
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you have discovered material in AURA which is unlawful e.g. breaches 
copyright, (either yours or that of a third party) or any other law, including 
but not limited to those relating to patent, trademark, confidentiality, data 
protection, obscenity, defamation, libel, then please read our takedown 
policy at http://www1.aston.ac.uk/research/aura/aura-take-down-policy/  
and contact the service immediately eprints@aston.ac.uk. 

DOCTORAL THESIS

Knowledge engineering for mental-health
risk assessment and decision support

Abu Ahmed



Knowledge Engineering for

Mental-health Risk Assessment and

Decision Support

ABU AHMED

Doctor of Philosophy

February 2011

This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without proper

acknowledgement.



ASTON UNIVERSITY

Knowledge Engineering for Mental-health

Risk Assessment and Decision Support

Abu Ahmed

Doctor of Philosophy, 2011

Abstract

Mental-health risk assessment practice in the UK is mainly paper-based, with little standardi-

sation in the tools that are used across the Services. The tools that are available tend to rely

on minimal sets of items and unsophisticated scoring methods to identify at-risk individuals.

This means the reasoning by which an outcome has been determined remains uncertain. Con-

sequently, there is little provision for: including the patient as an active party in the assessment

process, identifying underlying causes of risk, and effecting shared decision-making.

This thesis develops a tool-chain for the formulation and deployment of a computerised

clinical decision support system for mental-health risk assessment. The resultant tool, GRiST,

will be based on consensual domain expert knowledge that will be validated as part of the

research, and will incorporate a proven psychological model of classification for risk computation.

GRiST will have an ambitious remit of being a platform that can be used over the Internet,

by both the clinician and the layperson, in multiple settings, and in the assessment of patients

with varying demographics. Flexibility will therefore be a guiding principle in the development

of the platform, to the extent that GRiST will present an assessment environment that is tailored

to the circumstances in which it finds itself. XML and XSLT will be the key technologies that

help deliver this flexibility.

Keywords: ontology, classification, XML, XSLT, CDSS, GRiST

2



In the name of Allah; the beneficent, the merciful

3



Acknowledgements

The path I have taken in producing this thesis has been illuminated for me by so many people.

It is not possible for me to convey the full depths of my gratitude using words, as language

itself seems to be too crude a tool. Nevertheless, I shall humbly ask that my ineloquence be

overlooked as I try to express my sincere thanks to those who lit my way.

I owe the greatest debt to my supervisor, Dr Christopher Buckingham. This thesis would

not have been possible were it not for his boundless patience, his enthusiasm and support, and

his unwavering belief in me. He made me see sense where I could only see chaos and has steered

me through this endeavour with completely selfless dedication.

I should like to express my immense gratitude to Hifzur Rahman, who brought me back from

the brink when I had lost my way. He has provided me with constant support and encouragement

throughout this journey; and this, I will not forget.

I should also like to express my gratitude to my oldest friend, Mamun Uddin. He has been

my stalwart supporter; relentlessly pushing me forward, yet also showing me that life can still

resume during weekends!

My sincere thanks to Faisal Malik and Iram Noreen, who have both shown me the true

meaning of dedication. They have been my role models and have inspired me to never turn my

back on my aspirations.

I thank Homerha Masood for being my compass and pointing me in the right direction when

I was in limbo. I also thank my good friends, Mahnaz Rouf, Salma Jabeen, and Saila Hussain

for their kind words and support over the years, as I do Naumana Rabbani and Akhlaq Khan.

I am indebted to Drs Ben Ingram and Nabeil Maflahi for their insight and advice on aspects

of PhD work, as I am to my friends and colleagues within the Knowledge Engineering Group:

Drs Keith Priscott, Anthony Jones, Les Hazlewood and O. dé.túnj́ı O. dé.jo. b́ı.

I should like to acknowledge the financial support provided by Aston University; particularly

4



through the award of a School of Engineering-funded PhD studentship. I also acknowledge

grants from The National Institute for Health Research, the Burdett Trust, and Advantage

West Midlands, which have helped fund this research.

Finally, I should like to thank all the mental-health practitioners and service users who have

taken part in this project. They have selflessly donated their time to the cause of developing

a mental-health Decision Support System, as have the numerous researchers and programmers,

whom I also wish to thank.

5



Contents

Acknowledgements 4

Contents 6

List of Tables 13

List of Figures 15

List of Abbreviations 16

Declaration 20

1 Introduction 21

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.1 Current exigencies in mental-health assessment . . . . . . . . . . . . . . . 23

1.2 Thesis Aims and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 The Galatean Model of Classification 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Classification Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Exemplar theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Prototype theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Dual-process theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 The Galatean Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 The Galatean classification process . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 The hierarchical Galatean model and its classification process . . . . . . . 30

6



CONTENTS

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Clinical Decision Support Systems 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The Scope of CDSSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 CDSS knowledge representation and architecture . . . . . . . . . . . . . . 38

3.2.2 CDSS domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 CDSS contexts and audiences . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Strategic Challenges to CDSS Implementers . . . . . . . . . . . . . . . . . . . . . 42

3.4 The Characteristics of a Good CDSS . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Practices and features yielding positive outcomes . . . . . . . . . . . . . . 43

3.4.2 Practices and influences reducing CDSS efficacy . . . . . . . . . . . . . . . 47

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Choosing a Representation Format for Domain Knowledge 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 The Ubiquity of XML-based Serialisation . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Web Ontology Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 On the Appropriateness of OWL for Developing GRiST . . . . . . . . . . . . . . 53

4.4.1 The maturity of supporting tools . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 The OWL file format is complex . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.3 Learning curve of OWL ontology creation tools . . . . . . . . . . . . . . . 55

4.4.4 The dangers of feature overload and restrictions . . . . . . . . . . . . . . 55

4.5 Using XML and XSLT to Produce Flexible Knowledge Representations . . . . . 56

4.6 XSLT Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 XSLT and web Browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.2 Standalone XSLT processors . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Validation of Mental-health Knowledge Elicited From Experts 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Interviewing of Experts & Mind Map Generation . . . . . . . . . . . . . . . . . . 61

5.2.1 Reviewing of mind maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Generic Software and Web Infrastructure for Remote Activities . . . . . . . . . . 64

7



CONTENTS

5.3.1 Tree annotation program . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Web architecture supporting tree annotation . . . . . . . . . . . . . . . . 66

5.3.3 Architecture supporting reviewing of expert annotations . . . . . . . . . . 67

5.4 Rationalisation of Consensual Knowledge Structure . . . . . . . . . . . . . . . . . 67

5.4.1 Notional tree pruning points and their ratification . . . . . . . . . . . . . 68

5.5 Interim Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Increasing Tree Validation Flexibility Through Structured comments . . . . . . . 70

5.6.1 Using keywords inside comments . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Transforming the Tree via XSLT . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7.1 Results of transforming the pruned tree . . . . . . . . . . . . . . . . . . . 74

5.8 Engagement in KE Activities by Panel Members . . . . . . . . . . . . . . . . . . 75

5.8.1 Web task participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8.2 Response to emails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8.3 Navigating the website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8.4 Engagement with tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8.5 Satisfaction with project participation . . . . . . . . . . . . . . . . . . . . 78

5.8.6 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 The Structure Tree and its Enrichment 82

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Overview of the ST at End of Knowledge Refinement . . . . . . . . . . . . . . . . 83

6.3 Semantics and Organisation of Generic Nodes . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Generic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Generic datums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.3 Direct risk children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.4 Rules governing generic nodes and where they are fully defined . . . . . . 87

6.4 Question-related Paraphernalia and Data Types . . . . . . . . . . . . . . . . . . . 88

6.4.1 The different types of question: question, filter-q attributes . . . . . . 88

6.4.2 Generating rapid screening questions: the layer attribute . . . . . . . . . 89

6.4.3 Data types associated with questions . . . . . . . . . . . . . . . . . . . . . 91

6.5 Representing Membership Grade Profiles . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.1 Collection of preliminary value-mg data . . . . . . . . . . . . . . . . . . . 96

8



CONTENTS

6.6 Flexible Assessments Based on User Expertise Level . . . . . . . . . . . . . . . . 98

6.6.1 Practitioner expertise quantised as levels . . . . . . . . . . . . . . . . . . . 98

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Representing Relative Influence 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 The ST is Not Suitable for Recording RI Information . . . . . . . . . . . . . . . . 104

7.3 Generating the Relative Influence Tree . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Priming the ST for transformation . . . . . . . . . . . . . . . . . . . . . . 106

7.3.2 RIT generation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 RI Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 The Galatean Tree Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Synchronising RITs and STs 112

8.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Galatean Tree Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 The Knowledge Engineering Process is Iterative . . . . . . . . . . . . . . . . . . . 113

8.3.1 GRiST and population diversity . . . . . . . . . . . . . . . . . . . . . . . 113

8.3.2 Organic evolution through clinical usage . . . . . . . . . . . . . . . . . . . 114

8.4 The Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.5 Architecture for Tracking a Specific RIT Node . . . . . . . . . . . . . . . . . . . 116

8.5.1 Unique node identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5.2 Node fingerprint audit trail . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.5.3 Interim conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.6 Robust Tracking of Nodes with One-to-many Mappings Between ST and RIT . . 121

8.6.1 Fingerprint remediation in the RIT . . . . . . . . . . . . . . . . . . . . . . 124

8.6.2 Analysis of revised fingerprint tracking algorithm efficacy . . . . . . . . . 124

8.6.3 Conclusions and discussion on node tracking . . . . . . . . . . . . . . . . 129

8.7 RI Reappraisal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.7.1 Changes that affect RIs and schemes for RI reappraisal . . . . . . . . . . 131

8.7.2 The application of heuristics in RI reappraisal . . . . . . . . . . . . . . . . 132

8.7.3 The mechanics of RI reappraisal . . . . . . . . . . . . . . . . . . . . . . . 133

9



CONTENTS

8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9 Deployment of a Preliminary Risk Assessment Solution 136

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 Rationale for Specialised Assessment Trees . . . . . . . . . . . . . . . . . . . . . . 137

9.2.1 The need for a Client Assessment Tree . . . . . . . . . . . . . . . . . . . . 137

9.2.2 Optimising storage and bandwidth through separation of question data . 138

9.2.3 Further optimisation through separation of answer data . . . . . . . . . . 140

9.3 Generating the Assessment Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3.1 Generating the CAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3.2 Generating the QT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.3.3 Generating the AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.4 Relating the CAT, QT and AT to the Galatean Tree Hierarchy . . . . . . . . . . 145

9.5 Deploying the Galatean Risk Screening Tool . . . . . . . . . . . . . . . . . . . . . 147

9.5.1 Paper-based GRiST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.5.2 HTML-based thin-client GRiST . . . . . . . . . . . . . . . . . . . . . . . 149

9.5.3 Java-based fat-client GRiST . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.6 Reporting in GRiST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.6.1 Client answers report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.6.2 The GTH and specialised reports . . . . . . . . . . . . . . . . . . . . . . . 160

9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10 Further Customisation of GRiST for Different Populations and Contexts 164

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.2 The Need for Lateral Customisation . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2.1 The organisational perspective . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2.2 The clinical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.2.3 The patient perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.3 Rationale for a Super Structure Tree . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.4 Super Structure Tree Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.4.1 The populations attribute . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.4.2 The enhanced layer and order attributes . . . . . . . . . . . . . . . . . . 169

10.4.3 The SST Enhanced question, filter-q, label and help attributes . . . 170

10



CONTENTS

10.4.4 Inverting value-mgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.4.5 Population-specific pruning of nodes . . . . . . . . . . . . . . . . . . . . . 171

10.4.6 Adding additional nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.4.7 Adding new populations to the SST . . . . . . . . . . . . . . . . . . . . . 172

10.5 The SST and its Incorporation into the GTH . . . . . . . . . . . . . . . . . . . . 173

10.6 Fingerprint Reconciliation and the SST . . . . . . . . . . . . . . . . . . . . . . . 174

10.7 Machinery for Generating and Organising STs and Derivative Trees . . . . . . . 174

10.7.1 Computer-assisted tree management . . . . . . . . . . . . . . . . . . . . . 175

10.7.2 GTH Tree Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.7.3 Incorporating amended trees back into the GTH . . . . . . . . . . . . . . 178

10.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11 Full Deployment within NHS Trusts: A Case Study 181

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.2 Introducing Participating NHS Trusts . . . . . . . . . . . . . . . . . . . . . . . . 181

11.2.1 Holbrook NHS Foundation Trust . . . . . . . . . . . . . . . . . . . . . . . 182

11.2.2 Cradlemere Partnership NHS Foundation Trust . . . . . . . . . . . . . . . 182

11.3 Deployment Considerations Generic to Trusts . . . . . . . . . . . . . . . . . . . . 183

11.3.1 Information governance issues . . . . . . . . . . . . . . . . . . . . . . . . . 183

11.3.2 Database issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

11.3.3 Interface integration issues . . . . . . . . . . . . . . . . . . . . . . . . . . 184

11.4 The Generic Trust Interface to GRiST . . . . . . . . . . . . . . . . . . . . . . . . 185

11.5 Flexibility Through API Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.6 Impact of Electronic GRiST Deployment in Partner Trusts . . . . . . . . . . . . 189

11.7 GRiST Usage Outside Trusts and in the Wider Community . . . . . . . . . . . . 192

11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12 Conclusions and Future Work 195

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

12.2 Review of Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

12.3 A Flexible Toolchain for Mental-health Assessment and Decision Support . . . . 196

12.4 Benefits of GRiST’s Approach to KE . . . . . . . . . . . . . . . . . . . . . . . . . 199

12.5 Contribution to CDSS Best-practice Theory . . . . . . . . . . . . . . . . . . . . . 201

11



CONTENTS

12.5.1 Strategic Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.5.2 GRiST and the “ten commandments” for effective CDSSs . . . . . . . . . 202

12.5.3 The “eleventh commandment” for effective CDSSs . . . . . . . . . . . . . 205

12.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

12.6.1 Incorporation of the Galatean model into the server . . . . . . . . . . . . 205

12.6.2 Augmenting of the populations framework . . . . . . . . . . . . . . . . . . 206

12.6.3 Bilateral mappings with other risk assessment tools . . . . . . . . . . . . 207

12.6.4 Application of the GRiST toolchain to new domains . . . . . . . . . . . . 208

12.6.5 Automated mappings from the SST file format to OWL DL . . . . . . . . 208

12.7 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

References 211

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Appendices 232

A Tree Manipulation Keywords Used Within Structured Comments 233

B Stages Involved in Enacting Tree Changes Using XSLT 236

C Algorithm for expanding “multiple-tick” nodes 240

D Unified Reconciliation Algorithm 242

E Rules and Algorithms for Generating QTs 244

E.1 Rules Governing QT Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

E.2 Algorithm for Generating a Level 0 QT . . . . . . . . . . . . . . . . . . . . . . . 246

E.3 Algorithm for Generating QTs at Level 1 and Above . . . . . . . . . . . . . . . . 246

12



List of Tables

8.1 All hypothetical node instantiation configurations in the RIT. . . . . . . . . . . . 123

8.2 Relocation operations that can be performed on the ST, and their effect on node

Fingerprints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.1 A selection of enhancement requests from HTML GRiST users. . . . . . . . . . . 191

12.1 A comparison of GRiST’s knowledge acquisition approach with that of Protégé. . 200

13



List of Figures

2.1 A part of the intention to commit suicide subconcept of the suicide risk structure. 31

2.2 Calculation and propagation of membership grades. . . . . . . . . . . . . . . . . 33

2.3 Propagation of membership grades when classifying a patient in the intention to

commit suicide concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Flow of membership grades through the intention hierarchy. . . . . . . . . . . . . 35

5.1 Mind map coding template developed through content analysis of an interview. . 62

5.2 Part of the fully-expanded pattern of episodes concept within suicide risk of the

combined map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Generic Flash validation tool showing knowledge tree with pruning information. . 65

5.4 An example of an annotated XML file transformed and viewed in a web-browser. 68

5.5 Fully annotated knowledge structure before and after XSLT transformation. . . . 74

5.6 Sequence of knowledge representations and transformations leading to the ST. . 75

6.1 Schematic representation of the Structure Tree. . . . . . . . . . . . . . . . . . . . 83

6.2 Schematic representation of the generic nodes pseudo-risk. . . . . . . . . . . . . . 87

6.3 Flowchart showing how rapid screening questions are identified and displayed. . . 91

6.4 Validating the form of answer scales to use for data gathering. . . . . . . . . . . 92

6.5 An example eleven-point scale based upon a values="scale" ST node attribute. 93

6.6 An example date control based upon the ST date attributes. . . . . . . . . . . . 94

6.7 The value-mg profile elicitation tool being used to elicit a profile for a scale node. 97

6.8 Part of the XML for holding information on suicidal ideation in the refined ST. . 100

7.1 The RI elicitation tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Going from the original ST to the beginning of the Galatean Tree Hierarchy. . . 111

14



LIST OF FIGURES

8.1 Automated and manual actions that are involved in tree generation/updating. . . 114

9.1 Part of a Level 0 CAT XML representing suicidal ideation. . . . . . . . . . . . . 142

9.2 Part of a Level 1 CAT XML representing suicidal ideation. . . . . . . . . . . . . 142

9.3 The composition of the QT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.4 Part of a Level 0 QT XML representing suicidal ideation. . . . . . . . . . . . . . 143

9.5 Part of a Level 1 QT XML representing suicidal ideation. . . . . . . . . . . . . . 144

9.6 Part of an example AT with answers related to some suicidal ideation questions. 144

9.7 The Galatean Tree Hierarchy extended to incorporate CATs and QTs. . . . . . . 146

9.8 An excerpt from the paper-based version of GRiST. . . . . . . . . . . . . . . . . 148

9.9 Back-end processes involved in generating the HTML version of GRiST and reports.151

9.10 GRiST assessment management interface. . . . . . . . . . . . . . . . . . . . . . . 152

9.11 A screenshot of the HTML tool being used to conduct a repeat patient assessment.153

9.12 A hypothetical U-shaped value-mg profile represented within a scale control. . . 154

9.13 A data validation run being performed as part of the assessment save process. . . 155

9.14 A screenshot of the Java tool being used to conduct a new assessment of a patient.158

9.15 An example report generated from a hypothetical patient assessment. . . . . . . 159

10.1 The Galatean Tree Hierarchy augmented with the prepending of the Super Struc-

ture Tree (SST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.2 Automatically generating GTH trees from an uploaded SST. . . . . . . . . . . . 176

10.3 An example error report associated with a generated GTH tree. . . . . . . . . . . 177

10.4 Uploading a revised RIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

11.1 Interaction between the NHS Trust and the GRiST server. . . . . . . . . . . . . . 187

11.2 Feedback that was received for HTML GRiST via online forms. . . . . . . . . . . 190

15



List of Abbreviations

ACL – Access Control List

AIR – Adobe Integrated Runtime

AJAX – Asynchronous Javascript and XML

API – Application Programming Interface

ASCII – American Standard Code for Information Interchange

AT – Answer Tree

CAT – Client Answer Tree

CB-SCID 1 – Computer-based Structured Clinical Interview for DSM axis 1

CDSS – Clinical Decision Support System

CSIP – Care Services Improvement Programme

CSS – Cascading Style Sheets

DBMS – Database Management System

DLL – Dynamic Link Library

DSM – Diagnostic and Statistical Manual of Mental Disorders

DSS – Decision Support System

ePEX – e-Protechnic Exeter

EXSLT – Extensions to Extensible Stylesheet Language Transformations

16



LIST OF ABBREVIATIONS

g – Generic

gd – Generic Distinct

GP – General Practitioner

GRiST – Galatean Risk Screening Tool

GTH – Galatean Tree Hierarchy

GUI – Graphical User Interface

HCR-20 – Historical, Clinical, and Risk Management – 20

HoNOS – Health of the Nation Outcome Scales

HTML – Hypertext Markup Language

HTTPS – Hypertext Transfer Protocol Secure

id – Identifier

ID – Identifier

IE – Internet Explorer

iPM – i.Patient Manager

ISP – Internet Service Provider

IT – Information Technology

KE – Knowledge Engineering

LAMP – Linux Apache MySQL PHP

LISP – List Processing

MD5 – Message-Digest algorithm 5

MG – Membership Grade

MySQL – My Structured Query Language

NHS – National Health Service

17



LIST OF ABBREVIATIONS

NPfIT – National Programme for IT

OWL – Web Ontology Language

OWL DL – Web Ontology Language Description Logic

PAS – Patient Administration System

PC – Personal Computer

PDF – Portable Document Format

PHP – PHP Hypertext Preprocessor

PhD – Doctor of Philosophy

Pii – Personally identifiable information

QT – Question Tree

RACER – Renamed Abox and Concept Expression Reasoner

RDBMS – Relational Database Management System

RDF – Resource Description Framework

RDFS – Resource Description Framework Schema

RFL-OA – Reasons for Living – Older Adults

RIT – Relative Influence Tree

RI – Relative Influence

SCID 1 – Structured Clinical Interview for DSM axis 1

SID – Session ID

SNOMED – Systematized Nomenclature of Medicine

SST – Super Structure Tree

ST – Structure Tree

SVG – Scalable Vector Graphics

18



LIST OF ABBREVIATIONS

UI – User Interface

UK – United Kingdom

UMLS – Unified Medical Language System

W3C – World Wide Web Consortium

XHTML – Extensible Hypertext Markup Language

XID – Xyleme Identifier

XML – Extensible Markup Language

XMPP – Extensible Messaging and Presence Protocol

XOR – Exclusive OR

XP – Experience

XPath – XML Path Language

XSL-FO – Extensible Stylesheet Language Formatting Objects

XSLT – Extensible Stylesheet Language Transformations

19



Declaration

This thesis describes work carried out by the author between January 2005 and October 2010 in

the Knowledge Engineering Group at Aston University under the supervision of Dr Christopher

Buckingham.

This thesis has been composed entirely by the author and has not, nor any similar disserta-

tion, been submitted in any previous application for a degree.

Portions of the work described in this thesis have been published in the peer-reviewed journal

article: Buckingham, Ahmed, and Adams (2007).

20



1
Introduction

1.1 Motivation

Early detection of mental-health problems and associated risk has the potential to avert signifi-

cant human suffering and to reduce health service and societal costs. Official estimates indicate

a high and increasing disease burden associated with mental-health problems, and hence, signif-

icant potential to reap benefits by improving early detection and treatment.

The World Health Organisation predicts mental illness will account for 15% of the total

world disease burden by 2020 (Whiteford, 2003). The Psychiatric Morbidity Survey shows ap-

proximately 20% of people are suffering from a neurotic (16.4%), personality (4.4%) or psychotic

disorder (0.5%) at any point in time (Singleton, Bumpstead, Lee, & Meltzer, 2003), and that not

all of them get the treatment they need (Singleton & Lewis, 2003). Furthermore, the National

Service Framework for Mental Health states that 1 in 6 people have some form of mental illness,

depression being the most common (NHS Executive, 1999).

Recent NHS policy (Department of Health, 2004c, 2004a, 2004b; Care Services Improvement

Partnership, 2006) emphasises the need for early prevention of mental ill-health and for identify-

21



1.1. MOTIVATION

ing the associated risks of suicide, self-harm, harm to others and self-neglect. Reducing suicide

rates has been a consistent NHS policy objective for a number of years (Department of Health,

2004b, 1999), and recent figures do in fact demonstrate some success amongst the general public

(Department of Health, 2006), but not amongst service users recently discharged from hospital

care (National Confidential Inquiry, 2006). Notwithstanding, the overall disease burden remains

too high. Furthermore, NHS mental-health policy advocates: service users should receive choice

in how they manage their own long-term health problems; community empowerment; and pro-

viding swifter access to specialist expertise closer to home, with the overall aim of mental-health

promotion (Department of Health, 2004c, 2004a).

Formal risk screening and assessment is almost exclusively the domain of health and social

care professionals who have undergone specialist mental-health training. These are complex

processes because different mental illnesses and conditions carry with them different prognoses

and risks to the patient and others, and assessing the likely future course of events involves

consideration of a large number of factors. Risk screening and assessment is therefore accepted

to be an uncertain business, even for experienced professionals, who can become desensitised to

the level of risk presented by service users (National Confidential Inquiry, 2006).

At the heart of the issue is the fact that risk assessment is not a well understood process,

either as a clinical activity or a probabilistic science. Although actuarial approaches are often

preferred because they are evidence based (Bouch & Marshall, 2005), they may not incorporate

the transient, dynamic, qualitative, and idiosyncratic cues that are crucial to clinical judgement

(Holdsworth & Dodgson, 2003; Maden, 2001, 2003) or cue patterns (Skegg, 2005; Hanson, 2005;

Castle, Duberstein, Meldrum, Conner, & Conwell, 2004).

As a result, there is little agreement over what cues should be recorded (Higgins, Watts, Bind-

man, Slade, & Thornicroft, 2005) or how they might be considered in combination (Monahan

et al., 2000), and why a plethora of different (often paper-based) risk assessment tools are in

use (Hawley et al., 2006). Indeed, since mental illness is characterised by uncertainty and un-

predictability, some believe there is little scope to improve the decision-making of mental-health

professionals (Maden, Scott, Burnett, Lewis, & Skapinakis, 2004), and are sceptical about the

risk assessment tools they use (Doyle & Dolan, 2000). This view is not confined to commenta-

tors, but also skilled assessors such as doctors (Hawley, Gale, Sivakumaran, & Littlechild, 2010),

who perhaps due to the black-box nature in which many assessment tools arrive at results, are

left questioning their utility.

22



1.2. THESIS AIMS AND CONTRIBUTIONS

In response to the status quo, the Department of Health (National Risk Management Pro-

gramme, 2007) has been seeking to develop a common approach to risk assessment to be followed

by all mental-health professionals. Similarly, the NHS National Programme for Information

Technology (NPfIT) is grappling with questions about what information to hold about mental-

health service users, in the form of a standardised minimum data set.

1.1.1 Current exigencies in mental-health assessment

Having taken a bird’s eye view of the state of mental-health assessment in the UK, the following

exigencies can therefore be identified within the field, and serve as the motivation for this thesis.

• A need for a proven psychological model of classification that can be used to compute the

severity of mental-health risks.

• A need for tool standardisation in the mental-health risk assessment arena. This should

be based on a solid and comprehensive knowledge base, which resonates with clinicians’

conceptualisation of their field, and which can utilise the psychological model for risk

classification.

• A need for transparency in the way assessment outcomes are computed and communicated,

giving assessors the opportunity to easily comprehend how a risk calculation has been

arrived at.

• A need to take assessments out of the sole purview of mental-health experts and clinicians.

Accessibility to appropriate assessment tools should be increased such that assessments

can be conducted confidently by anyone, anywhere, including the service user themselves.

1.2 Thesis Aims and Contributions

In response to the identified exigencies, this thesis aims to advance the field of mental-health

assessment within the UK by developing a principled toolchain for the development of risk

assessment solutions. Built on this toolchain will be a comprehensive set of assessment tools for

mental-health risk assessment. This system will address the deficiencies of extant assessment

practices and tools by providing the following:

• The system would be able to provide risk calculation and decision support capabilities using

a computer model of human classification decision making, namely the Galatean model

23



1.3. THESIS ORGANISATION

(Buckingham, 1992; Buckingham & Birtle, 1997; Buckingham, 2002a), to be introduced

later.

• The system will both elicit and represent comprehensive domain expert knowledge in a

way that is intuitive to domain experts, and which accords with psychological theories

on how humans organise knowledge. In essence, it will conduct knowledge elicitation and

representation in a way that is amenable to humans as opposed to one that is convenient

to computers.

• The elicitation and representation process will be open to incorporating new requirements

as would invariably arise when dealing with domain experts and an unfamiliar domain.

• The system will be capable of generating tools that take into account the technical capa-

bility of the user conducting the assessment, the user’s clinical expertise, and the type of

patient being assessed.

• The system will clearly communicate a breakdown of where in the assessment risk is being

generated, in a way understandable to all parties.

• The system will be available to all through an ordinary web browser and internet connec-

tion.

In summary, this thesis will engineer a toolchain for mental-health risk assessment and

decision support based on the Galatean model, using a knowledge representation format suited

to humans. The platform will deliver the Galatean Risk Screening Tool (GRiST). Crucially,

flexibility will be injected into each stage of this toolchain so that GRiST can fulfil its wide

remit of being a tool for use by anyone, anywhere.

In a broader research context, the real-world deployment of the toolchain/GRiST will serve

as a case study with which to evaluate some of the putative best-practice guidelines to decision

support system success promulgated in the literature.

1.3 Thesis Organisation

The remainder of this thesis is organised as follows:

Chapter 2 — Discusses the hierarchical nature of knowledge representation in humans, and in-

troduces the Galatean model of classification decision-making. This model will ultimately

24



1.3. THESIS ORGANISATION

serve as the engine that drives risk classification within the GRiST system.

Chapter 3 — Explores methods of creating clinical decision support systems in general, nar-

rowing down on those that are oriented towards healthcare and mental-health. It examines

some of the merits and shortcomings of existing approaches to the development of such

systems, aiming to identify best practise. From these, a set of relevant best practice cri-

teria are established. The real-world insight that will be gained from the present project

will be used to test these criteria.

Chapter 4 — Considers XML-based representation schemes for the GRiST system’s knowledge

structure.

Chapter 5 — Marks the beginning of system development—the starting point being a raw

knowledge structure containing to-be-validated consensual domain knowledge. It acknowl-

edges that domain experts are not also computer experts. Consequently, it describes how

domain knowledge validation activities were constructed so as to make it easy for domain

experts to contribute throughout the process. Furthermore, it describes the role of XSLT

in adding additional needed flexibility to the process.

Chapter 6 — Reorganises the refined domain knowledge structure, known as the Structure

Tree (ST), and eliminates redundancy. Furthermore, it adds constructs to the ST so that

data relating to e.g., questions and answer formats can be instantiated. Further constructs

are added in order to enable the ST knowledge to be represented in a more abstract format

when needs dictate. This will ultimately enable GRiST to be shorter for more experienced

users.

Chapter 7 — Expands the ST into a tree that is closer to the representation that will be used to

drive assessments. The main benefit that ST expansion yields is the ability to incorporate

uncertainty values (for use by the Galatean model). The expanded tree, known as the

Relative Influence Tree (RIT) signals the evolving of GRiST’s knowledge structures as a

cascading set of (generated) linked trees, which will ultimately drive the assessment tools.

This hierarchy of generated trees is known as the Galatean Tree Hierarchy (GTH).

Chapter 8 — Describes a novel method for amending the ST without having to lose uncertainty

data that may have already been manually added to an RIT generated from the ST prior

25



1.3. THESIS ORGANISATION

to the ST’s modification. Essentially it is a method for carrying over uncertainty data

from an old RIT to a newly generated RIT.

Chapter 9 — Expands the GTH (specifically the RIT) into trees to directly drive the assess-

ment, maintain question data, and maintain answer data. A number of GRiST assessment

tools built on these trees, each increasing in sophistication over the previous, are show-

cased.

Chapter 10 — A powerful mechanism for customising assessments according to the needs of

various populations of users is incorporated into the GTH. This is achieved by specifying

tree modifications for each population in a meta tree called the Super Structure Tree (SST).

This is then transformable into ordinary population STs, which are subsequently used to

generate the remaining GTH trees and drive assessments without any modifications to

tools.

Chapter 11 — Demonstrates the deployment of GRiST (augmented with the populations

mechanism) within two real-world settings—NHS Trusts—and evaluates its reception.

Chapter 12 — Summarises and evaluates the work in relation to the thesis objectives, and

considers future directions.

26



2
The Galatean Model of Classification

2.1 Introduction

A fundamental aspect of cognition is the ability to make decisions based upon previous expe-

riences. A subset of decision-making in general is the domain of classification. In classification

tasks, the agent uses knowledge that has previously been acquired—expertise—in order to infer

how to best describe a newly-presented stimulus. Classification decision-making has empirically

been found to exhibit a plethora of idiosyncrasies, making this pervasive area of human cogni-

tion all the more intriguing. This has helped spawn a significant amount of research into the

phenomenon, and as a result, two major psychological theories of classification have emerged:

exemplar theory and prototype theory. In turn, a number of models based on these theories

have been advanced. Although models have reached a certain level of sophistication, each model

has its strengths and weaknesses, with no model being able to explain/emulate all the major

nuances of classification decision-making.

This chapter examines the exemplar and prototype theories before exploring the Galatean

Model of classification decision-making—a model based on the prototype framework. Model

27



2.2. CLASSIFICATION THEORIES

features that make it suitable for use within a clinical decision support system for mental-health

are highlighted as part of the model’s explication.

2.2 Classification Theories

An important issue in cognitive psychology is the manner in which humans represent classes/

categories in memory. There are two dominant theories of human classification that have both

spawned numerous models with varying levels of explanatory power: exemplar theory and pro-

totype theory. Both theories emerge out of a polarisation in the perspectives of the theorists

who subscribe to the respective camp. Kruschke (2010) summarises these positions by terming

those preoccupied with low-level structural representations (McClelland et al., 2010), e.g., con-

nectionists, exemplar theorists etc., as emergentists. Those who emphasise high-level structured

representations and probabilistic inference (Griffiths, Chater, Kemp, Perfors, & Tenenbaum,

2010), e.g., prototype theorists, are referred to by Kruschke as representational pluralists.

2.2.1 Exemplar theory

Exemplar theory, drawing from the domain of categorisation, posits that each category is rep-

resented by stored exemplars—memory traces of specific examples previously encountered, that

have been categorised accordingly. A decision is made by comparing the similarity of the to-be-

categorised item with the exemplars within each category; the category with the most similar

exemplars being chosen (Medin & Schaffer, 1978; Nosofsky, 1986, 1992; Nosofsky, Kruschke,

& McKinley, 1992). Similarity is measured and aggregated in various ways depending upon

the model under consideration. Garner (1974) suggests the “city-block metric” as a suitable

measure of raw psychological distance. Here, psychological space is represented as a grid, with

exemplars being positionable on each corner of a grid cell. As opposed to a Euclidean distance

being taken between two exemplars, the city-block distance is calculated by traversing the inter-

vening cells via cell edges. The raw psychological distance can then be converted into similarity

via a mapping function.

In the context of categorising cues in the domain of mental-health to ascertain whether

e.g., a suicide risk is indicated, this would involve first examining presented cues. Cues may for

example, be the number of previous suicide attempts, or a history of depression etc. The answers

to these questions i.e., the cue values would then be compared to those for all previous patients

28



2.3. THE GALATEAN MODEL

categorised as being in the suicide risk category. They would also be compared with values

for all patients previously categorised within the non-suicide risk category. Once an aggregated

similarity measure is arrived at, the model would be able to categorise the new patient.

2.2.2 Prototype theory

Prototype theory conceives an outcome as being an abstraction formed from all exemplars pre-

viously encountered (Posner & Keele, 1968; Estes, 1986; Smith & Minda, 1998). The prototype

can be regarded as a central tendency or an average of encounters that have coalesced to define

the category or outcome. This idea is consistent with the view that humans are “cognitive mis-

ers” (Fiske & Taylor, 1991), using heuristics and schemas to reduce the information processing

and storage burden in arriving at day-to-day decisions.

Within the prototype framework, suicide risk would again be evaluated via a comparison

with the suicide and non-suicide categories. However, unlike the case of exemplar models, there

will only be one comparison to make for each cue in each category. This comparison will be

with the prototypical category member, which maintains the average of the cue values from all

previous cases falling in that category.

2.2.3 Dual-process theories

There is also a third view of classification that is gaining prominence, and which is liable to

heavily influence classification models of the future. There has been recent evidence to suggest

that neither theory can fully accommodate the nuances of classification learning and that a dual-

process model may be more appropriate, e.g., Smith and Minda (2000) in the case of repeated

exposure to individual exemplars, and Kruschke (2006), who advocates a combination of low-

level representation in combination with bayesian inference. Currently, the most sophisticated

models do not strictly fall into the remit of either theory but rather lean towards one while

incorporating some elements of the other.

2.3 The Galatean Model

The Galatean model (GM) is a classification model grounded in prototype theory. In common

with the central tenets of the theory, the model uses an abstract member to represent a class.

In contrast to other models, which use the mean as the central tendency that defines the proto-

29



2.3. THE GALATEAN MODEL

type, the GM elects to use a hypothetical ‘perfect’ member for its prototypical representation.

The perfect member is thus the one whose constituent cues’ values yield the highest possible

probability of membership—this member is termed by the GM as a galatea. Indeed, the GM

takes its name from Galatea; the mythical Pygmalion’s perfect woman.

2.3.1 The Galatean classification process

The galatean model represents uncertainty in terms of set membership. If the outcome categories

are to be considered as sets and the items being classified as potential members, the likelihood

that an item is in any one set is given by the degree of membership. This amount is called

the membership grade (Zadeh, 1965) which, like probabilities, may vary from 1, representing

certainty that an object will be in a set, to 0, representing certainty that it will not be a member

(Buckingham, Kearns, Brockie, Adams, & Nabney, 2004).

Prior to any classification, the GM will already have been set up with a category Galatea

(e.g., suicide) instantiated with component galatean cues (e.g., number of past suicide attempts,

history of depression etc). When a patient is presented to the GM for classification, each

patient attribute (patient cue) is matched with the corresponding galatean cue. The galatean

cue maintains a profile of cue values and corresponding membership grades. The membership

grade of each patient cue is therefore ascertained by querying the corresponding galatean cue.

The eventual risk attributed to an individual cue depends on its relative influence compared to

the other cues it lies alongside within the galatea. As in the case of membership grade profiles,

the relative influence of a given cue will be pre-assigned. Therefore, the total membership grade

(MG) for the galatea in question is the sum of its component membership grades, weighted by

each cue’s assigned relative influence (RI) value.

2.3.2 The hierarchical Galatean model and its classification process

The Galatean model as conceptualised thus far, assumes a single layer of cues, which relate

directly to the category galatea. However, this type of relationship is only useful in modelling

toy scenarios. Within a real-world domain, experts are aware of relationships between cues. As

expertise increases, the organisation of cues becomes more efficient. Experts have been found

to represent configurations of cues in an abstract form (Larkin, 1980; Eylon & Reif, 1984),

grouping them together into higher level concepts. These higher level concepts can in turn be

grouped in to yet still abstracted concepts. In this manner, experts’ conception of the domain

30



2.3. THE GALATEAN MODEL

knowledge can be regarded as mainly being hierarchical in nature (Freyhof, Gruber, & Ziegler,

1992; Murphy & Lassaline, 1997). Pilot studies have confirmed this type of representation within

the mental-health domain also (Buckingham & Chan, 2002).

Mental-health domain knowledge when conceptualised as a hierarchical structure can be

envisaged as maintaining an abstract root called mental-health risk. The root node can be

decomposed into into nodes representing each of the individual risk areas e.g., suicide, self-

harm, harm to others etc. These risk areas can in turn be decomposed through successive

iterations into constituent concepts. The final level of decomposition will be individual cues,

which can be referred to as datums.

Figure 2.1 depicts a part of the hierarchical structure representing the suicide risk that was

obtained from pilot studies. It can be seen that the intention to commit suicide was considered

by experts to be a direct contributor to suicide risk. The diagram also shows that this concept

was too abstract to be directly measurable by way of patient cues. Hence experts, decomposed

intention into constituent components of seriousness of intention and details regarding the

plan or method of suicide. Seriousness was regarded as being directly measurable, so was not

decomposed further, thereby rendering it a datum component. The plan or method was regarded

yet still as an abstract item i.e., a concept, and was therefore decomposed further into the datum

components of realism of the plan and the steps taken to enact the plan.

Figure 2.1: A part of the intention to commit suicide subconcept of the suicide risk structure; repro-
duced from Buckingham (2002a). Concepts are depicted as ovals, and datum cues as rectangles.

Hierarchical knowledge representations are in fact naturally accommodated by an extended

31



2.3. THE GALATEAN MODEL

version of the GM that is to be used as GRiST’s classification engine. Such structures are

represented in terms of top level galateas, whose galatean cues comprise the immediate child

concepts. These concepts can in turn be conceptualised as galateas in their own right. In essence,

each concept within the hierarchical knowledge structure is considered to be a galatea. Datums

at the lowest level of the hierarchy form the galatean cue components of their parent concepts.

Quantifying the hierarchical galatean structure requires experts to provide each datum (or

leaf) component with values that enable membership grades (and thus risk) to be calculated. As

in the case of the single layered galatean model, datum components will already have assigned

to them a profile of answer values and corresponding MGs. The datum components of the

galatean tree are matched with their associated patient cues to produce a membership grade

that represents the risk contribution of that particular cue value. This is ascertained via a

lookup of the profile of values and MGs i.e., the value-mg profile. The eventual risk attributed

to an individual cue depends on its relative influence compared to the other sibling cues. Again,

RI values will already have been been pre-assigned for each component. Thus, the total risk

attributable to the containing galatea is a sum of the RI-weighted MGs.

The MGs calculated for each galatea on a given level of the knowledge structure serve as

the input MGs for the galatea on the parent level. The child galateas also have individual RIs

specifying their weightings. Therefore, the parent galatea’s MG (i.e., risk) can be calculated by

summing the RI-weighted MGs of the child galateas (Figure 2.2). In this manner, the individual

risk contribution of each galatea within the knowledge structure can be calculated, leading to

an overall risk prediction for the top level risks, e.g., suicide.

Figure 2.3 presents a hypothetical and simplified assignment of membership grades and

relative influences to the suicide intention substructure of GRiST, to give an illustration of how

risks are quantified. The idea is that people focus on the perfect member of a class and are

tuned in to the values that maximise membership. Experts are asked to provide the values of

a cue that maximise the likelihood of the object being in the associated class and the values

that minimise its likelihood. These values are easy to identify even though the real conditional

probability would not be, and are respectively assigned MGs of 1 and 0.

According to Figure 2.3, the intention concept has two subcomponents, seriousness, which

is a datum component, and plan/method, which is a concept with its own subcomponents. The

seriousness component measures the extent to which the patient is serious about committing

suicide, and has values ranging from 0, meaning not serious at all, to 10 meaning completely

32



2.3. THE GALATEAN MODEL

Figure 2.2: Calculation and propagation of membership grades. RI = relative influence; MG = member-
ship grade. Membership grades for concepts on higher levels are calculated by summing the RI-weighted
MGs of immediate children concepts.

serious. A value of 10 clearly provides the greatest risk and this is given the maximum member-

ship grade of 1, with the opposite end of the scale having 0 membership in the high suicide-risk

category. Any value inbetween has its membership grade determined using linear interpolation.

Next, weightings are provided for concept subcomponents in order to incorporate cue compe-

tition. The hypothetical domain expert has assigned a relative influence of 0.7 to the seriousness

component and 0.3 to the plan/method one, indicating that the realism of the plan and the steps

taken are less important than the underlying seriousness of the patient in carrying it out.

Using the above method, all components are quantified. To calculate a patient’s contribution

to suicide risk with respect to the intention subconcept, the patient’s values are matched with

the associated datum components as shown by Figure 2.3. For example, if the patient’s plan

is judged to have a realism value of 7 then it will generate a membership grade of 0.7 in the

realism datum component. This is then multiplied by the relative influence for realism (0.6)

to give its contribution to the plan/method subconcept. The patient’s membership in all the

33



2.3. THE GALATEAN MODEL

Figure 2.3: Propagation of membership grades when classifying a patient in the intention to commit
suicide concept: RI = relative influence; MG = membership grade; reproduced from Buckingham (2002a).

components can be quantified by the same process to give a risk of 0.642 with respect to the

intention to commit suicide. More details about the process and its rationale can be obtained

from Buckingham (2002a) and Buckingham and Birtle (1997).

This description of the GM’s representation of expertise is purely hypothetical and does not

demonstrate all the ways it can accommodate different aspects of expertise. The aim of the

example is to provide a clear and intuitive explanation of how single, integrated risk judgements

derive from separate patient cues. Figure 2.4 shows how it can do this for the suicide intention

component. The values in bold outside the rectangular boxes are the patient’s cue values for

the associated datum component. The values within the boxes are the membership grades

corresponding to the patient cue values in the datum components; the values on the lines linking

components to their parent concepts are the membership grades after multiplication by the

components’ associated relative influence.

An important aspect of the Galatean model’s classification process is the ability to “look

under the hood” and observe exactly how risk is accumulated. Clinicians are able to investigate

where the risk originates, and are therefore in a better position to help the patient.

By manipulating the membership grade distributions of galatea leaf nodes and relative influ-

34



2.4. CONCLUSIONS

Figure 2.4: Flow of membership grades through the intention hierarchy: patient cue answer values are
in bold.

ences of all nodes, experts can easily “tune” the classification process to provide class membership

grades that correspond to their own estimates of risk for different patient values. Indeed, the

above hypothetical example conceives cue values and MGs as having a linear relationship (spec-

ified by two data points). This may not always be the case, and galateas accommodate complex

relationships by allowing for any arbitrary distribution of values and MGs to be recorded as a

value-mg graph or profile (as depicted in Figure 2.2).

2.4 Conclusions

Classification decision-making is viewed by exemplar theorists as a comparison operation per-

formed against all previously encountered class members. Prototype theorists on the other hand,

adopt the stance that the comparison is performed against an abstracted representative of the

class. Both theories have spawned several models of classification. This chapter has adopted the

Galatean model as the base that will drive the development of a risk screening tool and decision

support system for mental-health. The GM is a model based on prototype theory, but uses the

hypothetical ‘perfect’ category member for its prototypical representation.

A number of qualities make the Galatean model well-suited for use as a classifier within

mental-health:

35



2.4. CONCLUSIONS

• It is naturally amenable to representing hierarchical knowledge structures, which domain

experts and clinicians will identify with. Such structures consist of central concepts, which

are successively elaborated into constituent component concepts.

• Its method of calculation of risk for each galatea and percolation of that risk through the

hierarchical structure allows clinicians to examine how and where risk is produced.

• The configurability of the quantification of uncertainty i.e., value-mg profiles and RI values,

allows domain experts/clinicians to fine tune the calculation of risk so that it better accords

with their conception of it.

Before embarking on the development of GRiST, it is instructive and edifying to examine

some of the merits and shortcomings of existing approaches to the development of CDSSs. This

is the focus of the next chapter.

36



3
Clinical Decision Support Systems

3.1 Introduction

The use of clinical decision support systems (CDSSs) has rapidly been increasing over the past

decade. This has been fuelled by a combination of a need to increase the quality of health care,

and in advances in computing that make it feasible to deploy complex clinical systems.

In preparation for the development of GRiST, it is important to review related literature

in order that the lessons learned by others are not lost on the present project. The focus

of this chapter is therefore one of ascertaining good practice in relation to the development

and deployment of CDSSs. Once established, these core ideas can receive some real-world

testing/validation via their consideration in the development and deployment of GRiST.

The chapter will initially review the scope and domains of extant CDSSs and how they

compare with GRiST’s wide remit. This will then be followed by an examination of design

practices and system features that can inform the development of GRiST. The relevant theories

testable using the GRiST project as a case study in their application will be highlighted. In

later chapters, these will be revisited and evaluated in light of the insights and lessons gained

37



3.2. THE SCOPE OF CDSSS

from the GRiST project.

3.2 The Scope of CDSSs

CDSSs can be defined as computer software designed to aid clinical decision-making. Specifi-

cally, they are systems where data about the individual patient are matched to a computerised

clinical knowledge base, and where patient-specific assessments and/or recommendations are

then presented to the clinician/patient for a decision (Sim et al., 2001; Garg et al., 2005).

3.2.1 CDSS knowledge representation and architecture

The inception of CDSSs dates back to the 1970s, with rule-based approaches to decision-making

being the dominant paradigm. One of the earliest systems to gain prominence was MYCIN

(Shortliffe, 1976), a proof of concept CDSS designed to identify infectious diseases and to rec-

ommend appropriate antibiotics. MYCIN encoded knowledge as a series of approximately 600

production rules, which were formulated via consultation with domain experts. These were

statements that mapped patient cues to inferences that could be drawn from them. In essence

rules stipulated pre-conditions that needed to be satisfied in order for the rule to ‘fire’.

By altering existing rules or adding new ones, developers were able to rapidly modify parts

of MYCIN’s knowledge base. However, these could cause unintended side effects due to the

way in which rules were chained together by the system to arrive at a specific decision (Musen,

Shahar, & Shortliffe, 2001).

Rule-based systems are an example of knowledge representations that lean towards easy

codification by machines, but which are difficult for experts to fully specify. Indeed, Fitts (1964)

and Anderson (1982) argued that skill acquisition goes through a series of stages, the last of

which is automaticity. More simply put, the greater the level of expertise, the harder for the

expert to break down the process in to a series of production rules.

Many CDSSs still use rules as the primary knowledge representational mechanism, and as

such, are suitable in domains that do not require fuzzy logic (Peleg & Tu, 2006). Thus, rules are

successful in deterministic decision-making scenarios that are required to generate e.g., alerts

and reminders when certain conditions have been met (Peleg et al., 2001).

Numerous other CDSS architectures exist for knowledge representation and reasoning. For

example, models based on Bayesian approaches to the classification problem are particularly

suitable to domains where the decision-making outcome is uncertain; i.e., where the same set

38



3.2. THE SCOPE OF CDSSS

of cues could indicate numerous outcomes. The Leeds Abdominal Pain System (Adams et al.,

1986) demonstrated success at predicting the probabilities of seven possible causes for abdominal

pain using Bayes theorem to process input data such as test results, symptoms etc. As a way of

reducing the computational demands of the system, simplifying assumptions such as conditional

independence of various disease findings were made (Musen et al., 2001).

Experimental scenarios such as the taxi-cab (Tversky & Kahneman, 1982) or the lawyer-

engineer (Kahneman & Tversky, 1973) problems indicate that humans demonstrate poor judg-

ment where conditional probabilities are involved. Gigerenzer (1994) proposes that humans have

evolved to respond more to frequencies as opposed to conditional probabilities and percentages.

Thus, when probability tasks are reformulated with information presented as frequency counts,

performance is markedly improved (Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995).

This suggests frequency counts may need to be considered in knowledge elicitation activities

that will eventually drive bayesian probability models.

A number of studies involving decision-making where three or more outcomes are involved

have found that humans make judgments that are not strictly consistent with the laws of prob-

ability (Fiedler & Armbruster, 1994; Koehler, 2000; Koehler, White, & Grondin, 2003). In

such studies, when probability judgments for each of the possible outcomes were individually

obtained from the person and then summed, the total for many of the cue patterns was found

to exceed unity. Support theory (Rottenstreich & Tversky, 1997) elucidates how such a position

is arrived at. Briefly, it postulates that the outcomes that are not currently under consideration

are grouped together and their influence discounted (i.e. reduced) due to their being grouped.

These phenomena represent a challenge to CDSSs based on strictly bayesian probability models,

which may possibly affect the quality of classification decisions.

An emerging trend in knowledge representation for CDSSs is the use of ontologies. Ontologies

are specifications that document the concepts that comprise a domain, together with their

relations (Gruber, 1995). Once encoded in a formal language such as frames or description

logics, ontologies are amenable to processing by inference engines. Thus, inferences can be made

on supplied information by evaluation in the context of the concepts and relations held within

the ontology/domain model. The results of inference can then be used to facilitative decision

support.

The Protégé (Gennari et al., 2003) editor is gaining traction as the de facto tool for creating

ontologies based on frames or OWL (an XML-based description logic). Protégé is well specified

39



3.2. THE SCOPE OF CDSSS

and is constantly being extended by way of plugins developed by the open source community.

However, the complexity of the OWL-DL language itself requires that Protégé be necessarily

complex. This fact, combined with the computer science heritage of the nomenclature used

within Protégé, results in a steep learning curve for domain experts (Timm & Gannod, 2005;

Luciano & Stevens, 2008).

The hierarchical concept structure that will be used by the GM for classification can be

considered to be an ontological representation of the mental-health domain. However, given that

domain experts will be heavily involved throughout GRiST’s development, OWL and Protégé

will not be used to codify this knowledge. This is discussed further in Chapter 4.

3.2.2 CDSS domains

Although the operational definition of a CDSS given in Section 3.2 would appear rather narrow,

there is considerable variety and scope in the CDSS programs that have been developed for use

in the health sector. In a recent review of studies evaluating 100 CDSSs, Garg et al. (2005)

broadly classified the systems into the following categories:

• Systems for disease management (40%)

• Systems for drug dosing and prescribing (29%)

• Reminder systems for prevention (21%)

• Systems for diagnosis (10%)

Therefore, the majority of extant systems are focussed towards managing existing conditions

such as diabetes or respiratory illnesses (East et al., 1999), or for ensuring the safe prescribing

of drugs, e.g., limiting interactions (Tamblyn et al., 2003). These systems typically involve

the direct monitoring of patient attributes or the consulting of a knowledge base. Once pre-

configured thresholds have been met or combinations of attributes present, these trigger actions

within the system. Consequently, many of the current generation of CDSSs can be considered

algorithmic or rule-based in nature. Indeed, 76% of systems in a review conducted by Berlin,

Sorani, and Sim (2006) were rule-based, with only 3% using a probabilistic model for decision-

making.

Using the above taxonomy, GRiST could be best classified as a system for diagnosis, given

that it is to be used as a tool for assessing risks of suicide and harm. These issues would

40



3.2. THE SCOPE OF CDSSS

be indicative of an underlying mental-health issue, although GRiST’s remit is not to directly

diagnose specific diseases. Of the ten diagnostic systems that were identified by Garg et al.,

only four were mental-health related (G. Lewis, Sharp, Bartholomew, & Pelosi, 1996; Cannon

& Allen, 2000; Schriger, Gibbons, Langone, Lee, & Altshuler, 2001; Rollman et al., 2002), with

none employing a probabilistic classification model having the sophistication of the GM, but

rather, using e.g., scoring methods.

3.2.3 CDSS contexts and audiences

A more elaborate taxonomy for categorising CDSSs is developed by Berlin et al. (2006) and

used to analyse 74 distinct CDSSs. The context axes of Berlin et al.’s taxonomy describe the

setting, objectives and other contextual factors related to the system’s use.

It emerges that the majority of systems are primarily developed for use within an outpatient

setting (79%). Inpatient systems account for 19% of CDSS deployments.

Although CDSSs show considerable variety in their uses, two distinct classes of CDSS emerge

when considering the target decision-maker. Berlin et al. found 62% of systems to be aimed

primarily at the clinician as decision-maker, and 46% aimed at the patient. This indicates

that there is currently little overlap between clinician-directed and patient-directed systems.

Furthermore, out of all inpatient systems evaluated, none were found to support concurrent

decision-making by both the clinician and the patient.

The stark lack of overlap between systems designed to be used by clinicians and those for

patients is indicative of the inherent complexity within a specialised field such as medicine or

pharmacy. The gulf between a physician’s understanding of the field and its vernacular and that

of the layperson makes developing a unified system challenging. A layperson would view a system

designed for a clinician as incomprehensible, terse, difficult to navigate. Conversely, a clinician

would view the patient-directed system as imprecise, inefficient, and containing superfluous

verbiage. Consequently, system designers have tended to direct CDSSs to either audience but not

both; making activities such as shared decision-making more difficult. This is further reinforced

by Berlin et al.’s finding that a system was more likely to deliver point-of-care decision-making

(i.e., during a shared clinician-patient encounter) if the decision-maker was a clinician than if

they were a patient.

The polarity identified in systems with respect to target audience, and a bias towards the

clinician is an area that GRiST hopes to improve upon. From the outset, GRiST will be a system

41



3.3. STRATEGIC CHALLENGES TO CDSS IMPLEMENTERS

with the challenging brief of potentially being accessible to both clinicians and patients, with

neither regarding the system as being inappropriate for them. Such a system would require a

flexible architecture that allows for concepts to be polymorphic both in terms of their descriptions

and in terms of the degree of their abstraction. Indeed, when such an architecture is in place,

further avenues not considered within current studies can be addressed. For example, Berlin et

al. consider all clinicians to be equal, irrespective of speciality and the degree of medical training.

It may be that decision support can be improved by multiple versions of tools appropriate to

the assessor’s specific background.

The remainder of this chapter attempts to establish guiding principles for the development

of GRiST. It attempts to identify strategic considerations, putative best practice wisdom, and

potential pitfalls.

3.3 Strategic Challenges to CDSS Implementers

After consultation with expert CDSS developers, Sittig et al. (2008) identify ten areas of decision

support where current implementers should focus their energies. These “grand challenges” offer

insight into how decision support systems could be advanced through: the creation of new CDSS

interventions; improvements in their effectiveness; better methodologies for the dissemination of

existing knowledge and interventions. The top five specific challenges outlined in Sittig et al.’s

paper are as follows:

• Improvements in the human-computer interface – Alerts and reminders disrupt

work-flow, and are often “clicked-through” and ignored by clinicians (Weingart et al.,

2003). New, unobtrusive methods of conveying this information and improving adherence

need to be developed.

• Dissemination of best practices in CDSS design, development and implementa-

tion – There is a need for feedback mechanisms for assessing the performance of the CDSS,

and comparisons across different implementations of the same CDSS tool. Standardised

methodologies and metrics would also allow different systems to be compared.

• Summarising of patient-level information – As increasing amounts of the patient’s

data are transferred to/recorded using an electronic medium, there needs to be intelligent

summarisation of data. This will help reduce information overload and bring pertinent

matters to the attention of the clinician more quickly.

42



3.4. THE CHARACTERISTICS OF A GOOD CDSS

• Prioritising and filtering of recommendations to the user – There should be au-

tomatic prioritisation of recommendations after consideration of relevant factors. The

driving inputs may be as diverse as clinician’s past performance through to the patient’s

insurance coverage level. Improved filtering and prioritisation will help eliminate “alert

fatigue” through reduced nuisance interruptions to the clinician’s work-flow.

• Creation of architectures for sharing executable CDSS modules and services

– A set of standards-based interfaces to the CDSS could enable Patient Administration

or Electronic Health Record systems to subscribe to a CDSS in a ‘plug-and-play’ fashion.

This will lower the barrier to CDSS adoption and increase the proliferation of CDSSs, as

currently, very few such health record systems have any sort of embedded CDSS (Simon

et al., 2007).

The GRiST system will establish the foundations for addressing some of the above challenges.

Particular strengths of GRiST will be the unobtrusive highlighting of risk, and the creation of

a light-weight interface and API with which systems will be able to connect to the CDSS.

The next section explores some of the characteristics of existing systems that have been

deemed good prognosticators of success.

3.4 The Characteristics of a Good CDSS

The many methods of representing knowledge and performing decision-making have spawned

yet more numerous and innovative CDSSs of varying degrees of intricacy. Nevertheless, the

complexity of a CDSS does not always guarantee its successful deployment and acceptance by

end-users. A number of studies have been conducted to evaluate real-world CDSS deployments,

e.g., Sim et al. (2001); Ruland and Bakken (2002); Bates et al. (2003); Kawamoto, Houlihan,

Balas, and Lobach (2005). These have resulted in the identification of numerous practices and

features considered to contribute to a more successful system. This section aims to highlight

some of the findings in the literature, and draws from them a set of recommendations that can

be tested with the deployment of the GRiST CDSS.

3.4.1 Practices and features yielding positive outcomes

In a thorough review of studies investigating CDSS success and failure, Kawamoto et al. (2005)

were able to evaluate 15 putative recommendations of features considered important determi-

43



3.4. THE CHARACTERISTICS OF A GOOD CDSS

nants of clinical success. These were investigated via randomised controlled trial studies of

CDSSs. The result of this work was the identification of four factors that were able to indepen-

dently predict clinical effectiveness of a system:

• Automatic provision of decision support as part of clinician workflow — decision support

is a natural consequence of the clinician’s activities, and does not require extra work by

the clinician.

• Provision of decision support at the time and location of decision-making — immediacy

in decision support leading to the clinician actively considering the outputs of the system

when formulating e.g., the care plan for the patient.

• Provision of a recommendation rather than just an assessment — the clinician receiving an

‘opinion’ as opposed to raw data, which requires additional cognitive processing in order

to derive the opinion.

• Computer-based generation of decision support — the clinician is not required to e.g.,

perform manual scoring or calculations in order to arrive at decision support.

Kawamoto et al. note that a common theme emerges out of the above statistically significant

findings. All four features, when implemented, make it easier for practitioners to use the CDSS.

It implies that a good system must minimise the effort required of a clinician when trying to

solicit and act on decision support. This should therefore be a guiding precept in the development

of GRiST.

Other important factors frequently cited by system implementers, although not found to be

statistically significant in the study, include:

• Justification of decision support via provision of reasoning — clinicians may not always be

content to blindly follow a recommendation, and may wish to query the reasoning behind

the decision as a means of verification. Such a feature can help foster trust in the system,

thereby improving user-acceptance levels.

• Local user involvement in the development process — development in collaboration and

consultation with the people that will ultimately use the system ensures that the system

does not deviate from user expectations. Furthermore, it promotes ownership of the system

by the users, again helping to increase user acceptance and uptake.

44



3.4. THE CHARACTERISTICS OF A GOOD CDSS

• Provision of decision support results to patients as well as providers — Decision support

should be accessible to patients (in addition to clinicians) so that it helps them to better

understand issues related to their own health. Implied within this recommendation is the

need for the patients to be able to understand the information that is presented to them,

without alienating the practitioner. This is an issue that has been sidelined by many

systems by virtue of their being tailored to the clinician or the patient, but not both.

GRiST will attempt to implement these guidelines by heavily involving a wide array of

clinicians in knowledge elicitation activities and during incremental development of the system

(as suggested by Sim et al., 2001; Iliffe et al., 2002). The system architecture will support

assessment by a variety of user-types, including clinicians and patients. Furthermore, the GM,

by virtue of the way in which it calculates and propagates risk, will be capable of demonstrating

exactly how risk has been accrued.

The findings of Garg et al. (2005) and Wright et al. (2009) augment those of Kawamoto et

al. (2005), citing numerous studies where the CDSS was deemed inefficient, requiring more time

and effort from the user over paper-based systems, e.g., G. Lewis et al. (1996); Fitzmaurice et al.

(2000); Weir et al. (2003). This again suggests a need to reduce the amount of work required of

the clinician. Although, it can also be argued that if the CDSS provides enhanced functionality

as compared to the paper-based system, then the extra effort might be considered a necessary

price for that functionality.

Integration with the existing Patient Administration System (PAS) is a common method

by which CDSSs have improved their efficiency e.g., Iliffe et al. (2002). Invariably, information

already present within the PAS will form part of the data that will be required by the CDSS.

By linking the two systems together, this data does not need to be manually re-keyed. Where

GRiST will be used within an NHS Trust-type environment, efforts will be made to create a

framework by which relevant patient information can be transferred from the PAS to GRiST.

This framework will also help meet the ‘plug-and-play’ challenge set by Sittig et al. (2008),

described in Section 3.3.

Finally, Peleg and Tu (2006) discuss the importance of designing and implementing a system

that can be maintained and extended. Where knowledge representation and organisation is con-

cerned, this implies that the structures used to encode domain knowledge should be amenable to

the incorporation of new and updated knowledge, reflecting e.g., advances in the field. This has

been argued as a particularly difficult activity with ontological knowledge structures (Brewster

45



3.4. THE CHARACTERISTICS OF A GOOD CDSS

& O’Hara, 2007). The GRiST system will address this issue head on by building mechanisms

directly within the toolchain to facilitate easy updating of the knowledge structure, whilst min-

imising the need for remedial work.

Ten points for consideration in the development and deployment of a CDSS

An insightful paper by Bates et al. (2003) reports on the first-hand experiences of the authors

in deploying decision support applications in the areas of drug ordering, laboratory tests, and

radiology procedures. The efficacy of these endeavours has ranged from complete failure to

significant levels of success. This has placed the authors in a unique position to provide insight

into what works and what does not. Consequently, they advocate a set of ten “commandments”

which implementers should follow in order to achieve effective clinical decision support systems.

Bates et al.’s commandments are summarised as follows:

1. Speed is everything – The goal in terms of infrastructure response should be in the

sub-second time-frame. A slow system correlates with marked dissatisfaction from users.

2. Anticipate needs and deliver in real-time – It is not enough to make information

available for the clinician electronically: the system should be able to make intelligent

associations between pieces of information and emphasise pertinent items. This reduces

processing time for the clinicians, and increases the system’s usefulness.

3. Fit into the user’s work-flow – The recommendations and outputs of the CDSS should

be integrated with the clinician’s practice. Maviglia et al. (2003) report that adherence to

guidelines issued by the system was significantly increased when the guideline was actively

issued at the time of its relevance.

4. Little things can make a big difference – Usability is a very important consideration,

and can hugely improve a system. It should be made easy for the clinician to “do the

right thing”. An example cited would be to use drop-down options instead of free-text

where the response is restricted to a set of values. Dexter et al. (2001) report that altering

screen flow so that clinicians find it harder to ignore important reminders yields positive

outcomes.

5. Recognise that clinicians will strongly resist stopping – If clinicians are given

suggestions by the CDSS not to carry out an (e.g., poorly effective) action, they will

override and persist, unless provided with an alternative course of action.

46



3.4. THE CHARACTERISTICS OF A GOOD CDSS

6. Changing direction is easier than stopping – Changing e.g., default values for choices

to more sensible ones can result in a change in the clinician’s behaviour regarding those

aspects. This can result in cost savings, e.g., with respect to the over-prescribing of

medicines.

7. Simple interventions work best – Overly long guidelines or items that require too

much by way of input produce a barrier effect in clinicians. This reduces their motivation

to use the system.

8. Additional information should be asked for only when needed - Making requests

for information places burdens on the clinician, with the clinician’s possibly having to

look-up the information. Each additional required piece of information thus has a cost in

terms of overall clinician engagement with the system. The system should try to make

provision for situations where required information is not entered.

9. Monitor impact, get feedback, and respond – It is important to monitor the effect

of interventions, and then be prepared to alter the CDSS based on the feedback received,

tuning the system so that it is maximally useful.

10. Manage and maintain the knowledge-based system – The system should aim to keep

up with advances in the (medical) field. Additionally, tracking and analysing frequencies

of alerts etc., can give insight into how the system is being used and identify any problems.

Bates et al. (2003)’s commandments could be considered as representing a general set of

best-practice theories for generic CDSS implementers. Although not all of them will be equally

applicable to GRiST, the development and deployment of GRiST can help to test many of these

in the field of mental-health risk assessment. Therefore, GRiST will serve as a case-study in

evaluating the relevance and importance of these guidelines.

3.4.2 Practices and influences reducing CDSS efficacy

In an interesting case study evaluating the deployment of a CDSS for depression, Trivedi et

al. (2009) examine some of the barriers that were encountered throughout the process, and the

subsequent lessons learned.

The poor level of computer literacy among clinicians was identified as a factor that reduced

the effectiveness of the system. Clinicians often had very basic computing skills, which impacted

47



3.5. CONCLUSIONS

on the dexterity with which they were able to use the system. Consequently, there was variability

in the degree of adherence to the system. Trivedi et al. suggest the provision of enhanced training

on the CDSS so that clinicians achieve the necessary competence.

The problem of poor computer literacy is also a finding of the current GRiST research project.

However, with the GRiST system, this issue extends through to the knowledge elicitation phases

as well. To mitigate these issues, elicitation infrastructure and technology will need to be

designed with simplicity in mind. As will be demonstrated throughout the thesis, the choice of

technologies such as XML and XSLT (discussed further in Chapter 4) will help overcome some

of these challenges.

The need to allow clinicians flexibility and autonomy in the use of the algorithm, as opposed

to imposing a rigid process is another important finding from Trivedi et al.’s (2009) study.

Ultimately, the clinician is in charge of the assessment and should be able to conduct the

assessment as desired, with the ability to e.g., omit items and override recommendations. This

sentiment is echoed in a study conducted by Bergman and Fors (2008), which compared the

paper-based SCID 1 diagnostic tool for psychiatry with the computer-based CB-SCID 1. The

computer-based tool took a very serialised approach to the conducting of the patient assessment.

This made it technically difficult for clinicians to ‘go back’ to revise parts of the assessment or

to undertake the assessment in a more randomised global manner.

In light of the above observations, GRiST should not enforce a strict ordering for the answer-

ing of the main assessment questions. Furthermore, a search facility should be made available

to allow clinicians to locate and jump to specific areas of the question set.

3.5 Conclusions

This chapter has explored the numerous architectures that are commonly employed in the con-

struction of CDSSs. Historically, rule-based systems have dominated. Although, probabilistic

bayesian-based systems have also gained prominence. More recently, ontological systems, which

try to accurately represent domain knowledge in terms of concept graphs and the relationships

between them, are emerging. GRiST could be classed as an ontologically driven system, with

the Galatean model also incorporating some probabilistic elements.

There are as of yet very few CDSSs in the area of mental-health, and many do not employ

sophisticated reasoning to arrive at decisions. There also appears to be a dividing line between

systems that are designed specifically for exclusive use by the clinician and those for use by

48



3.5. CONCLUSIONS

the patient. This has an adverse impact on the ability for shared decision-making and on the

patient’s general awareness about their condition. This is a gulf that the GRiST toolchain hopes

to narrow.

A number of factors important to promoting a successful CDSS deployment have been iden-

tified in the literature. These can be summarised as the need to reduce the amount of extra

work and effort required of the clinician in order for them to obtain decision support. Other

factors include; good integration with existing systems and processes, the ability for the system

to demonstrate how reasoning is arrived at, recognising that the clinician is in charge and thus

removing artificial barriers on how the assessment is to be conducted, factoring in poor user IT

skills into system training. Finally, the system should be organic, adaptable to user feedback,

and maintainable to ensure longevity.

The next chapter will consider the knowledge representation format that will be used by

GRiST, in light of the flexibility that is required of the system and the skill-set of the mental-

health domain experts.

49



4
Choosing a Representation Format for Domain

Knowledge

4.1 Introduction

The act of modelling domain knowledge has been referred to by some as more of an art than

a science or engineering discipline (Fernández-López & Gómez-Pérez, 2002). What this implies

is that there is no recipe that a knowledge engineer can follow in order to arrive at an optimal

representation of an unfamiliar domain. There may be more than one way a given domain

may be modelled, and each will have its advantages and disadvantages, which will only reveal

themselves as the representation begins to crystallise.

The ultimate aim of the GRiST project is to build a toolchain for mental-health risk assess-

ment. A necessary starting point in this endeavour is the construction of a model of the domain

knowledge. Therefore, in addition to the ontology representational issues that are faced by the

knowledge engineer, further challenges unique to CDSS development also need be considered.

This chapter considers the pressures a widely inclusive project such as GRiST brings to

50



4.2. THE UBIQUITY OF XML-BASED SERIALISATION

knowledge elicitation and tool development. It questions the appropriateness of using an on-

tology modelling language such as OWL in light of these pressures, and argues that it is more

appropriate to use a simplistic, yet evolving XML representation, together with XSLT to inject

flexibility into the development process.

4.2 The Ubiquity of XML-based Serialisation

The past decade has witnessed a paradigm shift in file format serialisation methodologies. Where

arcane binary file formats originally dominated, this is being replaced with human-readable

structured text-based formats such as XML. Examples include the latest file formats for Mi-

crosoft Office software1, and the SVG image specification2 implemented in the newest iteration

of the most popular web browsers. This shift has been initiated due to the convergence of

numerous factors:

• A push by governments for open standards and file formats. This is to ensure that all

citizens can have access to the public data produced by the state, and benefit from greater

options as to how they use that data (Cerri & Fuggetta, 2007). A further issue is one of

ensuring archive data can remain accessible to future generations long after the programs

used to create that data have become obsolete.

• Increases in computer memory and processing capability. Where once binary formats

were a way of teasing every last amount of performance from the hardware, adequate

performance is now possible with more human-friendly (and consequently, less machine

friendly) file formats.

• The explosive growth of the World Wide Web and the plethora of services built for the

dissemination, search and consumption of data by both humans and machines in ways not

originally envisaged. This means there is now a much greater need for the portability of

data across many different systems and hence greater interoperability.

The Semantic Web (Berners-Lee & Hendler, 2001) is a vision of the World Wide Web that

aims to extend the utility of the knowledge contained within it by making it easier for machines

to understand to an extent, what this knowledge means. This in turn will allow machines

1The Microsoft Office file format is ratified as ISO/IEC 29500-1:2008
2http://www.w3.org/TR/SVG/

51



4.3. WEB ONTOLOGY LANGUAGE

to make deductions and inferences when tasked with searches, giving humans access to better

quality information. It will also allow more intelligent sharing and linking of disparate yet related

islands of knowledge.

Some of the the Semantic Web vision is currently being realised by XML languages such

as RDF and RDFS, which aim to describe and relate web resources to each other by way of

meta-data, e.g., the Dublin Core initiative (Weibel, 1997). The more advanced, Web Ontology

Language (OWL), also XML-based, aims to further these goals by providing sophisticated con-

structs by which web resources can be described and linked to each other in meaningful ways,

facilitating machine reasoning. Although OWL is yet to gain traction within the web developer

community, it is due to its expressiveness that it is finding acceptance in the knowledge rep-

resentation and ontology creation communities. The next section provides a brief overview of

OWL Features.

4.3 Web Ontology Language

OWL is an XML-based language for modelling knowledge domains (McGuinness & Harmelen,

2004). Being a Description Logic (Baader & Nutt, 2003), it has the ability to define classes,

properties, instances of classes etc. Thus, in some ways it is analogous to an object oriented

programming language and utilises similar terminology.

OWL builds on top of its antecedent, RDFS, yet retains the same syntax—the full version of

OWL (OWL Full) being valid RDFS. However, additional primitives added to OWL Full render

the language undecidable from the perspective of a reasoner (Motik, 2007)—the expressibility

of the language is such that not all statements can theoretically be proved or disproved by

a reasoner. Consequently, a more constrained version of the language, OWL DL, has been

specified. This is a syntactic subset of OWL Full, and ensures decidability (McGuinness &

Harmelen, 2004).

The OWL DL language, hereafter referred to as OWL, is the most popular version of the

OWL family of languages. It has ontology development tool support, and there are numerous

reasoners that can be used with ontologies developed in the language.

As stated earlier, in common with other Description Logics, OWL maintains a distinction

between classes, instances and properties.

52



4.4. ON THE APPROPRIATENESS OF OWL FOR DEVELOPING GRIST

Class Axioms describe classes. An OWL class is a collection of objects, which are regarded

as instances of that class. An instance can belong to none, one, or more classes. Thus, OWL

classes can be regarded as sets as opposed to mutually exclusive categories (Knublauch, Tetlow,

Wallace, & Oberle, 2006). OWL classes may be subclasses of multiple other classes, and all

classes are a subclass of OWL’s root class, owl:Thing.

Complex classes can be built up using class expressions. These are class specifications cre-

ated from set operations, i.e., union, intersection, complement. Additionally, expressions can

include cardinality, define the class via explicitly enumerating its members, and can specify

disjointedness.

Instances are individual objects. These can belong to classes, and can have properties assigned

to them.

Property Axioms can be used to construct characteristics that may be applied to an object,

i.e., define properties. OWL distinguishes between two types of property specifications: datatype

properties and object properties. These link objects to data values and other objects, respec-

tively. Furthermore, properties can be specified with domains and ranges of operation, can have

cardinalities, can be related to other properties in multiple ways, can be specified as being tran-

sitive etc. An example of an object property is cookedBy, which may belong to a meal class

and have a range encompassing the person class.

4.4 On the Appropriateness of OWL for Developing GRiST

OWL is an established language that is widely being used by the ontology development com-

munity. However, the goals of ontology development and CDSS development are not necessarily

the same, and each area has its own set of needs, exigencies and challenges. Therefore, OWL

should not be blindly employed in developing GRiST simply because it is appropriate for use

within the ontology development field.

Given the manner and circumstances in which GRiST would be developed, a number of

issues were identified with OWL and related paraphernalia that led to its rejection in this

project. These concerns are now detailed.

53



4.4. ON THE APPROPRIATENESS OF OWL FOR DEVELOPING GRIST

4.4.1 The maturity of supporting tools

At the time of inception of the GRiST project, OWL was a relatively new specification. Con-

sequently tool support e.g., Protégé and associated plugins were at a less advanced stage of

maturity than at present. This raised concerns about the viability of the early tools in a project

that would involve domain experts in a distributed manner, notably in the underdeveloped areas

of collaborative ontology editing and auditing (Leopold, Coalter, & Lee, 2009). This situation

has improved somewhat as tool development efforts have intensified.

4.4.2 The OWL file format is complex

OWL is a large specification, offering a vast array of constructs that can be used to model a

domain. It is a general-purpose ontology creation language, imbued with the power to model

a wide range of domains. This complexity raises a number of issues incongruent with the

aspirations of the GRiST project.

Portability of underlying XML — OWL ontologies represent a graph structure. However,

in order for OWL ontologies to be serialised as XML, they have to be ‘flattened’ into a

sequential form. Unlike typical XML file formats such as XHTML, which have an implicit

order dictated by the tree-like nature of XML, OWL serialisations are not bound by such

constraints. OWL classes, properties etc., can be defined in any order because each item

is represented as a self-contained piece of information. This makes OWL difficult to parse

using conventional XML parsers, and so, there is a reliance on specialised APIs that can

read and write OWL. This in turn restricts to an extent, the portability of OWL, and

increases the complexity of programs that can be used to process it.

Human readability/manual modification of OWL — The serialisation of OWL ontolo-

gies into flattened fragments of information mean that it is difficult if not impossible for

a human to conceptualise and visualise the underlying ontology from reading an OWL

source file. Further, this implies that it is prohibitively difficult to modify an OWL file by

hand without the risk of introducing errors and possible side effects. In a real-world mod-

elling/CDSS development scenario governed by financial and temporal constraints, there

will invariably be situations that could quickly and cheaply be resolved by ‘tinkering’ with

the underlying file format. Indeed, one of the reasons for the paradigm shift to XML was

to facilitate human readability of file formats.

54



4.4. ON THE APPROPRIATENESS OF OWL FOR DEVELOPING GRIST

4.4.3 Learning curve of OWL ontology creation tools

The Protégé tool is a mature ontology creation environment that is used by OWL ontology

developers. It is a GUI-based program that enables users to access the full gamut of OWL

features without needing to be concerned with the underlying OWL syntax. Resultant ontologies

can be visualised using the built-in viewing capabilities of the program. These capabilities make

Protégé a powerful tool in the hands of experienced knowledge engineers.

The GRiST project aim was to develop a CDSS from scratch by involving domain experts

throughout the process. Experts would therefore be encouraged to take a hands-on approach

to knowledge elicitation and validation tasks. It is at this point that the power of Protégé

(which is a necessary consequence of the complexity of the OWL language) becomes a handicap.

Had Protégé been deployed to the panel of domain experts, there simply would not have been

any engagement from them. Protégé, with its specialised computer science terminology, and

myriad ways of specifying items, has a learning curve that is too steep to expect non-computer

scientists to master. The problem is further accentuated by the fact that panel members were

often clinicians with full-time jobs, and what they signed up to was to help with the development

of a CDSS pro-bono, and not to learn esoteric software. In fact, many clinicians appeared to

have a very poor degree of IT literacy.

4.4.4 The dangers of feature overload and restrictions

As mentioned earlier, OWL is a general-purpose ontology language and has been created with a

wide feature set. This does also have some drawbacks. On the one hand, the expressivity of the

language means that there is often more than one way to model an ontological or merelogical

construct. On the other hand, there are restrictions on certain combinations of constructs that

ensure decidability of the language. These two factors make it difficult to decide a priori the

design decisions that should be made to optimally model an unfamiliar domain (Hoekstra, 2009)

and build a CDSS upon that model. Choices and modelling conventions adopted at inception

may mean the ontology is unrealisable later on, resulting in the worst case, a major rethink of

the modelling approach. This was deemed an unacceptable risk to domain expert participation,

given that clinicians were to be involved throughout the development process.

A further issue was that the GRiST CDSS would not require a reasoner, since it would be

employing its own classification engine for the calculation of risk. A representational format

subject to the rigours of sophisticated reasoning thus represented unneeded complexity.

55



4.5. USING XML AND XSLT TO PRODUCE FLEXIBLE KNOWLEDGE REPRESENTATIONS

4.5 Using XML and XSLT to Produce Flexible Knowledge

Representations

To address the concerns about OWL that were outlined in Section 4.4, it was decided to instead

use a simplified markup language to represent the domain knowledge. Naturally, this would be

XML-based, but unlike OWL, would treat the inherent tree-like structure of XML as a strength

to be maximally utilised. The Galatean model draws from the literature and takes a hierarchical

viewpoint of knowledge organisation. Therefore, the raw structure of XML could be regarded

as a good starting point in representing knowledge in a manner that is consistent with experts’

conceptualisation of it.

The skeletal structure of the file format would represent concept nodes as XML elements.

The decomposition of a concept would be directly mirrored in the file via the XML element’s

children and descendants. The initial tree structure representing the concept hierarchy could

then be embellished and augmented by newly defined XML attributes against an element to

record specific details, relationships, links to other nodes etc. In essence, all the information

about the element would be stored in situ as attributes. This approach would yield several

benefits.

• The file format would be plain XML that could be parsed, viewed, and processed using

basic XML-aware tools and widgets. In fact, the exploitation of XML’s inherent tree

structure would mean that even the raw source would convey a meaningful view of the

knowledge, and could be edited by the knowledge engineer. The domain expert could have

simplified tools created for viewing and modifying the files. These tools would present the

hierarchical knowledge and maintain only essential functionality, which would operate on

or annotate the underlying XML file.

• XML attributes corresponding to new functionality could be added as the need arose.

The specification of these attributes would also be mandated to be human friendly, e.g.,

friendly path names as opposed to XPath expressions. These would ensure that all the

syntax would be relevant and thus minimise tree-bloat, and would be easy to understand.

The most important benefit that would be provided by the bespoke XML format however, is

flexibility. When combined with the XSLT language (introduced later), the static XML repre-

sentation of the domain knowledge can be modified and molded in ways not originally envisaged.

56



4.6. XSLT PRIMER

This capability is important to developing a CDSS from scratch for a number of reasons; the

whole elicitation process is fraught with uncertainties, potential dead-ends, time pressures, short-

ages in labour and e.g., skillsets, unforseen requirements and idiosyncrasies specific to working

with domain experts. Therefore, if the representation format can be made to be malleable, these

issues are better accommodated, or at least able to be worked around.

XML is becoming increasingly important for CDSSs and their development, but often with

respect to enabling applications to communicate despite having different native knowledge rep-

resentations (Dong, Du, Lai, & Wang, 2004; Dotsika, 2003; Tamineé & Dillmann, 2003). Some

systems emphasise the role of XSLT in translating XML, but with the main aim still being

interoperability (Jovanović & Gas̆ević, 2005; Tomić, Jovanović, & Devedz̆ić, 2006). A few recog-

nise the importance of XML and XSLT in knowledge engineering (Boegl, Adlassnig, Hayashi,

Rothenfluh, & Leitich, 2004) and knowledge maintenance (Del Fiol, Rocha, Bradshaw, Hulse,

& Roemer, 2005), especially the ease with which they can help make the process more trans-

parent for domain experts. The current approach specifically exploits the flexibility imparted

to the knowledge elicitation process itself, allowing the requirements specification to be altered

dynamically without having to e.g., reprogram the elicitation tools used.

The need for flexibility does not end at the knowledge elicitation and representation phases

of research. The remit of GRiST itself is to develop a CDSS that is flexible with respect to

settings of use, the types and skillsets of users and also the types of patients. Again, if the

underlying knowledge representation and tool configuration format can be easily and rapidly

re-specified to accommodate these factors, then this is certainly a capability worth exploiting.

To these ends, XSLT will feature prominently throughout the development of GRiST’s

toolchain; therefore it is instructive to give a brief overview of what XSLT is.

4.6 XSLT Primer

Extensible Stylesheet Language Transformations (XSLT) is a language defined by the W3C

(Clark, 1999) to transform XML documents of a particular syntax to those of any other syntax,

be they XML, HTML, or even plain text (Kay, 2001). An XSLT file consists of a series of

rules (or templates in XSLT vernacular), which tell the processor exactly what to output when

elements that satisfy certain criteria are encountered in the XML file. In this way, XML can

be modified or even transformed into any other arbitrary markup language. In order to effect a

successful XSLT transformation, three components are necessary:

57



4.6. XSLT PRIMER

– A source XML file.

– A valid XSLT stylesheet containing transformation instructions to be applied to the source

XML file.

– An XSLT processor, which takes the XSLT stylesheet file and applies it to the XML file.

4.6.1 XSLT and web Browsers

Modern web browsers are capable of dynamically applying XSLT stylesheets to XML files and

displaying the results of the transformation. This is due to the fact that they have embedded

inside them XSLT Processor libraries that are invoked when needed. In order for an XML file

downloaded by a web browser to have an XSLT stylesheet applied to it, it is a simple matter of

referencing the XSLT file from within the XML file via a header:

<?xml-stylesheet type="text/xsl" href="example.xsl"?>

When a browser encounters a reference to an XSLT stylesheet, the default behaviour of

rendering the XML file as is, is overridden, and the browser instead passes to its XSLT processor

the XML file and the referenced XSLT file. The transformation instructions in the XSLT

stylesheet are then applied to the XML file, and the output of this transformation is passed

back to the browser to render on the screen.

4.6.2 Standalone XSLT processors

Although it is useful for web browsers to incorporate XSLT processors, there are however benefits

in using a standalone processor. For example, one of the drawbacks of XSLT processors in

web browsers is that they are required to download the source XML file in its entirety even

if the transformation will result in minor output such as a summary. Additionally, whereas

transformations within a web browser are performed with the output residing in browser memory,

it may be desirable to store the result into a file instead.

There are numerous open source standalone XSLT processors, e.g., Apache Xalan, Libxslt,

and Saxon. The process for applying a stylesheet is slightly different than is in the case for web

browsers, because typically, these tools are invoked from the command-line, passing to them the

name of the XML file, the name of the XSLT stylesheet file, and the name of the output file.

XSLT processors can also be invoked from within server-side scripting languages such as PHP.

58



4.7. CONCLUSIONS

4.7 Conclusions

This chapter considered the issue of a representation format for GRiST’s knowledge structure.

Driven by interests of accessability, human readability and portability, XML was identified as an

important technology in the area of file formats. Therefore, any prospective serialisation should

be in an XML-based language.

The Web Ontology Language (OWL) was identified as the most feature-rich and pervasive

XML-based language in extant use in the field of ontology engineering. However, it was argued

that the goals of real-world CDSS development are not the same as those of ontology develop-

ment, and therefore, each field will encounter its own unique challenges. The main challenge in

the GRiST project would be that of a desire to include domain experts throughout the develop-

ment process, whilst dealing with the systemic problem of relatively poor IT skills. Additionally,

there was the uncertainty that the myriad options presented by OWL might lead to modelling

‘dead-ends’ given that that the domain was unfamiliar to the knowledge engineers. Any delays

as a result would run the risk of inducing apathy among domain experts, and possibly, their

withdrawal from the project.

In light of the concerns about using OWL to develop the GRiST toolchain, it was decided

to use a much simpler, bespoke XML file format, whose expressive power would be gradually

extended as needs dictated. The inherent tree structure of XML is consistent with the Galatean

model’s conceptualisation of knowledge representation, and is thus suited to being utilised by

the model. It was therefore important to maintain this tree structure, and use XML attributes

to fortify the evolving file format with new capabilities.

XSLT would play a major role in shaping and molding the underlying XML representation

so that it could be made flexible enough to service changing requirements. Furthermore, XSLT

would be used beyond knowledge modelling phases, and help tailor GRiST for use in the diverse

environments in which it would eventually find itself.

The next chapter details how domain knowledge gathered from experts was validated, and

the role of XML and XSLT in facilitating this process.

59



5
Validation of Mental-health Knowledge Elicited From

Experts

5.1 Introduction

The previous chapter introduced XML and XSLT. It explored the rationale for using such

technologies in knowledge elicitation for decision support systems. The present chapter builds

on this further; describing how XML and XSLT-based technologies were harnessed to traditional

qualitative research methods to carry out the deconstruction and validation of mental-health

risk knowledge from domain experts.

The chapter begins by briefly introducing the methods that were employed to elicit mental-

health domain knowledge from experts. It describes how interview data from each expert was

codified as an XML-based hierarchical mind map (Buzan, 2003) and then amalgamated into a

consensual mind map.

The above research (specifically; interviewing of experts and mind map generation), described

in Section 5.2, constitutes non-PhD work, and was carried out by other members of the research

60



5.2. INTERVIEWING OF EXPERTS & MIND MAP GENERATION

team. It is thus presented only as a prologue to the main body of work reported in this chapter—

the development of validation methodologies for data gathered. The goals of these methodologies

are:

• Enabling of domain experts, unfamiliar with knowledge engineering (KE) software and

methods, to participate in KE and validation activities without the need for extensive

training.

• Imparting flexibility on the KE process itself and molding of it, without the need for

extensive rework and modifications to existing tools.

• Providing researchers with the ability to audit and analyse feedback from all experts, and

to automate their enaction.

To this end, the chapter describes intuitive and flexible methods for both soliciting, and

rapidly re-specifying domain knowledge in unforseen ways during validation rounds. The meth-

ods developed provide a vocabulary for annotating elicited domain knowledge data with little

or no change to existing software. Furthermore, the methods employ XSLT to formalise an-

notations into XML markup, and then to finally enact the markup ‘directives’ to arrive at a

re-specified knowledge structure.

5.2 Interviewing of Experts & Mind Map Generation

In order to gain a comprehensive model of the domain, the research was designed to accommodate

many experts, with the aim of obtaining consensus. Experts from a range of disciplines and

backgrounds were recruited to provide multiple perspectives and experiences of risk assessment.

Individual open-ended interviews were conducted with 46 experts and later transcribed. This

enabled content analysis (Neuendorf, 2002; Halcomb & Davidson, 2006) to be performed on the

interviews in order to identify the concepts associated with risk assessment and their constituent

components. A mind map coding template for each interview transcript thus emerged and was

expanded upon as content analysis of the transcript progressed. An example mind map is

depicted in Figure 5.1.

Mind maps originated from the earlier concept maps (see Novak, 2003, for a recent overview)

and both are useful techniques for eliciting and representing human cognition (Abernethy, Horne,

Lillis, Malina, & Selto, 2005; Siau & Tan, 2005). Mind maps are used in this instance as visual

61



5.2. INTERVIEWING OF EXPERTS & MIND MAP GENERATION

Figure 5.1: Mind map coding template developed through content analysis of an interview.

representations of the inherent structure within an expert’s knowledge, where the main idea is

placed in the central “node” of the map. The focal node in Figure 5.1 is “risk”, which can be

used to represent a particular high-level mental-health risk that has been identified, e.g., suicide.

Mental-health risks have a number of subconcepts relating to them, which are the immediate

branches of the central node of Figure 5.1, such as history, social context, assessment, etc. As

the mind map spreads out from the central idea, the concepts become increasingly specific and

detailed.

The structure inherent within a mind map of the expert’s knowledge accords with experts’

internal organisation of domain knowledge (Freyhof et al., 1992; Murphy & Lassaline, 1997). It

also meshes with the Galatean Model of classification’s hierarchical vista of domain knowledge

(Buckingham, 2002b), and thus was a logical choice for coding the data. Furthermore, such a

representation is easily translatable into a relatively simple XML format; the knowledge engi-

neering benefits of which, have been explored in Section 4.5. The open source mind mapping

tool, Freemind1, was used to create the mind maps. Freemind’s native file format is a very

simple XML-based language, meaning that the output files could almost directly be utilised in

further phases of the research.

In order to ensure the provenance and quality of any knowledge that will form part of

1http://freemind.sourceforge.net/

62



5.2. INTERVIEWING OF EXPERTS & MIND MAP GENERATION

the decision support system, it is important to maintain a full audit trail during knowledge

engineering. Consistent with this aim, as each expert’s mind map was being developed, each

node was enhanced with the transcript line number(s) which informed it. This meant that each

mind map node could be traced back to the primary data that led to its genesis.

The next stage of analysis integrated each individual mind map into a combined map. When

a node on an individual map matched one on the emerging combined map, or was added to the

combined map for the first time if not already present, the expert’s identification number was

placed after the node name, as shown by Figure 5.2. For example, 12 experts mentioned most

recent episode, the top right subconcept in Figure 5.2. This process allowed each node on the

combined map to be traced back to the mind maps of all experts who mentioned it, and from

there to the relevant interview transcript lines, thus maintaining the audit trail.

Figure 5.2: Part of the fully-expanded pattern of episodes concept within suicide risk of the combined
map. Numbers after node names represent the identification numbers of different experts who mentioned
the node.

5.2.1 Reviewing of mind maps

Good practice for qualitative data analysis includes participants reviewing analysis of their

own interviews, and also the integrated results (Mays & Pope, 2000). This was achieved by

distributing the results via the project website2 and also by post. No experts queried the

accuracy of the mind map representing their own interview’s analysis and only minor comments

were made about the integrated knowledge structure (i.e., the combined mind map), none raising

concerns about its overall legitimacy.

2www.galassify.org/grist

63



5.3. GENERIC SOFTWARE AND WEB INFRASTRUCTURE FOR REMOTE ACTIVITIES

5.3 Generic Software and Web Infrastructure for Re-

mote Activities

Sections 1.2 and 4.4.3 described a fundamental goal of the project as being able to involve

non knowledge engineering specialists in knowledge engineering activities. Additional to this,

geographical location should no longer be a barrier to participation in an Internet age. This

phase of the research marks the point where web-based tools needed to be considered. These

would give experts the freedom to work on validation rounds under conditions suited to them.

This is also the point where methods for organising the flow of information from experts needed

to be instituted. This section describes the tools and methods that were borne out of this.

These are then presented against the backdrop of the validation activities that actually took

place during this phase of the project.

5.3.1 Tree annotation program

A generic program was specified that would allow easy viewing and navigation of the current

knowledge structure, and enable experts to perform validation work.3 It was developed in

Adobe Flash4, making heavy use of the built-in treeview component that could be programmed

to display XML files (Jacobson & Jacobson, 2002). Figure 5.3 presents a screenshot of the

generic tool, in this case configured to assist with tree pruning, a KE activity discussed further

in section 5.4.

From project inception, it was recognised that clinicians are not knowledge engineers; nor are

they computer scientists. Furthermore, they were volunteers to the project, donating their time

from an otherwise busy day-job. Therefore, as argued in Section 4.4.3, expecting geographically

disparate clinicians to learn and use a fully featured Ontology editing application such as Protégé

(Gennari et al., 2003) was not an option. It was thus a deliberate design decision to limit the

complexity of the Flash program. The program offered only the functionality required to do

the validation activity, thus reducing the learning curve for the user. Essentially, the program

allowed clinicians to search for, add, delete and rename nodes. It also allowed clinicians to

comment or annotate each node.

From a KE process point of view, the Flash validation tool was to serve as a display tool

3The specification for the program was developed as part of PhD work, but implementation was carried out
by other members of the research team.

4http://www.adobe.com/products/flash/

64



5.3. GENERIC SOFTWARE AND WEB INFRASTRUCTURE FOR REMOTE ACTIVITIES

Figure 5.3: Generic Flash validation tool showing knowledge tree with pruning information. The delete,
add, rename, and comment buttons allow the tool to annotate the underlying XML document, with a
comment shown being added to the highlighted node.

and annotator for the XML-based knowledge structure. That is, it would only record comments

and changes the expert wished to make, as opposed to physically making structural changes to

the file. This had four important benefits:

• Dynamical display of structural changes could disorient the clinician due to e.g., overzeal-

ous tree manipulation coupled with the tree being worked on over multiple sittings.

• The XML would always be the same structure, thus allowing knowledge engineers to review

feedback more systematically, and consider the input within the context in which it was

made. This would help knowledge engineers retain overall control of the activity and

facilitate auditing of changes.

• The XML could be transformed using a language suited to the task, e.g., XSLT, without

worrying about coding corresponding UI and associated functionality within the Flash

65



5.3. GENERIC SOFTWARE AND WEB INFRASTRUCTURE FOR REMOTE ACTIVITIES

tool. This would save on development effort and time.

• The comments functionality could be used to drive manipulation of the XML file in com-

pletely unanticipated ways. ‘Structured’ comments would in effect allow the tool to be used

to specify new transformational rules/tree information, which could later be formalised and

enacted using XSLT. This is discussed further in Sections 5.6 and 5.7.

5.3.2 Web architecture supporting tree annotation

Each expert participating in a validation exercise was given their own login to the project web-

site.5 The Flash tool was available once logged in, and was driven by the Knowledge Hierarchy

XML file (the yet to be ratified consensual knowledge structure). Each expert was provided with

an individualised copy of the Knowledge Hierarchy during a validation exercise. The benefit of

this approach was that conflicting changes and views between experts could be captured, be-

cause each expert started from the same initial position. Additionally, more accurate and easier

auditing of participation could be performed (see Section 5.3.3), with the knowledge engineers

remaining in ultimate control of the structure.

Another important benefit of individualised XML files over having a shared XML file and

using for example, namespaces (Bray, Tobin, Thompson, Hollander, & Layman, 2009) to separate

each expert’s input, was that it sidestepped synchronisation issues. The scope of the project

was such that multiple experts could decide to conduct a KE activity at the same time from

their web browsers. If each expert were to start the session with a copy of the shared XML file,

a race condition (Stallings, 2009) would occur when saving the file—data would be lost due to

newer saves overwriting older saves not necessarily from the same expert. There are of course

numerous real-time messaging and updating protocols e.g., XMPP (Saint-Andre, 2005), Google

Wave Federation Protocol (Ferraté, 2010), that could be implemented to enable concurrent

editing. However, the overhead of developing such real-time updating systems i.e., employing

more sophisticated logic on both the server and client to ensure the system behaviour were

deterministic, was not deemed worth the benefits. The number of experts that would potentially

be using the system was not high enough to justify a real-time shared workspace, yet was great

enough to make synchronisation an issue.

5Experts were being recruited throughout the duration of the project, with nearly 100 experts by 2006. Not
all experts took part in all validation activities.

66



5.4. RATIONALISATION OF CONSENSUAL KNOWLEDGE STRUCTURE

5.3.3 Architecture supporting reviewing of expert annotations

Complementing the tree annotation program and architecture driving it were sophisticated re-

porting features to help review and aggregate expert input. XSLT was employed to effect a

transformation on each user’s XML tree file, creating a navigable HTML webpage within the

web browser, which isolated any comments, deletes, additions etc., and their locations within

the tree. Node paths were shown together with yellow highlighted comments. Deletes were

in red strikethrough text, and renames were in green with the new label next to the old label

(see Figure 5.4). This process could be carried out dynamically for any expert’s tree, all from

an ordinary computer with a web browser and internet connectivity. No specialised software

was required on the browser-end because all modern browsers are capable of applying XSLT

stylesheets (i.e., the transformation instructions) to a raw XML file supplied to them, thereby

creating the HTML webpage.

Ensuring that all the trees returned by the panel members had the same structure made it

easy for XSLT to display the comments for each one and to ensure that directives and comments

applying to equivalent nodes could be collated. That is, the XSLT reporting features were able

to aggregate and display feedback from all the experts’ trees. This significantly expedited review

activities.

5.4 Rationalisation of Consensual Knowledge Structure

The complete consensual knowledge structure contained 7,210 nodes. Although many of them

were a result of nodes repeated across the root risks of suicide, self-harm, self-neglect etc. In

all, there were 1439 unique nodes. Clinicians invariably prefer shorter assessment tools, and

this is reflected in the size of many mental-health assessment questionnaires currently in use

(Kroll et al., 2003; Watts et al., 2004; Roaldset, Hartvig, & Bjørkly, 2010). Feedback from

the expert panel indicated 50 to 100 questions being a comfortable number. Such an unwieldy

structure would therefore require heavy pruning and refinement before its use in risk assessment

and decision support. This section details how the methodologies established in Section 5.3

were used to successfully rationalise this structure to a more manageable size, and validate the

resulting tree.

67



5.4. RATIONALISATION OF CONSENSUAL KNOWLEDGE STRUCTURE

Figure 5.4: An example of an annotated XML file transformed and viewed in a web-browser.

5.4.1 Notional tree pruning points and their ratification

A program was developed to provide size/importance metrics on the tree as a whole and on

each node. Node statistics included; the number of expert ids mentioning the node in situ and

at other locations, the number of nodes in the branch, the number of leaf nodes associated with

the branch (which would ultimately be correlated with the number of questions for this branch).

The program was provided with parameterised constraints for these statistics. Branches not

meeting the constraints would be treated as candidates for pruning, and their labels prepended

with the word “CUT”.

A threshold of five expert “votes” against a node appeared to ensure that all the important

68



5.5. INTERIM CONCLUSIONS

factors were retained and that the tree was of a manageable size. However the notional pruning

points informed by the program required expert ratification to ensure no crucial information

was being pruned out. The most efficient method of doing this was by way of a series of focus

groups.6 Software was developed for clearly displaying the pruning information and recording

the decisions of the clinicians, and is described in Section 5.3. Figure 5.3 depicts a screenshot of

the tool that was developed to show pruning points within a representation of the tree. These

are indicated by the word “CUT” prepended against the node label, followed by some voting

statistics appended to the label. Experts were able to ratify the cut by clicking on delete node,

which resulted in a visual indicator denoting its deleted status. The node wasn’t physically

deleted from the tree, the rationale for which, was explained in Section 5.3.1. An ancillary

benefit of this was that it allowed comments etc., to still be made against the node.

Expert input on the pruning validation activity was reviewed by the research team via the

reporting features described in Section 5.3.3. A fresh copy of the XML tree was annotated

using the annotation tool to incorporate all the expert participants’ views on nodes to prune.

Server-side XSLT stylesheets were developed to enact the delete directives present in the tree,

thereby reducing the structure and making it ready for the next phase of validation. These

features were made available alongside the already developed KE tools described in Section

5.3.1. Therefore, they could be used through any browser, thereby not constraining the project

to one geographical location.

5.5 Interim Conclusions

Thus far, the process for arriving at a consensual representation of mental-health risk knowl-

edge has been described. Concomitantly, an evolving ‘toolkit’ of supporting technologies and

methodologies for working on the freemind -generated knowledge structure has been elucidated.

These revolve around a light-weight, minimal tree view/annotation program, generic in nature.

Its purpose is to display the tree and serve to record simple changes (such as node additions,

deletions, renames) and annotations by way of comments. Prior to a validation activity, XSLT

or (any other appropriate language) is used to supplement the tree with information that may be

helpful to that activity. This increases the utility of the generic annotation program without the

need for re-coding it. During a validation activity, each expert’s tool receives an individualised

copy of the tree. Post validation, XSLT is used extensively to audit tree changes suggested by

6Focus groups were conducted by other members of the research team.

69



5.6. INCREASING TREE VALIDATION FLEXIBILITY THROUGH STRUCTURED COMMENTS

experts, thereby allowing the knowledge engineer to use the tree annotation program (or any

other method) to mark up a fresh copy of the XML file. Finally, XSLT can be used to enact

any changes. In essence, domain expert-facing tools are simple, with all the processing and

transformation logic remaining on the back-end.

The pruning activity is an example of the flexibility afforded by adopting the above pattern

in KE for mental-health. Task-specific information was automatically coded directly within

the tree, obviating modifications to the domain expert-facing program. As an illustration of

the benefits of server-side enacting of recommendations, it was decided post-hoc that physical

delete operations should not result in complete data loss. That is to say, deleting, in addition

to deleting the branch, should as a by-product, keep all deleted node names as a help attribute

within the parent of the deleted branch. This was so that a decision support system based on

the tree may ultimately be able to utilise this information to provide contextual information to

the user when answering the particular question. It would not make sense to formalise this (and

other ad-hoc logic) within the tool because of two reasons:

• Validation activities would have to be stalled each time the tool was readied. Suspending

the process to reprogram tools with new requirements is expensive and time consuming,

resulting in loss of project momentum, even to the point of endangering successful com-

pletion.

• The nature of the KE process in an ambitious project such as this means that not all

implementation ideas are deemed to be worth pursuing beyond the prototype stage. Thus,

using modular, small and self-contained programs (i.e., stylesheets) in a language specifi-

cally designed to easily manipulate XML (i.e., XSLT), would be the logical modus operandi.

The next section describes how this design pattern is extended and applied to further vali-

dation rounds.

5.6 Increasing Tree Validation Flexibility Through Struc-

tured comments

The pruned knowledge hierarchy was reviewed in detail both by individual panel members over

the web and by a series of focus groups. The web-based tasks were organised along the lines of

Delphi consultations (Ayyub, 2001; Landeta, 2006). These elicit the independent views of each

70



5.6. INCREASING TREE VALIDATION FLEXIBILITY THROUGH STRUCTURED COMMENTS

participant, which are collated and sent back to the individuals, who are asked to review their

input in the light of the collective sample view.

Specific questions to be addressed by the focus groups and by experts working individually

over the web were:

1. Are the individual concepts correctly defined? In particular, are there any:

• missing components;

• components that should be removed;

• components that should be renamed?

2. Are the concepts correctly situated within the hierarchy?

3. What is the lowest level of information that people without mental-health backgrounds

could reasonably be expected to record?

The above activities therefore involved greater use of all the features of the generic tree

annotation program, i.e., node addition, deletion, renaming, commenting. One of the issues

that emerged from the initial pruning phase of validation was that panel members (i.e., the

mental-health experts participating in the pruning task) were wanting to perform a richer set

of actions on the tree than was facilitated by the Flash validation tool. However, it was also

apparent (from their lack of usage of the tree modification functionality) that users did not

like a complicated tool, and were happy with communicating any views via the commenting

functionality. This lent more credence to the earlier design decision of not overcomplicating the

tool with features. It also highlighted the potential for using the comments facility for recording

the richer and sometimes unanticipated operations experts wished to have performed on the

tree. This was a method that was particularly amenable to being used in the numerous focus

groups, which were led by members of the research team. The next section will explain the use

of keywords inside comments to indicate additional operations.

5.6.1 Using keywords inside comments

An expanded set of keywords for transforming the tree was drawn up and published. This

enabled focus group leaders (and more computer-literate clinicians) to specify manipulations

additional to the default add, delete and rename operations present in the tool. For example,

71



5.7. TRANSFORMING THE TREE VIA XSLT

it was often decided that a particular level (concept node) of the tree was redundant and that

the node’s children should all be attached directly to the node’s parent, with the node itself

disappearing. The keyword for this was DELETE LEVEL. A node could be annotated with this

directive via the original comments functionality. Unlike in the case of the default tree ma-

nipulations that were available, a keyword did not alter the structure of the underlying XML

corresponding to that node. It merely resulted in the creation of a comment attribute which

was populated with the keyword. In effect, the tool regarded keywords as standard comments;

meaning no changes were required to the tool to incorporate the new functionality. A full set of

keywords and their functions is presented in Appendix A.

Structured comments and keywords and the general use of marking up operations are intrin-

sically useful because they provide an audit trail of the evolution of the knowledge structure.

They effectively self document within the knowledge structure, what was done in order to get

from one round of validation to the next, and the reasoning behind it. This resolves a key

difficulty in qualitative research: documenting exactly how the raw data leads to results and

conclusions (Silverman, 2004).

The other major benefit of structured commenting and marking up of operations is that they

can actually be used to automatically enact the evolution, as described in the next section.

5.7 Transforming the Tree via XSLT

Manually enacting the tree modifications embedded inside structured comments is a laborious

and potentially error-prone process. It was therefore decided to automate these manipulations

by formulating a series of modular XSLT stylesheets that would enact each of the directives.

The first stage involved using XSLT to parse out the specific operations e.g. COPY (and the

corresponding location to copy from), REMOVE, REORDER etc., from the otherwise free-form

comments attribute of the underlying XML file. XML attributes for these operations were then

created in their own right against the node to produce a more structured XML file, marked up

with directives to be followed. This is effectively the position the XML file would already have

been in, were the generic Flash tool to have the ‘keyword’ features and associated UI directly

baked into it.

An algorithm was formulated to decide on the logical precedence of the directives represented

by these new attributes, i.e., the order in which they should be applied. For example, it would

not make sense to rename nodes when there were other pending operations that still contained

72



5.7. TRANSFORMING THE TREE VIA XSLT

paths to nodes incorporating the original node labels. A set of XSLT stylesheets were then

developed to implement each class of operation, and thereby arrive at a fully revised XML tree

at the end of the process.

It can be observed that whereas the transformations in the annotation review phase (Section

5.3.3) were performed solely within the web browser (leaving the original XML file unmodified),

the transformations in the subsequent phases required any structural changes to be persistent.

This therefore required using a dedicated XSLT processor (a program capable of applying XSLT

stylesheets to XML files, and saving the resulting output). The open source Libxslt7 program

was used to apply the stylesheets. It was chosen because of its libre nature, its ability to be

invoked from within the webserver, and more specifically, because it implemented functionality

specifications that were additional to the W3C XSLT 1.0 specification (Clark, 1999). These

(community-developed) EXSLT specifications8 enabled actions such as dynamic evaluation of

strings that contained XPath statements (Harold & Means, 2002; Tidwell, 2008). These were

required to perform operations that involved copying a subtree from one location of the XML

file to another location, based on the location path specified. Had an XSLT processor that was

limited to the XSLT 1.0 specification been used, achieving node copy operations would have

been possible, but very tedious.9

Another hurdle was the act of generating machine-friendly XPath statements from the more

user-friendly path notation adopted in structured comments.10 These involved ensuring apos-

trophes etc., were properly escaped, because these have special meaning in XSLT. Therefore,

public domain XSLT search and replace functions were used to create temporary attributes that

contained escaped XPath versions of paths. These operations were performed as pre-processes

and their reverse operations were performed as post-processes, all within the pipeline of trans-

formations towards the final tree.

The different stages of transforming the knowledge tree with XSLT are provided in Ap-

pendix B.

7http://www.xmlsoft.org/XSLT/
8http://www.exslt.org/
9An XSLT processor stopping at XSLT 1.0 compliance could be made to achieve copying of subtrees based on

paths supplied as strings by: providing it with a stylesheet that would process path strings in the XML, which
would then in turn dynamically create a new XSL stylesheet that would replace those strings with equivalent
XPath statements, which would then need to be applied to the XML to arrive at the transformed XML. A
laborious process!

10The user-friendly path notation adopted for annotations was a list of node labels separated by a > sign
e.g., label > path > to > node

73



5.7. TRANSFORMING THE TREE VIA XSLT

5.7.1 Results of transforming the pruned tree

Figure 5.5: The fully marked up knowledge structure on the left shows how the rename (R), delete (X),
and add (+) commands mark the nodes; the tree on the right shows how the attributes in the underlying
XML are used by XSLT to produce a transformed tree, with the highlighted node illustrating the name
change.

Figure 5.5 illustrates the relationship between the marked-up pruned tree and its transfor-

mation, as they appear in the Flash tree annotation program. It shows part of the suicide

risk concerned with past episodes, with the rename function enabled for the change in pattern of

episodes node. The following XML extract shows the underlying representation of the annotated

node:

<node renamedLabel="escalating frequency of suicide episodes"

label="change in pattern of episodes">

<node delete="delete" label="methods involved in episodes"/>

<node delete="delete" label="no reduction in seriousness"/>

<node delete="delete" label="frequency of episodes">

<node label="escalating"/>

<node label="decreasing"/>

</node>

</node>

The transformed tree was more refined with respect to the structure of its knowledge. However

before this structure could be used within any potential clinical data gathering or risk screening

tool, question text needed to be formulated. Notional questions and answer types were defined

for leaf (datum) nodes inside dedicated attributes within the underlying XML file (refer to

74



5.8. ENGAGEMENT IN KE ACTIVITIES BY PANEL MEMBERS

Section 6.4). These were subjected to validation rounds similar to those already described in

this chapter. Further details on this and on the validation rounds described thus far are provided

in Buckingham et al. (2007).

The tree resulting from the above validation processes was named the Structure Tree (ST).

It was represented as XML, with every leaf node being associated with a question that needed

to be considered for it during a potential assessment. The ST represented the end point of

the knowledge hierarchy development phase of the project, producing a tree with 394 nodes in

total, of which there were 124 unique concepts and 228 unique leaves. Figure 5.6 summarises

the evolution of the Structure Tree to this point.

Figure 5.6: Sequence of knowledge representations and transformations leading to the genesis of the
Structure Tree (ST).

5.8 Engagement in KE Activities by Panel Members

It is enlightening to pause at this juncture and reflect on the experts’ experiences with the KE

activities, and their level of engagement in arriving at the ST. In order to solicit this information,

75



5.8. ENGAGEMENT IN KE ACTIVITIES BY PANEL MEMBERS

during a hiatus in the dissemination of KE activities, a telephone survey was conducted.11 To

keep numbers manageable, only the then enlisted expert panel members that had participated

in the initial interview phase were contacted (n=38). The survey would allow the research team

to take stock and ascertain whether anything could be done differently to increase/improve

participation.

The telephone survey was conducted using a structured interview schedule. Following initial

orientation to the purpose of the call, experts were asked about their response to a letter they had

recently received (informing them of the impending survey), project emails, their login history

and future intentions about project participation. Those who had logged into the website were

asked further questions about their motivation to do so, ease of site navigation, and ease of KE

task completion. Interviews were therefore of varying lengths, and not all experts were asked

all of the questions. The following sections will summarise the responses to the different areas

investigated during the interview. Sample sizes will vary depending on the number of experts a

particular question was applicable to.

5.8.1 Web task participation

The 38 experts surveyed had logged into the website between 0 - 25 times. The mean number of

logins was 4, but the mode and median values were 8 and 6 respectively. When examining the

most recent login date for each expert, it was found that some had logged in within the previous

month, whilst others had not done so for over 2 years. Results over time can be summarised as

follows:

3 experts logged in within the last month

5 experts logged in within the last 3 months

12 experts logged in within the last 6 months

17 experts logged in within the last 12 months

30 experts logged in within the last 24 months

8 experts had never logged in.

Taken together, these findings show that the majority of experts who had logged in had been

reasonably active on the web, but that participation had tailed off over time, meaning that some

re-invigoration of the expert panel was required.

11The survey design was a joint effort within the research team, and analysis does not constitute PhD work.

76



5.8. ENGAGEMENT IN KE ACTIVITIES BY PANEL MEMBERS

5.8.2 Response to emails

Since the beginning of the project, the research team communicated with the mental health

experts via a series of emails. Twenty experts reported that they had been receiving these

emails, with another 9 reporting that they were not. It transpired that 5 of this number had

changed their email address without informing the research team. Of the 17 experts who were

asked if they read the emails, 10 reported that they did, 5 said they did not, and 2 could not

recall. The reasons cited for not reading the emails sent by the research team mainly reflected

barriers to participation existing on the experts’ side. Reasons given were lack of time due to

short staffing, holidays, not being ‘good’ with computers, problems with a laptop computer, and

the emails being buried under a pile of work emails. Messages that needed to be heard by the

research team however were that one expert reported needing more support in undertaking these

intermittent tasks, while another expressed frustration about the emails just repeating web task

instructions already sent out by letter, or else appearing on the website.

5.8.3 Navigating the website

The majority (n=13) of experts asked (n=25) reported that it was easy to navigate around

the project website, with only 6 reporting it was not easy, and a further 6 reporting that they

could not remember. Comments made in relation to this reflect some expert-side barriers,

such as attempting to undertake the tasks outside the deadlines specified on the web, meaning

that access was denied; and not giving sufficient time to really looking at the website. Some

comments highlighted technical difficulties however, which were important for the research team

to be cognisant of. Two experts found the task instructions unclear, and one reported having

a ‘battle’ to get things to work. One expert in particular had difficulty with saving work, and

confirming whether it was saved or not. The expert in question requested that there should be

more reassuring ‘pop up’ messages, and reported having lost some of the work done in the past,

which is very regrettable.

5.8.4 Engagement with tasks

Experts were asked whether they felt comfortable with being asked to undertake web-based

tasks, and the majority of the 25 responding to this question (n=20) responded that they were.

Those providing comments about this raised some key issues. Two commented on the large

amount of work involved, and the need for a greater sense of achievement in proportion to the

77



5.8. ENGAGEMENT IN KE ACTIVITIES BY PANEL MEMBERS

amount of time they had put into the project. Others highlighted more general issues, such

as feeling isolated, preferring to work on paper and needing successive explanations from the

research team about the overall aims of the project.

Those who had not completed any web-based tasks were asked if they had attempted to do

them, with only 2 responding positively. Reasons for not attempting the tasks were: too busy

(n=3), leaving mental health work (n=1), confusion (n=1), not allowing sufficient time (n=1),

technological problems (n=2) and not receiving email prompts (n=1).

When asked specifically about what would encourage experts to engage more in the web-

based tasks, a number of very useful suggestions were put forward. The majority of comments

were requesting more personal contact with the research team: focus groups (with provision of

food—which was implemented), more meetings with more prior notice, and more site visits to

experts in the workplace—to conduct tasks over lunch. Others requested more information, e.g.,

regular research summaries and more prompting by the team to participate.

5.8.5 Satisfaction with project participation

Twenty five provided responses to a question about overall satisfaction with project involvement.

Twelve were either ‘satisfied’ or ‘very satisfied’ with only 2 reporting being ‘dissatisfied’. However

there was a sizeable group in the middle reporting ‘neutral’ feelings. There is obviously room

for improvement in these figures.

Again, explanatory comments were sought. One expert cited personal reasons for ‘losing

track’ of the project, whilst others highlighted issues that were needed to be address by the

research team; namely, not communicating the project aims sufficiently clearly, and using too

much technical language. Others made suggestions about strategies that could be adopted to

facilitate experts’ web participation. These included producing quarterly newsletters about the

project, putting photos of the project team onto the website, more telephone calls (particularly

to talk through completed tasks), and arranging more ‘refresher’ meetings. Some experts wanted

more personal contact and a sense of a working relationship with the research team and other

experts. At the other extreme, one expert felt that the team had communicated very effectively:

even to the extent of over-communicating with experts!

It was encouraging that all of the experts (n=15) that were asked about whether they wished

to undertake future project tasks, confirmed that they would. Only 2 experts out of the whole

sample of 39 surveyed indicated that they wished to withdraw from the project.

78



5.9. CONCLUSIONS

5.8.6 Lessons learned

The telephone survey proved to be an extremely useful exercise. It was gratifying that the

majority of experts found the website easy to navigate and felt comfortable with being asked to

undertake web-based tasks. The majority also expressed satisfaction with project participation,

and voted overwhelmingly to continue. However, the exercise also highlighted that more could

be done to improve experts’ experiences.

Some of the lessons that were learned indicated a greater need for the following:

• Ensuring the clarity of language used in any communication, particularly avoiding technical

jargon.

• Reminding experts of project aims and objectives periodically.

• Providing regular updates about progress, thus avoiding any hiatuses in communication.

• Providing experts with greater positive feedback to mark and/or reward achievement in

completing web-based tasks.

• Giving more notice about planned meetings.

• Adopting mixed methods of communication and interaction with experts.

• A readiness to ‘pester’ experts more about completing tasks.

The issues of avoiding technical jargon, and the research team not fully appreciating the size

of KE tasks are both indicators of the gulf between knowledge engineers and domain experts.

They highlight the fact that even though KE tasks had already been stripped of specialised

terminology and parcelled into manageable units of work, this still fell short of suitability for

domain experts. There was a greater need for simplification than was envisaged. This finding

reinforces the motivations for developing simple KE applications and methods, and eschewing

OWL and Protégé.

5.9 Conclusions

Developing a CDSS often necessarily involves the fusion of two separate domains: Computer

Science, and the domain of expertise (in this case, mental-health). It is the role of the knowledge

engineer to bridge the gulf between these two areas by providing tools and services necessary

79



5.9. CONCLUSIONS

to capture knowledge from the experts and represent it in a form amenable to both computers

and the experts themselves. The knowledge engineer must recognise that experts should be

involved in all phases of the work, thereby engendering a sense of ownership of the project within

participants. This in turn feeds back into greater quality of input from experts, and increases

the overall success of the project. The knowledge engineer must also recognise however, that

a greater degree of involvement from experts sometimes requires their crossing over into the

realm of computer science. This presents a barrier to participation, more so where experts are

geographically separated from the knowledge engineer and indeed from each other.

Compounding to the problem of enabling experts is the reciprocal problem of knowledge

engineers being immersed in the exploration of an unfamiliar domain of expertise. Changing

requirements during knowledge engineering are therefore inevitable because the process is not

amenable to a comprehensive and watertight specification in advance, even in well-understood

domains (Meyer & Booker, 2001).

The aims of this chapter were to develop a KE methodology that appreciated the above

difficulties inherent to a project such as GRiST. The design pattern that emerged out of this

work can be summarised as:

1. Maintaining a simple front-end tool used to view and manipulate the hierarchy in a domain-

expert friendly representation of the expertise.

2. Employing markup of the underlying (XML) file to represent new information, changes

etc., on a copy of the tree that is specific to the user.

3. Augmenting KE features of the tool via structured comments where UI and markup have

not yet been finalised, or are not desirable.

4. Performing all manipulations on the server.

The key enabler of this methodology was the choice of XSLT as a language to transform the

underlying tree-based XML knowledge structure. By employing XSLT, the knowledge structure

itself became malleable and adaptable to changing requirements, whilst keeping clinician-facing

tools simple and relatively stable. Furthermore auditing of experts’ decisions was ensured as a

byproduct of the process.

This application of this methodology was presented against the backdrop of the tree valida-

tion rounds that needed to be undertaken. This led to the successful refinement and evolution

of the knowledge structure, which ultimately became the Structure Tree (ST).

80



5.9. CONCLUSIONS

A survey was conducted with experts to examine their level of engagement with the tree

validation activities. The results indicated that even though tasks could technically be carried

out over the web, the best way to achieve objectives was to employ a mix of methods, e.g.,

focus groups, small inducements etc. The survey findings also supported the view that it was

right to eschew complicated KE tools and terminology in favour of simple tools and staged KE

activities.

The next chapter focuses on the composition of the ST, and how this was enhanced, enriched

and evolved further.

81



6
The Structure Tree and its Enrichment

6.1 Introduction

The elicitation, refinement, and validation activities of Chapter 5 resulted in the birth of the

Structure Tree (ST). This represents the sum of the knowledge that will ultimately be used to

drive the risk screening tool(s) and the decision support system based on the Galatean model.

The present chapter provides an overview of the organisation of the ST. It explains how structural

redundancies inherent to the gathered knowledge necessitated the birth of new constructs and

conventions to distill them. The aim of the chapter is to demonstrate the seamless process

by which domain knowledge representation segues into the capability to gather data for risk

assessment. Therefore, the chapter provides a detailed explication of the enrichment process

that was carried out in order to metamorphose the ST from a pure knowledge structure to

one more capable of driving a risk screening tool. Finally, it discusses how customisability was

injected into the ST (and therefore, risk assessment) in order that clinician experience can be

taken into account when generating screening tools.

82



6.2. OVERVIEW OF THE ST AT END OF KNOWLEDGE REFINEMENT

6.2 Overview of the ST at End of Knowledge Refinement

The elicitation process of Chapter 5 resulted in a knowledge structure that identified five main

areas of mental-health risk. These were, suicide, self-harm, harm to others, self-neglect, and

neglect of dependents. These “top-level” risk nodes were represented in the ST as direct children

of the root node, mental-health-risk. Each top-level risk was composed of further sub-concepts

that broke it down into its constituent components. In this manner, the risks recursively de-

composed into further concepts (i.e., nodes that have children) and finally, to individual datum

or leaf nodes. Each datum node represented a piece of information that could be solicited by

a potential data gathering or risk screening tool. Thus, each datum node had attached to it a

question that could be asked to collect this information. This was stored against the datum node

inside a question attribute. Indeed, within the ST’s XML-based file format, any supplemental

information in relation to a node was stored as an attribute within the element representing the

node. A schematic representation of the ST is presented in Figure 6.1.

Figure 6.1: Schematic representation of the Structure Tree. Below the root node, there are five top-level
root risks (coloured white) and one pseudo-risk (coloured grey) to store repeating nodes. Rectangular
nodes are datums, with attached clouds indicating question attributes.

The process of coding interview transcripts and generating the initial risk hierarchy also

identified the need for a distinction between repeating concepts and those that are specific to

83



6.3. SEMANTICS AND ORGANISATION OF GENERIC NODES

particular risks. It was for this reason that there were initially such a large number of nodes.1

For example, depression is a concept that repeats throughout the knowledge hierarchy across

all top-level risks, and so is termed generic. Wherever such generic concepts appear in the

tree, they necessarily have the same constituent components. Therefore, it was decided that

all such repeating nodes, both concepts and datums, should be defined under a special generic

nodes top-level pseudo-“risk” (see Figure 6.1). This would result in repeating nodes having

their structures and questions located in one place. Everywhere else they occurred in the tree,

a “stub” node would be placed containing a path to the generic definition of the node. This

principle is similar to the design of relational databases, where redundancy of information is

eliminated by normalisation to prevent inconsistencies and duplicate data entry (T. Connolly &

Begg, 2010).

6.3 Semantics and Organisation of Generic Nodes

Section 6.2 established a need for identifying generic concepts and defining them in one central

place. However, further specification of generic nodes was required in order for the tree to

adequately serve any potential decision support system based on the Galatean model. These

elaborations are described below.

6.3.1 Generic concepts

Recall from Section 2.3.1 that additional to a concept’s structural components, the Galatean

model of classification requires Relative Influence (RI) values for these components. These pro-

vide weightings for each internal component relative to each other. When reconsidering generic

concepts in light of RIs, it emerges that although all instantiations of a given generic concept

share the same structure, not all generic concepts will have instantiations that will additionally

have the same configuration of RIs across them. That is to say, some generic concepts will have

RIs that vary with the location of that concept. This is true for feelings/emotions, for example;

two sub-concepts of which are anger and hopelessness: the RIs for these subcomponents would

not be the same for the risks of suicide and harm to others.

On the other hand, many generic concepts are not context dependent, and always have the

same internal RI configuration wherever they occur. The depression concept is an example of

this. Depression is a direct measure of a patient attribute, therefore its internal components

1Initially, there were 7,210 nodes.

84



6.3. SEMANTICS AND ORGANISATION OF GENERIC NODES

are stable and it can thus be treated as a “black box” when instantiated. feelings/emotions

however, is a concept that is essentially a holdall for a collection of properties of the patient

(anger, mood swings, distress etc.) but is not in itself a meaningful patient variable. Instead its

meaning is derived from how its subcomponents collectively contribute to the root risk. Thus,

when the root risk context changes, so does the collective contribution of the components of

feelings/emotions. The distinction is a subtle but important one which would come into play

when RIs were to be instantiated. Thus, in preparation for this, the following distinctions were

introduced in the evolving ST:

g concepts – a homogenous generic concept (i.e., a generic concept with fixed internal RIs)

was dubbed a g concept. This was indicated within the ST by a generic-type="g"

attribute against the concept node at the location of its definition.

gd concepts – a heterogenous generic concept was dubbed a gd (meaning generic distinct)

concept. This was indicated by a generic-type="gd" attribute against the concept

node at the location of its definition.

Furthermore, the generic nodes pseudo top-level risk was refined to contain a generic concepts

pseudo concept child (refer to Figure 6.2). Both g and gd concepts were now all placed inside the

generic concepts node. Instantiation locations retained a stub node in lieu of the instantiation.

The stub node contained a pointer to the generic definition, i.e., an attribute:

generic="generic nodes >> generic concepts >> path >> to >> generic

>> concept "

The ST specification was also extended to allow the definition of nested generic concepts inside

the generic concepts node if that more naturally reflected the structure of the concepts under

consideration.

6.3.2 Generic datums

Most repeating datum nodes (i.e., leaves of the ST that correspond to directly assessed patient

data) will only repeat within generic concepts. As a consequence, they will automatically be

defined only once within the generic concept definition. However, there may be some that do

not fall in this category, and will repeat outside generic concepts. As described in Section 2.3.2,

datums will require a value-mg profile to be associated with them. This describes the degree

to which a given answer value for the datum indicates membership or degree of activation of

85



6.3. SEMANTICS AND ORGANISATION OF GENERIC NODES

that datum. Since an answer value corresponding to a repeating datum is not envisaged to

be contingent on its location, it would imply that the datum could be classed as type g using

the taxonomy introduced in Section 6.3.1. Therefore, having the datum physically repeating

in the ST would introduce a redundancy with respect to its value-mg profile (and possibly its

question text). To eliminate this potential redundancy, such generic datums were defined in

a generic datums pseudo-concept, which was a sibling of the generic concepts pseudo-concept

(refer to Figure 6.2). These adopted the same identifying syntax as was defined for generic

concept definitions; namely:

generic-type="g"

attributes against the datum definition. For completeness,

generic-type="gd"

attributes were also specified. Stub nodes at generic datum instantiation locations contained a

generic-datum attribute with a path pointing to the location of the datum’s definition.

6.3.3 Direct risk children

A number of generic concepts and datums were identified as being common to all of the five

top-level risk strands depicted in Figure 6.1. The native positions of these generic concepts

were as direct children of the top-level risk nodes. It was decided not to refactor these concepts

using the conventions established in Sections 6.3.1 and 6.3.2. This was because their numerosity

meant that the number of stub nodes that would be required to service them post-relocation

would in itself be adding to ST bloat. Instead it was decided to create an additional sibling to

generic concepts and generic datums in which to directly house this class of nodes. Thus, the

nodes were placed in a direct risk children pseudo-concept within the generic nodes pseudo-risk.

No stub nodes were retained within each of the risk areas for direct risk children. Rather, a

convention was established that generic nodes contained within the direct risk children pseudo-

concept were to be instantiated in each of the top-level risks as direct children. This convention

obviated the need to specify stub nodes and paths, thereby eliminating both redundancy and

tree bloat. Figure 6.2 depicts the now augmented structure of the generic nodes pseudo-risk

first introduced in Figure 6.1.

86



6.3. SEMANTICS AND ORGANISATION OF GENERIC NODES

Figure 6.2: Schematic representation of the generic nodes pseudo-risk. It contains three pseudo-concept
children, which store generic concept and datum definitions. These are referenced from the rest of the
ST via paths contained in stub nodes.

6.3.4 Rules governing generic nodes and where they are fully defined

A number of rules were established to clarify exactly where generic concepts were to be defined

and the implications of more complicated scenarios involving nested generic concepts, taking into

consideration the semantics of g and gd concepts. This would ensure that the tree remained

viable (semantically) for use in a risk screening tool. Furthermore, formalising of such rules

would help with automated validation of the correctness of the reorganised ST. The rules are as

follows:

1. Generic nodes have the same identifier wherever they occur in the hierarchy.

2. All generic nodes have their full structure defined in one place only.

3. g concepts are never defined within a gd concept. However, see the next point.

4. If a g concept is contained within a gd concept and the g concept is not itself fully defined

as a direct risk child, then the full definition of the g concept is within the generic concepts

section.

5. A g concept’s components will remain homogenous even where that g concept is contained

in a gd concept.

6. g concepts can be fully defined within other g concepts even if the g subconcept is inde-

pendently referred to from elsewhere outside the containing g concept.

87



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

7. gd concepts can be fully defined within other gd concepts even if the gd subconcept is

independently referred to from elsewhere outside the containing gd concept.

8. A gd concept can be fully defined within a g concept even if the gd subconcept is inde-

pendently referred to from elsewhere outside the containing g concept.

9. A gd concept fully defined within a g concept will be restricted to being homogenous

in locations where it has been transitively referenced via a reference to the containing g

concept.

The above rules, although not explicitly mentioning generic datums (for reasons of brevity),

apply to them equally.

6.4 Question-related Paraphernalia and Data Types

Section 5.7.1 briefly detailed that question text and associated data types were finalised in con-

sultation with experts. The present section elaborates on the results of this process and outlines

how these, and other related considerations, were accommodated within the ST specification.

These ST enhancements would help enable the tree to directly specify risk assessment tools,

thereby bridging the gap between ontology and assessment.

Not all of the constructs outlined in this section were conceived of during this epoch of

the research. That is to say, some items were identified as being useful during later research

phases, and so, retrospectively incorporated within the ST, as it was the logical location for

their placement.

6.4.1 The different types of question: question, filter-q attributes

Each leaf node of the ST corresponds to an item of patient data for which, a question can be

asked. Hence the term datum has been applied to them. Figure 6.1 shows that each datum

node stores its associated question within a question attribute.

Earlier feedback from the expert panel indicated that experts do not like to answer very

large sets of questions during a patient assessment. This was mirrored in the work of e.g.,

Kroll et al. (2003), Watts et al. (2004) and Roaldset et al. (2010). A limitation of paper-based

questionnaire tools is that all questions need to be presented whether they are applicable or not.

The situation is improved somewhat by the use of ‘filter-questions’, which direct the agent to a

different section in cases where it has been established the current section is not applicable.

88



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

The hierarchical nature of the ST and the notion that concepts break down into sub-concepts

and ultimately, datums, meant it was easy to adapt the filter-question approach to the ST.

Rather than having a risk-screening tool that presented all datum questions in one go, it was

possible to designate certain (higher-level) concept nodes as filter nodes. These were signified

by a filter-q attribute that contained a yes/no question to be answered by the expert. These

nodes could act as gates within the tool, with the questions underneath only being revealed if

the filter-q question were to be answered in the affirmative. This would considerably reduce

the number of questions exposed to the assessor.

6.4.2 Generating rapid screening questions: the layer attribute

A common approach to risk data gathering is the administering of a short screening tool, where

all the important questions are asked first (e.g., Watts et al., 2004; Patel, Harrison, & Bruce-

Jones, 2009). This then allows the clinician to see at a glance whether further assessment using

the full set of questions is necessary (Brooker & Fox, 2009). The hierarchical nature of the ST

is a drawback in this respect since there is an implicit ordering in the nodes. The ordering may

make sense for a one-stage monolithic tool, but there needs to be a ‘layered’ approach (Vickers,

1994) when more than one type of ordering and prioritisation (i.e., rapid screening tool and full

tool) needs to be accommodated.

The flexibility provided by the extensibility of XML meant that layering could be relatively

easily accommodated in the ST with the introduction of an additional attribute. Layering was

implemented by introducing the

layer="n "

attribute, where n ∈ N0. The presence of the layer attribute would imply that any associated

question (present in a question or filter-q attribute) was to be presented ‘up-front’ as a rapid

screening question. The value of n would indicate the order of precedence in relation to other

screening questions, zero being highest precedence.

Algorithm for the treatment of layer nodes

An algorithm was established as to how a potential risk assessment tool should use the layer

attribute during generation/rendition of rapid screening questions. This is outlined below. A

flowchart corresponding to the algorithm is presented in Figure 6.3.

89



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

1. If the layer attribute is against a datum node, there is no change to the question

output; the only purpose of the layer attribute in this case is to prioritise that

particular node for the rapid screening question display.

2. If the layer attribute is against a concept node and there is a question attribute

against the concept, the question will relate to the layer attribute. The node is

essentially treated the same as a filter-q node, with the treatment being as follows:

(a) the answer type is always yes/no;

(b) the underlying questions are only displayed if the answer is yes;

i. Process the underlying questions in the same way (i.e., repeat from Step 1);

ii. Note: layer nodes differ from filter nodes in that a no answer to a layer

question does not render the subtree irrelevant. Instead, it can be taken as

a statement that the assessor does not wish to see the subtree questions at

present, even if some of them have already been answered.

(c) the answer can be no for the layer question even if some of the underlying tree

questions have been answered, which is where it differs from filter nodes. The

layer question is about whether the underlying questions need to be visible or

not.

3. If the node is instead a filter node (i.e., has a filter-q attribute instead of a

question attribute), then the node is treated exactly as a filter question, includ-

ing using the same question text. The only role of the layer attribute in this case is

that it ensures the filter question is displayed on occasions when it might otherwise

not be (i.e., when the layer processing exposes it).

(a) This means the algorithm must check that the filter-q attribute is not present

whenever a layer attribute is met;

(b) if it is, the node should be processed as a filter question node.

4. Note the same layer number can be associated with nodes nested within each other.

It just means the parent layer node may be opened but the nested layer node may

still not be opened, if the answer to it is not given or is no.

90



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

Figure 6.3: Flowchart showing how rapid screening questions are identified and displayed from within
the full knowledge structure.

6.4.3 Data types associated with questions

Consideration of question text cannot be done in complete isolation from the data types and

controls that would be used for data gathering. A parallel activity to question text formulation

and validation was thus, work on data types.

The fundamental data type for data gathering: the scale attribute value

It was decided to use a scale data type for questions that involved the degree to which a person

possesses a particular property or represents a particular risk. Validation activities2 revealed

preferences by experts for 3 point, 5 point and 11 point numerical scales with labelling. Figure

6.4 depicts a scale validation task that could be carried out online by experts, with the data

being collected within a MySQL database.

The relative merits of numbers versus labels become more clear in the light of research

indicating that the reliability of assessments increases with the number of graded points available

2Scale validation activities were directed by other members of the research team, with technical elements
constituting PhD research.

91



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

Figure 6.4: Validating the form of answer scales to use for data gathering.

for each item. The greatest increase is up to 7, whereupon it levels off; and after 11 little is to be

gained with finer grading (Kline, 2000). So ideally, 11 graded points (i.e., a 0-10 scale) should

be the scale of choice. However, this complicates the provision of semantic labels. It becomes

increasingly difficult to produce meaningful terms for more than seven points and concomitantly

more difficult for people to keep the item labels in mind when comparing their appropriateness

for a specific rating. Indeed, Miller’s (1956) classic paper reports the average number of items

that can be comfortably held in working memory to be 7±2.

Taking above findings and literature into consideration, a compromise situation was arrived

at. The default scale to be utilised within an assessment was an 11-point colour-coded numerical

scale, with five semantic labels. This format was chosen because it is well understood: every

point along the scale gains 10% and it contains 11 response points, which provides the maximum

reliability for all practical purposes. Furthermore, it is not necessary to keep the numbers in

92



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

the assessor’s mind: their ordinal and equal-spacing are fundamental concepts that everyone

possesses. Finally, the scale is enhanced with a memory-friendly five-item labelling scheme.

All (datum) nodes deemed to require scale answers were given an additional attribute:

values="scale"

This could then be used by a potential risk assessment tool to render the appropriate control

(shown in Figure 6.5).

Figure 6.5: An example eleven-point scale based upon a values="scale" ST node attribute.

It was recognised that the default scale label strings (min-max ) depicted in Figure 6.5 might

not always agree with the phraseology of the associated question. Therefore, a supplemental

attribute was specified, which could direct a potential risk assessment tool to render one of three

alternative sets of labels:

scale-type="low|much|likely"

which were predefined as:

low: min; low; medium; high; max

much: not much; a little; medium; much; very much

likely: very unlikely; unlikely; possible; likely; very likely

Recording dates: the date-year, date-month, date-week, and date-day attribute values

Some questions required date information to be collected from the assessor. It was decided to

collect all date information from the user in a consistent, yet flexible manner. An exact date

was specified to be collected and stored in the form DDMMYYYY. It is often the case that

an exact date is not available (and additionally, may not really make much difference to a risk

calculation). To cater for inexact dates, further entry formats of MMYYYY and YYYY were

specified for the date control.

93



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

For the purposes of associating with MGs and also for reporting of dates in a sensible manner,

a number of different units of measurement for elapsed time were identified:

date-year - The unit of measurement used in value-mg definitions will be years, thus any

elapsed time calculation should be in years. For the purposes of reports based on an

assessment, elapsed time should be displayed in years where practicable.

date-month - Elapsed time should be calculated in months. Reporting should use months

where practicable.

date-week - Elapsed time should be calculated in weeks. Reporting should use weeks where

practicable.

date-day - Elapsed time should be calculated in days. Reporting should use days where

practicable.

The fact that an ST node required a date control, and the units of measurement were both

signified within the node via the following attribute:

values="date-year|date-month|date-week|date-day"

An example of the resulting date control is presented in Figure 6.6.

Where an inexact date was provided, the Galatean model would convert the date range

effectively indicated by the inexact date into an exact date by taking the midpoint. For example,

041988 would imply a date between 1st April 1988 and 30th April 1988. Therefore, for calculation

purposes, the date entered would be considered to be 15th April 1988. This conversion would only

be for the purposes of classification, and would not result in the entered date being physically

altered. Reports based on an assessment would consider the date data type, its granularity, and

the magnitude when determining the best format in which to display elapsed time.

Figure 6.6: An example date control based upon the ST date attributes. Its rendition as a single
textbox, whose contents are validated, ensures quick data entry.

94



6.4. QUESTION-RELATED PARAPHERNALIA AND DATA TYPES

Recording numbers: the integer and real attribute value types

Two data types for questions requiring numerical answers e.g., to record the number of past

occurrences of an event, were established:

values="integer|real"

These were rendered by potential tools as text-boxes. An attribute to define upper and lower

limits was not specified. This was because the value-mg profile that would be established for

answers would effectively define value ranges that are relevant. Values falling outside these

would thus not influence the risk calculation in an adverse manner.

Recording nominal categorical data: the nominal and multiple-tick attributes

A data type to handle XOR categorical answer values (i.e., pre-defined answer values to be

selected via radio buttons) was defined as:

values="nominal"

In this circumstance, a risk assessment tool would look to the node’s value-mg definition to

ascertain the category labels to use to generate radio buttons.

The need for a data type to represent a node where multiple categorical answers could be

selected (i.e., pre-defined answer values to be selected via check boxes) required an attribute

additional to nominal. This involved defining a multiple-tick attribute, which detailed all

the category labels and any associated question text; an example of which is presented below:

multiple-tick="(&quot;Has the person targeted any particular group of

people rather than complete strangers?&quot; (

(DOMESTIC &quot;Has the person harmed within a domestic setting?&quot;)

(FRIENDS-COLLEAGUES &quot;Has the person harmed friends/colleagues?&quot;)

(HEALTH-WORKERS &quot;Has the person harmed any health workers?&quot;)

(AUTHORITY-FIGS &quot;Has the person harmed any authority figures?&quot;)

))"

The multiple-tick attribute borrows from the LISP programming language (Seibel, 2005), the

idea of using lists to embed a data structure inside an otherwise atomic attribute. Information

that may otherwise needed to have been coded as child elements in an alternative XML scheme

thus maintains the ability to be coded as node attributes using the present scheme. This yields

95



6.5. REPRESENTING MEMBERSHIP GRADE PROFILES

the benefit that the ST’s underlying file structure maintains a close correspondence with the

hierarchical knowledge structure it is coding. That is, each XML element corresponds with an

element of the ontology, with no other XML element types being introduced within the tree—

making processing and visualisation of the knowledge structure within (and without) tools very

easy. A further advantage is that the list format within an XML attribute is a much more

compact representation than a scheme using pure XML (cf. Crockford, 2006).

Consideration of the multiple-tick syntax against the relatively plain values="nominal"

syntax that is used in the XOR case helps to illuminate a nuance between the two. Whereas

the multiple-tick format is comprehensive enough to specify question text against each item,

the XOR format is not. This is because it was apparent that radio button controls did not

generally require individualised questions for each option: node labels collected from the node’s

value-mg specification would be enough given that only one nominal alternative could be chosen.

multiple-tick nodes on the other hand, can have more than one answer, and could in theory

be represented as a concept with children nodes corresponding to each item: each item could be

answered individually, thus each item should be able to have its own question text.

6.5 Representing Membership Grade Profiles

Recall that as a prerequisite to classification, the Galatean model of risk requires that each

datum has an associated value-mg profile. The value-mg profile maps potential answer values to

the level of activation or membership of the datum node. This section describes methods that

were used to elicit value-mg profiles, and their associated representation format within the ST.

6.5.1 Collection of preliminary value-mg data

The generic tree annotation program described in Section 5.3.1 was adapted3 to serve as a

value-mg profile elicitation tool (Figure 6.7). Depending on the contents of the values attribute

(which contained the data type of the node), a suitable representation was constructed by the

tool to collect value-mg data. Figure 6.7 depicts a representation for collection of value-mg data

for the scale data type. For this data type, participants were presented with a grid on which to

place points in order to sketch out a value-mg distribution (scale values being on the x-axis).

No restriction was placed on the number of data points within a value-mg profile. Therefore,

3The value-mg elicitation tool specifications were developed as part of PhD research, but the tool was realised
by other members of the research team.

96



6.5. REPRESENTING MEMBERSHIP GRADE PROFILES

Figure 6.7: The value-mg profile elicitation tool being used to elicit a profile for a scale node. A graph
is constructed by the user by dragging blue dots from the ‘pad’ at the top-left of the grid and placing
them at the desired location. Red endpoints can only be moved along the y-axis.

profiles of arbitrary precision and complexity could be generated. The data points corresponding

to the value-mg profile were represented within the ST node as an association list within a

value-mg attribute as follows:

value-mg="((0 0)(8 1)(10 0.8))"

Value-mg profiles for nominal data types were also represented in a similar manner e.g.:

value-mg="((DOMESTIC 1)(FRIENDS-COLLEAGUES 1)(HEALTH-WORKERS 1)

(AUTHORITY-FIGS 1))"

Pilot value-mg elicitation was performed with experts using the focus group approach4 in

order to arrive at a consensual value-mg profile for datum nodes. Members of the research team

are currently formulating methodologies to analyse individual expert value-mg opinions and

4Focus groups were run by other members of the research team.

97



6.6. FLEXIBLE ASSESSMENTS BASED ON USER EXPERTISE LEVEL

produce a consensual value-mg in a statistically robust way (Hegazy & Buckingham, 2010).

This will allow the elicitation method to scale to the individual opinions of any number of

experts.

6.6 Flexible Assessments Based on User Expertise Level

Section 6.3 detailed the reorganisation of the ST to remove redundancy. Sections 6.4 and 6.5

have established the ST machinery that will ultimately be used to conduct patient assessments.

A key consideration not yet addressed, and which was one of the initial goals of the project,

is one of molding an assessment to the needs of the clinician/user. Section 3.4.1 recognised

the importance of this in the successful acceptance and integration of a new tool into existing

workflows, e.g., Kawamoto et al. (2005); Sim et al. (2001). The present section expounds upon

the machinery incorporated into the ST to consider the expertise of the assessor in order to

produce a tailored risk assessment tool. This represents the first of a two-pronged approach

that was implemented to meet individualisation needs of the practitioner (the second approach

to be introduced in Chapter 10).

6.6.1 Practitioner expertise quantised as levels

The Structure Tree, by virtue of the way in which it has been engineered, is a comprehensive data

set, which defines the concepts relevant to mental-health assessment. These concepts are broken

down into their elemental components—lower level cues that even staff with no experience in

mental-health can measure and provide information on. This makes any potential tool accessible

to staff such as front-line services, who may not necessarily have the skills for making higher-level

judgments. The reality however, is that many mental-health practitioners may want a shorter

tool to match their level of experience and expertise.

To cater for varying levels of experience, three levels of mental-health experience were iden-

tified, with the aim of using the ST to drive the generation of tools applicable to each level, all

from the same underlying validated knowledge structure. Levels of expertise identified were as

follows:

Level 0 - Assessors with no mental-health background, such as police, housing officers, fire

fighters etc.

98



6.6. FLEXIBLE ASSESSMENTS BASED ON USER EXPERTISE LEVEL

Level 1 - Assessors with a health background, but not mental-health, such as paramedics or

accident and emergency nurses.

Level 2 - Assessors with mental-health training.

Level zero is considered to be the default, where all leaf (datum) nodes would be used to

produce the assessment tool. These already have questions associated with them, formulated as

part of the knowledge engineering activities described in earlier sections.

The graduated refinement of a concept that is a consequence of the ST’s hierarchical structure

means nodes higher up the tree encapsulate the meaning of descendent nodes. Therefore cutting

off of a concept at a higher point in the tree is tantamount to representing the removed nodes

in a more abstract form. Level one and Level two ‘cut off’ points can thus be defined via the

incorporation of a level attribute:

level="1|2"

The presence of a level attribute against a node means that this is ‘soft’ cut-off point for tools

that match the level. In such cases the cut-off point is effectively treated as a datum node

(and nodes below it are not considered by the tool). The tool is thereby shortened as expert

experience level increases.

The soft cut-off point introduced by virtue of the levels mechanism requires that a question

and values be specified specifically for when the point is transformed into a datum in tools

matching the level. Figure 6.8 depicts this for the suicidal ideation concept node, which has

assigned a level="1" attribute, an accompanying question to be asked for the associated Level 1

risk assessment tool, and a values="scale" attribute to dictate the form of the accompanying

answer. It means that a practitioner with experience matching the Level 1 tool requirements

can make a direct judgement about the level of risk associated with suicidal ideation. Assessors

using the full risk-screening tool would have to provide answers to the four lower-level questions

and rely on the Galatean model to generate the level of risk associated with suicidal ideation.

99



6.6. FLEXIBLE ASSESSMENTS BASED ON USER EXPERTISE LEVEL

<node label="suicidal ideation"

filter-q="Is the person having suicidal thoughts or fantasies?"

question="To what extent the person’s suicidal thoughts/fantasies

match those that would give you the most concern about suicide risk?"

values="scale" level="1" value-mg="((0 0)(10 1))">

<node label="How much suicidal ideation is verbalised"

question="To what extent is the person talking about suicidal

thoughts or fantasies?"

values="scale" value-mg="((0 0)(10 1))"/>

<node label="ability to control suicidal ideation"

question="To what extent is the person able to control the suicidal

thoughts or fantasies?"

values="scale" value-mg="((0 1)(10 0))"/>

<node label="content of suicidal ideation indicates high risk"

question="To what extent does the content of the suicidal thoughts

or fantasies raise serious concerns about suicide risk?"

help="get away from it all ** harming others **

harming themselves"

values="scale" value-mg="((0 0)(10 1))"/>

<node label="frequency of suicidal ideation"

question="How often do the suicidal thoughts or fantasies occur?"

values="nominal" value-mg="((DAILY 1)(WEEKLY 0.5)(MONTHLY 0.2)

(LESS-THAN-MONTHLY 0))"/>

</node>

Figure 6.8: Part of the XML for holding information on suicidal ideation in the refined Structure Tree.
It shows attributes holding the node names, the question to ask, the values the answer can take, the
associated value-mg profile, the level of experience required to ask the question, and help information
about the node semantics.

Algorithm for generating tools at each level

Algorithmically, a tool corresponding to a given level would be generated by traversing the tree

as follows:

Conduct a depth first search of the tree, examining any level attributes.

IF a matching level OR a lower level is detected THEN

Output the associated question and do not go down any further

ELSE

Continue going down until the leaf node is reached

(and thereby output the same question as a Level 0 tool would)

END IF

100



6.7. CONCLUSIONS

6.7 Conclusions

This chapter set out to describe the process by which the Structure Tree was refined and en-

hanced in order to make it amenable to driving a risk assessment tool. The transition from an

initial ontological structure to one suited to the task of risk data gathering was marked by three

phases:

1. Reorganisation to eliminate structural redundancy.

2. Specification of attributes to drive risk assessment tool creation.

3. Specification of a method to customise tools according to practitioner experience level.

Initially the ST required reorganising due to the fact that concepts and datums were being

repeated across the tree even though they were essentially of the same generic structure. A

categorisation of generic nodes into g and gd types was introduced due to the fact that internal

weightings (Relative Influence values) were not always deemed to be constant across node in-

stantiations. The distinction thus allowed the ST to remain as compact as possible, yet provided

a way to flag up instantiations which would require their own weightings.

The ambition of this project was to go fluidly from knowledge elicitation to a validated

knowledge representation to a risk assessment tool/decision support system directly specified by

that knowledge structure. Essentially, the expert knowledge should directly drive tool creation.

XML and XSLT-based technologies were specifically chosen for the flexibility and malleability

of representation that they brought to the table. As preparation for incorporation of the knowl-

edge into a risk assessment tool or CDSS, a number of constructs were introduced to aid tool

construction/configuration. These were specified via new attributes. The attributes imbue the

ST XML structure with the capability to stipulate data types, question groups, rapid screening

questions, and Membership Grade activation profiles. The attributes embellish the raw scaffold

of the knowledge with information about how it is to be used to generate the risk assessment

tool.

Finally, the ability to customise according to practitioner experience was fashioned within

the knowledge structure. The representation of the knowledge in terms intuitive to humans

(i.e., concept hierarchies) played a pivotal role in facilitating this. The hierarchical ontological

structure of the ST, in which knowledge is gradually decomposed into elemental components,

allowed for this to be achieved via specifying soft cut-off points. This meant that experienced

101



6.7. CONCLUSIONS

practitioners would have a smaller ST driving construction of their tool, implying fewer but more

abstract questions. The utility of the risk assessment would not be compromised even though

the practitioner would be answering fewer questions because the underlying validated knowledge

would be the same but would rely greater on the practitioner’s expertise. This type of tailoring

mechanism, where the quality of the assessment outcomes is maintained whilst shortening the

tool, is an innovation in CDSSs in the area of mental-health.

Customisation according to clinicians’ needs is an important issue, and this chapter has

detailed the first of two approaches that were implemented to molding the tool towards the

practitioner. The second approach, tailoring for different settings and patient demographics, is

addressed in Chapter 10.

Before the ST can be used to drive a risk assessment and a decision support system, it requires

that RIs be instantiated. Closer consideration of the initial strategy of removing structural

redundancy within the ST alludes to a problem with regards to the instantiation of RIs. If the

Structure Tree eliminates structural redundancy in locations where the redundancy does not

extend to RI values, how are RI values to be elicited and recorded against the eliminated nodes?

This topic is explored in the next chapter.

102



7
Representing Relative Influence

7.1 Introduction

The enhanced Structure Tree resulting from the reorganisation activities outlined in Chapter 6

is a normalised data structure, with all structural redundancy removed. It has a defined primary

purpose:

• To serve as the tree that represents all the relevant concepts within the domain and how

they break down and relate to each other - i.e., the domain model (Gruber, 1995).

The full decision support system based on the domain of application (i.e., mental-health) requires

(Power, 2002):

1. The domain model itself.

2. Information on how to present the domain model knowledge as a data gathering tool and

on how to collect and represent subsequent assessment data.

103



7.2. THE ST IS NOT SUITABLE FOR RECORDING RI INFORMATION

3. Uncertainty information for use by the Galatean model, in order that it is able to classify

assessment data relating to the domain model.

The ST serves the first of these requirements directly, by virtue of its representing the

domain model. The second requirement is also served, in the main, by the ST as a result of

the additional enrichment process undertaken in Chapter 6. The third aspect however—that of

representing uncertainty information for use by the classifier—is only part satisfied by the ST:

Relative Influence (RI) values are not collected.

The present chapter details why the ST is not a suitable tree in which to collect RI data.

It then proceeds to outline a method by which a derivative tree is generated from the ST,

specifically for RI collection activities. Finally it uses the derivative tree to illustrate the concept

of the Galatean Tree Hierarchy: a logical cascade of knowledge structures to help manage the

complexity of the process of going from knowledge engineering to decision support system.

Successive trees in the Galatean Tree Hierarchy will take the knowledge structure closer to the

point where it can directly drive assessment and decision support.

7.2 The ST is Not Suitable for Recording RI Information

Recall from Section 2.3, that uncertainty information within a hierarchical domain is conceived

by the Galatean model as being comprised of Membership Grades (MGs) and Relative Influence

(RI) values. value-mg profiles for datum nodes are assignable directly within the nodes in the

ST. This is possible even within generic datums because as explained in Section 6.3.2, the

value-mg profile of a node should not logically change across instantiations of that datum. The

value-mg maps a given value of a patient attribute (i.e., datum node), to the level of activation

of the node when the node is considered in isolation. Therefore, by definition, value-mg profiles

should not vary across node instantiations, and can thus be defined within the generic-datum

definition.

Relative Influence values however, for reasons outlined in Section 6.3.1, can vary across

generic gd concept and datum instantiations. In fact it is precisely due to this phenomenon

that the notion of a gd concept/datum was introduced when removing redundancy from the ST.

The generic-type="gd" attribute flags up nodes where there is an element of distinctiveness

within an otherwise generic template for instantiation. The distinctiveness in RI values means

that they cannot readily be accommodated within gd concept definitions.

104



7.2. THE ST IS NOT SUITABLE FOR RECORDING RI INFORMATION

One scheme that could be used to accommodate RIs is an adaptation of the method that

was used in multiple-tick nodes. Here, a LISP-like list structure is used to record multiple

questions within one attribute. Such a method could be used, for example, to store lists of

complete paths to all to-be-instantiated locations along with the value-mgs those locations are

to receive. However, this is neither a practical nor elegant solution to the problem, as it involves:

• A convoluted data structure within each descendant of the numerous gd concept definitions

of the ST, especially when considering concept nesting rules such as rule 7 of Section 6.3.4.

• The requirement that each gd concept definition know a priori all the locations at which

it is to be instantiated. This is as opposed to the more sensible notion of an instantiation

location knowing the location of the gd concept definition; (cf. Mealling & Denenberg,

2002).

• Considerable bloating of the ST with repetitive data (paths) where the objective is to

remove redundancy and retain clarity.

Direct incorporation of RIs within the ST was thus rejected.

Consideration of the nature of an RI value also presented a further reason as to why, even

if it were possible to easily incorporate RIs within the ST, it would not be sensible to do so.

Relative Influences are not part of the physical structure of the domain model, yet they are

directly influenced by it by virtue of their consideration of sibling nodes. Consequently, physical

changes to the ST as a result of future refinement will possibly render RIs incorrect. It therefore

makes sense to not place RIs within the ST, leaving the ST to be modified and reworked

without concerns of leaving it in an incorrect state. Of course, this does not mean the problem

of maintaining RIs is remedied: it means instead that the problem is decoupled from any ST

structural modification stage. Decoupling a problem into separate stages helps to manage its

complexity (Pfleeger & Atlee, 2009). This approach to problem solving mirrors work in earlier

phases of KE activities, where modular XSLT stylesheets were developed and chained together

to achieve tree transformations, as opposed to using a monolithic approach. RI maintenance is

considered in greater detail in Chapter 8. But before such considerations, the approach that

was taken to represent RIs requires elucidation.

105



7.3. GENERATING THE RELATIVE INFLUENCE TREE

7.3 Generating the Relative Influence Tree

Originally, it was envisaged that all KE work would be carried out on the ST, with the ST

then driving data gathering tools and the decision support system directly. However it became

apparent that in order for the domain model to serve a decision support system, it required

redundancies to be distilled. As described in the previous section, this has meant that issues

such as RI elicitation are not straightforward using the ST.

It was decided that a new tree, a derivative of the ST, should be used for RI instantiation.

If the ST were to be partially expanded essentially by way of gd concept instantiation, then

each node that requires an individualised RI would be exposed. The new tree would then serve

as the tree for recording RI information during RI elicitation rounds. It was hence named the

Relative Influence Tree (RIT).

It is important to stress that the ST is not rendered defunct by the introduction of the

RIT. Maintenance of the domain structure information is still solely within the remit of the ST,

with automated RIT generation taking the domain knowledge to the next KE phase—the RI

elicitation round. This is in effect, a layered approach to the development of the full ontology.

The Heraclitus II ontology pyramid (Mikroyannidis & Theodoulidis, 2010) also adopts a similar

approach, whereby layered ontologies are supplemented with additional information. However,

whereas in the Heraclitus II approach, information introduced in one layer also propagates to

an extent to the previous layer (due to each layer being of independent use to a different group

of experts), the RIT approach only requires forward propagation of data from the ST. This is

because both trees essentially model the same ontology.

7.3.1 Priming the ST for transformation

Given that more than one tree is now involved in the journey towards a decision support sys-

tem, it was deemed prudent to conduct some preparatory remedial work on the existing ST.

Specifically, existing node identifiers were considered inadequate to serve as identifiers and as

keys across trees. Prior to the conception of the RIT, nodes were identified using their label

attribute. This was however considered too problematic due to the following reasons:

• Verbosity - Labels were often long and primarily for the benefit of humans, e.g., for use

by practitioners during knowledge elicitation and by the research team when working on

the knowledge structure.

106



7.3. GENERATING THE RELATIVE INFLUENCE TREE

• Non-friendly to computers - Labels contained free-text, were liable to be constantly tweaked

(and thus change), contained awkward characters etc. All these issues would need to be

rectified and normalised each time a program were to use labels. This would needlessly

add to development effort.

In essence, labels were there to make life easier for humans. Machines on the other hand

can deal with simpler, more stable identifiers, that do not need to be visible to humans. The

idea is similar to auto-generated primary key fields in databases, which are there primarily

for the internal use of the DBMS application and are hidden from the end-user (T. Connolly

& Begg, 2010). It was therefore decided to create an internal code attribute for each node,

which was a stable, short form identifier of the node in question. For example, a node with

label="past and current suicide attempts" would receive a new additional attribute:

code="suic-past-att". Codes were created based on abbreviated node labels specifically as a

trade-off between space-efficiency/machine processability and human readability, the importance

of which, is advocated by Hunt (2010). Pending processes would use the node’s code where

appropriate, yielding the ancillary benefit of allowing the label to be freely modified as part

of future activities, whilst still making e.g., paths consisting merely of node-codes intelligible to

the researcher.

7.3.2 RIT generation process

RIT-generation was automated using XSLT via a series of stylesheets to gradually effect the

transformation from ST to RIT. Briefly, the transformation involved:

1. Converting “multiple-tick” nodes into a concept gated by a filter-q, and hav-

ing each alternative answer as a child node. Effectively this operation removes the

need for the multiple-tick construct, as the node has been expanded into a con-

cept and child datums. Additionally, it allows RIs to be specified for each sub-

component. (The multiple-tick conversion process is described in greater detail

in Appendix C).

2. Instantiating all gd nodes throughout the tree.

107



7.4. RI ELICITATION

3. Instantiating the children of the direct risk children pseudo concept inside each root-

risk (note: g nodes are not instantiated, with paths still pointing to their location of

definition).

4. Recalculating any paths to g node definitions as a result of gd node and direct risk

children instantiation.

5. Fabricating a supplementary code for gd node descendants that have a level

attribute—to be used in the future when the node (which may ordinarily be a con-

cept) becomes a datum node for a data gathering tool matching that level. Effec-

tively the node will be identified by a different code when it is to become a datum.

This prevents problems where a node could theoretically have two data types (the

data type depending on the level of the tool being used).a

6. Removal of gd node definitions that have been instantiated, and of the direct risk

children pseudo-concept.

aThis step does not strictly need to be carried out in order to facilitate RI elicitation per se. However, it
is implemented within the RIT generation algorithm as preparatory work for driving data gathering tools
at multiple levels.

7.4 RI Elicitation

Once generated, the RIT was used to perform RI elicitation with mental-health experts. RI

elicitation activities and any additional infrastructure required to support them was conducted

by other members of the research team. This section is therefore only included for completeness,

and does not form part of PhD work.

RI elicitation was performed using a tailored version of the Tree Annotation program devel-

oped for previous elicitation rounds. As in previous rounds, the infrastructure supporting RI

elicitation was web-based, with annotated RITs being automatically uploaded and saved in the

database for later analysis, and the activities themselves being coordinated via the website. The

set-up of the task thus adhered to the requirement of allowing participation without geographical

impediment whilst giving each participant the freedom to work at their own pace.

The specifics of the task involved experts being asked to weight each child node of a concept

with respect to its siblings. This was achieved using a set of sliders that could be adjusted by

experts to indicate the importance of each sibling. Importance was automatically normalised

108



7.4. RI ELICITATION

across the siblings and presented as RIs and also as a stacked bar (chart) to aid visualisation.

Figure 7.1 shows the ‘RI Elicitation’ tool being used to elicit RIs for the past and current suicide

attempts concept.

Figure 7.1: The RI elicitation tool. Slider positions are normalised to produce RI values and a stacked
bar display at the bottom of the tool.

XSLT was used to collate RI values provided by each expert within a fresh RIT. A Bayesian

framework is currently being developed by other members of the research team to infer con-

sensual RI values for each node from the collated data. Additionally, an innovative method

to reduce the number of nodes required to be evaluated by experts during RI elicitation has

been developed (Hegazy & Buckingham, 2009b, 2009a). This means that the full RIT can be

instantiated with RIs by only considering a subset of the nodes.

The following syntax was established to record finalised RIs within the RIT:

ri="value "

Instantiation of the finalised RI values marks the end of RIT enrichment activities.

109



7.5. THE GALATEAN TREE HIERARCHY

7.5 The Galatean Tree Hierarchy

The journey from the ST to the RIT represents the expansion and enrichment of the underlying

domain knowledge to a point where it can serve as a structure closer to enabling decision support.

The RIT can be conceptualised as a new logical layer of enrichment that sits on top of the ST. It

enables de-coupling of structural redundancy from RI elicitation, meaning trees are focussed on

their own specialised tasks in isolation to each other. The ST and RIT together thus establish

the Galatean Tree Hierarchy.

The idea of a hierarchy of trees is similar to that of a protocol stack, where each layer only

needs to familiarise itself with the layers directly above and below (Blank, 2004). Layering of

trees in this fashion means that the KE and software engineering aspects involved in the system

as a whole can be quantised. Ultimately it represents a more clear, systematic and logical

transition from expert data to expert system. Furthermore, similar to a conventional protocol

stack, this type of organisation reduces duplication of logic over a monolithic tree design because

(possibly multiple) end user tools only need to contend with the top layer. The top layer would

be closer to meeting the needs of the tool than say the bottom layer, which in the context of

the ST, would require (each) tool to implement tree expansion operations.

The Galatean Tree Hierarchy is a concept that will be revisited in future chapters as the

decision support system that was developed is elucidated.

7.6 Conclusions

This chapter reiterated the rational for a Structure Tree and identified the contribution the ST

makes towards reaching the overall goal of a decision support system. It is recognised that the

ST cannot directly drive a full DSS due to its not being able to support the recording of RI data.

The chapter therefore introduced the notion of the Galatean Tree Hierarchy (GTH), consisting

of derived trees. Each tree serves a specific purpose(s), whilst the aim of the tree stack as a

whole is to smoothly bridge the gap between the domain model and the decision support system.

With regards to the issue of RI instantiation, the Relative Influence Tree (RIT) was intro-

duced as a component of the GTH. The RIT would be automatically generated from the ST and

serve as the platform on which to elicit the RIs, ready for use within a decision support system;

a topic of Chapter 9.

The overall landscape of the journey from experts’ knowledge to expert system as represented

110



7.6. CONCLUSIONS

in Figure 5.6 is now extended with the beginnings of the Galatean Tree Hierarchy as depicted

in Figure 7.2. The GTH will be expanded in future chapters as the evolution of the system is

explored.

Figure 7.2: Going from the original ST to the beginning of the Galatean Tree Hierarchy. Reorganisation
and enrichment activities on the ST mark the beginning of its inclusion within the GTH (the start of
which is denoted by the dotted line). The ST is expanded and enriched to become the RIT (the second
tree within the GTH).

111



8
Synchronising RITs and STs

8.1 Preamble

The RIT in its uninstantiated form, is a derivative of the ST. However, when the RIT is in-

stantiated with RI values, it is no longer a pure derivative of the ST (since new information

has been supplied to it). This poses a problem when modifications are required to be made to

the knowledge structure contained in the ST. There needs to be a way to propagate RI values

from the old RIT to the RIT that is generated from the updated ST, thus keeping the trees

synchronised. This chapter specifies a method to automatically synchronise STs and RITs such

that STs can be amended without unnecessary manual remedial work on the RIT.

8.2 Galatean Tree Roles

Each tree in the Galatean Tree Hierarchy serves a specific logical function.

• The Structure Tree (ST) describes the domain’s knowledge structure. It eliminates struc-

tural redundancy and describes each concept fully only in one location.

112



8.3. THE KNOWLEDGE ENGINEERING PROCESS IS ITERATIVE

• The Relative Influence Tree (RIT) (which is a derivative of the ST) essentially instantiates

generic concepts whose components’ weightings will depend on the location of instantiation

(gd concepts). Because of this instantiation, the tree is amenable to having the weightings

for each node specified. These weightings (or Relative Influences) can be entered into the

RIT XML file directly or by using a GUI to the RIT.

8.3 The Knowledge Engineering Process is Iterative

Managing the complexity of the Knowledge Engineering process would be easier if different

stages of the elicitation could be performed in an isolated manner, with each stage not needing

revisiting upon its completion. In the context of the GTH, this would entail all the knowledge

structure work being carried out within the ST. Upon perfection of the ST’s structure, the RIT

would be generated. The RI elicitation/instantiation work would only then be attempted.

The problem with the application of the Waterfall Model approach with respect to knowledge

elicitation is that the process is inherently iterative. Each round of elicitation necessarily results

in a re-evaluation of the existing knowledge structure. Although this is controlled to an extent

by focussing the domain experts on the task at hand, there will invariably be suggestions for

modifications to areas covered in earlier rounds as a result of:

• An aspect not having had adequate attention paid to it in an earlier round.

• Realisation and insight into the correct formulation of the aspect, only gained through

evaluating it in the context of the current round.

To disregard these “auxiliary” outputs of e.g., the RI elicitation round means losing an op-

portunity to improve on the domain knowledge that will be used by the decision support system.

That is, rounds beyond the ST formulation phase will invariably necessitate modifications to

the ST.

8.3.1 GRiST and population diversity

It can be envisaged that GRiST may be required for the assessment needs of different segments

of society, or “populations”. As the needs of each of these populations illuminate the knowledge

structure from their own perspective, a better overall insight into the domain might be gained.

Modifications would need to be made to GRiST to incorporate this knowledge. Logically, these

113



8.4. THE PROBLEM DEFINITION

changes in the underlying knowledge structure should be made in the ST, since its remit is to

efficiently describe the domain. Thus clearly, the initial formulation of the ST will need to be

augmented as new populations are considered.

8.3.2 Organic evolution through clinical usage

Users will be in a position to fully evaluate the effectiveness of the decision support system

when it is utilised in a clinical setting. An important outcome of any evaluation of the tool is

directions on how to make the DSS more efficacious. One avenue of improving efficacy will be

improving and fine-tuning the underlying knowledge structure upon which the DSS is based.

Thus, praxis will most certainly inform changes required to the ST when the DSS is “in the

field”.

8.4 The Problem Definition

Arguably, it is essential to make the knowledge engineering process both flexible and amenable

to receiving information from any channel at any time without the need for significant rework to

the system architecture. The previous section has established that there are necessary reasons for

the application of retrospective modifications to the ST from various phases post ST generation.

This raises the important issue of tree synchronisation.

Figure 8.1: Automated and manual actions that are involved in tree generation/updating.

Figure 8.1 illustrates the relationship, within the Galatean Tree Hierarchy, between the

ST and the RIT. Furthermore, it shows where current automated and manual transformational

processes are applied to these trees. The RIT is a derivative of the ST (and a necessary precursor

114



8.4. THE PROBLEM DEFINITION

to a viable DSS tool). Once the RIT has been automatically generated from the ST using XSLT,

it is (manually) instantiated with Relative Influence (RI) values solicited from domain experts.

If there were to be no additional changes made to the ST, then the diagram would be considered

to be complete at the Version 1 ST stage.

As argued earlier, retrospective changes will invariably be made to the structure of the ST.

These are depicted in the Version 2 ST stage of the diagram. Manual changes by way of direct

user edits on the old ST itself, or through the use of GUI-based tools will be made, as depicted

by the green arrow crossing between the two stages. Once the updated ST, STnew, has been

created, an automated process can be used to generate an RIT as before. There is then a less

substantial manual process to solicit RI values for new nodes that were introduced in Version 2

ST. This is indicated by the dotted arrow. However, there is also the issue of synchronising the

data from the original RIT, RIToriginal, with the as yet mainly uninstantiated new RIT, RITnew.

The original RIT data needs to somehow be incorporated into the new RIT. Since there is no

guarantee that nodes in the original RIT will be located in the same position in the new RIT,

a straightforward copy operation cannot be performed between the original and the new RIT.

In fact, resultant RIT nodes may have been renamed, moved, deleted, added to, as part of the

ST upgrade, making any sort of manual synchronisation (see pink arrow) of the new RIT a

potentially laborious and error prone process. Put another way, the following two conflicting

goals need to be reconciled:

1. having a DSS tool-chain grounded on the concept of derived trees, each being supplemented

with its own dedicated information.

2. being able to upgrade a progenitor tree, and having those updates propagated to derivative

trees.

This is akin to a Linux package management system having to upgrade a user’s program, yet

preserve the user’s previous settings, taking into account the fact that setting definitions may

have been deleted, been renamed, been added to (thus having an effect on existing settings) or

even moved locations!

If the manual RIT synchronisation process (depicted by the pink arrow) is replaced by an

automated method, source trees can be edited without having to be concerned about upgrading

the rest of the Galatean Tree Hierarchy. A cursory glance at the problem might indicate that it

could be solved by utilising some of the XML file change tracking algorithms and software that

115



8.5. ARCHITECTURE FOR TRACKING A SPECIFIC RIT NODE

are in the public domain. However, it quickly becomes apparent that existing methods are not

suitable for the task at hand. The RIT is a derived tree, with many subconcepts potentially

having the same internal structure, but differing in their internal RI values. This is one area

that would confuse a generic XML file change tracking alogrithm. If multiple instantiations of a

gd concept have moved locations in the new RIT, there would be no reliable way of determining

which one was which.

Furthermore, small changes in the ST could lead to magnified (i.e., multiple) changes in the

(derived) RIT due to the tree expansion process that goes on as part of RIT generation. Again,

because a comparison operation is performed on derived trees (and not on STs), even small ST

changes can result in seemingly unconnected changes in disparate locations of the RIT when

viewed by a “naive” XML comparator algorithm.

Additionally, the potential for a resultant RIT node to be renamed and moved to a different

location, yet still logically be considered to be the same node places another seemingly impossible

task on a naive XML comparator program.

It becomes clear that the output of any naive comparator algorithm would need manual

verification of its results and manual accepting/rejecting of changes in order to ensure the right

RIs are copied over to the right nodes. In order to ensure that RI values are reliably and

robustly migrated over with no human verification, an intelligent automated process is required.

Its application should result in the new ST being synchronised to the newly generated RIT with

no re-entry of previously populated RI values required.

As a high-level overview, any intelligent automated process would thus need to overcome the

following problems:

• Tracking the location of a specific RIT node across (old and new) trees irrespective of

surface changes to it (i.e., changes to node attributes other than code).

• Determine whether its RI value is to be; copied over, re-calculated, or solicited from a

domain expert; depending on the values of its resultant siblings.

8.5 Architecture for Tracking a Specific RIT Node

This section considers the architecture for tracking a specific node from its location in an “old”

tree across to its location in a “new” tree. It lays out the machinery that will be required for

node tracking, and the pathways that tracking will take across trees.

116



8.5. ARCHITECTURE FOR TRACKING A SPECIFIC RIT NODE

8.5.1 Unique node identifiers

In order to be able to track a node from its location in one XML tree to its location in a modified

version of that tree, there needs to be a method of uniquely identifying it. In the context of

the trees in the Galatean Tree Hierarchy, node identifiers can be regarded as being stored inside

node-code attributes. However, using these node-code attributes for the purposes of tracking

would not be viable because they do not serve to uniquely identify the node. Their function is

to uniquely identify the node semantically. Thus for example, a node with the same node-code

can appear in multiple locations due to its being a g or gd concept node or its being a direct

risk child. Since these locations could theoretically have different RIs, it is not enough that the

node-code is semantically unique. For the tracking task, the node’s position needs to also be

taken into account.

The location of a given node in an XML file can unambiguously be stated as an XPath

statement giving the path to the node from the root node of the tree. With Galatean Trees, it

would be most logical to use each intervening node’s node-code when qualifying the path to the

node in question. This is because one of the design goals of any proposed tracking mechanism

is that it should accommodate changes being made to the node’s name, i.e., its label. Using

the node-code however, introduces the constraint that a given node’s node-code must remain

invariant. But this is acceptable given that the node-code semantically identifies the node, and

that any change in semantics effectively means this is now a different node.1 Furthermore, from

its inception, the node-code’s primary role was that of an identifier to be used internally, in the

mechanics of the GRiST, and not as information to be viewed by users of the system. Thus, the

node-code is a stable attribute.

An XPath statement to the node needing to be tracked could be embedded as a “fingerprint”

attribute within the node in question. A major limitation to this approach however, is that it

would lead to considerable bloating of the tree. Furthermore, human readability of the XML

structure of the tree would be significantly impaired, thereby diminishing the ability to do rapid

prototyping work by way of direct tree editing.

The XPath fingerprinting scheme could be made more efficient by converting the path into

1If it is envisaged that a node’s semantics will change, it might be argued that a node-code change will be
necessitated. Since the semantics of the node will change, it implies the pre-existing semantics of the node to be
incorrect. The pre-existing RI values of the node and its descendants would therefore need to be reappraised in
the new tree. Thus, a node-code change is effectively tantamount to the deletion of a concept and the creation
of a new concept since pre-existing RI information can be discarded. So there isn’t any increase in manual labour
by enforcing an invariancy constraint on the node-code, as violation implies deletion and subsequent creation of
a concept (and RI values would have needed to be reappraised anyway).

117



8.5. ARCHITECTURE FOR TRACKING A SPECIFIC RIT NODE

a cryptographic hash. This hash could be used as a more compact proxy for the path. Since

the probability of hash collisions is too small to be of any concern, each node’s path will be

guaranteed to generate a unique hash, and thus a unique fingerprint.

The remainder of this chapter adopts the MD5 hashing algorithm for fingerprinting purposes,

due to its relatively small size (32 ASCII characters). Unless stated otherwise, it also adopts

the convention of generating the hash using the following string representation of the path to

the node in question:

root-node-code intervening-node-code-A intervening-node-code-B ...node-code

That is, all nodes from the root node to the node for which the fingerprint is to be generated

(inclusive) have their node codes separated by a space character. This string is then used as the

input to the MD5 function. The hash is stored in an attribute called fingerprint against the

node for which it has been generated.

8.5.2 Node fingerprint audit trail

Recall that Figure 8.1 illustrated the current automated and manual paths taken in the trans-

formation and manipulation of the ST and the RIT. In order that the (pink) arrow represent-

ing manual synchronisation of RIs be replaced by an automated process, node fingerprints in

RIToriginal need to persist through to RITnew. The required unbroken audit trail from these two

endpoints can thus be expanded and represented by expression 8.1.

RITnodeoriginal → RITnodenew

=⇒ RITnodeoriginal → STnodeoriginal → STnodenew → RITnodenew (8.1)

Initially the approach of directly generating RIToriginal node fingerprints was considered. Us-

ing this scheme, RIToriginal node fingerprints would be propagated from RIToriginal to SToriginal.

Since these would remain in STnew, they could then be propagated down to RITnew. However,

this approach is suboptimal, as it requires a method of linking an RIToriginal fingerprint to a

particular node of its SToriginal progenitor. So each node of SToriginal would therefore need an

“SToriginal fingerprint” of its own in order to provide the linkage. Furthermore, there would be

the issue that there can be a one-to-many relationship between an ST node and an RIT node.

This would make it impossible to disambiguate (many) RITnew nodes that derive from an (one)

STnew node, without introducing further additional constructs in the ST—thus blurring the

118



8.5. ARCHITECTURE FOR TRACKING A SPECIFIC RIT NODE

segregation of ST and RIT.

A more efficient propagation method, which was ultimately adopted, obviated the need for

RIToriginal fingerprints, and instead involved creation of SToriginal fingerprints. Since the ST

data is the only data that is directly carried from the Version 1 ST phase through to Version

2 ST, it was decided that node fingerprints should be generated in this tree. This would then

decompose the problem of generating an unbroken fingerprint audit into two sub-expressions,

as denoted in expression 8.2.


STnodeoriginal → STnodenew

STnodex ↔ RITnodex for x ∈ {original, new}
(8.2)

Essentially, ST fingerprints acting as co-ordinators allowed for the problem to be broken

down into the two sub-problems:

1. Tracking ST nodes across original and new STs.

2. Tracking an ST node in the RIT (and vice versa).

These issues are tackled below.

Tracking ST nodes across STs

The original ST has hashes calculated for its nodes and stored against fingerprint attributes,

as outlined in section 8.5.1. As can be seen in Figure 8.1, the original ST, SToriginal, is manually

edited, after which it is redesignated as STnew. Therefore, any node fingerprints generated in

SToriginal remain in STnew. Since these fingerprints relate to the ST when it was SToriginal, the

fingerprint gets renamed to reflect this, e.g. fingerprint-orig. Fresh node fingerprints can

then be calculated for each node of STnew. Because each node now has a fingerprint and a

fingerprint-orig attribute, a relation can be made between this node in the original tree and

in the new tree. Thus, node movements, additions and deletions (which will ultimately have a

bearing on nodes of the RIT) can be tracked between the two trees.

Linking RIT nodes back to the ST – the enablement of standard node tracking

When a fingerprint-enriched ST is transformed into an RIT, fingerprint attributes will be

propagated to nodes of the RIT. Thus, a given RIT node can be linked back to a node in the

corresponding ST where there is a one-to-one correspondence between the ST node and the

119



8.5. ARCHITECTURE FOR TRACKING A SPECIFIC RIT NODE

RIT node. For the remainder of the discussion, such RIT nodes (where there is one-to-one

correspondence with an ST node) will be referred to as “standard” nodes.

Once a linkage has been established between a standard RIT node and its corresponding ST

counterpart, it is now a trivial set of lookup exercises to ascertain the position of a current RIT

node in an RIT from a previous round. For example, consider a node “past and current suicide

attempts” i.e., suic-past-att. It is a standard node present only in one location in the ST and

RIT. In such a scenario, the “default’ fingerprint tracking algorithm would be used:

1. A fingerprint is generated in SToriginal from suic-past-att ’s path.

2. The fingerprint propagates to RIToriginal.

3. An RI is added against this node in RIToriginal by the user.

4. The user makes edits to SToriginal that e.g., result in suic-past-att being relocated to

a deeper level of the tree. SToriginal is now STnew.

5. All STnew node fingerprints are moved to attribute fingerprint-orig. New fin-

gerprints are calculated and stored in attribute fingerprint. Note that because

suic-past-att has been moved, the two attributes will contain different fingerprint

values.

6. RITnew is generated by the system and fingerprint is propagated to RITnew.

(fingerprint-orig is not propagated to RITnew).

7. The system observes that node suic-past-att in RITnew does not have an RI. It notes

its fingerprint, and then does a lookup of STnew to ascertain its fingerprint-orig.

8. The system queries RIToriginal for a node that contains a fingerprint that is the

same value as fingerprint-orig. It has now identified the node in RIToriginal and

can copy over its RI.

8.5.3 Interim conclusions

Thus far, a mechanism has been detailed, by which RIT nodes can be uniquely identified by

their path in the ST. This path is converted into a hash for convenience, and remains with the

node as it is edited/moved by the user in the ST. The new ST recalculates all hashes and passes

120



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

them on to a newly generated RIT. The new ST also retains information about the previous

hashes, allowing the new RIT’s nodes to be linked back to the nodes in the original RIT.

This standard node methodology is sufficient in cases where there is a one-to-one mapping

between ST nodes and RIT nodes. However, in cases where there is a one-to-many relationship,

there cannot be an unambiguous linkage from a node in the ST to an instance in the RIT. Since

the ST’s role is to remove redundancy, it naturally follows that there will be many cases where

there will be one-to-many node relationships between the ST and RIT. These are considered in

the next section.

8.6 Robust Tracking of Nodes with One-to-many Map-

pings Between ST and RIT

It can be recognised that not all nodes in an RIT can be classed as standard nodes. Some nodes

are g concepts, which exist as one subtree in the ST, but which are translated into multiple

instances in the RIT. The root node of a g concept will have a different RI wherever it is

instantiated due to the fact that each instance can be placed amongst different siblings. The

internal configuration of the g concept (i.e., its descendants and their attributes) will however,

be the same across all instantiations of the g concept. With respect to node tracking, the RI

values within all descendants of the g concept will be static across all instantiations. Thus, for

the purposes of RI value tracking, descendant nodes of a g concept (but not the concept node

itself) should be regarded as clones, which are fungible across instantiations of the g concept. It

would therefore be sensible for all cloned nodes to have the same fingerprint, since any instance

can be used for the tracking task.2

Without recapitulating all the various types of non-standard nodes that exist in an ST/RIT,

it should be pointed out that for some classes of nodes (e.g., gd concept constituents) it is

essential for instantiations to not all have the same fingerprint. This is because by definition,

their RIs vary across instantiations, hence they should not be thought of as clones. (Assuming

the node isn’t a clone) the default method of generating a fingerprint against an ST node and

propagating it down to the RIT will therefore be inadequate in situations where there isn’t a one-

2The notion of clones having the same fingerprint is lent some support in nature in the manifestation of the
fingerprints of monozygotic twins (Jain, Prabhakar, & Pankanti, 2002). However, whereas in nature, such twins’
fingerprints are similar but not exactly the same (due to environmental factors), the word clone is used in the RI
value and node fingerprint contexts to mean exactly the same.

121



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

to-one correspondence between the node in the two trees. Table 8.1 summarises the various node

configurations in the RIT and whether instantiations in each case should be treated as clones

(i.e., have the same fingerprint) or as unique.3 The table also outlines whether fingerprints

propagated from the ST to the RIT will serve to identify that node in the RIT to the degree

required for tracking its RI.

It is clear from Table 8.1 that the majority of node configurations of the RIT can be ade-

quately fingerprinted by mere propagation of fingerprints generated in the ST to the RIT. For

example, consider the relatively simple case of a g concept root node (see case two). It is able

to be fingerprinted in all instantiations of the RIT even though each instantiation will have a

unique RI. This is because each location of the ST where the g concept is to be instantiated

is a stub that contains the path to the location where the g concept is defined. Because stubs

are themselves nodes, each stub will have its own fingerprint in the ST. This fingerprint will be

propagated to the RIT, thereby allowing each instantiation of the g concept root node to be

individually fingerprinted. The ST fingerprint is thus viable for this case. However, because the

g concept’s descendants are only defined in one place in the ST, with no stubs pointing to them,

each such descendant will have a uniform fingerprint across all instantiations (is a clone). This

is also desirable for RI tracking purposes, because RIs in such cases will also be uniform.

Table 8.1 outlines several cases where the fingerprint propagated from the ST is not viable.

Revisiting the case of gd concept root node descendants described earlier, case five details the

result for this scenario. It indicates that the RI uniqueness property of instantiations of such a

node preclude the viability of the ST-generated fingerprint, thereby rendering the fingerprint not

useable in the RIT. As in the case for g concept descendants, this result is a consequence of such

nodes being defined in one location in the ST, with no stubs pointing to them. Such fingerprints

are thus cloned across instantiations in the RIT. Unlike the case for g node descendants, this is

not a desirable result, as each instantiation should be able to have a unique RI—a non-viable

fingerprint would prevent tracking of this since a node instance could not be resolved without

ambiguity. Variations of this problem also apply to the scenarios in cases 11 (generic datums

of type gd inside gd concepts) and 12 (g concept roots inside gd concepts) of the table. Cases

15 and 17 also describe scenarios where the ST fingerprint is non-viable. However, this is due

to the fact that the nodes in question are fabricated at RIT-generation time. So there is no ST

3All configurations (be they legal or illegal) are presented. This is to enable the specification of a robust
fingerprinting algorithm, which would not require future remedial work if currently illegal configurations were to
become valid possibilities.

122



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

RIT Node instantiation /configuration RI

Uniqueness

Viability of ST

fingerprint in RIT

Remarks

1) a standard node unique viable

2) a node that is a g concept root node unique viable

3) a node that is a descendant of a g
concept root node

clone viable

4) a node that is a gd concept root node unique viable

5) a node that is a descendant of a gd
concept root node

unique not viable

6) a node that is a gd concept root node
that itself is a descendant of a g concept
root node

clone viable

7) a node that is a descendant of a gd
concept root node that itself is a descen-
dant of a g concept root node

clone viable

8) a node that is a generic-datum of type
gd

unique viable

9) a node that is a generic-datum that is
not of type gd

clone viable

10) a node that is a generic-datum of
type gd that itself is a descendant of a g
concept root node

clone viable

11) a node that is a generic-datum of
type gd that itself is a descendant of a
gd concept root node

unique not viable

12) a node that is a g concept root node
that itself is a descendant of a gd concept
root node

unique not viable

13) a node that is a descendant of a g
concept root node that itself is a descen-
dant of a gd concept root node

clone viable

14) a node that is a gd concept
root node after translation from an ST
multiple-tick node

unique viable

15) a node that is the descendant of a gd
concept root node after translation from
an ST multiple-tick node

unique not viable no ST fingerprint
would be present
in the RIT

16) a node that is a gd concept root node
that itself is a descendant of a g concept
root node after translation from an ST
multiple-tick node

clone viable

17) a node that is the descendant of a
gd concept root node that itself is a de-
scendant of a g concept root node after
translation from an ST multiple-tick

node

clone not viable no ST fingerprint
would be present
in the RIT

Table 8.1: All hypothetical node instantiation configurations in the RIT. Against each configuration
are details about whether RIs are unique or clones, and also, whether an ST fingerprint propagated to
the RIT will accommodate the unique/clone status of the RI.

123



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

fingerprint to carry through to the RIT.

The cases detailed in Table 8.1 that result in non-viable fingerprints in the RIT clearly

highlight the need for remedial work on the RIT’s fingerprints. Therefore, what is required to

be adopted in the RIT generation phase, is a system where affected fingerprints are recomputed

using an appropriate algorithm.

8.6.1 Fingerprint remediation in the RIT

Attempting to execute the default version of the fingerprint tracking algorithm (see section 8.5.2)

would result in non-viable fingerprints for scenarios 5, 11 and 12 detailed in Table 8.1. These

can be remediated by recalculating them in the RIT using the following fingerprint remediation

algorithm (which would be a sub-algorithm to the fingerprint tracking algorithm, after finger-

prints are propagated to an RIT):

1. For a given node of the RIT,

IF it is a descendant of a gd concept AND NOT a descendant of a g concept.

• overwrite the node’s fingerprint with a hyphen-separated amalgam of the

outermost gd concept’s fingerprint and the node’s fingerprint.

The result of the above algorithm is that any descendant of an instance of a gd concept

receives a unique fingerprint that reflects that it is contained in that instance of the gd con-

cept. The fact that the fingerprint remediation algorithm utilises the outermost gd concept’s

fingerprint and not the innermost gd concept’s fingerprint during remediation allows it to el-

egantly accommodate nested gd concepts. Were the innermost gd concept fingerprint to be

used in these cases, instantiations of outer gd concepts would result in the inner gd concept’s

descendants having the same fingerprint across instantiations.

8.6.2 Analysis of revised fingerprint tracking algorithm efficacy

Fingerprint remediation in the RIT allows for each RIT node to be uniquely marked for the

purposes of RI tracking. Node movements as a result of ST edits can theoretically cause a

node to move anywhere in the tree, be deleted etc. Some of these operations can be particulary

complex. For example, a gd concept descendant moving into a g concept, or its moving out

124



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

of the gd concept altogether. These will result in structural changes to the node fingerprint;

i.e., fingerprints will change their values such that they may no longer be hyphenated, or vice

versa—making nodes more difficult to track. Specifically, the simplistic lookups performed in

steps 7–8 of the “default” fingerprint tracking algorithm will not be adequate for complicated

node movements. It is therefore important to examine how fingerprints change in possible

edit scenarios. Design features of an augmented fingerprint tracking algorithm can then be

illuminated in context to demonstrate the algorithm’s soundness in tracking the node in each

scenario.

Table 8.2 details the types of changes that can be made to an ST, and an analysis on how

fingerprints are affected. More accurately, it is an exhaustive list of all the transformational

pathways a given fingerprint can take en-route from RIToriginal to RITnew. Each of the ten

outlined pathways represents one or more theoretically possible ST edit scenarios. For example,

the Type 3 pathway depicts a scenario where an RIToriginal node is contained inside a gd concept

(and is not descended from a g concept)—as denoted by the fingerprint xxxxx-aaaaa. An edit

in STnew has resulted in its no longer being inside a gd concept in RITnew—as denoted by the

non-hyphenated resultant fingerprint, aaaaa′.

In order to track a given node across RITs, a fingerprint tracking algorithm must be able to

reconcile a given RITnew fingerprint with the corresponding RIToriginal fingerprint. This means

it needs to:

• Examine the structure of the node’s RITnew fingerprint,

• Use its knowledge of how fingerprints are constructed (i.e., its knowledge of the fingerprint

remediation algorithm),

• Conduct diagnostic tree searches and node lookups to help determine which of the 10

fingerprint pathways apply in this case,

before finally retrieving the node’s original RI value(s). The Unified Reconciliation Algorithm,

outlined in pseudocode in Appendix D, encompasses these methods in order to resolve the

fingerprint pathway(s) that have been applied to a node of RITnew. It is then able to retrieve

its RI(s) from RIToriginal.

125



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

S
T

E
d

it
O

p
e
ra

ti
o
n

T
y
p

e
R

IT
o
r
ig
in

a
l

f
i
n
g
e
r
p
r
i
n
t

S
T

o
r
ig
in

a
l

f
i
n
g
e
r
p
r
i
n
t

S
T

n
e
w

f
i
n
g
e
r
p
r
i
n
t
-
o
r
i
g

S
T

n
e
w

f
i
n
g
e
r
p
r
i
n
t

R
IT

n
e
w

f
i
n
g
e
r
p
r
i
n
t

E
x
a
m

p
le

S
c
e
n

a
ri

o
(s

)
(n

o
t

e
x
h

a
u

st
iv

e
)

T
y
p

e
1:

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
′

a
a
a
a
a
′

st
a
n
d
a
rd

n
o
d
e

re
lo
c
a
te

d
O
R

g
c
o
n
-

c
e
p
t
d
e
sc

e
n
d
a
n
t
re

lo
c
a
te

d

T
y
p

e
2:

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
′

x
x
x
x
x
′-
a
a
a
a
a
′

st
a
n
d
a
rd

n
o
d
e

re
lo
c
a
te

d
in
to

a
g
d

c
o
n
c
e
p
t

T
y
p

e
3:

x
x
x
x
x
-
a
a
a
a
a

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
′

a
a
a
a
a
′

g
d

d
e
sc

e
n
d
a
n
t
m
o
v
e
d

o
u
ts
id

e
o
f
th

e
g
d

c
o
n
c
e
p
t,

b
e
c
o
m
in

g
a

st
a
n
d
a
rd

n
o
d
e
o
r
a

g
c
o
n
c
e
p
t
d
e
sc

e
n
d
a
n
t

T
y
p

e
4:

x
x
x
x
x
-
a
a
a
a
a

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
′

x
x
x
x
x
′-
a
a
a
a
a
′

g
d

c
o
n
c
e
p
t
d
e
sc

e
n
d
a
n
t
re

lo
c
a
te

d
d
u
e

to
g
d

c
o
n
c
e
p
t
b
e
in

g
re

lo
c
a
te

d
O
R

g
d

c
o
n
c
e
p
t
d
e
sc

e
n
d
a
n
t
re

lo
c
a
te

d
w
it
h
in

th
e
g
d

c
o
n
c
e
p
t

T
y
p

e
5:

x
x
x
x
x
-
a
a
a
a
a

a
a
a
a
a

a
a
a
a
a

a
a
a
a
a
′

y
y
y
y
y
′-
a
a
a
a
a
′

g
d

c
o
n
c
e
p
t
d
e
sc

e
n
d
a
n
t
re

lo
c
a
te

d
in
to

a
n
o
th

e
r
g
d

c
o
n
c
e
p
t

T
y
p

e
6:

x
x
x
x
x
-
a
a
a
a
a

-
-

-
x
x
x
x
x
′-
a
a
a
a
a
′

g
e
n
e
ra

te
d

m
u
l
t
i
p
l
e
-
t
i
c
k

c
h
il
d

re
lo
-

c
a
te

d
a
s

a
re

su
lt

o
f

m
u
lt
ip

le
-t
ic
k

n
o
d
e

(o
r

it
s

u
lt
im

a
te

g
d

a
n
c
e
st
o
r

c
o
n
c
e
p
t)

b
e
in

g
re

lo
c
a
te

d

T
y
p

e
7:

x
x
x
x
x
-
a
a
a
a
a

-
-

-
y
y
y
y
y
′-
a
a
a
a
a
′

g
e
n
e
ra

te
d

m
u
l
t
i
p
l
e
-
t
i
c
k

c
h
il
d

re
lo
-

c
a
te

d
a
s

a
re

su
lt

o
f

m
u
lt
ip

le
-t
ic
k

n
o
d
e

b
e
in

g
re

lo
c
a
te

d
in
to

a
g
d

c
o
n
-

c
e
p
t

T
y
p

e
8:

x
x
x
x
x
-
a
a
a
a
a

-
-

-
a
a
a
a
a
′

g
e
n
e
ra

te
d

m
u
l
t
i
p
l
e
-
t
i
c
k

c
h
il
d

re
lo
-

c
a
te

d
a
s

a
re

su
lt

o
f

m
u
lt
ip

le
-t
ic
k

n
o
d
e

b
e
in

g
re

lo
c
a
te

d
in
to

a
g

c
o
n
-

c
e
p
t

T
y
p

e
9:

a
a
a
a
a

-
-

-
a
a
a
a
a
′

g
e
n
e
ra

te
d

m
u
l
t
i
p
l
e
-
t
i
c
k
c
h
il
d

th
a
t
is

c
o
n
ta

in
e
d

in
si
d
e

a
g

c
o
n
c
e
p
t

re
lo
-

c
a
te

d
a
s
a
re

su
lt

o
f
th

e
g
c
o
n
c
e
p
t
b
e
-

in
g

re
lo
c
a
te

d

T
y
p

e
10

:
a
a
a
a
a

-
-

-
x
x
x
x
x
′-
a
a
a
a
a
′

g
e
n
e
ra

te
d

m
u
l
t
i
p
l
e
-
t
i
c
k
c
h
il
d

th
a
t
is

c
o
n
ta

in
e
d

in
si
d
e

a
g

c
o
n
c
e
p
t

re
lo
-

c
a
te

d
in
to

a
g
d

c
o
n
c
e
p
t

T
a
b

le
8
.2

:
R

el
o
ca

ti
on

op
er

at
io

n
s

th
at

ca
n

b
e

p
er

fo
rm

ed
o
n

th
e

S
T

,
a
n

d
th

ei
r

eff
ec

t
o
n

n
o
d

e
F

in
g
er

p
ri

n
ts

.
N

o
n

-h
y
p

h
en

a
te

d
fi

n
g
er

p
ri

n
ts

a
re

re
p

re
se

n
te

d
as

a
a
a
a
a

(p
re

-r
el

o
ca

ti
on

)
an

d
a
a
a
a
a
′(

p
os

t-
re

lo
ca

ti
on

).
H

y
p

h
en

a
te

d
fi

n
g
er

p
ri

n
ts

a
re

re
p

re
se

n
te

d
a
s
x
x
x
x
x
-
a
a
a
a
a

(p
re

-r
el

o
ca

ti
o
n

)
a
n
d
x
x
x
x
x
′-
a
a
a
a
a
′

(p
os

t-
re

lo
ca

ti
on

).
W

h
er

e
a

p
os

t-
re

lo
ca

ti
on

h
y
p

h
en

at
ed

fi
n

g
er

p
ri

n
t

is
re

p
re

se
n
te

d
a
s
y
y
y
y
y
′-
a
a
a
a
a
′,

it
im

p
li

es
th

e
n

o
d

e
is

n
ow

n
o
t

in
si

d
e

th
e

(p
o
ss

ib
ly

re
lo

ca
te

d
)

x
x
x
x
x

gd
co

n
ce

p
t

it
w

as
or

ig
in

al
ly

co
n
ta

in
ed

in
,

b
u

t
in

st
ea

d
,

in
si

d
e

a
d

iff
er

en
t

gd
co

n
ce

p
t.

T
h
e

li
n

ka
g
e

o
f

fi
n

g
er

p
ri

n
ts

fr
o
m

th
e

R
IT

o
ri
g
in
a
l

th
ro

u
gh

to
R

IT
n
e
w

(a
n

d
v
ic

e
v
er

sa
)

ca
n

b
e

fo
ll

ow
ed

v
ia

tr
av

er
si

n
g

ea
ch

ta
b

le
co

lu
m

n
.

(A
lt

h
o
u

g
h

S
T

o
ri
g
in
a
l

fi
n

g
er

p
ri

n
ts

a
re

g
en

er
a
te

d
b

ef
o
re

R
IT

o
ri
g
in
a
l

fi
n

ge
rp

ri
n
ts

,
R

IT
o
ri
g
in
a
l

fi
n

ge
rp

ri
n
ts

ar
e

p
re

se
n
te

d
fi

rs
t

in
o
rd

er
to

m
o
re

ea
si

ly
fo

ll
ow

th
e

tr
a
n

sm
is

si
o
n

o
f

fi
n

g
er

p
ri

n
ts

fr
o
m

R
IT

o
ri
g
in
a
l

to
R

IT
n
e
w

).

126



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

Demonstration: the fingerprint tracking algorithm applied to gd concepts

Examples of the fingerprint tracking algorithm (now augmented with fingerprint remediation

and unified reconciliation algorithms) as applied to a given gd concept, will illustrate how a gd

concept instantiation could be tracked across RITs. Furthermore, they will serve to highlight

features of the algorithm that enable it to successfully track fingerprints for the other theoretical

edit scenarios.

ST type 4 edit operation (see table 8.2) - gd concept descendant being relocated as

a result of gd concept relocation

1. After propagation from SToriginal, the node’s fingerprint is recalculated in RIToriginal using

the fingerprint remediation algorithm. Note that since the node is descended from a gd

concept, the node receives a hyphenated fingerprint in each instantiation of the concept.

This ensures that each instantiation is uniquely fingerprinted, since it can have its own

unique RI. An RI is then assigned to the node by the user.

2. The reference to the gd concept is relocated to a different location in SToriginal, implying

the gd concept instance (and its descendants) are to move. SToriginal is now STnew.

3. STnew fingerprints are reassigned to fingerprint-orig, recalculated, and propagated to

RITnew as in the case for standard nodes. RITnew fingerprints are overwritten where

appropriate using the fingerprint remediation algorithm.

4. The system observes that the (gd concept descendant) node in RITnew does not have an

RI. (Unlike in the case of a standard node) the unified reconciliation algorithm notes its hy-

phenated fingerprint, e.g. xxxxx′-aaaaa′. The system needs to ascertain fingerprint-orig

for this node if it is to be able to locate it in RIToriginal. fingerprint-orig cannot di-

rectly be queried in STnew because this instantiation of the node will not exist in STnew.

Therefore, the system exploits the fact that the xxxxx′ component of the node’s fingerprint

is also the fingerprint of the gd concept instance it is contained in. STnew can directly be

queried for the fingerprint-orig corresponding to xxxxx′. Similarly, the system exploits

the fact that aaaaa′ corresponds to the fingerprint of the uninstantiated location of the

node in STnew. Thus, fingerprint-orig can be located for the uninstantiated location.

Finally, these two fingerprint-orig values can be amalgamated to yield xxxxx-aaaaa.

127



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

This corresponds to the fingerprint of the node in RIToriginal–the original fingerprint is

thus reconstituted.

5. The system queries RIToriginal for a node that contains a fingerprint that is the same

value as xxxxx-aaaaa. It has now identified the node in RIToriginal and can copy over its

RI.

The ability of the algorithm to reconstitute/extrapolate an RIToriginal fingerprint from an

RITnew is key to node tracking in cases where gd concepts are involved. The outcome of a search

of RIToriginal for the candidate fingerprint is also important in determining the ST edit operation

that has indeed taken place on this node. A Type 4 edit should mean that xxxxx-aaaaa is a

valid fingerprint in RIToriginal. If on the other hand, a search does not yield xxxxx-aaaaa, it

implies that it is possible that a different edit operation has taken place. For example, the node

may have originally been a standard node that has been brought into a gd concept. It could also

have originally been contained in a different gd concept. Therefore, further searches are carried

out to identify the edit type(s), and to ultimately reconcile the fingerprint.

Relocation of gd concept descendant within the gd concept – The amalgamated fin-

gerprint is comprised of the gd concept root node and the node in question. Therefore, internal

movements of the node do not result in a different remedial fingerprint, thereby allowing the

gd concepts example above to satisfy this case without modification. Note however, that there

is thus a constraint implied by the fingerprint remediation algorithm that a gd concept cannot

have multiple copies of a gd concept inside it. This is because their constituents could not be

resolved without ambiguity since a remediated fingerprint is comprised of the root gd concept

fingerprint and the descendant fingerprint. This is an acceptable constraint because according

to the semantics of the knowledge structure, this is not a valid scenario.

Relocation of gd concept descendant to outside of the gd concept –

• If the descendant node is relocated into another gd concept, it can be tracked in a manner

similar to that detailed above. However, the relocation is classed as Type 5 in Table 8.2,

since (unlike a Type 4 relocation within the same gd concept) there is the difference that

yyyyy-aaaaa will not exist in RIToriginal. Thus, in this case, the unified reconciliation

algorithm searches RIToriginal for all instantiations of fingerprint aaaaa, i.e., nodes with

128



8.6. ROBUST TRACKING OF NODES WITH ONE-TO-MANY MAPPINGS BETWEEN ST AND RIT

fingerprints ending with -aaaaa and those with fingerprints of aaaaa, since all their RIs

will be desired.

• If the descendant node is relocated to outside of the gd concept and becomes a standard

node or one inside a g concept, the node can be tracked in the same way a standard

node can be tracked (see examples in section 8.5.2 and the present section). However, the

fingerprint reconciliation algorithm step will not be able to find the node’s fingerprint in

RIToriginal. This is due to the fact that whereas the node’s fingerprint in SToriginal will

be non-hyphenated, the node’s fingerprint in RIToriginal will have been hyphenated as a

result of fingerprint remediation. This fact will differentiate this ST edit type (Type 3)

from a standard node relocation (Type 1). The RIs of all instantiations of this node in

RIToriginal are potentially required in RITnew. The fingerprint reconciliation algorithm

therefore searches RIToriginal for all nodes with fingerprints ending in -aaaaa.

8.6.3 Conclusions and discussion on node tracking

Section 8.5 introduced a method of using node paths (abstracted as fingerprints) for tracking

nodes across RITs. However, the method was limited to nodes where there is a one-to-one

correspondence between the node in the ST and the RIT. This is because fingerprints are created

in the ST and propagated to the RIT (since the RIT is a generated tree). The replication and RI

instantiation of ‘template’ branches of the ST as part of RIT generation means copies of nodes

exist in the RIT that do not exist in the ST. Thus, the established fingerprinting mechanism

was inadequate for uniquely identifying instantiations where those instantiations each required

RIs unique to them.

The present section has built on the fingerprinting mechanism used to track standard nodes

across RITs by ensuring that fingerprints uniquely identify an instantiation where that instanti-

ation will have a unique RI (gd concepts). Fingerprint remediation is a post-process that occurs

in the RIT, and involves creating a hyphenated fingerprint that encapsulates the location of a

gd concept descendent within the context of the gd concept instantiation.

This section has proceeded to identify and tabulate the types of relocation operations that

can occur to a given node. This analysis, together with the property of hyphenated fingerprints

of maintaining a unique node fingerprint that identifies the node as well as the node’s context

(i.e., the containing gd concept) has informed a reconciliation algorithm. This algorithm is able

to deduce the type of relocation operation that has been performed on a given node post-hoc

129



8.7. RI REAPPRAISAL

and thereby determine which node(s) of the original RIT to query for RI values. The overall

tracking algorithm parsimoniously accommodates arbitrary nestings of g and gd concepts. This

is due to the fact that fingerprint remediation does not take place inside g concepts, and when

it does occur, it only takes into account the ultimate gd concept ancestor. It also naturally

handles the situation (in the ST) of arbitrarily nested g and gd concepts where a nested concept

is referenced independently to the container concept, meaning that a given node can in fact

satisfy more than one type of edit simultaneously. This is accommodated by virtue of the fact

that each RIT node searches for its own RIs, taking into consideration its g or gd ancestor

context (which is encapsulated in the fingerprint produced by the remediation algorithm).

Although the fingerprint tracking algorithm has been illustrated in the context of node

relocations, it can be applied unmodified to node copy operations. This is because node lookups

are performed on SToriginal and RIToriginal, which of course are the pre move/copy trees.

The use of fingerprints for node tracking bears some similarity to the work of Marian, Abite-

boul, Cobéna, and Mignet (2001), in that a unique XID integer is assigned to each node; however,

the node’s placement is not used to calculate the XID. Thus, such an approach would have dif-

ficulties reconciling instances where a gd descendant has been moved out of the gd concept, and

RI information from each and every original instantiation is required to be presented in the new

location.

The current approach is also different to the node fingerprints used in Rönnau, Pauli, and

Borghoff (2008), who employ MD5 hashes, but where the node hash is a combination of the node

element name and its attributes, and not its location. Therefore, node instantiations may not

readily be accommodated. The present approach of path-based hashed fingerprints combined

with augmented context-based hashed fingerprints is well suited to the specialised task of tracking

derived trees. Specifically, scenarios where derived trees are expansions containing repeating,

yet individualised instantiations of the same underlying branch are naturally accommodated by

this scheme.

8.7 RI Reappraisal

Recall from Section 8.4 that successful migration of RIs between RITs is a two-phase problem.

Once a node has been tracked across RITs, it is not always sufficient that the old RI is merely

copied over. The RI of a node is a weighting attached to the node, such that the weightings

of all siblings sum to unity. Therefore, it follows that changes to siblings of a node under

130



8.7. RI REAPPRAISAL

consideration have an impact on the RI of that node. For example, deletion of a sibling node

requires a rescaling of the RIs of the remaining nodes. The current section outlines the various

types of change that require re-adjustment/solicitation of RIs. It discusses how such changes

will be identified and appropriate methods of RI readjustment where possible. Where expert

input is required, methods for flagging this up are described.

8.7.1 Changes that affect RIs and schemes for RI reappraisal

Consider an RITnew concept node (i.e., a node containing at least one child node). The concept

node, when being comparing with itself in RIToriginal with respect to its children, will be in one

of the following mutually exclusive states:

• unchanged – The concept’s children have not been added to or deleted from: it has the

same children.

• adopted – The concept has at least one additional child that belonged elsewhere in RIToriginal.

• new – The concept has at least one additional child newly introduced in RITnew.

• adopted-new – A combination of states adopted and new.

• removed – The concept has one or more of its original children removed.

• adopted-removed – A combination of states adopted and removed.

• new-removed – A combination of states new and removed.

• adopted-new-removed – A combination of states adopted, new and removed.

RI reappraisal and recalculation schemes for each concept state are presented below.

• unchanged : concept will not require any adjustment of its children’s RIs.

• adopted : concept will require its additional children’s RIs to be validated/ratified by an

expert before they are used. Therefore, the affected ri attributes containing the RI values

that were obtained from the original RIT will be renamed to ri-original. Effectively,

this will mean that newly adopted children will have no RI, and that the RIs of pre-existing

children will not require modification. An RI elicitation tool could easily be used to look

for nodes with no ri attributes, and present these to the user in a suitable manner (along

131



8.7. RI REAPPRAISAL

with information from any ri-original attribute). Once the user has assigned RIs to

these nodes, the RIs of the siblings will automatically be adjusted, and the ri-original

attributes deleted.

• new : concept will require its additional children’s RIs to be supplied by an expert. Ef-

fectively, this will mean that newly added children will have no RI, and that the RIs of

pre-existing children will not require modification (until RI elicitation). RI elicitation will

be handled via the RI elicitation tool.

• adopted-new : refer to schemes for adopted and new states.

• removed : concept will require its remaining original children’s RIs to be rescaled so that

they sum to unity. This would be an automatic operation, not requiring expert interven-

tion.

• adopted-removed : the scheme for the removed state should be applied first, ensuring that

all the remaining original children have RIs that sum to unity. This leaves the remaining

original children with a sensible default RI value. Following this, the scheme for the

adopted state should be applied.

• new-removed : consistent with the rationale given in the adopted-removed state scheme,

the removed state scheme should be applied first, followed by the new state scheme.

• adopted-new-removed : consistent with the rationale given in the adopted-removed state

scheme, the removed state scheme should be applied first, followed by the new and adopted

state schemes.

In summary, the above schemes rescale existing RIs among remaining nodes where nodes

have been deleted. Furthermore, where there are also nodes that have been added, the RIs of

these nodes are uninstantiated, and are left to be solicited from the expert. RI elicitation tools

will help with this process, soliciting the missing RIs, providing access to previous RI values for

such nodes, if available, and recomputing RIs of sibling nodes with respect to the new solicited

values.

8.7.2 The application of heuristics in RI reappraisal

There is scope for reducing the RI reappraisal process further via the application of heuris-

tics in certain cases. Consider the adopted-removed instance where all of the node’s original

132



8.7. RI REAPPRAISAL

children have been removed, and all its adopted children were also siblings in RIToriginal. The

adopted-removed reappraisal algorithm in its default incarnation would demand ratification of

the provisional ri-original values in RITnew before their acceptance as legitimate RI values.

However, in this case it is clear that the correct course of action is to forego ratification and to

directly use the RI values. Should these RI values not sum to unity (due to only some of the

original siblings being adopted into the node), the RIs should be automatically rescaled.

A similar optimisation can be applied to the adopted-new-removed instance where all the

original children have been removed and the new children consist of a mixture of adopted original

siblings and new nodes. The adopted siblings’ Relative Influence values need not be ratified (but

should be rescaled to sum to unity).

Further heuristics could be applied to reduce human RI reappraisal; for example, assigning

default RI values to new nodes based on ‘unused’ RI as a result of sibling removal etc. However,

the algorithms and strategies mentioned thus far err on the side of caution rather than trying

to reduce human intervention to a point where it may become unsafe to do so. Indeed, two ST

modification operations that have exactly the same mechanics may represent different intentions

and focuses for the expert that would require different treatment of RIs in each case. An overly

enthusiastic heuristic in such a scenario would treat RIs in the same manner in both cases,

leading to an RI instantiation error that may not be easily discernable post hoc.

8.7.3 The mechanics of RI reappraisal

RI reappraisal is enacted as a post-process to RI reconciliation. Each concept of RITnew is

looked up in RIToriginal. The children of each concept are then compared across RITs (via their

node codes) to determine the state of the RITnew concept. New and adopted children will be

differentiable by the absence/presence of pre-existing RIs in RITnew. However, further lookups

will be necessitated by cases amenable to the application of heuristics detailed in section 8.7.2.

Finally, ri and ri-original attributes are updated accordingly, ready for experts to fill in

missing RIs or to select RIs in cases that a node has multiple associated RIs (as a result of e.g.,

being taken out of a gd concept).

133



8.8. CONCLUSIONS

8.8 Conclusions

The chapter has introduced the problem of synchronising (data in) derived trees where the

progenitor tree has been altered. In the context of the Galatean Tree Hierarchy, this problem

arises when an RIT that has been derived from an ST has been supplemented with further

information not derivable from the ST. When the ST is subsequently altered, a regenerated

RIT would not contain the supplemental information (i.e., RI values). Therefore the chapter

has proceeded to elaborate on a method to reliably carry over supplemental information from

the old RIT into the new RIT, bearing in mind that the trees could be radically different with

regards to their structure.

The method employs tracking of nodes via their node paths (abstracted as fingerprint

hashes). Where individual tracking is required for a node that has been instantiated in multiple

locations as part of tree expansion, the fingerprint is augmented. Specifically, the fingerprint

becomes an amalgam of the containing gd concept’s fingerprint and the node’s fingerprint. Thus,

instantiation location information is encapsulated in the node’s fingerprint.

ST edits result in a new set of fingerprints being generated and propagated to the newly

derived RIT. The old set of fingerprints are also maintained in the modified ST. In simple cases,

the fingerprint tracking algorithm outlined in this chapter uses the new fingerprints in the RIT

to track back to the old fingerprints in the progenator ST. This is effectively the key to the node

location in the old RIT. In more complex cases that involve node instantiations, the algorithm

employs original fingerprint reconstitution and intelligent querying of the RIT to locate the node

in the original RIT.

The innovative combination of path-based fingerprint hashes combined with an overriding

scheme that encapsulates identification and ‘location-tagging’ of node instantiations, is well

suited to this problem. A node can be identified in its own right and it can also be simultane-

ously identified that it is contained in a particular instantiation of the concept. It is these two

properties that drive fingerprint reconstitution and intelligent querying of the old RIT. Such a

fingerprinting scheme is generalisable to any domain that requires tracking of nodes in derived

trees that are expansions containing repeating instantiations of the same underlying branch.

Finally, having established the method for tracking RIT nodes, the chapter proceeds to define

a set of rules for copying over and reappraising RIs. The rules ensure that RIs in the new tree

are automatically instantiated where it is safe to do so, and only with sensible values.

134



8.8. CONCLUSIONS

The methods and algorithms developed in this chapter mean considerable time savings with

regards to remedial work by experts when tree structures are modified. They allow the trees in

the Galatean Tree Hierarchy to remain separate, and true to their raisons d’être, yet minimise

the complexities of integrating modifications from trees upstream. Ultimately, this makes GRiST

CDSS knowledge maintenance an easier task for the knowledge engineer.

135



9
Deployment of a Preliminary Risk Assessment Solution

9.1 Introduction

This chapter considers operational issues surrounding the deployment of the initial risk assess-

ment tool. It argues how the use of a monolithic tree to drive assessment would result in

inefficiencies in the use of storage and network bandwidth. It therefore demonstrates the need

for specialised trees that are derived from the RIT, and which underpin specific aspects of the

assessment process, limiting data redundancy. These are:

The Client Assessment Tree (CAT) – A derivative of the RIT with all nodes instantiated.

All nodes are stripped of everything but structure information.

The Question Tree (QT) – A derivative of the RIT, holding question data relating to nodes

contained in the CAT.

The Answer Tree (AT) – Generated during the course of a patient assessment in order to

store clinician-supplied data.

136



9.2. RATIONALE FOR SPECIALISED ASSESSMENT TREES

The second part of the chapter discusses the preliminary risk assessment tool infrastructure

that was created, and how the specialised assessment trees were used to drive it. It introduces

the three versions of the Galatean Risk Screening Tool (GRiST) that were created to run on top

of this platform; each developed to cater for different stages of integration with Trusts, and each

varying in its technical capability. These range from the non-technical paper-based GRiST, to

the lightweight HTML version, through to the fully featured Java-based fat-client GRiST; all

freely accessible on the GRiST website.1

Finally, the reporting capabilities of the platform are showcased, with a discussion on the

potential future directions along which reporting and analysis can be taken.

9.2 Rationale for Specialised Assessment Trees

This section explores the practical limitations associated with the RIT if it is to be directly used

to drive assessment tools. Consequently, it establishes the requirement for a Client Assessment

Tree, a Question Tree, and an Answer Tree.

9.2.1 The need for a Client Assessment Tree

Recall that the RIT expands generic concepts of type gd in order to allow for their instantiation

with RI values. However, there is as of yet, no expansion of g concepts—concepts whose RI

values do not vary with the location of their instantiation. Expanding such concepts in the RIT

would have represented unnecessary bloating of the tree and duplication of work to instantiate

the same RI values at each location during elicitation activities.

A patient assessment data gathering tool would however, require such g concepts to be

instantiated. This is because the clinician should have the flexibility to view and answer the

associated questions at any instantiated location, since logically, the questions form a part of

that locale.

One approach to the instantiation of g concepts would be their enaction within the tool logic

itself. However, this would not be an efficient solution for a number of reasons. The first is

one of multiple tool implementations. There could theoretically be (and indeed the project did

spawn) multiple tool implementations to suit different usage scenarios, e.g., a paper-based tool,

a thin-client tool with minimal client-side logic, a fat-client tool with heavier client-side logic,

1http://www.galassify.org/grist

137



9.2. RATIONALE FOR SPECIALISED ASSESSMENT TREES

etc. Each hypothetical implementation would therefore need to incorporate the logic to perform

node instantiations, thereby increasing development overhead.

A further issue with direct g concept expansion within end-user tools is that of duplication

of computation. With each and every invocation of an assessment, the RIT would be required

to be dynamically expanded. On a modern desktop computer this may not necessarily be a

hinderance, but with the proliferation of hand-held/mobile computing on low-powered CPUs,

this might introduce a significant time penalty. Similarly, offloading to the server could result

in a performance bottleneck during busy periods of activity.

Recall that the RIT contains ‘profiles’ for varying levels of clinician expertise. The system of

level attributes within the tree help determine ‘soft’ pruning points corresponding to expertise

grades. Following level attributes is again, work that adds additional complexity to end-user

tools. Theoretically, this work can be done a priori, with derivative trees corresponding to each

level being generated and stored/cached before use.

A fourth issue that demonstrates the need for a separate derivative tree is that of recording

and presentation of the results of classification using the Galatean model. During classification,

the Galatean model takes answer values provided for leaf nodes of the tree and uses them to

calculate and percolate mgs up to the root risk nodes. That is, the intervening nodes have their

mgs calculated, and it is the effective flow of mgs up the tree that is important when visualising

how answers impact on risk. Therefore, the logical location to record the results of running

an assessment through the classifier is within the tree instance itself. But recording within the

RIT instance, (which has not had g concepts instantiated), means that percolation is difficult

to visualise directly because it requires “piecing together” of the tree.

It is with the above reasons in mind that the requirement for a fully instantiated Client

Assessment Tree (CAT) becomes apparent. The primary role of the CAT is thus, to provide a

tree instance that can structure the assessment according to clinician expertise level, and which

can subsequently be used to store/display classification results.

9.2.2 Optimising storage and bandwidth through separation of question data

The CAT, as envisaged, is a monolithic structure, and can in theory, directly drive an assessment

data gathering tool/decision support system. It contains all the node structure data that is

pertinent to the Level of the clinician, as well as question data, answer data type definitions,

RIs and value-mg profiles. Furthermore, it can store mgs generated during classification of the

138



9.2. RATIONALE FOR SPECIALISED ASSESSMENT TREES

assessment in situ within the nodes.

The monolithic nature of the envisaged CAT does however introduce inefficiencies when

the manner and environment in which it will be used is considered. Consider for example,

a hypothetical ‘thin-client’ data gathering tool. This tool would rely on the server to run the

Galatean classifier on the assessment data (as opposed to relying on client-side logic). During the

start of an assessment, it will download a fresh copy of the CAT and proceed to record answer

data against it as the assessment progresses. The clinician may wish to make a provisional

classification of the data at any point in time. The easiest way to achieve this will be for the

client program to send the answer-instantiated CAT to the server, whereupon it will be classified

by the Galatean model and populated with mgs. The classified CAT will then be sent back to the

client program for displaying. A clinician could make any number of provisional classifications

as the assessment progresses. Furthermore, upon an assessment save or assessment completion,

the server may wish to maintain a copy of the classified CAT within the database as a permanent

record of that assessment.

The above scenario is clearly inefficient from the point of view of bandwidth because each

classification requires the uploading and downloading of the complete CAT. Upload bandwidth

tends to be severely restricted by ISPs (Huang, Li, & Ross, 2007). Similarly, a large CAT saved

for each assessment impacts on storage. Therefore, the CAT should ideally be as lean as is

practicable.

Question and question-related data within the CAT does not change throughout the lifetime

of an assessment. It is thus, more efficient to have such data within a separate structure that

is only downloaded once at the start of the assessment session. The solution to reducing CAT

size that was adopted was therefore, one of stripping question and question-related data from

the CAT and placing it within a separate data structure, i.e., the Question Tree (QT).

The QT is a data structure that is generated directly from the RIT along with the CAT.

Unlike the CAT, whose hierarchy drives the hierarchy of the assessment tool, the QT does not

have an implicit hierarchy. Its role is to serve as a lookup table or directory to the assessment

tool whilst it is compositing the data gathering interface. The QT is thus a flat structure

indexed by node codes which correspond to the codes against nodes within the CAT. Whenever

the assessment tool wishes to ascertain the question data corresponding to a node of the CAT,

it performs a lookup of the node in the QT via its code. A further benefit to lower transmission

and storage overheads is the reestablishment of the removal of question-text redundancy. In

139



9.3. GENERATING THE ASSESSMENT TREES

essence, the CAT and QT are used within the system as a relational database consisting of two

tables, thereby merging the benefits of relational databases with the flexibility of XML trees.

9.2.3 Further optimisation through separation of answer data

Further consideration of the hypothetical thin-client assessment scenario outlined in Section

9.2.2 point to optimisations that can also be made with regards to the need for uploading the

CAT itself. Upload bandwidth speed is a limiting factor, so it is important to further reduce

this where possible.

The CAT, as conceived of so far, maintains the overall structure of the assessment, but does

not itself include question data. Additionally it is used to store node answers in situ during

the course of an assessment. The CAT is used as a transmission vehicle for those answers when

a classification is required. Upon classification, the answers are returned within the CAT in

addition to mgs. Thus, in the scenario, it can be observed that a costly upload of the CAT

is performed primarily to transmit answers to the server (which then come back to the client

unchanged within the classified CAT).

In theory, the server itself does not require anything more than the assessment answers, as it

can easily load an ‘instance’ CAT from the database in order to populate it with computed mgs.

It therefore implies that transmission efficiencies can be gained from storing answers separately

to the CAT. If answers are stored separately, only a small Answer Tree (AT) data structure

need be sent to the server. Once the server has reconciled answers to ‘instance’ CAT nodes, it

can perform a classification and send down a classified CAT to the client. Upload bandwidth

requirement is thereby reduced to a minimum.

Similar to the QT, the AT is a flat structure, indexed by a node’s code. Unlike the QT, the

AT is not created on the server, or generated from the RIT. The AT is instead, generated by the

assessment tool when needed (i.e., when there is answer data to record), and nodes are created

on an ad-hoc basis.

9.3 Generating the Assessment Trees

This section covers the procedures for generating the CAT, QT and AT; the trees that will be

used to drive the assessment. XSLT is once again used to effect all transformations. This means

the transformation process is automated and the potential for human error as a result of direct

manipulation of the tree structures is eliminated.

140



9.3. GENERATING THE ASSESSMENT TREES

9.3.1 Generating the CAT

The CAT is essentially a fully instantiated RIT, stripped of the majority of its question-related

attributes. Furthermore, whereas the RIT contains assessment information pertinent to all Lev-

els of clinician expertise, the CAT is instead, a tree matched to each Level. Soft pruning points

dictated by level attributes are enacted using XSLT to automatically generate CATs tailored

to each Level. This yields the benefit that tool logic can be Level-agnostic, yet assessments at

different Levels can be serviced within the tool by supplying the appropriate CAT. The ability

of XSLT to easily treat soft pruning points as hard pruning points effectively results in simpli-

fying the development and operation of the end-user tool(s). It is thus, another example where

adopting XSLT to mold data structures as required ‘behind the scenes’ brings efficiency and

flexibility to the system.

Briefly, the following transformations will have taken place to the RIT in order to generate

a CAT at a given Level:

1. All generic concept nodes are fully instantiated in all locations of the tree.

2. The generic nodes pseudo-risk is removed as it has been rendered superfluous to

requirements.

3. values, question, value-mg, and help attributes are removed. layer attributes

are retained, and filter-q attributes emptied.a ri attributes remain.

4. level attributes are executed in generating appropriate CATs for each Level using

the algorithm detailed at the end of Section 6.6.1. Any filter-q attribute that

is present at a Level matching the CAT’s Level is removed because the node will

become a datum. All level attributes are then removed from the tree.

afilter-q attributes are emptied but are not removed outright as a computational efficiency measure.
Leaving such attributes in situ negates the need for the assessment tool to ascertain via a lookup of the
QT, the filter or layer status of each node during tool rendition.

After using the above algorithm to generate a Level zero CAT, the suicidal ideation concept

of Figure 6.8 will now look as depicted in Figure 9.1.

The corresponding representation within a Level 1 tool is presented in figure 9.2. Here, the

suicidal ideation concept, by virtue of its having a level="1" attribute against it, has been

hard-pruned. Consequently, the concept has been reduced to one datum node.

141



9.3. GENERATING THE ASSESSMENT TREES

<node label="suicidal ideation" filter-q="" code="suic-ideation" ri="ri ">

<node label="How much suicidal ideation is verbalised"

code="suic-id-verb" ri="ri "/>

<node label="ability to control suicidal ideation"

code="suic-id-control" ri="ri "/>

<node label="content of suicidal ideation indicates high risk"

code="suic-id-hi-risk" ri="ri "/>

<node label="frequency of suicidal ideation" code="suic-id-freq" ri="ri "/>

</node>

Figure 9.1: Part of a Level 0 CAT XML representing suicidal ideation. Question-related attributes
have been removed, thereby shrinking the concept definition. code attributes, although not depicted in
the original ST version of the concept, were later introduced into the ST prior to RIT generation.

<node label="suicidal ideation" code="suic-ideation" ri="ri " />

Figure 9.2: Part of a Level 1 CAT XML representing suicidal ideation. Sub-nodes have been removed
because the concept is a Level 1 concept. Consequently, the concept becomes a datum. This renders its
original filter-q attribute also irrelevant.

Answers provided during an assessment are not stored in the CAT. Instead these are stored

within the AT.

9.3.2 Generating the QT

The QT is generated directly from the RIT. It is a flat structure that will record relevant question

information stripped out from the CAT. QTs will thus be matched with CATs, meaning that a

CAT at a given Level will have a corresponding QT for that Level. Information not relevant to

a CAT of a specific Level will therefore, not be present in the QT for that Level.

Figure 9.3 represents the typical composition of a QT. A number of rules govern when

certain combination of attributes and values may appear within a given node. For example,

values="filter-q" is a legal dyad, even though filter-q is not strictly a data type. The

validity arises out of the fact that a QT node will never have both a question and a filter

question to be asked. This is due to the QT’s being matched to a tool Level. And at a given

Level, a node will either have a question or a filter-q, but not both. Therefore, in cases where

a filter question is to be asked, the QT node will have values="filter-q" and question="The

filter question text " (the data type of the filter question is implied). A fuller list of rules

for generating the QT are available in Appendix E.1.

142



9.3. GENERATING THE ASSESSMENT TREES

<questions>

<node code="datum1-code-name " question="question relating to datum 1 "

values="scale|integer|real|nominal|date-year|date-month|date-week|

date-day|filter-q|layer"

help="help info "

value-mg="((x1 y1)(x2 y2)(xn yn)) "/>

<node code="datum2-code-name " question="question relating to datum 2 "

values="nominal" value-mg="((none 0)(some 0.7)(lots 1))"

help="help information " />

<node code="concept-node-code " question="question relating to concept "

values="scale" layer="1"/>

<node code="root-risk-code "

question="question relating to risk node judgement " values="scale"/>

</questions>

Figure 9.3: The composition of the QT. The flat node structure lists question-related data for all CAT
nodes that contain a question that is to be asked.

Relating back to the suicidal ideation ST concept example of Figure 6.8, the corresponding

Level 0 CAT fragment of Figure 9.1 is complemented by the Level 0 QT fragment presented in

Figure 9.4. This is generated via the algorithm in Appendix E.2.

<questions>

<node code="suic-ideation" value-mg="((0 0) (10 1))" values="filter-q"

question="Is the person having suicidal thoughts or fantasies?" />

<node code="suic-id-verb" value-mg="((0 0)(10 1))" values="scale"/>

question="To what extent is the person talking about suicidal

thoughts or fantasies?"

<node code="suic-id-control" value-mg="((0 1) (10 0))" values="scale"

question="To what extent is the person able to control

the suicidal thoughts or fantasies?"/>

<node code="suic-id-hi-risk" value-mg="((0 0) (10 1))" values="scale"

question="To what extent does the content of the suicidal thoughts

or fantasies raise serious concerns about suicide risk?"

help="e.g. get away from it all; harming others; harming themselves"/>

<node code="suic-id-freq" values="nominal"

value-mg="((DAILY 1)(WEEKLY 0.5)(MONTHLY 0.2)(LESS-THAN-MONTHLY 0))"

question="How often do the suicidal thoughts or fantasies occur?"/>

</questions>

Figure 9.4: Part of a Level 0 QT XML representing suicidal ideation. Nodes are in a flat structure, each
containing question-related attributes derived from the RIT, and no longer present in the corresponding
CAT.

A Level 1 QT fragment corresponding to the suicidal ideation concept is presented in

143



9.3. GENERATING THE ASSESSMENT TREES

Figure 9.5. Again, this QT is shorter than the Level 0 QT because the nodes beneath the

suicidal ideation concept will have been pruned in the Level 1 CAT, and therefore, are not

required here. This QT is generated via the algorithm in Appendix E.3.

<questions>

<node code="suic-ideation" value-mg="((0 0) (10 1))" values="scale"

question="To what extent do the person’s suicidal thoughts/fantasies

match those that would give you most concern about

suicide risk?"/>

</questions>

Figure 9.5: Part of a Level 1 QT XML representing suicidal ideation. In the corresponding CAT, this
concept has become a datum by virtue of its level="1" attribute being applied. Consequently, the node
is no longer a filter node. Thus, the QT data is in reference to the question attribute originally contained
in this node, and not the filter-q attribute.

9.3.3 Generating the AT

As was stated in Section 9.2.2, the AT is generated at “run-time”. Therefore, unlike the QT

and CAT, which are prefabricated on the server via XSLT and cached, the AT is produced as

and when needed by the assessment tool. When a clinician attempts to save an assessment,

the tool creates an AT node for each node that has been answered by the clinician. Similar to

the QT, nodes are indexed by code within a flat structure, with answers stored against them

via answer attributes. Figure 9.6 depicts an AT fragment corresponding to suicidal ideation

concept question answers.

<answers>

<node assessment-status="in progress"/>

<node date="08032010"/>

<node code="suic-ideation" answer="yes" management="Provide counselling"/>

<node code="suic-id-control" answer="3" comment="Could do better"/>

<node code="suic-id-hi-risk" answer="5"/>

<node code="suic-id-freq" answer="MONTHLY" comment="Doing well"/>

</answers>

Figure 9.6: Part of an AT with answers related to some suicidal ideation questions. In addition to
answer data, the AT stores clinician-provided data relating to comments and also, the management of
the aspect.

In addition to storing question answers, the AT stores any comments the clinician wishes

to make against the node. Comments can be made against any node of the CAT, and thus are

144



9.4. RELATING THE CAT, QT AND AT TO THE GALATEAN TREE HIERARCHY

not contingent to the node’s having a question answered against it, or even, the node having a

question to answer!

The management attribute is used to store information that the clinician may wish to record

about how this aspect should be managed by the patient or any interventions that have been

implemented. The management attribute is yet another example where the choice of XML for

driving the system has added value and flexibility. This functionality was not conceived of

from the outset by the research team, but was borne out of feedback from clinicians and best

practice recommendations (Kettles & Woods, 2009). The extensibility of XML allowed the

additional attribute to be incorporated within the AT file format. Crucially, the data from this

attribute could be incorporated within the standard report of the assessment, or be used to

drive a specialised report focussing on management, without much adaptation to the XSLT-

driven reporting functionality (to be introduced later).

Coiera (1997) observes that electronic records systems are sometimes focussed on the process

of data collection, yet neglect the context in which they will be used and by whom. The need to

facilitate context and layered ‘views’ are echoed in a case study conducted by Fitzpatrick (2004).

Here it is observed that paper-based records are used in a layered fashion with different clinicians

using different coloured ink to overlay information on a single paper-based form. Fitzpatrick

coins the term, ‘working record’ to denote a record that facilitates multiple clinicians’ needs and

layering. In essence, the extensible nature of the AT allows different types of data to be stored

centrally within the file, yet easily supports specialised views of that data by using XSLT to

select or ignore specific file attributes. The potential for this is that different groups of personnel

along the care pathway can each augment or view the data in a manner that is useful for them,

and ultimately, useful to the patient. This goes some way towards realising the ‘working record’

for a mental-health assessment.

9.4 Relating the CAT, QT and AT to the Galatean Tree

Hierarchy

Section 7.5 introduced the notion of the Galatean Tree Hierarchy (GTH)—a set of derived trees

that aim to make a systematic and managed transition from the domain model to the decision

support system. Sections 9.2 and 9.3 introduced the CAT, QT and AT. These three trees specify

a model for generating, conducting and representing assessments. They therefore represent the

145



9.4. RELATING THE CAT, QT AND AT TO THE GALATEAN TREE HIERARCHY

next phase of operations for the system as a whole, i.e., patient data gathering and assessment.

It is therefore apt to revisit the GTH in order to visualise how the new trees are incorporated

within it.

Figure 9.7: The Galatean Tree Hierarchy extended to incorporate CATs and QTs. CATs and QTs derive
wholly from the RIT, and are matched to each other by expertise Level. XSLT is used to automatically
generate CATs and QTs from the RIT.

Since the CAT is a tree that is derived from the RIT, taking the domain knowledge to a point

where it can service assessment generation, it would thus take its place within the Galatean Tree

Hierarchy as a child of the RIT. As can be seen from Figure 9.7, the CAT is a wholly generated

tree, with XSLT being used to automate the transformational process. This applies to CATs

defined for each Level of practitioner expertise.

Similarly, the RIT is the progenitor of the QT; again with XSLT enacting the transforma-

tion. QTs are matched to CATs according to Level; and together they drive generation of the

assessment.

Not shown in the diagram is the AT. The AT is not strictly part of the GTH as it is a tree that

is spawned as and when needed during assessment. However, nodes about which information

will be stored in the AT, originate from the CAT. Therefore, the AT could be regarded as a

child tree of the CAT were it to be represented within the GTH.

146



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

9.5 Deploying the Galatean Risk Screening Tool

Three end-user risk screening tool architectures were built to be driven by the data-gathering

/assessment trees of the GTH. These architectures supported deployment of a paper-based tool,

a HTML-based tool, and a Java tool. Together, they constituted the deployment of the initial

Galatean Risk Screening Tool (GRiST) for working-age adults. This section covers the rationale

for development of each of the three flavours of GRiST and introduces their features. Primary

focus however, falls on the HTML-based tool, as this was the tool developed as part of PhD

work.

9.5.1 Paper-based GRiST

When GRiST was first being readied for deployment, mental-health Trusts were still primarily

paper based (A. Lewis, 2002; Ainsworth, 2007), and therefore wanted this format for GRiST.

In effect, they initially wanted GRiST to be used simply as a paper-based data-gathering tool.

This format needed to be relatively short due to the fact that it would be paper based, hence

it required question redundancy to be eliminated. Furthermore, the paper-based format would

not require any of the uncertainty information that was present in the CAT and QT. These two

factors made the ST amenable to being used as the base tree for driving a paper-based GRiST.

Using XSLT to transform the ST into a web page to represent the paper-based GRiST form

is one option that could have been adopted. Indeed, such an option would have obviated the

need for creating a separate architecture for the paper tool, as the HTML-based tool (to be

introduced in Section 9.5.2) could have been printed off instead. However, this approach to a

paper GRiST was not considered further due to the crudeness of HTML and CSS in specifying

high-quality print layout.2 The situation is improved somewhat with the latest iteration of CSS,

version 3, although this standard has not yet reached W3C Candidate Recommendation status,

and browser implementations vary in quality and completeness (Schmitt, 2010).

XSL-FO is a markup-language that can more precisely describe how pages should be ren-

dered for print (Holman, 2003). A further alternative is to use a typesetting language such as

LATEX, which can be used to specify very precisely, the structure and formatting of a document

(Mittelbach & Goossens, 2004). Therefore, XSLT was employed to transform the ST into ap-

propriate LATEX code. After relatively minor hand-tweaking, the result was a LATEX document

2Cascading Style Sheets (CSS) is a markup language used in web pages to specify styling information.

147



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

that could be compiled to generate a Postscript or PDF version of what was dubbed the paper

tool.3 This was made available on the project website and disseminated to Trusts. An excerpt

from the paper tool is presented in Figure 9.8.

Figure 9.8: An excerpt from the paper-based version of GRiST. Rapid screening questions are presented
up-front, along with references to additional question locations.

The paper incarnation of GRiST, albeit the simplest format, represents a number of benefits

to Trusts that may have previously been reliant on in-house or bespoke risk assessment forms.

These are borne out of the tool being derived from the GTH. The knowledge contained within

the GTH means that the paper tool is a comprehensive data gathering/risk assessment form that

has been developed and validated in consultation with mental-health experts. Shorter versions

of the tool can be produced by leveraging the Levels functionality built into the system, thereby

providing tools suited to the assessor. Furthermore, the tool’s mainly automated generation from

the GTH means that any changes to the domain model can easily be reflected within the tool—

keeping it current. Finally, the paper tool is synchronised with the more advanced computerised

versions of GRiST because they too are built on top of the GTH. This provides Trusts with an

upgrade path to the HTML and Java versions of GRiST once they have become accustomed to

3Paper versions of GRiST are freely downloadable at http://www.galassify.org/grist

148



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

the paper format, thereby unlocking the full potential of the GRiST Decision Support System.

The next step in the upgrade path—the HTML tool—is explored in the following section.

9.5.2 HTML-based thin-client GRiST

The main goal of the research project was to provide an electronic risk assessment tool/decision

support system whose expertise could be utilised as an online resource via the Internet. The

web browser is ubiquitous across Internet-enabled consumer and business computing devices.

In order to gain maximum penetration, it was therefore fundamental that a risk assessment

solution be developed that could run within a vanilla install of the browser. Such a solution was

not to rely on ancillary plugins such as Flash or Java, the availability of which cannot always

be guaranteed. With the AJAX revolution4 ushering in an era of sophisticated applications

development for the browser, a thin-client GRiST was deemed a viable solution.

Back-end architecture supporting the HTML tool

Developing what was ostensibly an HTML-based thin-client GRiST required employing a num-

ber of technologies on the server. These would work to translate the information contained within

the CAT and the QT into a fully functioning web application to be run within the browser. The

word ‘application’ in this context alludes to the fact that this would involve generating, saving,

and reloading assessment information across sessions. In contrast to the Paper tool, where the

job of the computer program is to merely produce read-only output, the infrastructure support-

ing the HTML tool would be required to maintain assessment state information, and the HTML

tool required to dynamically reflect that state information.

XSLT embedded within a LAMP stack were the technologies of choice for developing the

HTML tool and supporting the assessment process. The LAMP stack is a collection of open

source software that can be installed on a computer so that it can be used as a viable webserver

(Lee & Ware, 2003). In the context of the HTML tool application,

• Linux was the operating system used to host the website and thus, the HTML tool infras-

tructure.

• Apache was the webserver software used to serve the HTML tool to the client browser.

4AJAX is the use of scripting capabilities on the web browser to generate interactive applications that update
their user interface without page reloads. These applications use behind-the-scenes calls to the server to fetch/send
data—often as XML.

149



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

• MySQL would be used to maintain cached copies of fresh CATs (uninstantiated with

answers) and QTs, ready to drive tool creation. MySQL would also serve to store ATs

and corresponding classified assessment CATs, ready for reloading or archiving.

• PHP would work in tandem with a server-side XSLT processor to translate information

from CATs, QTs (and ATs) dynamically into HTML, javascript and CSS markup that

rendered the current assessment state as a live HTML tool.

The procedure below provides an overview of how the HTML tool is generated and serviced

when a clinician initiates an assessment using their web browser. These steps are visualised in

the accompanying diagram (Figure 9.9).

1. A new assessment is requested by the clinician using a web browser.

2. The PHP/XSLT-based tool generation engine loads a new CAT and QT at the

appropriate skill Level from the GTH database.

3. A previously saved AT is also fetched if the assessment is a resumed or repeated

assessment.

4. The tool generation engine loads a pre-coded XSL stylesheet, whose function will be

to transform the data within the assessment trees into the HTML tool.

5. The tool generation engine invokes the server-side XSLT processor and passes as-

sessment trees and the XSL stylesheet over to it.

6. The XSLT processor in combination with PHP generates appropriate

HTML/CSS/Javascript files.

7. The generated files are sent to the web browser to display as the HTML version of

GRiST.

8. When the assessment is saved/completed, an Answer Tree is stored in the database.

9. Reports can then be generated using the CAT, QT and saved AT, and displayed on

the browser.

The tool generation engine, and step 6 in particular, is an interesting example where the

benefits of both XSLT and PHP are married together to produce a transformation that would

150



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

Figure 9.9: Overview of the back-end processes involved in generating the HTML version of GRiST and
its associated assessment reports. The tool-generation/reporting engine utilises a combination of PHP
and XSLT to transform assessment trees into GRiST.

otherwise have been very difficult to do using either language exclusively. XSLT on its own is

eminent at processing XML. However, it is very cumbersome to use when manipulating and

formatting text, and does not have any native capability for querying databases (Mangano,

2006). PHP, on the other hand, excels at string manipulation, complex logic, and can directly

interface with MySQL (Nixon, 2009).

PHP’s XSL extension adds the capability for PHP to register PHP functions with the server’s

XSLT processor at run-time. This means that functions can be coded using PHP and these can

then be invoked directly from within an XSL stylesheet as if they were native functions. The

idea is similar to that of using functionality exposed by DLLs in Windows or Shared Objects

in Linux (Beazley, Ward, & Cooke, 2002), where the client program is not restricted to being

coded in the same language if it is to utilise them.

The function registration feature was utilised heavily within the tool generation engine:

where the XSL stylesheet required database access, string manipulation or any other complex

processing, it deferred to the PHP side of the engine. This resulted in considerable developmental

time-savings.

151



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

The HTML GRiST front-end

GRiST is launched via the Assessment Management Page within the GRiST website. This page

is a dynamic Control Panel-type application which allows patients to be selected and assessments

and report statuses to be viewed (Figure 9.10). From this page GRiST can be configured to

launch a new, resumed or repeat assessment of the patient via the appropriate button.

Figure 9.10: GRiST assessment management interface.

The HTML version of GRiST produced by the tool generation engine was an AJAX appli-

cation coded in accordance to W3C standards. With only minor tweaks it yielded a uniform

experience within the major modern browsers.5 Figure 9.11 presents a screenshot of HTML

GRiST running within Firefox. The tool is organised into two panels: the left panel contains

the tool proper, whilst the right panel contains assessment controls and search functionality.

The screenshot in Figure 9.11 depicts a hypothetical repeat assessment of a patient taking

place. Filter questions, when answered in the affirmative, result in the “branch” opening up to

reveal further indented questions relating to the concept. In this way, the underlying hierarchy

of the CAT is revealed as the assessment progresses and along the lines of questioning.

It is recognised that the number of questions within GRiST and the fact that not all are

visible on launch means that search functionality will be of use, particularly to neophytes. The

search panel contains an incremental search drop down box with which, users can search all

concept labels. Once the concept of interest has been selected, a ‘breadcrumb’ of ancestral

concepts leading down to the concept is displayed. Currently visible ancestors are represented

5Internet Explorer 7+, Firefox 3+, Chrome 1+, Safari 3+, Opera 10+

152



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

Figure 9.11: A screenshot of the HTML tool being used to conduct a repeat assessment of a patient.

as a clickable link, which takes the user to the location of the concept within the tool. The

search feature is ‘live’, meaning that any consequences of opening and closing of branches are

immediately reflected within the search results panel.

Questions and their associated controls are rendered as specified within the CAT and QT

that drive the tool. Nodes can have comments attached via the yellow comment icon against

questions. The contents of help attributes are rendered as purple ‘tooltip’ icons. If the assess-

ment is a repeat assessment of the patient (as is the case in Figure 9.11), previous answers are

available for reference purposes in grey text adjacent to the question.

A fundamental enhancement that HTML GRiST brings to the assessment process over the

paper tool is the ‘live’ colour-coding of answers. Once a user has inserted or updated a node

answer, the tool performs an evaluation of the answer with respect to the value-mg profile graph

that has been defined for the node. Conversion of e.g., dates into durations and any requisite

interpolation work is carried out instantaneously and behind the scenes via javascript to calculate

and update the colour of the control. This provides the clinician with immediate feedback about

the severity of the answer value as the assessment is being conducted.

The scale control is able to take colour-coding one step further by reflecting any arbitrary

153



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

value-mg profile directly within the scale prior to a value’s selection. For example, Figure 9.12

depicts a hypothetical U-shaped relationship between answer value and membership grade driven

via the value-mg attribute. cf. Figure 6.5, which represents a linear relationship.

Figure 9.12: A hypothetical U-shaped value-mg profile represented within a scale control. Once a value
is selected, the whole scale control changes colour to that of the selected value.

In addition to the search functionality, the right panel contains buttons to save, suspend, or

finish the assessment. Clicking on any of these buttons initiates an answer validation process,

which when successfully completed, results in an AT being generated and saved in the database.

The answer validation process is a client-side process that verifies that each answer value

accords with the type defined in the QT. It also performs sanity checks such as the legality of

dates and their correct formatting. Figure 9.13 shows a validation run being performed as part

of the save process. The clinician is taken to each error and given direction on how to correct

it. Once all errors have been corrected, the save is performed and an AT stored in the GRiST

database.

Launching a repeat assessment warrants further discussion, as it exposes some of the com-

plexities involved with maintaining ATs. ATs as have been conceptualised so far, only retain

information for the current assessment. A repeat assessment however, involves the display and

possible utilisation of information from the previous assessment. Furthermore, a repeat assess-

ment does not have any control over the previous assessment—meaning an assessment can be

repeated by a clinician, the repeat assessment then suspended, and the original assessment sub-

sequently deleted by the clinician, ignorant to the fact that this would cause a side-effect on the

newer assessment.

To resolve the issue of side-effects, the AT becomes a composited tree on assessment repeat

initiation. The AT as saved on initial assessment completion acquires answer-previous at-

tributes on repeat of the assessment. The answer-previous attributes store their own local

copy of all the node answers from the initial assessment. This means that once an assessment

is repeated and stored on the system, the previous assessment’s answers are still available to it

even if the previous assessment is subsequently deleted.

154



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

Figure 9.13: A data validation run being performed as part of the assessment save process.

Complementing the making available of previous answers for reference is the notion of an-

swer persistence. This is a feature that was developed as a result of feedback from users with

respect to streamlining the assessment process. The initial position of GRiST was to provide

previous answers only for reference. That is, the repeat assessment’s answer controls would not

be pre-populated with the previous answers. This would guard against the possibility of the

clinician overlooking questions that had already been pre-populated, and whose applicability to

the current assessment may no longer be guaranteed. However, what was apparent in practice

was that clinicians were spending vast amounts of time re-keying information during repeat

assessments which had essentially remained unchanged.

As a compromise to the opposing requirements of maintaining repeat assessment data accu-

racy and reducing re-keying, two-tiered answer persistence is introduced—hard persistence and

soft persistence. Questions whose answers are deemed to seldom change, e.g., historical infor-

mation such as date of birth or number of dependents, are designated as hard persistent. These

answers are automatically pre-populated on repeat assessment, and flagged as such with a gold

padlock icon. Questions whose answers are deemed to be relatively stable are designated as soft

persistent. These are also pre-populated but are flagged using a silver padlock. Furthermore,

clinicians are instructed to verify silver padlocked answers on repeat assessment to ensure they

155



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

remain applicable to the current assessment. All other questions operate as per the original

specification, and do not have their answers pre-populated.

The above persistence mechanism is implemented within the trees of the GTH as a

persistent="hard|soft"

attribute against the designated nodes in the ST. These then filter down through the RIT into

the QT, where they can be used by the tool generation engine.

The current persistence mechanism reduces the number of questions that are not pre-

populated, yet helps to guard against the introduction of stale assessment data. As yet unim-

plemented extensions to the persistence mechanism have been proposed in order to allow a

greater number of questions to be designated as persistent, and streamline repeat assessments

further. One such example is that of designating only certain answer values of a (previously

non-persistent) question as being persistent. This could apply in cases where once an event has

occurred, it cannot regress from the occurred state, thereby becoming persistent.

HTML GRiST Conclusions

HTML GRiST demonstrates how the GTH trees can successfully be used to create a comput-

erised assessment tool. Specifically, assessment trees are used to drive a tool generation engine

developed using XSLT and PHP. The engine uses the knowledge structure and node specifica-

tions contained within the assessment trees to generate an appropriate tool. With the tool’s

being a thin-client, it does not incorporate the Galatean classifier, and therefore does not on its

own, realise the full potential of GRiST. What the tool does is provide real-time calculation and

visualisation of MGs for leaf nodes. This on its own is a compelling reason to forego/upgrade

from a paper-based assessment tool as it allows clinicians to see at a glance, hot spots requir-

ing attention. The other compelling reason is that reports on the assessment can be generated

and printed off as and when needed. These reports can focus on different dimensions of the

assessment. Aspects to the assessment can be extended as and when the need arises due to the

extensible nature of the XML file formats and the ease with which XLST can perform filtering

of them. Reporting capabilities are further discussed in Section 9.6.

The ultimate aim for the PHP tool is for it to be used as a front-end to the Galatean

classification engine once RIs have been finalised. The engine can perform classification and

the results subsequently incorporated within reports/sent back to the PHP tool for appropriate

display.

156



9.5. DEPLOYING THE GALATEAN RISK SCREENING TOOL

9.5.3 Java-based fat-client GRiST

The specification of IT hardware is increasing to the point where a modern desktop PC is

effectively idling under normal use. Furthermore, as support for the legacy Windows XP and IE6

browser is withdrawn by Microsoft, the next upgrade cycle will bring with it faster computers,

better browsers and a ubiquity of standard browser plugins such as Java, Flash, Silverlight, and

AIR. This upgrade in IT infrastructure will also to some extent, be fulled by the delivery of

NPfIT across the NHS—A national IT strategy for the NHS aimed at connecting all GPs and

hospitals, and the maintenance of electronic patient care records (Department of Health, 2002;

Hendy, Reeves, Fulop, Hutchings, & Masseria, 2005).

Concomitant to the advances in IT, Trusts and end-users will also wish to utilise the full

power of GRiST. This will entail dynamic, and interactive evaluations of risk being presented

to the user as the assessment progresses.

Non-PhD work has involved the creation of a fat-client to provide the upgrade step to Trusts

once they are fully accustomed to HTML GRiST. The fat-client is developed using Java and

unlike the HTML-based tool, incorporates a Galatean classifier within. A screenshot of the Java

tool is presented in Figure 9.14.

In common with the other versions of GRiST, the Java tool is driven by the trees of the

GTH, and launched in a manner similar to the HTML tool. In fact, both the Java tool and the

HTML tool share a common abstracted data pathway within the system, which was developed

to service electronic versions of GRiST.

On starting up of an assessment using the Java tool, rapid screening questions (refer to

Section 6.4.2) are determined and displayed for answering by the clinician. The clinician can

elect to answer these questions or navigate to the full set of questions.

The Java tool reintroduces the tree structure as a method of orienting the user as to their

location within the assessment. The node label hierarchy within the CAT is used to enable

the clinician to rapidly traverse the tree in order to answer appropriate questions. This can be

contrasted with the HTML tool, which requires the user to consider filter questions. Common

to both tools however, is the search feature. This enables any node to be readily located within

the context of its environs.

Whereas the HTML tool will rely on a server-side version of the Galatean classification

engine, the Java tool will make use of the built-in classifier. This means that risk levels can be

calculated and displayed directly on the rendition of the CAT. Colour-coding the percolation of

157



9.6. REPORTING IN GRIST

Figure 9.14: A screenshot of the Java tool being used to conduct a new assessment of a patient.

risk along the tree will complement the already present leaf node colouration to provide a full

classification of the degree of risk. This feature will be operable once RIs have been finalised.

9.6 Reporting in GRiST

The assessment trees of the GTH, once instantiated, can be used to drive reports based on

the assessment. Figure 9.9 demonstrates the process by which assessment trees can be used to

generate a generic report. The reporting engine transforms the CAT and AT into a web page

that when rendered, represents the report. In the main, the reporting engine is agnostic of the

version of GRiST that has been used to generate it (HTML/Java), and of the Level of the tool.

This is borne out of the fact that the report is effectively built on top of the trees of the GTH.

This has the advantage of reduced development effort, and of a uniform reporting experience

from a user perspective.

158



9.6. REPORTING IN GRIST

9.6.1 Client answers report

Figure 9.15 presents a screenshot of the primary report that has been developed to run on

top of the GTH. It corresponds to the hypothetical assessment depicted in Figure 9.11. In

common with the HTML tool, XSLT is guided by the CAT for the structure of the overall

report. Filtering and transformation of data into a suitable representation for reporting is also

performed in parallel using XSLT and PHP.

Figure 9.15: An example report generated from a hypothetical patient assessment. Answer values are
automatically formatted by the report to be more informative. Colour-coding according to value-mg
profiles associated with each question are calculated and applied.

In common with the HTML and Java tools, the report maintains a hierarchy of nodes to

provide context. Unlike the HTML tool, the report does not reiterate each question, but rather,

159



9.6. REPORTING IN GRIST

refers to each node using its label text. This provides a compact representation of the node.

Similarly, the display of answers is simplified as answer controls are no longer required.

Answers are formatted to make them more informative and human readable. This includes

calculating elapsed times from raw dates, and formatting according to the magnitude of the

duration and the specific data type of the date. Presently, colours are applied to leaf nodes

according to calculated mgs in exactly the same manner as within the tools. A future incarnation

of the report will augment this capability to include the display of mgs that have been calculated

and instantiated in the CAT by the classifier. This will then enable the report to indicate the

Galatean model’s calculation of the patient’s risk.

The difference in fidelity between screen and print versions of a report, particularly with

respect to colour, mean that PDF versions are also required. Furthermore, this gives the clini-

cian the option of maintaining local copies of patient assessments. The open source wkhtmltopdf

utility6, which relies on the webkit browser engine7, was used to generate PDFs. This repre-

sented a considerable saving of programming effort over e.g., using XSL-FO, since the program

effectively rendered the HTML version of the report on the server and then “printed” the ren-

dition to PDF. The dynamically generated PDF is obtainable via a link from the web version

of the report (see Figure 9.15).

Also available is a black and white version of the report. This version substitutes colours for

font sizes and effects amenable to being represented on monochrome printers. The separation of

styling information from content by appropriate use of CSS within the report generation engine

meant that the transformation was achieved by simply linking to a different CSS stylesheet.

9.6.2 The GTH and specialised reports

The XML-based nature of the assessment trees lends them to augmentation with new capabilities

merely through the addition of new attributes. In a project where it is not known a priori

exactly how end-users will wish to use the system, or where new possibilities emerge post hoc,

it is important to leave scope for expansion. Section 9.3.3 describes one such scenario involving

the management attribute of the AT.

Incorporating risk management information within the AT via the management attribute

means that this information can now be processed (or not) using existing reporting infrastruc-

ture. It also makes conceivable the building of various reporting ‘modes’ within the reporting

6http://code.google.com/p/wkhtmltopdf/
7http://webkit.org/

160



9.7. CONCLUSIONS

engine. These modes could correspond to specialised reports; each focussing on a different aspect

of the assessment data.

The choice of XSLT as an integral component of the reporting engine again complements the

use of an expandable set of attributes for recording data. XSLT stylesheets can easily be created

to include or exclude information from the GTH assessment trees when generating reports.

Such a facility opens up the possibility of e.g., layered workflows, where different members

of staff can fill in different segments of the assessment. Experts at each stage of the assessment

could access combined or specialised reports based on data that is already present and use these

to guide the input of data for the next stage.

Advanced auditing capabilities also become a possibility. These would allow every change

to be owner and timestamped. Log data could be mined to see how assessments are being

conducted and to inform e.g., changes to the assessment structure to make it more efficient.

Database systems such as Oracle’s Database 11, the Apache Foundation’s Xindice and to

some extent, MySQL 6 enable users to perform sophisticated querying over XML files (Loney,

2009; Sarang, 2006; Vaswani, 2009, respectively). This opens up a new dimension to assessment

reporting, as reports of the patient can for example, incorporate a temporal element. Where

current reports are based on the present assessment, more advanced reporting could use the

assessment trees corresponding to all of a patient’s previous assessments and chart progress via

graphs etc.

The potential for XML-based GTH assessment trees combined with XSLT-based reporting

engines and the right database tools to improve mental-health assessment is huge. And the

reporting features implemented thus far represent a significant first step in this direction.

9.7 Conclusions

The work described in this chapter has focussed on extending the Galatean Tree Hierarchy to the

point where it is capable of efficiently driving risk assessments. This has meant the introduction

of the CAT and QT. These assessment trees structure and specify the assessment in a generic

fashion, which can then be realised via the assessment generation engine. The notion of an AT

is also introduced to store answers and other data supplied as part of the assessment.

With the incorporation of the CAT and QT into the GTH, a clear and systematic path from

the initial domain model through to the specification of an assessment is encapsulated by the

trees. At the heart is the ST, whose pure form is enhanced using attributes that ultimately

161



9.7. CONCLUSIONS

drive the decision support system. Through successive automated transformations using XSLT

and enrichment with uncertainty information at appropriate stages, the domain model becomes

capable of driving the assessment.

The assessment trees have been used as a platform for generating multiple versions of GRiST.

The chapter has demonstrated three such versions, each developed with different use-cases in

mind and varying in technical capability.

The paper tool, intended to be used within existing paper-based workflows is a compre-

hensive data gathering tool. It aims to capture all the data pertinent to the risk assessment,

yet represents a low-tech solution to risk assessment as it does not result in any automated

determination of risk.

An upgrade path is provided from the paper tool by way of the HTML version of GRiST. This

is an electronic data gathering/assessment tool, which consequently, has the built in capability

to provide calculations of risk for individual questions. This tool will ultimately act as a front-

end to the Galatean classifier on the server, which will use assessment data to perform a full

classification.

The third version of GRiST, the Java tool, extends the data gathering and assessment

capabilities of HTML GRiST further by incorporating the classifier within the client. Once RIs

have been finalised, this tool will have the ability to perform risk quantifications dynamically as

the assessment progresses.

All three tools share the same underlying heritage by virtue of the GTH. The assessment

trees of the GTH also drive reporting functionality. This means interchanging of assessments

between say the HTML tool and Java tool is theoretically possible, and reports are uniform.

What the XML-based GTH in combination with the transformational capability of XSLT

and PHP provides, is a tailored assessment tool, customisable to experts at different levels of

experience, with a choice of interface. This assessment tool is always current, because updating

of the underlying domain knowledge filters down to the tool via the GTH. The tool does not

need to be re-programmed since it is driven by the trees. Furthermore, the extensibility of the

underlying XML lends itself to exploitation by the easy facilitation of new features through

additional attributes. Examples such as answer persistence and the recording of management

information have been realised via this method. These qualities on their own represent a powerful

and organic system for risk assessment in heterogenous environments.

Coupled with the Galatean classification engine, the tool is imbued with the ability to provide

162



9.7. CONCLUSIONS

calculations of risk, reported in real time and available as a web resource without geographical

or temporal impedance. This increases the utility of GRiST even further, making it into a full

decision support system that can be used by clinicians and members of the public alike.

The extensibility of XML and the flexibility that XSL transformations can bring to GRiST

are exploited further in the next chapter to bring even greater customisation and tailoring to

the user. Specifically, via the introduction of user populations, each of which can be given their

own unique version of GRiST, and each of which, is coordinated via the GTH.

163



10
Further Customisation of GRiST for Different

Populations and Contexts

10.1 Introduction

Chapter 6 introduced a powerful mechanism with which, the GRiST assessment could be short-

ened for more experienced users. The Levels feature of Section 6.6 enables soft tree-pruning

points to be programmed into the root knowledge structure driving GRiST, i.e., the ST. The

hierarchical organisation of concepts within the ST means that a judgment elicited directly at

a pruning point subsumes any underlying questions that would otherwise needed to have been

considered individually. In this way, the experience of clinicians (codified by their designated

Level) can directly translate to more vigourous or deeper cuts in the CAT, and therefore, the

question set.

This chapter aims to complement the ‘vertical’ customisation of GRiST that is afforded by

Levels by introducing a principled method for ‘lateral’ customisation. In its simplest form, lateral

customisation may involve the renaming of labels and question phraseology to suit particular

164



10.2. THE NEED FOR LATERAL CUSTOMISATION

organisational nomenclature. In its ultimate form, it could involve substantial re-specification

of the ST so that it is appropriate to the assessment of e.g., different user groups, specialities

and contexts.

In order to cater for lateral customisation, the GTH will be augmented with a new tree: the

Super Structure Tree (SST). This tree, and how it facilitates lateral customisation objectives

will be the main focus of the chapter.

The second half of the chapter will explore a computer-assisted tree management system

developed to support the SST and the trees of the GTH. This system simplifies upload, gen-

eration, and maintenance of GTH trees. Additionally, it provides facilities for troubleshooting

trees and for verification of their correctness.

10.2 The Need for Lateral Customisation

The Levels functionality offered in the ST means that clinicians or Trusts have a degree of choice

with respect to the length of the tool1 that is to be used. However, as far as the structuring and

coverage of GRiST are concerned, there is as of yet, little choice for organisations, clinicians, or

patients. Essentially, what the preliminary GRiST offers is the same tool in varying sizes.

10.2.1 The organisational perspective

A common reason identified for lukewarm user-reception of a new system is the discrepancy

between its conceptualisation of the problem domain and the actual domain as viewed by users

(Rouse & Morris, 1986); e.g., Bartis and Mitev (2008); J. Scott, Rundall, Vogt, and Hsu (2005).

It is precisely for this reason that many a system has failed in its efforts; meaning at best,

considerable re-work (Fitzgerald & Russo, 2005), and at worst, embarrassing white elephants

(Hougham, 1996; Rogers & Mead, 2004; Gauld, 2007). Decision support systems are by no

means immune to this phenomenon, and several examples exist where mismatches with user re-

quirements have resulted in difficulties with user acceptance (Anumba, Dainty, Ison, & Sergeant,

2006; Dowding et al., 2009; Stewart, Lawrence, & Edwards, 2010).

With the ambitious research aim of GRiST to be pervasive across a number of assessment

settings, it is especially important to consider mismatches between GRiST and those settings,

and methods for their amelioration. GRiST could be used in settings ranging from NHS Trusts

1Tool in this sense refers to the structure of the GRiST ontology and associated questions, and does not mean
the GRiST software architectures.

165



10.2. THE NEED FOR LATERAL CUSTOMISATION

to police stations or prisons. Each type of setting brings with it its own unique requirements and

challenges. For example, the prison service may be familiar with asking questions in a particular

format, or indeed particular questions that are not as readily useful in say, an NHS hospital.

This may mean that the ‘default’ GRiST would be perceived as an awkward or cumbersome

tool to be used within a prison, whereas it may be better received in a hospital.

Compounded to the differing needs of diverse services, is the fragmented nature of assessment

practices within settings of the same type (Higgins et al., 2005). For example, different NHS

Trusts may each have their own processes and tools for the assessment of patients (Hawley et

al., 2006).

Both the above organisational issues mean that the potential for mismatches in expecta-

tions/performance of the tool is augmented, particularly for mental-health assessment.

10.2.2 The clinical perspective

The initial version of GRiST is generally used for assessing adults of working age, and conse-

quently, is fine for the assessment of the majority of people. It is however, acknowledged that

not all members of the general population fall into the working-age category. Nevertheless, the

underlying domain knowledge of GRiST is comprehensive enough to be relevant in the most

part, to the general population. Although, clearly, a better strategy for making GRiST more

appropriate to the diverse spectrum of patients is to stratify the general population into groups.

Identifying different sub-populations can pave the way for modifications to the GRiST knowl-

edge structure such that the assessment of patients of those sub-groups can be more clinically

relevant. For example, consider a ‘children or adolescents’ population group. Some of the con-

cepts relevant to the adult population, e.g., those in relation to dependents, will not apply to

children. By the same token, other concepts not relevant to the working-age population may

benefit the child-adolescent group by their introduction.

The ability to make GRiST assessments more relevant to the clinical context would increase

the quality of the assessment of the patient over using the ‘default’ version of GRiST. The

tailoring of GRiST in this way would also narrow the gap between the clinician’s expectations

of GRiST and its offerings. This flexibility of GRiST would therefore increase its acceptance as

an ‘all-weather’ mental-health tool.

166



10.3. RATIONALE FOR A SUPER STRUCTURE TREE

10.2.3 The patient perspective

The traditional view of the mental-health assessment is one where the administering is performed

by a mental-health professional or other front-line staff. GRiST can of course, readily be used

within this assessor-patient dynamic.

The decomposition of GRiST’s knowledge structures into elemental patient cues (i.e., those

of the Level 0 tool) does also imply that someone without any mental-health training can make

effective use of GRiST. Coupled with GRiST’s being a web-based resource, what this means for

the patient is that GRiST can be used in a self-service manner—the service-user could potentially

assess themselves. This has indeed been one of the research goals of the project from the outset.

Opening up GRiST to the service-user would invariably necessitate bespoke tailoring work

to the default structure of the knowledge and questions. Although the datum items are low-level

enough to be collected by members of the general public, GRiST’s terminology is pitched towards

those users that are more routinely exposed to mental-health assessment than the layperson.

Furthermore, questions are framed in the third person perspective, which would need to be

adjusted to cater for the second person assessment scenario.

Reporting facilities targeted at the layperson also require consideration. However, given

that GTH trees drive reports as well as the tools, tree customisation work would automatically

benefit reporting aimed at the service-user.

10.3 Rationale for a Super Structure Tree

To meet the customisation demands of the various organisational, clinical and patient perspec-

tives, it was decided to adopt a segmentation approach to the problem. This would involve

identifying a core set of user-groups or organisation types, each of which would require mod-

ifications to their version of GRiST. Identifying a handful of ‘populations’ is a compromise

position that helps manage complexity, whilst at the same time, guards against fragmentation

of the GRiST tool due to over-flexible customisation.

Figure 9.7 depicts the current conceptualisation of the GTH. The ST effectively specifies a

domain model that is appropriate for a single default population—working-age people. Given

that the ST is specifying the population model, the focus of tree customisation activities should

therefore, logically be the ST.

The most straightforward way to customise the ST is to have a version of the ST for each

167



10.4. SUPER STRUCTURE TREE SYNTAX

population group. This has the benefit that no remedial work is required of the tools as no

new constructs are introduced into the assessment trees. Although, from the point of view

of auditing changes and maintenance of the various STs, the solution is a short-sighted one.

Changes between the STs and the default working-age ST would be difficult to track, and

evolution of the working-age ST would need to be replicated across the trees. In short, it would

pose an unacceptable administrative burden with the maintenance of the system of STs.

To address these two issues, what was instead proposed was the introduction of a new tree

that would sit at the root of the GTH. The Super Structure Tree (SST) would serve as a meta

tree containing the default population model in addition to customisation information for each

and every other population. XSLT would then be in a position to be employed to generate STs

corresponding to each of the populations that have been defined.

Using the SST and XSLT route to generating bespoke STs, the following benefits are realised:

1. An audit trail of customisations is maintained via their specification in the SST.

2. Changes to the default population model are immediately reflected in models for the other

non-default populations. This is because XSLT will use the default population model that

forms the foundations of the SST, and apply the population-specific customisations to that

model on order to arrive at the population-specific model.

3. No changes to tools are required since the syntax of the generated ST and derivative trees

remains the same. The SST is simply another tree in the GTH stack, of which, the tools

can be agnostic.

10.4 Super Structure Tree Syntax

Recall that the current ST effectively describes the model for the working-age ‘population’.

This is the default population model for GRiST and should therefore serve as the basis for the

SST. Put another way, the SST, when containing definitions for only one population group, i.e.,

working-age, is equivalent to the current conception of the ST.

The remainder of this section introduces the modifications and additions that are required

to the SST over and beyond those inherited from the original ST. Once the SST has been

augmented with the new constructs, it can incorporate customisation information for multiple

populations.

168



10.4. SUPER STRUCTURE TREE SYNTAX

10.4.1 The populations attribute

The SST contains a populations attribute in the root node of the tree. This contains within

parentheses, a list of population groups for which the SST contains information. The list should

contain all the known population groups (since the SST will be used to generate the correspond-

ing STs), e.g.,

populations="(working-age child-adolescent older military service-user)"

Furthermore, implied in the definition of a populations attribute of the SST is the directive

that the first element of the list contained within populations will contain the name of the

population that is to be considered the default population.

10.4.2 The enhanced layer and order attributes

The layer attribute of the SST is one of the mechanisms involved in driving ST customisation

for different populations. In addition to the standard form of layer attributes (i.e., a numerical

value that is applicable to all population types), which may be present in the SST, there is also

an enhanced form (specifically for the SST). The enhanced form uses the syntax of an association

list e.g.,:

layer="((working-age 0)(child-adolescent 0)(older 1))"

This is an access control list (ACL) denoting all the population types that the layer attribute

applies and only applies to. The first element of each sublist is the population name. The

second element is an integer. The integers have the same meaning as that which has been

established for standard form layer attributes (refer to Section 6.4.2), but will only apply to

the corresponding organisation type.

The use of ACLs is common in computer filesystems where different users and groups are to be

assigned different permissions to a filesystem object (Sandhu & Samarati, 2002). Typically, the

ACL specifies an object, a subject and an operation. The enhanced form of the layer attribute

implements the ACL as a LISP association list, with subject being the population and operation

relating to the original definition for layer attribute values. The object is indicated by the

fact that the attribute is located in situ, against the node under consideration. This makes the

syntax very simple relative to more heavyweight approaches, which can separate access control

information to outside of the document and rely on XPath; e.g., Damiani, Vimercati, Paraboschi,

169



10.4. SUPER STRUCTURE TREE SYNTAX

and Samarati (2000) and Fan, Chan, and Garofalakis (2004). Indeed, ACLs mirroring the LISP

list formula are used extensively in the remaining SST constructs that are to be introduced.

It is recognised that different populations may require different question orderings. For

example, an organisation may be more focussed on assessing self-harm as opposed to e.g.,

suicide risk, and therefore would wish to have self-harm questions at the forefront. Where the

default structural ordering of sibling nodes implied by their relative positions is not desired,

an order attribute is defined for use in the SST. The order attribute can be used to indicate

ordering precedence. In the same manner as the layer attribute, the order attribute contains

population ACLs, with integer values denoting ordering precedence relative to siblings. A value

of 0 indicates highest precedence, with precedence decreasing as the value increases. Below is

an example of the order attribute:

order="((working-age 1)(child-adolescent 0))"

10.4.3 The SST Enhanced question, filter-q, label and help attributes

The attributes whose values are under consideration in this section are: question, filter-q,

label and help. For simplicity, these attributes will in the remainder of this section, be re-

ferred to as ‘question’, or as ‘question(s)’ where there is no noteworthy differentiation in their

treatment.

Most questions’ values will be the same for all populations. Where all populations share the

same question text for a given node, the already established definition of the question attribute

is used. Earlier discussions (refer to Section 10.2.3) imply that some populations will benefit

from revised questions. Where there is at least one population group whose text should differ,

an SST enhanced definition applies for the given node. This makes all the relations between

populations and question texts explicit within the node:

question="(((list of populations ) &quot;Question string &quot;)

((list of populations ) &quot;Alternative question string &quot;)

....

)"

10.4.4 Inverting value-mgs

A given population’s tailored question might be phrased in such a way that it would necessitate

the associated value-mg definition’s lateral inversion. For example:

170



10.4. SUPER STRUCTURE TREE SYNTAX

• the MG associated with a value of 2 would instead be required to be associated with a

value of 8 (assuming a 0-10 value scale);

• the value-mg profile, ((0 0)(4 0.2)(7 0.8)(10 1)) would be required to become

((0 1)(3 0.8)(6 0.2)(10 0)).

Algorithmically, this lateral inversion (or reversing of polarity) is as follows:

1. Replace each value with its complementary value i.e.,

valuei −→ (valuemax − valuei) + valuemin

2. To maintain convention, re-order all elements (i.e., value-mg pairs) in numerically

ascending value order.a

aThis operation is a matter of reversing the position of the elements of the value-mg list.

A given SST node may have an rp-for attribute indicating the populations that are to

have the reverse polarity operation performed on the associated value-mg attribute prior to its

transmission onto the ST. The syntax for this attribute is as follows:

rp-for="(list of populations on which to perform rp operation )"

10.4.5 Population-specific pruning of nodes

Not all populations will require every branch of the SST for their version of the tool. To facilitate

this, there is a mechanism by which a given node (and its descendants) can be marked-up as

not being required for a target population. These branches would then be omitted from the

target population’s ST. This facility is implemented by a prune-for attribute, containing a list

of populations for which the node and its descendants should be omitted, e.g.,

prune-for="(list of population groups for which to omit )"

The prune-for attribute is an example of a tree construct where it is important to incor-

porate appropriate validation within any process that performs tree transforms. In this specific

instance, this is necessitated by virtue of the SST’s being an unexpanded tree. Consequently, it

may be that there are path references to the to-be-pruned node from other locations. Pruning

a node that is/contains a node that is referenced by a node located outside of the to-be-pruned

node’s hierarchy will result in broken paths. Depending on the preference of the knowledge

engineer, these should either be flagged up as part of the validation process, or a cascade delete

171



10.4. SUPER STRUCTURE TREE SYNTAX

operation be effected as part of the transformation. The present implementation adopts the

former option; leaving the latter as a future improvement to the system.

10.4.6 Adding additional nodes

The addition of new concepts and nodes specific to a population is not currently directly sup-

ported by way of an add-for construct. The main reason for this is that it could encourage the

introduction of model data of questionable provenance. As has been demonstrated in earlier

chapters, the knowledge contained in the default SST population, i.e., the working-age popu-

lation, is the product of a rigourous elicitation process. This can be traced right back to the

original expert panel members by following the audit trail. This data therefore represents the

validated mental-health domain model and can thus be used for assessment and decision support.

In order to carry over the authenticity and validity of the working-age tool to GRiST tools

tailored for other populations, it is important not to encourage the introduction of additional

concepts to the core domain model. Nevertheless it is acknowledged that there may be some

situations that dictate the introduction of new population-specific concepts.

The prune-for attribute can be repurposed to facilitate the addition of population-specific

concepts by specifying all the population groups the concept should not appear in. That is to

say, all other populations (including the working-age population) are listed within the prune-for

attribute.

10.4.7 Adding new populations to the SST

The nature of the Access Control List approach is such that adding a new population to the

SST is not simply a matter of amending the populations attribute in the root node of the tree.

Reconfiguration work needs to be undertaken on many nodes with pre-existing ACLs to inform

them of the new population. However, if the addition of a new population is first decomposed

into a clone population operation and then one of tailoring the cloned population with specific

customisations, then the reconfiguration work can be automated as part of the clone operation.

When adding a new population to the SST, the knowledge engineer is provided with an

XSLT utility on the GRiST website to clone a population. The knowledge engineer is able to

choose the pre-existing population to clone and the name of the newly cloned population. The

XSLT utility handles updating of the populations attribute and all the affected ACLs in the

tree. The resulting SST can then be worked on to customise the cloned population.

172



10.5. THE SST AND ITS INCORPORATION INTO THE GTH

10.5 The SST and its Incorporation into the GTH

With the SST serving as the new master tree, which is ultimately used to drive assessments,

it is appropriate to revisit the GTH in order to incorporate the new tree. Figure 10.1 depicts

the updated GTH, with the SST now serving as the base tree. The SST is responsible for

generating multiple STs, which in turn generate RITs and the assessment trees. In common

with the rest of the derived trees, each population-specific ST is now generated using XSLT

stylesheets. That is to say, the SST is pruned appropriately, and all population-specific lateral

customisation operations applied.

The generated ST is exactly the same with respect to syntax as the original conception

of the ST—save for the presence of a populations attribute at the root node indicating the

population this ST serves. This means all processes utilising the ST and ipso facto the Galatean

risk assessment tools, are left requiring no modifications.

The incorporation of the SST into the GTH serves to enrich the system with the capability

to provide lateral customisation of assessments in addition to the already present vertical cus-

tomisation capabilities. This renders the system exceptionally flexible with respect to meeting

differing contextual demands.

Figure 10.1: The Galatean Tree Hierarchy augmented with the prepending of the Super Structure Tree
(SST). This tree contains population-specific customisation information, which is then transformed using
XSLT into individually tailored STs. These are further transformed to ultimately generate the trees that
drive assessment.

173



10.6. FINGERPRINT RECONCILIATION AND THE SST

10.6 Fingerprint Reconciliation and the SST

Heretofore, the fingerprint reconciliation algorithms described in Chapter 8 have assumed that

the base tree from which all trees are derived is the ST. It has been assumed that experts evolve

the ST by way of direct edits upon it (see Figure 8.1), and these are propagated to the derived

trees. This is in fact now a simplification, and it is actually the Super Structure Tree (SST)

where direct tree edits are made. It thus follows that fingerprints that have been calculated and

embedded in the ST should in fact be generated in the SST and propagated to the ST instead.

Unlike the transformation from ST to RIT, the transformation from an SST to an ST does

not involve any tree expansion. Concepts are not instantiated, meaning that each necessarily

unique node of the SST will still be a unique node of the ST. There will be a one-to-one relation-

ship between ST and SST nodes. It is because of this equivalence that fingerprints originating in

the SST can be treated as native ST fingerprints for the purposes of node tracking. Therefore,

the amended fingerprinting scheme instead generates fingerprint and fingerprint-orig at-

tributes in the SST, and these propagate to the ST. From here, nodes can be linked across STs

as before, without further consideration of the SST.

It is interesting to note that depending on the sophistication of the translation directives

from SST to ST, the propagated fingerprint may no longer be the same value as a fingerprint

were it to be generated natively in the ST. That is to say, were a level of nodes to be removed as

part of ST generation and all the children shifted up, their paths in the SST would be different

to those in the ST. However, this does not cause a problem, as the value of the fingerprint per

se is not relevant in this application—only that it is unique to the node in question.

10.7 Machinery for Generating and Organising STs and

Derivative Trees

The SST was gradually augmented with lateral customisation information for a number of

populations. XSLT stylesheets were developed to process the SST in order to arrive at STs

corresponding to each defined population. These could then be processed as normal in order to

arrive at the rest of the trees that constitute the GTH.

174



10.7. MACHINERY FOR GENERATING AND ORGANISING STS AND DERIVATIVE TREES

10.7.1 Computer-assisted tree management

The initial deployment of the assessment tools utilised a rather simplistic approach to tree

transformation and management. There was only the working-age population, and consequently,

trees were individually generated using the XSLT processor and stored in a database. All tools

utilised the same set of derived assessment trees. Furthermore there was little validation of trees

to ensure correctness.

With the introduction of the SST, it became apparent that the rudimentary approach to

tree management was too inefficient. As the number of populations grew, there was a rapid

proliferation of generated trees. Currently, there are seven populations that have been incorpo-

rated into the SST. Assuming three Levels of expertise, a total of 56 trees are therefore required

to be derived as a consequence. Factoring into account development versions of SSTs, the total

number of trees required to be generated can potentially be in the hundreds. Clearly there is a

need for better infrastructure to support and manage tree-generation.

To meet this demand a facility was set up on the GRiST website to allow Administrator

users to upload an SST directly to the website. Upon its upload, the system would read the

populations listed within the SST and proceed to generate all the requisite derivable trees. A

screenshot of an example derivation process is depicted in Figure 10.2.

All trees were generated via XSLT stylesheets being run on the server and co-ordinated using

PHP. Databases were automatically reconfigured via the system to store all trees. Parallel to

the trees’ being stored in their entirety as binary data, trees were dynamically examined by the

system. Database columns were created to store assessment data corresponding to each node.

The idea was that assessment data would be available in its original XML-based tree form and

also as normal table fields inside a tuple. This would open up the possibility of mining the data

using the standard (non-XML) database machinery present in the RDBMS, or a combination

of the two.

10.7.2 GTH Tree Validation

XML files, by their nature, bridge the gap between human readability and machine operability.

This is no less of a truth for the trees of the GTH. Working with the SST using tools similar to

the Flash tools developed during knowledge elicitation simplifies its editing. Nevertheless the

SST is simple enough to be worked on directly using a text editor. The possibility of human

error in these cases connot be ignored. This is especially true as nodes in one location may not

175



10.7. MACHINERY FOR GENERATING AND ORGANISING STS AND DERIVATIVE TREES

Figure 10.2: Automatically generating GTH trees from an uploaded SST. The SST contains lateral
customisation data for seven populations and three Levels of vertical customisation. This yields 21 sets
of assessment trees (CATs & QTs) and 56 trees in total. Grey buttons launch the respective tree for
viewing. Yellow triangle icons, which contain exclamations, indicate an internal inconsistency identified
within the tree. These can be clicked on to further investigate. Blue arrow icons provide the facility to
upload a revised tree.

necessarily be independent of nodes in other locations: dependencies can be overlooked.

An important feature that was incorporated into the new computer-assisted tree management

system was that of tree correctness and internal consistency checking. This included:

• Legality checks on the combination of attributes present in the various trees.

• Verification of paths referencing internal tree locations.

• Ensuring pre-requisites to certain node configurations were satisfied; e.g., one such con-

straint was that a node designated as persistent must also have its ancestral questions

designated as such.

Many of these features were free in terms of implementation effort. This was because the tests

176



10.7. MACHINERY FOR GENERATING AND ORGANISING STS AND DERIVATIVE TREES

were essentially being carried out anyway as part of tree generation. What the tree management

system provided was clear and cogent reporting on the problems that were identified. Reports

were accessible via the yellow exclamation icon that was presented against erroneous trees. An

example report is presented in Figure 10.3. The report uses error data embedded inside error

attributes created as and when needed as part of the tree generation process. Therefore, XSLT

again plays a prominent part in both identification and rendition of errors.

Figure 10.3: An example error report associated with a generated GTH tree.

The decision to use XSLT for tree validation activities represents a pragmatic and flexible

approach to realising correct trees. The existing tree transformation machinery is re-purposed,

or produces as a by-product, validation information. This could be contrasted with say, using

the tools associated with XML Schema Definition Language2 or RelaxNG3. Such tools would

require the the trees’ precise specification in these languages for the ostensible benefit of running

the trees through a validator (without obviating the need to build tools to generate the derivative

trees). Furthermore, facilities such as transforming human-friendly node-paths into equivalent

XPath statements and dynamically executing them to test validity are beyond the capabilities of

XML Schema Definition. Therefore, the schema approach would nevertheless have necessitated

hybridisation with XSLT to effect a full validation.

2http://www.w3.org/TR/xmlschema-0/
3http://www.relaxng.org/

177



10.7. MACHINERY FOR GENERATING AND ORGANISING STS AND DERIVATIVE TREES

Once the GTH tree specifications have reached stability, in the interests of wider adoption

and interoperability, it would then be prudent to re-examine the benefits of using a formal

markup to define the syntax of the trees. These would complement the more human-readable

specifications that currently document the GTH file formats and semantics.

10.7.3 Incorporating amended trees back into the GTH

Recall that although the RIT is a generated tree, its purpose is to enable the incorporation of

Relative Influence values into the domain model. Consequently, the RIT requires instantiation

and hence, updating post-tree-generation. The tree management system facilitates the updating

of individual trees (refer to Figure 10.4) within the GTH. Once an updated tree is uploaded,

the system will automatically regenerate downstream trees if the Administrator has indicated

this as the mode of operation. Associated database housekeeping is also effected.

Figure 10.4: Uploading a revised RIT. Affected derived trees are highlighted, and the option is provided
to effect their regeneration upon upload of the new RIT.

To provide extra flexibility, the selective tree updating facility is available for any of the

trees of the GTH. Although, uploading customised versions of derived trees is discouraged, due

to the possibility of GTH trees then becoming inconsistent relative to each other. However, in

a real-world system there may be occasions when a rapidly developed temporary solution to

178



10.8. CONCLUSIONS

a problem necessitates modifications to an individual tree. It is envisaged that when a more

stable solution to a problem is developed, appropriate modifications are made to the SST and

this is uploaded instead. Derivative trees can then be generated afresh and the modifications

propagated down.

A limitation with the current tree management system is that downstream trees are regen-

erated without consideration of the data in the previous versions of those trees. This raises

issues with data migration where new information has been introduced into a derivative tree,

and that derivative tree is later required to be regenerated—as in the case of the RIT. Chapter

8 and Section 10.6 develop a method by which an SST can be revised without the need to re-

instantiate unaffected RIs. Once this method has been incorporated into the tree management

system, revised SSTs can be uploaded, with minimal rework required to the newly generated

RIT.

10.8 Conclusions

For GRiST to be successfully deployed across diverse clinical contexts, disciplines, and client

populations the tool needs to be malleable to their individual requirements. This has to be

achieved without compromising the validity of the GRiST assessment. It also has to be achieved

in a controlled and principled manner so that individual requirements can be serviced both in

the short term and strategically as GRiST grows.

Vertical customisation of GRiST, mainly for the benefit of assessors, was introduced in Chap-

ter 6 by way of the Levels mechanism. The present chapter has greatly enhanced customisability

by supplementing vertical customisability with lateral tailoring capabilities. This has involved

augmenting the GTH with the Super Structure Tree (SST)—a meta tree for describing STs.

The SST enables lateral customisation by encapsulating the default GRiST model data

together with tree modifiers that are to be applied to each “population”. XSLT can then be

used to generate tailored STs, which ultimately power the GRiST tools via the GTH.

Supporting the SST and the GTH is a computer-assisted tree management solution. This has

the capability to automatically generate all requisite population trees and associated database

infrastructure for the conducting of assessments. It has tree validation features and associated

error reporting capabilities, which help to assist with tree maintenance. All of this facility is

provided via the website without the user requiring any knowledge of underlying technologies,

therby making the system easy to administer.

179



10.8. CONCLUSIONS

The use of one SST to generate custom tools for populations means both the clinicians and

patients are better served by GRiST, without compromising the validity of the assessment—

each customised tool is based on the same underlying knowledge, which has been rigourously

validated by experts. Furthermore, as the GRiST knowledge is refined, changes are propagated

to each tailored version, keeping them current.

In addition to serving different populations, the GTH architecture of GRiST can also help

break barriers between them. An assessment performed by a clinician (using terminology appro-

priate to that clinician) can easily be made intelligible to an assessor with a different background

or the patient themselves. That is, assessment data from one population can be mapped onto

another population. In many cases, this can be achieved simply by loading the assessment data

(from an AT) and presenting it against the backdrop of the population tree that is most appro-

priate to the user. In other words, the ST driving assessment data-gathering can be decoupled

from the ST driving reporting.

Adding in the potential for multi-layered workfows and reporting, and a choice of tool for

conducting the assessment, together with decision support capabilities, GRiST represents a

complete assessment solution for mental-health, irrespective of context.

The next chapter presents a case study of the successful deployment and utilisation of the

GRiST solution within two NHS Trusts.

180



11
Full Deployment within NHS Trusts: A Case Study

11.1 Introduction

Chapter 10 developed more flexible knowledge customisation facilities, together with a tree man-

agement system to support assessments based on tailored trees. The present chapter demon-

strates how these facilities were utilised to deploy the GRiST system within two NHS Trusts.

The chapter initially considers the governance and technological issues surrounding imple-

mentation of a new system within NHS organisations. These considerations are then used to

develop a generic specification and API, which Trusts can use to connect to GRiST and conduct

or manage assessments. Finally, the impact of the deployed system is evaluated with respect to

its utilisation and efficacy.

11.2 Introducing Participating NHS Trusts

At time of writing, GRiST has been rolled out and integrated within two large NHS Trusts.

These two Trusts therefore represent an ideal case study for exploring deployment of GRiST

181



11.2. INTRODUCING PARTICIPATING NHS TRUSTS

within NHS-type organisations. This section briefly introduces the two Trusts together with

any technical detail relevant to a GRiST deployment. The Trusts are given fictitious names to

preserve their identity.

11.2.1 Holbrook NHS Foundation Trust

The Holbrook NHS Foundation Trust serves a population of 600,000. It comprises four hospitals,

three of which provide mental-health services. These are complemented by a number of smaller

teams working within the community.

Holbrook utilises iSOFT’s i.Patient Manager (iPM)1 Patient Administration System (PAS)

to manage patient information. iPM is a shared electronic record that maintains information on

the patient and their progress through the system from point of contact to discharge (Brennan,

2007).

iPM is proprietary in nature, and thus, does not allow external programs to modify or write

to its database tables. The Trust does however, have independent access to the data contained

within iPM’s database via daily backup dumps. These dumps can be accessed directly and used

as ‘feeder’ databases for databases of other systems the Trust may have.

Initially, Holbrook was using the GRiST paper tool, but later expressed an interest in lever-

aging the power of the electronic versions of GRiST. Interest was primarily in deploying tools

for working-age and older patients.

11.2.2 Cradlemere Partnership NHS Foundation Trust

Cradlemere Partnership NHS Foundation Trust serves a population of almost 500,000. Cradle-

mere provides specialist services, including mental-health. These services are provided mostly

within the community, and are available through Community Mental Health Teams through

referral by the GP.

Similar to Holbrook, Cradlemere also uses iPM as the back-end system for managing patient

information.

Cradlemere expressed interest in using the electronic versions of GRiST to assess patients

across the age spectrum, i.e., child-adolescent, working-age and older population groups.

1http://www.isofthealth.com/en-GB/Solutions/UK%20Patient%20Management/iPM.aspx

182



11.3. DEPLOYMENT CONSIDERATIONS GENERIC TO TRUSTS

11.3 Deployment Considerations Generic to Trusts

Discussions with Holbrook and Cradlemere (and with other Trusts) resulted in a number of

commonalities identified as being generic to NHS Trust-type organisations. These considerations

were collated and would form the basis of a requirements specification for the interface that was

developed to GRiST. The requirements could be broadly classified as falling under:

• Information governance issues – Maintaining the security of patient data.

• Database issues – Logistics of linking PAS data to GRiST.

• Interface integration issues – Seamless integration of the Trust’s interface with that of

GRiST.

11.3.1 Information governance issues

From the outset, it was a design decision to (at least in the research and development stages)

retain control of the GRiST system with respect to hosting of the tools and the assessment data.

That is to say, GRiST was envisaged as being offered as Software as a Service (Laplante, Zhang,

& Voas, 2008). By offering GRiST as a service as opposed to ‘installing’ it within a Trust, a

number of benefits could be realised (Waters, 2005):

• Reduced database integration work required within each Trust.

• No need for dedicated computing hardware, software, backup processes etc., within each

Trust.

• GRiST could easily be modified and upgraded since the GTH trees and the GRiST software

would be resident on the GRiST server.

• Assessment data could be mined and used (in anonymised form and with the consent of

Trusts) to help improve the performance of GRiST, informing its parameter values etc.

Hosting GRiST outside of the Trust does however, raise a number of information governance

issues.

• Personally identifiable information (Pii) – Data that identifies the patient should not be

maintained outside the Trust’s systems. This means GRiST cannot for example, store the

NHS patient identifier within the GRiST database. It should instead, use a proxy.

183



11.3. DEPLOYMENT CONSIDERATIONS GENERIC TO TRUSTS

• Availability of data – Assessment data should be available in a portable format that can

be retained by the Trust, independent of the GRiST system. Furthermore, the assessment

data should clearly indicate the patient to which it corresponds. This implies Pii will be

required to be synthesised with assessment data at some point (since Pii should not be

stored on the GRiST server).

• Unauthorised data access – Patient and assessment data should be protected in transit to

prevent unauthorised third parties from gaining access.

• Auditing/accountability – Assessments should be able to maintain logs of saves made by

individual clinicians, and reports should contain a clinician identifier.

11.3.2 Database issues

All Trusts invariably use a PAS as part of operations (Beaumont, 2008). This may be one that

allows direct access to its database e.g., ePEX2, or (more likely), a relatively closed system

such as iPM, Lorenzo3 or TotalCARE.4 Fortunately, the degree to which GRiST will depend

on writing to custom tables within the Trust’s (PAS) database (dump) is significantly reduced

due to the nature of the GRiST deployment. The offering of GRiST as a hosted service to the

Trust ensures that the bulk of the database work will be carried out on the GRiST server, and

not at the Trust. What is clear however, is that information from the PAS cannot be totally

ignored by GRiST, since the most elementary function of the PAS data is to identify the patient.

Therefore, the following should be considered:

• Access to the PAS patient identifier (or a proxy) – At the very least, the interface to GRiST

must have read-only access to the NHS patient identifier or a proxy. This may involve

working on a copy of the PAS database, raising issues of time-lags between creation of a

PAS patient and a database dump.

11.3.3 Interface integration issues

Trust staff and GPs are accustomed to accessing the PAS software through web-based dashboard-

type applications (Keogh, El-Sayed, & Pilkington, 2008). Application modules relating to a

2http://www.ascribe.com/cgi-bin/ascribe/info.html?domain=info&name=ePEX%20-%20Community%20Healthcare
3http://www.isofthealth.com/en-GB/Solutions/UK%20Lorenzo.aspx
4http://www.mckesson.co.uk/primary/aboutus/newsroom/newsarchive.cms?newsArticleYear=2005

&newsArticleMonth=7&newsArticleID=1&newsArticlePicker=20050014

184



11.4. THE GENERIC TRUST INTERFACE TO GRIST

patient can be launched through the web-browser once the clinician has logged into the PAS. To

reduce training overhead and promote a seamless experience, the GRiST interface would need

to consider:

• Handoff to GRiST - Launching from within the dashboard application, with the dashboard

performing login and redirection into GRiST behind the scenes.

• Patient selection - The clinician should not need to manually inform GRiST as to the

patient that is under consideration. The GRiST session should automatically be configured

with the (proxy) patient identifier corresponding to the patient that was selected from

within the PAS.

• Appropriate display of personally identifiable information - Pii and assessor data will need

to be composited within the assessment display so as to avoid any confusion as to the

identity of the parties involved. In accordance with information governance diktats, the

data must not be maintained on the GRiST server. Therefore, the relevant Pii must be

securely and automatically passed to GRiST as part of every login handshake.

11.4 The Generic Trust Interface to GRiST

Taking into consideration information governance, PAS database openness, and interface inte-

gration issues, a generic solution to launching GRiST from within Trusts was developed. A

corresponding specification document, an API to GRiST, and example code was disseminated

to the Trusts. This formed a toolkit with which GRiST could be “deployed” within the Trusts.

Figure 11.1 depicts the life cycle of an interaction with GRiST from within the Trust using

the generic interface. The corresponding walk-trough of the interaction serves to illustrate how

the various deployment considerations discussed in Section 11.3 are addressed.

a) Launching a GRiST window. The clinician requests the GRiST program for a se-

lected patient via, for example, a button within the PAS dashboard. The button

launches the GRiST connection page (which resides on the Trust’s server) in a new

window/iframea that will ultimately run the GRiST assessment. The new window

starts up with a splash page displaying e.g.,“GRiST loading”. The GRiST connection

page is supplied with the NHS id of the patient under consideration.

aAn iframe is an html tag that enables one html page to host another autonomous “guest” page inside
itself.

185



11.4. THE GENERIC TRUST INTERFACE TO GRIST

b) The GRiST connection page contains ancillary functions to perform:

1) Login into GRiST. Each Trust is assigned with a designated username and

password. These credentials are used to perform a login into the GRiST server,

which in turn returns a unique session identifer string (SID). The session iden-

tifer can subsequently be used to access GRiST services. As part of the login

procedure, a clinician identifier is also passed to GRiST. This is used by GRiST

for auditing purposes.

2) Compute/retrieve a proxy patient ID for use by GRiST. Rather than sending the

patient’s normative NHS identifier to GRiST, a substitute is determined. The

general solution involves applying a one-way hash function such as SHA-256 to

a salted version of the NHS identifier. In the simplest case the proxy identifier

is calculated dynamically. In more robust implementations, a separate database

table is used to calculate and maintain proxy identifiers and salt values at the

Trust. Additional fall-back mechanisms exist for generating a proxy identifier

in the absence of a patient record, e.g. in cases where the Trust is using a

non-up-to-date dump of the PAS database.

c) Redirect to GRiST Assessment Management Interface. The patient ID proxy and the

GRiST session identifer are supplied to the GRiST Assessment Management Inter-

face. The interface is similar to that depicted in Figure 9.10, with the only difference

being that the patient is locked to the supplied proxy ID. This means the patient is

pre-selected. In cases where GRiST has not observed this proxy id before, the patient

record is dynamically created just-in-time. The Assessment Management Interface

is also supplied with the patient name for use during rendition of the assessment.

This piece of Pii is maintained only as a session variable and not stored within the

GRiST database, thereby satisfying information governance requirements.

d) Perform assessment and end session. A GRiST assessment of the patient is per-

formed as normal. Once assessment management is completed, the clinician is able

to log out from the Assessment Management Interface. This results in the session

id being nullified, along with the deletion of temporary session variables containing

the clinician and patient names. The clinician is then redirected back to the PAS

dashboard.

186



11.4. THE GENERIC TRUST INTERFACE TO GRIST

F
ig

u
re

1
1
.1

:
Il

lu
st

ra
ti

n
g

th
e

in
te

ra
ct

io
n

th
at

ta
k
es

p
la

ce
b

et
w

ee
n

th
e

N
H

S
T

ru
st

a
n

d
th

e
G

R
iS

T
se

rv
er

w
h

en
co

n
d

u
ct

in
g

a
n

a
ss

es
sm

en
t.

187



11.5. FLEXIBILITY THROUGH API FEATURES

The Trust interface as explicated is fit for purpose primarily due to the following mechanisms

inherent in the solution:

• All transactions with the GRiST server being conducted over an encrypted HTTPS5 chan-

nel.

• A seamless login into the GRiST server without the clinician’s requiring a separate user-

name and password.

• The GRiST server receiving a stable proxy identifier for the patient. This cannot be reverse

engineered at the GRiST end, ensuring that the GRiST database does not have access to,

and is not able reconstruct Pii data.

• The use of ephemeral Pii data for composition into assessment displays and reports. Since

these are dynamically received, session variables corresponding to Pii data are not required

to be maintained beyond the session’s lifetime.

• Assessment save logs stamped with Trust-supplied clinician identifers.

11.5 Flexibility Through API Features

Supplementing the interface to GRiST is an expanding API to enable remote maintenance

operations such as patient deletion/renames/merges etc. Moreover, Trusts have the ability to

specify the tools they wish to use, and the populations with which to use them. This means

all versions of GRiST can potentially be accessed by the clinician. The clinician is thereby

empowered by having the right tool for the assessment task in hand.

GRiST is set up such that Trusts can choose the extent to which they utilise its API,

with GRiST using sensible defaults where information is not available. For example, initially,

Cradlemere and Holbrook chose a standardised setup for their clinicians. All clinicians would

use the same version of the default working-age tool. Later on, as clinicians became accustomed

to using the software, more API features were utilised, gradually exposing newer functionality

to the Trust’s clinicians.

The development of the API is an incremental effort. The partnerships with Cradlemere and

Holbrook Trusts have lead to the creation of numerous extensions to augment the functionality

offered by GRiST, improving the clinician’s experience.

5HTTPS is a protocol for encrypted communications with web servers. A web browser, when communicating
with a web server in this fashion, displays a padlock icon to indicate that the page has been securely downloaded.

188



11.6. IMPACT OF ELECTRONIC GRIST DEPLOYMENT IN PARTNER TRUSTS

One such API effort is that of elimination of data duplication across the PAS and GRiST.

PAS software such as ePEX typically maintains some information that is also solicited as part of

a GRiST assessment. For example, certain demographics information is likely to be contained

within the PAS—the patient’s date of birth being one such item. Due to the loose coupling

of the two systems, this information would typically be required to be rekeyed into GRiST by

the clinician. From the clinician’s perspective of the system as being a cohesive whole, this is

illogical, requires extra keying effort, and introduces the possibility of data inconsistencies.

A development version of the API eliminates these problems with the introduction of an

XML file format that contains “preset” data. This is created by the Trust for consumption by

GRiST and can be transmitted by the Trust as part of assessment launch. Appropriate GRiST

assessment fields are pre-populated on assessment start as a result.

11.6 Impact of Electronic GRiST Deployment in Partner

Trusts

GRiST went live in Cradlemere in April 2010, with Holbrook following in July 2010. Within

three months of deployment at Holbrook, 95 members of staff received training on GRiST, with

another 86 to follow. Corresponding data for Cradlemere was not available, but it is envisaged

that the number of users is similar, given the relative sizes of the two Trusts. Formal training

provided by instructors was supplemented by the built-in electronic help provided by the tool

interface, making the tool easy to pick up.

At time of writing, the two Trusts have used the GRiST system in the region of 26,000

times (measured by login count). This equates to 136 logins per day. Approximately 45 GRiST

assessments were completed by Trust staff each day over this period. Initially, these comprised

working-age GRiST assessments. As new population trees were made available for use by Trust

accounts, the proportion of working-age assessments decreased, with the difference being made

up by assessments using ‘older’ and ‘child-adolescent’ population tools.

Feedback/bug report forms for GRiST were placed in prominent locations within the As-

sessment Management Interface. Trust IT department staff and management were also directly

able to communicate issues through email, conference telephone calls and meetings. Figure 11.2

summarises the type of feedback received via feedback/bug report forms for HTML GRiST.6

6Feedback data received via other channels was not available for analysis. Hence these are not included.

189



11.6. IMPACT OF ELECTRONIC GRIST DEPLOYMENT IN PARTNER TRUSTS

B
ug

R
ep

or
t

Enh
an

ce
m

en
t

Tra
in

in
g

Is
su

e

Q
ue

ry

Tru
st
-s
id

e
Is
su

e

G
en

er
al

O
bs

er
va

tio
n

C
rit

ic
ism

C
om

m
en

da
tio

n
0

2

4

6

8

10

12

14

16

18

9

17

6

1
2

3
4

3

Feedback Type

T
a
ll
y

Figure 11.2: Feedback that was received for HTML GRiST via online forms.

Surprisingly, only a handful of negative comments/issues were reported by clinicians during

their day-to-day use of the tools. This was impressive considering GRiST had been used 26,000

times. Of the 45 items of feedback that were received, 20% were relating to minor technical

issues during early phases of the deployment. These were remedied as and when they were

diagnosed. Issues that could be resolved through user-training accounted for 13% of feedback.

Many comments also fell into the category of feature requests (38%), and a small number were

commendatory (7%).

Arguably, the importance of incorporating the input of end-users in developing a decision

system is vital to its success. Particular attention was thus paid to incorporating this input where

practicable. Table 11.1 presents examples of the types of feature requests that were relayed to the

research team, and the changes to the system that resulted. Without user-feedback, substantial

features such as; persistent answers, display of historical comment data, management reports;

190



11.6. IMPACT OF ELECTRONIC GRIST DEPLOYMENT IN PARTNER TRUSTS

would not have arrived quite so early, if at all. Clinicians’ experiences of GRiST would have

been poorer for it, and there would not have been the same sense of ownership within those

clinicians.

Enhancement Request Tally Action Taken

Copying over of previous answers on
repeat assessment.

4 Development of the notion of answer-
persistence as a balance between the
need to reduce re-keying and the need
to maintain data accuracy.

Date of birth information should be
retrieved from PAS.

2 Provided an API for Trusts to dynami-
cally pass demographic data to GRiST
at runtime.

A mechanism for creating an action plan
for the patient.

1 New fields for recording action plans and
management information were created
along with associated reports.

A mechanism for printing reports in
colour.

1 Provided the option for generating
PDF reports—these faithfully repro-
duce colour information when printed.

Spell-checking facility. 1 Not implemented. All modern browsers,
barring IE, have this facility built-in. It
is envisaged that IE will follow suite in
a future iteration.

Reports should clearly indicate clini-
cian’s name.

1 Implemented.

Reports should have a space for clinician
signature.

1 Not implemented. This is a relic from
paper-era reporting. The clinician’s
name appearing on the generated report
is sufficient evidence that the clinician
produced the assessment.

Table 11.1: A selection of enhancement requests from HTML GRiST users, and the corresponding
action that was taken to augment GRiST.

It is human nature for effortful feedback to be meted out more so when a product or system

is deemed unsatisfactory (Day, 1977). Consequently, a positive impact tends to be regarded

with only tacit acceptance and little overt pronouncement. Judging by the small number of

comments received, of which, relatively few were criticisms, it can be concluded that where

operational feedback from clinicians is concerned, GRiST has been very well received.

The above conclusion is reinforced further when considering the verbal feedback that has

been relayed by managers working within the Trusts. A selection of feedback from Holbrook,

191



11.7. GRIST USAGE OUTSIDE TRUSTS AND IN THE WIDER COMMUNITY

recently presented at a GRiST workshop in the British Science Festival are reproduced below.

“GRiST started out as a paper questionnaire. Holbrook NHS Foundation Trust
was one of the first Trusts in the country to use an electronic version. GRiST
provides a platform that for us hasn’t been around before. Risk information can be
clearly communicated. We have had very positive feedback from clinicians and most
disciplines have been trained. Clinicians can complete GRiST in about half an hour
so it is much better than the previous tool. The advantage of the electronic form
over the paper form is that it enables modification, can be filled in by more than one
person on a team and creates persistent data so the patient is not continually asked
the same questions.”

11.7 GRiST Usage Outside Trusts and in the Wider Com-

munity

This chapter has focussed on deploying GRiST within NHS Trust-type organisations. The

ultimate ambition of the research project of course is to fully leverage the flexibility of GRiST—

to make it equally relevant and applicable outside the Trust and within the wider spectrum of

the community.

The interface to GRiST explicated in this chapter is suitable for large organisations such as

Trusts, who engage with many patients at a time. These Trusts retain in-house IT staff as a

matter of routine. The modest technical requirements for deploying GRiST can therefore be met

by Trust IT staff. With a high throughput of patients that can benefit from GRiST, economies

of scale help to mitigate the labour cost associated with this deployment.

It is worth re-iterating that with GRiST’s being a web-based tool, accessible through any

modern browser, its use is not restricted to large NHS Trusts who have invested in an interface.

Independent hospitals and small organisations, right down to individual GPs’ surgeries can make

use of GRiST using a single user mode. These organisations can request a standalone account

on the GRiST website, which enables them to log in through the web browser. The user can

proceed to create and assess patients as normal. In lieu of an API, the standalone account has

configuration options allowing the clinician to use tools corresponding to each population. The

combination of configurable options working in tandem with the GTH that powers the underlying

system means almost all of the flexibility available to the large Trusts is also available to the

smaller outfit.

Taking this work to its logical conclusion, non-PhD efforts are currently being directed

towards self-registration access to GRiST for members of the general public. This initiative,

192



11.8. CONCLUSIONS

known as my-GRiST, is based on a service-user tree, tailored to make mental-health risk concepts

understandable to the layperson. In common with the other methods of engaging with GRiST,

the underlying technologies driving the system are the GTH and the various tool/reporting

engines, with the Galatean model providing risk quantifications. Therefore, with little extra

effort, the GRiST infrastructure is optimised for consumption by the wider population.

11.8 Conclusions

This chapter has taken the GRiST platform developed over the course of this thesis, and explored

its deployment within a real-world setting—NHS Trust-type organisations.

Consultations with partner Trusts lead to an exposition of interfacing considerations relevant

to a hosted service dealing with NHS patient data. The outcome of these discussions was the

development and implementation of a suitable generic interfacing solution and API to GRiST.

The API enables Trusts to access the gamut of tools offered by the GRiST platform, and

seamless integration between Trust systems and GRiST. The flexibility offered by GRiST’s

underlying populations/Levels paradigms, realised via the GTH, means clinicians are better

placed to conduct an assessment tailored to their needs and to those of the patient. This

compelling feature of GRiST is one that can only be crudely emulated using a heterogenous set

of tools or short/long versions of the same tool. Indeed, many organisations standardised on a

conventional assessment tool, being limited to one version, have not had this flexibility at all.

Alternatives to GRiST, such as HoNOS (Wing et al., 1998) do address the need for tool poly-

morphism to a certain extent, with multiple versions for different populations, e.g., a version

for those with learning difficulties (Roy, Matthews, Clifford, Fowler, & Martin, 2002). However,

with as little as twelve items, such tools do not have the depth and breadth of coverage as

GRiST. Furthermore, due to their paper-based nature, they are not inherently able to trans-

late an assessment across population groups, transcending e.g., barriers between the clinician’s

understanding of the assessment and that of the patient.

The GTH platform’s ability to provide tailored versions of the tool to Trusts together with

its decoupling of the interface and answers from the domain model could be regarded as a

significant factor in making GRiST a success within the Trusts presented in this case study. It

represents an ability for the tool to be molded for organisation and audience, leaving even the

choice of tool engine up to the end-user—a degree of choice and flexibility not seen in any other

computerised mental-health assessment system.

193



11.8. CONCLUSIONS

Of course, customisability of the system represents only one ingredient to the blend of qual-

ities that are required for successful adoption of GRiST. For example, the substantive and

comprehensive nature of GRiST’s domain knowledge is a vital factor in the tool’s gaining cred-

ibility with its user-base; arguably, even more so than flexibility. Inadequate or inappropriate

questions would certainly have lead to GRiST’s rejection by clinicians at even the pilot stages

of any deployment.

The quality of the overall system, and its allotropic approach to addressing end-user needs

has resulted in two very successful large scale deployments. Daily login counts and assessment

tallies are a testament to the system’s accomplishments. Furthermore, clinicians’ approval of the

system has been confirmed by Trust managers and via the volume and type of feedback being

received directly via the website. Indeed, interest in GRiST is now spreading to a number of

other Trusts in the UK and organisations in North America and Australia, with a few already

using the paper version.

GRiST’s position as a serious contender in the computerised mental-health risk assessment

arena is hereby established. Although, resting on the laurels of success is not an option, given

the manifold directions in which GRiST can be evolved. The concluding chapter of this thesis

will evaluate this research as a whole and examine some of the avenues yet to be taken by

GRiST.

194



12
Conclusions and Future Work

12.1 Introduction

The thesis is concluded with a summary and evaluation of this body of work in light of the

objectives of the research, and broader issues in knowledge engineering and CDSSs. Avenues

for extending the work, both in terms of building directly on the research, and integrating with

work conducted further afield, are discussed.

12.2 Review of Thesis Objectives

The GRiST project set out with the ambitious goal of creating a platform for comprehensive

computerised mental-health risk assessment and decision support open to all. GRiST’s knowl-

edge was to be built from the ground up, utilising the Galatean model of classification for the

calculation of risk.

It is often the case that there is a level of disparity between knowledge engineers’ understand-

ing and conceptualisation of a domain and that of domain experts. The knowledge engineer does

195



12.3. A FLEXIBLE TOOLCHAIN FOR MENTAL-HEALTH ASSESSMENT AND DECISION
SUPPORT

not always know in advance the nature of the knowledge and the sometimes complex relation-

ships inherent in it. The domain expert may have this understanding, but will not be able to

transcribe it in terms understandable to computers. Therefore, in order for a system to truly

represent the domain knowledge, the two parties must continually work together in cementing

its crystallisation, both crossing over into each other’s territory.

Once a system based on the domain knowledge has been developed, there is the uncertainty

that it may fail to gain widespread user acceptance because of mismatches with user/situational

requirements. These may be due to the poor quality of the underlying knowledge (as con-

ceptualised in the system) or the possibility that there may be wide-ranging and conflicting

expectations from different user groups as to the system’s role. One way that tool creators have

mitigated these effects is by developing small and very specialised tools. It is due to this rigidity

and specificity of many extant tools that organisations have turned to using multiple assessment

solutions, with there being little standardisation in the field (M. Scott, 2009).

With GRiST’s remit of being a universal tool, accessible to both clinicians and the layman,

yet remaining applicable to all spheres of society, this translated into the following primary

research objectives:

1. To arrive at a knowledge engineering methodology that would be adaptable to the unknown

and changing requirements associated with documenting the mental-health risk areas.

2. To use the fruits of knowledge engineering (the comprehensive mental-health domain

model) to directly drive mental-health risk assessment according to the needs of the asses-

sor and the target of the assessment.

12.3 A Flexible Toolchain for Mental-health Assessment

and Decision Support

The main theme that emerges from the thesis objectives is that of flexibility. Flexibility in the

elicitation process is crucial in order to accommodate idiosyncratic modes of engagement with

domain experts, unanticipated changes to elicitation requirements, and an evolving cognisance

of the nature of relations emerging within the domain knowledge itself.

Flexibility built into the tool creation methodology is essential in order to successfully

accommodate the wide remit of simultaneous suitability to multiple settings, assessors and

196



12.3. A FLEXIBLE TOOLCHAIN FOR MENTAL-HEALTH ASSESSMENT AND DECISION
SUPPORT

patient groups.

The body of work presented in this thesis addressed the research objectives via the develop-

ment of a comprehensive toolchain for the creation of mental-health assessment/decision support

tools from raw domain knowledge solicited from experts. Flexibility was injected into each stage

of the process, with XML and XSLT playing a pivotal role in facilitating this.

Chapter 5 developed the idea of maintaining simplistic GUI tools for knowledge elicitation

and validation activities. These could be developed at low cost, and would be more accessible

to domain experts (due to their lower associated learning curve). Ad-hoc augmenting of these

tools was facilitated via structured comments that could be made using existing functionality.

Simple modular XSLT stylesheets imbued the process with the power to automatically transform

comments into directives and finally into actual operations, thereby simplifying tool logic.

The ST resulting from validation activities was reorganised and enhanced in Chapter 6 to

make it more amenable to driving risk assessment. The initial work consisted of removing struc-

tural redundancy by distilling generic concepts into a designated region of the tree. This reduced

the size of the tree considerably, and decreased the likelihood of internal inconsistencies. The

second phase of activities involved enriching the ST with constructs relating to question con-

figuration during an assessment, e.g., data types. Provisioning for flexible modes of assessment

was initiated with the introduction of the layers and Levels constructs within the ST. These

would facilitate screening assessments and assessments of differing lengths according to clinician

expertise, respectively. Therefore, the assessment length could theoretically now be controlled

by the degree of question abstraction. Finally, uncertainty measures in the form of Membership

Grades and associated risk profiles were incorporated.

Uncertainty measures in the form of Relative Influence values could not directly be recorded

within the ST, due to its being a distilled tree whose primary remit was to record the structure

of the domain knowledge. As part of work in Chapter 7, the RIT, a tree designed primarily for

the collection of RIs, was generated automatically from the ST using XSLT. Unlike the ST, the

RIT would have generic concepts that were to receive individualised RIs across instantiations

expanded to facilitate their collection. The RIT, by nature of its expansion, also brought the

knowledge structure closer to one amenable to directly facilitating assessments. It therefore

extended the evolving concept of a Galatean Tree Hierarchy for driving assessments.

By designating RI elicitation activities to a separate derived tree, and decoupling from knowl-

edge structure elicitation work (designated to the ST), the issue of RI transferral across RIT

197



12.3. A FLEXIBLE TOOLCHAIN FOR MENTAL-HEALTH ASSESSMENT AND DECISION
SUPPORT

versions required resolving. Chapter 8 developed a method by which a newly generated RIT

could carry over RIs manually injected into the previous RIT. The implication of this work was

that structural modifications could theoretically be made to an ST, with most of the associated

RI housekeeping being carried out automatically. This would make knowledge maintenance

activities considerably easier.

Chapter 9’s focus was on the generation of assessments. In order that the GRiST knowledge

structure could directly and efficiently drive an assessment, the GTH was expanded with the

introduction of the CAT and QT. Both were trees derived from the RIT, and matched to each

designated Level. The CAT expanded all generic concepts so that the resulting tree structure

mirrored the basic assessment structure. The QT was an efficient method by which to maintain

question and configuration data related to each CAT node. Assessment answers were to be

stored in a separate AT. A major benefit of segregating answer data was that an assessment

conducted using one CAT and QT need not have been required to be tied to that tree pair

during report generation or reassessment. This would in a later chapter, have implications for

making an assessment conducted by/for one speciality more accessible to another.

Various tool generation engines developed to run on the GTH platform were also showcased

in Chapter 9. Tools ranged from a generated paper version, through an electronic HTML

version, to the fully-featured Java version utilising the Galatean model. Users therefore had an

upgrade path available to them, providing them with the flexibility to unlock more of GRiSTs

features as and when they were ready. Because all tools would run on the same underlying GTH

platform, these tools could easily be made to interoperate with regards to assessment data.

Furthermore, updates to the underlying knowledge structure could immediately be propagated

to the tools and associated reports since it is the (generated) CAT, QT (and the AT) that drive

tool and reporting engines. This made the system very maintainable. The fact that the GTH

is XML-based, with tools being generated via languages such as XSLT, also made the system

both extensible and adaptable. New features could be added via new attributes, and reports

could be configured to include/omit/synthesise data from these attributes.

Building on the user-facing flexibility of multiple tool engines, each capable of producing tools

matching the user’s Level of experience, was the powerful concept of populations. Chapter 10

developed this construct as a consequence of the notion that different user groups would be better

accommodated by a tool specifically tailored to each group. This would mean that questions

applicable to a specific segment of the general population could be limited to being available

198



12.4. BENEFITS OF GRIST’S APPROACH TO KE

only for assessment of that group, e.g., questions relevant only to children. Similarly, question

organisation and configurations suited to particular organisation/clinician specialities and even

the patient themselves could be represented as a population.

The SST was introduced into the root of the GTH as a meta-ST to record population-specific

customisations. XSLT would be used to automatically generate population-specific STs from

the SST. These could be used to generate population-specific assessment trees. The benefit

of this approach was that tool engines required no modification due to the GTH’s restricting

the complexity associated with multiple-population data to the SST. The approach, when com-

bined with the decision to segregate question and answer data from assessment structure data

(i.e., from the CAT), resulted in an additional level of flexibility to GRiST—an assessment

conducted using one population CAT could trivially be made to be viewable using the CAT of

another population. This would mean for example, that an assessment conducted using terms

understandable to a clinician could be made to be reported in terms understandable to the

patient—fortifying GRiST with a level of inclusiveness not previously available to mental-health

assessment systems.

Finally, deployment of the improved GRiST architecture within two NHS Trusts was explored

as a case study, presented in Chapter 11. This required the development of a generic interface

to GRiST, which took into consideration issues related to information governance and the PAS

software used within Trust-type organisations. User feedback was indicative of GRiST’s welcome

reception. This was also supported by login and assessment statistics, which implied GRiST (in

its many configurations) to be a heavily used resource.

Building on the success of the large GRiST deployments, other efforts to make GRiST

accessible to smaller organisations and members of the public were briefly described. The result

of these efforts is that the expertise embodied in GRiST is potentially available to anybody

wishing to use it—in a format understandable to them.

12.4 Benefits of GRiST’s Approach to KE

One of the main impetuses for the development of Protégé, and its predecessor, Opal, was a desire

to include domain experts more directly in the creation of knowledge bases (Gennari et al., 2003).

This motivation is also shared by the knowledge acquisition aspects of the GRiST toolchain

(described in Chapter 5). It is fitting therefore, to compare GRiST’s knowledge acquisition

features with those of Protégé. Table 12.1 provides this comparison, beginning with attributes

199



12.4. BENEFITS OF GRIST’S APPROACH TO KE

that facilitate easier inclusion of domain experts, through to generic attributes beneficial to any

knowledge acquisition systems.

Feature GRiST Protégé

Allowing multiple do-
main experts to simul-
taneously work on the
knowledge.

The KE activities were web-based,
and allowed experts to log on and
work on an individualised copy of
the knowledge structure. A re-
port on all edits could be viewed
by knowledge engineers in order to
decide which were to persist.

Efforts such as the collaborative
Protégé plugin (Tudorache, Noy,
Tu, & Musen, 2008) mean that ex-
perts are able to simultaneously
work on an ontology. This offers a
real-time updated view of the con-
sensual knowledge structure.

Auditing of changes in
knowledge.

GRiST’s approach provides end-
to-end auditing from initial expert
interview through to the item’s in-
clusion in the final version of the
ST.

The collaborative Protégé plugin
has the capability to record the
author of a change in the evolving
knowledge structure.

Appropriateness of learn-
ing curve to domain ex-
perts.

The GRiST approach is one of
removing as much computer sci-
ence terminology as possible. Fur-
thermore, KE tools are limited
in feature-set, allowing e.g., addi-
tion, renaming, deletion of nodes
etc. This makes it easy for domain
experts to master the tools.

Being a meta-tool for the devel-
opment of knowledge acquisition
tools, Protégé employs a very rich
array of features, leaning heavily
on computer science terminology.
Protégé’s UI is complex due to the
feature-set it supports. Thus, it is
difficult for domain experts to be-
come proficient in its use.

Visualisation of domain
model.

KE tools are able to display
GRiST’s tree-like knowledge
structure using built-in XML
viewing components.

The OWLViz plugin to Protégé
enables display of OWL class hier-
archies (Lanzenberger, Sampson,
& Rester, 2010).

Portability of file format. GRiST uses a bespoke, hierarchi-
cal, XML file format, with an em-
phasis on human readability, and
ease of translation into other for-
mats via XSLT.

Files are stored in OWL. This is
also an XML language, but does
not utilise the inherent hierarchy
of XML. The expressivity of the
language makes it complicated to
read and parse without tool assis-
tance. Nevertheless, OWL is well
known in the KE community and
a W3C standard.

Expressibility of under-
lying representation lan-
guage.

Contains relatively few constructs,
and exploits the inherent hierar-
chy of XML.

Contains a large number of con-
structs to model many scenarios.

Verification of the cor-
rectness of the knowledge
structure.

Tree verification functionality
built into the GTH generation
process.

A reasoner such as RACER
(Haarslev & Möller, 2003) can be
used to perform verification.

Inference of new facts
from existing facts.

The Galatean model provides clas-
sification of risk, but not the infer-
ence of new concept relations.

RACER can be used to perform
inference.

Table 12.1: A comparison of GRiST’s knowledge acquisition approach with that of Protégé.

200



12.5. CONTRIBUTION TO CDSS BEST-PRACTICE THEORY

The aim of the GRiST project was to allow domain experts to partake in KE activities

without feeling overwhelmed. The comparison in table 12.1 reveals that GRiST’s strength

does indeed lie in the simplicity of its representation and of its knowledge engineering tools.

Nevertheless, it does also show that more work could be done in increasing the portability of

GRiST’s file format; a topic that will be revisited in Section 12.6.5.

12.5 Contribution to CDSS Best-practice Theory

In addition to the development of a CDSS in mental-health, the GRiST project has provided

an opportunity to perform some real-world validation of the ideas advanced in the literature for

improving decision-support. This section reflects on some of the issues put forward by Sittig et

al. (2008) and Bates et al. (2003), and outlines GRiST’s contribution to the discussion.

12.5.1 Strategic Challenges

Section 3.3 describes some of the challenges set by Sittig et al. (2008) that are yet to be addressed

by CDSSs. GRiST’s main contribution in this area falls under the creation of an architecture

for sharing CDSS modules. GRiST’s API makes it very easy for a Trust’s PAS to connect and

invoke GRiST. Message-passing behind the scenes, as described in Chapter 11, allows the two

systems to seamlessly integrate, and eliminates re-keying where data contained in the PAS is

also required by GRiST.

One key issue that has been overcome is that of allowing Trusts to subscribe to an external

provider (GRiST) without necessarily having to give up confidential patient data in the form

of Pii. It is however, acknowledged that there is still a lot of work to be done in developing

standardised interfaces to CDSS services. Development of GRiST can help in this respect via the

dissemination of a mature API, so that PAS developers and CDSS providers alike can identify

the types of features that would be required of an interface. By the same token, GRiST’s data

format could draw from standardised medical terms systems such as SNOMED (Spackman,

Campbell, Côté, et al., 1997) and UMLS (Aronson, 2001). This would lay the foundations for

greater portability of GRiST’s output data, reducing vendor lock-in.

The human-computer interface aspect of Sittig et al.’s challenges are met primarily through

the dynamic use of colour during a GRiST assessment. Areas requiring attention are highlighted

in oranges and red, and are a means of drawing the clinician’s attention in a non-blocking manner.

A data validation run is performed only on assessment submission, whereupon the clinician is

201



12.5. CONTRIBUTION TO CDSS BEST-PRACTICE THEORY

taken through any errors/inconsistencies step-by-step. The steps cannot be bypassed, meaning

that error validation is a self-contained activity. Whilst error validation leads to the correction

of errors, it also acts as a training exercise for the clinician—the clinician learns why certain

errors are being generated and will in time modify entry behaviour accordingly.

12.5.2 GRiST and the “ten commandments” for effective CDSSs

Section 3.4.1 describes ten “commandments” proffered by Bates et al. (2003) for the develop-

ment of successful CDSSs. These have been garnered through first-hand experience in developing

numerous decision support systems. The insight gained from the development of GRiST con-

tributes to these theories, as applied to mental-health CDSSs, in the following ways:

1. Speed is everything – GRiST’s response times are instantaneous when updating risk

levels for a given answer. However, assessment initialisation, verification and saving are

not instantaneous due to the computational and network demands of these activities. In

fact, on slower computers and browsers, these operations can take upwards of three or

four seconds. GRiST mitigates these factors by updating the UI to communicate to the

user that an operation is taking place. This creates a perception of speed through the

fact that something is always seen to be happening, as opposed to the tool appearing

“frozen”. Consequently, none of the feedback received from users indicated speed to be a

problem. Thus, the GRiST project supports the idea that the perception of speed through

UI responsiveness is also very important where real speed cannot be obtained (Tabbers,

Kester, Hummel, & Nadolski, 2004).

2. Anticipate needs and deliver in real-time – Currently, GRiST provides instantaneous

feedback as to the severity of the provided answer value. This has been a well-received

improvement to the HTML tool over paper-based approaches. Future improvements to the

system will mean that classification will occur dynamically as the assessment progresses

(refer to Section 9.5.3). This will pave the way for the system to automatically ascertain

when sufficient information has been gathered to deliver a confident risk prediction. This

would be useful as a time-saving measure, as the clinician could then be prompted to move

to a different top-level risk or finish the assessment.

3. Fit into the user’s work-flow – The importance of this aspect has also been evidenced in

this project. For example, the management attribute’s genesis was through discussions with

202



12.5. CONTRIBUTION TO CDSS BEST-PRACTICE THEORY

one of the Trusts. Here, clinicians were wishing to use GRiST to record not only patient

attributes, but also how these would be addressed via any treatment. Furthermore, the

decision-support aspect (delivered through colouration of answer values) has meant that

GRiST not only fits into the clinician’s work-flow, but also augments it—GRiST is not

simply being used as a documentary tool, but rather, as an aid to assessing the patient.

4. Little things can make a big difference – Given that a clinician can spend up to

half an hour on an assessment, and will be routinely using GRiST, usability has been an

important consideration in the development of GRiST. Tweaks have ranged from automat-

ically providing a sensible file name for a generated PDF report, to reworking the tool’s

functionality to reduce re-keying. Not all of this was achieved on the first try, and only

through user feedback did features such as answer persistence and improved recording of

comment data crystallise. These allowed the clinician to “do the right thing” faster.

5. Recognise that clinicians will strongly resist stopping – Even though GRiST has

screening questions that should logically be answered before the main set of questions,

it was a conscious decision not to enforce any kind of rigid progression through the tool

(refer to Section 3.4.2). This leaves the clinician to work through the questions as desired,

leaving the clinician in ultimate control. Furthermore, the answer validation functionality

highlights erroneous answers, and importantly, gives feedback on how the answer should

be corrected. This is akin to providing an opinion together with a reason for that opinion,

which is more effective at inducing a change in the clinician’s behaviour.

6. Changing direction is easier than stopping - This aspect was not applicable to

GRiST, and so, did not receive in any real-world testing in this project.

7. Simple interventions work best – GRiST is designed to be operated with minimal

training. Information is conveyed through a combination of colour and icons. Reports

only detail questions that have been answered and provide the node label rather than the

question text, thereby reducing the amount the clinician is required to read. Crucially,

different reports can be generated for different perspectives. The benefit therefore, is

that operation of/output from GRiST is simple, reducing information overload, and the

potential for important information to be buried in the data.

The simplicity aspect was also crucial to the KE phases of GRiST’s development. Simple

tools designed to be used by clinicians with relatively little IT experience were essential

203



12.5. CONTRIBUTION TO CDSS BEST-PRACTICE THEORY

in gaining participation in the project. XML and XSLT have both been invaluable in

providing this simplicity due to their malleability. Future implementers should therefore

apply this “commandment” not only to the CDSS, but also to the KE process.

8. Additional information should be asked for only when needed - Asking for infor-

mation that can automatically be obtained or inferred by GRiST represents an inefficiency

and is an annoyance for the clinician. Indeed, feedback from clinicians has led to its be-

ing pointed out that demographic data such as patient date of birth is needlessly being

asked of the clinician. This is why API features such as automatic passing of demographic

data from the PAS (refer to Section 11.5) are being developed. Persistent data for repeat

assessments is also another area that was developed as a result of clinician feedback.

9. Monitor impact, get feedback, and respond – Bates et al. emphasise the importance

of altering automatic notifications and alerts according to whether they are serving a useful

purpose. This way, only important alerts remain, and are less likely to simply be “clicked-

through”. Although this aspect was not directly testable using GRiST since it does not

issue alerts as such, a related issue of listening to users was found to be very relevant.

This is discussed further in the next section.

10. Manage and maintain the knowledge-based system – The system of trees in the

GTH and the tree synchronisation mechanisms described in Chapter 8 have been designed

to make maintenance of the knowledge that drives GRiST very easy for the user. This

means GRiST can continually be improved through incorporation of new findings in the

literature, clinician feedback, and automated “self-improvement”. One of the mechanisms

by which GRiST aims to self-improve is through the comparison of clinician-supplied

ratings of top-level risk with ratings generated via GRiST’s classification process. These

will then enable RIs and MGs to be adjusted to better match how clinicians weight concepts

in a clinical setting.

Another strategic avenue of self-improvement is through the use of case-based reasoning:

the data accumulated from tens of thousands of assessments could be used to more quickly

inform the outcome of the current assessment. Thus, implementers should also look at

automatic ways of maintaining and improving the system via intelligent use of the rich

data that is accumulating within it.

204



12.6. FUTURE WORK

12.5.3 The “eleventh commandment” for effective CDSSs

The GRiST project has demonstrated that most of Bates et al.’s (2003) “commandments” are

applicable to decision support systems for mental-health risk assessment. It has also provided

further insight, particularly in relation to the first commandment: speed is everything. Speed,

although important, may not be as crucial as Bates et al. decree. What is important is respon-

siveness. Responsiveness can mitigate the effects of going over the sub-second threshold that

Bates et al. regard as the limit of tolerability for the user.

The present research also informs another “commandment” not adequately addressed by

Bates et al.

11. Listen to the users

It is not enough to passively monitor and obtain low-level feedback from tool-usage (i.e., click

counts etc.,) as advocated in “commandment” nine. Communicating directly with system users

and making provision for them to air views and concerns is paramount to moulding an effective

CDSS. The system receives clinical usage in the hands of these users, so they are in the best

position to give feedback on what is working, what needs improvement, and why (refer to Section

11.6 for examples of this). Users were involved throughout the development of GRiST, and many

important features and efficiencies were developed directly as a result of open dialogue with these

users.

12.6 Future Work

Numerous directions for improving and extending GRiST are open to exploration. Many of

these can be categorised as seeking to address limitations in the current GRiST platform or to

extend its functionality. More strategic improvements involve further opening up GRiST to the

wider research community, allowing its benefits to be maximised. This section seeds future work

by introducing some of these avenues.

12.6.1 Incorporation of the Galatean model into the server

At present, the only mature implementation of the Galatean classification engine resides within

the Java version of GRiST. Once RIs for GRiST’s knowledge structure have been finalised,

the Java tool will be able to fully calculate risk values for the assessment in real-time, as the

205



12.6. FUTURE WORK

assessment progresses. With respect to the generation of reports of risk, the status quo implies

that an assessment will be required to be performed using the Java tool in order for the requisite

risk information to be available to reporting engines.

Future work should incorporate an additional Galatean classifier within the server for the

use of report generation engines. The benefits of this are two-fold:

• Full risk reports can be generated for the user, regardless of the tool that has been used

to collect data.

• The potential for e.g., the HTML version of GRiST to make use of ad-hoc or near-real-time

risk calculations is opened up. This could be via AJAX calls to the classifier on the server

and suitable interface modifications to the tool GUI.

With the Galatean model’s ability to calculate the accumulation of risk over concepts, ad-

ditional work would need to be carried out on displaying risk. Specifically, research into the

display of percolation of data within hierarchical structures.

12.6.2 Augmenting of the populations framework

Chapter 10 conceptualised populations as representing organisational, clinical, and patient per-

spectives on the assessment. This approach is well suited to the development of customised

versions of GRiST where a user group falling into one of these categories is recognised. How-

ever, the chapter also acknowledges that the populations mechanism (in its current incarnation)

is a compromise situation between flexibility and complexity. Indeed, as GRiST grows in terms

of number and type of deployments, it is inevitable that scalability problems with the present

populations mechanism will surface.

It is entirely plausible that a hypothetical real-world GRiST customisation could more logi-

cally/optimally be described in terms of an interaction between more than one perspective. For

example, the prison service may dictate a specific ordering for questions that is consistent with

the needs of this type of organisation. Within the prison service there may be different age

groups, who might be best served by a tool tailored to that age group.

Given that the current populations framework treats perspectives as mutually exclusive, the

only way to realise the scenario of population interactions would be to create a new population

definition specifically for each interaction. This would give rise to a combinatorial explosion

of populations. In the case of the hypothetical prison service offering, the gamut of default

206



12.6. FUTURE WORK

clinical population definitions would each need to be replicated, and the replications modified

specifically.

Future research would need to consider the issue of population interactions and how best

to accommodate them within the SST. It may be that the generalised attribute, populations,

would need to evolve into specialised attributes such as organisational-populations, clinical

-populations and patient-populations. An accompanying inheritance/precedence scheme

incorporating conflict resolution mechanisms would also be required where more than one spe-

cialised population group would be applicable to a node.

Language Localisation

As international interest in GRiST grows, language localisation may also need to be incorporated

into the SST. This may form part of the upgraded populations framework via a new additional

perspective. Alternatively, a parallel framework for recording translated strings may be neces-

sitated due to the complexity introduced by the potential interactions of the other population

perspectives.

12.6.3 Bilateral mappings with other risk assessment tools

Risk assessment practice across the NHS organisations is not standardised (Higgins et al., 2005;

Hawley et al., 2010). Consequently, organisations employ a variety of assessment tools (Hawley

et al., 2006). Many of these tools are specialised or consist of a relatively small number of items,

e.g., HCR-20 for assessing violence risk (Douglas & Webster, 1999), and RFL-OA for suicide

in older adults (Edelstein et al., 2009). GRiST on the other hand, covers all five of the risk

areas identified in the NHS’s best practice guide for mental-health risk management (National

Risk Management Programme, 2007), is comprehensive in its data collection, and incorporates

a classification engine for the quantification of risk.

In the interests of providing choice and synergistic benefits to Trusts, it would be interesting

to investigate the idea of developing bilateral mappings between GRiST and other tools. In

this scenario, the GRiST representation of an assessment, being more comprehensive, could be

considered to be a superset of the items contained in other published tools. In principle, the

data from a GRiST assessment could automatically be translated and scored as an assessment

of a third-party tool. The assessor would then be able to compare results from both the GRiST

perspective and the perspective of the other tool. This would help the assessor to make a more

207



12.6. FUTURE WORK

informed decision in determining a care pathway for the patient.

Mappings from other extant tools to GRiST could also be created to help generate GRiST

risk quantifications using the third-party data. This feature could, for example, be combined

with the “preset” answers API discussed in Section 11.5.

Finally, as bilateral mappings between multiple tools and GRiST develop, this would place

GRiST in a position where it could serve as an intermediary format between tools. In essence,

an assessment conducted with one tool could be translated into an assessment for a different

tool, with the GRiST format serving as a tool-agnostic representation. Such a facility could be

published as a web service, which could be utilised in its own right without any commitment to

directly using GRiST for assessment.

12.6.4 Application of the GRiST toolchain to new domains

Although GRiST has been developed to assess mental-health risk areas, this does not preclude

the architecture from being used in other domains.

The Galatean model is a general purpose model of classification, developed independently

to GRiST. It can model and explain a variety of psychological phenomena in the field of human

classification decision-making, and has in the past, been applied to domains as diverse as horse-

racing! Therefore, it is both theoretically and demonstrably capable of serving as a classification

engine beyond the mental-health domain.

When considering the representation of domain knowledge, any area whose concepts are

refinable in a step-wise fashion (Wirth, 1971) is amenable to being represented using GRiST’s

hierarchical ST format. Once codified as an ST, the rest of the GTH for the new domain could

be generated using existing XSLT stylesheets, and the pre-existing engines used for driving

“assessments” and reporting.

12.6.5 Automated mappings from the SST file format to OWL DL

Chapter 4 eschewed using the established ontology language, OWL DL, for developing the GRiST

knowledge structure, and instead advocated using a hierarchical XML format, which eventually

coalesced into the SST. Several reasons were outlined for this decision:

• The inherent hierarchy within an XML file is naturally suited to Psychologists’ conception

of how expert knowledge is organised (Larkin, 1980; Eylon & Reif, 1984), and to the

Galatean model’s conceptualisation of risk percolation.

208



12.6. FUTURE WORK

• Although a rich arsenal of constructs is available within OWL DL for describing con-

cepts and their inherent relations, the guarantee of decidability in reasoning in OWL DL

means certain restrictions on the language’s expressivity (Hoekstra, 2009). Given the

scope of the SST—to describe the domain model as well as to ultimately drive flexible tool

construction—it was not possible a priori to assess whether and how this would impact

on the project.

• The complexity of the OWL DL language itself would create an artificial barrier with

respect to participation of domain experts, and the need for specialised tools in order to

efficiently and correctly manipulate the underlying files. OWL DL is a general purpose

ontology language, and is therefore aimed at serving a much wider range of ontology

applications than the SST syntax.

• An OWL DL reasoner was not required, since the Galatean model would preform compu-

tation of risk.

• OWL DL tool support e.g., in the area of collaborative model editing and auditing, was

at a less advanced stage of development at the inception of the research project.

Given that the syntax of the SST is now relatively stable, a fuller understanding of the

mereological relationships governing concepts within the tree can be gained. Furthermore, the

involvement of domain experts is no longer of primary concern, assuming that knowledge elici-

tation phases are complete. These factors remove some of the hindrances that discounted OWL

DL as a representation format to use during GRiST knowledge elicitation.

In the interests of making GRiST’s knowledge more accessible to, and reusable within the

wider research community, it is at this juncture that OWL should be considered as an additional

representation format. Indeed, the genesis of OWL was out of a need to share and amalgamate

disparate islands of knowledge in an intelligent way (Lacy, 2005). Formulating an OWL repre-

sentation of the knowledge could for example, benefit recent ontology creation efforts in related

areas such as mood disorders (Haghighi, Koeda, Takai, & Tanaka, 2009) and psychosis (Kola et

al., 2010), and contribute to grand unifying schemes as described in Dumontier (2010), which

envisage repositories that span the life sciences.

With the recent ratification of the OWL 2 DL standard (W3C OWL Working Group, 2009),

the development of design patterns for the modelling of mereology relevant to GRiST’s hierar-

chical format (Rector & Welty, 2005), and interesting work conducted in the use of XSLT to

209



12.7. EPILOGUE

convert XML structures into RDF (D. Connolly, 2007) and OWL (Bohring & Auer, 2005), this

is now an appealing avenue to exposing GRiST’s knowledge outside of the tools and further

afield.

12.7 Epilogue

Revisiting the fundamental question of flexibility, this thesis has successfully demonstrated this

quality throughout its approach to developing the toolchain for mental-health assessment and

decision support. The GTH, its representation as XML, and transformations via XSLT have

been the underlying mechanisms for achieving this. The outputs of this toolchain are; a validated

representation of mental-health risk knowledge, and the Galatean Risk Screening Tool.

210



References

References

Abernethy, M. A., Horne, M., Lillis, A. M., Malina, M. A., & Selto, F. H. (2005). A multi-method

approach to building causal performance maps from expert knowledge. Management Ac-

counting Research, 16 , 135-155.
(page 61)

Adams, I., Chan, M., Clifford, P., Cooke, W., Dallos, V., Dombal, F. de, et al. (1986). Computer

Aided Diagnosis Of Acute Abdominal Pain: A Multicentre Study. British Medical Journal

(Clinical Research Edition), 293 (6550), 800–804.
(page 39)

Ainsworth, J. (2007). The challenges of clinical e-Science: Lessons learned from PsyGrid. In

Proceedings of the uk e-science all hands meeting 2007.
(page 147)

Anderson, J. (1982). Acquisition of cognitive skill. Psychological review , 89 (4), 369–406.
(page 38)

Anumba, C., Dainty, A., Ison, S., & Sergeant, A. (2006). Understanding structural and cultural

impediments to ICT system integration: A GIS-based case study. Engineering, Construc-

tion and Architectural Management , 13 (6), 616–633.
(page 165)

Aronson, A. (2001). Effective mapping of biomedical text to the UMLS Metathesaurus: the

MetaMap program. In Proceedings of the amia symposium (p. 17).
(page 201)

Ayyub, B. M. (2001). Elicitation of expert opinions for uncertainty and risks. London: CRC

Press.
(page 70)

211



References

Baader, F., & Nutt, W. (2003). Basic description logics. In The description logic handbook (pp.

43–95).
(page 52)

Bartis, E., & Mitev, N. (2008). A multiple narrative approach to information systems failure: a

successful system that failed. European Journal of Information Systems, 17 (2), 112–124.
(page 165)

Bates, D., Kuperman, G., Wang, S., Gandhi, T., Kittler, A., Volk, L., et al. (2003). Ten

commandments for effective clinical decision support: making the practice of evidence-

based medicine a reality. Journal of the American Medical Informatics Association, 10 (6),

523–530.
(pages 43, 46, 47, 201, 202, 204, and 205)

Beaumont, R. (2008). Types of Health Information Systems (IS) (Tech. Rep.). Avail-

able from http://www.fhi.rcsed.ac.uk/rbeaumont/virtualclassroom/chap12/s2/

systems new.pdf
(page 184)

Beazley, D., Ward, B., & Cooke, I. (2002). The inside story on shared libraries and dynamic

loading. Computing in Science & Engineering , 3 (5), 90–97.
(page 151)

Bergman, L., & Fors, U. (2008). Decision support in psychiatry – a comparison between

the diagnostic outcomes using a computerized decision support system versus manual

diagnosis. BMC Medical Informatics and Decision Making , 8 (1), 9.
(page 48)

Berlin, A., Sorani, M., & Sim, I. (2006). A taxonomic description of computer-based clinical

decision support systems. Journal of Biomedical Informatics, 39 (6), 656–667.
(pages 40, 41, and 42)

Berners-Lee, T., & Hendler, J. (2001). Scientific publishing on the semantic web. Nature, 410 ,

1023–1024.
(page 51)

Blank, A. G. (2004). TCP/IP Foundations. John Wiley & Sons.
(page 110)

Boegl, K., Adlassnig, K. P., Hayashi, Y., Rothenfluh, T. E., & Leitich, H. (2004). Knowledge

acquisition in the fuzzy knowledge representation framework of a medical consultation

system. Artificial Intelligence in Medicine, 30 , 1-26.
(page 57)

212

http://www.fhi.rcsed.ac.uk/rbeaumont/virtualclassroom/chap12/s2/systems_new.pdf
http://www.fhi.rcsed.ac.uk/rbeaumont/virtualclassroom/chap12/s2/systems_new.pdf


References

Bohring, H., & Auer, S. (2005). Mapping XML to OWL Ontologies. In Leipziger Informatik-

Tage, volume 72 of LNI (pp. 147–156).
(page 210)

Bouch, J., & Marshall, J. J. (2005). Suicide risk: structured professional judgement. Advances

in Psychiatric Treatment , 11 , 84-91.
(page 22)

Bray, T., Tobin, R., Thompson, H. S., Hollander, D., & Layman, A. (2009, Decem-

ber). Namespaces in XML 1.0 (third edition) (W3C Recommendation). W3C.

(http://www.w3.org/TR/2009/REC-xml-names-20091208/)
(page 66)

Brennan, S. (2007). The biggest computer programme in the world ever! How’s it going?

Journal of Information Technology , 22 (3), 202–211.
(page 182)

Brewster, C., & O’Hara, K. (2007). Knowledge representation with ontologies: Present

challenges–Future possibilities. International Journal of Human-Computer Studies, 65 (7),

563–568.
(pages 45 and 46)

Brooker, C., & Fox, C. (2009). Health needs assessment of children in secure settings in the east

midlands (Tech. Rep.). University of Lincoln.
(page 89)

Buckingham, C. D. (1992). Galatean model of human classification implemented in a decision

support system. Unpublished doctoral dissertation, University of Birmingham, UK.
(page 24)

Buckingham, C. D. (2002a). Psychological cue use and implications for a clinical decision

support system. Medical Informatics and the Internet in Medicine, 27 (4), 237-251.
(pages 24, 31, and 34)

Buckingham, C. D. (2002b). Psychological cue use and implications for a clinical decision

support system. Medical Informatics and the Internet in Medicine, 27 (4), 237-251.
(page 62)

Buckingham, C. D., Ahmed, A., & Adams, A. E. (2007). Using XML and XSLT for flexible

elicitation of mental-health risk knowledge. Informatics for Health and Social Care, 32 (1),

65–81.
(pages 20 and 75)

Buckingham, C. D., & Birtle, J. (1997). Representing the assessment process for psychodynamic

psychotherapy within a computerized model of human classification. British Journal of

Medical Psychology , 70 , 1-16.

213



References

(pages 24 and 34)

Buckingham, C. D., & Chan, T. (2002). Developing a mental-health risk-screening tool (Tech.

Rep.). Surrey Hampshire Borders NHS Trust.
(page 31)

Buckingham, C. D., Kearns, G., Brockie, S., Adams, A. E., & Nabney, I. T. (2004). Developing

a computer decision support system for mental health risk screening and assessment. In

J. Bryant (Ed.), Current perspectives in healthcare computing 2004 (p. 189-194). Swindon

BCS HIC.
(page 30)

Buzan, T. (2003). The mind map boook. BBC Consumer Publishing: London.
(page 60)

Cannon, D., & Allen, S. (2000). A comparison of the effects of computer and manual reminders

on compliance with a mental health clinical practice guideline. Journal of the American

Medical Informatics Association, 7 (2), 196.
(page 41)

Care Services Improvement Partnership. (2006). 10 high impact changes for mental health

services. London: Department of Health.
(page 21)

Castle, K., Duberstein, P. R., Meldrum, S., Conner, K. R., & Conwell, Y. (2004). Risk factors

for suicide in blacks and whites: An analysis of data from the 1993 national mortality

followback survey. American Journal of Psychiatry , 161 , 452-458.
(page 22)

Cerri, D., & Fuggetta, A. (2007). Open standards, open formats, and open source. Journal of

systems and software, 80 (11), 1930–1937.
(page 51)

Clark, J. (1999, November). XSL transformations (XSLT) version 1.0 (W3C Recommendation).

W3C. (http://www.w3.org/TR/xslt)
(pages 57 and 73)

Coiera, E. (1997). Guide to Medical Informatics, the Internet and Telemedicine. London:

Chapman and Hall Medical.
(page 145)

Connolly, D. (2007). Gleaning resource descriptions from dialects of languages (GRDDL) (W3C

Recommendation). W3C. (http://www.w3.org/TR/2007/REC-grddl-20070911/)
(page 210)

214



References

Connolly, T., & Begg, C. (2010). Database systems: a practical approach to design, implemen-

tation, and management. London: Addison-Wesley.
(pages 84 and 107)

Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking

some conclusions from the literature on judgment under uncertainty. Cognition, 58 , 1-73.

(page 39)

Crockford, D. (2006). JSON: The fat-free alternative to XML. In Proc. of xml. Boston.
(page 96)

Damiani, E., Vimercati, S. de Capitani di, Paraboschi, S., & Samarati, P. (2000). Design and

implementation of an access control processor for XML documents. Computer Networks,

33 (1-6), 59–75.
(pages 169 and 170)

Day, R. (1977). Extending the concept of consumer satisfaction. Advances in Consumer

Research, 4 (1), 149–154.
(page 191)

Del Fiol, G., Rocha, R. A., Bradshaw, R. L., Hulse, N. C., & Roemer, L. K. (2005). An

XML model that enables the development of complex order sets by clinical experts. IEEE

Transactions on Information Technology in Biomedicine, 9 (2), 216-227.
(page 57)

Department of Health. (1999). National Service Framework for Mental Health. London: DH

Publications.
(page 22)

Department of Health. (2002). Delivering 21st century IT support for the NHS: national strategic

programme. London: Department of Health.
(page 157)

Department of Health. (2004a). Choosing health: making healthier choices easier. London: DH

Publications.
(pages 21 and 22)

Department of Health. (2004b). The National Service Framework for Mental Health - 5 years

on. London: DH Publications.
(pages 21 and 22)

Department of Health. (2004c). NHS improvement plan: putting people at the heart of public

services. London: DH Publications.
(pages 21 and 22)

215



References

Department of Health. (2006, April). Lowest suicide rate since records began.

www.dh.gov.uk/PublicationsAndStatistics/PressReleases/. (accessed October 22nd)
(page 22)

Dexter, P., Perkins, S., Overhage, J., Maharry, K., Kohler, R., & McDonald, C. (2001). A com-

puterized reminder system to increase the use of preventive care for hospitalized patients.

The New England journal of medicine, 345 (13), 965.
(page 46)

Dong, J., Du, H. S., Lai, K. K., & Wang, W. (2004). XML-based decision support systems:

case study for portfolio selection. International Journal of Information Technology and

Decision Making , 3 (4), 651-662.
(page 57)

Dotsika, F. (2003). From data to knowledge in e-health applications: an integrated system

for medical information modelling and retrieval. Medical Informatics and the Internet in

Medicine, 28 (4), 231-251.
(page 57)

Douglas, K., & Webster, C. (1999). The HCR-20 violence risk assessment scheme. Criminal

Justice and Behavior , 26 (1), 3.
(page 207)

Dowding, D., Mitchell, N., Randell, R., Foster, R., Lattimer, V., & Thompson, C. (2009).

Nurses’ use of computerised clinical decision support systems: a case site analysis. Journal

of Clinical Nursing , 18 (8), 1159–1167.
(page 165)

Doyle, M., & Dolan, M. (2000). Violence risk prediction. American Journal of Psychiatry , 177 ,

303-311.
(page 22)

Dumontier, M. (2010). Building an effective Semantic Web for health care and the life sciences.

Semantic Web, 1 (1), 131–135.
(page 209)

East, T., Heermann, L., Bradshaw, R., Lugo, A., Sailors, R., Ershler, L., et al. (1999). Efficacy

of computerized decision support for mechanical ventilation: results of a prospective multi-

center randomized trial. In Proceedings of the amia symposium (p. 251).
(page 40)

Edelstein, B., Heisel, M., McKee, D., Martin, R., Koven, L., Duberstein, P., et al. (2009).

Development and Psychometric Evaluation of the Reasons for Living–Older Adults Scale:

A Suicide Risk Assessment Inventory. The Gerontologist .

216



References

(page 207)

Estes, W. K. (1986). Memory storage and retrieval processes in category learning. Journal of

Experimental Psychology: General , 115 (2), 155-174.
(page 29)

Eylon, B., & Reif, F. (1984). Effects of knowledge organization on task performance. Cognition

and Instruction, 1 (1), 5–44.
(pages 30 and 208)

Fan, W., Chan, C., & Garofalakis, M. (2004). Secure XML querying with security views. In

Proceedings of the 2004 ACM SIGMOD international conference on Management of data

(pp. 587–598).
(page 170)

Fernández-López, M., & Gómez-Pérez, A. (2002). Overview and analysis of methodologies for

building ontologies. The Knowledge Engineering Review , 17 (02), 129–156.
(page 50)

Ferraté, A. (2010). Google Wave: Up and Running. Sebastopol, CA: O’Reilly Media.
(page 66)

Fiedler, K., & Armbruster, T. (1994). Two halfs may be more than one whole: Category split

effects on frequency illusions. Journal of Personality and Social Psychology , 66 , 633-645.
(page 39)

Fiske, S. T., & Taylor, S. E. (1991). Social cognition (2nd ed.). New York: McGraw-Hill.
(page 29)

Fitts, P. (1964). Perceptual-Motor Skill Learning. In Categories of human learning. Academic

Press Inc.
(page 38)

Fitzgerald, G., & Russo, N. (2005). The turnaround of the London ambulance service computer-

aided despatch system (LASCAD). European Journal of Information Systems, 14 (3),

244–257.
(page 165)

Fitzmaurice, D., Hobbs, F., Murray, E., Holder, R., Allan, T., & Rose, P. (2000). Oral anti-

coagulation management in primary care with the use of computerized decision support

and near-patient testing: a randomized, controlled trial. Archives of Internal Medicine,

160 (15), 2343.
(page 45)

Fitzpatrick, G. (2004). Integrated care and the working record. Health Informatics Journal ,

10 (4), 291.

217



References

(page 145)

Freyhof, H., Gruber, H., & Ziegler, A. (1992). Expertise and hierarchical knowledge represen-

tation in chess. Psychological Research, 54 (1), 32–37.
(pages 31 and 62)

Garg, A., Adhikari, N., McDonald, H., Rosas-Arellano, M., Devereaux, P., Beyene, J., et al.

(2005). Effects of computerized clinical decision support systems on practitioner per-

formance and patient outcomes a systematic review. Journal of the American Medical

Association, 293 (10), 1223–1238.
(pages 38, 40, 41, and 45)

Garner, W. R. (1974). The processing of information and structure. Hillsdale, NJ: Erlbaum.
(page 28)

Gauld, R. (2007). Public sector information system project failures: Lessons from a New Zealand

hospital organization. Government Information Quarterly , 24 (1), 102–114.
(page 165)

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriksson, H.,

et al. (2003). The evolution of Protégé: an environment for knowledge-based systems

development. International Journal of Human-Computer Studies, 58 (1), 89 - 123.
(pages 39, 64, and 199)

Gigerenzer, G. (1994). Why the distinction between single-event probabilities and frequencies

is important for psychology (and vice versa). In G. Wright & P. Ayton (Eds.), Subjective

probability (p. 129-161). New York: Wiley.
(page 39)

Gigerenzer, G., & Hoffrage, U. (1995). How to improve bayesian reasoning without instructions:

Frequency formats. Psychological Review , 102 (4), 684-704.
(page 39)

Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. (2010). Probabilistic models

of cognition: exploring representations and inductive biases. Trends in cognitive sciences,

14 (8), 357–364.
(page 28)

Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge sharing.

International Journal of Human Computer Studies, 43 (5), 907–928.
(pages 39 and 103)

Haarslev, V., & Möller, R. (2003). Racer: An owl reasoning agent for the semantic web. In

Proceedings of the international workshop on applications, products and services of web-

based support systems, in conjunction with the (pp. 91–95).

218



References

(page 200)

Haghighi, M., Koeda, M., Takai, T., & Tanaka, H. (2009). Development of clinical ontology for

mood disorder with combination of psychomedical information. Journal of medical and

dental sciences, 56 , 1–15.
(page 209)

Halcomb, E. J., & Davidson, P. M. (2006). Is verbatim transcription of interview data always

necessary? Applied Nursing Research, 19 (1), 38 - 42.
(page 61)

Hanson, R. K. (2005). Twenty years of progress in violence risk assessment. Journal of Inter-

personal Violence, 20 (2), 212-217.
(page 22)

Harold, R. E., & Means, W. S. (2002). XML in a nutshell (2nd ed.). Sebastopol,CA: O.Reilly.
(page 73)

Hawley, C. J., Gale, T. M., Sivakumaran, T., & Littlechild, B. (2010). Risk assessment in

mental health: Staff attitudes and an estimate of time cost. Journal of Mental Health,

19 (1), 88–98.
(pages 22 and 207)

Hawley, C. J., Littlechild, B., Sivakumaran, T., Sender, H., Gale, T. M., & Wilson, K. J.

(2006). Structure and content of risk assessment proformas in mental healthcare. Journal

of Mental Health, 15 , 437-448.
(pages 22, 166, and 207)

Hegazy, S. E., & Buckingham, C. D. (2009a). iARRIVE: an incremental algorithm for robust

relative influence values elicitation. In eTELEMED (p. 239-244). IEEE Computer Society.

(page 109)

Hegazy, S. E., & Buckingham, C. D. (2009b). A method for automatically eliciting node weights

in a hierarchical knowledge based structure for reasoning with uncertainty. International

Journal On Advances in Software, 2 , 76–85.
(page 109)

Hegazy, S. E., & Buckingham, C. D. (2010). Modulating membership grades to gain consensus

for fuzzy set uncertainty values in a clinical decision support system. In Advances in

human-oriented and personalized mechanisms, technologies and services (centric), 2010

third international conference on (p. 40 -45).
(page 98)

219



References

Hendy, J., Reeves, B., Fulop, N., Hutchings, A., & Masseria, C. (2005). Challenges to imple-

menting the national programme for information technology (NPfIT): a qualitative study.

British Medical Journal , 331 (7512), 331–336.
(page 157)

Higgins, N., Watts, D., Bindman, J., Slade, M., & Thornicroft, G. (2005). Assessing violence

risk in general psychiatry. Psychiatric Bulletin, 29 , 131-133.
(pages 22, 166, and 207)

Hoekstra, R. (2009). Ontology representation: Design patterns and ontologies that make sense.

Amsterdam, Netherlands: IOS Press.
(pages 55 and 209)

Holdsworth, N., & Dodgson, G. (2003). Could a new Mental Health Act distort clinical judge-

ment? a Bayesian justification of naturalistic reasoning about risk. Journal of Mental

Health, 12 (5), 451-462.
(page 22)

Holman, G. K. (2003). Definitive XSL-FO. Upper Saddle River, N.J: Prentice Hall.
(page 147)

Hougham, M. (1996). London Ambulance Service computer-aided despatch system. Interna-

tional Journal of Project Management , 14 (2), 103–110.
(page 165)

Huang, C., Li, J., & Ross, K. (2007). Can internet video-on-demand be profitable? In Proceed-

ings of the 2007 conference on applications, technologies, architectures, and protocols for

computer communications (pp. 133–144).
(page 139)

Hunt, T. (2010). Natural or artificial primary key? Using the Mifrenz children’s email application

as a case study. New Zealand Journal of Applied Computing and Information Technology

(NZJACIT), 14 (1), 16–23.
(page 107)

Iliffe, S., Austin, T., Wilcock, J., Bryans, M., Turner, S., & Downs, M. (2002). Design and

implementation of a computer decision support system for the diagnosis and management

of dementia syndromes in primary care. Methods of information in medicine, 41 (2), 98–

104.
(page 45)

Jacobson, D., & Jacobson, J. (2002). Flash and XML: a developer’s guide. London: Addison-

Wesley.
(page 64)

220



References

Jain, A. K., Prabhakar, S., & Pankanti, S. (2002). On the similarity of identical twin fingerprints.

Pattern Recognition, 35 (11), 2653 - 2663.
(page 121)

Jovanović, J., & Gas̆ević, D. (2005). Achieving knowledge interoperability: an XML/XSLT

approach. Expert Systems with Applications, 29 , 535-553.
(page 57)

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological review ,

80 , 237-251.
(page 39)

Kawamoto, K., Houlihan, C., Balas, E., & Lobach, D. (2005). Improving clinical practice using

clinical decision support systems: a systematic review of trials to identify features critical

to success. British Medical Journal , 330 (7494), 765.
(pages 43, 44, 45, and 98)

Kay, M. R. (2001). XSLT programmer’s reference. Wrox press.
(page 57)

Keogh, B., El-Sayed, D., & Pilkington, T. (2008). NHS Number Standard for Secondary Care

(England) – Appendix SC-E1: Exemplar Site Report: North Bristol NHS Trust (Tech.

Rep.). NHS Connecting for Health. Available from http://www.connectingforhealth

.nhs.uk/systemsandservices/nhsnumber/staff/documents/scappbristol.pdf
(page 184)

Kettles, A. M., & Woods, P. (2009). The theory of risk. In P. Woods & A. M. Kettles (Eds.),

Risk Assessment and Management in Mental Health Nursing (pp. 49–76). Chichester, UK:

John Wiley and Sons.
(page 145)

Kline, P. (2000). Handbook of psychological testing (2nd ed.). London: Routledge.
(page 92)

Knublauch, H., Tetlow, P., Wallace, E., & Oberle, D. (2006, March). A se-

mantic web primer for object-oriented software developers (W3C Note). W3C.

(http://www.w3.org/TR/2006/NOTE-sw-oosd-primer-20060309/)
(page 53)

Koehler, D. J. (2000). Probability judgment in three-category classification learning. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 26 (1), 28-52.
(page 39)

Koehler, D. J., White, C. M., & Grondin, R. (2003). An evidential support accumulation model

of subjective probability. Cognitive Psychology , 46 (2), 152-197.

221

http://www.connectingforhealth.nhs.uk/systemsandservices/nhsnumber/staff/documents/scappbristol.pdf
http://www.connectingforhealth.nhs.uk/systemsandservices/nhsnumber/staff/documents/scappbristol.pdf


References

(page 39)

Kola, J., Harris, J., Lawrie, S., Rector, A., Goble, C., & Martone, M. (2010). Towards an

ontology for psychosis. Cognitive Systems Research, 11 (1), 42–52.
(page 209)

Kroll, L., Bailey, S., Myatt, T., McCarthy, K., Shuttleworth, J., Rothwell, J., et al. (2003). Men-

tal Health Screening Tool: SIFA. (www.youth-justiceboard.gov.uk/nr/rdonlyres/f1eda350-

70db-437c-8f3f-5d19fd57e533/0/sifa.pdf.)
(pages 67 and 88)

Kruschke, J. K. (2006). Locally Bayesian learning with applications to retrospective revaluation

and highlighting. Psychological Review , 113 (4), 677–698.
(page 29)

Kruschke, J. K. (2010). Bridging levels of analysis: comment on McClelland et al. and Griffiths

et al. Trends in cognitive sciences, 14 (8), 344.
(page 28)

Lacy, L. (2005). OWL: Representing information using the web ontology language. Crewe, UK:

Trafford Publishing.
(page 209)

Landeta, J. (2006). Current validity of the delphi method in social sciences. Technological

Forecasting and Social Change.
(page 70)

Lanzenberger, M., Sampson, J., & Rester, M. (2010). Ontology visualization: Tools and tech-

niques for visual representation of semi-structured meta-data. Journal of Universal Com-

puter Science, 16 (7), 1036–1054.
(page 200)

Laplante, P., Zhang, J., & Voas, J. (2008). What’s in a Name? Distinguishing between SaaS

and SOA. IT Professional , 10 (3), 46–50.
(page 183)

Larkin, J. (1980). Skilled problem solving in physics: A hierarchical planning model. Journal

of Structural Learning , 6 (4), 269–294.
(pages 30 and 208)

Lee, J., & Ware, B. (2003). Open source Web development with LAMP: using Linux, Apache,

MySQL, Perl, and PHP. London: Addison Wesley.
(page 149)

222



References

Leopold, J., Coalter, A., & Lee, L. (2009). A Generic, Functionally Comprehensive Approach

to Maintaining an Ontology as a Relational Database. In Proceedings of the ICOSE 2009:

International Conference on Ontological and Semantic Engineering. ICOSE.
(page 54)

Lewis, A. (2002). Health informatics: information and communication. Advances in Psychiatric

Treatment , 8 (3), 165.
(page 147)

Lewis, G., Sharp, D., Bartholomew, J., & Pelosi, A. (1996). Computerized assessment of

common mental disorders in primary care: effect on clinical outcome. Family Practice,

13 (2), 120.
(pages 41 and 45)

Loney, K. (2009). Oracle database 11g: the complete reference. New York: McGraw-Hill

Professional.
(page 161)

Luciano, J., & Stevens, R. (2008). OWL: PAX of mind or the AX? Experiences of Using OWL

in the Development of BioPAX. OWL: Experiences and Directions, Gaithersburg, MD,

USA.
(page 40)

Maden, A. (2001). Practical application of structured risk assessment. The British Journal of

Psychiatry , 178 , 479.
(page 22)

Maden, A. (2003). Standardised risk assessment: why all the fuss? Psychiatric Bulletin, 25 ,

129-131.
(page 22)

Maden, A., Scott, F., Burnett, R., Lewis, G., & Skapinakis, P. (2004). Offending in psychiatric

patients after discharge from medium secure units: prospective national cohort study.

British Medical Journal , 328 , 1534.
(page 22)

Mangano, S. (2006). XSLT cookbook (2nd ed.). Sebastopol, CA: O’Reilly.
(page 151)

Marian, A., Abiteboul, S., Cobéna, G., & Mignet, L. (2001). Change-centric management of

versions in an XML warehouse. In Proceedings of the international conference on very

large data bases (pp. 581–590).
(page 130)

223



References

Maviglia, S., Zielstorff, R., Paterno, M., Teich, J., Bates, D., & Kuperman, G. (2003). Au-

tomating complex guidelines for chronic disease: lessons learned. Journal of the American

Medical Informatics Association, 10 (2), 154.
(page 46)

Mays, N., & Pope, C. (2000). Qualitative research in health care: Assessing quality in qualitative

research. British Medical Journal , 320 , 50-52.
(page 63)

McClelland, J., Botvinick, M., Noelle, D., Plaut, D., Rogers, T., Seidenberg, M., et al. (2010).

Letting structure emerge: connectionist and dynamical systems approaches to cognition.

Trends in Cognitive Sciences, 14 (8), 348–356.
(page 28)

McGuinness, D. L., & Harmelen, F. van. (2004, February). OWL web ontology language

overview (W3C Recommendation). W3C. (http://www.w3.org/TR/2004/REC-owl-

features-20040210/)
(page 52)

Mealling, M., & Denenberg, R. (2002). RFC 3305: Uniform Resource Identifiers (URIs), URLs,

and Uniform Resource Names (URNs): Clarifications and Recommendations (Tech. Rep.).

IETF. Available from http://tools.ietf.org/html/rfc3305
(page 105)

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological

Review , 85 (3), 207-238.
(page 28)

Meyer, M. A., & Booker, J. M. (2001). Eliciting and analyzing expert judgment: A practical

guide. Philadelphia: SIAM.
(page 80)

Mikroyannidis, A., & Theodoulidis, B. (2010). Ontology management and evolution for business

intelligence. International Journal of Information Management .
(page 106)

Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity

for processing information. Psychological Review , 63 , 81-97.
(page 92)

Mittelbach, F., & Goossens, M. (2004). The LaTeX companion (2nd ed.). Boston: Pearson.
(page 147)

Monahan, J., Steadman, H. J., Appelbaum, P. A., Robbins, P. C., Mulvey, E. P., Silver, E. R.,

et al. (2000). Developing a clinically useful actuarial tool for assessing violence risk. British

Journal of Psychiatry , 176 , 312-319.

224

http://tools.ietf.org/html/rfc3305


References

(page 22)

Motik, B. (2007). On the Properties of Metamodeling in OWL. Journal of Logic and Compu-

tation, 17 (4), 617.
(page 52)

Murphy, G., & Lassaline, M. (1997). Hierarchical structure in concepts and the basic level of

categorization. In K. Lamberts & D. Shanks (Eds.), Knowledge, concepts and categories

(pp. 93–131). Cambridge, MA: MIT Press.
(pages 31 and 62)

Musen, M., Shahar, Y., & Shortliffe, E. (2001). Clinical decision-support systems. In E. Short-

liffe, L. Perreault, G. Wiederhold, & L. Fagan (Eds.), Medical Informatics: Computer Ap-

plications in Health Care and Biomedicine. Second ed. (pp. 573–609). New York: Springer.

(pages 38 and 39)

National Confidential Inquiry. (2006). Avoidable deaths: Five year report of the Na-

tional Confidential Inquiry into suicide and homicide by people with mental illness.

(http://www.medicine.manchester.ac.uk/psychiatry/research/suicide/prevention/nci/

reports/avoidabledeathsfullreport.pdf)
(page 22)

National Risk Management Programme. (2007). Best practice in managing risk. London:

Department of Health.
(pages 23 and 207)

Neuendorf, K. (2002). The content analysis guidebook. London: Sage.
(page 61)

NHS Executive. (1999). Mental Health National Service Framework. London: Department of

Health.
(page 21)

Nixon, R. (2009). Learning PHP, MySQL, and JavaScript (1st ed.). Sebastopol, CA: O’Reilly.

(page 151)

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship.

Journal of Experimental Psychology: General , 115 (1), 39-57.
(page 28)

Nosofsky, R. M. (1992). Exemplars, prototypes, and similarity rules. In A. F. Healy, S. M. Koss-

lyn, & R. M. Shiffrin (Eds.), From learning theory to connectionist theory. Essays in honor

of William K. Estes (Vol. 1, p. 149-167). Hillsdale: New Jersey.

225



References

(page 28)

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based cate-

gory representation and connectionist learning rules. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 18 (2), 211-233.
(page 28)

Novak, J. D. (2003). The promise of new ideas and new technology for improving teaching and

learning. Cell Biology Education, 2 , 122-132.
(page 61)

Patel, A., Harrison, A., & Bruce-Jones, W. (2009). Evaluation of the risk assessment matrix: a

mental health triage tool. British Medical Journal , 26 (1), 11.
(page 89)

Peleg, M., Boxwala, A., Bernstam, E., Tu, S., Greenes, R., & Shortliffe, E. (2001). Sharable

representation of clinical guidelines in GLIF: relationship to the Arden Syntax. Journal

of Biomedical Informatics, 34 (3), 170–181.
(page 38)

Peleg, M., & Tu, S. (2006). Decision support, knowledge representation and management in

medicine. Methods Inf Med , 45 (Suppl 1), 72–80.
(pages 38 and 45)

Pfleeger, S. L., & Atlee, J. M. (2009). Software Engineering: Theory and Practice (4th Edition).

NJ: Prentice Hall.
(page 105)

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental

Psychology , 77 , 353-363.
(page 29)

Power, D. (2002). Decision Support Systems: Concepts and Resources for Managers. Westport,

CT: Quorum Books.
(page 103)

Rector, A., & Welty, C. (2005). Simple part-whole relations in OWL Ontologies [W3C Working

Draft].

(http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/)
(page 209)

Roaldset, J., Hartvig, P., & Bjørkly, S. (2010). V-RISK-10: Validation of a screen for risk of

violence after discharge from acute psychiatry. European Psychiatry .
(pages 67 and 88)

226



References

Rogers, A., & Mead, N. (2004). More than technology and access: primary care patients’ views

on the use and non-use of health information in the Internet age. Health & Social Care in

the Community , 12 (2), 102–110.
(page 165)

Rollman, B., Hanusa, B., Lowe, H., Gilbert, T., Kapoor, W., & Schulberg, H. (2002). A random-

ized trial using computerized decision support to improve treatment of major depression

in primary care. Journal of General Internal Medicine, 17 (7), 493–503.
(page 41)

Rönnau, S., Pauli, C., & Borghoff, U. (2008). Merging changes in XML documents using reliable

context fingerprints.

(page 130)

Rottenstreich, Y., & Tversky, A. (1997). Unpacking, repacking, and anchoring: Advances in

support theory. Psychological Review , 104 , 406-415.
(page 39)

Rouse, W., & Morris, N. (1986). Understanding and enhancing user acceptance of computer

technology. IEEE Transactions on Systems, Man, and Cybernetics, 16 , 965–973.
(page 165)

Roy, A., Matthews, H., Clifford, P., Fowler, V., & Martin, D. (2002). Health of the Nation

Outcome Scales for People with Learning Disabilities (HoNOS–LD). The British Journal

of Psychiatry , 180 (1), 61.
(page 193)

Ruland, C., & Bakken, S. (2002). Developing, implementing, and evaluating decision sup-

port systems for shared decision making in patient care: a conceptual model and case

illustration. Journal of biomedical informatics, 35 (5-6), 313–321.
(page 43)

Saint-Andre, P. (2005). Streaming XML with Jabber/XMPP. IEEE Internet Computing , 82–89.

(page 66)

Sandhu, R., & Samarati, P. (2002). Access control: principle and practice. Communications

Magazine, IEEE , 32 (9), 40–48.
(page 169)

Sarang, P. (2006). Pro Apache XML. Berkley, CA: Apress.
(page 161)

Schmitt, C. (2010). CSS cookbook (3rd ed.). Sebastopol,CA: O.Reilly.

227



References

(page 147)

Schriger, D., Gibbons, P., Langone, C., Lee, S., & Altshuler, L. (2001). Enabling the diagnosis of

occult psychiatric illness in the emergency department: A randomized, controlled trial of

the computerized, self-administered PRIME-MD Diagnostic System. Annals of emergency

medicine, 37 (2), 132–140.
(page 41)

Scott, J., Rundall, T., Vogt, T., & Hsu, J. (2005). Kaiser Permanente’s experience of implement-

ing an electronic medical record: a qualitative study. British Medical Journal , 331 (7528),

1313–1316.
(page 165)

Scott, M. (2009). Simply Effective Cognitive Behaviour Therapy: A Practitioner’s Guide. New

York, NY: Routledge.
(page 196)

Seibel, P. (2005). Practical common lisp. Berkeley, California: Apress.
(page 95)

Shortliffe, E. (1976). Computer-based medical consultations: MYCIN. New York: Elsevier.
(page 38)

Siau, K., & Tan, X. (2005). Improving the quality of conceptual modelling using cognitive

mapping techniques. Data & Knowledge Engineering , 55 , 343-365.
(page 61)

Silverman, D. (Ed.). (2004). Qualitative research: theory, method and practice. London: Sage.
(page 72)

Sim, I., Gorman, P., Greenes, R., Haynes, R., Kaplan, B., Lehmann, H., et al. (2001). Clini-

cal decision support systems for the practice of evidence-based medicine. Journal of the

American Medical Informatics Association, 8 (6), 527.
(pages 38, 43, 45, and 98)

Simon, S., Kaushal, R., Cleary, P., Jenter, C., Volk, L., Orav, E., et al. (2007). Physicians and

electronic health records: a statewide survey. Archives of internal medicine, 167 (5), 507.
(page 43)

Singleton, N., Bumpstead, R., Lee, A., & Meltzer, H. (2003). Psychiatric morbidity among

adults living in private households, 2000. International Review of Psychiatry , 15 (1), 65–

73.
(page 21)

Singleton, N., & Lewis, G. (2003). Better or worse: a longitudinal study of the mental health of

adults living in private households in Great Britain. Department of Health.

228



References

(page 21)

Sittig, D., Wright, A., Osheroff, J., Middleton, B., Teich, J., Ash, J., et al. (2008). Grand

challenges in clinical decision support. Journal of Biomedical Informatics, 41 (2), 387–392.

(pages 42, 45, and 201)

Skegg, K. (2005). Self-harm. Lancet , 366 , 1471-1483.
(page 22)

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: the early epochs of category

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24 ,

1411-1430.
(page 29)

Smith, J. D., & Minda, J. P. (2000). Thirty categorization results in search of a model. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 26 , 3-27.
(page 29)

Spackman, K., Campbell, K., Côté, R., et al. (1997). SNOMED RT: a reference terminology

for health care. In Proceedings of the amia annual fall symposium (p. 640).
(page 201)

Stallings, W. (2009). Operating systems : Internals and design principles. Upper Saddle River

NJ.
(page 66)

Stewart, A., Lawrence, A., & Edwards, D. (2010). Uptake of Decision Support Systems in

the Forestry Sector in Great Britain (Tech. Rep.). Forestry Commission. Available

from http://www.forestry.gov.uk/pdf/Uptake of DSS Scoping Report Sept2010.p%

df/$FILE/Uptake of DSS Scoping Report Sept2010.pdf
(page 165)

Tabbers, H., Kester, L., Hummel, H., & Nadolski, R. (2004). Interface design for digital courses.

Integrated E-learning: Implications for pedagogy, technology and organization, 100–111.
(page 202)

Tamblyn, R., Huang, A., Perreault, R., Jacques, A., Roy, D., Hanley, J., et al. (2003). The

medical office of the 21st century (MOXXI): effectiveness of computerized decision-making

support in reducing inappropriate prescribing in primary care. CMAJ: Canadian Medical

Association Journal , 169 (6), 549–556.
(page 40)

Tamineé, O., & Dillmann, R. (2003). KaViDo. A web-based system for collaborative research

and development processes. Computers in Industry , 42 , 29-45.

229

http://www.forestry.gov.uk/pdf/Uptake_of_DSS_Scoping_Report_Sept2010.p%df/$FILE/Uptake_of_DSS_Scoping_Report_Sept2010.pdf
http://www.forestry.gov.uk/pdf/Uptake_of_DSS_Scoping_Report_Sept2010.p%df/$FILE/Uptake_of_DSS_Scoping_Report_Sept2010.pdf


References

(page 57)

Tidwell, D. (2008). XSLT, Second Edition. Sebastopol, CA: O’Reilly.
(page 73)

Timm, J., & Gannod, G. (2005). A Model-Driven Approach for Specifying Semantic Web

Services. In Proceedings of the ieee international conference on web services (pp. 313–

320).
(page 40)

Tomić, B., Jovanović, J., & Devedz̆ić, V. (2006). Javadon: an open-source expert system shell.

Expert Systems with Applications, 31 , 595-606.
(page 57)

Trivedi, M., Daly, E., Kern, J., Grannemann, B., Sunderajan, P., & Claassen, C. (2009).

Barriers to implementation of a computerized decision support system for depression: an

observational report on lessons learned in” real world” clinical settings. BMC Medical

Informatics and Decision Making , 9 (1), 6.
(pages 47 and 48)

Tudorache, T., Noy, N., Tu, S., & Musen, M. (2008). Supporting collaborative ontology devel-

opment in protégé. In Proceedings of the 7th international conference on the semantic web

(pp. 17–32).
(page 200)

Tversky, A., & Kahneman, D. (1982). Evidential impact of base rates. In D. Kahneman,

P. Slovic, & A. Tversky (Eds.), Judgement under uncertainty: Heuristics and biases

(p. 153-160). Cambridge: Cambridge University Press.
(page 39)

Vaswani, V. (2009). MySQL Database Usage & Administration. New York: McGraw-Hill

Professional.
(page 161)

Vickers, B. (1994). Designing layered functionality within group decision support systems.

Decision Support Systems, 11 (1), 83–99.
(page 89)

W3C OWL Working Group. (2009). OWL 2 web ontology language document overview (W3C

Recommendation). W3C. (http://www.w3.org/TR/2009/REC-owl2-overview-20091027/)

(page 209)

Waters, B. (2005). Software as a service: A look at the customer benefits. Journal of Digital

Asset Management , 1 (1), 32–39.

230



References

(page 183)

Watts, D., Bindman, J., Slade, M., Holloway, F., Rosen, A., & Thornicroft, G. (2004). Clinical

assessment of risk decision support (CARDS): The development and evaluation of a feasible

violence risk assessment for routine psychiatric practice. Journal of Mental Health, 13 (6),

569-581.
(pages 67, 88, and 89)

Weibel, S. (1997). The Dublin Core: a simple content description model for electronic resources.

Bulletin of the American Society for Information Science and Technology , 24 (1), 9–11.
(page 52)

Weingart, S., Toth, M., Sands, D., Aronson, M., Davis, R., & Phillips, R. (2003). Physi-

cians’ decisions to override computerized drug alerts in primary care. Archives of internal

medicine, 163 (21), 2625.
(page 42)

Weir, C., Lees, K., MacWalter, R., Muir, K., Wallesch, C., McLelland, E., et al. (2003).

Cluster-randomized, controlled trial of computer-based decision support for selecting long-

term anti-thrombotic therapy after acute ischaemic stroke. QJM: monthly journal of the

Association of Physicians, 96 (2), 143.
(page 45)

Whiteford, H. (2003). Responding to the burden of mental illness. In J. Sussex (Ed.), Mental

health economics and policy in a global context (p. 5-8). Office of Health Economics.
(page 21)

Wing, J., Beevor, A., Curtis, R., Park, S., Hadden, S., & Burns, A. (1998). Health of the Nation

Outcome Scales (HoNOS). research and development. The British Journal of Psychiatry ,

172 (1), 11.
(page 193)

Wirth, N. (1971). Program development by stepwise refinement. Communications of the ACM ,

14 (4), 221–227.
(page 208)

Wright, A., Sittig, D., Ash, J., Sharma, S., Pang, J., & Middleton, B. (2009). Clinical decision

support capabilities of commercially-available clinical information systems. Journal of the

American Medical Informatics Association, 16 (5), 637.
(page 45)

Zadeh, L. A. (1965). Fuzzy sets. Information Control , 8 , 338-353.
(page 30)

231



Appendices

232



A
Tree Manipulation Keywords Used Within Structured

Comments

Focus groups were used to review and continue restructuring of risk trees that had been returned

with comments by the individual experts. Some of the changes required were additional to the

functionality provided by the Flash program and so keywords denoting these changes were put

into the comment boxes of nodes that the focus groups determined should be altered in the

manner defined by the keyword. XSLT was then used to detect the keywords and execute the

instructions accordingly, which bypassed having to change the Flash software. This appendix

provides the keyword definitions.

• GENERIC [path to generic node ] means the concept is defined generically and the new

definition will replace the current one. Display node name and the statement that the

node is generically defined elsewhere. Do not display any subcomponents. The XSLT

transformation deletes subcomponents and instead inserts a generic="path to generic

node " attribute.

233



• GENERIC-DATUM [path to generic node ] means the datum repeats and is held else-

where, within a generic nodes section of the tree. Used for purposes of copying over

question text from the generic location via XSLT, so that a question is not continually

repeated manually in all instances.

• DELETE LEVEL Take all the retained children of this node and attach them directly to the

parent node.

• COPY: [path to node to copy ] define this node by the node at the given path following

the copy keyword. It overwrites the subcomponents of the node with those at the path.

• ADD: name [new name]; path [path]; description [description] . For nodes that

must be added as subcomponents to the added node, either from node at given path, or

as described. If it is desired to add a node that exists elsewhere but where the subnodes

are required only as help for the added node, then path keyword should be replaced by a

lower-case add-help keyword. Note that it is therefore not possible to have both a path

and an add-help.

• REMOVE For nodes that are no longer part of the sense of the parent concept because of

some change to that concept. So the node is not to be part of the help box and must be

completely removed from the structure, compared to other deleted nodes which become

part of the parent concept definition (as help).

• REORDER [n ] Put this node in nth position with respect to the siblings (or place at the

end).

• HELP [path to node that is to be included as part of the defining help for

the node ]. There may be several nodes to include, in which case the paths are separated

by a double asterisk, as follows: HELP [generic concepts >> appearance indicators

of self neglect >> skin >> colour ** generic concepts >> appearance indicators

of self neglect >> skin >> dehydrated]. “Phantom” node names (free text or deleted

nodes) can also be added.

• HELP INSTRUCTIONS [some instructions ]. Free form text about the help attribute.

• LINK [path to node] Used to show links between nodes that will be accommodated

eventually by ri-modifiers.

234



• RELOCATE [instructions ]. Used if it is easier to explain moves of a concept rather than

using the more laborious add and delete approach.

• VALUES [data type or values to include for node ] Nodes with qualitative answers

that do not lie on a range are shown by this code word, followed by the values it can

take (which must be mutually exclusive). These have automatic mgs of 1 or 0 assigned,

depending on whether they are present or absent. If there is no values keyword in the

comment box, it is to be assumed that values are along a scale. Additionally defined data

types include integer, date-year, date-day etc.

• [g ] To denote generic nodes that are to be kept as cohesive wholes: “g” for “generic”.

These nodes will have the same name wherever they occur.

• [gd ] for generic concepts that are clearly not homogenous may be kept but with names

that reflect their different locations. This is the case for feelings/emotions and, possibly,

social context. These nodes will be labelled “gd” for “generic distinct”. They will have

names that reflect their locations, but their structures will be the same. The difference

will be in the internal RIs.

235



B
Stages Involved in Enacting Tree Changes Using XSLT

Enacting of the tree-manipulation directives derived from structured comments was carried out

using XSLT. An algorithmic approach was taken to achieving this, with the manipulations broken

down into modular stages. Stylesheets were created to implement the stages. The Knowledge

hierarchy XML file was then transformed by passing it through each of the stages. This appendix

provides a brief description of each stage of transformation.

STAGE 1: REORDER (phase 1) : Preparation for reorder. Involves creating temporary

attributes.

STAGE 2: REORDER (phase 2) Applies the re-order directive and removes all the re-

order and temporary attributes.

STAGE PRE-COPY: Convert user-friendly paths to XPath paths. Escape all the apostro-

phes from node labels and create temporary attributes with the actual label, and actual

renamedLabel. This is because XPath statements that are to be created and executed

dynamically (e.g., for copy operations) are problematic if the statement has an apostrophe

in it.

236



STAGE 3: COPY (pass 1) : This involves selecting each node element having a copy at-

tribute. These elements’ sub-elements are then deleted. The descendants of the node

referred to in the copy attribute are then copied over to the present element. The copy

keyword is no longer included as an attribute of the current element.

STAGE POST-COPY: Undo that which was done by the PRE-COPY stage.

STAGE 4: ADD: This involves converting all the “added-node” elements into “node” ele-

ments and creating a (or prepending to any pre-existing) comment to indicate this as being

a user created node. Additionally appending to the comment anything that may have

been contained in a description attribute. The result of this is that added nodes will

become normal nodes and will not have a description attribute.

STAGE PRE-COPY: As described earlier.

STAGE 5: COPY (pass 2): This involves selecting each “node” element having a “copy”

attribute (there will be some because “added-node” elements will not have been touched

by COPY (pass 1)). These elements’ sub-elements are then deleted. The descendants of

the node referred to in the copy attribute are then copied over to the present element. The

copy keyword is no longer included as an attribute of the current element. NOTE: in the

intermediate xml file (which will have been generated prior to STAGE 1), any paths that

were part of the “added-node” definition will have been transformed into copy attributes.

So COPY (pass 2) will have the effect of completing the ADD operation.

STAGE POST-COPY: As described earlier.

STAGE PRE-COPY: As described earlier.1

STAGE 6: HELP (phase 1): Parse all paths from the help attributes and replace attributes

with ‘help’ nodes containing the content of the trees referenced by the paths. (NB: this

is slightly different from a COPY because here the referenced node and its descendants

are also copied, whereas in COPY it is just the descendants of the referenced node). Also

NB: there are two types of content that the stylesheet can expect for a help attribute: a)

a path, b) a short-form path to a sibling node i.e., just the name of a sibling node. Both

types will be processed as described above. Multiple paths within a help attribute can

1This stage and the one preceding, although strictly not necessary, have been introduced for reasons of main-
taining modularity.

237



be separated by ‘ ** ’. However, within the help attribute there must only be paths of

either type a or type b (but not both).

STAGE POST-COPY: As described earlier.

STAGE HELP-CLEANUP: Newly created ‘help’ nodes may have inside them, nodes that

are marked as deleted or removed. Since these are descendants of a help node, these are

not in fact to be deleted. Therefore the delete and remove attributes from descendants

of ‘help’ nodes should simply be deleted.

STAGE 7: REMOVE: Take out all of the nodes that have a remove attribute and also, their

descendants.

STAGE 8: HELP (phase 2): Check if ALL of any node’s ‘node’ children have a delete at-

tribute. If so, then the node is (at a later stage) going to be a datum (because of the

delete operations), hence add the subtree (i.e., nodes marked for deletion) of this node to

the current node as a ‘help’ node.

STAGE HELP-CLEANUP: As described earlier.

STAGE HELP-TO-ATTRIBUTES: There isn’t a straightforward way to tell the flash tools’

XML tree component to ignore ‘help’ nodes. Therefore, this stage is introduced to take

out the ‘help’ node and replace it with an attribute that contains paths of labels to each

leaf node of the now defunct ‘help’ node. Each path is separated by a ‘ ** ’. At some

future date, these paths could be extracted and trees built from them (if need be).

STAGE 9: DELETE: Delete all the nodes (and their sub-trees) that have a delete attribute.

STAGE PRE-COPY: As described earlier.

STAGE 10: GENERIC: Anything presently under the node marked by this attribute AND

where the attribute is not equal to g|gd is deleted. The instance’s name is also changed

to reflect the to-be-copied-from generic node’s name in cases where the to-be-copied-from

generic node has a rename attribute against it. Generic nodes are instantiated wherever

they appear via looking at the path in the ‘generic’ attribute of the current node and

copying over the contents below that location (i.e., nothing from that location or above it)

to the current location. In cases where there is a g|gd instead of a path, no instantiation

is performed.

238



STAGE POST-COPY: As described earlier.

STAGE 11: DELETE LEVEL: Take all the retained children of this node and attach them

directly to the parent node.

STAGE 12: RENAME: the rename directive is applied.

STAGE 13: COMMENT-CLEANUP: Any comments in the tree are removed.

NB: Relocates should be written in terms of adds and removes

NB: At the end of each stage, if an attribute type has become defunct it is removed from the

XML file.

NB: Other attributes such as help-instructions and link will remain in the file untouched,

since no transformation of these attributes would be logical.

239



C
Algorithm for expanding “multiple-tick” nodes

The multiple-tick attribute is one that applies to datum nodes that have multiple answers

and that are subsequently converted into a concept for the RIT with each answer as a child. An

example is the “targets of harm to others” node where there can be several targets, e.g.:

<node label="targets of harm to others" values="nominal"

code="hto-targets"

multiple-tick="(&quot;Has the person targeted any particular group of

people rather than complete strangers?&quot; (

(DOMESTIC &quot;Has the person harmed within a domestic setting?&quot;)

(FRIENDS-COLLEAGUES &quot;Has the person harmed friends/colleagues?&quot;)

(HEALTH-WORKERS &quot;Has the person harmed any health workers?&quot;)

(AUTHORITY-FIGS &quot;Has the person harmed any authority figures?&quot;)

))"/>

The algorithm below details the conversion process.

240



1. Create a filter-q attribute with the value equal to the first question in the

multiple-tick attribute value.

2. Create child nodes with labels and codes equal to labels contained in the association

list that is within the multiple-tick attribute.

3. Create and instantiate respective question attributes within each child from asso-

ciated question data that is contained in the multiple-tick attribute.

4. For each child, give it a value-mg attribute value of "((yes 1)(no 0))" and a

values="nominal" attribute.

• Note: an empty multiple-tick attribute is retained within the concept so that data

gathering tools can still render the nodes using checkboxes should they choose.

Application of the algorithm to the “targets of harm to others” node results in the following

expansion:

<node label="targets of harm to others" code="hto-targets" values="nominal"

multiple-tick=""

filter-q="Has the person targeted any particular group of people

rather than complete strangers?"

<node label="domestic" code="domestic"

question="Has the person harmed anyone within the

domestic setting?"

values="nominal" value-mg="((yes 1) (no 0))" />

<node label="friends colleagues" code="friends-colleagues"

question="Has the person harmed friends/colleagues?"

values="nominal" value-mg="((yes 1) (no 0))" />

<node label="health workers" code="health-workers"

question="Has the person harmed any health workers?"

values="nominal" value-mg="((yes 1) (no 0))" />

<node label="authority figs" code="authority-figs"

question="Has the person harmed any authority figures?"

values="nominal" value-mg="((yes 1) (no 0))" />

</node>

241



D
Unified Reconciliation Algorithm

The algorithm outlined in pseudocode below is used to reconcile a fingerprint in RITnew with

the corresponding fingerprint(s) in RIToriginal, and then retrieve associated RIs. The algorithm

determines which of the edit cases outlined in table 8.2 the RITnew fingerprint belongs to. Once

the case(s) have been determined, the algorithm is in a position to query the reconciled node(s)

for its RI value(s).

IF (able to find aaaaa’ in STnew ) THEN

//this is not a multiple-tick child node

IF (RITnew fingerprint is NOT hyphenated ) THEN

//RITnew fingerprint has the form aaaaa’

IF (able to reconcile aaaaa’ with aaaaa ) THEN

IF (RIToriginal contains a node with fingerprint aaaaa ) THEN

//this is TYPE 1

retrieve the matched node’s RI value

ELSE

//this is TYPE 3

search the RIT for all fingerprints that end in -aaaaa.

242



//each location of the fingerprint is an

//instantiation of that node, hence

retrieve all the matched nodes’ RI values.

END IF

END IF

ELSE

//RITnew fingerprint has the form xxxxx’-aaaaa’ | yyyyy’-aaaaa’

//for simplicity, writing this as xxxxx’-aaaaa’

IF (able to reconcile aaaaa’ with aaaaa ) THEN

find xxxxx’ in STnew

IF (able to reconcile xxxxx’ with xxxxx AND

RIToriginal contains a node with fingerprint xxxxx-aaaaa ) THEN

//TYPE 4

retrieve the matched node’s RI value

ELSE

//TYPE 2 and/or 5

search the RIT for all fingerprints ending in -aaaaa or aaaaa.

//each location of the fingerprint is an

//instantiation of that node, hence

retrieve all the matched nodes’ RI values.

END IF

END IF

END IF

ELSE

//this case is a multiple-tick node’s generated child

MTChildCode = this node’s node-code

IF (RITnew fingerprint is hyphenated ) THEN

//this is TYPE 6, 7 or 10

find xxxxx’ in STnew

IF (able to reconcile xxxxx’ with xxxxx AND RIToriginal contains a

node with MTChildCode and fingerprint beginning with xxxxx- ) THEN

//TYPE 6

retrieve the matched node’s RI value

ELSE

//TYPE 7 or 10

search the RIT for all node instances with MTChildCode

//each location is an instantiation of that node, hence

retrieve all the matched nodes’ RI values.

END IF

ELSE

//TYPE 8 or 9

search the RIT for all node instances with MTChildCode

//each location is an instantiation of that node, hence

retrieve all the matched nodes’ RI values.

END IF;

END IF

243



E
Rules and Algorithms for Generating QTs

This appendix details the general rules that govern combinations of attributes within a QT

node. It then details the algorithms that are used to generate QTs at different Levels.

E.1 Rules Governing QT Attributes

The following rules should be used as guidance when generating QT nodes. These rules help

to clarify any ambiguity in relation to the exact attributes that are to be present in specific

use-cases.

1. An RIT will be used to generate separate QTs appropriate to each CAT Level.

2. An RIT node must contain a filter-q or a question for there to be an entry against the

node in the QT.

3. The layer attribute only exists for questions that should be displayed for asking at the

beginning of the assessment. The lower the value, the higher up the order of presentation

of the question.

244



E.1. RULES GOVERNING QT ATTRIBUTES

4. A QT node will never have both a question and a filter question to be asked. This is due

to the QT’s being matched to a tool Level. Therefore, in cases where a filter question

is to be asked, the QT node will have values="filter-q" and question="The filter

question text".

5. An RIT node may contain a filter-q as well as a layer attribute at the same time. In

these cases, the QT node will have values="filter-q". This is because the node is to be

treated exactly like a filter question node.

6. An RIT node may contain a layer attribute but NO filter-q attribute. If this is the

case, the contents of the corresponding QT node’s values attribute depends on whether

the RIT node is calculated to be a concept or a datum node in the final CAT: if it is a

concept node, then it will be values="layer" (implying a yes/no answer is to be solicited

by the tool); if it is a datum node, then values will take the contents of the values

attribute from the RIT node.

245



E.2. ALGORITHM FOR GENERATING A LEVEL 0 QT

E.2 Algorithm for Generating a Level 0 QT

Generating a Level 0 QT from an instantiated RIT requires consideration of the question,

filter-q, level and layer attributes. Deciding which nodes to include in the QT and what

the QT question and values attributes will contain is determined by the algorithm below,

which will operate on each RIT node.

IF (exists filter-q attribute )

Include this node in the QT;

QT question attribute = "RIT filter-q attribute text";

QT values attribute = "filter-q";

ELSE IF (exists question attribute )

IF (exists layer attribute );

QT question attribute = "RIT question attribute text";

IF (node will be a datum node after any instantiation that it may

require has taken place )

QT values attribute = "RIT values attribute text";

ELSE

//node will be a concept

QT values attribute = "layer";

END IF;

ELSE IF (exists level attribute )

//do nothing with this node, but carry on processing its children

ELSE

QT question attribute = "RIT question attribute text";

QT values attribute = "RIT values attribute text";

END IF;

END IF;

E.3 Algorithm for Generating QTs at Level 1 and Above

Generating a QT for a Level greater than zero from an instantiated RIT requires consideration

of the question, filter-q, level and layer attributes. Deciding which nodes to include in a

given Level’s QT and what the QT question and values attributes will contain is determined

by the following algorithm1, which will operate on each RIT node.2

1Note: the algorithm contains references to level-question and level-code attributes, which are intermediate
attributes automatically created during RIT generation to aid in generation of CATs /QTs at multiple levels.

2The algorithm for the Level 0 QT outlined in Section E.2 is essentially a simplified version of the algorithm
outlined here for the Level 1+ QT.

246



E.3. ALGORITHM FOR GENERATING QTS AT LEVEL 1 AND ABOVE

IF (exists a level attribute that <= QT level )

IF (exists level-question attribute )

QT question attribute = "RIT level-question attribute text";

QT code attribute = "RIT level-code attribute text if it exists.

Otherwise, RIT code attribute";

QT values attribute = "RIT values attribute text if the values

attribute exists.

Otherwise, ‘filter-q’ if a filter-q

attribute exists.

Otherwise, ‘layer’ if the layer attribute

exists.";

ELSE IF (exists question attribute )

QT question attribute = "RIT question attribute text";

QT values attribute = "RIT values attribute text if the values

attribute exists.

Otherwise, ‘filter-q’ if a filter-q

attribute exists.

Otherwise, ‘layer’ if the layer attribute

exists.";

QT code attribute = "RIT code attribute text";

ELSE

error: no question associated with this level;

END IF;

Do not go further down this subtree;

ELSE IF (exists filter-q attribute )

Include this node in the QT;

QT question attribute = "RIT filter-q attribute text";

QT values attribute = "filter-q";

ELSE IF (exists question attribute )

IF (exists layer attribute );

QT question attribute = "RIT question attribute text";

IF (node will be a datum node after any instantiation that it may

require has taken place )

QT values attribute = "RIT values attribute text";

ELSE

//node will be a concept

QT values attribute = "layer";

END IF;

ELSE IF (exists level attribute )

//do nothing with this node, but carry on processing its children

ELSE

QT question attribute = "RIT question attribute text";

QT values attribute = "RIT values attribute text";

END IF;

END IF;

247


