with the peripheral MPS task, resulting in the removal of five of their six peripheral curves. 

 

An MPOD reading that is repeatable to within 0.09 seems like an acceptable limit of accuracy for a 

psychophysical task of this nature. Combined with our other findings, this led to the following 

protocol suggestion:  

 For reliable results, each subject should perform the central and peripheral test twice, even 

if the first curves are considered to be ‘perfect’. 
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 If there is a ≥0.4 dB difference between equivalent minimum readings (central or 

peripheral), or if one or more of the generated curves are less than optimal in appearance 

(and not amenable to adjustment), then a third central and/or peripheral test (as 

appropriate) should be completed.  

 When a curve exhibits a poorly-defined minimum, it should not be included in the final 

calculation of MPOD, but adjustment of a computer-produced minimum reading is 

acceptable when a curve has two or three very similar minimum points.  

 

This method will lead to most subjects having at least two good-quality central and peripheral 

curves, and from these the accepted minima can be averaged, followed by calculation of MPOD 

using the earlier-established table (table 1). The reason for choosing a difference of 0.4 dB as the 

cut-off point at which a repeat test should be completed is because this equates to a 0.09 or 0.1 

difference in MPOD (see table 1). It could have been decided to use a ≥0.1 difference in MPOD 

readings as the point at which to repeat a test. The problem with this, however, is that it requires 

both tests to be repeated (central and peripheral), which may be unnecessary. By concentrating on 

the individual curves (and their minimum values), the testing time can be reduced. 

 

The protocol above was subsequently tested in terms of inter-session repeatability with our second 

group of subjects. Using this technique, all subjects had two to three good quality central and 

peripheral curves to derive MPOD from, and no subjects needed to be removed from the analysis. 

The mean CP MPOD for the 27 participants in the inter-session study was 0.35±0.16 at visits one 

and two. The mean C-only MPOD was 0.38±0.18 and 0.39±0.18 at visits one and two respectively. 

Table 6 and figure 5 show the inter-session agreement between MPOD values. The CRs were 

0.084 and 0.063 for CP and C-only MPOD respectively. 

 

Table 6 here 

 

Figure 5 here 
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DISCUSSION 

Through data interpretation and procedural changes, we aimed to improve the repeatability of the 

MPS, and assessed the validity of doing so by means of various statistical indicators. 

 

In a study by van der Veen et al.,28 26 subjects repeated MPS measurements (CP) five times in a 

single session, and the mean individual standard deviation was 0.067±0.033. The results of the 

present investigation are not directly comparable because there were only three repeats per eye, 

and the same eye was not tested consecutively. Nevertheless, the figures are similar, with our CP 

RE mean individual standard deviation being 0.063±0.047. In all four test conditions, minima 

adjustment alone successfully improved (i.e., reduced) the mean individual standard deviation of 

the three repeated MPOD measurements. This was encouraging, as it demonstrated that the 

adjustment technique is beneficial. 

 

A statistically significant improvement in the intra-session repeatability was obtained through 

removal and adjustment of the data. The weakest CR was between the first and second CP RE 

MPOD tests (0.25). The CR was reduced to 0.16 following removal of less than optimal data, 

although this involved a fairly high number of such removals (11 out of 50 MPOD values). 

However, we also found that the majority of our participants produced serial MPOD values within 

0.09 of each other, and moreover that most subjects achieved at least two (out of three) optimal 

central and peripheral curves per eye (with some minima adjustments). This led to a protocol 

suggestion that aimed to improve on previously-reported MPS-based MPOD CR values. The 

protocol was assessed using 27 volunteers, and the result was an inter-session (CP MPOD) CR of 

0.084. This is a considerable improvement on the CRs of 0.31 (n=40), 0.18 (n=20) and 0.19 

(n=25), as reported by Bartlett et al.,29 de Kinkelder et al.31 (2011) and Loughman et al.32 

respectively. The ages of the participants in these studies were very similar to the current one. This 

new CR is also as good as, if not better than, any stated HFP reliability of the last 15 years.33,34 It 

could be argued that the intra-session results were influenced by the fact that about half of the 

participants were already familiar with the MPS, especially as the mean differences between our 

first measurements sets (R1 and R2) are larger than the mean differences between our last 
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measurement sets (L2 and L3)  However, further analysis of the inter-session data, using only 

those with no prior experience on the MPS (n=14), resulted in a CR of 0.072 and 0.043 for C-only 

MPOD.  It is also important to bear in mind that intervention studies have demonstrated only small 

increases in MPOD (rarely more than 0.07) with lutein/zeaxanthin supplementation33 and so HFP 

instruments may not be able to detect these changes. 

 

A high level of inter-session repeatability is important if MPOD is to be accurately monitored over 

time, especially in an intervention scenario where an individual is attempting to increase their 

L/Z/MZ intake via dietary modification and/or supplement use. Therefore, we recommend following 

the protocol that we have described when using the MPS to monitor changes in MPOD.  

 

A further point to consider on this matter is the C-only MPOD repeatability. For the purposes of 

monitoring MPOD over time, the central test alone could suffice, because the emphasis is on 

whether there is any change in MPOD, rather than whether the MPOD value is an accurate 

representation of the subject’s actual MP.27 To this end, we observed in our intra-session study 

that between 80% (R1 vs R2) and 92% (L2 vs L3) of participants’ MPOD values were within 0.05 

of each other from one test to the next. Furthermore, the removal of MPOD values generated from 

curves with poorly-defined minima, plus our adjusted values, increased these percentages to 

between 86% and 96%. Consequently, it may be easier to detect a clinically significant change in 

an individual’s MPOD by using the C-only MPOD value. This is supported by the inter-session CR 

of 0.063, as reported above. 

 

Despite the improved repeatability demonstrated using the protocol, we concede that in a clinical 

setting, it may be considered too convoluted, and the calculations themselves too time-consuming. 

It might therefore be more appropriate to use a slightly different protocol, albeit resulting in one or 

two unnecessary tests: Each patient could perform the central and peripheral test twice, even if the 

first curves are considered to be ‘perfect’. If there is a ≥0.1 difference between MPOD readings, or 

if one or more of the generated curves are less than optimal in appearance (and not amenable to 

adjustment), then a third central and peripheral test should be completed. The average of the two 
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or three MPOD values should give an accurate measure of MP, unless many of the curves are 

poor or the MPOD values constantly variable, in which case it would be worth paying attention to 

the central curves and C-only MPOD readings to see whether the results are more consistent.  

It could be argued that the examiner still has a great influence on the final value measured, as he 

or she has to make a subjective decision on the quality of a measurement. One way to get around 

this problem would be to alter the software such that all inadequate measurements are 

disregarded, and a repeat test is forced when the difference between successive measurements 

exceeds 0.4 dB.  

In summary, we propose an evidence-based testing protocol that improves the repeatability of the 

MPS, making the instrument more useful in clinical and research environments. 
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Figure 1. Example of an optimal central curve and an optimal peripheral curve – both V-shaped 
with well-defined minima. 
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Figure 2. Example of a less than optimal central curve (diamond points – right curve) and a 
peripheral curve (square points – left curve) with two possible minima.  
The central curve is less than optimal because it has several points all with similar flicker 
frequencies to the computer-chosen exact minimum at 6.80 dB, rather than an isolated, definite 
minimum. We removed an MPOD value generated by a curve such as this from our repeatability 
analysis. The peripheral curve has an exact minimum at 4.50 dB but, judging by eye, its right 
adjacent point has a very similar flicker frequency that could also be argued to be a minimum (at 
4.70 dB). We would adjust an MPOD value generated by a curve such as this, by recalculation 
using a peripheral minimum of 4.60dB, i.e., the mean of these two points (the dashed line indicates 
the adjusted minimum)	
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ORIGINAL AFTER DATA REMOVAL AND ADJUSTMENT 

  

 

  

 

Figure 3. Bland-Altman plots representing the difference in CP testing derived MPOD readings 
between measures, compared with the mean of both measures. The solid line represents the 
mean difference, and the dashed lines represent the 95% confidence limits.  
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Left plots = original data (O), i.e., before removal and adjustment. Right plots = after data removal 

and minima adjustment (RA).  

NB There are several overlapping points in each plot	
 



	 21

 

ORIGINAL AFTER DATA REMOVAL AND ADJUSTMENT 

  

 

  

 

Figure 4. Bland-Altman plots representing the difference in C-only derived MPOD readings 
between measures, compared with the mean of both measures. The solid line represents the 
mean difference, and the dashed lines represent the 95% confidence limits. 
NB There are several overlapping points in each plot. 
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Figure 5. Bland-Altman plots representing the difference in MPOD readings between two visits, 
compared with the mean of both visits. The solid line represents the mean difference, and the 
dashed lines represent the 95% confidence limits. 

	
Difference:  

C min – P min 
MPOD 

Difference:  

C min – P min 
MPOD 

0.1 0.02 2.1 0.5 

0.2 0.05 2.2 0.53 

0.3 0.07 2.3 0.55 

0.4 0.1 2.4 0.58 

0.5 0.12 2.5 0.6 

0.6 0.14 2.6 0.62 

0.7 0.17 2.7 0.65 

0.8 0.19 2.8 0.67 

0.9 0.22 2.9 0.7 

1.0 0.24 3.0 0.72 

1.1 0.26 3.1 0.74 

1.2 0.29 3.2 0.77 

1.3 0.31 3.3 0.79 

1.4 0.34 3.4 0.82 

1.5 0.36 3.5 0.84 

1.6 0.38 3.6 0.86 

1.7 0.41 3.7 0.89 

1.8 0.43 3.8 0.91 

1.9 0.46 3.9 0.94 

2.0 0.48 4.0 0.96 

Table 1. Conversion table for MPS-based MPOD.  
New MPOD values, following adjustment (by eye) of minimum points on the curves, were 
calculated as follows: 
Difference between central minimum (C min) and peripheral minimum (P min) = X 
X = MPOD, found by referring to the table. Example: C min = 6.1 dB, P min = 4.7 dB; 6.1 – 4.7 = 
1.4; 1.4 = MPOD value of 0.34. 
The authors produced this conversion table after much practice on the MPS. 
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Test condition 
Mean (±SD) MPOD 

Measure 1 Measure 2 Measure 3 

CP RE 0.36 ± 0.17 0.31 ± 0.13 0.32 ± 0.14

CP LE 0.33 ± 0.14	 0.35 ± 0.15 0.32 ± 0.13

C-only RE 0.39 ± 0.15	 0.37 ± 0.13 0.36 ± 0.14

C-only LE 0.37 ± 0.14	 0.36 ± 0.13 0.36 ± 0.14

Table 2. The mean MPODs of the 25 subjects participating in the intra-session study.  
CP = central and peripheral testing derived MPOD. C-only = central testing only derived MPOD 
(peripheral estimate provided by the MPS, based on subject age). RE = right eye. LE = left eye. 
 

Test condition 
Mean SD between 

measures 1, 2 & 3 

Mean SD after 

minima adjustment 

CP RE 0.063 ± 0.047 0.060 ± 0.045 

CP LE 0.047 ± 0.030 0.041 ± 0.028 

C-only RE 0.038 ± 0.027 0.034 ± 0.027 

C-only LE 0.024 ± 0.021 0.023 ± 0.019 

Table 3. The means of the individual standard deviations of three repeated MPOD measurements 
in 25 subjects, demonstrated for each of the four test conditions, before and after minima 
adjustment.  
 

Comparison 

Coefficient of repeatability 
Number of 

MPOD values 

from a total of 50 

removed  

Remainder of 

MPOD values 

with minima 

adjusted  

Original (O) 
After data 

removal (R) 

After data 

removal & 

adjustment of 

minima (RA) 

CP R1, R2 0.25 0.16 0.16 11 (n=10) 7 (n=7) 

CP R2, R3 0.17 0.15 0.12 7 (n=5) 17 (n=15) 

CP L1, L2 0.18 0.15 0.13 6 (n=5) 18 (n=16) 

CP L2, L3 0.14 0.13 0.12 4 (n=3) 18 (n=16) 

C-only R1, R2 0.13 0.11 0.10 3 (n=3) 5 (n=4) 

C-only R2, R3 0.11 0.08 0.07 5 (n=5) 9 (n=7) 

C-only L1, L2 0.08 0.08 0.08 2 (n=2) 6 (n=5) 

C-only L2, L3 0.09 0.08 0.07 1 (n=1) 9 (n=8) 

Table 4. Intra-session coefficients of repeatability for the various data sets, before and after data 
removal and minima adjustment. R1, L2, etc. = right eye measure 1, left eye measure 2, etc. n = 
number of subjects (out of 25). 
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Number of minimum values removed: 0 1 2 3 4 5 6 

C
en

tr
al

 (
m

ax
 6

 

va
lu

es
 r

em
ov

ed
) Total number of subjects 18 5 2 0 0 0 0 

Number of subjects with previous 

experience 

7  

(78) 

1  

(11) 

1  

(11) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Number of subjects with NO 

previous experience 

11 

(69) 

4  

(25) 

1  

(6) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

P
er

ip
h

er
al

 (
m

ax
 

6 
va

lu
es

 

Total number of subjects 15 7 2 0 0 1 0 

Number of subjects with previous 

experience 

4  

(44) 

3  

(33) 

2  

(22) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

Number of subjects with NO 

previous experience 

11  

(69) 

4  

(25) 

0  

(0) 

0  

(0) 

0  

(0) 

1  

(6) 

0  

(0) 

T
o

ta
l (

m
ax

 1
2 

va
lu

es
 r

em
ov

ed
) Total number of subjects 12 7 3 2 0 0 1 

Number of subjects with previous 

experience 

4  

(44) 

2  

(22) 

1  

(11) 

2  

(22) 

0  

(0) 

0  

(0) 

0  

(0) 

Number of subjects with NO 

previous experience 

8  

(50) 

5  

(31) 

2  

(13) 

0  

(0) 

0  

(0) 

0  

(0) 

1  

(6) 

Table 5. The breakdown of how many minimum values were removed in the secondary analysis, 
and how many subjects were involved in these removals. Percentages are in brackets. 

	
 

 CP MPOD1 – MPOD2 C-only MPOD1 – MPOD2 

Mean difference -0.003 -0.005 

SD of mean difference 0.043 0.032 

Coefficient of repeatability 0.084 0.063 

Table 6. Determination of inter-session coefficients of repeatability (n=27) using the proposed 
protocol. 

	
 


