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Abstract

Linear typing schemes can be used to guarantee non-interference and so the soundness of
in-place update with respect to a functional semantics. But linear schemes are restrictive
in practice, and more restrictive than necessary to guarantee soundness of in-place update.
This limitation has prompted research into static analysis and more sophisticated typing
disciplines to determine when in-place update may be safely used, or to combine linear
and non-linear schemes. Here we contribute to this direction by defining a new typing
scheme that better approximates the semantic property of soundness of in-place update
for a functional semantics. We begin from the observation that some data is used only
in a “read-only” context, after which it may be safely re-used before being destroyed.
Formalising the in-place update interpretation in a machine model semantics allows us to
refine this observation, motivating three usage aspects apparent from the semantics that
are used to annotate function argument types. The aspects are (1) used destructively,
(2) used read-only but shared with result, and (3) used read-only and not shared with
the result. The main novelty is aspect (2) that allows a linear value to be safely read
and even aliased with a result of a function without being consumed. This novelty makes
our type system more expressive than previous systems for functional languages in the
literature. The system remains simple and intuitive, but it enjoys a strong soundness
property whose proof is non-trivial. Moreover, our analysis features principal types and
feasible type reconstruction, as shown in (Konecny, 2003b).

1 Introduction

The distinctive advantage of pure functional programming is that program func-
tions may be viewed as ordinary mathematical functions. Powerful proof principles,
such as equational reasoning with program terms and mathematical induction, are
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reverse_aux : L(A), L(A) → L(A)
def reverse_aux(l,acc) =

match l with
nil ⇒ acc

| cons(h,t) ⇒ reverse_aux(t,cons(h,acc))

reverse : L(A) → L(A)
def reverse(l) = reverse_aux(l, nil)

Fig. 1. Functional list reverse

available. These principles are sound and do not need to use stores or other auxil-
iary entities, as is invariably the case when reasoning about imperative programs,
as e.g. in Reynolds’ separation logic (Reynolds, 2002).

Consider the functional implementation of linked list reversal, as shown in Fig. 1.
This definition of reversal is readily verified by induction and equational reasoning
over the set of finite lists. On the other hand, implementing reversal imperatively
using pointers is (arguably) more cumbersome and error prone and, more seriously,
would be harder to verify using complicated reasoning principles for imperative
programs (see e.g. (Dor et al., 2000)).

The advantage of the usual imperative implementation, of course, is that it mod-
ifies its argument in-place, whereas with the usual functional implementation the
result must be created from scratch and garbage collection is necessary to salvage
heap space. However, if by static analysis a clever compiler could determine that
the original list l is not used after the call reverse(l), it would be safe to instead
use an optimised in-place update implementation, which avoids creating garbage.
To be safe, one must trust both the compiler optimisation and the static analysis.

If we want to simplify the static analysis and ensure that an in-place update
implementation is always possible, we can restrict programs using a linear typing
scheme. With linear typing, every variable is used exactly once (or, in an affine
linear system, at most once). However, it is well known that pure linear schemes
are overly restrictive for real programming and need to be relaxed so that variables
can be used more than once as far as possible. For example, consider the function
sumlist that operates on lists of integers:

sumlist : L(N) → N
def sumlist(l) =

match l with
nil ⇒ 0

| cons(h,t) ⇒ h + sumlist(t)

In a purely linear type system, we would not be able to use the list l after a call to
sumlist(l), but this function merely examines its argument; the list would actu-
ally remain intact under any reasonable implementation so the linearity restriction
that supposes it may be destroyed is overly restrictive.

Not only should the sumlist function inspect its argument list without modifying
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it, but the result it returns no longer refers to the argument list. This means that
we should be able to use l after the call to sumlist, so an expression like

cons(sumlist(l),reverse(l))

could be safely compiled even with the in-place implementation of reverse, if we
assume that evaluation occurs from left to right and the list l is not used again
afterwards.

There is less freedom with functions that return a result that contains some part
of the argument. An example is the function nth_tail that returns the nth tail of
a list:

nth_tail : N, L(A) → N
def nth_tail(n,l) =
if n<=0 then l else match l with

nil ⇒ nil
| cons(h,t) ⇒ nth_tail(n-1, t)

Unlike sumlist, the result of nth_tail may be shared (aliased) with the argument.
This aliasing means an expression

cons(nth_tail(2,l),nil)

will be sound, but

cons(nth_tail(2,l),cons(reverse(l),nil))

will not be soundly implemented using the in-place update version of reverse. If
l=[1,2,3], the expression should evaluate to the list [[3],[3,2,1]] but the in-
place version would yield [[1],[3,2,1]] because of the aliasing. So, if we want to
guarantee to use the in-place implementation of reverse, the second expression
should not be allowed in the language. Simpler example functions in the same
category as nth_tail, whose results share with the argument, include projection
functions and the identity function.

As another example, consider the append function:

append : L(A), L(A) → L(A)
def append(l,m) =

match l with
nil ⇒ m

| cons(h,t) ⇒ cons(h,append(t,m))

The desirable imperative implementation of append joins the second list to the
first one in-place, by modifying the final pointer; it returns its first argument that
now points to a new list. Thus, in append(l,m) the first list l has been destroyed so
we should treat that in the same way as arguments to reverse. But the second list
m is shared with the result, and so should be treated in the same way as arguments
to nth_tail.
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Usage aspects. Together with consideration of a machine model semantics for in-
place update, these observations lead us to introduce three usage aspects for vari-
ables, which are the central innovation in our type system. The usage aspects are:

• Aspect 1: modifying use, e.g., l in reverse(l) and append(l,m)

• Aspect 2: non-modifying use, but shared with result, e.g., m in append(l,m)

• Aspect 3: non-modifying use, not shared with result, e.g., l in sumlist(l).

As a first intuition, the numbers are in increasing order of “permissiveness to reuse”
in the terms. Variables may only be accessed once with aspect 1. Variables can be
used many times with aspect 2, but it prevents an aspect 1 usage later if inter-
mediate results are retained. Finally, variables can be freely used with aspect 3,
the pure “read-only” usage. It will become apparent later (e.g. Lemma 5.6) how
the ordering can be specified precisely and that it demonstrates itself also in other
forms than the one suggested by the intuition of “permissiveness to reuse”. The
fact that the usage aspects are numbered, rather than named mnemonically, will
allow us to make use of the ordering in the presentation of our type system.

Our type system decorates function arguments with usage aspects, and then
tracks the way that variables are used. For example, we can give the following
typings:

reverse : L(A)1 → L(A)
sumlist : L(A)3 → N

nth_tail : L(A)2, N3 → L(A)
append : L(A)1, L(A)2 → L(A)

Types, such as N, that do not involve any heap storage in our machine model can
always have the read-only aspect 3. We call these types heap-free. Functions that
have a heap-free result (like sumlist) may have aspect 3 for their non-heap-free
arguments, provided they are not modified when computing the result.

As will be seen later, these usage aspects have an intuitive interpretation in our
semantics but, perhaps surprisingly, the exact distinctions appear to be novel. Al-
though ours is not the first type system that relaxes strict linearity, we believe that
it is more expressive than other systems for functional languages, while remaining
simple and intuitive. Although even more expressive typing systems and specialised
program logics for aliasing exist, especially for low-level imperative languages, we
believe that our type structure has the advantage of being considerably less com-
plex than others, so that types may be more easily understood by the programmer.
The apparent simplicity does not mean that our system is easy to prove sound;
our soundness proof (that goes beyond traditional type safety) is quite involved
and reveals subtleties in the precise interpretation of the usage aspects. A further
advantage of our system is that it enjoys principal types and a feasible type re-
construction algorithm; this property is demonstrated elsewhere (Konečný, 2003b).
Specific comparison with other work appears at the end of the paper.
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Outline. In Section 2 we introduce our setting for studying usage aspects, which
is within a first-order linear functional programming language called LFPL, first
introduced in (Hofmann, 2000). The particular appeal of LFPL for us here is that it
has a canonical in-place update interpretation by using a special resource type that
mediates construction and destruction of inductive datatypes. As well as adding
usage aspects, we augment LFPL with a richer type structure, including two kinds
of products (⊗ and ×), that allows data structures with or without sharing to be
defined. We then give some larger examples that illustrate our usage aspects.

In Section 3 we present the formal syntax and typing rules. Although the types
themselves are simple, some of our rules have slightly intricate side-conditions;
but they can be explained by an intuitive reading of the meaning of the aspects. In
Section 4 we give an imperative operational semantics for LFPL that formalises how
its in-place interpretation works; practical implementations are described elsewhere.

In Section 5 we prove our central soundness result, which makes precise the
meaning of usage aspects and establishes that the in-place operational semantics
agrees with a safe, classical call-by-value operational semantics that is known to
correspond to the functional set-theoretic interpretation. This result justifies rea-
soning about the functional semantics and also proves that the various possibilities
for aspect annotations in our typing rules are sound. Significantly, this result goes
beyond most other published type safety results for type systems that do not con-
nect operational semantics with denotations. Finally, Section 6 concludes with a
comparison to some of the related work.

2 LFPL with usage aspects

Whereas functional languages enjoy powerful proof principles, imperative imple-
mentations that directly manipulate pointers enjoy efficiency. We are interested in
having the best of both worlds by using a semantics-preserving translation of func-
tional programs into imperative ones that use in-place update and need no garbage
collection, as far as possible. In previous work by the second author (Hofmann,
2000), a first-order functional language called LFPL was defined, together with
such a translation into C.

LFPL relies on some programmer assistance to manage memory but without
compromising the functional semantics in any way. This assistance is enabled by
augmenting (non-nullary) constructors of inductive datatypes such as cons with
an additional argument of an abstract “diamond” resource type 3. The elements
of 3 can be thought of as heap space areas; the diamond type corresponds exactly
to the heap space for storing a single cell of some inductive datatype.

To construct an element of an inductive type, we must supply a value of this
type. Values of type 3 can be obtained from formal parameters of functions or
by deconstructing elements of recursive types in a pattern match. Consider the
functions reverse and append discussed earlier, and implemented in LFPL in
Fig. 2. The functions have almost identical definitions as before, except that there
is now an extra argument to cons, both in pattern matches and in constructor
positions. The pattern match releases a 3 cell used for a list node, whereas the
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reverse_aux : L(A), L(A) → L(A)
def reverse_aux(l,acc) =

match l with
nil ⇒ acc

| cons(d,h,t) ⇒ reverse_aux(t,cons(d,h,acc))

reverse : L(A) → L(A)
def reverse(l) = reverse_aux(l, nil)

append : L(A), L(A) → L(A)
def append(l,m) =

match l with
nil ⇒ m

| cons(d,h,t) ⇒ cons(d,h,append(t,m))

Fig. 2. LFPL examples

constructor consumes one. The first argument to each use of cons in Fig. 2 is
a value of type 3; the cons on the right hand side of the match is “justified”
by the preceding cons pattern. The correspondence need not always be as local;
in particular, values of type 3 may be passed as arguments to and returned by
functions, as well as appear in data structures.

Although it may be realised as a pointer, there is no way to directly examine
or manipulate an element of 3, and in fact values of 3 are interchangeable in a
program. In the functional semantics cons(d,h,(cons(d’,h’,t))) is equivalent
to cons(d’,h,(cons(d,h’,t))).

Our LFPL implementations to date use a single 3 type that is large enough to
store a cell of any datatype in the program, so a d for a list cons constructor is also
interchangeable with a d for a tree node constructor. This largest-sized 3 approach
is potentially wasteful but gives flexibility and helps avoid garbage collection. It
could be improved by using several differently sized 3 types. The sizes in particular
positions could be inferred using a data-flow analysis of the program.

Linear typing in LFPL. In (Hofmann, 2000) it was shown that the semantics of a
translation of LFPL into C preserves the functional semantics of the source program
provided the latter admits an affine linear typing for inductive types and 3 types,
i.e., bound variables of inductive type are used at most once. The heap-free types
were not subject to any linearity restriction. Linearity guarantees that the memory
space pointed to by a 3 value is not needed anywhere else, which controls the space
usage of programs. It prevents function definitions such as:

twice : L(A) → L(N)
def twice(l) =
match l with
nil ⇒ nil

| cons(d,h,t) ⇒ cons(d,0,cons(d,0,twice(t)))
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The functional semantics of twice maps a list l to a list twice as long as l with zero
entries; on the other hand, the LFPL translation to C of the above code computes
a circular list!1

As one would hope, the translation of append in Fig. 2 appends one linked list
to another in place; again, the translation of a non-linear phrase like append(l,l)
results in a circular list, disagreeing with the functional semantics.

Linear typing together with the resource type 3 seems restrictive at first sight.
In particular, without dynamic creation of memory in the translation, we are heap-
bounded: no function can be written that increases the size of its input. Yet sur-
prisingly, a great many standard examples from functional programming fit very
naturally into the LFPL typing discipline, among them, insertion sort, quick sort,
tree sort, breadth-first traversal of a tree and Huffman’s algorithm. Moreover, in
(Hofmann, 2000) it was shown that every non-size-increasing function on lists over
booleans in the complexity class ETIME can be represented. The language is there-
fore useful where careful control over space usage is needed. If the typing is made
pure linear instead of affine, we could also prevent space leaks.

Nevertheless, if heap-boundedness is too restrictive for a particular domain, one
can easily add constants to the language that generate and destroy elements of
type 3, implemented using an external memory allocator; typings are shown later.
If we moreover assumed existence of a garbage collector, we could alleviate the
programmer from needing to always free memory. In this case we are getting back
to the ordinary functional programming setting of the introduction, except that we
have the new forms of pattern matching and data construction available, which can
be used to give the compiler directions about ways to reuse memory.

2.1 Adding usage aspects

Whether or not we are heap-bounded, the linear restrictions remain for the in-
place memory reuse interpretation. As with any other typing scheme, the linear
restriction rejects many semantically valid programs. In our context a program
is semantically valid if its translation to imperative code computes its functional
semantics.2 We cannot catch all semantically valid programs by a decidable typing
discipline, of course, but we can try to refine the type system to reduce the “slack”,
i.e., the discrepancy between the semantically valid programs and those that pass
the typing discipline.

Here we address one particular source for slack, namely the implicit assumption

1 Incidentally, we can implement twice in LFPL if we use another typing:

L(N⊗3)→ L(N)

where the argument list provides the right amount of extra space. In recent work with Steffen
Jost (Hofmann & Jost, 2003) and Dilsun Kırlı, we have shown that such additions of 3 types
can be automatically inferred, using integer linear programming.

2 We could show a slightly stronger soundness condition: a well-typed program in fact evaluates
with benign sharing as defined in (Hofmann & Jost, 2003). It means that the program will pass
certain conservative run-time checks of non-interference and thus the agreement with functional
semantics is not merely accidental.
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sort : L(L(N))1 → L(L(N))
def sort(l) =
match l with

nil ⇒ nil
| cons(d,h,t) ⇒ insert(d,h,sort(t))

insert : 31, L(N)2, L(L(N))1 → L(L(N))
def insert(d,l,ll) =
match ll with

nil ⇒ cons(d,l,nil)
| cons(d’,h,t) ⇒

if sumlist(l) > sumlist(h)
then cons(d’,h,insert(d,l,t))
else cons(d,l,cons(d’,h,t))

Fig. 3. Example: insertion sort

that every access to a variable is potentially destructive, i.e., changes the memory
reachable from this variable. This assumption is overly conservative: multiple uses
of a variable need not compromise semantic validity, as long as only the last one
is potentially destructive, and provided the results of the earlier accesses do not
interfere with an ultimate destructive access.

We model this observation by relaxing the linearity by adding the usage aspects
motivated in the introduction and using them to control the typing. The starting
point is with the typing for cons:

consA : 31, A2, L(A)2 → L(A)

The aspect 1 annotation indicates that the diamond argument d is destroyed in
cons(d,h,t) and must not be used again. Any function that consumes a diamond
element will give it aspect 1. The aspect 2 annotations on cons indicate that the
head and tail arguments of the constructor are not destroyed, and moreover, they
share with the result of the construction.

The typing rule for pattern matches allows some flexibility in usage aspect labels:

Γ ` enil : B

Γ, xd
id: 3, xh

ih: A, xt
it: L(A) ` econs : B i = min(id, ih, it)

Γ, x
i
: L(A) ` match x with nil⇒enil|cons(xd, xh, xt)⇒econs : B

This rule says that the usage aspect for a list x in an expression matching against
this list will be the most destructive aspect among the aspects exhibited for the
pieces of a cons cell in the econs expression. This rule now allows both destructive
matches (e.g., where the diamond xd is used to construct a new cell in econs, as in
reverse) and non-destructive matches (e.g., where the diamond xd is not used
and the list is only examined, as in sumlist).

The typing of cons and the rule for list elimination allows us to derive the usage
aspect typings given in the introduction for the corresponding LFPL programs.

A longer example is the LFPL implementation of insertion sort in Fig. 3. The
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sort function here sorts a list of integer lists in ascending order of their sums.
In the comparison test sumlist(l) > sumlist(h) both variables are used with
aspect 3 and thus these variables can be safely re-used in the branches of the
if statement. The type of the insert function indicates that insert(d,a,l)

consumes the diamond d, inserts the data item a without modifying it, but sharing
with the result; moreover, it destroys the input list l.

2.2 Sharing data

The strict linear type system of LFPL as presented in (Hofmann, 2000) prevents
sharing in data structures, which can lead to bad space behaviour in some programs.
The append function shows how we might be able to allow some limited sharing
within data structures but still use an in-place update implementation, provided
we take care over when modification is allowed. For example, we would like to allow
the expression

let x=append(u,w) and y=append(v,w) in e

provided that we don’t refer to x or y in e after the other has been modified.
Similarly, we would like to allow a tree that has sharing amongst sub-trees, in the
simplest case a node constructed as follows:

let u=sharednode(d,(a,t,t)) in e

(where d:3 and a is a label). This data structure should be safe so long as we do
not modify both branches of u. The kinds of data structure we are considering here
are DAGs.

The “not modifying both parts” flavour of these examples leads us to include two
kinds of products in our augmented version of LFPL. Consider binary trees. In a
linear setting we have two kinds of trees; one corresponding to trees laid out in full
in memory (⊗-trees), the other corresponding to trees with sharing of sub-trees (×-
trees). In ordinary functional programming these two are extensionally equivalent;
in the presence of linearity constraints they differ considerably. The ⊗-trees allow
simultaneous access to all their components thus encompassing, e.g. computing
the list of leaf labellings, whereas access to the ×-trees is restricted to essentially
search operations. Conversely, ⊗-trees are more difficult to construct because of
their storage requirements, whereas the typing rules allow easy construction of a
full binary ×-tree that is represented as a rather small DAG. Thus the type system
can reflect the kind of choices that a programmer would normally make in selecting
the best data representation for a purpose.

The tensor product (denoted by ⊗) is accessed using the pattern matching con-
struct

match p with (x⊗y) ⇒ e

that allows both x and y to be accessed simultaneously in e. Given a ⊗-product
of two lists in a pure linear type system like that of LFPL, we can access (maybe
modify) both components; to be sound, the two lists must have no sharing.
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With usage aspects, this constraint is relaxed somewhat: we can construct ⊗-
products within a program whose components share in certain cases when it is safe
to do so, so long as the sharing does not escape the scope of an expression. A
contrived but short example is the expression:

let l2 = l
p = l⊗l2

in match p with (x⊗y) ⇒ sumlist(x) + sumlist(y)

Here, the ⊗-product p is allowed to exhibit sharing because both of its components
are used read-only. (The typing derivation for this term can be understood in con-
junction with the typing rules that will be explained in Section 3. In particular, the
rules do not permit to form a tensor product l⊗l directly.)

The cartesian product (denoted ×), which corresponds to the & connective of lin-
ear logic, has a different behaviour: we may access one component or the other, but
not both; this means that the two components may have sharing. Again, with usage
aspects, we can be more permissive than allowing just access to one component of
the product. We can safely allow access to both components, so long as at most one
component is modified, and if it is, the other one is not referenced thereafter. (The
typing rules for let and cartesian product have special side conditions that allow
this behaviour.) Cartesian products are accessed via projection functions:

fst : (A×B)2 → A
snd : (A×B)2 → B

The usage aspect 2 here indicates that the result shares with the argument and
allows us to use both components later in the program. Such usage would not be
possible in a pure linear type system with cartesian products.

To allow sharing to persist within data structures used in a program, we may
give constructors arguments of cartesian product types. Ideally, we would allow the
user to choose exactly where cartesian products are used and where ⊗-products are
used, to allow the user to define datatypes appropriate for their application. For
the purpose of exposition in this paper, however, we will include only tensor lists
and tensor tree types as primitives (as in LFPL); however, the language and results
are easily extended to their variants using cartesian products, or indeed, a general
datatype mechanism that would allow the user to choose.

2.3 Further examples

We will now describe two prototypical examples of aliasing that can be proved safe
by our usage aspects and are not too far away from real-life programming scenarios.
In Figure 4 a number of functions are defined that process lists of numbers. There
are several supporting functions as well as the two example functions, called S1
and S2. The flow of data in the terms defining S1 and S2 is illustrated in Fig. 5,
including aspect annotations. The detail of the labelling for the annotations will
be better understood by the reader after considering the typing rules given in the
next section; however, the motivation of the examples can be explained first.
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highest_sum : L(L(N))2 → L(N)
def highest_sum(l) =

match l with
nil ⇒ nil

| cons(d,h,t) ⇒
hs_aux(h,t)

hs_aux : L(N)2, L(L(N))2 → L(N)
def hs_aux(prev,l) =

match l with
nil ⇒ prev

| cons(d,h,t) ⇒
if sumlist(h) > sumlist(prev)
then hs(h,t)
else hs(prev,t)

first_similar : L(N)3, L(L(N))2 → L(N)
def first_similar(m,l) =

match l with
nil ⇒ nil

| cons(d,h,t) ⇒
if is_similar(m,h)
then h
else first_similar(t)

filter_similar : L(N)3, L(L(N))1 → L(L(N))
def filter_similar(m,l) =

match l with
nil ⇒ nil

| cons(d,h,t) ⇒
let r = filter_similar(m,t)
in if is_similar(m,h)

then cons(d,h,r)
else r

is_similar : L(N)3, L(N)3 → N
def is_similar(l1,l2) =
match l1 with
nil ⇒
match l2 with
nil ⇒ 1

| cons(d,h,t) ⇒ 0
| cons(d1,h1,t1) ⇒

match l2 with
nil ⇒ 0

| cons(d2,h2,t2) ⇒
similar_number(h1,h2)

* is_similar(t1,t2)

similar_number : N3, N3 → N
def similar_number(n1,n2) =
(n1 - n2 < 2)

* (n2 - n1 < 2)

S1 : L(L(N))2 → L(N)
def S1(l) =

let b = highest_sum(l)
in first_similar(b,l)

S2 : L(N)1, L(L(N))1, 31 → L(L(N))
def S2(m,l,d) =

let l’ = filter_similar(m,l)
in map_reverse(cons(d,m,l’))

Fig. 4. Functions demonstrating the usefulness of usage aspects 2 and 3

Function S1 takes a list of lists of numbers and returns one element of this list.
The returned element is the first element of the input list that is similar to another
element that is, in some sense, best. For brevity, we use simple notions of measure
and similarity: we compare lists of numbers by their sums and consider two lists
similar if they have the same length and all their elements are similar, i.e., differ
by at most one. The important notion in this example is the following data flow:
the input is first processed read-only, creating an aliased piece of data, namely
the “best” element. Then both the original list and its “best” element are used as
arguments to first_similar. This sharing of arguments is safe because neither of
them is destroyed in the final step and only one of them is aliased with the final
result.
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Fig. 5. The data-flow and usage aspects within the terms S1 and S2

Function S2 is more involved but has less intricate effects. It, again, takes a list
of lists of numbers l as its primary argument, but it takes also a list of numbers
m and a single diamond d. The function S2 filters from l all elements that are
similar to m and then adds m back into this list. Finally it processes the resulting
list in some destructive way, e.g. reverses all its elements in place. The important
notion for S2 is the guarantee that after filtering, m is not only kept intact but is
also separate from the result of the filtering, shown by its aspect 3 on its input to
filter_similar.

These examples justify the need for all three aspects. If one would have only
two aspects, leaving out, say, aspect 2, then S1 would not type-check. If one would
leave out aspect 3, then S2 would not type-check. The examples give some hint
about why the soundness proof for our system becomes involved: one has to reason
about the annotations in different ways when they appear in different positions,
in particular, considering both aliasing and separation of portions of heap data as
shown in Fig. 5. We will return to these examples again when we compare our
system to the related work in Section 6.

3 Syntax and typing

The grammar for the types and terms of our language is given in Fig. 6.

Types. Types consist of integers N, the resource type 3, lists L(−) and trees T(−),
and the binary ⊗-product and ×-product. For brevity, we will use N also for the
type of booleans. Types not containing diamonds 3 or L(−) or T(−) are called heap-
free, e.g. N and N ⊗ N are heap-free. (A pair is stored in a single logical memory
cell as explained in Section 4.)

Terms and programs. A program consists of a series of (possibly mutually recursive)
function definitions of the form f(x1, . . . , xn) = ef . We use x and variants to range
over variables and f to range over function symbols. To simplify the presentation,
we restrict the syntax so that most term formers can be applied only to variables,
like in the standard A-normal form (wik, 2007; Sabry & Felleisen, 1993). In practice,
we can define the more general forms such as f(e1, . . . , en) as syntactic sugar for
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A ::= N | 3 | L(A) | T(A) | A1 ⊗A2 | A1 ×A2

e ::= c | f(x1, . . . , xn) | x | let x = ex in e | if x then e1 else e2

| x1 ⊗ x2 | match x with (x1 ⊗ x2)⇒e | (e1, e2) | fst(x) | snd(x)
| nil | cons(xd, xh, xt) | match x with nil⇒en|cons(xd, xh, xt)⇒ec

| leaf(xd, xa) | node(xd, xa, xl, xr)
| match x with leaf(xd, xa)⇒el|node(xd, xa, xl, xr)⇒en

Fig. 6. LFPL abstract syntax grammar

nested let expressions. Using the same trick, we also impose a convention that
in each application f(x1, . . . , xn) the variables x1, . . . , xn are equal to the formal
parameters used in ef . This convention greatly simplifies definitions and various
rules related to function applications.

The function definitions ef must be well-typed. To make this typing possible in
the presence of recursion, a program is given together with a signature Σ, which
is a finite function from function symbols to first-order function types with usage
aspects, i.e. of the form Ai1

1 , . . . , Ain
n → A. In the typing rules we will assume a

fixed program with signature Σ.
We also treat constructors as function symbols declared in the signature and in-

clude primitive arithmetic and comparison operations in the signature. Specifically,
we assume that Σ contains a number of declarations:

+,−, ∗, <, > : N3,N3 → N

nilA : L(A)
consA : 31, A2, L(A)2 → L(A)
leafA : 31, A2 → T(A)
nodeA : 31, A2,T(A)2,T(A)2 → T(A)
fstA×B : (A×B)2 → A

sndA×B : (A×B)2 → B

for suitable types A as used in the program3. In examples where the types can be
easily deduced from the context, we omit the type subscripts in nil, cons, etc.

The comma between argument types is treated as a ⊗-product, which means that
these typings, and the corresponding elimination rules in Fig. 7, describe lists and
trees with simultaneous access to sub-components. Hence they must be implemented
without sharing, unless the access is guaranteed to be read-only.

Typing contexts. We keep track of usage aspects for variables as introduced above.
We write x:iA to mean that x:A will be used with aspect i ∈ {1, 2, 3} in the subject
of the typing judgement. A typing context Γ is a finite function from identifiers
to types A with usage aspects; |Γ| denotes the domain of Γ. If x:iA ∈ Γ we write
Γ(x) = A and Γ[x] = i.

We use familiar notation for extending contexts. If x 6∈ |Γ|, then we write Γ, x:iA
for the extension of Γ with x:iA. More generally, if |Γ| ∩ |∆| = ∅ then we write

3 Thus the term constructor formers in Fig. 6 are actually superfluous but make the grammar
more comprehensible.
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Γ,∆ for the disjoint union of Γ and ∆. If such notation appears in the premise
or conclusion of a rule below it is implicitly understood that these disjointness
conditions are met.

In a couple of the typing rules we need some additional notation for manipulating
usage aspects on variables. The “committed to i” context ∆i is the same as ∆, but
each declaration x:2A of an aspect 2 (aliased) variable is replaced with x:iA. If
we have two contexts ∆1, ∆2 that differ only in usage aspects, so |∆1| = |∆2|
and ∆1(x) = ∆2(x) for all x, then we define the merged context Γ = ∆1 ∧∆2 by
|Γ| = |∆1|, Γ(x) = ∆1(x), Γ[x] = min(∆1(x),∆2(x)). The merged context takes
the “worst” usage aspect of each variable.

Richer types and signatures. Although we fix particular list and tree types and their
interpretation for this paper, it should be clear that the language and our results
can easily be extended to a general inductive datatype mechanism. Moreover, we
can introduce datatypes that admit sharing by giving suitable typings for construc-
tors in the signature. For example, to add a type of “sharing trees” ST(A) with
unrestricted sharing between components, we could use the constructor typing:

sharednodeA : 31, (A× ST(A)× ST(A))2 → ST(A).

In this typing, there can be sharing amongst the label and sub-trees, but still no
sharing with the 3 argument, of course, since the region pointed to by the 3

argument is overwritten to store the constructed cell.
LFPL and our examples do not use it, but it is also straightforward to add

explicit allocation and deallocation to the language. One simply needs to include
in the program signature two further constants:

new : → 3

dispose : 31 → N

These built-ins can be implemented by interfacing to an external memory man-
ager; of course, without further restriction, this extension breaks the heap-bounded
nature of the system.4

Typing rules. Now we explain the typing rules, shown in Fig. 7, which define a
judgement of the form Γ ` e : A. Most rules are straightforward. Our system is
affine linear, so it includes a rule for weakening, weak. In the rules var and ⊗-pair,
variables are given the default aspect 2, to indicate their obvious sharing with the
result. If the result is a value of a heap-free type, then with raise we can promote
variables of aspect 2 to aspect 3 to reflect that they manifestly do not share with the
result. The rule drop goes the other way and allows us to assume that a variable
is used in a more destructive fashion than it actually is.

The two non-standard structural rules give insight into the semantics and allow

4 In other work (Hofmann & Jost, 2003; MacKenzie & Wolverson, 2004) we have implemented
a similar language which does have mechanisms for predicting heap usage in the presence of
allocation and deallocation.
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` c : N
(const)

x
2
: A ` x : A

(var) Γ ` e : A

Γ, ∆ ` e : A
(weak)

Γ ` e : A A heap-free

Γ3 ` e : A
(raise) Γ, x

i
: A ` e : B j ≤ i

Γ, x
j
: A ` e : B

(drop)

f : Ai1 , . . . , Ain → B in Σ

x1
i1
: A1, . . . , xn

in
: An ` f(x1, . . . , xn) : B

(app)

Γ ` e1 : A Γ ` e2 : A

Γ, x
3
: N ` if x then e1 else e2 : A

(if)

Γ1, ∆1 ` e1 : Ax Γ2, ∆2, x
i
: Ax ` e2 : B condition ? (see Table 8)

Γi
1, Γ2, ∆

i
1 ∧∆2 ` let x = e1 in e2 : B

(let)

x1
2
: A1, x2

2
: A2 ` x1 ⊗ x2 : A1 ⊗A2

(⊗-pair)

Γ1, ∆1 ` e1 : A1 Γ2, ∆2 ` e2 : A2 condition ?? (see page 17)

Γ1, Γ2, ∆1 ∧∆2 ` (e1, e2) : A1 ×A2

(×-pair)

Γ, x1
i1
: A1, x2

i2
: A2 ` e : B i = min(i1, i2)

Γ, x
i
: A1 ⊗A2 ` match x with (x1 ⊗ x2)⇒e : B

(pair-elim)

Γ ` enil : B

Γ, xd
id
: 3, xh

ih
: A, xt

it
: L(A) ` econs : B i = min(id, ih, it)

Γ, x
i
: L(A) ` match x with nil⇒enil|cons(xd, xh, xt)⇒econs : B

(list-elim)

Γ, xd
id
: 3, xa

ia
: A ` eleaf : B

Γ, xd
id
: 3, xa

ia
: A, xl

il
: T(A), xr

ir
: T(A) ` enode : B i = min(ia, id, il, ir)

Γ, x
i
: T(A) ` match x with leaf(xd, xa)⇒eleaf|node(xd, xa, xl, xr)⇒enode : B

(tree-elim)

Note: ∆i[x] =

(
i if ∆[x] = 2

∆[x] otherwise
and (∆1 ∧∆2)[x] = min(∆1[x], ∆2[x]).

Fig. 7. Typing rules
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∆1[z]→ 1 2 3

↓ i/∆2[z] → 1 2 3 1 2 3 1 2 3

1 7 7 7 7 7 7 3 3 3

2 7 7 7 7 7 3 3 3 3
3 7 7 7 7 3 3 3 3 3

Fig. 8. The side condition ? of let in Fig. 7: ∀z ∈ ∆1 the table has to show a tick.

us to give simplified versions of the other rules that would otherwise require greater
flexibility. For example, the rule if assumes the same context Γ when typing both
branches but in fact the usage aspects of variables may differ between e1 and e2 —
a variable may be used destructively in one branch but not the other; the rule drop

is used in this case to unite the contexts. The rule raise allows us to simplify var

and ⊗-pair that would otherwise need to be generalised to also allow the aspect 3
in the case that the associated type is heap-free.

The rule let is somewhat intricate. To type let x = e1 in e2, the context is split
into three pieces: variables specific to the definition e1, in Γ1; variables specific to
the body e2, in Γ2; and common variables, in ∆1 and ∆2, which may be used with
different aspects in e1 and e2.

First, we type-check the definition to find its type Ax. Then we type-check the
body using some usage aspect i for the bound variable x. The usage aspect the
bound variable x has in the body is used for any aliased variables belonging to e1.
For example, if x is used destructively in e2, then all aliased variables in Γ1 and ∆1

are used destructively in the overall expression; this observation accounts for the
use of Γi

1 and ∆i
1 in the conclusion. The aspects in ∆1 and ∆2 are merged in the

overall expression, taking into account the way that x is used in e2.
The side condition “?” is defined by Fig. 8.5 It prevents any common variable z

being modified in e1 or e2 before it is referenced in e2. More exactly, ∆1[z] = 1 is
not allowed (the value of the variable would be destroyed in the binding); ∆1[z] = 3
is always allowed (the value of the variable has no heap overlap with the binding
value), and ∆1[z] = 2 is allowed provided neither i = 1 nor ∆2[z] = 1 (the value
of the common variable may have aliasing with x, provided it is not partly or
completely destroyed in e2: the modification may happen before the reference).
Also, it is not safe to have ∆1[z] = ∆2[z] = 2 when i = 2 as such combination
would allow one to create an illegally sharing tensor pair by let x = z in x⊗ z.

As an instance of let, we get a derived rule of contraction for aspect 3 variables:

Γ, x
i
: A, y

3
: A ` e : B i ≥ 2

Γ, x
i
: A ` e[x/y] : B

(contr)

where e[x/y] stands for let y = x in e. This rule is comparable to the rule of

5 The table can be derived from the proof of soundness in Subsection 5.2, see Fig. 14 on page 27.



A Type System with Usage Aspects 17

contraction given in (Hofmann, 2000) that allows contraction only for heap-free
types A.

The only constructor rules we need are for the two kinds of pairs because the
other constructors are function symbols in the signature. The rule for constructing
a ×-pair ensures that all variables which are shared between the components have
aspect at least 2. The “condition ??” in rule ×-pair is:

• ∆1[z] ≥ 2 and ∆2[z] ≥ 2 for all z ∈ |∆1| = |∆2|. (??)

which ensures that no part of memory shared between the components is destroyed
when the pair is constructed. If we made the evaluation or compilation dependent
on the typing derivation, choosing which component to evaluate first, we could
generalise condition ?? slightly, to say that either

• ∆1[z] ≥ 2 and ∆1[z] = 3 =⇒ ∆2[z] ≥ 2 for all z ∈ |∆1| = |∆2|, or
• ∆2[z] ≥ 2 and ∆2[z] = 3 =⇒ ∆1[z] ≥ 2 for all z ∈ |∆1| = |∆2|.

Intuitively, the reason for this condition is that we must be able to evaluate e1 after
e2 or vice versa without corrupting the previous result.

In the destructor rules we type-check the branches in possibly extended con-
texts, and then pass the worst-case usage aspect as the usage for the term being
destructed. For example, if we destroy one half of a pair in pair-elim, so x1 has
usage aspect 1, then the whole pair is considered destroyed in the conclusion. These
rules could be simplified by unifying all usage aspects and relying on the RAISE

rule. Nevertheless, we feel that the explicit calculation of the result aspect better
expresses the intuition.

4 Imperative operational semantics

To establish the soundness of our typing rules, we need to formalise the intended
in-place update interpretation of the language. In (Hofmann, 2000), a translation
to C and a semantics for the target sub-language of C was used. Here we use an
abstract machine model instead; this approach allows us to more easily consider
alternative translations to other languages, such as the typed assembly language
interpretation, as given in (Aspinall & Compagnoni, 2003).

Let Loc be a set of locations that model memory addresses on a heap. We use l

to range over elements of Loc. Next we define two sets of values, stack values SVal,
ranged over by v, and heap values HVal, ranged over by h, thus:

v ::= c | l | NULL | (v, v)
h ::= {f1 = v1 . . . fn = vn}

A stack value is either a constant c (in our case an integer), a location l, a null value
NULL, or a pair of stack values (v, v). A heap value is an n-ary record consisting
of named fields with stack values. The operational semantics is based around an
abstract notion of stack and heap. A stack S: Var ⇀ SVal is a partial mapping
from variables to stack values, and a heap σ: Loc ⇀ HVal is a partial mapping from
locations to heap values. Evaluation of an expression e takes place with a given
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stack and heap, and yields a stack value and a possibly updated heap. Thus we
have a relation of the form

S, σ ` e ; v, σ′

expressing that the evaluation of e under stack S and heap σ terminates and results
in stack value v. As a side effect the heap is modified to σ′.

The only way the heap is modified is as a side effect of evaluating constructors
that take 3 arguments, following our in-place update interpretation of the language.

The stack is extended with additional variable bindings whenever we enter a new
scope, inside sub-terms in the premises of the evaluation rules. When we evaluate a
function body, we use a stack that mentions only the actual parameters, intuitively
preventing access beyond the stack frame. Notice that the stack may contain point-
ers into the heap (i.e. locations) but there are no pointers going from the heap into
the stack.

Most of the rules defining the evaluation relation are in Fig. 9. The rule app does
not apply to the built-in functions, such as nil, cons, because they have no bodies.
Thus we also need the obvious rules for evaluating arithmetic and comparison op-
erators, conditional expressions, and rules for trees, which are similar to those for
lists. To represent trees on the heap, we store leaves as records {label = a} and
nodes as records {label = a, left = tl, right = tr}. The only interesting cases in the
operational semantics are the ones for the heap datatypes, which make use of 3

values as heap locations. In the cons case, the first argument xd of cons is a variable
of 3 type. The result is the location S(xd) where we make the cons cell by updat-
ing the heap, using a record with hd and tl fields. The match rule list-elim-cons

performs the opposite operation, exposing the contents and location of a cons cell.

5 Soundness

In this section we will prove that, for a well-typed program, the imperative opera-
tional semantics is sound with respect to a “safe” operational semantics that does
not update in-place and is therefore equivalent to the usual functional denotational
semantics. The safe operational semantics is expressed by the relation:

η ` e ;SF a

It is defined by very similar rules as the semantics ; described in the previous
section except that all references to a heap are dropped, stack values v are replaced
with semantic values a and stacks S are replaced with valuations η, which map
variables to semantic values.

We do not explicitly define semantic values because they are simply symbolic
expressions built from the operators null, cons(h, t) for lists, leaf(a), node(a, l, r)
for trees and constants c, �. A formal definition of semantic values is implicit in
Definition 5.2 where it is shown how these values can be represented on the heap.

The only rules that differ significantly are the ones that overwrite a heap location,
i.e. cons and similar rules for trees:

η ` cons(xd, xh, xt) ;SF cons(η(xh), η(xt)) (cons)
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S, σ ` c ; c, σ (const)

S, σ ` x ; S(x), σ (var)

S(x1) = v1 · · · S(xn) = vn [x1 7→ v1, . . . , xn 7→ vn], σ ` ef ; v, σ′

S, σ ` f(x1, . . . , xn) ; v, σ′
(app)

S, σ ` e1 ; vx, σ′ S[x 7→ vx], σ′ ` e2 ; v, σ′′

S, σ ` let x = e1 in e2 ; v, σ′′
(let)

S, σ ` x1 ⊗ x2 ; (S(x1), S(x2)), σ
(⊗-pair)

S(x) = (v1, v2) S[x1 7→ v1][x2 7→ v2], σ ` e ; v, σ′

S, σ ` match xp with (x1 ⊗ x2)⇒e ; v, σ′
(pair-elim)

S, σ ` e1 ; v1, σ
′ S, σ′ ` e2 ; v2, σ

′′

S, σ ` (e1, e2) ; (v1, v2), σ
′′ (×-pair)

S(x) = (v1, v2)

S, σ ` fst(x) ; v1, σ
(fst)

S(x) = (v1, v2)

S, σ ` snd(x) ; v2, σ
(snd)

S, σ ` nil ; NULL, σ (nil)

S, σ ` cons(xd, xh, xt) ; S(xd), σ[S(xd)7→{hd=S(xh), tl = S(xt)}]
(cons)

S(x) = NULL S, σ ` enil ; v, σ′

S, σ ` match x with nil⇒enil|cons(xd, xh, xt)⇒econs ; v, σ′

(list-elim-nil)

S(x) = l σ(l) = {hd=vh, tl=vt}
S[xd 7→ l, xh 7→ vh, xt 7→ vt], σ ` econs ; v, σ′

S, σ ` match x with nil⇒enil|cons(xd, xh, xt)⇒econs ; v, σ′

(list-elim-cons)

Fig. 9. Evaluation relation with in-place update
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Notice that xd is completely ignored by this evaluation because no in-place update
could possibly take place at this level of abstraction.

We now attempt to formulate the soundness theorem:

Preliminary Theorem 5.1 (Soundness)
Assume the following data and conditions:

H1. a well-typed program P over some signature Σ;
H2. a well-typed term Γ ` e : A over Σ for some Γ, e, A;
H3. a heap σ, a stack S and a valuation η such that

each value η(x) is appropriately represented by S(x) and σ.

Then we have also:

C1. S, σ ` e ; v, σ′ implies there is a such that η ` e ;SF a and
v, σ′ appropriately represent value a

(i.e. in-place update evaluation is correct);
C2. η ` e ;SF a implies there are v and σ′ such that S, σ ` e ; v, σ′ and

v, σ′ appropriately represent value a

(i.e. in-place update evaluation is complete).

The statement of the theorem is not yet in a form ready to be proved because
assumption H3 as well as the conclusions are rather vague. We need to clarify what
kinds of heap representations of values are appropriate for this theorem. Contrary
to our initial expectation the soundness proof is highly non-trivial. In particu-
lar, the just mentioned “appropriateness” assumption needs to be elaborated in a
non-obvious way with added separation conditions, as expressed by our separation
theorem (Theorem 5.4).

5.1 Meaningful stack values in a heap

A stack value is meaningful for a particular type and heap if it has a sensible
interpretation in the heap for that type, i.e. it appropriately represents a semantic
value of this type. For instance, if σ(v) = {hd = 1, tl = NULL} then v would be
a meaningful stack value of type L(N) with respect to σ and it would represent
the singleton semantic list [1] (using the usual notation for list expressions). In
that same heap (v, v) would be a meaningful stack value of type L(A) × L(A)
representing the semantic pair ([1], [1]). Perhaps surprisingly, the value (v, v) will
also be a meaningful stack value of type L(A)⊗L(A) in case it is used in a read-only
fashion. This occurs for example in the term f(x⊗x) when f : (A⊗A)3 → B. This
means that “meaningfulness” of a stack value depends on the aspect with which
the value is going to be used. We will parametrise our interpretation on a product
separation flag that reflects this intuition. The flag value ◦◦ indicates that heap
separation of the components of all tensor products is required while flag value ◦◦
indicates that sharing is allowed even inside tensor products.

To express heap separation, we need first to define the region RA(v, σ) of a stack
value v of type A in heap σ. It is defined as the least set of locations satisfying the
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RN(c, σ) = ∅ RL(A)(NULL, σ) = ∅ R3(l, σ) = {l}

RA×B((v1, v2), σ) = RA⊗B((v1, v2), σ) = RA(v1, σ) ∪RB(v2, σ)

σ(l) = {hd = h, tl = t}
RL(A)(l, σ) = {l} ∪RA(h, σ) ∪RL(A)(t, σ)

σ(l) = {label = v}
RT(A)(l, σ) = {l} ∪RA(v, σ)

σ(l) = {label = v, left = tl, right = tr}
RT(A)(l, σ) = {l} ∪RA(v, σ) ∪RT(A)(tl, σ) ∪RT(A)(tr, σ)

Fig. 10. Heap region of a stack value

c, σ 
p
N c l, σ 
p

3 � NULL, σ 
p
L(A) null

vk, σ 
p
Ak

ak for k = 1, 2

(v1, v2), σ 
p
A1×A2

(a1, a2)

vk, σ 
p
Ak

ak for k = 1, 2,

(p = ◦◦ ⇒ RA1(v1, σ), RA2(v2, σ) are disjoint)

(v1, v2), σ 
p
A1⊗A2

(a1, a2)

σ(l) = {hd=vh, tl = vt}, vh, σ 
p
A h, vt, σ 
p

L(A) t,

(p = ◦◦ ⇒ R3(l, σ), RA(vh, σ), RL(A)(vt, σ) are pairwise disjoint)

l, σ 
p
L(A) cons(h, t)

σ(l) = {label=va}, va, σ 
p
A a,

(p = ◦◦ ⇒ R3(l, σ), RA(va) are disjoint)

l, σ 
p
T(A) leaf(a)

σ(l) = {label=va, left=vl, right=vr}, va, σ 
p
A a, vl, σ 
p

T(A) l, vr, σ 
p
T(A) r

(p = ◦◦ ⇒ R3(l, σ), RA(va, σ), RT(A)(vl, σ), RT(A)(vr, σ) are pairwise disjoint)

l, σ 
p
T(A) node(a, l, r)

Fig. 11. Heap representation relation, with separation flag p = ◦◦ or ◦◦

rules in Figure 10 (if such a set exists). This is a type sensitive notion of reachability.
It should be clear that RA(v, σ) is the part of the domain of σ that is relevant for
v. According to this intuition, we have RA(v, σ) = RA(v, σ′) whenever σ(l) = σ′(l)
for all l ∈ RA(v, σ). Also, if A is a heap-free type, then RA(v, σ) = ∅.

Definition 5.2
Given a stack value v, a heap σ, a semantic value a of type type A and a product
separation flag p ∈ {◦◦, ◦◦}, we define a five-place relation v, σ 
p

A a which expresses
that the semantic value a is appropriately represented by a meaningful stack value
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l

(NULL,     ) NULL

(     ,     )

0

NULL1

l

(NULL,     ) NULL

NULL1

(     ,     )

0

NULL1

NULL1

l, σ 
◦◦
L(L(N)⊗L(N)) [([0, 1], [1]), ([], [1])] l, σ 
◦◦

L(L(N)⊗L(N)) [([0, 1], [1]), ([], [1])]

Fig. 12. Heap representation of [([0, 1], [1]), ([], [1])] with and without sharing

v and heap σ with or without the condition of separation of tensor products. It is
defined inductively by the rules shown in Figure 11.

When we want to ignore the semantic value, we can leave it out and write v, σ 
p
A .

The difference between 
◦◦ and 
◦◦ is that the latter prevents any “internal
sharing” within ⊗-product types in the heap representation (see Fig. 12 for an
illustration). We extend this relation to stacks, valuations and typing contexts:

Definition 5.3
For a stack S, heap σ, typing context Γ, a separation flag p and a valuation η, it
holds that S, σ 
p

Γ η if

• S(x), σ 

pΓ[x]

Γ(x) η(x) for each x ∈ |Γ| where p1 = ◦◦, p2 = p, p3 = ◦◦
• If for any two variables x 6= y the regions RΓ,x(S, σ), RΓ,y(S, σ) are not

disjoint, then Γ[x] ≥ 2,Γ[y] ≥ 2 and if p = ◦◦, then moreover either Γ[x] = 3
or Γ[y] = 3.

This definition amounts to saying that S, σ 
◦◦
Γ η holds if stack S and heap

σ are meaningful at appropriate types and aspects, and moreover, the region for
each aspect 1 variable does not overlap with the region for any other variable.
(Informally: the aspect 1 variables are safe to update.) The case that S, σ 
◦◦

Γ η

is stronger: variables with aspect 2 have internally separated tensor products and
cannot share with each other. These extra separation conditions will guarantee
that the result of a computation typed using this judgement is represented with its
tensor products separated on the heap.

5.2 Separation theorem

With Definitions 5.2 and 5.3 in place, we can prove that the evaluation of a well-
typed term under a meaningful stack and heap gives a meaningful result. This is
the hardest part of the soundness theorem. Instead of finishing the formulation and
proof of the soundness theorem, we will therefore first prove a theorem that states
the separation properties of the in-place update evaluation and ignores the values
themselves. It is easier to focus on separation before considering other aspects of
soundness. Our soundness proof in Subsection 5.3 is an extension of the separation
proof shown here.
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Theorem 5.4 (Separation)
Assume the following data and conditions:

H1. a well-typed program P over some signature Σ;
H2. a well-typed term Γ ` e : A over Σ for some Γ, e, A;
H3. a heap σ and a stack S with S, σ 
◦◦

Γ

(i.e. arguments are meaningful, separated according to aspects);
H4. S, σ ` e ; v, σ′.

Then we have also:

C1. RA(v, σ′) ⊆
⋃

x∈Γ,Γ[x]<3 RΓ,x(S, σ)
(i.e. the result is contained entirely within the heap space of arguments with
aspect 1 or 2);

C2. if l ∈ RΓ,x(S, σ) and Γ[x] ≥ 2 then σ(l) = σ′(l)
(i.e. heap occupied by arguments with aspect 2 or 3 is not modified);

C3. v, σ′ 
◦◦
A (i.e. the result is meaningful);

C4. S, σ 
◦◦
Γ implies v, σ′ 
◦◦

A

(i.e. if tensors are respected in the arguments, so they are in the result).

Specialising this, perhaps daunting, theorem to the particular case of a unary
function on lists yields the following representative corollary:

Corollary 5.5
Let P be a well-typed program having a function symbol f : L(N)i → L(N).

If σ is a store and l is a location such that l points in σ to a linked list with
integer entries w = [x1, . . . , xn] in σ and [x 7→ l], σ ` f(x) ; v, σ′ for some v, σ′,
then v points in σ′ to a linked list with integer entries.

Moreover, if i 6= 1, then the argument list w remains intact in σ′; if i = 3, then the
heap region RL(N)(v, σ′) of the result list is disjoint from the heap region RL(N)(l, σ)
of the argument.

Since our system has no memory allocation, we can conclude that if i = 2, the
result must be some tail of the argument list; and if i = 3, the result must be the
empty list.

To prove the theorem we need the following two elementary observations:

Lemma 5.6
Whenever we have two contexts Γ,Γ′ that differ only in usage aspects and Γ[x] ≤
Γ′[x] for all x in Γ then

1. S, σ 
◦◦
Γ implies S, σ 
◦◦

Γ′

2. S, σ 
◦◦
Γ implies S, σ 
◦◦

Γ′

In plain words, raising usage aspects weakens the separation conditions.

Lemma 5.7
For any evaluation S, σ ` e ; v, σ′ such that S, σ 
◦◦

Γ and v, σ′ 
◦◦
A , it holds

1. RA(v, σ′) ⊆ RΓ(S, σ)
2. ∀` ∈ Dom(σ) \RΓ(S, σ), σ(`) = σ′(`)
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In plain words, operational semantics neither overwrites memory that is not refer-
enced via the context nor uses it in the result.

Further, we define a shortcut notation for several assertions about which we
reason in the situation of the above lemma. The name rg stands for heap region,
sep stands for heap region separation, tens for tensor product separation and pres
for heap preservation.

|Γ|i =
{
x ∈ Γ

∣∣ Γ[x] = i
}
, |Γ|i,j = |Γ|i ∪ |Γ|j

rg(x) = RΓ,x(S, σ)

sep(x, y) ≡ rg(x) ∩ rg(y) = ∅, sep(T, T ′) ≡
∧

x∈T,x′∈T ′,x 6=x′ sep(x, x′)

tens(x) ≡ S(x), σ 
◦◦
Γ(x) , tens(T ) =

∧
x∈T tens(x)

pres(x) ≡ (∀` ∈ rg(x))
(
σ(`) = σ′(`)

)
, pres(T ) =

∧
x∈T pres(x)

Moreover, the symbol res is treated as a special variable representing the result on
the heap σ′, i.e. S(res) = v, Γ(res) = A and in relation to res the heap σ′ is used
instead of σ. When we want to relate these assertions to a particular evaluation
S, σ ` e ; v, σ′, we can write v, σ′, S, σ 
 in front of it. If there is no occurrence of
res in it, we can leave v and σ′ out. The relevant typing context Γ and result type
A will always be clear from the context.

Using this notation we can express more succinctly the defining properties of
heap representation for contexts:

S, σ 
◦◦
Γ =⇒ sep(|Γ|1 , |Γ|) ∧ tens(|Γ|1)

S, σ 
◦◦
Γ =⇒ sep(|Γ|1 , |Γ|) ∧ sep(|Γ|2 , |Γ|2) ∧ tens(|Γ|1,2)

Proof of the separation theorem (Theorem 5.4)
We proceed by induction on the lexicographic product of the depth of the deriva-
tions of S, σ ` e ; v, σ′, i.e., computation time (1st priority) and of Γ ` e : A

(2nd priority). In most cases, we consider a derivation step of the operational se-
mantics together with one corresponding typing rule. To be able to derive valid
typing judgements for the premises of operational semantics rules, sometimes it is
necessary to additionally use the weak, drop and raise typing rules on their own.

const: Conclusions hold trivially because σ = σ′ and v is heap-free.
var: C1 holds because both sides are clearly equal—the region of the result is equal

to the region of the only argument and this argument has aspect 2. C2 holds since
σ = σ′. C3 follows directly from H3. C4 is similarly trivial.

app: We assume e = f(x1, . . . , xn) and Σ(f) = Ai1
1 , . . . , Ain

n → A. Thus we have
x1:i1A1, . . . , xn:inAn ` ef : A and S, σ ` ef ; v, σ′, using the operational
and typing rules. Now the induction hypothesis applies and gives all the desired
conclusions verbatim.

if-true: We assume e = if x then e1 else e2, Γ = Γ1, x:3N, Γ ` ei : A for i = 1, 2
and S(x) 6= 0. Thus we must have S, σ ` e1 ; v, σ′ and the induction hypothesis
can be applied to this judgement, and yields the desired conclusions verbatim.

if-false: Symmetric to if-true.
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weak: Assume Γ = Γ1,Γ2 and Γ ` e : A can be derived from a valid judgement
Γ1 ` e : A. Then conditions H2–H4 still hold after replacing Γ with Γ1 and S

with S1 = S|Γ1 . Thus we can apply the induction hypothesis and it yields the
desired conclusions except that instead of Γ, S, they refer to Γ1, S1 respectively.
The desired conclusions follow: C1 because the right hand side set of locations
increases with Γ instead of Γ1; C2 because heap space occupied by Γ2 cannot
share with Γ1 except on the region of |Γ1|2,3, which is not modified, and the
rest is not modified thanks to Lemma 5.7; C3 is identical to C3 in the induction
hypothesis; C4 is weakened by a strengthened premise with S instead of S1.

drop: The induction hypothesis can be applied thanks to Lemma 5.6. The resulting
conclusions imply the desired conclusions because C1,C2,C4 become weaker and
C3 remains the same when the aspect is dropped back to its original value.

raise: Assume Γ∗ ` e : A for some context Γ∗ with Γ = Γ3
∗ and let A be heap-free.

Thus H2 holds when replacing Γ by Γ∗. Also H3 holds after the change because
the weaker form of heap representation does not make any distinction between
aspects 2 and 3. We can therefore apply the induction hypothesis and obtain the
desired conclusions with Γ replaced by Γ∗. The desired conclusion C3 is identical
in this transformation and is thus proved. C4 follows trivially from C3 because
A is heap-free. C2 does not make distinction between aspects 2 and 3 and is
thus proved directly from the induction hypothesis. Finally, C1 is trivial for a
heap-free type A.

⊗-pair, nil, cons, leaf and node: Conclusions follow directly from the assump-
tions, like in the case of var.

pair-elim: We have S, σ ` e ; v, σ′ where e = match x with x1⊗x2⇒e′, which im-
plies S(x) = (v1, v2) and S′′, σ ` e′ ; v, σ′ where S′′ = S[x1 7→ v1][x2 7→ v2]. Fur-
ther we have S, σ 
◦◦

Γ where Γ = Γ′, x:iA1 ⊗A2. Put Γ′′ = Γ′, x1:i1A1, x2:i2A2.
We aim at proving S′′, σ 
◦◦

Γ′′ in order to be able to apply the induction hypoth-
esis. Basic separation conditions confined within Γ′ translate directly from Γ to
Γ′′. Since i ≤ i1, i2, any separation required in Γ′′ between x1 or x2 and some
variable y ∈ Γ′ follows from the separation between x and y in Γ. Also, if tens(x1)
or tens(x2) is required in Γ′′, then it can be obtained from tens(x), which must
be required in Γ in this case. Finally, if sep(x1, x2) is required in Γ′′ then i = 1,
which implies that tens(x) is required in Γ, which is sufficient for sep(x1, x2) to
hold. This concludes the proof of S′′, σ 
◦◦

Γ′′ .
From the induction hypothesis we get v, σ′ 
◦◦

A . It remains to prove the preserva-
tion and separation conclusions. Again, conditions confined to Γ′ and the result
translate from Γ′′ trivially. If i > 1, we need to show pres(x) and we can derive
it from pres(x1) and pres(x2), which hold thanks to i1, i2 ≥ i > 1. Similarly, we
get rg(res) ⊆ rg(|Γ′′|1,2) ⊆ rg(|Γ|1,2).
From the separation precondition for tens(res) present in S, σ 
◦◦

Γ we can de-
duce S′′, σ 
◦◦

Γ′′ analogously to deducing the ◦◦ version above. Thus the desired
guarantee tens(res) follows from tens(res) for the induction hypothesis, proving
C4.

×-pair: From S, σ ` (e1, e2) ; v, σ′′ we get S, σ ` e1 ; v1, σ
′, S, σ′ ` e2 ; v2, σ

′′

and v = (v1, v2). It is straightforward to derive the assumptions of the first
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induction hypothesis, in particular S1, σ 
◦◦
Γ1,∆1

where S1 = S|Γ1,∆1 , from the
present assumption S, σ 
◦◦

Γ where Γ = Γ1,Γ2,∆1 ∧∆2. Thus the conclusions of
the first induction hypothesis hold, in particular v1, σ

′ 
◦◦
A1

where A = A1 ×A2

and pres(|Γ1,∆1|2,3).
Analogously, for the second induction hypothesis we can define S2 and obtain
S2, σ 
◦◦

Γ2,∆2
. We need to show that this representation still holds after the first

evaluation, i.e. S2, σ
′ 
◦◦

Γ2,∆2
. To make this conclusion, we realise that the region

of Γ2,∆2 on σ is preserved in the first evaluation, i.e. this region is separated from
|Γ1,∆1|1, which follows from sep(|Γ|1 , (|Γ2,∆2|)) and the side condition that ∆2

does not contain any variable that has aspect 1 in ∆1. The other assumptions
of the second induction hypothesis are straightforward. Thus we can use the
conclusions of the second induction hypothesis, including v2, σ

′′ 
◦◦
A2

.
Since RA1(v1, σ

′) ⊆ R|Γ1,∆1|1,2
(S||Γ1,∆1|1,2

, σ), the region RA1(v1, σ
′) has not been

modified by the evaluation of e2 thanks to sep(|Γ2,∆2|1 ,Γ) and the side condi-
tion. Thus we also have v1, σ

′′ 
◦◦
A1

. Now we can deduce (v1, v2) , σ′′ 
◦◦
A1×A2

.
From the conclusions of both hypotheses it is easy to deduce also pres(|Γ|2,3) and
rg(res) ⊆ rg(|Γ|1,2) using the straightforward properties

|Γ|2,3 ⊆ |Γ1,∆1|2,3 ∪ |Γ2,∆2|2,3 and |Γ1,∆1|1,2 ∪ |Γ2,∆2|1,2 ⊆ |Γ|1,2 .

When sep(|Γ|2 , |Γ|2) and tens(|Γ|2) hold on σ then the same holds for Γ1,∆1 and
Γ2,∆2 on their respective heaps σ and σ′. Thus v1 and v2 are represented on σ′′

with separated tensor products. As there is no tensor separation needed between
v1 and v2, we get (v1, v2) = v, σ′′ 
◦◦

A1×A2
, i.e. the final conclusion C4.

list-elim and tree-elim Proofs for these cases can be obtained by a straightfor-
ward combination and adaptation of the proofs for if and pair-elim.

let: The skeleton of this part of the proof is in Fig. 13. A typical row of the table
contains a statement preceded by its code and followed by a list of references to
statements and definitions from which it has been derived. (We will elaborate on
these, often non-trivial, deductions shortly.) The statements whose names end
with i1 are valid under the condition that i = 1, etc. A proof of conclusion C4
includes the dotted parts while the proof of C1–C3 is obtained by ignoring the
dotted parts. To improve clarity, the table also includes the definitions of certain
important symbols, each definition immediately preceding the first use of the
symbol.
The horizontal lines divide the proof into three parts. The first and second parts
prove that the induction hypothesis can be applied to the first and second sub-
term (i.e. e1 and e2), respectively. The final part shows the validity of conclusions
C1–C4 for the whole let expression.
The proof is much more involved than originally anticipated. One unexpected
aspect of this proof is that the stronger conclusion C4 of the induction hypothesis
for e1 is needed even when proving conclusions C1–C3 of the theorem when
i = 1 (see condition Hr1 ). Moreover, even when proving C4, we need C3 and
not C4 for the induction hypothesis for e1 when i = 3. Intuitively, we need the
stronger (p = ◦◦) interpretation of the theorem even when proving the weaker
version (p = ◦◦) and vice versa. This means that we cannot decouple the two
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Implicit conditions: (. . . i1 ) ∼(i = 1), (. . . i12 ) ∼(i ∈ {1, 2}), etc.
Proof of conclusion C4 additionally includes all the dotted material.

(Op) S, σ ` let x = e1 in e2 ; v, σ′′ assumption H4
(Op1,2 ) S, σ ` e1 ; vx, σ′ S[x 7→ vx], σ′ ` e2 ; v, σ′′ Op, ;

(Hs) S, σ 
◦◦
Γ S, σ 
◦◦

Γ assumption H3 C4a

(Sep) S, σ 
 sep(|Γ|1 , Γ) ∧ sep(|Γ|2 , |Γ|2) ∧ tens(|Γ|1,2) Hs

(Γ = Γi
1, Γ2, ∆

i
1 ∧∆2 as used in the derivation of Γ ` e : A)

(1-23 ) |Γ1, ∆1|1 ∪ |Γ2, ∆2|1 ⊆ |Γ|1 |Γ|2,3 ⊆ |Γ1|2,3 ∪ |Γ2|2,3 ∪ (|∆1|2,3 ∩ |∆2|2,3)

(S1 = S|Γ1,∆1)
(Hs1 ) S1, σ 
◦◦

Γ1,∆1 Hs, Sep, Γi
1, ∆

i
1

(Hs1i12) S1, σ 
◦◦
Γ1,∆1 Hs, Sep, Γi

1, ∆
i
1

(Hr1i12) vx, σ′ 
◦◦
Ax

induction 1, C4
(Hr1i23 ) vx, σ′ 
◦◦

Ax
induction 1, C3

(G1 ) vx, σ′, S1, σ 
 pres(|Γ1, ∆1|2,3) ∧ rg(res) ⊆ rg(|Γ1, ∆1|1,2) ind. 1, C1,C2

(S2 = S|Γ2,∆2)

(Hs2p) S2, σ 
◦◦
Γ2,∆2 S2, σ 
◦◦

Γ2,∆2 Hs

(Hs2g) S2, σ
′ 
◦◦

Γ2,∆2 S2, σ
′ 
◦◦

Γ2,∆2 Hs2p, Sep, 1-23 , G1 , side cond.

(Sx = S2[x 7→ vx])
(S2xi1 ) Sx, σ′ 
 sep(x, (Γ2, ∆2)) ∧ tens(x) Sep, G1 , Hr1i12, side cond.

(S2xi2 ) Sx, σ′ 
 sep(x, |Γ2, ∆2|1,2) ∧ tens(x) Sep, Hr1i12, ∆i
1 ∧∆2, side cond.

(S2xi3 ) Sx, σ′ 
 sep(x, |Γ2, ∆2|1) Sep, side cond.

(Γx = Γ2, ∆2, x
i
: Ax)

(Sep2 ) Sx, σ′ 
 sep(|Γx|1 , Γx) ∧ sep(|Γx|2 , |Γx|2) ∧ tens(|Γx|1,2) Hs2g , S2x

(Hs2 ) Sx, σ′ 
◦◦
Γx

Sx, σ′ 
◦◦
Γx

Hs2g , Hr1 , Sep2

(Hr2 ) v, σ′′ 
◦◦
A′ v, σ′′ 
◦◦

A′ induction 2, C3 C4

(G2 ) v, σ′′, Sx, σ′ 
 pres(|Γx|2,3) ∧ rg(res) ⊆ rg(|Γx|1,2) induction 2, C1,C2

(Ri12 ) rg(res) ⊆ rg(|Γ2, ∆2|1,2) ∪ rg(|Γ1, ∆1|1,2) = rg(|Γ|1,2) G2 , G1

(Ri3 ) rg(res) ⊆ rg(|Γ2, ∆2|1,2) ⊆ rg(|Γ|1,2) G2

(a23i1 ) |Γ|2,3 = |Γ1|3 ∪ |Γ2|2,3 ∪ (|∆1|3 ∩ |∆2|2,3) ∆i
1 ∧∆2

(S1-23 ) (|∆1|2,3 ∩ |∆2|2,3) disjoint from |∆1|1 ∪ |∆2|1 ∆i
1 ∧∆2

(P) v, σ′′, S, σ 
 pres(|Γ|2,3) G1 , G2 , 1-23 , a23i1 , S1-23 , Sep

(G) v, σ′′, S, σ 
 pres(|Γ|2,3) ∧ rg(res) ⊆ rg(|Γ|1,2) P , R

Fig. 13. Evaluation of let expressions preserves separation properties

Hs2g dashed region
S2xi1 dotted region i = 1
S2xi2 dotted regions i = 2
S2xi3 dotted regions i = 3

∆1[z]→ 1 2 3

↓ i/∆2[z] → 1 2 3 1 2 3 1 2 3

1 7 7 7 7 7 7 3 3 3

2 7 7 7 7 7 3 3 3 3
3 7 7 7 7 3 3 3 3 3

Fig. 14. Condition ? and proof of the let case.
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interpretations from each other and prove them separately; we have no choice
but to prove them both in parallel.
The core of the proof lies in the statements Hs2g , S2xi1 , S2xi2 and S2xi3 , which
claim that the evaluation of e1 has not interfered with the context for e2 and
prepared the interim result in such a way that it fits the representation criteria
of the typing for e2. These statements directly rely on the side condition. Fig. 14
is a copy of Fig. 8 in which it is shown on which forbidden cases each of these
four statements relies.

Individual statements up to induction 1. Op is an elaborated version of assump-
tion H4. Statements Op1,2 follow from the operational let rule that we assume
was used to derive Op. Statement Hs (i.e. heap representation of the stack) com-
bines H3 with the assumption of C4. Hs is further elaborated as Sep. Observing
the particular form Γ takes thanks to the typing rule let, we make the elementary
observation that any variable with aspect 1 in either of the two sub-expressions
has aspect 1 in Γ (1-23 ). The second inclusion in 1-23 is a rephrasing of the first
inclusion, focusing on aspects 2,3 instead of aspect 1.
At this point all assumptions of the induction hypothesis for e1 are established
by the typing and operational rules except for H3 (i.e. statement Hs1 ). When
i = 1, we will also need conclusion C4 and will therefore need to strengthen Hs1
as shown in the table. The stronger stack representation clause is also needed
when i = 2 while proving C4 for the let expression. This is because separation of
tensors will be required within x in these cases.
Why does Hs1 follow from Hs? All separation requirements of Hs (i.e. Sep)
restricted to the variables in Γ1,∆1 are stronger than the separation requirements
in Hs1 by Lemma 5.6 because the aspects of these variables are lower in Hs than
they are in Hs1 . If i = 1, then all variables with aspect 2 in Γ1,∆1 gain aspect 1
in Γ and thus, by Hs, have their tensors separated and are separated from each
other. Thus we have the stronger version of Hs1 when i = 1. When observing
the dotted reading, the stronger assumption holds in Hs and thus also Hs1 has
separated tensors and variables with aspect 2, unless i = 3 because then variables
with aspect 2 get aspect 3 in Γ and we do not know anything about them from
Hs. This concludes the proof of Hs1 and the induction hypothesis can be used
as required, yielding, in particular, statements Hr1 and G1 .

Individual statements up to induction 2. The next major goal is to derive the
assumptions of the induction hypothesis for e2 and its corresponding context
Γx = Γ2,∆2, x:iAx and stack Sx. Again, the only hard part of this part of the
proof is to derive that the stack values are represented properly with all the
separation conditions as dictated by the aspects in the context (i.e. assumptions
H3 and C4a, formulated in statement H2s, elaborated as Sep2 ).
It is quite easy to see that, apart from x, all the values used in e2 are properly
separated on the original heap σ (statement Hs2p) because their aspects are
not raised in Γ, although they may be lowered. To lift this condition to heap σ′

(statement Hs2g), we need to establish that the entire region of these values was
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left unmodified by the evaluation of e1, i.e. there is no aliasing between aspect 1
variables in Γ1,∆1 and the region of S2 on heap σ. This claim is trivial for Γ2

because of its inclusion in Γ (statement Sep) and the observation 1-23 . For ∆2,
however, we have to additionally use the fact that the side condition forbids a
shared variable to appear in e1 with aspect 1. This concludes the proof of Hs2g .
Now we need to prove that x on σ′ is separated from the remainder of the context
Γx as required by Sep2 . To do so, we will consider the three possible values of i

separately.

i = 1 (S2xi1 ): The required internal separation of x follows straight from Hr1 .
The separation of x from the rest of the context follows from the fact that
the value of x is contained within the region of variables with aspect 1 or 2
in Γ1,∆1. All these variables are separated from everything else thanks to Sep
and the definition of Γ1

1,∆
1
1 and are forbidden to appear in ∆2 by the side

condition.
i = 2 (S2xi2 ): The minimum requirement here is that x is separated from all

variables with aspect 1 in Γ2,∆2. This claim can be argued in the same way
as in the previous case from Sep and the side condition.
In the dotted reading, we also need separation from variables with aspect 2 and
the separation of tensors in x, which follows straight from Hr1 . The separation
of x (i.e. variables with aspect 1 or 2 in Γ1,∆1) from variables with aspect 2 in
Γ2,∆2 can be derived from Sep and the side condition as follows. No variable
can appear in both sets under consideration because the side condition does
not allow any variable to have aspect 1 or 2 in ∆1 and aspect 2 in ∆2. The
rest follows directly from the dotted version of Sep, considering the fact that
the aspects of these variables cannot change to 3 in Γ.

i = 3 (S2xi3 ): The side condition implies that variables with aspect 1 in ∆2

must have aspect 3 in ∆1. The variables with aspect 1 in Γ2,∆2 still have
aspect 1 in Γ. Thus Sep guarantees that variables with aspect 1 or 2 in Γ1,∆1

(which contain the region of x) are separated from the variables with aspect 1
in Γ2,∆2 because the two sets of variables are disjoint.

Putting together all statements from S2x and Hs2g , we get Sep2 , which is a
rephrasing of Hs2 . This statement allows us to use the induction hypothesis for
expression e2, yielding the conclusions Hr2 and G2 .

Individual statements after induction 2. Hr2 is equal to the desired conclusions
C3 and C4. The remainder of the proof is concerned with proving C1 and C2,
which have been rephrased as statement G .
To prove that the result is contained in |Γ|1,2, consider that we know from G2
that it is contained in rg(|Γx|1,2), which itself is contained in rg(|Γ2,∆2|1,2) ∪
rg(|Γ1,∆1|1,2) if i < 3 (thanks to G1 ) and is equal to rg(|Γ2,∆2|1,2) if i = 3.
The proof of Ri3 is concluded when we take into account |Γ2,∆2|1,2 ⊆ |Γ|1,2.
The other case (i.e. Ri12 ) needs additionally rg(|Γ1,∆1|1,2) ⊆ |Γ|1,2, which holds
whenever i < 3 because in this case the aspect of a variable cannot be higher in
Γ than in Γ1,∆1.
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It remains to prove the preservation of the heap contents for variables |Γ|2,3

(statement P). First consider which of these variables play which role in the two
sub-evaluations, using elementary statements 1-23 and a23i1 . Next we will show
that these preserved variables are not aliasing with what may be modified by the
sub-evaluations. This claim follows almost straightforwardly from Sep because
the modified variables have aspect 1, but we also need to confirm that the two
sets of variables do not overlap. The only danger of overlap is for variables within
∆1 but the elementary statement S1-23 shows that no overlap happens for these
variables either. Now we can see that the variables |Γ|2,3 are not modified in
either of the two evaluations.
The last danger comes from the fact that variables with aspect 2 in e1 may share
with x, which may be destroyed if i = 1. Nevertheless, in this case the variables
that have aspect 2 in e1 have the aspect raised to 1 in Γ and are therefore not
obliged to be preserved (which is implicit in a23i1 ). This concludes the proof of
P , which, as stated earlier, concludes the proof of the theorem for let expressions.

5.3 Soundness theorem

Now we are ready to complete Preliminary Theorem 5.1 by interpreting its assump-
tion H3 as S, σ 
◦◦

Γ η and its conclusions as v, σ′ 
◦◦
A a:

Theorem 5.8 (Soundness)
Assume the following data and conditions:

H1. a well-typed program P over some signature Σ;
H2. a well-typed term Γ ` e : A over Σ for some Γ, e, A;
H3. a heap σ, a stack S and a valuation η such that S, σ 
◦◦

Γ η;

Then we have also:

C1. S, σ ` e ; v, σ′ implies there is a such that η ` e ;SF a and v, σ′ 
◦◦
A a

(i.e. in-place update evaluation is correct);
C2. η ` e ;SF a implies there are v and σ′ such that S, σ ` e ; v, σ′ and v, σ′ 
◦◦

A a

(i.e. in-place update evaluation is complete).

Proof
Conclusion C1 is obtained straightforwardly by adapting the separation theorem
(Theorem 5.4) and its proof to include semantic values alongside the separating heap
representation statements, e.g. v, σ′ 
◦◦

A a instead of v, σ′ 
◦◦
A . We thus consider

conclusion C1 proved.
The assumptions of this theorem for proving conclusion C2 are almost identical to

the assumptions of the separation theorem. The only difference is in switching from
ordinary operational semantics to safe operational semantics. We will therefore be
able to reuse the structure and certain parts of the proof of the separation theorem.

Like in the separation theorem, the proof of C2 is by induction simultaneously
on the derivation of the operational semantics and on the derivation of the typing



A Type System with Usage Aspects 31

judgement. The rules for safe operational semantics are in an obvious one-to-one
correspondence with the rules for in-place updating operational semantics and the
corresponding rules are quite similar.

Whenever we need to use the induction hypothesis, one of the most laborious
steps is to prove assumption H3 for the sub-expression. Fortunately, this step can
always be reused from the proof of the separation theorem without any modifica-
tions. We will therefore omit this step in our proof description. The reason why
we can reuse the proof of H3 for sub-expressions from the separation theorem is
that the proofs made no use of the operational semantics. In cases where there are
two sub-expressions, when proving H3 for the second one, the conclusions of the
separation theorem are needed for the first sub-expression. This can be obtained
here by the separation theorem applied on the first sub-expression with the missing
operational semantics condition (H4 in Theorem 5.4) supplied by the first induction
hypothesis.

const: In the ordinary operational semantics, we get S, σ ` c ; c, σ, trivially
proving the conclusion.

var: This case is very similar to const except that we need to realise that S(x), σ 
◦◦
Γ

η(x) by H4 to prove that the value is equivalent.
app, if-true, if-false, drop, raise: We can apply the induction hypothesis with

an updated typing judgement and operational rule but the same S, η and a to
give us the desired conclusions verbatim.

weak: Assume Γ = Γ1,Γ2 and Γ ` e : A can be derived from a valid judgement
Γ1 ` e : A. We can apply the induction hypothesis on the same assumptions
except for replacing Γ with Γ1, S with S1 = S|Γ1 and η with η1 = η|Γ1 . In the
conclusions that we get we can now substitute back S for S1 because extending
the stack in operational semantics does not invalidate it.

⊗-pair, nil, leaf and node: Conclusions follow directly from the assumptions,
like in the case of var and const.

cons: Aligning the cons rules for safe and in-place updating operational semantics
allows us to draw conclusion C1, provided we can show that S(xd) is not in
RΓ(xh)(S(xh), σ) and RΓ(xt)(S(xt), σ). This is guaranteed by condition H3 and
the fact that xd has aspect 1.

pair-elim: We apply the induction hypothesis on the only operational premise,
substituting Γ, x:iA1 ⊗A2 with Γ, x1:i1A1, x2:i2A2 and η with η[x1 7→ a1, x2 7→
a2]. We get the desired conclusions except for having to apply the imperative
operational rule to turn S[x1 7→ v1, x2 7→ v2] back to S. The remainder of the
induction hypothesis is identical to the desired statement.

let: We can trivially apply the induction hypothesis on the first operational premise
and also on the second premise thanks to the ability to reuse the proof from
Theorem 5.4 to get H3 for it. These hypotheses yield the two premises of the im-
perative operational rule ×-pair, which then derives the operational statement
in conclusion C1. The representation of the final value follows directly from the
second induction hypothesis.

×-pair: This is very similar to let, except that we need to work harder to prove
that the final value is equivalent to the semantic value.
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To obtain (v1, v2), σ′′ 
◦◦
A1×A2

(a1, a2), we need v1, σ
′′ 
◦◦

A1
a1, which follows from

v1, σ
′ 
◦◦

A1
a1 and the fact that evaluation of e2 does not modify the region of v1,

which follows from:

• conclusion C2 of the separation theorem applied on the second premise;
• conclusion C1 of the separation theorem applied on the first premise;
• the side condition of ×-pair.

6 Conclusions and related work

In this paper we introduced a typing scheme that relaxes linear or affine typing
schemes, allowing some cases of contraction. Variables can be used more than once
in certain points in program expressions. The points of re-use are determined by
three usage aspects that characterise variable usages as destructive (aspect 1), read-
only shared (aspect 2) and read-only unshared (aspect 3). Aspect 2 is the most
interesting and novel: it captures when the machine representations of function
arguments and result may share memory (i.e., exhibit aliasing). It allows the aliasing
to be tracked through expressions.

Our typing scheme was demonstrated in a version of the resource-controlled linear
functional programming language LFPL (Hofmann, 2000), which has an affine typ-
ing scheme that additionally distinguishes between heap-allocated datatypes and
register or stack-allocated ones. These “heap-free” types are always given aspect 3
here. LFPL has an intended implementation using an in-place update interpreta-
tion for datatype construction; the resource type 3 is used to represent a unit of
heap space that can be destructively updated to construct a cell of a data structure.
With usage aspects, a datatype constructor typing always attaches aspect 1 to its
resource argument.

We gave an operational semantics to formalise a machine model of the in-place
update interpretation of LFPL. We proved that usage aspect typing ensures that
evaluation in the language is both type sound for a memory model and equivalent to
the standard call-by-value semantics, which corresponds to the usual denotational
functional semantics. The denotational correctness establishes that the program is
always properly evaluated; it justifies reasoning about programs using their func-
tional semantics, without caring about the underlying imperative behaviour. The
proof is highly non-trivial because of the semantics of aspects in contexts, especially
the need to establish separation and preservation properties between memory areas
occupied by variables in the context and the results of expression evaluation. This
suggests that a simple usage aspect typing can express a rather complex aliasing
and separation relation. We believe that the result here goes beyond most existing
proofs of type safety in the literature for related type systems.

6.1 Related work

The closest strand of work begins with Wadler’s introduction of the idea of a se-
quential let (Wadler, 1990). If we assume that e1 is evaluated before e2 in the
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expression

let x=e1 in e2,

then we can allow sharing of a variable z between e1 and e2, as long as z is not
modified in e1 and the type of e1 is such that its value x cannot possibly be aliased
with z. This condition is strictly stronger than z having aspect 3 in our system:
e.g. our example term S2 in Subsection 2.3 would not type-check translated into
Wadler’s language in a straightforward way:

let! (m)l’=filter_similar(m,l) in map_reverse(cons(m,l’))

because the type of l’, i.e. L(L(N)) is potentially sharing with the type of m,
i.e. L(N).

Odersky (1992) improved Wadler’s system by introducing observer type anno-
tations, which semantically correspond to our aspect 3: example S2 works in his
system. In certain ways, Odersky’s system is more powerful than ours: it supports
polymorphism, higher order functions and observer status can be independently
granted to individual components of an argument’s type rather than the argument
as a whole. Nevertheless, the observer annotations cannot model aspect 2, which
can be demonstrated with our example S1. In Odersky’s system, when typing the
term

let! b = find_best(l) in first_similar(b,l)

the inner list within the type of l, i.e. L(L(N)), will have to be non-linear because
it cannot be made an observer in the first term where it shares with the result b.

Kobayashi (1999) introduces quasi-linear types. This typing scheme also allows
sharing in let expressions. It has a δ use, which corresponds roughly to our aspect 3
usage. Kobayashi’s motivation was to detect statically points where deallocation
occurs; this requires stack-managed extra heap, augmenting region analysis (Tofte &
Talpin, 1997). To illustrate Kobayashi’s system, we quote the typing of the append
function from (Kobayashi, 1998), page 30:

∀α, β, γ, i, j, k :: {α ≥ γ, β ≥ γ, i ≥ δ, j ≥ k, j ≥ δ, k ≥ dke, l ≥ δ} .

((α list i ×l β listj) →ω,ω γ listk)

The judgement entails that the cons cells of both input lists have been used but are
not bound to the result (i ≥ δ, j ≥ δ) and thus can be safely deallocated and re-
used. In particular, it is safe to implement the append in-place. Also, the judgement
says that the elements of the lists are not touched (α ≥ γ, β ≥ γ) and there are no
restrictions on how many times the function may be safely used (→ω,ω).

The example typing shows that our usage aspect annotation is considerably more
concise than Kobayashi’s typings, although we assume a more restricted scenario
where an in-place update interpretation is intended rather than inferred. Kobayashi
proves a traditional type soundness (subject reduction) property, which shows an
internal consistency of his system, whereas we have characterised and proved equiv-
alence with an independently meaningful semantic property. It might well be pos-
sible to prove similar results to ours for Kobayashi’s system, but we believe that
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by considering the semantical property at the outset, we have introduced a rather
more natural syntactic system, with simpler types and typing rules.

To summarise so far, in the realm of functional programming, the work that is
related to ours mostly encompasses our usage aspect 3, but does not have anything
analogous to our aspect 2. There is also a long history of work on aliasing in the
realm of imperative programming, most lately introducing expressive type systems
and specialised logics, which we outline next. Although type systems in this setting
may appear to be closely comparable to ours, there are important differences. For
example, it seems hard to concisely represent aspect 2 in an imperative setting: an
imperative procedure may have many non-local effects during its execution that
could introduce aliasing at almost arbitrary positions in the store, leading to the
need to introduce names for locations (and then polymorphism over those names).
Things are more controlled in a functional setting, since a function returns a single
result, so we can express the aspect 2 concisely as aliasing with this single result
and monitor the effect of the introduced aliasing more easily.

Some formalisms for reasoning about aliasing in imperative programs are flexible
enough to express and prove safe an aliasing corresponding to our aspect 2. Prob-
ably the closest of these to our system are fractional permissions (Boyland, 2003),
which track all aliases of a linear value across procedures (and even parallel threads)
and statically detect when the value becomes unique and can be safely overwritten.
The tool for analysing C programs described in (Evans, 1996) has several anno-
tations whose meaning is related to our aspects. Although this system has been
popular and useful for finding errors, its theoretical underpinning is limited and its
guarantees are therefore much weaker than those of the other systems mentioned.
Also, separation logic (Reynolds, 2002) and alias types (Smith et al., 2000) can be
used to express and verify safety of aliasing across procedures.

In separation logic and the logic of bunched implications (Ishtiaq & O’Hearn,
2001), it is natural to express aliasing properties but not a read-only behaviour.
This means that without amendments neither aspect 2 or 3 can be expressed. One
way to express read-only behaviour that has been suggested is to combine these
logics with passive types from syntactic control of interference (Reynolds, 1978;
O’Hearn et al., 1995). Another way to express read-only properties in separation
logic is by the use of auxiliary variables that provide a link between the heap before
and after the execution of a command. But again, such systems provide much more
complicated assertions than ours, and need sophisticated machinery to reason with
them.

Separation logic and alias types and are complex general mechanisms in which
automatic checking of higher-level type safety (such as aliasing over values of recur-
sive datatypes) is difficult to obtain. Some works close to alias types, e.g. (Fahndrich
& DeLine, 2002; Aiken et al., 2003) and the work by Boyland already mentioned,
do make steps in this direction.

All the mentioned methods for analysing memory aliasing in imperative programs
make assertions about individual memory cells or unstructured heap blocks. Defin-
ing recursive datatypes and expressing aliasing properties for them as a whole is not
straightforward. It is apparent that, e.g. for alias types (Walker & Morrisett, 2001),
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the resulting assertions are complex and it will be more difficult to infer them than
to infer our usage aspects.

We would like to stress again that imperative languages do not admit an intu-
itive denotational semantics comparable to that of our functional language. Conse-
quently, it does not make as much sense to prove the correctness of the execution of
well-typed programs in the quoted systems as much as it does in ours. Indeed, the
mentioned works prove only type safety of the execution, not relating the behaviour
of the programs to their specifications. Our approach gives the programmer a trans-
parent denotational semantics that can be used to check that programs meet their
specifications. Reasoning at this level, usage aspects and diamond values can be
completely ignored; our proof guarantees that the imperative interpretation with
aliasing is sound. Diamond values or other means of explicit memory deallocation or
reuse allow the programmer to safely optimise the memory usage of their programs
without changing its functional behaviour.

There is further less-closely related work on formal systems for reasoning or
type-checking in the presence of aliasing, including for example work on the imper-
ative λ-calculus (Yang & Reddy, 1997); uniqueness types (Barendsen & Smetsers,
1996), usage types for optimised compilation of lazy functional programs (Pey-
ton Jones & Wansbrough, 2000) and program analyses for destructive array up-
dates (Draghicescu & Purushothaman, 1993; Wand & Clinger, 1998) as automated
in PVS (Shankar, 1999). There is also related work in the area of compiler con-
struction and typed assembly languages, where researchers have investigated static
analysis techniques for determining when optimisations such as in-place update or
compile-time garbage collection are admissible; recent examples include shape anal-
ysis (Wilhelm et al., 2000), already mentioned alias types (Smith et al., 2000), and
static capabilities (Crary et al., 1999), which are an alternative and more permissive
form of region-based memory management.

One of our future goals is to relate our work back to research on compiler op-
timisations and typed low-level languages in the hope that we can guarantee that
certain optimisations will always be possible in LFPL by virtue of its type system.
This is in contrast to the behaviour of many present optimising compilers where
it is often difficult for the programmer to be sure if a certain desirable optimisa-
tion will be performed by the compiler or not. Work in this directions has begun
in (Aspinall & Compagnoni, 2003) where a typed assembly language is developed
that has high-level types designed to support compilation from LFPL to obviate
the need for garbage collection.

6.2 Outlook

We see the work reported here as a step along the way towards a powerful high-
level language equipped with notions of resource control. There are more steps to
take. We want to consider richer type systems closer to those used in present func-
tional programming languages, in particular, including polymorphic and higher-
order types. We do not expect significant problems integrating Milner-style poly-
morphism into our language and higher-order functions should be possible using the
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standard types and effects technique (Gifford & Lucassen, 1986; Talpin & Jouvelot,
1994).

Another step is to consider inference mechanisms for adding resource annota-
tions, including the 3 arguments (we mentioned some progress on such inference
in Section 1) and usage aspects, as well as the possibility of automatically choosing
between ⊗-types and ×-types. Inference of our usage aspects has been addressed
in (Konečný, 2003b) and a generalisation of the inference of the product types
is included in (Konečný, 2003a) where usage aspects are assigned to certain type
sub-terms instead of variables.

In (Konečný, 2003b), the third author showed that for every program typable
in our system, there is a typing with best (i.e. largest) usage aspects. These usage
aspects can be automatically reconstructed using an iterative search for a fixed
point, starting with the most optimistic typing of all functions in the program,
i.e. assuming that every argument in every function is used with aspect 3.

We have supported our theoretical work with the development of experimental
prototype compilers for LFPL. Type-checking and usage aspect inference for the
present system have been implemented by the third author as a front-end to a
compiler by Robert Atkey. More information about the compiler can be found via
(Aspinall & Konečný, 2003).
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