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Thesis Summary

This thesis is a study of three techniques to improve performance of some standard fore-

casting models, application to the energy demand and prices. We focus on forecasting de-

mand and price one-day ahead. First, the wavelet transform was used as a pre-processing

procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have

empirically compared these approaches and found that the former consistently outper-

formed the latter. Second, adaptive models were introduced to continuously update model

parameters in the testing period by combining �lters with standard forecasting methods.

Among these adaptive models, the adaptive LR-GARCH model was proposed for the �rst

time in the thesis. Third, with regard to noise distributions of the dependent variables

in the forecasting models, we used either Gaussian or Student-t distributions. This thesis

proposed a novel algorithm to infer parameters of Student-t noise models. The method

is an extension of earlier work for models that are linear in parameters to the non-linear

multilayer perceptron. Therefore, the proposed method broadens the range of models that

can use a Student-t noise distribution.

Because these techniques cannot stand alone, they must be combined with prediction

models to improve their performance. We combined these techniques with some standard

forecasting models: multilayer perceptron, radial basis functions, linear regression, and

linear regression with GARCH.

These techniques and forecasting models were applied to two datasets from the UK

energy markets: daily electricity demand (which is stationary) and gas forward prices

(non-stationary). The results showed that these techniques provided good improvement

to prediction performance.

Keywords: adaptive model, wavelet transform, Student-t noise, neural network, time
series model.
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1 Introduction

1.1 Motivation of the thesis

Prediction is known to be an important tool and is applied in a wide range of domains,

including business, government, economics, �nance, medicine, industry, etc. Forecasts

do not stand alone, but are part of a broader business process: managing, controlling,

planning or scheduling systems. For example, long-term forecasts of telecommunication

demand are used for network planning, a company predicts their product sales for each

month in order to schedule production and determine sta¤ requirement (Montgomery

et al., 2008). Applications of predictions are various, but the main objective is to reduce

the risk in decision making.

In the UK energy markets, prediction is mostly aimed at power/gas demand and prices.

We focus on the wholesale energy prices rather than retail prices. A special characteristic

of electricity is that it cannot be stored easily1. Therefore, an electricity demand forecast is

valuable for power generators who can use such forecasts to e¤ectively schedule operations

of their power stations to match generation capacity with demand. Electricity demand

1There are some large hydro schemes to store electricity, but they only amount to a small fraction of
overall demand.
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forecasting is also considered one of the fundamental pieces of information for trading in

the energy market because the power price depends on demand.

Accurate electricity/gas price forecasting is vital for traders in the energy market. The

�uctuations in electricity demand and the requirement of balancing between demand and

supply are the principal causes of high volatility in wholesale electricity prices. This makes

accurate price forecasts even more important. If a market participant makes an accurate

forecast of the market price, it can develop a strategy to maximise its own pro�ts and

minimise risk due to price spikes by appropriate trading in forward contracts. An energy

generator can plan its actions to maximise bene�ts or utilities by reducing/increasing its

generation. In addition, understanding the process of forward price development can help

the generators make additional pro�ts through trading on the forward market.

Forecasting problems have been investigated for decades and numerous statistical mod-

els have been developed. However, forecasting energy prices presents a number of chal-

lenges because of the volatility characteristics of the prices. Although many e¤orts have

been made to develop prediction methods, current methods still have signi�cant de�cien-

cies in this domain. As a result, the challenge of developing new methods able to better

solve di¢ cult problems still attracts the interest of researchers. In addition, much work

remains to be done in this area since some models still require training algorithms for new

characteristic encountered (e.g. a model with a new noise distribution rather than the

usual Gaussian).

E.ON UK is a part of the E.ON Group, generating and distributing electricity, and

retailing electricity and gas. The organisation explores promising new techniques to apply

to its core business. This project is a part of their program: forecasting energy demand

and forward prices. The main objective of this thesis is to develop techniques to improve

performance of some existing forecasting models. We focus on prediction applications in

the energy sector with one-day-ahead horizons. These forecasts are used for trading on the

forward market and scheduling power plants. These forecasting algorithms are tested on

two datasets: daily electricity demand and gas forward price. These datasets were selected

to meet the needs of E.ON and also to investigate both stationary and non-stationary data.
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1.2 Prediction problem

1.2.1 Scope of the thesis

Prediction is de�ned to be the process of estimating future values (which have been not

observed yet) of a variable given known values of that variable and (perhaps) other related

variables2. The variables are numerical quantities and they can be electricity demand,

stock price, telecommunication demand, population, unemployment rate, or any numerical

quantity, depending on the application domain. The variable whose future values we wish

to predict is called the target variable. The forecast values are normally derived from a

model (with de�ned parameters) and inputs.

The range of prediction problems is large and diverse. We can classify prediction prob-

lems using several characteristics. First, forecasting can be classi�ed by forecast horizon,

which is the time ahead that we want to forecast values. It can be a short-term, medium-

term, or long-term forecast. The categorisation of lengths of forecast horizons depends on

the application domain. For example, in the energy demand/price prediction, the short-

term involves forecasting a few time periods (minutes, hours, days, or weeks) ahead. The

medium-term forecast can be several months to a year in the future and the long-term can

extend to several years. Second, with regard to the choice of the type of forecasting model,

there are various forms that can be used to generate input-output mappings for prediction:

neural networks, time-series models, mathematical formulae, etc. These models allow us

to compute forecasts from the observed or known values. The third aspect of the pre-

diction problem relates to the form of forecast. Usually, the forecast is the expectation

(or mean) of a future value. Some applications require not only a forecast of the mean

but also a measure of uncertainty, such as standard derivation, con�dence interval, or full

probability distribution.

Within the scope of this thesis, we are interested in predicting the one-day-ahead value

of energy demand and price. We focus on predicting means of the target variables but not

their uncertainty measures.

1.2.2 Formal de�nition

The prediction problem within the scope of our thesis can be formalised as follows:

2The term �prediction�has a very broad meaning. It can refer to predicting the possibility of an event
happening (e.g. earthquake or volcanic eruption) or actual occurrences (e.g. lottery). However, we are
here interested in the future values of numerically measured quantities.
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given fy1; y2; : : : ; ytg and xt+1

estimate byt+1
subject to minimising E(byt+1, yt+1)

where

� fy1; y2; : : : ; ytg are the observations of the target variable y at time step 1; 2; : : : ; t.

� xt+1 are the observations of the input vector x at time step t+ 1. The input vector

can include some observed values of target y and (optionally) known values of related

variables up to time t.

� byt+1 is a forecast value of y at time step t+ 1. This forecast is made at time step t.
� yt+1 is the real value of y at time step t+ 1.

� E(byt+1, yt+1) is an error function measuring how close the forecast byt+1 and the real
value yt+1 is. Some error functions are de�ned in Section 3.5.

The main job of prediction is to statistically estimate a functional relationship between

input vector x and forecast:

by = f(x; �),

where function f(x; �) is called the forecasting or prediction model and � is the set of

model parameters. The process of �nding the structure of the function f and estimating

parameters � is called training. In this thesis, we used statistical models in which the

target y is assumed to be corrupted by a zero-mean noise random variable ":

y = f(x; �) + ", (1.1)

where the noise distribution is usually assumed to be Gaussian.

1.2.3 Forecasting process

A forecasting process has six major steps as follows3:

3This forecasting process is based on a standard data mining process CRoss-Industry Standard Process
for Data Mining (CRISP-DM) at http://www.crisp-dm.org/index.htm.
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� Speci�cation: de�ne the problem and clarify the objective by answering some ques-

tions: what do we want to forecast, what is the time horizon of the forecast, and

what is the form of the forecast? We have answered these questions in Section 1.2.1.

� Data understanding : in this phase we analysed the data that E.ON had provided

in order to understand the relationships between variables and recognise underlying

patterns (e.g. trends, seasonality) in the data. These variables include the targets

and exogenous variables which are potential inputs for prediction models (see Chap-

ter 2). We also did some data cleaning: replacing missing values by the average of

two adjacent values, identifying and replacing the outliers. Few values in electricity

demand time series are abnormally high, and we replaced them by values from the

previous week.

� Data pre-processing : create input vectors. We must form input variables that are

appropriate for the target variable and model structure. This is one of the main

areas of study in this thesis. We used some processing procedures to select the input

variables for each kind of prediction model (see Section 3.4). This step also included

some analytical processes to enhance prediction accuracy, such as applying a wavelet

transform to derive new attributes for input vectors (to be presented in Chapter 4),

replacing irregular data on holidays in electricity demand time series (see Section

2.5.1), transforming temperature to be quasi-linear with electricity demand, and

using dummy variables to represent non-numerical data such as the day of the week

(see Section 3.6.1 for more detail).

� Modelling: build forecasting models from training sets. This step de�nes forecast-

ing model structures and �ts the models to the data. Fitting means we estimate

their parameters using some optimisation criterion. We use various statistical mod-

els, including machine learning, time series, and �nancial stochastic models (to be

presented in Chapter 3). Chapter 5 and 6 propose two techniques to improve per-

formance of these prediction models.

� Evaluation: verify the models developed in step 4. This step measures how close the

forecasts are to the corresponding real values. The model accuracy should be tested

on an out-of-sample dataset because the error on the training data cannot be relied

upon to estimate the accuracy of a model. Hence we have to divide each dataset
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into a training set and a test set. The training set is used in step 4 to develop

models while the test set is used in this step to evaluate the models. We used

some standard error measures and also de�ned a new one to evaluate and compare

prediction performance (see Section 3.5).

� Deployment: once a model is con�rmed to be reasonably accurate, it can be used

in the real world. This step is the responsibility of E.ON with the support of Aston

in technology transfer. All the software developed in the project has been delivered

to E.ON with documentation and E.ON sta¤ have received some training in the

methodology. They will decide how and when the knowledge in this thesis will be

used for their real world applications.

1.3 Major contributions

In this thesis, we focus on the data pre-processing, modelling, and evaluation steps. The

main contents of the thesis are three techniques to improve the accuracy of some prediction

models. Note that these improvement techniques cannot stand alone, but they have to be

combined with the prediction models to make them more successful.

This thesis provides an empirical comparison of a set of forecasting frameworks in order

to explore the following issues:

� Because the above improvement techniques cannot do prediction by themselves, we

used some machine learning and time series models as standard forecasting models

(i.e. the form of function f in Equation (1.1)): a multilayer perception (MLP), a

radial basis function (RBF), a linear regression (LR), and a linear regression with

generalised autoregressive conditional heteroscedastic (LR-GARCH) model. These

forecasting models are basically used to test the performance of the improvement

techniques.

� With regard to a transformation of the target variable prior to modelling, this thesis

uses the wavelet transform (WT) to generate new variables for input vector x in

Equation (1.1). We compared performance of the prediction models without WT

and two combination methods:

�Multicomponent forecast : a WT decomposes the target value y into wavelet
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components, and then each component is forecast with a separate model. The

forecast value of y is computed by an inverse wavelet transform.

�Direct forecast : using the components of the WT as input variables to a single

forecast model to directly predict the target.

� With regard to model parameters (� in Equation (1.1)), they are either estimated

just once or continuously updated in the testing period. We evaluate the performance

of the standard forecasting models with two variations:

�Fixed models, i.e. models whose parameters are �xed after training on a training

set.

�Adaptive models, i.e. hybrid of �lters (extended Kalman �lter (EKF) or particle

�lter (PF)) and forecast models, where parameters are estimated on a training

set and then adapted continuously on the test set using the �lter.

In terms of this factor, we also proposed adaptive models for the �nancial stochastic

models.

� With regard to the noise distributions of the dependent variables in the forecasting

models (i.e. " in Equation (1.1)), we use either Gaussian distributions or Student-t

distributions.

By combining the above factors, there are 60 di¤erent prediction frameworks. We

tested these prediction frameworks for forecasting one-day-ahead electricity demand and

one-day-ahead gas forward price in the UK market. Two large datasets are used: (1)

electricity daily demand with 821 observations, and (2) 24 sub-datasets of gas forward

prices.

Compared with earlier work, our thesis makes the following contributions. First,

we propose new forecasting frameworks with various combinations of di¤erent methods:

wavelet transform, a range of machine learning/time series models, �lters, and di¤erent

noise distributions. Second, although combining WT with a time series or neural network

model has already appeared, previous papers only used either multicomponent-forecast or

direct-forecast. In this thesis, we use both types of forecast and compare their prediction

accuracy, which provides an answer to the question of which is better for energy datasets.
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The experimental results on the UK data showed that multicomponent-forecasts consis-

tently outperform direct-forecasts and the models without WT. Third, we combine �lters

(EKF/PF) with machine learning/time series models to create adaptive models, whose

parameters are updated online during forecasts. Among these adaptive models, the adap-

tive LR-GARCH and adaptive �nancial stochastic models are proposed for the �rst time

in this thesis. Moreover, we use not only the EKF for adaptive models as earlier authors

but also the PF. The bene�ts of using the PF are that it makes no a priori assumption of

Gaussian noise and also that it is not necessary to linearise the prediction models. Fourth,

we consider the use of either Gaussian or Student-t as noise distribution in prediction

models. Student-t noise showed good e¤ects on the gas price data whose residuals are well

known to be fat-tailed distributions. We proposed a novel training algorithm for Student-

t models. This algorithm is an extension of earlier work (Tipping and Lawrence, 2005)

for models that are linear in parameters to the non-linear MLP. Therefore, our proposed

training technique broadens the range of models with Student-t noise model. Finally, be-

sides historical data of a target variable (e.g. electricity demand or gas forward price) and

its WT components, a number of exogenous variables (e.g. temperature, wind speed, day

pattern, electricity supply and electricity price etc.) are also considered as input variables.

Some pre-processing procedures (presented in Section 3.4) are used to choose the relevant

input variables for each forecasting model.

1.4 Structure of the thesis

This thesis is organised as follows:

Chapter 2 presents an overview of the UK energy market. We focus on energy demand

and prices because they are target variables of our prediction tasks. We also describe

the related variables which are potential inputs for these tasks. In Section 2.5, the two

datasets which were used to test the performance of proposed algorithms in this thesis are

described.

In Chapter 3, we present an initial analysis and some results on the input variable

selection and the standard forecasting models. They are basic steps to develop the im-

provements in the next chapters.

Chapters 4, 5 and 6 study three techniques to enhance the performance of the models

presented in Chapter 3. The techniques are aimed at di¤erent aspects of the prediction
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task: pre-processing data, parameter estimation, and noise distribution. In Chapter 4,

wavelet transforms are used as a pre-processing procedure. This chapter studies the ques-

tion of which types of WT can be used in forecasting applications, discusses di¤erent

approaches for using WT in prediction, and empirically compares their performances.

Chapter 5 discusses another technique to make these forecasting models more accurate:

adaptive models. We identify the situations in which this technique is e¤ective.

In Chapter 6, we investigate noise distribution issues. This chapter discusses the need

to use models with Student-t noise for energy price time series. Then we propose a novel

methodology for inferring parameters of Student-t probabilistic models.

Chapter 7 carries out an empirical comparison to evaluate the e¤ectiveness of the above

improvement techniques when they separately combined with standard prediction models

as well as the bene�t when they are cumulatively combined together.

In chapter 8, we conclude the thesis, summarising algorithms proposed in the thesis

and their performance. We suggest several related research topics which may be pursued

in the future to improve and extend the methods described in this work.

1.5 Publications resulting from this thesis

There are some publications resulting from this work as follows:

1. H. T. Nguyen and I. T. Nabney. Combining the wavelet transform and forecasting

models to predict gas forward prices. In The Seventh International Conference on

Machine Learning and Applications, ICMLA�08, pages 311-317, 2008.

2. H. T. Nguyen and I. T. Nabney. Energy forward price prediction with a hybrid

adaptive model. In IEEE Symposium on Computational Intelligence for Financial

Engineering, CIFEr 2009, pages 66-71, 2009.

3. H. T. Nguyen and I. T. Nabney. Energy demand and price forecasts using wavelet

transforms and adaptive machine learning models. Energy, 35 (9), pages 3674-3685,

2010.

4. H. T. Nguyen and I. T. Nabney. Variational inference for Student-t MLP models.

Neurocomputing, 73(16-18), pages 2989-2997, 2010.
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1.6 Abbreviations

ACF autocorrelation function MAE mean absolute error

ANN arti�cial neural network MAP maximum a posterior

AR autoregressive MAPE mean absolute percent error

ARMA autoregressive moving average MLP multilayer perceptron

ARIMA autoregressive integrated NLL negative log likelihood

moving average NMAE normalised mean absolute error

ARD automatic relevance NRMSE normalised root mean squared error

determination PACF partial autocorrelation function

BM benchmark model PF particle �lter

CD correct direction RBF radial basis function

CM correlation matrix RHWT redundant Haar wavelet transform

EK Kalman �lter RMSE root mean squared errors

EKF extended Kalman �lter ROC renewable obligation certi�cate

FT Fourier transform RW random walk model

GARCH generalised autoregressive SAP system average prices

conditional heteroscedastic SCG scaled conjugate gradient

KF Kalman �lter SMP system marginal prices

IR improvement ratio SSM state space model

LR linear regression WT wavelet transform
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2 Energy markets

The datasets used in this thesis were derived from real information from the UK energy

markets, which was provided by E.ON. The proposed algorithms were tested on two fore-

casting problems: daily electricity demand and gas forward prices. This chapter gives an

overview of the UK energy markets and the datasets.

2.1 Introduction

In the UK, electricity comes from a number of generating sources, including coal, oil, gas,

nuclear, solar, biomass, wind and hydro. The contributions of each of these fuels have

changed over time due to di¤erent factors: economic, political, and technological. Coal,

gas, and nuclear power stations provide the majority of the generating capacity (see Figure

2.1). If we take the period 1970 - 2007 as a whole, coal has been the predominant fuel,

generating 54% of all the electricity in the UK, followed by nuclear (21%), natural gas

(13%) and oil (10%) (Davies, 2009). From the 1980s the contribution of coal reduced due

to a broader trend whereby the UK economy moved from traditional heavy industries like
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Figure 2.1: Fuel mix for electricity generation in the UK (Source: Davies (2009)).

coal to a more service-based economy. Since 1990, North Sea gas has been used to supply

the UK with cheap fuel for electricity generation. In addition, the development of gas-

power generation technologies has made gas more and more attractive and it has become

more important in the UK electricity industry. These facts motivate the transition of the

generating source from coal to gas. Gas made a very small contribution in 1990, but it

is now dominant. In 2005, gas power contributed 39% of all electricity in the UK, which

surpassed coal (35%) and nuclear (20%) (Wiltsher et al., 2006).

In recent years, the problem of global warming has attracted a great deal of attention

and is considered as one of the biggest environmental challenges facing the world. More-

over, the government is also concerned with the insecurity of future supplies of natural gas.

These factors motivate the development of renewable energy, for example small hydroelec-

tric plant (run of water), wind (both onshore and o¤shore), wave power, etc. However,

the capacity of electricity from renewable sources is still insigni�cant due to restrictions of

the technologies and the expensive producing cost. In 2007, renewable energy contributed

only 5% of all electricity generated in the UK (Davies, 2009).

In 2002 the Renewable Obligation Certi�cate (ROC) was introduced, which is aimed at

increasing the amount of electricity generated from renewable energy sources and reducing

CO2 emissions. All companies are required to supply a minimum proportion of their

electricity from renewable sources (in 2009, this proportion was 9.1% (Davies, 2009)). A

company can meet this requirement by either generating renewable energy or buying ROCs
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from other companies. ROCs can be traded in the open market by bid/o¤er mechanisms.

At the end of each year, if a company does not have enough ROCs to meet the requirement,

they will get a penalty: they must pay into a �buy out�fund. Then, this �buy out�will

provide funds to for the companies which have presented su¢ cient ROCs for that year.

The most important objective of suppliers is to get the greatest bene�t from their

business. The suppliers are encouraged to balance the energy supply and demand by

controlling power stations or trading energy contracts. If a supplier fails to balance sup-

ply and demand, �nes can be imposed, and National Grid as the system operator1 in

Great Britain sells/buys energy to correct aggregate imbalances. In long term plans, the

suppliers can make pro�ts from buying/selling power stations or planning to build new

power stations (which is a complex task because they must pay construction and running

fees, compute e¤ectiveness of investment, and ask for approval from the government). In

addition, they may also make additional pro�ts through trading on the energy forward

market.

There are two trading levels in the energy markets, i.e. wholesale and retail. In

the wholesale markets, the participants (including system operators, generators, suppliers

and traders) trade a large amount of gas and electricity among themselves. Then, these

suppliers sell their purchased gas/electricity to their customers (i.e. consumers which can

be residents or business users) in retail markets. A supplier is not necessarily a generator.

In this thesis we focus on the wholesale markets only. Trading in the wholesale markets is

based on forward contracts and spot markets. The forward contract is for future delivery

of energy (e.g. a month ahead or season ahead) while the spot market is for buying or

selling energy within the day. We will discuss these in more detail in Section 2.3.

The energy suppliers also have to manage spikes in the market. Electricity and gas

prices sometimes show very large and unpredictable spikes, which may result from various

reasons: shutting down a power station, extremely cold weather, etc. If the suppliers can

predict these opportunities, they can get a large bene�t. If a company owns a power plant,

it can increase its pro�ts by switching the plant on when electricity prices are high relative

to the price of inputs.

1The system operator is an organisation which is responsible for controlling and managing the operation
of gas or electricity markets in the most e¤ective and economic maner. They also ensure a continuing
supply-demand balance.
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2.2 Energy demand

In this thesis, the electricity and gas demand on a day are taken to be the total consumption

of all users in Great Britain (including industry, the commercial sector and the residential

sector) over the whole day. The basic unit for electricity and gas demand are Megawatt

hours (MWh) and therm respectively.

Figure 2.2 shows daily electricity demand from 7th October 2004 to 3rd May 2007.

The data has a yearly seasonality pattern, caused by temperature variations. Electricity

demand is highly sensitive to the weather conditions. It is normally higher during the

colder part of the year, mainly because of the use of heating. The �gure also shows that

there are some days which have much smaller demand than the adjacent days, for example

observations around time steps 180, 450 and 810. They are public holidays (Christmas,

Easter and Bank holidays). Note that there is a large di¤erence in demand between

years. For example, observations around time step 100 and those around time step 465

(see Figure 2.2) present data on the same periods of two adjacent years (2005 and 2006),

but the values of these two observation groups are di¤er by about 1:1 � 105 (MWh), i.e.

approximately 10% of the largest consumption days in 2005 .

If we �zoom in� on a shorter period for more detail (see Figure 2.3), we see that

daily electricity demand also has a periodicity of seven days with lower consumption at

weekends. Most o¢ ces and schools close on weekends, when their energy consumption is

much reduced. Consequently, the total electricity demand drops signi�cantly at weekends.

There are normally peaks on Tuesday or Wednesday. The lowest demand is on Sunday.

Daily gas demand shows only annual seasonality, but not weekly seasonality. It is still

sensitive to temperature: gas demand in winter is higher than in the summer (see Figure

2.4).

Unlike most commodities, electricity has a distinctive character, i.e. it cannot be

stored easily. It is nearly impossible to produce a large amount of electricity at a time

of low demand, hold it and consume it later. This means that supply has to match

consumption at (nearly) all times. Therefore, electricity generators and suppliers need to

have good predictions of demand; then they can save money by planning/scheduling the

power stations based on these predictions; the suppliers have good plans of buying/selling

electricity in the wholesale market.
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Figure 2.2: Daily electricity demand from 7th October 2004 to 3rd May 2007.
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Figure 2.4: (a) Daily gas demand and temperature during the period from 7th October
2004 to 6th October 2006. The blue line is the gas demand and the black line is the
temperature. (b) Daily gas demand plotted against temperature.
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2.3 Energy forward prices

Forward contracts play an important role in the wholesale market. They are an agreement

between two participants in the market to sell/buy a given amount of electricity or gas

for delivery over a speci�ed future time period at a certain price. A di¤erence between

electricity/gas contracts and most other commodity contracts is that the delivery time of

an electricity or gas contract is a period of time rather than at a speci�c future time point.

This is the nature of all electricity contracts because electricity is non-storeable and it is

bene�cial only if it is used over a period of time. The main objective of suppliers and

generators trading the forward contracts is to reduce or avoid risks that they may face

due to price changes in the future. Because forward contracts are not traded at weekends

and public holidays, each year has approximately 250 trading days.

There are various types of forward contracts depending on the length of the delivery

period: monthly, seasonal, quarterly and annual contracts. The delivery period of a

monthly gas forward contract normally starts at the beginning of a month and stops at

the end of that month. For example, the delivery period of Oct-2006 gas product is from

1st October 2006 to 31st October 2006. No forward contracts is traded once its delivery

period has begun. A monthly gas forward contract is available for trading during the

contract trading period. In the data that we received from E.ON, the trading period was

six months for trading prior to 30th April 2007 but has been �ve months since that date2.

Therefore, there are �ve or six months of daily price data (approximately 110-130 data

points) for each monthly gas product. In the above example, Oct-2006 product can be

traded on all days from 3rd April 2006 until 29th September 2006 (except public holidays

and weekends). At the beginning of every month, a monthly contract stops being traded

and a new monthly contract is listed.

Unlike gas, where forward products match the standard calendar, the delivery periods

of electricity forward products follow a speci�c calendar, called the Electricity Forwards

Agreement (EFA) calendar. This calendar lists a standard set of (monthly/quarterly/seasonal)

products that can be traded on the electricity forwards markets; a month in EFA starts

on a Monday and it is a rolling cycle of 4-4-5 weeks (with a 53rd week added every so often

2The gas forward data is taken from Heren (http://www.icis.com/heren/) during the period
before 30th April 2007, but after this date we get information from another source, Argus
(http://www.argusmedia.com/). This data source does not make too much di¤erence, other than the
fact that Argus only publishes prices for �ve monthly products at a time, instead of six from Heren.
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Type of contract Length of delivery period Trading period

Electricity forward price
Monthly 28, 35 or 42 days 4 months
Quarterly 91 or 98 days 3 quarters
Seasonal 182 or 189 days 5 seasons

Gas forward price
Monthly 28 - 31 days 6 months (before 30th April 2007)

5 months (after 1st May 2007)
Quarterly 89 - 92 days 11 quarters
Seasonal 172 - 183 days 5 seasons
Annual 365 days 2 years

Table 2.1: Characteristics of gas and electricity forward products in the UK market.

to keep the years aligned). Table 2.1 shows the lengths of delivery periods and trading

period of forward contracts in the UK gas and electricity markets.

All forward prices provided by E.ON are daily sampled time series. Because the whole-

sale markets are very competitive and busy with many participants, every day there are

a number of transactions for each product (i.e. same delivery period). However, their

prices are not the same. Both parties of a contract can negotiate to set the forward price.

The load speci�ed in transactions are also di¤erent. In this thesis, the price of a type of

product on a certain day is the �close market price�, which is the average of prices of all

transactions that take place on that day, weighted by load. Gas and electricity prices are

quoted in p/therm and £ /MWh respectively.

Table 2.2 contains an example of closing prices of all the monthly gas forward products

traded from 20th September 2006 to 10th October 2006 in order to show how multiple

contracts are available at di¤erent times. Forward prices of di¤erent products (i.e. di¤erent

delivery period) are di¤erent, even if they are traded on the same day. For example, the

price of the Nov-2006 product was 56.05 (p/therm) on 28th September 2006 whereas the

price of the Dec-2006 product traded on the same day was 71 (p/therm). The price of

products delivering in a cold period are normally higher than those in a hotter period.

There exist shorter delivery period contracts: weekend ahead and weekday ahead,

whose delivery periods are the next working day or the next weekend respectively. In

the gas market, there are also within-day contracts which sell or buy gas for delivering

gas on the same day. In the electricity market, there are spot contracts which are for

delivering power on every half hour within the day of trading; however, we decided not to
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Date/ Oct-06 Nov-06 Dec-06 Jan-06 Feb-06 Mar-06 Apr-06
Product
20/09/2006 37.500 58.050 72.750 77.050 75.450 64.400
21/09/2006 36.450 57.900 72.750 77.500 75.750 64.600
22/09/2006 34.950 57.125 72.200 77.525 75.725 65.050
25/09/2006 35.525 57.125 72.275 77.650 75.750 64.550
26/09/2006 34.850 55.750 70.750 76.300 74.550 63.050
27/09/2006 33.475 55.125 70.050 75.975 74.125 62.475
28/09/2006 33.850 56.050 71.000 77.125 75.000 63.400
29/09/2006 33.500 54.850 70.000 76.550 74.550 63.150
02/10/2006 51.750 67.600 74.400 72.950 61.000 46.500
03/10/2006 50.450 65.500 72.500 71.350 60.250 45.575
04/10/2006 51.450 65.500 72.200 71.150 60.150 45.300
05/10/2006 52.100 66.150 72.100 70.950 60.350 45.600
06/10/2006 52.125 66.200 71.575 70.450 60.200 45.375
09/10/2006 52.775 67.550 73.700 71.375 60.925 45.450
10/10/2006 51.950 66.875 72.550 70.900 60.425 45.500

Table 2.2: Closing prices (p/therm) of all monthly gas forward products in the period
from 20th September 2006 to 10th October 2006.

study this kind of product as it was of less interest to the trading team at E.ON.

Figure 2.5 shows hourly sampled electricity demand during a week. Due to the char-

acteristics of human behaviour, demand is normally higher during working hours (7am -

7pm Monday-Friday). This period of the day is called peak hours. The remaining periods

(i.e. 7pm-7am on Monday-Friday & all-day weekend) are o¤-peak hours. The electricity

demand for peak hours can be 50% greater than for o¤-peak time. Because electricity

is nearly non-storable, the power stations which are used to provide �excess� electricity

on peak hours have to be �exible on starting and shutting down to balance demand and

supply. Therefore, it is more expensive to produce these extra demands on peak hours.

Consequently, two versions of electricity forward contracts are available: base load con-

tracts which guarantee to deliver continuous electricity for the whole day (24x7), and peak

load contracts which provide electricity in peak hours only. All forward contracts are for

delivering electricity as a constant �ow during the delivery period. Unlike electricity, gas

is more storable: thus there is no concept of base load and peak load for gas products.

Figure 2.6(a) shows an example of the main fuels used to generate electricity within

a day. There are di¤erent requirements for plants which are devoted to base load and

those to peak load. The base load plants have to be able to work continuously for long

periods (except time for maintenance or repair). They usually run on low-cost fuels such

as nuclear, coal, or hydro (run of water). As mentioned in the previous paragraph, the
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Figure 2.5: Base load and peak load in electricity forward contracts. Data (blue line) is
electricity demand (MW), which was sampled at every hour, from Monday 10th July 2006
to Sunday 16th July 2006.

plants for peak load must have the capability of quick start and stop to meet short-term

changes in demand. Fuels for peak load can be gas, oil, and coal. Coal and gas have been

used to generate both base load and peak load while nuclear fuel can provide the base

load only. The �gure also shows the increasing generation cost of di¤erent fuels. Demand

is �lled by the cheapest available generations. Of course, peak load plants tend to have

higher cost of generation than base load plants, and so prices of peak load contracts are

higher than prices of base load contracts.

Figure 2.6(b) shows an example of how a company buys power to meet the demand

on a day. The blue and grey regions present load which has been bought from forward

contracts in advance. The orange part needs to be bought within the day from the spot

markets to balance the supply and demand.

2.4 Related data

We were also provided with a number of exogenous data streams which might drive the

gas/electricity demand and price, including:

� Weather : sunset time, wind speed, temperature. Temperature (in degrees centi-

grade) data was measured every hour at 12 weather stations around Great Britain.

The temperature used in this thesis is calculated by averaging the temperatures of
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Figure 2.6: An example of (a) Main fuels used for generating electricity, (b) Trading
electricity on the spot markets and forward markets to meet the demand.
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the whole day for each station to get the daily average temperature of each station,

and then averaging these daily average temperatures of all stations. It would be

better had the averaged temperature variable been weighted according to the pop-

ulation sizes. This will be discussed in Section 8.2 on page 152. Wind speed was

measured in the same way as temperature. Among these weather factors, tempera-

ture has the most impact on energy consumption. Figure 2.7 shows the relationship

between the daily electricity demand and temperature. In general demand falls when

temperature increases, and vice versa. It would have been more appropriate if we

use weather forecasts for electricity demand forecasting as in some previous paper

(Taylor and Buizza, 2003, Cancelo et al., 2008). However, temperature forecasts

were not available during the project, so we used historical actual temperatures for

predicting electricity demand (to be described in more detail in Section 3.6.1 on page

62).

� Day : the day of the week. This factor a¤ects the customer behaviours and of-

�ce/school activities. Electricity consumption signi�cantly drops at the weekend.

� Electricity supply : total of electricity generated from all power stations in Great

Britain.

� Electricity Interconnector �ow: amount of electricity exported/imported to outside

Great Britain. Great Britain currently has interconnections to France and Northern

Ireland (Crouch, 2010).

� Gas demand : the total amount of gas consumed in Great Britain.

� System Average Prices (SAP) of gas: In the gas within-day market, which sells or

buys gas to deliver gas on the same day, there are numerous transactions between

di¤erent participants on the same day. Because the buyers and sellers can negotiate

to get agreements in price and volume of gas, there is no �xed price for all trans-

actions even on the same day of trading. SAP on a day is de�ned as the weighted

average value of the price of all transactions on that day.

� System Marginal Prices (SMP) of gas: SMP is based upon actions of the system

operator in balancing the system. Although gas can be stored, the pressure in gas

storages and pipes have to be keep a range of level, which should not be too high or
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Figure 2.7: (a) Electricity demand and temperature during the period from 7th October
2004 to 6th October 2006. The blue line is the electricity demand and the black line is the
temperature. (b) Daily electricity demand plotted against temperature.
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too low. Therefore, the suppliers are encouraged to balance the energy supply and

demand by trading energy contracts. If suppliers fail to balance supply and demand,

the system operator sells/buys energy to correct the imbalances. In addition the

system operator impose �nes on the failed suppliers. The �nes depends on how

much the imbalance is. The �ne price in case of over supplement is called SMP sell

and the �ne price in case of over demand is called SMP buy:

� SMP sell is the lower of (SAP � 0.95p/therm) and (the lowest priced action of

the system operator).

� SMP buy is the greater of (SAP + 0.84p/therm) and (the highest priced action

of the system operator).

� GBP:USD rate: the exchange rate.

� Oil spot price.

� Events: events that a¤ect the electricity/gas prices, for example closed storage fa-

cilities, unusually cold weather, high continental price, maintenance, etc. According

to information provided by E.ON, in the days when the events happen, the price

signi�cantly changes. The shorter-delivery period products (such as within-day or

day-ahead product) are normally more a¤ected than the long-term forward prod-

ucts (like seasonal or annual contracts) because most of these events a¤ect energy

supply/demand only temporarily.

2.5 Datasets in experiments

We evaluated the performance of the algorithms on two problems: forecasting the daily

electricity demand and forecasting the prices of monthly gas forward products. These

datasets were chosen as requested by E.ON. Moreover we selected them because one of

them consists of forward prices which are normally non-stationary and the other is demand

which is more stationary3. Both datasets were taken from the UK energy market.

3The time series is weak stationary if the mean and variance do not depend on time. In the electricity
demand dataset, because the electricity demand time series has a longest seasonality of one year, we
compute the mean and variance of a one-year window. Then we slide the window to each time step. The
mean and the standard derivation do not change by much, less than 0.03% and 0.005% of the largest value
in the demand time series respectively. Therefore, the electricity demand time series is quite stationary.
Conversely, it is clear that the means of gas forward price time series do signi�cantly change over time.
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2.5.1 Electricity demand dataset

The �rst dataset contains observations of the daily total electricity demand of all users in

Great Britain, from 7th October 2004 to 3rd May 2007. The data has yearly seasonality,

caused by temperature, and weekly seasonality, caused by human behaviour and economic

activity. There are about eight public holidays (Christmas, Easter and Bank holidays) per

year. Because of economic activity, the electricity consumption on the public holidays, the

days between Good Friday and Easter Monday, and the days between Christmas and New

Year are signi�cantly smaller than on other days, even much smaller than on weekends

(see observations around time steps 180, 450, and 810 in Figure 2.2). This a¤ects the

overall performance of prediction models. We classed these days as special days.

There are two approaches to deal with this issue. The �rst is to include the special

days in the dataset, but introduce a dummy variable (equal to 1 for special days and 0

otherwise). The second is to smooth out the demand on the special days by replacing the

demand on those days by the electricity demand on the same day of the closest previous

week, which is not a special day. Then, we performed the pre-processing procedures and

create input-target pairs. Note that until this step, we have not removed data on the

special days, therefore the periodicity is still maintained. After that, if the target of an

observation (i.e. input-target pairs) is a special day, we removed that observation out

of the dataset. This approach is similar to the smoothing method presented in (Taylor,

2008). In this paper the author performed smoothing out the value on the special days

prior to �tting models and predicting; and on the test set the errors associated with the

public holidays are excluded from the overall errors of the model. Since the main objective

of this thesis is to evaluate the e¤ects of a range of improvements (i.e. wavelet transform,

�lters, and Student-t noise) on the standard prediction models, we can select any of the

above approaches. In this thesis, we chose the second approach.

Figure 2.8 shows the target time series of the �rst dataset after removing special days,

containing 821 observations. The �rst 525 observations were used as a training set and

the last 296 observations were used as the test set.

2.5.2 Gas forward price dataset

The second dataset (see Figure 2.9) contains daily prices of monthly gas forward products

from Jun-2006 to May-2008 and is sampled from 1st December 2005 to 30th April 2008.
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Figure 2.8: Dataset 1: daily electricity demand (MWh). The training set is the earlier
section and the test set is the later section. Note that the observations on public holiday
has been removed.

As mentioned in Section 2.3 (page 28) there are approximately 110-130 data points for

each monthly gas product time series.

We created 24 sub-datasets: each sub-dataset corresponds to the price time series of a

single product, in which the �rst two third of the time series was used as the training set

and the remainder was used as the test set.

There exist some abnormal events which a¤ected market behaviours. In the middle of

March 2006, Rough, the UK�s largest gas storage facility, was closed due to a �re. The

facility remained closed for most of the summer, raising concerns about gas supply for the

following winter. This made the gas prices of Oct-2006, Nov-2006, Dec-2006, Jan-2007,

and Feb-2007 products spike upwards during the summer of 2006. The price gradually

decreased after that.

Figure 2.9 shows that there was a large change in the way the market behaved around

February 2007. In the period before this milestone, the price trend descends for a long pe-

riod of time. After that, however, there was a distinct change in the market behaviour: the

forward prices stabilised and started to climb. The change happened because the market

hit a fundamental �oor. This issue will potentially lead to a bad forecasting performance

in the period right after February 2007 because their forecasting model should be trained
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Figure 2.9: Dataset 2: Price (p/therm) of monthly forward gas products Jun-2006 to
May-2008. Data is sampled from 1st December 2005 to 30th April 2008.

on data (from before this milestone) whose behaviour is completely di¤erent.

Another abnormality in the gas forward prices occurred in the period from September

2007 to February 2008. The volatility in this period was much higher than the other

periods because the autumn of 2007 was a start of a huge bull-run4 in commodities. The

most notable bull-run is oil price that started at $70/barrel level and ended at $150/barrel.

During this period from September 2007 to February 2008 oil went up from $70/barrel

to $100/barrel, which made the volatility of the oil price very high. This a¤ected the

volatility of gas forward price as well. In addition, there were some problems with gas

pipelines and platforms that contributed to high volatility.

2.6 Summary

This chapter presents an overview of the UK energy market. We have concentrated on

de�ning and describing characteristics of energy demand and forward prices because they

are selected to be the targets of predictions. The two datasets deriving from these variables

were presented: daily electricity demand and monthly gas forward price. In the next

4A bull-run, also called a bull market, is associated with rising or being expected to rise the price in a
�nancial market of a commodity.
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chapters, we will study the prediction models and the improvement techniques. These two

datasets will be used to test performance of these methods and techniques. This chapter

also mentioned a range of related data, such as weather, oil price, GBP:USD rate, etc.

Some of them may be highly relevant to the targets and will be considered as candidates

for selecting the input variables of the prediction models (to be mentioned in detail in

Chapter 3).
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3 Predicting time series

3.1 Introduction

As mentioned in Chapter 1, the main objective of this thesis is to develop and evaluate

three improvements on standard models for forecasting energy demand and price one-

day-ahead. Note that these improvements are not forecasting models themselves. They

are used to support some prediction models. We will test the performance of these im-

provement techniques on some standard forecasting models. This chapter provides the

preliminary analysis and results of some standard forecasting models. The later chapters

of this thesis will present di¤erent approaches to improve the performance achieved in this

chapter. We also present the data pre-processing and evaluation in more details here.

Figure 3.1 shows the general process of building forecasting models, which involves two

steps: pre-processing and modelling.

� Step 1 : Analysing data to select the input vectors for each model. As we saw

in Chapter 2, there is a large number of variables that are potential inputs for

forecasting models. These variables are lags of di¤erent types of time series data,
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Figure 3.1: Building forecasting models.

such as oil price, temperature, gas forward price, etc. In this step we investigate the

relationship between these variables and the target values. The variables that are

highly relevant to the target values are selected. Techniques for selecting the inputs

will be presented in Section 3.4. The outcomes of this step are matrices of inputs

and targets for each dataset.

� Step 2 : Training forecast models and forecasting the target values. The structures

and training algorithms of the prediction models used in this step will be discussed

in Section 3.3.

We empirically evaluate and compare the performances of these models and improve-

ments by testing them on real data from the UK market. Section 3.5 describes some

measures for evaluating the performance of these forecasting models.

3.2 Related work

Forecasting problems have been investigated for decades and numerous statistical models

have been developed. Various forecast horizon values have been studied. Some researchers

have forecast data on very short-term horizons (from minutes to hours ahead). These fore-

casts are very important for real-time scheduling of electricity generation. For example,

Taylor (2008) used minute-by-minute data to predict electricity demand from 10 to 30

minutes ahead. In other studies, da Silva et al. (2008), Soares and Medeiros (2008), Tay-

lor et al. (2006) and Nogales et al. (2002) used hourly and half-hourly data to predict power

41



Chapter 3 PREDICTING TIME SERIES

demand several hours to several days ahead. Hourly data was also used in Panagiotelis

and Smith (2008) to forecast spot price data. Some others concentrated on studying longer

term forecasts like months or years ahead. For instance, predicting monthly electricity de-

mand of Eastern Saudi Arabia was mentioned in (Abdel-Aal and Al-Garni, 1997). Another

example can be found in (Akay and Atak, 2007) where two datasets were involved: annual

total electricity consumptions and industrial sector electricity consumption for Turkey.

The data from 1970 to 2004 were used as training set; then they forecast consumption in

the period from 2006 to 2015.

In terms of input variables, we can use historical lags of the time series itself or/and

exogenous variables. The two most popular groups of exogenous variables in energy fore-

casting are calendar-related variables and climate-related variables. Examples of vari-

ables belonging to the �rst group (calendar-related) are public holidays, weekends, or

daily/weekly/annual seasonality (Dordonnat et al., 2008, da Silva et al., 2008, Taylor,

2008). These variables were normally represented by dummy variables. Examples of the

second group of exogenous variables (climate-related) are temperature, humidity, wind

speed, cloudiness, and rainfall. The methods used for climate-related variables are di-

verse. For example, Taylor and Buizza (2003) used weather ensemble prediction, which

includes 51 di¤erent scenarios of future values of weather, to predict demand. The results

showed that using ensemble prediction outperformed the prediction using a traditional

single weather point forecast. In the work by Yan (1998), various types of climate-related

variables were combined to generate a single climate variable. In this group of climate-

related variables, temperature was reported as the most important input for electricity

demand (Moral-Carcedo and Vic ,tens-Otero, 2005, da Silva et al., 2008). Most of the

studies on this variable (temperature) focus on analysing the non-linear relationship be-

tween electricity demand and temperature (Cancelo et al., 2008, Valor et al., 2001). In

this thesis, beside these exogenous variables, we also consider other related variables, such

as electricity/gas forward price, oil price or exchange rate, as candidates for inputs of

forecasting models.

Although there are many input variables, not all of them are relevant to the target.

Consequently, using all of them as inputs not only is computationally expensive but also

potentially reduces the prediction accuracy of the forecast models. Therefore selecting

appropriate input variables for each kind of model is very important. However, many
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papers in the literature have overlooked this issue. There are few published papers in

energy prediction that have systematic analyses on selecting input variables. Mandal

et al. (2005) proposed an approach to selecting input variables, in which the load and

prices were forecast by choosing days that are similar to that of the forecast day. The

selection of similar days was performed by an Euclidean norm with weighted factors.

da Silva et al. (2008) presented two types of procedure for automatically selecting inputs to

neural networks. The �rst type, based on �lters, analyses input relevances using statistical

tests. The second type, called Bayesian wrappers, evaluates the usefulness of each input

by estimating the variance of the corresponding weights. This method is also known as

automatic relevance determination (ARD) and it has been studied previously (Nabney,

2002, MacKay, 1994).

The most common topic in forecasting is modelling. A number of statistical methods

have been proposed for energy price and demand forecasting. In general, we can classify

the prediction methods into three groups: time series models, machine learning models,

and �nancial models. The recent application of machine-learning and time series to these

problems has given promising results. In the �rst group of forecasting models, most

papers have studied autoregressive (AR) models (Nogales et al., 2002), autoregressive

moving average (ARMA), and autoregressive integrated moving average (ARIMA) models

(Contreras et al., 2003, Conejo et al., 2005, Zhou et al., 2006, Taylor, 2008). In the

study by Zheng et al. (2005), Garcia et al. (2005), generalised autoregressive conditional

heteroscedastic models (GARCH) have been used for price time series. The GARCHmodel

takes into account fat-tailed behaviour and volatility clustering (i.e. the observation that

large changes tend to be followed by large changes, of either sign, and small changes

tend to be followed by small changes), which are two important features of �nancial time

series Li et al. (2005). The work of Garcia et al. (2005) on forecasting next-day market

clearing price of mainland Spain and California market showed that the GARCH model

outperformed a general ARIMA model (which was studied in (Contreras et al., 2003) with

the same data) when volatility and price spikes are present.

In the second group, arti�cial neural networks (ANNs) are the most common models

for energy price/demand forecasting (Lowe and Webb, 1991, Hazarika and Lowe, 1997,

Gao et al., 2000, Hippert et al., 2001, Mandal et al., 2005, da Silva et al., 2008, Jursa and

Rohrig, 2008). ANNs are attractive for forecasting energy price/demand because they are
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non-linear and nonparametric. Beside these models, �nancial models, which are another

approach based on economic processes for modelling electricity prices, have also been used

for electricity price forecasting (Benth and Koekebakker, 2008).

Several additional procedures have been proposed to improve the prediction accuracy

of forecast models. Gao et al. (2000) presented a regularisation method to avoid the

over�tting problem, which normally causes large errors in unseen data. Some researchers

have mentioned the use of multiple models. Guo and Luh (2004) believed that one single

neural network might misrepresent parts of the input-output data mapping that could

have been correctly represented by di¤erent networks. They showed how to generate a

committee of neural networks for forecasting. A number of di¤erent neural networks were

trained and used to predict the market clearing price separately. Then, the output was

a weighted average of outputs of all the neural networks. The weighting coe¢ cients were

computed based on the current input data and the historical data. In addition, there

is a large number of other papers on combining forecasts (Hoeting et al., 1999, Taylor

and Bunn, 1999, de Menezes et al., 2000). Similarly, the cascaded neural networks were

proposed in (Zhang et al., 2003).

Another approach for enhancing the prediction models is the use of pre-processing

procedures to derive new input variables or select relevant input variables. They can also

e¤ectively construct new variables or reduce noise in the input data. Hazarika and Lowe

(1997) used principal component analysis and wavelet transform (WT) to extract new

inputs from the original demand time series. In the work by Amjady and Keynia (2009),

the wavelet transform was combined with prediction models for electricity demand. The

historical price series were decomposed using the wavelet transform into a set of series,

which are called wavelet components. Each component was forecast by a single model and

then the demand forecast was obtained by the inverse WT. Beside that the WT was also

used as a denoising �lter. In the work by Stevenson (2001), wavelet �lter functions were

used to de-noise the input vector before applying forecasting models.

Using Kalman �lters (KF) or extended Kalman �lters (EKF) to adjust the model pa-

rameters online have recently attracted the attention of forecasters. Lowe and McLachlan

(1995), Nabney et al. (1996), Niranjan (1999) are among the �rst studies on this topic.

The KF and EKF �lters have been applied not only to neural network models but also

to �nancial models. Lowe and McLachlan (1995) developed a prediction framework based
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on RBF models for predicting UK short-term electricity load demand. The online adjust-

ment of bias by EKF allows the network to track the error more accurately. In the work

by Niranjan (1999), the author proposed an approach to make the Black-Scholes model,

which is a �nancial model for option pricing, into a dynamic system model. The EKF was

used to re-estimate the model parameters recursively. The unobserved quantities in the

Black-Scholes model (i.e. volatility of option price and the risk free interest rate) are the

hidden space vector of the underlying system.

3.3 Standard forecasting models

This section presents some standard forecasting models, which are basically used as fun-

damentals to test the performance of the improvement techniques presented in Chapter

4, 5, and 6. As mention in Chapter 2, beside electricity demand and gas price, we have

been provided with a number of external variables. These variables might be relevant to

the target values and they might be helpful to predict the future values of the target time

series. We would like to make the most use of these exogenous variables. Therefore, this

thesis focuses on some multivariable forecasting models: MLP, RBF, LR and LR-GARCH.

In addition, we present �nancial stochastic models for electricity forward price. The use

of these �nancial stochastic models is motivated by the fact that these methods estimate

not only the mean but also the variance of the forward contracts. Variance estimate is

helpful in updating parameters of the adaptive models, which will be presented in Section

5.6 on page 107.

3.3.1 Linear regression

Model

Linear regression (LR) is a simple model where the output is a linear combination of

inputs. The input vector of a LR can include both historical values of target variables and

exogenous variables. This model is given by:

by = hlr(x;!; b) =
Pd
i=1 !

(i)x(i) + b = !x+ b, (3.1)

where by represents the output of the model, ! = f!(1); : : : ; !(d)g is the weight vector, b

is the bias (or the intercept or the constant) and x = fx(1); : : : ; x(d)g represents the input

45



Chapter 3 PREDICTING TIME SERIES

vector.

Training a LR

In all the standard forecasting models in this chapter, we assume that the targets are

corrupted by Gaussian noise with zero mean. This assumption of noise distribution is

popular in the literature either because of arguments derived from the Central Limit

Theorem1 or just to simplify calculations. The conditional density of the target data y

given the input x is given by:

p(yjx) = 1p
2��2

exp

(
�(by(x)� y)2

2�2

)
. (3.2)

LR parameters are inferred by maximising likelihood. In the training process, given

training data D = f(x1; y1); (x2; y2); :::; (xT ; yT )g, we need to estimate parameter vector

w = [b; !(1); : : : ; !(d)] subject to maximising the data likelihood p(Djw). This is equivalent

to minimising the negative log likelihood of the data (Nabney, 2002):

E =
TX
t=1

(yt � by(xt))2 . (3.3)

We also call E the sum-of-squares error. This cost function can be used for the MLP and

RBF models as well. Let X denote the input matrix with a column of 1s added to the

end, and Y the target vector. We can rewrite Equation (3.3) as follows:

E = (Y �Xw)0 (Y �Xw) .

This is a linear least-square problem: minimising E with respect to w can be solved by

the pseudo-inverse2 of X. We set the derivative of E to zero and get:

w = X+Y,

where X+ is the pseudo-inverse of X.

1The Central Limit Theorem states that if Sn is the mean of n independent samples from an arbitrary
distribution with a mean � and variance �2, the distribution of Sn approaches a normal distribution with
a mean � and a variance �2=n as n �!1.

2A pseudo-inverse is a matrix inverse-like object when the matrix may not be invertible. The pseudo-
inverse X+ of X satis�es: XX+X = X.
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3.3.2 Multilayer perceptron

Model

A multilayer perceptron consists of a number of perceptrons organized in layers. Each

perceptron has several inputs and one output which is a function of the inputs. It has been

shown that networks with one hidden layer are capable of approximating any continuous

functional mapping if the number of hidden units is large enough (Hornik et al., 1989).

Therefore, only two-layer networks will be considered in this thesis.

For an MLP with two layers, d input variables x = fx(1); : : : ; x(d)g, M hidden units,

and a single output by, the output is calculated as follows
aj =

Pd
i=1 e!ijx(i) + e!0j j = 1; : : : ;M (3.4)

by =
PM
j=1 !jg(aj) + !0, (3.5)

where fe!ijg and f!jg are the weights of the �rst and second layers respectively, fe!0jg
and !0 are the bias of the �rst and second layers respectively, and the activation function

g(�) is usually logistic sigmoid or tanh 3. In this thesis, we used tanh activation.

Training an MLP model

We inferred MLP parameters by a maximum a posterior (MAP) method. We assume that

the noise model for the target data follows a Gaussian distribution with zero mean and

constant inverse variance �. Given training data D = f(x1; y1); (x2; y2); :::; (xT ; yT )g, the

cost function of the MLP model in the MAP method is de�ned by (Bishop, 2006):

E =
�

2

TX
t=1

(yt � by(xt))2 + HP
h=1

 
��h
2

P
!2Wh

!2

!
, (3.6)

where �1; : : : ; �H are hyperparameters (discussed below).

The second term in Equation (3.6) is for regularisation. The equation is derived from

an assumption that the weight prior p(!j�) of the model is a Gaussian, where � is

called a hyperparameter. It is helpful to generalise the hyperparameter � to multiple

hyperparameters �1; : : : ; �H corresponding to groups of weights W1; : : : ;WH . In theory,

we can create groups of the weights in any way that we want. However, weights in the MLP

3These activation functions are de�ned by tanh(x) =
�
ex � e�x

�
=
�
ex + e�x

�
and sigmoid(x) =

1=
�
1 + e�x

�
.
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are normally divided into four groups: �rst-layer weights, �rst-layer biases, second-layer

weights, and second-layer biases. In addition, the �rst layer weights can be also divided

into several groups: weights fanning out from a input variable are associated to a separate

group. We used the latter grouping approach in our experiments because it is consistent

with the automatic relevance determination (ARD) (MacKay, 1994), which will be used

as one of the input selection methods in Section 3.4.4 (page 59).

There is a reason why we use the MAP instead of a maximum likelihood to train

the MLP model. By using maximum likelihood, we often encounter over�tting: this is a

problem where the model �ts the noise in the training data rather than the underlying

generator and may lead to large errors on unseen data. There are several approaches to

overcome this problem, such as early stopping (Gao et al., 2000) or using a committee to

combine di¤erent networks. In this thesis, we use weight decay to regularise the model by

penalising large weights and imposing smoothness. The second term in Equation (3.6) of

the MAP method penalises large weights.

We can use a non-linear optimisation algorithm (e.g. scaled conjugate gradient (SCG)

(Møller, 1993)) to optimise E. The Bayesian evidence procedure is used to compute the

optimal hyperparameters �1; : : : ; �H and � (MacKay, 1992).

We used 10-fold cross-validation to select the number of hidden units of the MLP. In

a k-fold cross-validation, the training set is divided into k nearly equally sized segments

(or folds). We perform k iterations of training and validation. In each iteration, a single

segment is used for validation and the remaining k� 1 segments are used for training the

model, so for each model there are k error values. The average of the errors is the cross-

validation error of the model. This procedure is performed for the di¤erent MLP models

with di¤erent numbers of basis functions. Since the cross-validated error of a model on

the training set may be taken as an estimate for the error of the model on unseen data,

the network structure corresponding to the smallest cross-validation error is chosen.

3.3.3 Radial basis functions

Model

The RBF is the main alternative to the MLP for non-linear modelling by neural networks.

It was introduced by (Broomhead and Lowe, 1988). The outputs by of an RBF model for
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an input x are given by:

rj =
x� �j j = 0; : : : ;M , (3.7)

by =
PM
j=1 !j�j(rj) + !0, (3.8)

where �j are the cluster centres or �rst layer weights, and rj is the distance between the

input and the cluster centre �j . Here �j represents the basis functions and !j is the

output-layer weight corresponding to the jth basis function. In this thesis, the thin plate

spline basis function was used because it was known to have better interpolation properties

than the Gaussian basis function (Lowe, 1995):

�j(rj) = r
2
j log(rj).

Equation (3.8) can be rewritten in this form:

by(x) = �W, (3.9)

where � = [1; �1; �2; : : : ; �M ] is the design vector, andW = f!jg; j = 0; 1; 2; : : : ;M is the

output-layer weight vector. From this we can see that once the centres �j are �xed, the

RBF output is linear in parameters.

Training a RBF model

Given a training set D = f(x1; y2); (x2; y2); : : : ; (xT ; yT )g, we need to estimate a set of

parameters � = f�j ; !jg subject to maximising the data likelihood p(Dj�): The cost

function is the same as in Equation (3.3). It is possible to train RBF models by using

standard non-linear optimisation algorithms in the same way as training MLP models.

However, there is an alternative algorithm for training the RBF model, which is more

used in practice, including two stages (Broomhead and Lowe, 1988):

1. Optimise basis function centres �j j = 1; : : : ;M . We randomly choose a subset of

the training data and use them as the basis function centres. This gives surprisingly

successful result in practice (Nabney, 2002). Alternatively, we can compute these

parameters in a more sophisticated way. Firstly, the dataset is clustered into a

number of clusters, then the centres of these clusters can be used as the basis function
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centres.

2. Optimise the output weights: when the basis function parameters are determined, the

outputs of the RBF model are linear combinations of basis functions. We can extend

Equation (3.9) to the whole dataset D as bY (X) = �W, where X = fx1;x2; : : : ;xT g

and bY= fby1; by2; : : : ; byT g. Because the error function (3.3) is quadratic in the weights,
its minimum can be found by using the pseudo-inverse of the design matrix W =

�+Y, where Y = fy1; y2; : : : ; yT g.

The main advantage of the RBF is very fast training in comparison to MLP models

because the pseudo-inverse in the RBF take signi�cantly less time than the evidence

procedure in training MLP models. We used 10-fold cross-validation to select the number

of basis functions of RBF.

3.3.4 LR-GARCH

Model

In the forecast models described above, the errors are assumed to be homoscedastic (i.e.

the variance of the residual is assumed to be independent of time). A generalised au-

toregressive conditional heteroscedastic (GARCH) can be used to model changes in the

variance of the errors as a function of time. In this thesis we study an extended version

of the GARCH model: a linear regression with GARCH model (LR-GARCH). In this

model, the mean is modelled by a linear regression and the variance follows a GARCH.

The LR-GARCH(r;m) model is given by:

yt = e� + b�xt + "t; "t � D(0; nt), (3.10)

nt = �0 +
mP
i=1

�i"
2
t�i +

rP
j=1

jnt�j , (3.11)

with constraints

�i; j > 0, (3.12)Pm
i=1 �i +

Pr
j=1 j < 1, (3.13)

where xt, yt, and "t represent the input vector, target, and error of the model respectively,

nt is the variance of error "t, and � = fe�; b�g is the parameter vector of the output function.
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� = f�0; �1; :::; �mg and  = f1; 2; :::; rg, "t is i.i.d, with zero mean and variance nt.

"t can be a Gaussian or Student-t distribution. LR-GARCH is a generalisation of a linear

time series model with homoschedastic disturbances in which the conditional variance

nt of the noise varies with information about errors and its variance up to time t � 1.

Term e� + b�xt in Equation (3.10) is the same as the LR model. The error term "t, whose

variance is de�ned by Equation (3.11), is a GARCH component. The GARCH model was

�rst proposed in (Bollerslev, 1986) and is frequently used in �nancial forecasting.

The use of LR-GARCH was motivated from the fact that there are auto-correlations

in the squared standardised residual of the LR model (see Figure C.1(a) in Appendix C

on page 172). The GARCH component in the LR-GARCH model can capture these auto-

correlations: when we �t the data with a model with the GARCH component, there is no

longer auto-correlation in the squared standardised residual (see Figure C.1(b)).

Training a LR-GARCH model

Given a training dataset D = f(x1; y2); (x2; y2); : : : ; (xT ; yT )g, the maximum likelihood

method is used to estimate the parameters � = f�; �; g of the LR-GARCH model. If "t

has a Gaussian distribution, the negative log likelihood of the LR-GARCH model is given

by (we ignore the constant terms because they do not a¤ect the optimisation procedure):

L(�) = � log(p(Dj�)) = 1

T

TP
t=1

et(�), (3.14)

et(�) =
1

2
log nt +

1

2

"2t
nt
.

The cost function is non-linear; thus an iterative process is used to optimise the parameters.

In this project, we used scaled conjugate gradient (SCG) (Møller, 1993). Derivatives of

the negative log likelihood L(�) with respect to � and � = f�; g are given by:

@L(�)
@�

=
1

2T

TP
t=1

�
1

nt

@nt
@�

�
1� "2t

nt

��
, (3.15)

@L(�)
@�

=
1

T

TP
t=1

�
�"txt

1

nt
+
1

2

1

nt

@nt
@�

�
1� "2t

nt

��
, (3.16)
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where:

@nt
@�

= zt +
rX
i=1

i
@nt�i
@�

, (3.17)

@nt
@�

= �2
mX
j=1

�ixt�j"t�j +
rX
j=1

j
@nt�j
@�

, (3.18)

zt = [1; "2t�1; : : : "
2
t�m; nt�1; : : : ; nt�r], (3.19)

x = [1;x]. (3.20)

Constraints

Note that an LR-GARCH model has two constraints which are de�ned in Equations (3.12)

and (3.13). Because the SCG algorithm can only optimise the cost function L(�) without

taking into account these constraints, we cannot directly apply this algorithm to train a

LR-GARCH model. Instead, we have to modify our approach. The �rst constraint can

be removed by substituting �i = exp(b�i), j = exp(bj) and it is automatically satis�ed.
Substituting in Equation (3.14), we obtain L(b�). The cost function L(b�) needs to be
optimised with respect to b�i; bj instead of �i, j . The derivatives of L(b�) can be computed
from Equations (3.15 - 3.20) and the chain rule.

In order to satisfy constraint (3.13), we used the penalty function method (Fletcher,

1987). A penalty function is de�ned as follows:

g(b�) =Pm
i=1 exp(b�i) +Pr

j=1 exp(bj)� 1 < 0,
where we denote b� = f�; b�; b _g the new parameters of LR-GARCH model which we op-

timise. We have to optimise the function L(b�) subject to the constraint g(b�) < 0. A

quadratic penalty function is constructed as follows:

PL(b�; �) =
8><>: L(b�) if g(b�) < 0
L(b�) + �

2

h
g(b�)i2 if g(b�) > 0

where � is the penalty parameter. The value of b� that optimises the function L(b�) subject
to constraint (3.13) is equal to the value of b� that optimises the function PL(b�; �) when
� ! 1. Then instead of optimising L(b�), we optimise the penalty function PL(b�; �)
with �!1. Choosing a large value of � from the start, however, might not be e¤ective.
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Nabney (2002; page 72) pointed out that if we choose a large � from the start, the condition

number of the Hessian at the constrained optimum solution might become very high, and

hence it might be di¢ cult for algorithms like the SCG used in the thesis to �nd the

constrained optimum solution. Nabney (2002) suggested a practical and more e¤ective

way to overcome this di¢ culty: starting from a moderately small value of �, we carry out

several iterations of optimisation for gradually increasing �, with each iteration starting

at the optimal solution found by the previous iteration. In the thesis we adopted this

method to �nd the constrained optimum solution more e¤ectively.

To implement this idea, we perform multiple iterations with increasing values of �.

In each iteration, SCG is used to optimise PL(b�; �) with respect to b� given an assigned
value of �. SCG is a local optimisation algorithm and it requires an initial vector b� as
an input argument. At the �rst iteration, � is assigned a small value, say 15, we get the

�rst optimal vector b�1. At iteration k, we use b�k�1 (i.e. output of iteration k � 1) as
initial vector, �k is assigned a value which is larger �k�1. In this thesis, �1; : : : ; �k form a

geometric progression with common ratio larger than 1 (say 10), so they have exponential

growth towards positive in�nity. The output b� of �nal iteration optimises the function
L(b�) subject to the constraint.

3.3.5 Financial stochastic models

Model

This section is about another approach to forecasting: �nancial stochastic models. Unlike

machine learning and time series models where the output can be any type of time series,

�nancial stochastic models are normally designed for a speci�c type of time series, such

as a stock price, electricity price, etc. Economic processes in�uence the structure and

form of �nancial models. In addition, the input variables in a machine learning models

are like black boxes while the �nancial stochastic models consider the meaning of each

input variable and indicate certain sets of variables as their input vector. An example of

a �nancial model is Black�Scholes, which is a well-known model for option pricing.

Benth and Koekebakker (2008) presented stochastic dynamical models of electricity

forward products. There is a di¤erence in the terminology for derivative products in

their paper and this thesis. The contracts, which are called �forwards�in this thesis, are

named �swaps�in (Benth and Koekebakker, 2008). They refer to contracts which are for
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delivering electricity over a period. In (Benth and Koekebakker, 2008), �forward�refers

to contracts with a �xed delivery time. In fact, these contracts do not exist in the market

because electricity is only useful for practical purpose over a period of time, but Benth

and Koekebakker (2008) introduced the concept of ��xed delivery time contract�for the

purpose of deriving the equations of their �swap�contracts. In order to be consistent to

the other parts of the thesis, we will call the period delivery contracts (i.e. �swaps� in

Benth and Koekebakker (2008)) �forward�and the other ��xed delivery forward�.

Benth and Koekebakker (2008) presented six di¤erent stochastic models for log-returns

of electricity forward prices. The log-return at time t of a forward contract whose delivery

period is [T1; T2] is de�ned by:

rt(T1; T2) = ln
�
pt+�t(T1; T2)
pt(T1; T2)

�
,

where pt(T1; T2) and pt+�t(T1; T2) are the forward prices at time t and t+�t respectively,

where �t indicates a time unit. In this thesis, we use the time unit of one day because

the price data has sampled daily.

In these stochastic models, log return rt(T1; T2) is modelled as a Gaussian distributed

random variable N (mt; �t) with mean mt(T1; T2) and variance �t(T1; T2) as follows:

mt(T1; T2) =

Z t+1

t

�
��(s; T1; T2)�

1

2
�2(s; T1; T2)

�
ds (3.21)

�t(T1; T2) =

Z t+1

t
�2 (s; T1; T2) ds, (3.22)

where � is a constant, and �(t; T1; T2) is the forward volatility model. These equations

of the mean and variance are derived from the assumption that the natural logarithm

of electricity price is a Brownian motion (Benth and Koekebakker, 2008). There are six

di¤erent forward volatility models corresponding to six di¤erent �nancial stochastic models

(Table 3.1).

Note that these �nancial stochastic models are speci�c to electricity forward contract

only because they capture an important property of electricity: it cannot be stored. These

�nancial models provide not only the mean but also the volatility of forward prices, which

cannot be obtained from the MLP and RBF models.
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Model �(t; T1; T2) Parameters Constraint
E1 a � = fa; �g a � 0
E2 a�(T1; T2) � = fa; b; �g a; b � 0
E3 a(t)�(T1; T2) � = fa; b; d; q; �g a; b � 0
E4 a((1� c)�(T1; T2) + c) � = fa; b; c; �g a; b � 0; 0 � c � 1
E5 a(t)((1� c)�(T1; T2) + c) � = fa; b; c; d; q; �g a; b � 0; 0 � c � 1
E6 a�(T1; T2) + c(t) � = fa; b; c; d; q; �g a; b � 0; 0 � c

where:
a(t) = a+ d sin(2�t=250)� q cos(2�t=250)
c(t) = c+ d sin(2�t=250)� q cos(2�t=250)
�(T1; T2) = I:ebt; I = e�bT1�e�bT2

b(T2�T1)

Table 3.1: Financial stochastic models for electricity forward contracts.

Training �nancial stochastic models

The parameters of these models are estimated using maximum likelihood. We solve this

problem for time series of each kind of product, for example price time series of the Win-

2010 product. In each product, T1 and T2 are �xed, thus we can disregard these parameters

in the subsequent analysis. Denote the set of parameters of a �nancial model by �. Because

log-return rt is a Gaussian distributed random variable with mean mt and variance �t, it

can be rewritten in form of:

rt = mt(�) +
p
�t(�)"t; "(t) � N (0; 1). (3.23)

We can convert a training set of forward prices to a set of log-returns: D = fr1; :::; rT g.

Maximising likelihood is equivalent to minimising the negative log likelihood. Because rt

has a Gaussian distribution, the negative log likelihood is given by:

L(�) = � logP (Dj�) = T log
p
2� +

1

2

TX
t=1

log �t +
1

2

TX
t=1

(rt �mt)
2

�t
. (3.24)

The cost function is nonlinear; thus an iterative process is used to optimise the parame-

ters. In this thesis, we used scaled conjugate gradient (SCG) (Møller, 1993). Derivatives

of the negative log likelihood L(�) with respect to � are computed using the formula:

@L(�)
@�

= �
TX
t=1

(rt �mt)

vt

@mt

@�
+
1

2

TX
t=1

"
1

vt
� (rt �mt)

2

v2t

#
@vt
@�
.

Details of the equations for mt, vt , @mt=@�, and @vt=@� for these models are given in

Appendix A.
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Constraints

The parameters in the �nancial models have several constraints as shown in Table 3.1. Be-

cause SCG optimises the cost function L(�) without taking into account these constraints,

we cannot directly apply this algorithm to train these models. Instead, we have to use an

alternative technique: substitution. In model E1-E5, we substitute parameters a; b; c by

ba;bb;bc, which are given by
a = eba, b = e

bb, c = ebc
1 + ebc .

We substitute parameters a; b; c in model E6 by ba;bb;bc de�ned by
a = eba, b = e

bb, c = ebc.

After these substitutions, the constraints are automatically satis�ed by unconstrained

variables ba; bb; bc. Replacing these substituting equations to Equation (3.24), we obtain
L(b�). The cost function L(b�) is now optimised with respect to ba;bb;bc; � instead of a; b; c; �.
A list of the unconstrained parameters for �nancial models is shown in Table 3.2.

Partial derivatives of the negative log likelihood L(b�) with respect to the new parame-
ters ba, bb, and bc can be computed from the partial derivatives of L(�) with respect to a, b,

and c using the chain rule as follows:

@L(b�)
@ba = a

@L(�)
@a

;

@L(b�)
@bb = b

@L(�)
@b

;

@L(b�)
@bc =

�
c� c2

� @L(�)
@c

for models E1-E5,

@L(b�)
@bc = c

@L(�)
@c

for model E6.

3.4 Variable selection and pre-processing

Beside electricity demand and monthly forward gas prices, we were provided with a large

number of exogenous variables which were potential candidates for inputs. However, only

some of them are relevant. Using irrelevant variables will often reduce the performance of
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Model Unconstrained parameters
E1 b� = fba; �g
E2 b� = fba;bb; �g
E3 b� = fba;bb; d; f; �g
E4 b� = fba;bb;bc; �g
E5 b� = fba;bb;bc; d; q; �g
E6 b� = fba;bb;bc; d; q; �g

Table 3.2: Unconstrained parameters of �nancial stochastic models.

the forecasting models (da Silva et al., 2008). Therefore, this step is very important.

The potential inputs include electricity supply from Great Britain, real average tem-

perature, wind speed, sunset time (giving seasonal information), SMP sell/buy of gas, gas

demand, price of monthly/seasonal/annual base load/peak load electricity forward prod-

ucts, price of monthly/seasonal gas forward product, price of weekday ahead/weekend

ahead gas product, SAP of gas, exchange rate GBP:USD, oil spot price, and day pattern

(e.g.. day of the week). We do not have weather forecast data.

In the training phase, various measures were used to select the relevant input variables,

including the correlation matrix (CM), autocorrelation function (ACF), partial autocor-

relation function (PACF). These methods were used to select input variables for linear

models (i.e. LR-GARCH and LR). We computed the CM of the target and exogenous

variables: the exogenous variables which were highly correlated to the targets were chosen.

We also computed the ACF and PACF of target time series. Lags with high correlations

were selected as input variables. The number of inputs were selected by cross-validation.

Although these methods are simple and e¤ective for selecting input variables for linear

models, Drezga and Rahman (1998) reported that input variable selection procedures

based on (linear) correlation analysis are not appropriate for non-linear models like MLP

or RBF. To overcome this problem, some pre-processing procedures has been proposed for

non-linear models (Nabney, 2002, da Silva et al., 2008, Ferreira and da Silva, 2007). In

this thesis we used automatic relevance determination (ARD) for MLP and RBF models.

3.4.1 Correlation matrix

The correlation coe¢ cient �xy between two time series x = fx1; x2; : : : ; xT g and y =

fy1; y2; : : : ; yT g is de�ned as

�xy =
Cov(x;y)p
V ar(x)V ar(y)

;
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where:

Cov(x;y) =
1

T

PT
t=1 (xt � x) (yt � y) ;

V ar(x) =
p
Cov(x;x);

V ar(y) =
p
Cov(y;y).

The correlation matrix contains the correlation coe¢ cients of variables. It shows the

strength and the direction of possible linear relationships between random variables. Cor-

relations have the properties �1 � �xy � 1 and �xy = �yx. The larger the absolute value

of �xy, the higher correlation between the two variables x and y. If �xy = 0, the two

variables are uncorrelated.

In this thesis, we compute the correlation matrix of the output (i.e. the quantity to

be forecasted) and potential input variables. If a variable is highly correlated with the

output, it should be chosen to be an input variable of the linear models. Selecting variables

based on the magnitude of their correlation with target variable is based only on linear

relationships.

3.4.2 Auto-correlation function

Let fx1; x2; : : : ; xT g be a time series. The lag-k auto-correlation of the time series is

de�ned as (Bowerman and O�Connell, 1987):

�k =

PT�k
t=1 (xt � x) (xt+k � x)PT

t=1(xt � x)2
,

where

x =
1

T

PT
t=1 xt. (3.25)

It is proved that �0 = 1, and �1 � �k � 1 for all k. The auto-correlation of a time

series shows how well this time series matches a time-shifted version of itself. The graph

of the auto-correlation at lags k = 1; 2; ::: is called auto-correlation function.
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3.4.3 Partial auto-correlation function

The auto-correlation �k measures the correlation between xt and xt�k regardless of their

relationship with the intermediate variables xt�1; : : : ; xt�k+1. However, when deciding

whether to add a lag to AR model, we should discount the e¤ect of intermediate variables.

This means that a further lagged variable xt�k is only included in the model for predicting

xt if xt�k is highly correlated with xt and this correlation takes into account the interme-

diate variables xt�1; : : : ; xt�k+1. The partial auto-correlation function (PACF) is de�ned

to measure such a relationship.

The lag-k partial auto-correlation of fx1; x2; : : : ; xT g and is de�ned as (Bowerman and

O�Connell, 1987):

�1;1 = �1, (3.26)

�k;k =
�k �

Pk�1
j=1 �k�1;j�k�1

1�
Pk�1
j=1 �k�1;j�j

k = 2; 3 : : : , (3.27)

where

�kj = �k�1;j � �k;k�k�j;k�j for j = 1; 2; : : : k � 1. (3.28)

The graph of the partial auto-correlation at lags k = 1; 2; ::: is called partial auto-

correlation function. Similar to the auto-correlation, the partial auto-correlation varies

between �1 and +1, with values near �1 indicating strong correlation.

3.4.4 Automatic relevance determination

Automatic relevance determination (ARD) (MacKay, 1994) is a Bayesian technique to

evaluate the importance of each input variable for non-linear models. This technique is

based on an assumption that the prior distributions of the parameters corresponding to

the inputs are zero-mean Gaussian. A separate hyperparameter �i is associated with each

input. This hyperparameter is the inverse variance of the prior distribution of the weights

fanning out from that input. The evidence procedure (MacKay, 1994) is used to optimise

values of the hyperparameters. Note that the input variables are normalised before ap-

plying ARD. If a hyperparameter is small, it is likely that its associated input variable

will have a large value. This means the corresponding input is important and should be
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included in the models. Conversely, if a hyperparameter is large, the corresponding input

is not important; therefore we can omit it.

In this project, ARD is used to determined the most important variables for non-

linear models (i.e. MLP and RBF) from the set of variables which are intuitively related

to the target. All these potential variables were used as inputs to a non-linear model

- the MLP. An iterative procedure is used: (1) an optimisation algorithm is used to

optimise the parameters of the network given hyperparameters of the networks, (2) the

evidence procedure is used to optimise the hyperparameters given a �xed set of weights.

These two steps are repeated until convergence. Finally, we obtain the optimal values

of the hyperparameters and the weights. The variables corresponding to the smallest

hyperparameters are the most important inputs of the models, and therefore they are

selected as inputs for the prediction models.

3.5 Model evaluations

3.5.1 Benchmark models

Because electricity demand is strongly seasonal with a period of one week, the benchmark

model for this dataset is a model in which demand of a day is assumed to be the same as

the demand of the same day in the previous week. Note that because of economic activity,

the demand signi�cantly drops on the public holidays and some days around them, we

have to smooth the electricity demand data before applying the benchmark model.

A random walk (RW) model is used as a benchmark to evaluate the performance of

forecasting monthly gas forward price. A RW is given by: yt+1 = yt + "t+1, where "t+1

is zero-mean noise. The model predicts that tomorrow�s price on average will be equal to

today�s price on average.

3.5.2 Errors

Three types of prediction errors of the test sets were computed. They are the mean

absolute percentage error (MAPE), mean absolute error (MAE), normalised mean absolute

error (NMAE), root mean squared error (RMSE), and normalised root mean squared error
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(NRMSE) which are de�ned by

eMAPE =
1

T

XT

t=1

����yt � bytyt

�����100%,
eMAE =

1

T

XT

t=1
jyt � bytj ,

eNMAE =

PT
t=1 jyt � bytjPT
t=1 jyt � E[y]j

,

eRMSE =

r
1

T

XT

t=1
(yt � byt)2,

eNRMSE =

s
1

T

PT
t=1 (yt � byt)2
V ar(y)

,

where y is the real demand/price, by is the forecast demand/price, E[y] is the mean of y,
V ar(y) is the variance of y, and T is the number of observations in the test set. Note

that MAE and RMSE are error measurements in absolute terms; NMAE and NRMSE are

normalised versions of MAE and RMSE which are scale-free.

We also computed the improvement ratios (IR) of errors of a method compared with

corresponding errors of the benchmark model (BM). For example, the IR of RMSE of a

model M comparing with RMSE of the BM is given by:

IRRMSE(M)=
eRMSE(BM)� eRMSE(M)

eRMSE(BM)
�100%.

Because the benchmark models basically show how predictable a dataset is, IR is used

to evaluate performance of proposed models without being biased by data behaviour. It

represents a data-free error measure of forecasting models. IR shows how good a method

is compared to the benchmark model.

3.6 Experimental results

This section presents the preliminary results of the above pre-processing procedures and

standard forecasting models: MLP, RBF, LR and LR-GARCH. The remaining of the

thesis presents di¤erent approaches to improve the accuracy achieved in this section.

3.6.1 Pre-processing procedures on the electricity demand dataset

Because day of week is a periodic variable and the electricity demand has a period of

a week, we represented day of the week by two dummy variables: swd = sin(2�i=7)
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and cwd = cos(2�i=7), where i = 1 to 7 correspond to Monday to Sunday respectively.

Moreover, as can be seen in Section 2.5.1 on page 36, there are two and a half years of

electricity demand data and there is a clear annual seasonality. Thus we represented days

of year by two dummy variables: syd = sin(2�i=365) and cyd = cos(2�i=365), where i = 1

to 365 correspond to the �rst day and last day of the year. There is another approach

to deal with weekly seasonality: using multi-equation models with di¤erent equations for

each day of the week. This approach has been applied for hourly electricity demand

in (Dordonnat et al., 2008, Soares and Medeiros, 2008). In their work, 24 models were

developed, one for each hour of the day. We have implemented both approaches for the

weekly pattern: however the results of �rst approach were better and are presented in the

thesis.

Temperature is an important variable for electricity demand forecasting (Moral-Carcedo

and Vic ,tens-Otero, 2005). It would be best had we used the temperature forecast as in

some previous works (RTE, 2005, Cancelo et al., 2008). However, these forecasts were not

available during this study, and thus we used historical temperature in this thesis.

Temperature is known to have a non-linear relationship with electricity demand (Bessec

and Fouquau, 2008, Henley and Peirson, 1997). Therefore, in linear models, instead of

using real temperature (�), we used a transformed value (b�). The methodology for com-
puting b� has been mentioned in several previous papers (Engle et al., 1986, Cancelo et al.,
2008, Moral-Carcedo and Vic ,tens-Otero, 2005). To de�ne this transformation, we plot-

ted a scatter plot of electricity demand versus temperature (Figure 3.2(a)). This plot

shows that if we divide data into four groups: demand of working days with � < 140C

or � � 140C ; and demand of weekends with � < 140C or � � 140C , the demand within

each group is approximately a linear function of temperature plus noise. For each group,

we approximate the relationship between electricity demand and temperature by a linear

function as follows:

b� =
8>>>>>>><>>>>>>>:

�18:89� + 1171:40 if working day and � < 140C,

2:09� + 862:69 if working day and � � 140C,

�16:06� + 1009:86 if weekend and � < 140C,

�1:09� + 781:45 if weekend and � � 140C.

The linear approximations for temperature were estimated using least squares. Figure
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Figure 3.2: Scatter plot of electricity demand versus temperature/transformed tempera-
ture. Blue dots are data from working days with � � 140C. Red dots are data of working
days with � < 140C. Black dots are data from weekends with � � 140C. Green dots are
data of weekends with � < 140C.
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Figure 3.3: PACF and ACF of daily electricity demand time series. (a) PACF. (b) ACF.

3.2(b) con�rms that electricity demand is approximately linearly related to the trans-

formed temperature b� .
ACF and PACF

We implemented the software to run our these experiments in Matlab: the code for PACF

is based on the code written by Dr. Dan Cornford.

Figure 3.3 shows the ACF and PACF of electricity demand time series. Based on

this �gure, we chose lags 1, 6, 7, and 8 for linear models. Threshold is chosen by cross-

validation.
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Figure 3.4: Absolute correlation of the electricity demand and exogenous variables.

Correlation matrix

We computed the correlation matrix � of electricity demand and exogenous variables.

Figure 3.4 shows the absolute value of the correlation matrix j�j. The indexed attributes

in the correlation matrix are listed as follows:

1 Electricity demand at time step t (This is target value in electricity demand dataset).

2 Electricity supply at the time step t� 1 (denote by st�1):

3 Electricity supply at the time step t� 2:

4 Electricity supply at the time step t� 3:

5 Transformed temperature at the time step t� 1 (denote by b� t�1):
6 Transformed temperature at the time step t� 2:

7 Transformed temperature at the time step t� 3:

8 Average temperature at the time step t� 1:

9 Average temperature at the time step t� 2:

10 Average temperature at the time step t� 3:

11 Gas demand t� 1 (denote by gt�1):

12 swd at time step t:

13 cwd at time step t (denote by cwdt):

14 syd at time step t:

15 cyd at time step t:

16 Price of weekday ahead base load electricity product at time step t� 1:

17 Price of weekday ahead peak load electricity product at time step t� 1:

18 Price of weekend ahead base load electricity product at time step t� 1:

19 Price of one-month-ahead forward product, base load at time step t� 1:

20 Price of one-month-ahead forward product, base load at time step t� 2:

21 Price of one-month-ahead forward product, peak load at time step t� 1:

22 Price of one-month-ahead forward product, peak load at time step t� 2:
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23 Price of one-winter-ahead forward product, base load at time step t� 1:

24 Price of one-winter-ahead forward product, base load at time step t� 2:

25 Price of one-summer-ahead forward product, base load at time step t� 1:

26 Price of one-summer-ahead forward product, base load at time step t� 2:

27 Price of one-winter-ahead forward product, peak load at time step t� 1:

28 Price of one-winter-ahead forward product, peak load at time step t� 2:

29 Price of one-summer-ahead forward product, peak load at time step t� 1:

30 Price of one-summer-ahead forward product, peak load at time step t� 2:

31 Gas SMP buy at time step t� 1:

32 Gas SMP buy at time step t� 2:

33 Gas SMP sell at time step t� 1:

34 Gas SMP sell at time step t� 2:

35 Weather: wind speed at time step t� 1:

36 Weather: sunset time at time step t� 1:

37 Gas SAP at time step t� 1:

38 Gas SAP at time step t� 2:

39 Price of day-ahead gas forward product at time step t� 1:

40 Price of day-ahead gas forward product at time step t� 2:

Attributes 2, 5, 11 and 13, which are st�1, b� t�1, gt�1, and cwdt respectively, are the
most highly correlated and were chosen as inputs for linear forecasting models.

ARD

We used ARD to select relevant inputs for non-linear prediction models (i.e. MLP and

RBF) by estimating the corresponding hyperparameters. The target variable was daily

electricity demand. Table 3.3 shows a list of these potential input variables and their

corresponding hyperparameters for electricity demand forecasting.

These pre-processing procedures were used to rank the relevance of variables/attributes

for each linear and non-linear model. Then we used 10-fold cross-validations to decide the

numbers of input variables for forecasting models. Tables 3.4 shows the �nal selection of

input variables used for predicting electricity demand.
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Chapter 3 PREDICTING TIME SERIES

Dataset Methodologies Target Input variables

MLP,RBF dt dt�1; dt�3; dt�5; dt�7; dt�9;
Daily electricity cwdt; swdt;b� t�1; st�1; st�3; pbst�1; ppst�1
demand

LR, LR-GARCH dt dt�1; dt�6; dt�7; dt�8;b� t�1; gt�1; st�1; cwdt
where: d : daily electricity demand

s : electricity supply from Great Britainb� : Transformed temperature
g : gas demand
swd; cwd : two dummy variables presenting day of week
pbs : Price of electricity base load one-summer-ahead product
pps : Price of electricity peak load one-summer-ahead product

Table 3.4: Input variables of prediction models for daily electricity demand.

3.6.2 Pre-processing procedures on the gas forward price dataset

We also applied these pre-processing procedures and 10-fold cross-validation to the gas

forward price dataset. Because the gas forward price dataset includes a large number of

sub-datasets over a long period of time and is non-stationary, after some time we should

look again at the exogenous variables to see if they are still relevant to the gas price and

thus help in the prediction of day ahead price. The correlation of gas price and exogenous

variable can change over time, for example in the period of June 2006 to May 2007, gas

price is highly correlated to the price of one-winter-ahead gas forward product, but the

following year the correlation no longer holds. Table 3.5 shows the input variables for

predicting gas forward prices.

3.6.3 Forecasting results on the electricity demand dataset

We used the Netlab toolbox4 for training the MLP, RBF, LR and ARD. The number of

hidden units in the MLP models for forecasting electricity demand was 12. The number

of basis functions in the RBF model is 80. These numbers were selected by 10-fold cross-

validation (see Section 3.3.2, page 48). We used the MLPs with tanh activation functions.

Table 3.6 shows the errors and improvement ratios of the prediction models. All models

4This toolbox is available at http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/.
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Product of test set Methodologies Target Input variables

Jun06 - May07
(�rst 12 sub-datasets) MLP, RBF, LR, LR-GARCH pt pt�1; pt�2; p

w
t�1; p

w
t�2

Jun07-May08
(last 12 sub-datasets) MLP, RBF, LR, LR-GARCH pt pt�1; pt�2; p

s
t�1; p

s
t�2

where: p : price of monthly gas forward product
pw : price of one-winter-ahead gas forward product
ps : price of one-summer-ahead gas forward product

Table 3.5: Input variables of prediction models for gas forward price.

Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 39365 0.36550 2.96% 29011 0.32877

LRGARCH 45.72% 21369 0.19841 1.72% 16538 0.18742

LR 44.49% 21850 0.20252 1.76% 16915 0.19112

MLP 53.12% 18455 0.17135 1.43% 13940 0.15798

RBF 48.72% 20187 0.18743 1.63% 15589 0.17666

Table 3.6: Errors and improvement ratio of NMSE of forecast methods for the electricity
demand dataset.
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Figure 3.5: Root normalised squared error (RNSE) of the MLP model for forecasting
electricity demand. (a). Histogram of RNSE. (b) Values of RNSE over time.

worked very well on this dataset. Non-linear models (i.e. RBF and MLP) provided better

prediction than linear models (i.e. LR and LR-GARCH). The MLP model was the best

with the NRMSE of 0.17135 which improve 53.12% comparing with the benchmark model.

Figure 3.5 plots the histogram and values over time of the root normalised squared error

(RNSE) for the prediction of the MLP model, where the RNSE is a time series whose each

element at each time step t is given by:

eRNSE;t=

s
(yt � byt)2
V ar(y)

,

where y is the real demand, by is the forecast demand, and V ar(y) is the variance of y.
P (RNSE < 0:2) = 81% and P (NRSE< 0:4) = 95% . This means that there were only

a few data points which have large RNSE: 95% data points have RNSE falling into the

range [0; 0:4].

3.6.4 Forecasting results on the gas forward price dataset

The number of hidden units in the MLP models for forecasting gas price was 8. We also

used the MLPs with tanh activation functions. The number of basis functions in the RBF

model is 30. These numbers were selected by 10-fold cross-validation.

The gas forward price dataset consists of 24 sub-datasets. The IRRMSE , RMSE,

NRMSE, MAPE, MAE, and NMAE were computed for each sub-dataset and for each

prediction method. Their averaged values for 24 sub-datasets are shown in Table 3.7.
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Figure 3.6: The real demand and prediction of the MLP model from 30/09/2006 to
19/11/2006.

Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 1.11862 0.48980 2.31% 0.84562 0.45182

LR 3.17% 1.08295 0.47735 2.26% 0.83577 0.44283

LRGARCH 3.77% 1.07378 0.47310 2.26% 0.83562 0.44281

MLP 2.97% 1.09047 0.47941 2.27% 0.83586 0.44599

RBF 2.15% 1.09969 0.48346 2.28% 0.84292 0.44976

Table 3.7: Errors and Improvement Ratio of RMSE of forecast methods for the gas forward
price dataset.
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Figure 3.7: IRRMSE of LR-GARCH models for forecasting gas forward price. (a) Values
of IRRMSE over sub-dataset. (b) Histogram of IRRMSE .

Table 3.7 shows that all these prediction models generally provided a poor quality of

prediction on this dataset. Because the IRRMSE of all forecasting model were near to zero,

these models did not improve much compared to the random walk model. This means

that they did not beat the simple random walk model.

The volatility of the gas price dataset is higher than that of the electricity demand

dataset. There is no periodicity as in the demand dataset. In addition, the price data

is non-stationary: for example, the trend of price suddenly changes in the period around

1st February 2007 (see Figure 2.9 on page 38). These characteristics of the price dataset

make the prediction task much more di¢ cult.

Figure 3.7 shows the histogram of IRRMSE of 24 sub-datasets using LR-GARCH

models. The biggest forecasting error occurred in the sub-dataset 13 with IRRMSE of

�19%. This happened because of the irregular characteristic of gas forward price around

1st February 2007. In this period, the market experienced a problem in which the trend

of the forward price suddenly changed from downward to stable (see Figure 2.9). The

test set starts around February 2007, the training set of course had to be chosen from

observations before that critical time. Because of this change, the trends of the training

set and test set are too di¤erent: the training set tends to decrease while the test set does

not. Thus the models whose parameters were inferred from the training sets no longer

capture the correct trends of the test set. This is the reason why the prediction models

did not work on this sub-dataset.
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Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

RW 0.00% 1.5554 0.52192 2.050% 0.94011 0.39467

E1 0.51% 1.5475 0.51927 2.040% 0.93138 0.39101

E2 0.17% 1.5580 0.52280 2.080% 0.94694 0.39754

E3 1.80% 1.5833 0.53129 2.087% 0.95183 0.39959

E4 4.55% 1.6262 0.54568 2.197% 1.02126 0.42874

E6 0.18% 1.5525 0.52097 2.052% 0.93916 0.39427

Table 3.8: Errors of the �nancial stochastic models for the electricity forward price dataset.

3.6.5 Forecasting results on the electricity forward price dataset

As mentioned in Section 3.3.5 on page 53, the �nancial stochastic models are designed

for electricity forward prices only, but not for other commodity prices or any general time

series because they capture an important property of electricity: it cannot be stored.

Therefore, in this section we introduce a new dataset of electricity prices in order to

evaluate performance of these �nancial stochastic models. This dataset contains daily

prices of monthly base load electricity forward products from Aug-2005 to May-2007 and

is sampled daily from 4th April 2005 to 27th April 2007. Because it is possible to trade

electricity from one to four months ahead, there are four months of daily price data

(approximately 85-95 data points) for each monthly electricity product. We created 22

sub-datasets: each sub-dataset corresponds to the price time series of a single product, in

which the �rst two thirds of the time series is used as the training set and the remaining

is used as the test set.

Note that these �nancial stochastic models require a certain set of variables as their

input vector (including time step, start and end time of the delivery period), but are not

a black box as in the machine learning models. Because of this reason, we do not need to

perform the input variable selection step.

Table 3.8 shows results of these models on the dataset of the base load electricity

monthly forward price. The table shows that all these �nancial stochastic models did

not work on this dataset: IRNRMSE of all �nancial stochastic models are around 0. We

actually tested these �xed models on other electricity forward prices: base load/peak load

quarterly/seasonal forward price, but the results are the same or even slightly worse than
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those shown in these tables.

One of the reasons that these models do not work is that we used a local minimisation

algorithm, the scaled conjugate gradient (SCG), to optimise the models parameters. The

SCG is a local search only and it is not strong enough for training these �nancial models.

Because the objective functions in training these models are complicated and some of them

include sine and cosine functions in their equations (see Appendix A on page 162), the

search landscape is very complicated and there are many local minima. SCG cannot work

well for problems with this structure as it can easily get stuck in a local minimum. This

problem was shown in our experiments: every time we initiated with a di¤erent value of

parameters, we got a di¤erent solution. This means the parameters found are not optimal

globally, but just optimal locally. In future research, the results of these methods can be

improved by using global optimisation algorithms for training the models (see Section 8.2

on page 152).

3.7 Summary

This chapter presented an overview of approaches to solving prediction problems. We

reviewed a number of standard prediction models, pre-processing procedures, and per-

formance measures. They were applied to two datasets: the �rst dataset is electricity

demand, which is stationary, and the second dataset is gas forward price, which is noisy

and non-stationary. For the �rst dataset, the standard prediction models provide very

good predictions, of which the non-linear models are better than the linear models and

the best performer is the MLP with IRRMSE of 53.12% compared with the benchmark.

However, for the second dataset, these standard prediction models show some de�cien-

cies in predicting the gas price. The accuracy of these prediction models on this dataset is

almost the same as the benchmark. Similarly, the performance of the �nancial stochastic

models on the electricity price dataset are the same as the random walk model. These

shortcomings prompted us to investigate di¤erent factors of data and models to improve

prediction performance. In terms of data, we will use the wavelet transform to decompose

data into several components before prediction. In terms of models, we will investigate

updating model parameters on the test set and the form of the noise distribution. These

techniques do help the standard forecasting models to achieve better performance. They

will be presented in Chapters 4, 5, and 6 respectively.
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4

Pre-processing with the

wavelet transform

The wavelet transform (WT) is one of the techniques for improving forecasting perfor-

mance that we investigate in this thesis. It is a pre-processing procedure which helps us to

decompose the trend and details of data. This chapter studies the question of which types

of WT can be used in forecasting applications. We will also discuss di¤erent methods for

using the WT in prediction and empirically compare their performances.

4.1 Introduction

To improve the accuracy of forecasting, multiresolution decomposition techniques such

as the wavelet transform have been used as a pre-processing procedure. The WT can

produce a good local representation of the signal in both the time and frequency domains.

In this chapter, we present combinations of wavelet transform and the standard prediction

models (i.e. LR-GARCH, MLP, LR and RBF). The transformation is applied to the target

variable prior to modelling. We compare the prediction performance of the prediction

models without WT and the performance of the following two combination methods:
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� Multicomponent-forecast method : a WT decomposes the target variable yt into mul-

tiple wavelet components, and then each component is forecast with a separate

machine learning or time series model.

� Direct-forecast method : the components of the WT are used as input variables to a

single forecast model to directly predict the target.

Although both methods of combining the WT with prediction models have already

published, previous papers only used either the multicomponent-forecast or the direct-

forecast. In this thesis, we use both types of the named methods and compare their

prediction accuracy. This comparison will provide an answer to the question of which

is better for energy datasets. The experimental results on the UK data will show that

the multicomponent-forecast method outperforms both the direct-forecast method and

the models without the WT. In addition, we will analyse the correlation of residuals of

components when using the multicomponent-forecast method. The analysis results will

show that the residuals of the WT components are highly correlated. This raises an

open question for future study: how to use this special characteristic of these residuals to

improve prediction performance.

In Section 4.2, an overview of the wavelet transform is presented. Section 4.3 explains

why we choose the redundant Haar wavelet transform (RHWT) in this thesis and how

the RHWT decomposes data into components. Section 4.3 de�nes the detailed forecasting

frameworks using the WT. Numerical results and evaluation on data from the UK energy

markets are given in Section 4.4.

4.2 Wavelet transform

Mathematical transforms can be used to represent time series data in di¤erent domains,

such as time or frequency; so they provide us with further information that is not ob-

servable in the original data. There are a number of transformations introduced in the

literature, among them the Fourier transforms (FT) are the most popular. The Fourier

transform converts data from time-based to frequency-based: it shows which frequency

components are presented in the data and with what strength. However, the main dis-

advantage of the FT is that the FT discards time information. The wavelet transforms

is one technique which can overcome this shortcoming. Unlike the Fourier transform, the
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Fourier

Transform

Wavelet

Transform

Figure 4.1: The wavelet transform versus the Fourier transform. The wavelet transform
can represent data in both time and frequency domains while the Fourier transform can
represent data in frequency domain only. Note that the wavelet transform here is not an
actual one, but an ideal WT for the illustrative purpose.

wavelet transform represents data in both time and frequency domains: WTs show us not

only what frequencies are in the data but also when each frequency occurred (see Figure

4.1). In this �gure, the original data contains two frequencies: the lower frequency exists

all the time (i.e. time period [0; 400]) and the higher frequency occurs only in the period

[0; 200]. The Fourier transform shows these frequencies and their amplitudes but there is

no information about temporal variation in frequency strength. In the wavelet transform,

we obtain more information about the data. The data is represented by two components

which correspond to two frequencies. Each component shows the contribution of each

frequency and how it varies with time.

There are two types of WT: continuous and discrete. In the scope of this thesis, we are

concerned with the discrete WT only because we have to deal with time series measured

at discrete time points.

The WT analyses the data in multiple frequency bands at multiple resolutions: the

lower frequencies have better resolution in frequency and the higher frequencies have better

resolution in time. The wavelet decomposition normally has two steps (Figure 4.2(a)):

� Step 1 : Filtering the original data. The original time series yt is decomposed into

di¤erent frequency bands by passing the time series yt through a halfband high-pass

�lter and low-pass �lter. The WT has two functions: (1) a scaling function l(t);

which is associated with the low-pass �lter, and (2) a wavelet function g(t), which

is associated with the high-pass �lters. After this step we obtain an approximate
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component A and detailed component D which correspond to the low-frequency and

high-frequency information of the data.

� Step 2 : Subsample (or down-sample) the above components by 2. It means that

we keep only one point out of two. This step reduces the number of samples in the

WT. After this step we have two wavelet coe¢ cients cA and cD whose lengths are

equal to half of A and D. The main advantage of the step 2 is to reduce the storage

requirement.

Filtering a time series yt can be implemented by a convolution and can be mathemat-

ically represented as follows:

Dt =
+1P
�=�1

y�g(t� �)

At =
+1P
�=�1

y� l(t� �),

where A and D are the outputs of the high-pass and low-pass �lters respectively. The

high-pass and low-pass �lters are a dependent pair, and their relationship is given by

g(M � 1� t) = (�1)t � l(t),

where M is the �lter length.

The decomposition process can be iterated to create a multi-layer decomposition (see

Figure 4.2(b)). For example, an n-level wavelet decomposition has an approximation An

(which is the low-frequency component of the signal) and n details D1; D2; :::; Dn (which

are high-frequency components). Each component represents the data in a frequency

range that is less volatile and easier to forecast than the original time series y. We also

can reconstruct the original data from the WT components. However, it is not easy to get

a perfect reconstruction.

A number of WT families have been introduced, such as Daubechies, Haar, Meyer,

Symlet (see Figure 4.3). Each WT family corresponds to a pair of scaling and wavelet

functions and a pair of reconstruction functions. Among various wavelet families, the

Daubechies wavelet is the most popular.

WTs were introduced only about three decades ago, but they are very powerful and

have been used in a wide range of applications, such as signal denoising, signal/image/�nger-
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Figure 4.2: (a) Wavelet decomposition. (b) 2-level wavelet decomposition (based on Misiti
et al. (2008)).

print compression, speech/image recognition, etc. In this thesis we used WTs for predic-

tion.

4.3 Redundant Haar wavelet transform

As mentioned before, there is a range of WT families, but we used a simple one in this

thesis: the redundant Haar wavelet transform (RHWT). This section shows why we chose

the RHWT and how to compute the RHWT.

4.3.1 Why the RHWT?

As mentioned before, there are a number of WT families, such as Daubechies, Haar, Meyer,

Symlet. Of these the symmetric WTs like Meyer are not appropriate for prediction.

The �rst reason is that the components of the symmetric WTs take into account not

only previous information but also future information (see Figure 4.4), but in forecasting

problems, we can only use data obtained earlier in time.

Another reason are the di¢ culties with distortion at the boundary of the time series

when applying the WT. In an asymmetric WT, we use only previous observations to

compute components, thus at the beginning of the time series, there are not su¢ ciently

many previous lags for computing WT components. For example, in the Haar WT, we

have to use data at time t and t � 1 to compute WT components at time t, but there is

no data at time 0 to compute the WT components at time step 1. Some extensions of

the basic WT procedure have been proposed to avoid this problem, such as symmetrical
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Figure 4.3: Low-pass and high-pass �lters of the wavelet families.
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extension or zero padding. These procedures are applied to the beginning of a time

series, before computing WT components of the �rst observations. However, this leads

to an inconsistency between some observations near the left-boundary and the remaining

observations, which we shall call the left-boundary distortion problem. In a symmetric

WT, both previous and future observations are used to compute WT components, thus

both right-boundary and lelf-boundary distortions occur. This means that asymmetric

WTs can avoid the right-boundary distortion while symmetric WTs cannot. The right-

boundary distortion makes the features extracted from the last observations, which are

the most important for a prediction application, normally worse than the rest of the series.

Two asymmetric WT families used most in the literature for prediction applications

are the Haar (Benaouda et al., 2006, Saha et al., 2006, Renaud et al., 2005, Starck and

Murtagh, 2001) and Daubechies WT (Youse� et al., 2005, Conejo et al., 2005, Yao et al.,

2000, Xu and Niimura, 2004). Although the Daubechies WT is asymmetric, Benaouda

et al. (2006) reported that it is not good for these applications because the Daubechies

WT is not consistent in responding to similar events in the observed time series. This

means that the identical events across the time series can appear in so many di¤erent

fashions in the decomposed components. Therefore, we decided to use Haar WT in our

thesis, but not Daubechies.

In addition, another issue that we consider when selecting the type of WT is subsam-

pling. A discrete WT normally has two stages: (1) �ltering the data and (2) subsampling.

Although subsampling reduces the storage requirement, it has the problem of shift vari-

ance, i.e. if we delete the �rst value of the time series, the subsampled coe¢ cients of

the WT are di¤erent from the heretofore. To overcome this, we can use a redundant or

non-subsampled wavelet transform (Starck and Murtagh, 2001). In a redundant WT, only

stage (1) is completed. All components of the redundant WT have the same length as the

original time series. Therefore, there is a one-to-one correspondence between the original

data and components at a given time step. This makes the prediction and modelling pro-

cedure more convenient. The RHWT also achieves a perfect reconstruction of the original

data from WT components.
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Figure 4.4: Kernel used for computing WT components in (a) asymmetric WT; (b) sym-
metric WT.

4.3.2 Computing the RHWT

Assuming that there is a time series yt, t = 1; 2; : : : ; T , Figure 4.5 shows how to compute

its RHWT components to the n-th decomposition level. At level i, the detail components

Di are retained, while the approximation components Ai are decomposed into a further

level of detail Di+1 and approximation components Ai+1. The original time series can be

reconstructed from the wavelet components by the inverse WT procedure. For the RHWT,

the inverse WT is simply a summation of the components: yt = An;t +Dn;t + � � �+D1;t.

However, this is not the case for all kinds of WT.

Note that to calculate a component at level i+1 at time t (Ai+1;t or Di+1;t), we need to

use the value of time series Ai at time step t� 2i. Therefore, at level i+1, it is impossible

to exactly compute the component before time step 2i+1 � 1. After applying the RHWT,

this thesis will consider only those components after time step 2n � 1.

We determined the number of decomposition levels by cross-validation. In both datasets,

a 2-level WT (i.e. n = 2) was chosen and the results are reported in Section 4.5. An ex-

ample of decomposing by redundant Haar wavelet transform is shown in Figure 4.6. This

data is the price of a monthly forward product in the UK gas market. Comparing to the

original data, the approximation component A2 is much smoother, and the detail com-

ponents D2 and D1 contain periodic elements. Therefore, it is expected that the WT

components should be easier to forecast than the original price time series. Figure 4.7

shows a part of the electricity demand time series and its wavelet components.
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i = 0;
A0,t = yt     t=1,2,...T

i < n

i = i+1

      Output:
         An,t
         Dn,t, Dn1,t, … , D1,t
         t = 2n1, … , TYes

No

      Ai+1,t = 0.5(Ai,t + Ai,t’)
      Di+1,t = Ai,t  Ai+1,t
                = 0.5[Ai,t – Ai,t’]
     t’= t2i , t = 2i+1 1,… , T

Figure 4.5: Computation of wavelet components of di¤erent scales in the RHWT.
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Figure 4.6: A monthly gas forward price and its RHWT components with decomposition
level 2. (a) price data, (b) approximation component A2, (c) detail component D2, (d)
D1.
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Figure 4.7: The electricity demand and its RHWT components with decomposition level
2. (a) electricity demand, (b) approximation component A2, (c) detail component D2, (d)
D1.
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4.4 Forecasting frameworks

This section presents two methods of combining theWT with prediction models: multicomponent-

forecast method (Conejo et al., 2005, Youse� et al., 2005, Yao et al., 2000) and direct-

forecast method (Benaouda et al., 2006).

4.4.1 Multicomponent-forecast method

The multicomponent-forecast method is shown in Figure 4.8. A dataset is divided into

two sub-datasets: (1) a training set to estimate the model parameters and (2) a test set to

evaluate performance of these models by calculating an appropriate error measure. The

forecasting framework for a time series yt consists of four steps:

Step 1: Use the RHWT to decompose y of the training set and the test set separately:

An; Dn; Dn�1; : : : ; D1.

Step 2: Create a distinct model for predicting each component. We determine the

input vectors (including exogenous variables) for each model by pre-processing procedures

(see Section 3.4 on page 56).

Step 3: In the training phase, the training sets are used to estimate parameters of the

forecasting models.

Step 4: In the test phase, the developed models are used to predict the future value of

the components from the current observable data. The outputs of these models at time

t are the forecasts of An; Dn; Dn�1; : : : ; D1 at time step t+ 1. In this thesis, the models

used for forecasting are MLP/RBF/LR/LR-GARCH. The inverse WT is used to compute

the forecast value of yt+1 from the predictions of the components.

4.4.2 Direct-forecast method

Like the multicomponent-forecast method, the target time series yt in this method (shown

in Figure 4.9) is also decomposed into WT components. These components and exogenous

variables are also used as candidates for input variables. However, the main di¤erence

between the two methods is that the direct-forecast method uses a single model to predict

the time series yt directly while the multicomponent-forecast method uses several models

to forecast wavelet transform components, one model for each WT component.
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Figure 4.8: The multicomponent-forecast method. (a) Training phase, (b) Test phase.
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Figure 4.9: Direct-forecast method.
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Methodologies Target Input variables
Without RHWT dt dt�1; dt�3; dt�5; dt�7; dt�9; cwdt; swdt;b� t�1;

st�1; st�3; pbst�1; p
ps
t�1

A2;t A2;t�1; A2;t�2; A2;t�3; A2;t�4; A2;t�5; A2;t�8;
dt�2; p

pw
t�1; p

pw
t�2; p

bs
t�1; p

bs
t�2; st�1

Multicomponent- D2;t D2;t�2; D2;t�3; D2;t�6; D2;t�13; D2;t�14; D2;t�15;
forecast dt�1; A2;t�1; st�1; cwd; swd;b� t�1

D1;t D1;t�1; D1;t�3; D1;t�4; D1;t�7;
D2;t�1; dt�1; st�1; cwdt; swdt;b� t�1

Direct-forecast dt dt�1; A2;t�1; A2;t�2; A2;t�4; A2;t�5; A2;t�7;
cwdt; swdt; p

ps
t�2; p

pw
t�2; p

bw
t�1; st�2

where pbs : Price of electricity base load one-summer-ahead
pps : Price of electricity peak load one-summer-ahead
pbw : Price of electricity base load one-winter-ahead
ppw : Price of electricity peak load one-winter-ahead
s: electricity supply
d: daily electricity demand
swdt; cwdt: two dummy variables presenting day of the week.b� : scaled temperature
A2, D2, D1: WT components of d.

Table 4.1: Input variables of MLP and RBF models for daily electricity demand.

4.5 Experiment results

4.5.1 Results on the electricity demand dataset

In addition to potential input variables as speci�ed in Section 3.4, the wavelet components

of the target value can be considered as inputs for the forecasting models as well. 2-

level WTs were chosen for both electricity demand and gas price dataset (we determined

the decomposition level by 10-fold cross-validation). Denote the WT components of the

electricity demand by A2; D2; D1. We used pre-processing procedures in Section 3.4 to

select input variables. The selected input variables are shown in Tables 4.1 and 4.2.

The number of hidden units in MLP models for forecasting d (in the original MLP

model), A2, D2, D1 (in the multicomponent-forecast), and d (in the direct-forecast) were

12, 18, 11, 14, and 11 respectively. The numbers of hidden units in RBF models for

forecasting d (in the original MLP model), A2, D2, D1 (in the multicomponent-forecast),

and d (in the direct-forecast) were 80, 100, 90, 115, and 95 respectively. These numbers

were selected by 10-fold cross-validation (see page 48).

Tables 4.3 and 4.4 contains the IRRMSE and errors of the prediction methods for

daily electricity demand forecasting. The tables show that the multicomponent-forecast

methods outperform the direct-forecast methods and models without wavelet transform.
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Methodologies Target Input variables
Without RHWT dt dt�1; dt�6; dt�7; dt�8;b� t�1; gt�1; st�1; cwdt

A2;t A2;t�1; A2;t�2; A2;t�3; A2;t�4; A2;t�7; A2;t�8; A2;t�9;
dt�1; dt�7; st�1;b� t�1; gt�1; cwdt

Multicomponent- D2;t D2;t�1; D2;t�2; D2;t�4; D2;t�5; D2;t�13; D2;t�14; D2;t�15;
forecast D1;t�1; cwdt

D1;t D1;t�2; D1;t�4; D1;t�5; D1;t�7; swdt
Direct-forecast dt dt�1; dt�6; dt�7; dt�8;

A2;t�1; st�1;b� t�1; gt�1; cwdt
where g: gas demand.

s: electricity supply.
d: daily electricity demand.b� : transformed temperature.
swdt; cwdt: two dummy variables presenting day of the week.
A2, D2, D1: WT components of d.

Table 4.2: Input variables of LR and LR-GARCH models for daily electricity demand.

Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 39365 0.36550 2.96% 29011 0.32877

LRGARCH 45.72% 21369 0.19841 1.72% 16538 0.18742

LRGARCH+mf 46.05% 21237 0.19807 1.68% 16150 0.18312

LRGARCH+df 45.77% 21348 0.19821 1.71% 16514 0.18715

LR 44.49% 21850 0.20252 1.76% 16915 0.19112

LR+mf 46.32% 21132 0.19805 1.66% 16093 0.18044

LR+df 45.02% 21643 0.20120 1.73% 16709 0.18898

MLP 53.12% 18455 0.17135 1.43% 13940 0.15798

MLP+mf 58.15% 16474 0.15362 1.29% 12403 0.14065

MLP+df 50.35% 19543 0.18003 1.48% 14665 0.16619

RBF 48.72% 20187 0.18743 1.63% 15589 0.17666

RBF+mf 55.08% 17681 0.16335 1.38% 13194 0.14962

RBF+df 47.64% 20612 0.19138 1.66% 15861 0.17974

Table 4.3: Errors and RMSE improvement ratio of forecasting methods using WT for
daily electricity demand dataset. "mf" and "df" refer to multicomponent-forecast and
direct-forecast respectively.
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RMSE Without WT Multicomponent
forecast Directforecast

LRGARCH 21369 21237 21348

LR 21850 21132 21643

MLP 18455 16474 19543

RBF 20187 17681 20612

Table 4.4: Comparison of RMSE of forecasting methods with and without WT for daily
electricity demand dataset.

This proves the usefulness of the WT in case of multicomponent-forecast. For example,

the RMSE of the MLP (RBF) model is 18455 (20187) while that of the MLP (RBF) model

combined with multicomponent-forecast method is 16474 (17681). The multicomponent-

forecast method combined with MLP is the best with an RMSE of 16474, its RMSE

improves 58.15% compared to the RMSE of the benchmark model.

Note that there are signi�cant di¤erences in lags selected for the di¤erent wavelet

components of the multicomponent-forecast method (see Tables 4.1 and 4.2). This means

that each component is highly correlated/relevant to a separate set of input variables.

The multicomponent-forecast method can satisfy this restriction but the direct-forecast

method cannot. This is why the multicomponent-forecast method achieves better results

than the direct-forecast method.

4.5.2 Results on the gas forward price dataset

Denote the WT components of price of monthly gas forward product by A02; D
0
2; D

0
1. The

number of hidden units in MLP models for forecasting p (in the original MLP model), A02,

D0
2, D

0
1 (in the multicomponent-forecast method), and p (in the direct-forecast method)

are 8, 8, 10, 6, and 8 respectively. The numbers of basis functions in the RBF models for

p in the original RBF model, A02, D
0
2, and D

0
1, and p in the direct-forecast were 30, 30, 10,

10, and 15. We used 10-fold cross validation to select the number hidden units and the

number of basis functions (see Sections 3.3.2 and 3.3.3). Table 4.5 shows input variables

for the gas forward price dataset.

The gas forward price dataset consists of 24 sub-datasets. The IRRMSE , RMSE,

NRMSE, MAPE, MAE and NMAE were computed for each sub-dataset and for each

prediction method. Their averaged values are shown in Tables 4.6 and 4.7.
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Methodologies Target Input variables
Without RHWT pt pt�1; pt�2; p

w
t�1; p

w
t�2

Multicomponent- A02;t A02;t�1; A
0
2;t�2; pt�1; pt�2; p

w
t�1; p

w
t�2

forecast D0
2;t D0

2;t�1; D
0
1;t�1; D

0
1;t�2

D0
1;t D0

1;t�1; D
0
1;t�2

Direct-forecast pt pt�1; pt�2; A
0
2;t�1; A

0
2;t�2; p

w
t�1; p

w
t�2

where pw: price of one-winter-ahead gas forward product.
ps: price of one-summer-ahead gas forward product.
p: price of monthly gas forward product.
A02, D

0
2, D

0
1: WT components of p.

Table 4.5: Input variables for the �rst 12 sub-datasets in the gas forward dataset. The
input variables for the remaining sub-datasets are similar, but pw is replaced by ps .

Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 1.11862 0.48980 2.31% 0.84562 0.45182

LR 3.17% 1.08295 0.47735 2.26% 0.83577 0.44283

LR+df 2.32% 1.09048 0.48342 2.27% 0.84271 0.44852

LR+mf 9.78% 1.00299 0.44319 2.05% 0.77315 0.41183

LRGARCH 3.77% 1.07378 0.47310 2.26% 0.83562 0.44281

LRGARCH+df 3.82% 1.06662 0.47309 2.23% 0.82491 0.44091

LRGARCH+mf 9.41% 1.00614 0.44463 2.05% 0.77320 0.41407

MLP 2.97% 1.09047 0.47941 2.27% 0.83586 0.44599

MLP+df 2.10% 1.09969 0.48405 2.26% 0.84294 0.44982

MLP+mf 8.85% 1.01426 0.44477 2.08% 0.77889 0.41563

RBF 2.15% 1.09969 0.48346 2.28% 0.84292 0.44976

RBF+df 2.92% 1.09048 0.47944 2.26% 0.83595 0.44602

RBF+mf 8.08% 1.02283 0.44853 2.10% 0.78547 0.41914

Table 4.6: Average errors and RMSE improvement ratio of forecasting methods using WT
for gas forward price dataset.
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NRMSE Without WT Multicomponent
forecast Directforecast

LR 0.47735 0.44319 0.48342

LRGARCH 0.47310 0.44463 0.47309

MLP 0.47941 0.44477 0.48405

RBF 0.48346 0.44853 0.47944

Table 4.7: Comparison of NRMSE of forecasting methods with and without WT for gas
forward price dataset.

0.42

0.44

0.46

0.48

0.50

Without WT Multicomponent
forecast

Directforecast

N
R

M
S

E

LR
LRGARCH
MLP
RBF

Figure 4.10: NRMSE of the forecasting models with and without WT on the gas forward
price dataset.
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NRMSE Benchmark LR+mf LRGARCH
+mf MLP+mf RBF+mf

Price 0.48980 0.44319 0.44463 0.44477 0.44853

0.25169 0.13232 0.13005 0.13259 0.13592

0.87784 0.41213 0.41329 0.41337 0.44550

1.34394 1.00860 1.02119 0.95603 1.05186

2A

2D

1D

Table 4.8: NRMSE of individual components and price in the multicomponent-forecast
method for gas forward price dataset.

Similar to results on the daily electricity demand dataset, the multicomponent-forecast

method outperforms the models without wavelet transform (see Figure 4.10). However

results of the direct-forecast method are almost the same as the models without wavelet

transform. The LR model with multicomponent-forecast achieved the best results with

an NRMSE of 0.44319, which improves 9.78% compared to the NRMSE of the benchmark

model.

Table 4.8 shows the average NRMSE of forecasting individual components in LR+mf,

MLP+mf, RBF+mf, and LR-GARCH+mf for 24 sub-datasets. The average RMSE im-

provement ratios of these models are shown in Table 4.9. The errors on each individual

component of these models are signi�cantly smaller than the benchmark model. For ex-

ample, the NMSEs of the components A2, D2, and D1 in the LR-GARCH+mf improved

50.60%, 52.60%, and 23.51% respectively, compared to those in the benchmark model.

Because each component presents data in a single range of frequency, it is possible to

model the time evolution of the component more accurately than the raw data. However,

the sum of all the components (i.e. the price) of these models are not that good: the

IRRMSE of the price in LR-GARCH+mf is only 9.41%.

To investigate the relatively small improvement of the overall performance, we analysed

the correlation matrix of residuals of components in the method LR-GARCH+mf (see

Table 4.10). The component residuals are quite highly correlated, especially for D1 and

D2. Their correlation coe¢ cients is 0.95684. Figure 4.11 shows the residuals of the test

set of sub-dataset 10 using LR-GARCH+mf (the residual of a component is the di¤erence

between the predicted value and real value of that component). The shape of the residuals

of components D1 and D2 are similar. The residuals of these components are normally

the same sign, so their sum has a large magnitude. In the benchmark model, the signs
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IR(RMSE) LR+mf LRGARCH
+mf MLP+mf RBF+mf

Price 9.78% 9.41% 8.85% 8.08%

49.80% 50.60% 48.37% 46.00%

52.84% 52.60% 52.15% 49.25%

24.49% 23.51% 28.35% 21.73%

2A

2D

1D

Table 4.9: RMSE improvement ratio of individual components and price in the
multicomponent-forecast method for gas forward price dataset.

Correlation
matrix

1 0.82869 0.85600

0.82869 1 0.95684

0.85600 0.95684 1

2A

2D

1D

2A

2D

1D

2A 2D 1D

Table 4.10: The averaged correlation matrix of residuals of components in method LR-
GARCH+mf on the gas forward price dataset.

of component residuals are normally di¤erent, so they cancel when they are summed up.

This is the reason why the IRNMSE of total of components in LR-GARCH+mf are not as

large as the IRNMSE of each component.

4.6 Summary

This chapter presented approaches for applying the WT to prediction applications. The

WT is used as a pre-processing procedure to decompose raw data into an approximation

Figure 4.11: Residuals of components A2 (a), D2 (b), and D1 (c) using LR-GARCH+mf
for the test set of sub-datatset 10 in the gas price dataset.
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component and detail components, of which each component represents the data in a

relatively narrow frequency band. These components show the trend and details which are

not observable in the raw data. We presented two methods for combining the WT with a

range of standard prediction models: the multicomponent-forecast method and the direct-

forecast method. The multicomponent-forecast method uses multiple prediction models

in which each prediction model captures the development of each the WT component

whereas the direct-forecast method uses only a single prediction model. We also empirically

compared the prediction accuracy of the two methods.

The results of electricity demand forecasting and gas price forecasting show that the use

of the WT improves the prediction performance. The multicomponent-forecast method

consistently outperforms the direct-forecast method and models without wavelet trans-

form. The results also show that the residuals of components D1 and D2 are highly

correlated. This raises an open question for future study: how to use this special char-

acteristic of these residuals to improve prediction performance. This will be discussed in

more detail in Section 8.2 on page 151.
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5 Adaptive models

In Chapter 3, we presented several standard models for forecasting energy demand and

price; and in Chapter 4, we have described an alternative framework to improve prediction

performance by using the wavelet transform. In this chapter, we present another approach

to make these standard forecast models more e¤ective: adaptive models in which there is

online adjustment of the parameters in the test set.

5.1 Introduction

As mentioned in Chapter 3, standard forecasting models work well on the electricity

demand dataset which is a stationary time series. However, their performance degrades in

predicting non-stationary datasets, such as gas forward price. This is due to some speci�c

characteristics of the data. The characteristics of a non-stationary time series change over

time; thus the trend and volatility of training set might be di¤erent from these quantities

of the corresponding test set. Therefore, the parameters of the prediction model, which

are inferred from the training set, become �out of date�after some time. This means that
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these parameters might no longer capture the correct characteristics of the test set and

this might lead to poor prediction performance.

In this chapter we try to reduce the e¤ect of the above issue. We attempt to use obser-

vations of the time series as much as possible. The newly added values of price/demand

are used for inferring parameters of prediction models. There are a number of approaches

to implement this idea. The most trivial way is to update the training set by adding

all observations up to the current time and re-train the model every time a new value of

price/demand is observed. In this solution, if the test set has N data points, we must re-

train the model N �1 times. This is very time consuming and computationally expensive.

Another way is to use a �lter to update the parameters of the forecasting model. Unlike

the �rst approach, the model parameters on the adaptive model are updated by �lters but

we do not need to retrain the model with an iterative algorithm. Therefore, this is not

only much faster than the �rst approach but also able to capture the impact of the new

value of data into model parameters. The detailed framework for adaptive models will be

presented in Section 5.2.

In the literature there are a range of papers on hybrid models, a combination of a

�lter (such as the Kalman �lter (KF), or extended Kalman �lter (EKF)) and a prediction

model, such as radial basis function network, multi-layer perceptron, linear regression, or a

�nancial model. The forecast model is used to forecast the next value of a time series, and

the �lter updates parameters of these models online as each new value of the time series is

observed. Niranjan (1999) used the EKF algorithm to recursively re-estimate parameters

of the Black-Scholes model from observations (the Black-Scholes model is a well-known

�nancial model for options pricing). Nabney et al. (1996) showed that an EKF used for

online learning parameters of an RBF model give much better tracking of non-stationary

data than a �xed RBF model. Some researchers have proposed using an EKF in order to

train an MLP. The results of predicting exchange rate (Andreou et al., 2002), estimating

wind turbine power generation (Li et al., 1999), and predicting New England electricity

prices (Zhang and Luh, 2002) showed that this method is good in the speed of learning

and the accuracy of predictions. Parameters of linear models were also estimated using a

KF in (Patil et al., 2006).

There are four points in this chapter. Firstly, we present an overall framework for

adaptive models. Secondly, the �lters used for the adaptive models are described, including
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Figure 5.1: The adaptive model framework. (a) Training phase, (b) Test phase.

the KF, EKF, and particle �lter (PF). Thirdly, we provide detail of how to combine each

type of machine learning, time series, or �nancial models with the �lters to generate

adaptive models. Finally, the performance of the presented models are evaluated and

compared by testing them on the energy price/demand in the UK market.

Among these adaptive models, the adaptive LR-GARCH and the adaptive �nancial

stochastic models are novel. In addition, we use not only the EKF for adaptive models as

earlier authors but also the PF. The PF has some advantages over the EKF: the PF makes

no assumptions about the noise distribution, and also it is not necessary to linearise the

prediction models as in the EKF.

5.2 Adaptive model framework

The parameters of a �xed prediction model are estimated using the training set only,

and the test set is not used to adjust parameters. This constraint may reduce the forecast

accuracy, especially in predicting non-stationary data. To overcome this, a �lter (extended

Kalman �lter or particle �lter) will be used to update parameters of a model by treating

the weights as the states of a state space model (SSM). This can be considered as an

estimation problem where the weight values are unknown. A general framework for an

adaptive neural network for forecasting is shown in Figure 5.1.

In the training phase, the training set is used to estimate parameters of the model in

the usual way (see Chapter 3). In the test phase, two steps are recursively repeated:
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Step 1: When a new observation is available, the �lter updates parameters of the

predictive model (an observation here consists of an input-output pair).

Step 2: Use the predictive model with the latest estimated parameters to predict the

next value.

The following sections describe the EKF and PF, and how to use them in adaptive

models.

5.3 Filters

5.3.1 State space models

The KF/EKF/PF is based on a state space model (SSM), which is a time series model.

The key of this model is that there are two processes happening: the true process and the

observation process, and the state space model links these two processes. The true process

is assumed to be unobservable and the variable zt 2 Rk representing this process is called

the hidden state vector. We assume that the observed time series yt 2 Rp is a function of

the hidden state space zt 2 Rk. In an adaptive model, zt are the model parameters or a

subset of these parameters. It is also assumed that we do not know the dynamics of the

observation, but do know the dynamics of the hidden state (Figure 5.2):

zt+1 = ft(zt) + �t, �t � D(0; Q), (5.1)

yt = ht(zt) + "t, "t � D(0; Rt), (5.2)

where ft and ht are the state transition function and output function respectively, "t and �t

are zero-mean noises, and Q and Rt are the covariances of the noises �t and "t respectively.

The hidden state vector obeys the Markov independence property (i.e. the current state

depends only on the previous state). z0 is the system initial condition, modelled as a

Gaussian random vector z0 � D(�0; P0).

In the adaptive model, the transition function ft is selected as an identity function

because we have no prior belief that the parameters should change with any particular

dynamic. Denote the vector of the prediction model parameters which needs to be updated

by z, then the evolution equation of these parameters is given by

zt = zt�1 + �t, �t � D(0; Q). (5.3)
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Figure 5.2: State space model.

In Equation (5.3), a random walk allows the parameters to adapt without a bias.

5.3.2 Kalman �lter

The state inference problem for a state space model is to track the posterior probabilities

of the hidden variables zt given a sequence of observed variables up to time � : p(ztjfyg�1),

where fyg�1 = fy1; : : : ; y�g. There are three cases of the inference problem: (1) �ltering

if � = t, (2) smoothing if � > t, and (3) prediction if � < t. In this thesis, we focus on

�ltering only and investigate how to use these �lters for adaptive models. In theory, a

�ltering algorithm can be applied by sequentially iterating the following two steps:

� Predict:

p
�
ztj fygt�11

�
=

Z
p (ztjzt�1) p

�
zt�1j fygt�11

�
dzt�1. (5.4)

� Update:

p
�
ztj fygt1

�
=

p (ytjzt) p
�
ztj fygt�11

�
Z
p (ytjzt) p

�
ztj fygt�11

�
dzt

. (5.5)

The most di¢ cult task is to compute the integrals in Equations (5.4) and (5.5); in the

general case, it is impossible to analytically compute them (i.e. when the SSM is non-linear

and the noises has an arbitrary distribution.). In order to make progress, researchers either

place some restrictions on the state transition/output functions and noise distributions,

so that these integrals become tractable, or some approximation is introduced. Kalman

(1960) proposed an algorithm for inferring a special case of SSM in which the functions ft
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and gt are linear and the noise models are Gaussian distributions. In this case, the state

transition function ft and the output function gt can be represented by ft(zt) = Ftzt and

ht(zt) = Htzt. Therefore, the SSM becomes:

zt+1 = Ftzt + �t, �t � N (0; Q), (5.6)

yt = Htzt + "t, "t � N (0; Rt), (5.7)

where Ft and Ht are matrices and N (0; �) are zero-mean Gaussian noises. Equations (5.6)

and (5.7) show that if p(zt�1) is Gaussian, then so are p(zt) and p(yt). The Kalman �lter

is a recursive algorithm and each iteration has two phases:

� Prediction:

zt�1t = Ftz
t�1
t�1 , (5.8)

P t�1t = FtP
t�1
t�1F

0
t +Q, (5.9)

� Update

Kt = P t�1t H 0
t

�
HtP

t�1
t H 0

t +Rt
��1

(Kalman gain) (5.10)

et = yt �Htzt�1t , (5.11)

ztt = zt�1t +Ktet, (5.12)

P tt = (I �KtHt)P
t�1
t , (5.13)

where

ztt = E[ztjfygt1],

zt�1t = E[ztjfygt�11 ],

P tt = E[(zt � ztt)(zt � ztt)0jfygt1],

P t�1t = E[(zt � zt�1t )(zt � zt�1t )0jfygt�11 ],

zt�1t is the a priori state estimate at time step t given knowledge of the process prior

to step t, and ztt is an a posteriori state estimate at time step t given measurement

yt. The matrices P t�1t and P tt are the a priori estimate error covariance and the a
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posteriori estimate error covariance respectively.

In the prediction phase, the a priori state estimate zt�1t and the a priori estimate error

covariance P t�1t are computed forward from time step t�1 to step t. In the update phase,

we assume that we have measured the process to obtain yt. Firstly, the Kalman gain Kt

is computed. Then the a posteriori state estimate ztt and the a posteriori estimate error

covariance P tt are calculated. The initial values are z
0
1 = �0 and P 01 = P0.

5.3.3 Extended Kalman �lter

The EKF is an extension of the Kalman �lter. Both of them are recursive algorithms

used to compute the probability of the current hidden state space zt given the sequence

of observations up to time t. Their di¤erence is that the Kalman �lter is designed for

linear state space models (i.e. ht and ft are linear functions) only while the EKF can

be applied to either linear or non-linear models. In the KF, a Gaussian distribution is

propagated through linear functions h and f . Therefore, if p(zt�1) is a Gaussian, then so

is p(zt). However, when h or f are non-linear functions, propagating a Gaussian distribu-

tion through a non-linear function produces a non-Gaussian output function. Therefore,

tracking of evolution of the full probability distribution function is impossible.

One approach is to make an approximation. The EKF does not solve the original

problem, but approximates it by locally linearising the non-linear functions ft�1(z) around

zt�1t�1 in the prediction step and locally linearising the output function ht(z) around z
t�1
t

in the update step. The linearisations are made using the �rst-order Taylor expansion:

ft�1(zt�1) = ft�1(z
t�1
t�1) +

bFt�1(zt�1 � zt�1t�1), (5.14)

ht(zt) = ht(z
t�1
t ) + bHt(zt � zt�1t ). (5.15)

where bFt and bHt are the Jacobian matrices of the functions f(�) and h(�) evaluated at ztt
and zt�1t respectively: bFt = rftjztt and bHt = rhtjzt�1t . The Jacobian matrix of a function

f : Rn ! Rm; y(1)(z(1); : : : ; z(n)); : : : ; y(m)(z(1); : : : ; z(n)) is given by

5f jz =

266664
@y(1)

@z(1)
: : : @y(1)

@z(n)

...
. . .

...

@y(m)

@z(1)
: : : @y(m)

@z(n)

377775
z

.
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The general SSM in Equations (5.1) and (5.2) becomes a linear SSM. Therefore, the

EKF is similar to the Kalman �lter. One iteration of the EKF is composed of the following

steps (Ribeiro, 2004):

� Prediction:

zt�1t = ft�1(z
t�1
t�1);

P t�1t = bFtP t�1t�1
bF 0t +Q.

� Update:

Kt = P t�1t
bH 0
t[ bHtP t�1t

bH 0
t +Rt]

�1;

et = yt � ht(zt�1t );

ztt = zt�1t +Ktet;

P tt = [I �Kt
bHt]P t�1t .

Note that we use the approximation matrices bFt and bHt to update the variances P t�1t

and P tt while the original functions ft and ht are used to update the means z
t�1
t and ztt .

5.3.4 Particle �lter

The EKF does not solve the original problem, but simpli�es it by locally linearising the

functions ft and ht around previous state estimates (see Equations (5.14) and (5.15)).

They may not be good approximations given that some quadratic terms are discarded,

along with higher order terms. Especially when the strength of the non-linearity of these

functions is great, the linearisations are poor approximations, and the EKF does not

work well. The particle �lter (PF) is an alternative method to avoid the bad e¤ects of

linearisation. The particle �lter is more robust than the EKF because it can work well on

very non-linear models. In addition, the EKF is limited to Gaussian noise for �t and "t

while there is no assumption of noise distributions for the PF.

The PF is a sampling-based method. Firstly, we sample Np times from an initial

distribution z0;i � p(z0) = D(�0; P0), and allocate equal weights w0;i = 1=Np. Then, we

have Np samples at time step t = 0, called Np particles. After that, the state mean at t

given yt is estimated by the following steps:
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� Evolve particles using the transition function ft: zt;i = ft(zt�1;i) + �i, where �i �

D(0; Q), i = 1; : : : Np.

� Re-weight particles each time a new observation is available: w0t;i / wt�1;ip(ytjzt;i);

where p(ytjzt;i) = D(ytjht(zt;i); Rt), i = 1; : : : ; Np.

� Normalise the weights: wt;i = w0t;i=
PNp
i=1w

0
t;i.

� The mean of state z at time step t is the weighted average of particles: E[ztj fygt1] =PNp
i=1wt;izt;i.

The observation yt is re�ected in the weights wt;i, i = 1; : : : ; Np. If a particle zt;i is

far from the true value, p(ytjzt;i) is small, thus so is wt;i. This leads to the fact that this

particle makes an insigni�cant contribution to the mean E[ztj fygt1]. On the other hand,

if a particle is close to the true value, its contribution is large.

In practice, after a large number of time steps, all but a small number of particles may

have negligible weight. The problem with this degeneracy is that most of the particles

contribute insigni�cantly to E[ztj fygt1], but they still consume computational e¤ort. To

measure this degeneracy, a new parameter, called the e¤ective sample size (Et), is intro-

duced (Arulampalam et al., 2002). The smaller Et is, the greater the degeneracy level. It

is impossible to exactly evaluate this parameter, but an estimate bEt of Et can be computed
by bEt = nPNp

i=1 (wt;i)
2
o�1

.

We can reduce the e¤ect of degeneracy by resampling. A threshold of degeneracy

(Ethres) is set up. At each time step t, if bEt < Ethres, resampling is used, as follows:

� Approximate the distribution of particles zt;i by a Gaussian mixture model distrib-

ution (G) with Np centres zt;i, i = 1; : : : ; Np and equal covariances. The details and

code for Gaussian mixture model can be found in (Nabney, 2002).

� Sample Np times from distribution G: z0t;i � G, and allocate equal weights w0t;i =

1=Np.

� Assign zt;i = z0t;i and wt;i = w0t;i.

Note that no assumptions are made about either functions of the state space model or

source of noise. This means that the particle �lter can be applied to a general SSM: state

transition/output functions can be either linear or non-linear; and noise can be any choice
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of distributions. Conversely, the extended Kalman �lter is limited to SSM whose noise

are Gaussian distributions only. Thanks to this characteristic, particle �lters can be used

for a larger range of forecasting models than extended Kalman �lters. This is important

because this thesis will discuss not only Gaussian but also Student-t noise models. More

detail about these noise models will be presented in Chapter 6.

5.4 Adaptive LR/MLP/RBF models

This section presents how to generate adaptive models from the LR/MLP/RBF which

were presented in Section 3.3.1, 3.3.2, and 3.3.3. Combination of the EKF with these

machine learning models have been studied in the literature (Lowe and McLachlan, 1995,

Nabney et al., 1996, de Freitas et al., 1999, Andreou et al., 2002, Zhang and Luh, 2002,

Patil et al., 2006). In adaptive models, we can choose to update all the parameters or only

a subset (e.g. only the bias in LR). We did experiments on some scenarios of updating. In

the adaptive LR models, we tested on updating the bias b only or updating all parameters

f!; bg. In MLP and RBF models, we tested on updating bias !0 only or all second layer

parameters f!jgMj=0. The experimental results showed that results on updating the bias

only is slightly better than updating more parameters (see Tables E.1 and E.2 in Appendix

E, page 178) and hence we restrict our attention to this case.

Updating the bias implies that the models adapt only to changes in the trend (mean),

but not the volatility of the time series. Denote these updated parameters �, and the

remaining parameters of a model $. From Equations (3.1), (3.4), (3.5), (3.7), and (3.8),

we can summarise the input/output relationship of the models as follows

byt = h(xt; �;$). (5.16)

On the training set

We used the same training algorithms in �xed models in Sections 3.3.1, 3.3.2, and 3.3.3

to estimate parameters, denoted �0, $0.
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On the test set

We �xed the value $t = $0, and used a �lter to update value of �0. For this purpose, a

state space model is constructed as follows:

�t = �t�1 + �t, �t � D(0; Q), (5.17)

yt = h(xt; �t; $0) + "t, "t � D(0; R), (5.18)

where the bias �t in Equation (5.17) is the hidden state vector, the output function

h(xt; �t; $0) de�ned by Equations (3.1), (3.4), (3.5), (3.7), and (3.8), and the state transi-

tion function is selected as an identity function. Parameters Q, R and P0 of the SSM can

be estimated by using maximum log likelihood (Ghahramani and Hinton, 1996) or just set

to relatively small values. The initial state of the SSM is given by: �0 = �0.

On the test set, two steps are repeated for the observations in time order:

� Step 1 : Estimate parameter �t of the prediction model: �t�1t = E
h
�tj fygt�11

i
. In

order to obtain this parameter, we use the extended Kalman �lter or particle �lter

to estimate the mean of the hidden state of the above SSM at time step t� 1 given

observations up to time t � 1: �t�1t�1. From Equation (5.17), estimation of � at time

step t given observation up to time t� 1 is �t�1t = �t�1t�1.

� Step 2 : Use MLP/RBF/LR model with the latest estimated parameters to predict

time series at time step t:

yt = h(xt; �
t�1
t ; $0).

If we use the extended Kalman �lter, when linearising the output function h(�) and

state transition functions f(�), the Jacobian matrices bFt and bHt are computed as follows:
bFt = rf j�tt = I (i.e. identity matrix), (5.19)

bHt = rhj�t�1t . (5.20)

Because we chose to update the bias of the second layer !0 only (in the MLP and

RBF) and the bias b0 in the LR, the Jacobian matrices bFt and bHt are computed as the
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follows:

bFt = rf jbtt = 1,bHt = rhlrjbt�1t = 1.

Discussions on the adaptive models with bias updating

As mentioned above, we focused on the adaptive models with updating bias (or the con-

stant terms) only because they did slightly better than the adaptive models with updating

more parameters. In this case, the MLP, RBF and LR models have time-varying constant

terms. Therefore they are somehow similar to regression models with residuals that have

an autoregressive moving average model (ARMA). These are sometimes termed ARMAX

models, and are reasonably common in the literature.

We can explain the similarity of them in more detail by the following mathematical

equations. We presented a forecasting model in the form of

by = b+�(x;!), (5.21)

where b is the bias (intercept) and �(x;!) is the rest of the model. If only the bias term

is updated in an adaptive model, b changes over time and the equation for updating this

parameter is given by:

bt = bt�1 +Ktet, (5.22)

where Kt is the Kalman gain and et is the residual. Equation (5.22) is similar to a

regression model with a residual that has an AR model.

However, there are some di¤erence between these two kind of regression models. First,

in the bias-adaptive model the Kalman gain Kt changes over time (see Equation (5.10)

on page 99) while the corresponding parameter in the ARMA/ARMAX model, which is

a parameter in the MA component, is �xed. Second, the ARMA/ARMAX model is more

�exible in the sense that it is not limited to orders (1, 1) of the autoregressive and moving

average parts as in the bias updating equation. Therefore, the ARMA/ARMAX model

can be a good alternative approach for the adaptive models with updating the bias. We

will discuss the ARMA/ARMAX in the future work (see Section 8.2 on page 151).
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5.5 Adaptive LR-GARCH

This adaptive model is proposed for the �rst time in this thesis. Similar to adaptive

MLP/RBF/LR models, the adaptive LR-GARCH model with updating only bias e� is
slightly better than the adaptive models with updating more parameters (both e� and b�)
(see Tables E.1 and E.2 in Appendix E, page 178). In this case, all parameters of the

LR-GARCH model are set on the training set, with the exception of the bias e� which is
adapted online on the test set. De�ne � = f�0; : : : ; �m; 1; : : : ; rg (see de�nitions of these

notations in Section 3.3.4, page 50).

On the training set

We use maximum likelihood to compute LR-GARCH parameters as in the �xed LR-

GARCHmodel (Section 3.3.4), denote these optimisation parameters �0 = f�0;0; : : : ; �m;0; 1;0; : : : ; r;0g,b�0, and e�0.
On the test set

We �x the value �t = �0 and b�t = b�0, and use a �lter to update the value of e�t. Two steps
are recursively repeated.

� Step 1 : Update parameters of the model using the EKF/PF. The non-linear SSM is

given by

e�t = e�t�1 + �t, �t � D(0; Q), (5.23)

yt = ht(e�t) + "t, "t � D(0; Rt), (5.24)

where the bias e� is the hidden state vector of the SSM, the output function ht(e�t) =e�t+ b�0xt, and parameters Q and the variance P0 of the initial state z0 (see page 97)
can be estimated by using maximum log likelihood (using the Kalman smoother)

(Ghahramani and Hinton, 1996), or just initialised to relatively small values. Other

parameters of the SSM are given by

�0 = e�0, bFt = 1, bHt = 1,
Rt = �0;0 +

mP
i=1

�i;0"
2
t�i +

rP
j=1

j;0Rt�j ,
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(see de�nition of these parameters in Section 3.3.4, page 50).

� Step 2 : Use the LR-GARCH model with the latest estimated parameters to predict

the time series at time step t:

yt = e�t�1t + b�0xt.

5.6 Adaptive �nancial stochastic models

These kinds of adaptive models are derived from the �nancial stochastic models presented

in Section 3.3.5, page 53. Note that the �nancial stochastic models are speci�ed for the

electricity price dataset only. We do not directly forecast forward prices, but estimate the

log-return.

In these adaptive �nancial stochastic models, all parameters b� are estimated on the
training set, and then are adapted online on the test set.

On the training set

We use maximum likelihood to estimate parameters as in the �xed �nancial stochastic

model: denote these optimised parameters b�0.
On the test set

To update the model parameters, a state space model is constructed as follows:

b�t = b�t�1 + �t, �t � D(0; Q), (5.25)

rt = hE(b�t) + "t, "t � D(0; Rt), (5.26)

where b� in Equation (5.25) is the hidden state vector, hE(b�t) = mt(b�t) is the output
function and mt(b�t) is de�ned in Section 3.3.5 (on page 54), and parameters Q and P0 of

the SSM can be estimated by using maximum log likelihood (using the Kalman smoother),
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or just initialised to relatively small values. Other parameters of the SSM are given by

�0 = b�0,
Ft = I (i.e. identity matrix),

Ht =
@mt(b�)
@b� jb�t�1t ,

Rt = �t(b�t�1t ),

where mt(b�) and �t(b�) are de�ned in section 3.3.5. Note that the noise variance of the
output function Rt in this model is not �xed, but is estimated over time. This is helpful

in updating the �nancial forecasting model parameters (i.e. hidden states in SSM) as in

Equation (5.10), (5.11), and (5.12).

Two steps are repeated through the observations in time order:

� Step 1 : Estimate parameter b�t of the �nancial model: b�t�1t = E
hb�tj frgt�11

i
. Similar

to the other adaptive model, we use the EKF or PF to estimate b�t�1t�1. Then an

estimate of the hidden state vector at time step t given observation up to time t� 1

is b�t�1t = b�t�1t�1.

� Step 2 : Use the �nancial model with the latest estimated parameters to predict time

series at time step t: rt = hE(b�t�1t ).

As mentioned in Section 3.3.5 (page 53), there are six di¤erent �nancial stochastic

models, E1-E6. We here present an example of the adaptive �nancial stochastic models:

the adaptive E1.

In the adaptive E1, the hidden state vector is b� = fba; �g. The state space model for
an adaptive E1 is given by Equations (5.25) and (5.26), where

hE(b�t) = �te
bat � 1

2
e2bat ,

�0 = b�0,
Ft = I ,

Ht = [�t�1t ebat�1t � e2bat�1t , ebat�1t ],

Rt = e2bat�1t .
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5.7 Experimental results

The adaptive machine learning models (i.e. MLP, RBF, LR-GARCH, and LR) are eval-

uated on two datasets: gas forward price and electricity demand. The adaptive �nancial

stochastic models are speci�ed for electricity prices, therefore these models are tested on

electricity forward price only.

5.7.1 Results on the gas forward price dataset

The gas forward price dataset consists of 24 sub-datasets. The IRRMSE , RMSE, NRMSE,

MAPE, MAE and NMAE were computed for each sub-dataset and for each �xed or adap-

tive prediction method. Their averaged values over 24 sub-datasets are shown in Tables

5.1 and 5.2, and Figure 5.3. For the purpose of comparison, these errors were computed

for the following models:

� Random walk model, which was used as the benchmark model.

� Fixed models, whose parameters were computed on the training set only.

� Adaptive models with EKF, in which the EKF was used to adjust online parameters

of the prediction models on the test set.

� Adaptive models with PF, in which PF was used to update online parameters of the

prediction models on the test set.

�LR+EKF�and �LR+PF�referred to adaptive LR models with EKF and PF respec-

tively. Similar notation was used for LR-GARCH, RBF and MLP models.

Tables 5.1 and 5.2 and Figure 5.3 show that the adaptive models are better than the

�xed models, which proved the usefulness of using �lters. For example, the improvement

ratio of RMSE of �xed LR-GARCH model was 3.77% while that of the adaptive LR-

GARCH model was 6.16%.

In general, the adaptive models with PF are expected to provide better performance

than the adaptive models with EKF because the PF does not require as many assumptions

as in EKF. However, the results of these adaptive models were almost the same in these

cases. This could be explained by the linearity of the state space models. The state

transition functions in Equations (5.17) on page 104, (5.23) on page 106, and (5.25) on

page 107 are linear. The outputs of LR-GARCH and LR models are linear in parameters,
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Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 1.11862 0.48980 2.31% 0.84562 0.45182

LR 3.17% 1.08295 0.47735 2.26% 0.83577 0.44283

LR+EKF 4.49% 1.06916 0.47248 2.22% 0.83044 0.43795

LR+PF 4.47% 1.06917 0.47249 2.22% 0.83048 0.43797

LRGARCH 3.77% 1.07378 0.47310 2.26% 0.83562 0.44281

LRGARCH+EKF 6.16% 1.04144 0.46056 2.18% 0.80492 0.43031

LRGARCH+PF 6.15% 1.04145 0.46063 2.19% 0.80551 0.43050

MLP 2.97% 1.09047 0.47941 2.27% 0.83586 0.44599

MLP+EKF 4.82% 1.06588 0.47241 2.21% 0.81169 0.43790

MLP+PF 4.82% 1.06586 0.47240 2.21% 0.81153 0.43735

RBF 2.15% 1.09969 0.48346 2.28% 0.84292 0.44976

RBF+EKF 4.86% 1.06347 0.47111 2.20% 0.81152 0.43735

RBF+PF 4.87% 1.06327 0.47111 2.20% 0.81149 0.43392

Table 5.1: Errors and Improvement Ratio of RMSE of forecast methods for the gas forward
price dataset.

NRMSE Fixed Adaptive with
EKF

Adaptive with
PF

LR 0.47735 0.47248 0.47249

LRGARCH 0.47310 0.46056 0.46063

MLP 0.47941 0.47241 0.47240

RBF 0.48346 0.47111 0.47111

Table 5.2: Improvement ratio of RMSE of the �xed and adaptive methods for the forward
gas price dataset.
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Figure 5.3: NRMSE of the �xed and adaptive forecasting models for the gas forward price
dataset.

thus so are their state space models. MLP and RBF models are non-linear in parameters,

but we only adjusted on-line the bias of the second layer in MLP and RBF, which have

linear relationships with the outputs. Therefore the state space models for these adaptive

MLP and RBF models are also linear. The local linearisation of output functions and

state transition functions on EKF are perfect and the EKF can provide good updates.

Note that when SSMs are linear, the EKF and the KF provide the same results.

Although the simple KF is good enough for these linear SSMs, we actually used the EKF,

which is more complicated but has similar e¢ ciency, in our experiments. The reason is

that at the beginning we developed adaptive models for two scenarios: (1) updating all

parameters and (2) updating a subset only. The SSMs associated with the �rst scenarios

for the MLP are non-linear, so we had to implement the EKF for this case. Because the

EKF can be used for both scenarios, we did not need to implement the KF for the second

scenario, but just used the EKF instead.

Figure 5.4 shows IRRMSE of the adaptive and �xed MLP models for 24 sub-datasets of

the gas forward price. The adaptive models generally achieved better prediction accuracy

than the �xed models. There was no di¤erence between the prediction performance of

the adaptive model with EKF and the adaptive models with PF: the lines showing their

improvement ratios overlap.
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Figure 5.4: IRRMSE of the �xed and adaptive LR-GARCH models for 24 sub-datasets on
the gas price forecast.

5.7.2 Results on the electricity demand dataset

Tables 5.3, 5.4 and Figure 5.5 provide the results of the prediction methods for the daily

electricity demand. The adaptive models performed better than the �xed models. There

was no signi�cant di¤erence between performance of the adaptive models with EKF and

PF. The adaptive MLP models achieved the best results with RMSE of 17266, which

improved 56.14% comparing to RMSE of the benchmark model. In this dataset, the non-

linear models (MLP/RBF) generally provided better prediction accuracy than the linear

models (LR-GARCH/LR).

5.7.3 Results on the electricity forward price dataset

This section is dedicated to testing the performance of the adaptive �nancial stochastic

models in Section 5.6. As mentioned in Section 3.3.5 on page 53, because these �nancial

stochastic models are designed for electricity forward prices but not for a general time

series, we tested them on the UK electricity forward prices. Note that due to this reason,

we cannot apply the multicomponent-forecast of the WT for these models. We cannot

apply direct-forecast either because this kind of model requires a certain set of variables

as inputs (including time step, start and end time of the delivery period), but are not a
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Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 39365 0.36550 2.96% 29011 0.32877

Fixed LRGARCH 45.72% 21369 0.19841 1.72% 16538 0.18742

LRGARCH+EKF 45.86% 21312 0.19772 1.69% 16307 0.18432

LRGARCH+PF 46.06% 21232 0.19698 1.69% 16305 0.18364

Fixed LR 44.49% 21850 0.20252 1.76% 16915 0.19112

LR+EKF 45.80% 21337 0.19803 1.70% 16352 0.18560

LR+PF 45.78% 21343 0.19808 1.70% 16354 0.18562

Fixed MLP 53.12% 18455 0.17135 1.43% 13940 0.15798

MLP+EKF 56.14% 17266 0.16031 1.36% 13186 0.14886

MLP+PF 55.56% 17493 0.16213 1.36% 13186 0.14900

Fixed RBF 48.72% 20187 0.18743 1.63% 15589 0.17666

RBF+EKF 49.72% 19792 0.18284 1.57% 15325 0.17315

RBF+PF 49.68% 19810 0.18301 1.58% 15338 0.17401

Table 5.3: Errors and Improvement ratio of RMSE of forecast methods for the electricity
demand dataset.

RMSE Fixed Adaptive with
EKF

Adaptive with
PF

LRGARCH 21369 21312 21232

LR 21850 21337 21343

MLP 18455 17266 17493

RBF 20187 19792 19810

Table 5.4: RMSE of �xed and adaptive models for the electricity demand dataset.
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Figure 5.5: RMSE of �xed and adaptive models on the electricity demand dataset.

black box as in the machine learning models.

Tables 5.5 and 5.6 show results of these models on the dataset of the base load electricity

monthly forward price. The tables show that the adaptive �nancial stochastic models

did not work on this dataset: their improvement ratios are around zero. This means

that their performance is almost the same as the benchmark model. We actually tested

these �xed and adaptive models on other electricity forward prices: base load/peak load

quarterly/seasonal forward prices, but the results are the same or even a little worse than

those shown in these tables.

5.8 Summary

This chapter presented a framework of adaptive models for prediction applications. It

also shows how to combine each type of prediction model with �lters. In adaptive models,

the model parameters are not �xed but updated online every time a new observation is

available. Therefore, we can make the most use out of the data. This makes the prediction

models more plastic and can provide good results, especially for non-stationary datasets.

It was shown experimentally that the adaptive machine learning and time series models

did improve prediction performance. However, this improvement is not as great as the

improvement induced by using the WT in Chapter 4. In these prediction models, noise is

assumed to be Gaussian, therefore we can use both EKF and PF as �lters. The adaptive

models with PF and the adaptive models with EKF achieved similar results. In the gas

price forecast, the adaptive LR-GARCH models achieves best results with NRMSE of

114



Chapter 5 ADAPTIVE MODELS

Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

RW 0.00% 1.5554 0.52192 2.050% 0.94011 0.39467

E1+EKF 0.60% 1.5460 0.51879 2.030% 0.92750 0.38938

E2+EKF 0.07% 1.5565 0.52230 2.071% 0.94324 0.39599

E3+EKF 1.62% 1.5806 0.53038 2.064% 0.94167 0.39533

E4+EKF 4.35% 1.6230 0.54463 2.180% 1.01427 0.42581

E6+EKF 0.27% 1.5512 0.52053 2.041% 0.93418 0.39218

E1+PF 0.42% 1.5488 0.51971 2.034% 0.92897 0.39000

E2+PF 0.36% 1.5610 0.52380 2.082% 0.94727 0.39768

E3+PF 0.49% 1.5630 0.52449 2.070% 0.93986 0.39457

E4+PF 3.06% 1.6030 0.53789 2.144% 0.99151 0.41625

E6+PF 0.52% 1.5472 0.51919 2.042% 0.94064 0.39489

Table 5.5: Errors of �xed and adaptive �nancial stochastic methods for the electricity
forward price dataset.

IR(RMSE) Fixed Adaptive with EKF Adaptive with PF

E1 0.51% 0.60% 0.42%

E2 0.17% 0.07% 0.36%

E3 1.80% 1.62% 0.49%

E4 4.55% 4.35% 3.06%

E6 0.18% 0.27% 0.52%

Table 5.6: NRMSE improvement ratio of �xed and adaptive �nanical stochastic models
for the electricity forward price dataset.

115



Chapter 5 ADAPTIVE MODELS

0.46056, which improves 6.16% compared to that of the random walk model.

We have developed the adaptive �nancial stochastic models based on the above frame-

work. Because they were speci�cally designed for electricity forward prices only, we were

applied them on the UK electricity forward price. However, both the adaptive and the

�xed �nancial stochastic models did not perform well on this dataset.
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6 Analysing the noise model

This chapter investigates the noise distribution issue which is one of the techniques for

improving prediction performance of the standard models. We will discuss the need to use

models with Student-t noise for energy price time series and propose a novel framework

for inferring parameters of Student-t models.

6.1 Why does the noise model matter?

In forecasting models, we assume that the dependent data is corrupted by noise with a

zero-mean probability distribution. In Chapters 3, 4, and 5, the noise was assumed to be

drawn from a Gaussian distribution. As mentioned before, this assumption is very popular

in the literature either because of arguments derived from the Central Limit Theorem or

just to simplify calculations. For example, the log likelihood of a Gaussian noise model

is a quadratic function of the output variables. This leads to the fact that in the train-

ing process, we can easily estimate the maximum likelihood solution using optimisation

algorithms. Software and frameworks for training machine learning models such as RBF,
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Figure 6.1: Functions hist(r) are the histograms of the residuals r of the gas forward
dataset and functions pdfG(r) are the probability density functions of the Gaussian distri-
butions, which have the same means and variances of the residuals r.

MLP, and LR with Gaussian noise can be found in (Nabney, 2002). Conversely, other

noise models are much less tractable. So why use non-Gaussian distributions?

In the previous chapters we used models with Gaussian noise to forecast gas forward

prices in the UK energy market. In these experiments, the kurtosis1, which is a measure

of how outlier-prone a distribution is, of the residuals is between 16 and 17: the kurtosis

of the Gaussian distribution is 3. Furthermore, P (�� 3� < r < �+ 3�) � 0:982, where �

and � are the mean and standard derivation of the residual respectively. The equivalent

probability for a Gaussian distribution is 0:997; therefore, the residual distribution has

heavy tails. Figure 6.1 shows the histogram of the residuals on gas forward prices and

the probability density function of the Gaussian distributions which have the same mean

and variance as the residuals. It shows that the residual distributions are more outlier-

prone than the Gaussian distribution. It is clear that this data is not modelled well by a

Gaussian distribution, as has often been noted for �nancial data.

As a consequence, a Student-t distribution can be considered as a good alternative to

1Kurtosis of a variable y is de�nined by k =
PT

t=1(yt � �)
4=
�
(T � 1)�4

�
, where � and � are the mean

and the standard deviation of y.
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a Gaussian because it is a fat-tailed distribution and hence more robust. Moreover, the

Student-t distribution family contains the Gaussian distribution as a special case.

There are several previous studies of inference with Student-t models. Tipping and

Lawrence (2005) proposed a framework for training an RBF model with �xed basis func-

tions. This study is a fully Bayesian treatment based on a variational approximation

framework. A variational inference scheme was also used for unsupervised learning with

mixture models: Bishop and Svensén (2005) presented an algorithm for automatically

determining the number of components in a mixture of t-distribution using a Bayesian

variational framework. In order to obtain a tractable solution, it was assumed that the

latent variables are independent, and thus posterior distributions of latent variables can

be factorized. This means that the algorithm does not capture correlations among the

latent variables. Archambeau and Verleysen (2007) introduced a new variational Bayesian

learning algorithm for Student-t mixture models, in which they removed the assumption

of variable independence. Numerical experiments showed that their model had a greater

robustness to outliers than Bishop and Svensén�s method.

This chapter discusses Student-t noise models and presents a novel methodology to

infer parameters of probabilistic models whose output noise is a Student-t distribution.

This methodology for �maximum a posterior�(MAP) estimation is an extension of earlier

work (Tipping and Lawrence, 2005), which is for models that are linear in parameters.

Both approaches are based on a variational approximation. The main advantage of our

method is that it is not limited to models whose output is linearly dependent on model

parameters. On the other hand, our approach provides only MAP estimates of parameters

while Tipping and Lawrence give a fully Bayesian treatment in which predictions are made

by integrating out all the parameters apart from those de�ning the Student-t, which are

optimised. Thus, although our algorithm can be applied to models that are linear in

parameters, we would not expect it to outperform Tipping and Lawrence�s algorithm, so

our discussion focuses on the MLP.
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6.2 Student-t noise models

We assume that the output data is corrupted by noise with a Student-t distribution. We

are not investigating the case where the independent variables xt are also noisy.

yt = f(xt;!) + "t,

where "t is a Student-t noise process, and f(xt;!) is the output function of a forecast

model, which can be an MLP, RBF, or LR. In the case of MLP models, the output is

non-linear in parameters. Conversely, the output is linear in parameters when the model

is LR or RBF.

The Student-t distribution can be considered as a mixture of an in�nite number of

zero-mean Gaussians with di¤erent variances:

p("tjc; d) =
R1
0 p("tj�t)p(�tjc; d) d�t, (6.1)

=
dc

�(c)

�
1

2�

�1=2 �
d+

"2t
2

��c�1=2
�(c+ 1=2),

where p("tj�t) is a Gaussian distribution and p(�tjc; d) is a Gamma distribution:

p("tj�t) = N ("tj0; ��1t ),

p(�tjc; d) = Gamma(�tjc; d) =
dc

�(c)
�c�1t exp(��td),

�(c) is the gamma function (Abramowitz and Stegun, 1964).

The mixture weight for a given �t is speci�ed by the Gamma distribution p(�tjc; d).

� = 2c is called the �number of degrees-of-freedom�and � =
p
d=c is the scale parameter

of the distribution. The degrees-of-freedom parameter � can be considered as a robustness

tuning parameter (Archambeau and Verleysen, 2007). When � tends to in�nity, this

distribution converges to a Gaussian. Therefore, the Student-t noise model still contains

the Gaussian as a special case when � is very large. Figure 6.2 shows the density functions

of Gaussian and Student-t distributions with the same mean and variance. The Student-t

distribution with � = 100 is nearly overlapped by the Gaussian distribution.

120



Chapter 6 ANALYSING THE NOISE MODEL

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p(
x)

Student T: v = 1
Student T: v = 6
Student T: v = 100
Gaussian

Figure 6.2: PDF of Gaussian and Student-t distributions with the same variance �2 = 1
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6.3 Variational inference method for the RBF and the LR

This section presents a variational inference methodology proposed by (Tipping and Lawrence,

2005) for training the RBF model with a Student-t noise distribution. In their paper, it

is assumed that the basis functions �m(x) are �xed, m = 1; : : : ;M . The output func-

tion f(x) is a sum of the basis functions, weighted by the vector ! = (!1; !2; : : : ; !M ):

f(x;!) =
PM
m=1 !m�m(x).

Variational inference is a method which applies the variational method (Jordan et al.,

1999) to inference problems. Variational inference trains a model by �nding approxi-

mations to an intractable posterior distribution. This is done by restricting the range of

functions over which the optimisation is performed. We can see in Tipping and Lawrence�s

method described below that in order to estimate a posterior, they introduce an approx-

imation of the posterior and impose some restrictions on the approximation to make it

analytically tractable (in particular so that certain Bayesian integrals can be performed).

The main objective of Tipping and Lawrence�s methodology is to estimate the posterior

probability of parameters of the model and noise distribution given a training set D =

f(x1; y1); : : : ; (xT ; yT )g:

p(!;�;�jD; a; b; c; d) = p(Dj!;�;�)p(�jc; d)p(!j�)p(�ja; b)
p(D)

, (6.2)

where the likelihood term p(Dj!;�;�) and prior terms p(�jc; d), p(!j�), and p(�ja; b)
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are given by:

p(Dj!;�;�) =
TQ
t=1
N
�
ytjf(!;xt); ��1t

�
,

p(�jc; d) =
TQ
t=1

Gamma(�tjc; d),

p(!j�) =
MQ
m=1

N (!mj0; ��1m ),

p(�ja; b) =
MQ
m=1

Gamma(�mja; b).

The hyperparameters a and b are �xed to very small values to obtain relatively �at

hyperpriors over each �m while the hyperparameters c and d are optimised, as described

below.

The denominator p(D) is not analytically tractable, thus neither is p(!;�;�jD; a; b; c; d).

Tipping and Lawrence (2005) proposed an alternative approach, using variational infer-

ence, to approximate the posterior of !, �, and �. The variational inference involves the

introduction of a distribution q(!;�;�) which provides an approximation to the true pos-

terior distribution p(!;�;�jD). To approximate p(!;�;�jD), we consider the following

decomposition of log p(D):

log p(D) =
R
q(!;�;�) log

�
p (D;!;�;�)

q(!;�;�)

�
d! d� d�

�
R
q(!;�;�) log

�
p (!;�;�jD)
q(!;�;�)

�
d! d� d�

= L(q(!;�;�)) +KL(q(!;�;�)jjp(!;�;�jD)). (6.3)

The second term in Equation (6.3) is the Kullback-Leibler divergence (KL) between the

approximating distribution q(!;�;�) and the true posterior p(!;�;�jD). Because the

Kullback-Leibler divergence KL(q(!;�;�)jjp(!;�;�jD)) > 0, the �rst term is a lower

bound on log p(D). The good point of the above decomposition is that through a suitable

choice for the form of q(!;�;�), we can analytically track the lower bound L(q(!;�;�))

and the approximation distribution q(!;�;�), even though it is impossible to do that

for log p(D) and the original posterior p(!;�;�jD). On the other hand, as log p(D) is

independent of q(!;�;�), maximising the lower bound with respect to q(!;�;�) is equiv-

alent to minimising the KL divergence. This leads to the fact that we can indirectly obtain
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q(!;�;�), which is an approximation of the true posterior distribution p(!;�;�jD), by

maximising the lower bound L(q(!;�;�)) with respect to q(!;�;�) because this must

simultaneously minimise the KL divergence.

Selecting the form of distribution q(!;�;�) is an important issue in the variational

inference. If we accept any possible choice for q(!;�;�), the minimum of KL divergence

occurs when q(!;�;�) = p(!;�;�jD_). However, this leads nowhere because we have

to work with the true posterior which is intractable. We have to select a suitable form

of q(!;�;�) that is simple enough to analytically track the lower bound L(q(!;�;�))

and q(!;�;�), but �exible enough to provide a good approximation to the true posterior

distribution (Corduneanu and Bishop, 2001). A common choice of the distribution forms

is to assume that !, �, and � are separable: q(!;�;�) = q!(!)q�(�)q�(�): Bishop

(2006) showed that with this assumption L(q(!;�;�)) is maximised by

q!(!) _ exp hlog p (D;!;�;�)iq�(�)q�(�) ,

with symmetric expressions for q�(�) and q�(�). In addition, the output of the model is

linear in parameters, thus it is possible to analytically compute the update equations for

parameters of the distributions of q!(!), q�(�), and q�(�) and the lower bound (see their

detailed expressions in (Tipping and Lawrence, 2005)). In summary, variational inference

is an iterative algorithm, in which each loop consists of two steps:

� Step 1: Update parameters of the distributions q!(!), q�(�), and q�(�).

� Step 2: Maximise the lower bound L(q(!;�;�)) with respect to c and d by scaled

conjugate gradients (Møller, 1993).

This inference framework is a fully Bayesian treatment in the sense that we can estimate

the full distribution of parameters. To make a prediction, we marginalise over the model

parameters. The output for a new data point x� is given by:

y� =

Z
f(x�;!)q!(!) d! =f(x

�; h!iq!(!)). (6.4)

Although Tipping and Lawrence�s paper is written in terms of a generalised linear

regression model (such as RBF), their inference framework can be applied to the LR as

well because like the RBF model, the output of the LR is also linear in parameters. We
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used this method to train both RBF and LR with Student-t noise distributions.

6.4 MAP estimation for the MLP

This section presents our method for inferring the MLP with Student-t noise. The aim

of our approach is to �nd maximum a posterior (MAP) estimates of network and noise

model parameters. MAP estimation is not a fully Bayesian treatment because it �nds the

optimal parameters of the models instead of �nding full distributions of parameters. This

is equivalent to the type-II maximum likelihood method (Berger, 1985). We will describe

an algorithm for training a model with a Student-t noise model. This training framework

can be used for both �non-linear in parameters�models and �linear in parameters�models.

Given a dataset D = f(x1; y1); : : : ; (xT ; yT )g, our goal is to optimise parameters of a

predictive model (i.e. MLP, LR or RBF) using MAP. To simplify the notation, let 
= f!;

c; d; �g be the set of parameters/hyperparameters of the model and noise. The posterior

density of the parameters given a dataset D is given by

p(
jD) = p(Dj
)p(
)
p(D)

,

where p(Dj
) is the dataset likelihood, p(
) is the prior, and p(D) is the evidence.

Because the denominator does not a¤ect the MAP solution, we can ignore this term:

p(
jD) / p(Dj
)p(
): The likelihood and the prior are given by

p(Dj
) = p(Dj!;c; d) =
TQ
t=1

p(ytjxt;!;c; d),

p(ytjxt;
) =
dc

�(c)

�
1

2�

�1=2 "
d+

(yt � f(xt;!))2

2

#�c�1=2
�(c+ 1=2),

p(
) = p(!j�)p(�)p(c; d).

The weight prior p(!j�) distribution is Gaussian. It is helpful to generalise the hyper-

parameter � to multiple hyperparameters �1; : : : ; �M corresponding to groups of weights

W1; : : : ;WM . In theory, we can create groupings of the weights in any way that we want.

However, weights in an MLP are normally divided into four groups: �rst-layer weights,

�rst-layer biases, second-layer weights, and second-layer biases. In addition, the �rst layer

weights can be also divided into several groups: weights fanning out from an input vari-
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able are associated to a distinct group. The latter grouping approach relates to automatic

relevance determination (ARD) (MacKay, 1994) and is used in our experiments. Denote

group dimensions by W1; : : : ;WM corresponding to the groups W1; : : : ;WM . Thus the

dimension of ! isW =
PM
m=1Wm.

p(!j�) =
MQ
m=1

N (Wmj0;��1m ) =
MQ
m=1

��m
2�

�Wm=2
exp

"
MP
m=1

 
��m
2

P
!2Wm

!2

!#
. (6.5)

There are many possible choices for the densities p(�) and p(c; d); but for simplicity

we assume that they are uniform distributions. Therefore, they will be ignored in the

subsequent analysis. Hence

log p(
jD) / log [p(Dj
)p(
)]

= Tc log d+ T log
�(c+ 1=2)

�(c)
�W + T

2
log 2�

�
�
c+

1

2

�
TP
t=1
log

"
d+

(yt � f(xt;!))2

2

#

+
MP
m=1

�
Wm

2
log�m

�
�

MP
m=1

 
�m
2

P
!2Wm

!2

!
, (6.6)

where T is the number of observations on the training set D.

6.4.1 Variational approximation

The Student-t distribution of each observation yt can be considered as a mixture of an

in�nite number of zero-mean Gaussians with inverse variance �t. Let � = f�1; �2; : : : ; �T g;

then

p(Dj
) =
1R
0

p(D;�j
)d� =
1R
0

p(Dj�;
)p(�j
)d�, (6.7)

where

p(Dj�;
) =
TQ
t=1

p(ytj�t;
) =
TQ
t=1

�
�t
2�

�1=2
exp

�
��t
2
(yt � f(xt;!))2

�
, (6.8)

p(�j
) =
TQ
t=1

p(�tj
) =
TQ
t=1

Gamma(�tjc; d) =
TQ
t=1

dce�d�t�c�1t

�(c)
. (6.9)
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It is di¢ cult to optimise p(Dj
) directly, but optimising p(D;�j
) is signi�cantly easier.

We use a variational framework (Bishop, 1999) to approximate the posterior p(Dj
)p(
)

as follows. We introduce an approximating distribution q(�) for p(�jD;
): for every

choice of q(�), the following decompositions hold:

log [p(Dj
)p(
)] = log [p(D;�j
)p(
)]� log p(�jD;
),

log [p(Dj
)p(
)] = L(q;
) +KL(qjjp), (6.10)

where

L(q;
) =
1R
0

q(�) log

�
p(D;�j
)p(
)

q(�)

�
d�

=
1R
0

q(�) log [p(D;�j
)p(
)] d� �
1R
0

q(�) log q(�) d�, (6.11)

KL(qjjp) = �
1R
0

q(�) log

�
p(�jD;
)
q(�)

�
d�.

In Equation (6.10), the second component KL(qjjp) is the Kullback-Leibler divergence

between q(�) and p(�jD;
). It is clear that KL(qjjp) � 0, with equality if and only if

q(�) = p(�jD;
). Therefore, L(q;
) � log [p(Dj
)p(
)], i.e. L(q;
) is a lower bound

on log [p(Dj
)p(
)].

6.4.2 EM for optimising the posterior

Based on the decomposition in Equation (6.10), we use an expectation maximisation (EM)

algorithm2 to maximise p(Dj
) p(
). The two following steps are repeated:

� E-step: �x 
 and maximise L(q;
) with respect to q(�). The lower bound can

be seen as a negative Kullback-Leibler divergence between q(�) and a distribution

which is proportional to p(D;�j
)p(
). Thus maximising L(q;
) is equivalent to

minimising this Kullback-Leibler divergence. The lower bound is maximised when

2The EM algorithm, proposed by (Dempster et al., 1977), is a technique for �nding maximum likelihood
or maximum a posteriori (MAP) solutions of parameters in statistical models, where the model depends
on unobserved variables (also called latent variables). The EM algorithm has two iterative steps:

� Expectation step (E-step): the distributions of the latent variables are estimated given the ob-
served data and current estimate of the model parameters. Then the expectation of the likeli-
hood/posteriori is evaluated using the current estimate of the latent variables.

� Maximisation step (M-step): the model parameters are computed by maximising the expected
likelihood/posteriori found on the E-step. These estimates of the parameters are then used to
determine the distribution of the latent variables in the next E-step.
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q(�) / p(D;�j
)p(
) = p(Dj�;
)p(�j
)p(
). We have

p(Dj�;
) = p(Dj!;�) =
TQ
t=1

p (ytj!;�t) ,

p(�j
) = p(�jc; d) =
TQ
t=1

p(�tjc; d),

p(
) = p(!j�)p(�)p(c; d).

Therefore log q(�) / log [p(!j�)p(�)p(c; d)]+
TP
t=1
log fp(ytj!; �t)p(�tjc; d)g. Because

log [p(!j�)p(�)p(c; d)] is independent of �, we can discarding this term:

log q(�) /
TP
t=1
log fp(ytj!; �t)p(�tjc; d)g ,

log q(�t) / log fp(ytj!; �t)p(�tjc; d)g

/ (c� 1
2
) log �t �

�
d+

1

2
(yt � f(xt;!))2

�
�t + const.

The above equation shows that log q(�t) is a linear combination of log �t and �t.

Therefore, q(�) is a product of Gamma distributions with the following parameters:

q(�) =
TQ
t=1

Gamma(�tjec; edt), (6.12)

ec = c+
1

2
, edt = d+

1

2
(yt � f(xt;!))2. (6.13)

Note that the method in (Tipping and Lawrence, 2005) estimated posterior distrib-

utions of parameters !;�; and �. In order to obtain a tractable solution for these

distributions, they assumed that !;�; and � are a posteriori separable, such that

q(!;�;�) = q!(!)q�(�)q�(�). In our work, this assumption changes since we esti-

mate the distribution of � only; the other parameters (i.e. ! and �) are optimised

in the M-step (which is equivalent to a delta function for each parameter vector

posterior distribution).

� M-step: �x q(�) using Equations (6.12) and (6.13), and maximise L(q;
) with re-

spect to 
. In Equation (6.11), the �rst component is the expectation of a complete-

data log likelihood. The second component is the entropy of q(�) and does not
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depend on 
. Therefore, we can ignore this component in the subsequent analysis:

L(q;
) =
1R
0

q(�) log fp(D;�j
)p(
)g d� = hlog fp(D;�j
)p(
)giq(�) . (6.14)

We now describe how this optimisation can be done in the following section.

6.4.3 Optimising the lower bound of log posterior

Firstly, we have to compute the lower bound L(q;
).

log fp(D;�j
)p(
)g =
TP
t=1
log fp(ytj!; �t)p(�tjc; d)g+ log p(!j�)

+ log p(�) + log p(c; d). (6.15)

q(�) is de�ned by Equation (6.12). The densities p(�) and p(c; d) are assumed to be

uniform distributions3. Therefore, they will be ignored in the subsequent analysis.

L(q;
) =
TP
t=1
hlog fp(ytj!; �t)p(�tjc; d)giq(�) + hlog p(!j�)iq(�) .

From Equations (6.5), (6.8), and (6.9), we have

hlog fp(ytj!; �t)p(�tjc; d)giq(�) =

�
c� 1

2

�
hlog �tiq(�) �

(yt � f(xt;!))2
2

h�tiq(�)

�d h�tiq(�) + c log d� log �(c)�
1

2
log(2�),

hlog p(!j�)iq(�) =
MP
m=1

�
Wm

2
log�m

�
�W
2
log (2�)�

MP
m=1

 
�m
2

P
!2Wm

!2

!
,

where we use the results hlog �tiq(�) = hlog �tip(�tjec;edt) =  (ec) � log edt and h�tiq(�) =
h�tip(�tjec;edt) = ec=edt, with  (�) the �psi� or �digamma� function, de�ned as  (x) =

@=@x [log �(x)] (Abramowitz and Stegun, 1964). The lower bound is given by (constant

3This assumption is reasonable because we have no idea that the parameters �, c, and d should have any
particular values. This uniform distribution assumption gives equal weight to all possible values. Uniform
priors p(�) and p(c; d) are called non-informative prior (Berger, 1985).
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components are ignored for simplicity):

L(q;
) =

�
c� 1

2

�
TP
t=1

�
 (ec)� log edt�� 1

2

TP
t=1

ecedt (yt � f(xt;!))2
�d

TP
t=1

ecedt + Tc log d� T log �(c)
+

MP
m=1

�
Wm

2
log�m

�
�

MP
m=1

 
�m
2

P
!2Wm

!2

!
. (6.16)

We partition the parameters into three groups fc; dg, f!g, and f�g, and optimise each

group in turn with the others held �xed.

Optimise fc; dg

We can use a nonlinear optimisation algorithm (e.g. scaled conjugate gradient (SCG)) to

�nd an optimal solution for c; d. Derivatives of the lower bound with respect to c, d are

given by:

@L(q;
)
@c

=
TP
t=1

�
 (ec)� log edt�+ T log d� T (c),

@L(q;
)
@d

= �
TP
t=1

ecedt + T cd ,
with constraints c; d > 0: These constraints can be enforced by a substitution: c = exp(bc);
d = exp(bd). Derivatives of the lower bound with respect to bc, bd are given by:

@L(q;
)
@bc =

@L(q;
)
@c

@c

@bc = c

�
TP
t=1

�
 (ec)� log edt�+ T log d� T (c)� ,

@L(q;
)
@ bd =

@L(q;
)
@d

@d

@ bd = d

�
�

TP
t=1

ecedt + T cd
�
.

Optimise !

Now we can consider optimisation of L(q;
) with respect to ! using a nonlinear optimi-

sation algorithm such as SCG. The relevant partial derivative of the lower bound L(q;
)

is given by:

@L(q;
)
@!i

= �1
2

@

@!i

�
TP
t=1

ecedt (yt � f(xt;!))2
�
� b�i!i

= �
TP
t=1

� ecedt @

@!i

�
1

2
(yt � f(xt;!))2

��
� b�i!i, (6.17)
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where b� = [b�1; b�2; : : : ; b�W], b�i = �m if i 2 Wm, i = 1; : : : ;W and m = 1; : : : ;M .

The term @=@!i
�
(yt � f(xt;!))2=2

�
is the derivative of the mean square error function

(NMSE) for models with Gaussian noise. Equations for this derivative are presented in

(Nabney, 2002).

Optimise �

Our objective is to estimate the most probable value of �, in other words we max-

imise p(�jD). The following procedure is derived from the standard evidence procedure

(MacKay, 1992). The main di¤erence is that the scalar hyperparameter � in the standard

evidence procedure is replaced by a T -dimensional vector �, to be derived below (T is

number of data points in the training set.). This vector is �xed and de�ned by Equation

(6.13) while � in the standard evidence procedure is optimised simultaneously with �.

p(�jD) = p(Dj�)p(�)
p(D)

.

The distribution p(Dj�) is called the evidence for � (MacKay, 1992). Because the de-

nominator does not a¤ect the optimisation solution and p(�) is assumed to be uniform,

these terms are ignored in the subsequent analysis. This means that we have to maximise

the evidence p(Dj�) with respect to �. Firstly, we have to compute p(Dj�).

p(Dj�) =
Z 1

�1
p(Dj!)p(!j�) d!. (6.18)

In the E-step, L(q;
) is maximised with respect to q(�), in other word we minimise

KL(qjjp) with respect to q(�). In this case KL(qjjp) is close to 0, thus log [p(Dj
)p(
)] �

L(q;
). Therefore, log p(Dj
) can be de�ned by Equation (6.16) without the last two

terms (which are derived from the component log p(
)). Ignoring the components which

are independent of !, we obtain:

log p(Dj!) = �1
2

TP
t=1

ecedt (yt � f(xt;!))2 + const. (6.19)

Substitute Equations (6.5) and (6.19) to (6.18), we have:

p(Dj�) /
MQ
m=1

��m
2�

�Wm=2
Z 1

�1
exp (�S(!)) d!, (6.20)
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where

S(!) = �0ED(!) +�
0Ew(!), (6.21)

where �, �, ED(!), and Ew(!) are column vectors, �0 and �0 are the transposes of � and

� respectively, and �0ED(!) are the inner product of � and ED(!):

ED(!) =
�
E1D(!); : : : ; E

T
D(!)

�0
; EtD(!) =

1

2
(yt � f(!;xt))2 ,

� =

� eced1 ; : : : ; ecedT
�0
,

Ew(!) =
�
E1w(!); : : : ; E

M
w (!)

�0
; Emw (!) =

1

2

P
!2Wm

!2,

� = [�1; : : : ; �M ]
0.

Note that in the equation of the overall error function S(!), the scalar hyperparameter

� in the standard evidence procedure is replaced by a T -dimensional vector �, and the

hyperparameter � is generalised to multiple hyperparameters �1; : : : ; �M .

To evaluate the integral in Equation (6.20), we assume that !MP is a local minimum

of S(!) (of course, it is the local maximum of lower bound L(q;
) as well). S(!) is

approximated using a second Taylor series expansion:

S(!) � S(!MP ) +
1

2
�!0A�!,

where �! =(! � !MP ). There is no �rst-order term because @S(!MP )=@!i = 0 for all

weights. The matrix A is the Hessian of the overall error function:

A =
TP
t=1
�trrEtD(!MP ) + diag(b�),

where �t = ec=edt, b� is aW-dimensional vector: b� = [b�1; b�2; : : : ; b�W], b�i = �m if i 2 Wm,

i = 1; : : : ;W and m = 1; : : : ;M . diag(b�) is a diagonal matrix with the elements of b� on
the main diagonal. We have:

Z 1

�1
exp [S(!MP )� S(!)] d! =

Z 1

�1
exp

�
�1
2
�!0A�!

�
d! =

(2�)W=2

kAk1=2
.
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Therefore

Z 1

�1
exp [�S(!)] d! =(2�)

W=2

kAk1=2
exp [�S(!MP )] . (6.22)

From Equations (6.20), (6.22), and (6.21), we have

log p(Dj�) /
MP
m=1

�
Wm

2
log�m

�
� 1
2
log kAk � �0ED(!MP )��0Ew(!MP ).

Let us return to our main objective, which is to optimise log p(Dj�). The �rst step

is to compute its partial derivative with respect to �. The most di¢ cult term is the log

of the matrix determinant kAk. Let �1; : : : ; �W be the eigenvalues of the data Hessian

H =
PT
t=1 �trrEtD(!MP ). Then A has eigenvalues �1 + b�1; : : : ; �W + b�W, and

@

@�m
ln kAk =

@

@�m
ln

�
WQ
i=1
(�i + b�i)� = @

@�m

WP
i=1
ln (�i + b�i)

=
P

i2Wm

1

�i + �m
=

P
i2Wm

�
A�1

�
ii
, m = 1; : : : ;M .

The derivative of the log evidence with respect to �m is:

@

@�m
log p(Dj�) = �Emw (!MP )�

1

2

P
i2Wm

1

�i + �m
+
Wm

2�m
.

Equating this to zero and rearranging give an implicit equation for �m

�m =
m

2Emw (!MP )
, m = 1; : : : ;M , (6.23)

where

m =
P

i2Wm

�i
�i + �m

, (6.24)

is a measure of the number of well-determined parameters; see section 10.4 in (Bishop,

1995).

6.4.4 Summary of training process

1. Chose initial values for bc, bd, and !.
2. Update parameters of distribution q(�) using Equations (6.12) and (6.13).
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Method in
Tipping and Lawrence (2005)

Our proposed method

1
Fully Bayesian treatment.
The prediction is given by:
y� =

R
f(x�;!)q!(!)d!:

Not fully Bayesian treatment. The
prediction is y� = f(x�;!MP ):

2 Can be applied to LR, RBF. Can be applied to LR, RBF, MLP.

3

It is assumed that (!;�;�)
are independent:
q(!;�;�) = q!(!)q�(�)q�(�):
In fact, they are dependent:

p(!j�) =
MQ
m=1

N(!mj0; ��1m ):

This assumption changes since in E-step
we estimate the distribution of � only;
the other parameters (i.e. ! and �) are
optimised in the M-step (which is
equivalent to a delta function for each
parameter vector posterior distribution).

4
Less computationally expensive,
to be showed in next section.

More computationally expensive.

Table 6.1: Comparing our proposed method and the variational inference method of Tip-
ping and Lawrence for Student-t models.

3. Optimise the lower bound L(q;
) w.r.t f!; bc; bd; �g: partition these parameters
into three groups

nbc; bdo, f!g, and f�g, and optimise each group with the others
held �xed:

(a) Optimise bc, bd using scaled conjugate gradient.
(b) Optimise ! using scaled conjugate gradient.

(c) Optimise � using Equation (6.23).

(d) Repeat steps (a), (b) and (c) until convergence.

4. Repeat steps 2 and 3 until convergence.

We chose to terminate when either none of the changes at each update to !, or log�m

were greater than some threshold, here 10�6, or a maximum number of iterations have

been exceeded, depending on whichever occurs �rst.

Table 6.1 summaries the comparisons of two inference methods for machine learning

models: our proposed method and the variational inference (Tipping and Lawrence, 2005).
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6.5 Experimental results

We tested the Student-t and Gaussian models on two forecasting tasks. The �rst is on a

synthetic dataset which is similar to that in (Tipping and Lawrence, 2005). The second

is a real life application to forecast forward gas prices in the UK market.

6.5.1 Results on a synthetic data

We generated a dataset from the function sinc(x) = (sin(x))=x with additive Student-t

noise, the target y of the dataset is de�ned by

y = sinc(x) + ", (6.25)

where x is the input of the dataset and " is the additive noise drawn from a zero-mean

Student-t distribution with one degree of freedom (� = 1) and scale parameter � = 0:02.

The dataset includes a training set (100 points at equally spaced intervals in [�10; 10])

and a test set (80 equally spaced noise-free points in [�10; 10]).

We compared the prediction performance of four models: Gaussian MLP, Student-t

MLP, Gaussian RBF, and Student-t RBF. The Gaussian MLP/RBF models were trained

with the algorithms which were presented in Sections 3.3.2 and 3.3.3 on pages 47 and

48. The Student-t MLP was trained by our proposed algorithm and the Student-t RBF

was trained with Tipping and Lawrence�s algorithm. The Gaussian and Student-t RBF

models had 12 and 11 basis functions respectively and their centres were equally spaced

in [�10; 10]: We used thin plate spline basis functions �j(rj) = r2j log(rj), where rj =x� �j. Both Gaussian and Student-t MLP models had six hidden units and tanh

activation functions. The numbers of basis functions in the RBF models and the numbers

of hidden units in the MLP models were selected by 10-fold cross-validation.

Figure 6.3(a) shows the development of the log posterior log p(
jD) in Equation (6.6)

on page 125 (ignoring the constant terms) during training of the Student-t MLP, indicat-

ing that our algorithm converges. Figure 6.3(b) shows the inferred noise distribution of

Student-t and Gaussian MLP, compared with the true additive noise. The inferred noise

distribution of the Student-t MLP is close to the real noise while that of the Gaussian

MLP model is far from the real noise. This implies that the Student-t MLP model is

capable of successfully learning noise parameters.
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Figure 6.3: Results on synthetic dataset. (a) Log posterior log p(
jD) (ignoring the
constant terms) in training the Student-tMLP model. (b) The inferred noise distributions
in the Student-t MLP and Gaussian MLP models, and the true noise distribution.

Models RMSE NRMSE MAPE MAE NMAE Running
time (s)

Gaussian MLP 0.12495 0.34716 129.59% 0.09964 0.35140 1.4305

Studentt  MLP 0.01336 0.03713 18.77% 0.01024 0.03610 597.0530

Gaussian RBF 0.10909 0.30310 106.28% 0.07051 0.24868 0.1016

Studentt  RBF 0.02069 0.05748 24.48% 0.01687 0.05948 13.9711

Table 6.2: Errors and running time of Student-t/Gaussian methods for the synthetic
dataset.

Figure 6.4 shows prediction results of the four models. In both MLP and RBF cases,

models with Student-t noise outperform Gaussian noise. Table 6.2 provides prediction

accuracy information, averaged over 20 trials. The table shows that the Student-t noise

models are signi�cantly better than Gaussian models. For example, the RMSE of the

Student-t MLP model is 0.01336 while the equivalent value for the Gaussian MLP model

is 0.12495. This proves the robustness to outliers of Student-t models.

The biggest disadvantage of our presented method is that it is computationally expen-

sive. The average training time for the Student-t MLP model for this case study was 597

(seconds), which is much longer than the others. (We ran experiments with code written

in Matlab on a computer with Dual Core 1.66GHz CPU, RAM 1.5GB).
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Figure 6.4: Synthetic dataset. (a) Data and predictions of the MLP models. (b) Data and
predictions of the RBF models.

6.5.2 Results on the gas forward price dataset

Table 6.3 shows average errors for all 24 sub-datasets of MLP, LR, RBF, and LR-GARCH

with Student-t and Gaussian models. The Student-t LR-GARCH is trained by maximum

log likelihood (see Appendix F, page 179). The numbers of hidden units for Gaussian and

Student-t MLP models are 8. The numbers of basis functions for Gaussian and Student-t

RBF models are 30 and 25, respectively. We used a 10-fold cross-validation to select these

numbers.

The table shows that the Student-t models generally outperform the Gaussian ones.

Especially, the improvement ratio of RMSE of Student-tMLP is 8.72% while the equivalent

quantity of Gaussian MLP is only 2.97%. This proves that the Student-t models are more

robust to outliers. It is superior to Gaussian models even in this real dataset where the

noise is not expected to be an exact Student-t distribution.

We can investigate in more detail the performance of the Student-tMLP model. Figure

6.5 shows the IRRMSE of the Student-t/Gaussian MLP models for the gas contract sub-

datasets. The Student-t MLP model generally outperforms the Gaussian MLP model,

especially on the sub-datasets where the Gaussian MLP did not work well.

Figure 6.6 shows optimal values of parameters c, d, and � of the Student-tMLP models

for 24 gas forward price sub-datasets. Remember that � = 2c is the number of degrees-of-
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Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 1.11862 0.48980 2.31% 0.84562 0.45182

Gaussian LR 3.17% 1.08295 0.47735 2.26% 0.83577 0.44283

Studentt  LR 7.15% 1.03584 0.46061 2.17% 0.80545 0.43034

Gaussian LRGARCH 3.77% 1.07378 0.47310 2.26% 0.83562 0.44281

Studentt  LRGARCH 4.15% 1.07374 0.47250 2.22% 0.83049 0.43942

Gaussian MLP 2.97% 1.09047 0.47941 2.27% 0.83586 0.44599

Studentt  MLP 8.72% 1.02048 0.44851 2.11% 0.78518 0.41913

Gaussian RBF 2.15% 1.09969 0.48346 2.28% 0.84292 0.44976

Studentt  RBF 6.58% 1.04141 0.46063 2.19% 0.80550 0.43047

Table 6.3: Average errors of Student-t/Gaussian models for the 24 gas price sub-datasets.
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Figure 6.5: IRRMSE of Student-t/Gaussian MLP models for 24 gas price sub-datasets.
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Figure 6.6: Parameters of Student-t MLP models for 24 gas forward price sub-datasets.
(a) c and d. (b) Histogram of degree-of-freedom parameter �.

freedom of the Student-t models. The degrees-of-freedom values on our experiments range

from 1 to 21 with an average of 7.6. These values of � for these sub-datasets are quite

small. This indicates that the price time series are heavy tailed. Therefore one more time

it is con�rmed that it is worthwhile to model them by Student-t noise models.

6.6 Summary

This chapter presented Student-t noise models and a novel methodology for inferring their

parameters. It was shown that our proposed method does not require the assumed prior

of a linear dependence of the output on model parameters. Removing this assumption

allows us to be able to apply our framework to a large range of machine learning models.

In particular, we can solve the inference problem of a Student-t MLP model which cannot

be solved by the previous methodologies in the literature.

It was shown experimentally that the Student-t models provide better predictions

than Gaussian models in both the synthetic data (where additive noise is a Student-t

distribution) and the real data of gas forward price in the UK market (where noise has a

heavy-tailed distribution but would not normally be expected to be exactly a Student-t

distribution). The best models for the gas forward price dataset are Student-t LR and

Student-t MLP with IRNMSE of 7.15% and 8.72%, respectively.

The limitation of our presented method is its computational expense. It takes a much

longer time to run than Tipping and Lawrence�s method. However, in some real life
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applications, such as day-ahead price/demand energy prediction, this running time is

acceptable considering the improved results.
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7 Model comparisons

Chapters 3, 4, and 5 presented three modelling improvements and their experimental

results showed that these techniques had positive e¤ects on prediction performance when

they were individually combined with standard prediction models. In this chapter, we

compare all the di¤erent improvements and investigate the bene�t of combining all of them.

Figure 7.1 summarises all the prediction models and possible improvement techniques.

Note that since the EKF is limited to Gaussian noises, there are 60 di¤erent prediction

frameworks by combining all prediction models and improvements.

7.1 Experiment results

7.1.1 Results on the daily electricity demand dataset

Table 7.1 shows results of predicting daily electricity demand. Because there are a large

number of di¤erent forecasting frameworks (i.e. 60), we do not present results of all

frameworks, but select the best. As presented in Chapter 6, the main objective of Student-

t models is to capture the fat-tailed distribution of noise, so they are more appropriate
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Noise

Gaussian

Studentt

Adaptive models

Fixed

EKF

PF

Standard forecasting
models

MLP

RBF

GARCH

LR

Wavelet transform

Without
wavelet

transform

Direct
forecast

Multicomponent
forecast

Figure 7.1: Forecasting models and improvements discussed in this thesis. The mod-
els/improvement techniques represented in solid-line ovals are the best ones in the elec-
tricity demand forecasting. The model/improvement techniques represented by �lled ovals
(i.e. ovals whose colours are di¤erent from the backgrounds) are the best in the gas price
forecasting.

for gas forward prices rather than for electricity demand. Therefore, we presented here

results of daily electricity demand using Gaussian noise models only. To develop adaptive

framework for the multicomponent-forecast, we applied adaptive models for each wavelet

transform component, then converted to the original target variable. Results using MLP

and RBF are better than LR and LR-GARCH, and so we concentrated on results of these

non-linear models.

Table 7.1 shows that wavelet transform and �lters (EKF/PF) did improve performance

of the prediction models. Wavelet transforms are more e¤ective than adaptive models (see

Figure 7.2 (a)). Figure 7.2 (b) shows RMSE of cumulative combination of improvement

techniques. The improvement of combining techniques was better than each single im-

provement technique, but only by a disappointingly small amount.

7.1.2 Results on the gas forward price dataset

Table 7.2 shows average errors of forecasting gas forward prices using the prediction models

and improvement techniques. We did not show the results of direct-forecast method

because it was con�rmed in Chapter 4 that it is not as good as multicomponent-forecast.

The best models are Student-t adaptive LR-GARCH with multicomponent-forecast that

have NRMSE of 0.43027 and IRRMSE of 12.11%.

Table 7.2 shows that all improvement techniques did enhance performance of the pre-
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Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 39365 0.36550 2.96% 29011 0.32877

LRGARCH 45.72% 21369 0.19841 1.72% 16538 0.18742

LR 44.49% 21850 0.20252 1.76% 16915 0.19112

MLP 53.12% 18455 0.17135 1.43% 13940 0.15798

MLP+mf 58.15% 16474 0.15362 1.29% 12403 0.14065

MLP+df 50.35% 19543 0.18003 1.48% 14665 0.16619

MLP+EKF 56.14% 17266 0.16031 1.36% 13186 0.14886

MLP+EKF+mf 59.12% 16092 0.15068 1.27% 12166 0.13725

MLP+EKF+df 53.68% 18233 0.16929 1.43% 13731 0.15561

MLP+PF 55.56% 17493 0.16213 1.36% 13186 0.14900

MLP+PF+mf 59.13% 16090 0.15067 1.27% 12141 0.13697

MLP+PF+df 53.03% 18489 0.17167 1.44% 13915 0.15769

RBF 48.72% 20187 0.18743 1.63% 15589 0.17666

RBF+mf 55.08% 17681 0.16335 1.38% 13194 0.14962

RBF+df 47.64% 20612 0.19138 1.66% 15861 0.17974

RBF+EKF 49.72% 19792 0.18284 1.57% 15325 0.17315

RBF+EKF+mf 55.41% 17553 0.16221 1.36% 13187 0.14901

RBF+EKF+df 49.71% 19797 0.18300 1.57% 15215 0.17200

RBF+PF 49.68% 19810 0.18301 1.58% 15338 0.17401

RBF+PF+mf 55.42% 17550 0.16218 1.35% 13186 0.14900

RBF+PF+df 49.66% 19816 0.18322 1.57% 15227 0.17214

Table 7.1: Errors of the proposed forecasting models for the daily electricity demand
dataset. "mf" and "df" stand for multicomponent-forecast and direct-forecast respectively.
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Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 1.11862 0.48980 2.31% 0.84562 0.45182

LR 3.17% 1.08295 0.47735 2.26% 0.83577 0.44283

LR+mf 9.78% 1.00299 0.44319 2.05% 0.77315 0.41183

LR+PF 4.47% 1.06917 0.47249 2.22% 0.83048 0.43797

LR+PF+mf 10.65% 0.99205 0.43843 2.01% 0.76516 0.40702

LRst 7.15% 1.03584 0.46061 2.17% 0.80545 0.43034

LRst+PF+mf 10.84% 0.98826 0.43726 2.00% 0.75876 0.40415

LRGARCH 3.77% 1.07378 0.47310 2.26% 0.83562 0.44281

LRGARCH+mf 9.41% 1.00614 0.44463 2.05% 0.77320 0.41407

LRGARCH+PF 6.15% 1.04145 0.46063 2.19% 0.80551 0.43050

LRGARCH+PF+mf 11.42% 0.97918 0.43384 1.99% 0.75828 0.40388

LRGARCHst 4.15% 1.07374 0.47250 2.22% 0.83049 0.43942

LRGARCHst+PF+mf 12.11% 0.97440 0.43027 1.98% 0.75469 0.40268

MLP 2.97% 1.09047 0.47941 2.27% 0.83586 0.44599

MLP+mf 8.85% 1.01426 0.44477 2.08% 0.77889 0.41563

MLP+PF 4.82% 1.06586 0.47240 2.21% 0.81153 0.43735

MLP+PF+mf 10.56% 0.99240 0.43844 2.02% 0.76516 0.40746

MLPst 8.72% 1.02048 0.44851 2.11% 0.78518 0.41913

MLPst+PF+mf 10.93% 0.98537 0.43463 2.00% 0.75875 0.40392

RBF 2.15% 1.09969 0.48346 2.28% 0.84292 0.44976

RBF+mf 8.08% 1.02283 0.44853 2.10% 0.78547 0.41914

RBF+PF 4.87% 1.06327 0.47111 2.20% 0.81149 0.43392

RBF+PF+mf 9.80% 1.00124 0.44234 2.04% 0.77286 0.41173

RBFst 6.58% 1.04141 0.46063 2.19% 0.80550 0.43047

RBFst+PF+mf 10.09% 0.99692 0.44108 2.02% 0.76517 0.40757

Table 7.2: Average errors of the forecasting models for the gas forward price dataset.
"LR" and "LRst" stand for LR models with Gaussian and Student-t noise respectively.
Similar notations were used for LR-GARCH, RBF, and MLP.
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Figure 7.2: RMSE on the daily electricity demand dataset. (a) Forecasting models com-
bined with each improvement technique individually. (b) Forecasting models cumulatively
combined with the improvement techniques.

diction models. Among them, wavelet transforms generally give more bene�t than adaptive

models and Student-t noise (see Figure 7.3(a)). In terms of noise models, the improve-

ment levels of Student-t noise models on the MLP, RBF, and LR were higher than on LR-

GARCH: the di¤erence of the IRRMSE of Student-t MLP (RBF, LR) and Gaussian MLP

(RBF, LR) is 5.75% (4.42%, 3.98%) while that of Student-t LR-GARCH and Gaussian

LR-GARCH is 0.38% only. This might due to the e¢ ciency of training algorithms: we

used fully Bayesian and MAP for training Student-t LR, RBF and MLP respectively while

a simple maximum likelihood was used for Student-t LR-GARCH model.

Figure 7.3(b) shows the NRMSE of cumulatively using these improvement techniques.

Similar to results on daily electricity demand, the improvement of combining multiple

improvement techniques was slightly better than each improvement technique individually.

7.2 Summary

This chapter compared the e¤ectiveness of improvement techniques when they are sep-

arately combined as well as when they are cumulatively combined with the standard

forecasting models. Among the three techniques, wavelet transform, adaptive models,

and Student-t models, the �rst achieves the biggest improvement. In the electricity de-

mand prediction, the adaptive MLP model with multicomponent-forecast is the best with

IRRMSE of 59.12%. The adaptive Student-t LR-GARCH models with multicomponent

forecasting gets the best results in gas price forecasting. Their RMSE improves 12.11%
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Figure 7.3: NRMSE on the gas forward price dataset. (a) Forecasting models combined
with each improvement technique individually. (b) Forecasting models cumulatively com-
bined with the improvement techniques.
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compared to the RMSE of the benchmark model.
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8 Conclusions and future work

8.1 Conclusions

This thesis focuses on developing three techniques to improve the performance of standard

forecasting models, application to energy demand and prices prediction. These improve-

ments are based on three aspects: (1) pre-processing data with wavelet transform, (2)

re-estimating parameters with �lters, and (3) broadening the range of noise models with

the Student-t distribution. We also presented data analysis procedures for selecting input

variables and measures for evaluating prediction models. An overview of our �ndings and

contributions is described below.

In Chapter 3, a general two-step procedure for prediction has been described: variable

selection and standard prediction models. We have investigated a range of machine learn-

ing and time series prediction models which are popular in the literature: MLP, RBF, LR,

and LR-GARCH. We also studied some �nancial stochastic models proposed in (Benth

and Koekebakker, 2008). The data was divided into two sets: a training set and a test

set. The model development was based on the assumption that the evolution rule driving

147



Chapter 8 CONCLUSIONS AND FUTURE WORK

the data does not change; we trained the models on the training set and then used the

trained models to forecast on the test set.

Chapter 3 also studied how to select input variables for prediction models. Besides

historical data of the target variable (e.g. electricity demand or gas forward price), a

number of exogenous variables (e.g. temperature, wind speed, day pattern, electricity

supply and electricity price etc.), are also considered as potential input variables. Some

pre-processing procedures (presented in Section 3.4) have been used to select the relevant

input variables from these potential inputs for each forecasting model. This step is very

important because it removes irrelevant inputs. These procedures not only reduce the

computation time for running the forecasting models by reducing the dimension of input

vectors but also improve the performance of the models by selecting only relevant inputs

for training the models.

Chapter 3 has presented preliminary analysis and results of some standard forecast-

ing models. Then the later chapters of this thesis will present di¤erent approaches to

improve the performance achieved in this chapter. First, in Chapter 4, the wavelet trans-

form was used as a pre-processing procedure. We have shown why the redundant Haar

wavelet transform was chosen for prediction applications. Although combining the WT

with a time series or a neural network model is not new, previous papers only used either

multicomponent-forecast (a WT decomposes the target value into wavelet components,

and then each component is forecast with a separate model) or direct-forecast (the com-

ponents of the WT are used as input variables to a single forecast model to directly

predict the target). In this thesis, we have applied both types of forecast structure and

compared their prediction accuracy, which provides an answer to the question of which

is better for energy datasets. The experimental results on the UK energy data showed

that multicomponent-forecasts provided better results than models without RHWT and

direct-forecasts.

Second, in Chapter 5, model parameters are either estimated just once or continuously

updated in the testing period. We evaluated the performance of the standard forecast

methods (i.e. MLP/RBF/LR/LR-GARCH) with two variations: �xed models and adap-

tive models. In the �xed models, parameters are �xed after training on a training set.

The adaptive forecast model is a hybrid of �lters (extended Kalman �lter or particle �lter)

and the standard forecast methods, where parameters are estimated on a training set and
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then adapted continuously on the test set using these �lters. In the adaptive models,

we attempt to use observations of the time series as much as possible. Every time a new

value of price/demand is observed, it is used for inferring parameters of prediction models.

Among these adaptive models, the adaptive LR-GARCH model is proposed for the �rst

time in the thesis. Moreover, we use not only the extended Kalman �lter for adaptive

models as earlier researches but also the particle �lter. The bene�ts of using the particle

�lter are that it makes no a priori assumption of Gaussian noise and also that it is not

necessary to linearise the prediction model. This means that the applicability of the PF

is broader than the EKF; the PF can be applied to both Gaussian and Student-t noise

models whereas the EKF is limited to Gaussian noise models only. The use of �lters for

adaptive models has been proved to improve the performance of prediction techniques.

Adaptive models with EKF and adaptive models with PF have similar performance. In

this chapter, we also presented how to combine the �lters with �nancial models taken from

(Benth and Koekebakker, 2008). Because these �nancial models are speci�c to electric-

ity forward price only, we tested them on the electricity forward price in the UK market.

However, the results showed that both �xed and adaptive �nancial models did not perform

well. Future work for improving predicting performance of these models will be presented

in the next section.

Third, in Chapter 6, we turn our attention to noise distributions of the dependent

variables in the forecasting models, using either Gaussian distributions or Student-t dis-

tributions. Use of the Student-t distribution is motivated by the fact that residuals of gas

price forecasts follow a fat-tailed distribution. The thesis presents a novel methodology

to infer the parameters of Student-t noise models. This methodology is an extension of

earlier work (Tipping and Lawrence, 2005), in which models are assumed to be linear in

parameters (e.g. the RBF with �xed centres, the LR). Our proposed approach is based

on a variational approximation, an evidence procedure, and an EM algorithm. The main

advantage of our methodology is that it is not limited to models whose output is linearly

dependent on model parameters. Therefore, our proposed training techniques broaden the

range of models that can be used with a Student-t noise model. This methodology has

been used to train Student-t MLP models and compared with Tipping and Lawrence�s

methodology for Student-t RBF/LR models and maximum likelihood for Student-t LR-

GARCH models. The experimental results showed that Student-t models provided better
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results than Gaussian models on both a synthetic dataset (where the real noise is Student-

t) and the gas forward prices in UK energy market (where noise is fat-tailed, but not

exactly Student-t).

By combining these three techniques with standard prediction models, we obtain 60

di¤erent prediction frameworks. They were applied to two large datasets of real data from

the UK energy markets: daily electricity demand (i.e. stationary data) and forward gas

price (non-stationary). In the electricity demand forecasting task, the MLP and RBF

were generally better than the LR and LR-GARCH, whereas the LR and LR-GARCH

were better than the MLP and RBF at gas price prediction. The results on these datasets

showed that these improvement techniques have useful e¤ects. The forecast accuracy was

signi�cantly improved by using the WT and adaptive models. Student-t noise models

outperformed Gaussian noise models in case of forecasting gas forward price, which is

known to be a fat-tailed noise time series. The Student-t LR/RBF/MLP models are much

better than the Gaussian LR/RBF/MLP models while Student-t LR-GARCH models only

perform very slightly better than Gaussian LR-GARCH models. The reason is that we

trained Student-t LR/RBF/MLP by variational inference which is a Bayesian treatment

while we simply trained Student-t LR-GARCH by maximum likelihood.

We have evaluated performance when improvements were separately used in forecasting

as well as when they were combined together. Of the three improvements, WT pre-

processing has the greatest e¤ect. When cumulatively using these improvement techniques,

the prediction accuracy was better than each single technique, but not signi�cantly. The

best models on the electricity demand are the adaptive MLP with the multicomponent-

forecast; its RMSE was 16092 which improved 59.12% comparing to the benchmark. In gas

price forecast, the adaptive Student-t LR-GARCH with the multicomponent-forecast is the

best with average RMSE of 0.97440, which improve 12.11% comparing to the benchmark.

8.2 Future work

There are several related research topics which could be pursued in the future to improve

and extend the methods described in this work.
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ARMA and ARMAX models

As discussed in Section 5.4 on page 105, the ARMA and ARMAX are good alternatives

of the bias-adaptive regression models. We carried out initial tests on the ARMA model.

The theory of the model and initial results of this method on electricity demand dataset

are presented in Appendix B on page 169. As shown in the appendix, the ARMA model

provides good performance on the electricity demand dataset. We could improve the

performance of the ARMA and ARMAX models by combining them with some techniques

described in this thesis, such as using the wavelet transform for pre-processing. Taylor

(2003) and Taylor et al. (2010) proposed double and triple seasonal ARMA models which

model the intraday, intraweek and intrayear seasonalities of half-hourly electricity demand.

We would like to apply these methods to capture intraweek and intrayear cycles of our

daily electricity demand. The application of the ARMA and ARMAX model to forecasting

gas forward prices will also be our future work.

Improving performance of the prediction using WTs

In chapter 4, we presented the use of WTs as a pre-processing procedure. It is observed

that the predictions of each individual component in the multicomponent-forecast are

very good (e.g. IRRMSE of the components A2, D2, and D1 in the LR-GARCH+mf were

50.60%, 52.60%, and 23.51%, respectively). However, the �nal results (i.e. the prices)

of these models are not much better than the error of the benchmark (IRRMSE of 9.41%

only). We can further study how to improve the �nal results. For example, instead of

simply summing up all the forecast components as our current method, we can use a more

complicated linear or non-linear model to derive predictions results from these forecast

components.

There is a third method of using WT transform for forecasting: the WT components

of the target variable are used as multiple outputs in an MLP, RBF, or LR model. This

method might be an approach to overcome the issue that there exist some correlations be-

tween the residuals for the di¤erent components from the multicomponent-forecast method

(see Table 4.10 on page 92 and Figure 4.11 on page 92).

In addition, because An is the approximation component which shows the trend of the

time series, we can use forecasts of An for multi-step ahead prediction.
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Using temperature forecast for forecasting electricity demand

Electricity demand is known to be strongly dependent on temperature. However, our

experiments did not use temperature forecasts (because this data was not available during

this study) but used historical real temperatures instead, i.e. at time t in order to forecast

demand bdt+1, we used the historical real temperature � t. In the future, the electricity
demand forecast can be improved by using a forecast of temperature at t + 1 made at

t, which should be more correlated to the demand. Moreover, currently we used average

temperatures over regions in Great Britain to forecast total electricity demand. This

may not be a good way to average temperature because the distribution of electricity

demand over Britain highly depends on population. Therefore, instead of using average

temperature over regions, it might be better if we use a weighted average temperature, in

which the weights are the relative population of regions as in previous work (Taylor and

Buizza, 2003).

Analysing unusual events to improve prediction performance

The preliminary analyses of the real data of electricity/gas prices in the UK showed that

there are unusual events which deeply a¤ect the evolution of prices on the day of events

and the following days. For example, an extremely cold period in winter or a power

station shut-down can cause a big spike in prices on the a¤ected days and for some time

afterwards. Because existing forecasting methods do not take these events into account,

they might perform poorly in forecasting electricity/gas prices on the event days. We

would like to analyse the impact of events on prices, study how to model those events,

and �nd out how to use them as inputs of forecasting models.

Improving �nancial stochastic models by global optimisation algorithms

Another thing that may need to be studied further is the choice of the optimisation algo-

rithm. Currently we use a local optimisation algorithm (i.e. scaled conjugate gradient) to

estimate parameters in training prediction models because of its fast convergence speed

and the fact that the code for this algorithm is available in the Netlab toolbox. How-

ever, the test results on the �nancial stochastic models are not good. As explained in

Section 5.7.3 (page 112), this might be because the local optimisation algorithm is not

strong enough in this situation. The parameters found by using scaled conjugate gradi-
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ent algorithm are not optimal globally, but just optimal locally. Therefore, the results

on these models can be improved by using more powerful global optimisation algorithms,

for example CA-ILS (Nguyen and Yao, 2008). These algorithms might help us to �nd a

better set of optimal parameters of �nancial models. The main disadvantage of global

optimisation algorithms is their slow convergence speed.

Predicting the variance

We have focused on predicting the mean of price/demand only as a single value for each

data point. In the future, we would like to predict the variance for each prediction point.

The variance allow us to know not only mean value of prediction but also the uncertainty

attaching to each prediction. In LR-GARCH models where noise changes over time,

computing the noise variance is straightforward because it is a function of historical noise

and historical noise variance. In the other models where we now assume that their noise

variances are �xed, one way to estimate the variances is to assume that the variances are

not �xed but are functions of inputs, and then optimise the parameters of these functions.

This methodology has been used by (Bishop and Qazaz, 1996) for Gaussian RBF models

with �xed basis functions; they adopted an hierarchical Bayesian treatment to �nd the

parameters of this variance function.

Combining results of prediction models

As mentioned before, by combining standard prediction models and various methodolog-

ical improvements, we have obtained 60 di¤erent prediction frameworks. The thesis has

empirically compared their performance. So if we have to give a single prediction, we can

select the result of the best framework from this set based on their ranking. Alternatively,

we can combine results of multiple frameworks in some way, instead of just using a single

framework in isolation. Our testing on a small dataset in my MSc dissertation (Nguyen,

2007), used as the �rst year report of my PhD, showed that some improved performance

can be obtained by combining multiple frameworks in various ways. We tested on hourly

electricity demand values in Great Britain from 8th January 2004 to 1st January 2007

and predicted six-hour-ahead demand using MLP, RBF, LR and a weighted committee of

these models. The committee had MAPE of 1.60% while that for the MLP, which was

the best single model, was 1.74% only. Moreover, combining frameworks can also help to
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avoid over�tting. Some combining methodologies can be considered such as committees,

bagging (Breiman, 1996), weighted committees, or Bayesian model average.

Representing the weekly and annual seasonality for electricity demand forecasting

The hourly electricity demand shows periodicity of a week and a year. In Section 3.6.1 on

page 61, we have presented the periodic variables (i.e. days of the week and days of the

year) by dummy variables which are the �rst harmonics of the trigonometric: the day of

the week has been represented by swd = sin(2�i=7) and cwd = cos(2�i=7), where i = 1

to 7 correspond to Monday to Sunday respectively. We should not use the higher orders

of the harmonics, for example sin(4�i=7) or sin(6�i=7) because sin(4�i=7) and sin(6�i=7)

have seasonalities of a half or a third of a week, which does not exist in the electricity

demand time series. However, we can consider to extend the dummy variables by using

sin(�i=7) and cos(�i=7) which capture two week seasonality of the time series.

Skewed-t distributions for noise models

As noted in Chapter 6, the Gaussian distribution is not a good noise model for gas forward

price. We have computed the kurtosis of the residuals of Gaussian noise models and plot

histogram of these residuals. This evidence shows that the residual distribution has heavy

tails. In Chapter 6, we discussed and presented solutions for Student-t noise models, which

can capture the fat-tailed properties of the �nancial time series.

In addition, we have computed the skewness1 of these residuals: they were between

0:19 and 0:48. Skewness is a measure of the asymmetry of the data around its mean.

Because the skewness in these experiments is positive, the residuals are spread out more

to the right. Therefore, we should extend the thesis on studying skewed-t distribution for

noise models in future.

Extending the LR-GARCH model

In the thesis, we have used an extended version of the GARCHmodel, i.e. LR-GARCH.We

added a linear regression term to the mean component of the GARCH model. The input

vector for the linear regression component includes not only lags of target time series but

also exogenous variables. Similar to this, it is a good idea to put some exogenous variables

1The skewness of a time series is de�ned as  = E
�
(x� �)3

�
=�3, where � is the mean of x, � is the

standard deviation of x, and E [t] represents the expectation of the quantity t.
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to the GARCH component. In this case, we have to select a proper form of GARCH

function and make some constraints on the parameters of the GARCH components (similar

to Equations (3.12) and (3.13) on page 50) to ensure that the noise variance is always

positive and not too large.

In addition, we can extend the adaptive LR-GARCH model by updating the parame-

ters of the pure GARCH component. Similar to the extension mentioned on the above

paragraph, we have to take into account two constraints of parameters in the GARCH

component (Equations (3.12) and (3.13)) during updating the parameters of the GARCH

component. It is not trivial to develop an algorithm to satisfy such constraints during the

updating process.
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A Financial models

In this appendix, we present details of the equations for mt, vt , @mt=@�, and @vt=@� for
the �nancial stochastic models in Section 3.3.5 on page 53. The stochastic models of log
return rt(T1; T2) are proposed as a normally distributed random variable N (mt; �t) with
mean and variance:

mt(T1; T2) =

Z t+1

t

�
��(s; T1; T2)�

1

2
�2(s; T1; T2)

�
dsM ,

�t(T1; T2) =

Z t+1

t
�2 (s; T1; T2) ds.

Let

M =

Z t+1

t
�(s; T1; T2) ds, N =

Z t+1

t
�2(s; T1; T2) ds,

then

mt = �M � 1
2
N ,

�t = N ,
@mt

@�
= �

@M

@�
+M

@�

@�
� 1
2

@N

@�
,

@�t
@�

=
@N

@�
.

The following sections de�ne equations for M , N , @M=@�, and @N=@� for these �nancial
stochastic models.
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Appendix A FINANCIAL MODELS

A.1 Model E1

� = fa; �g,
M = a, N = a2,

@M

@a
= 1,

@M

@�
= 0,

@N

@a
= 2a,

@N

@�
= 0.

A.2 Model E2

� = fa; b; �g,

M =
a

(T2 � T1)

�
eb � 1

�
(e�b(T1�t) � e�b(T2�t))

b2
,

N =
a2

2(T2 � T1)2
(e2b � 1)

�
e�b(T1�t) � e�b(T2�t)

�2
b3

.

Partial derivatives of M

@M

@a
=

1

(T2 � T1)
A1
A2
,

@M

@b
=

a

(T2 � T1)
A01A2 �A02A1

A22
,

@M

@�
= 0,

A1 =
h
eb � 1

i
(e�b(T1�t) � e�b(T2�t)),

A2 = b2,

A01 = eb(e�b(T1�t) � e�b(T2�t))

+(eb � 1)
h
�(T1 � t)e�b(T1�t) + (T2 � t)e�b(T2�t)

i
,

A02 = 2b.

Partial derivatives of N

@N

@a
=

a

(T2 � T1)2
B1
B2
,

@N

@b
=

a2

2(T2 � T1)2
B01B2 �B02B1

B22
,

@N

@�
= 0,

B1 = (e2b � 1)
h
e�b(T1�t) � e�b(T2�t)

i2
,

B2 = b3,

B01 = 2e2b
h
e�b(T1�t) � e�b(T2�t)

i2
,

+2(e2b � 1)
h
e�b(T1�t) � e�b(T2�t)

i h
�(T1 � t)e�b(T1�t) + (T2 � t)e�b(T2�t)

i
,

B02 = 3b2.
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A.3 Model E3

� = fa; b; d; q; �g,
M = bIK, K = C1 + C2D2 + C3D3,

N = bI2J , J = A1B1 +A2B2 +A3B3 +A4B4 +A5B5,bI =
eb(t�T1) � eb(t�T2)

b(T2 � T1)
,

C1 =
a(eb � 1)

b
,

C2 =
bd� 
q
b2 +
2

, D2 = eb sin
 (t+ 1)� sin
t,

C3 = �bq +
d
b2 +
2

, D3 = eb cos
 (t+ 1)� cos
t,

A1 = a2 +
d2 + q2

2
, B1 =

�
e2b � 1

�
2b

,

A2 =
q2b� d2b+ 2dq

4 (b2 +
2)

, B2 = e2b cos 2
(t+ 1)� cos 2
t,

A3 =
q2
� d2
� 2dqb

4 (b2 +
2)
, B3 = e2b sin 2
(t+ 1)� sin 2
t,

A4 =
�2ad
� 4aqb
4b2 +
2

, B4 = e2b cos
(t+ 1)� cos
t.

Partial derivatives of M

@M

@a
= bI (eb � 1)

b
,

@M

@b
= K

@bI
@b
+ bI @K

@b
,

@M

@d
= bI � b

b2 +
2
D2 �




b2 +
2
D3

�
,

@M

@q
= bI � �


b2 +
2
D2 �

b

b2 +
2
D3

�
,

@M

@�
= 0,

@bI
@b

=
(t� T1) eb(t�T1) � (t� T2) eb(t�T2)

b(T2 � T1)
� eb(t�T1) � eb(t�T2)

b2(T2 � T1)
,

@K

@b
= (C1)

0 + (C2)
0D2 + C2 (D2)

0 + (C3)
0D3 + C3 (D3)

0 ,

@C1
@b

= a
beb � eb + 1

b2
,

@C2
@b

=
�db2 + d
2 + 2qb


(b2 +
2)2
,

@D2
@b

= eb sin
 (t+ 1) ,

@C3
@b

=
�q
2 + qb2 + 2db


(b2 +
2)2
,

@D3
@b

= eb cos
 (t+ 1) .
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Partial derivatives of N

@N

@a
= bI2@J

@a
,

@N

@b
=

@bI2
@b

J + bI2J 0,
@N

@d
= bI2@J

@d
,

@N

@q
= bI2@J

@q
,

@N

@�
= 0,

@J

@a
= 2aB1 �

2d
+ 4qb

4b2 +
2
B4 +

4db� 2q

4b2 +
2
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@bI2
@b

= 2bI @bI
@b
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@bI
@b
=
(t� T1) eb(t�T1) � (t� T2) eb(t�T2)
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@J
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= A1B
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1 +A
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0
2 +A
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0
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0
5 +A

0
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@A1
@b

= 0,

@B1
@b

=
e2b

b
�
�
e2b � 1

�
2b2

,

@A2
@b

=
(q2 � d2)(
2 � b2)� 4dqb


4(b2 +
2)2
,
@B2
@b

= 2e2b cos 2
(t+ 1),

@A3
@b

=
dqb2 � dq
2 � b
q2 + b
d2

2(b2 +
2)2
,
@B3
@b

= 2e2b sin 2
(t+ 1),

@A4
@b

= (�4a)q

2 � 4db
� 4qb2
(4b2 +
2)2

,
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@b

= 2e2b cos
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@A5
@b

= 4a
d
2 + 4qb
� 4db2

(4b2 +
2)2
,
@B5
@b

= 2e2b sin
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@J

@d
= dB1 +

�2db+ 2q

4 (b2 +
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B2 +
�2d
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+
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2
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165



Appendix A FINANCIAL MODELS

A.4 Model E4

� = fa; b; c; �g,

M = a
h
(1� c)bIA1 + ci ,

N = a2J ,

J = (1� c)2
�bI�2A2 + 2c (1� c) bIA1 + c2,

A1 =
(eb � 1)

b
,

A2 =
(e2b � 1)
2b

.

Partial derivatives of M

@M

@a
= (1� c) bIA1 + c,

@M

@b
= a (1� c)

"
A1
@bI
@b
+ bI @A1

@b

#
,

@M

@c
= a

h
�bIA1 + 1i ,

@M

@�
= 0,

@A1
@b

=
beb � eb + 1

b2
,

@bI
@b

=
(t� T1) eb(t�T1) � (t� T2) eb(t�T2)

b(T2 � T1)
� eb(t�T1) � eb(t�T2)

b2(T2 � T1)
.

Partial derivatives of N

@N

@a
= 2aJ ,

@N

@b
= a2f(1� c)2

�
2bI bI 0A2 + �bI�2A02�

+2c (1� c)
hbI 0A1 + bIA01ig,

@N

@c
= a2

�
2 (c� 1)

�bI�2A2 + 2 (1� 2c) bIA1 + 2c� ,
@N

@�
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@A1
@b

=
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b2
,

@A2
@b

=
2be2b � e2b + 1

2b2
,

@bI
@b

=
(t� T1) eb(t�T1) � (t� T2) eb(t�T2)
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.
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A.5 Model E6

� = fa; b; c; d; q; �g,

M =
A1
A2

+ c� d



[cos
(t+ 1)� cos
t]� q



[sin
(t+ 1)� sin
t] ,

N = a2bI2 bJ1 + 2abI bJ2 + J3,
A1 = a(eb � 1)(eb(t�T1) � eb(t�T2)),
A2 = b2(T2 � T1),bJ1 =

(e2b � 1)
2b

,

bJ2 =
c(eb � 1)

b
+
db� q

b2 +
2

h
eb sin
(t+ 1)� sin
t

i
�d
+ bq
b2 +
2

h
eb cos
(t+ 1)� cos
t

i
,

J3 = (c2 +
d2 + q2

2
)

�d
2 � q2
4


[sin 2
(t+ 1)� sin 2
t] + dq

2

[cos 2
(t+ 1)� cos 2
t]

�2cq


[sin
(t+ 1)� sin
t]� 2cd



[cos
(t+ 1)� cos
t] .

Partial derivatives of M

@M

@a
=
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b

bI,
@M

@b
=

A01
A2

� A1A
0
2

A22
,

@M

@c
= 1,

@M

@d
=

�1


[cos
(t+ 1)� cos
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@M

@q
=

�1


[sin
(t+ 1)� sin
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@M

@�
= 0,

A01 = a(eb � 1)
h
(t� T1)eb(t�T1) � (t� T2)eb(t�T2)

i
+aeb(eb(t�T1) � eb(t�T2)),
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Appendix A FINANCIAL MODELS
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B
Initial results on the ARMA
model

This appendix presents an initial experiment on the univariate ARMA model for forecast-
ing electricity demand.

The ARMA model is de�ned by:

yt = Aq(L)yt +Bp(L)"t

= (a1yt�1 + � � �+ aqyt�q) + ("t + b1"t�1 + � � �+ bp"t�p) ,

where "t is assumed to be a Gaussian noise, and L is the lag operator. The �rst term
Aq(L)yt is called auto-regressive component and the second term Bp(L)"t is a moving
average of Gaussian noise. We used these models to predict demand 1-day ahead.

As discussed in Section 2.5.1 on page 36, the electricity demand signi�cantly drops on
special days. Because there is no input selection step for this model, we performed the
same smoothing methodology as in (Taylor, 2008): before �tting the model and predicting,
we smoothed the data by replacing data on special days by the electricity demand on the
same day of the closest previous week, which is not a special day. When evaluating model
performance, we exclude the predictions of the special days.

The model was �tted using the System Identi�cation toolbox from Matlab. Order p
and q of the model were selected by ACF and PACF of the time series (see Figure 3.3 on
page 63). The model for predicting one-day ahead electricity demand had the following
form:

A8(L) = �0:8517L�1 + 0:0004942L�2 + 0:0001586L�3 � 0:0005116L�4

�0:0001L�5 � 0:001127L�6 � L�7 + 0:8526L�8,

C7(L) = 1 + 0:1415L�1 + 0:09212L�2 + 0:02651L�3 + 0:02764L�4

+0:1161L�5 + 0:1818L�6 � 0:8366L�7.
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Appendix B INITIAL RESULTS ON THE ARMA MODEL

Models IR(RMSE) RMSE NRMSE MAPE MAE NMAE

Benchmark 0.00% 39365 0.36550 2.96% 29011 0.32877

ARMA 51.78% 18983 0.17897 1.47% 13938 0.15794

LRGARCH 45.72% 21369 0.19841 1.72% 16538 0.18742

LR 44.49% 21850 0.20252 1.76% 16915 0.19112

MLP 53.12% 18455 0.17135 1.43% 13940 0.15798

RBF 48.72% 20187 0.18743 1.63% 15589 0.17666

Table B.1: Errors and RMSE improvement ratio of the ARMA model and the other
standard forecasting models on the electricity demand dataset.

Table B.1 shows the results of the ARMA model comparing to other standard fore-
casting models. It indicates that the ARMA model is a promising model. In the future
we would like to combine this model with the improvement techniques and apply them
to the problems considered in this thesis. Related discussions about this future work is
presented in Section 8.2 on page 151.
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C

ACF of the squared
standardised residuals of the
LR and LR-GARCH models

This appendix includes a �gure of the auto-correlation function of the squared standardised
residuals of the LR and LR-GARCH models on the gas price dataset. The �gure shows an
evidence for the motivation of using GARCH component, which was discussed in Section
3.3.4 on page 51.
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Appendix CACF OF THE SQUARED STANDARDISED RESIDUALS OF THE LR AND
LR-GARCH MODELS

(a) (b)

Figure C.1: ACF of the squared standardised residuals of the LR and LR-GARCH models
for the gas price dataset. (a) LR. (b) LR-GARCH
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D
Results on pre-processing
procedures

This appendix presents experimental results of the input selection step for models com-
bined with RHWT in Chapter 4.

D.1 Correlation matrix

We computed the correlation matrix � of electricity demand and its WT components with
exogenous variables. Figure D.1 shows the absolute value j�j of the correlation matrix.
The indexed attributes in the correlation matrix are listed as follows:

1 Electricity demand at time step t (This is target value in direct-forecast and the forecast models without
WT).

2 A at time step t (This is target value in multicomponent-forecast: component A).
3 D2 at time step t (This is target value in multicomponent-forecast: component D2).
4 D1 at time step t (This is target value in multicomponent-forecast: component D1).
5 Electricity demand at time step t� 1 .
6 A at time step t� 1.
7 D2 at time step t� 1.
8 D1 at time step t� 1.
9 Electricity demand at time step t� 2 .
10 A at time step t� 2.
11 D2 at time step t� 2.
12 D1 at time step t� 2.
13 Electricity supply at the time step t� 1:
14 Electricity supply at the time step t� 2:
15 Electricity supply at the time step t� 3:
16 Transformed temperature at the time step t� 1:
17 Transformed temperature at the time step t� 2:
18 Transformed temperature at the time step t� 3:
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Appendix D RESULTS ON PRE-PROCESSING PROCEDURES

5 10 15 20 25 30 35 40 45 50

1

2

3
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure D.1: Absolute value of correlation matrix of electricity demand and its WT com-
ponents with exogenous variables. Both horizontal and vertical axes represent targets (i.e.
the �rst four variables) and potential input variables (the remaining variables). Because
we concern the correlation coe¢ cients between each target and each potential input only
(but not between a input and another input), the vertical axe includes the four target
variables only. Removing other parts of the correlation matrix make the �gure clearer.

19 Average temperature at the time step t� 1:
20 Average temperature at the time step t� 2:
21 Average temperature at the time step t� 3:
22 Gas demand t� 1:
23 swd at time step t:
24 cwd at time step t:
25 syd at time step t:
26 cyd at time step t:
27 Price of weekday ahead base load electricity product at time step t� 1:
28 Price of weekday ahead peak load electricity product at time step t� 1:
29 Price of weekend ahead base load electricity product at time step t� 1:
30 Price of one-month-ahead forward product, base load at time step t� 1:
31 Price of one-month-ahead forward product, base load at time step t� 2:
32 Price of one-month-ahead forward product, peak load at time step t� 1:
33 Price of one-month-ahead forward product, peak load at time step t� 2:
34 Price of one-winter-ahead forward product, base load at time step t� 1:
35 Price of one-winter-ahead forward product, base load at time step t� 2:
36 Price of one-summer-ahead forward product, base load at time step t� 1:
37 Price of one-summer-ahead forward product, base load at time step t� 2:
38 Price of one-winter-ahead forward product, peak load at time step t� 1:
39 Price of one-winter-ahead forward product, peak load at time step t� 2:
40 Price of one-summer-ahead forward product, peak load at time step t� 1:
41 Price of one-summer-ahead forward product, peak load at time step t� 2:
42 Gas SMP buy at time step t� 1:
43 Gas SMP buy at time step t� 2:
44 Gas SMP sell at time step t� 1:
45 Gas SMP sell at time step t� 2:
46 Weather: wind speed at time step t� 1:
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Appendix D RESULTS ON PRE-PROCESSING PROCEDURES

47 Weather: sunset time at time step t� 1:
48 Gas SAP at time step t� 1:
49 Gas SAP at time step t� 2:
50 Price of day-ahead gas forward product at time step t� 1:
51 Price of day-ahead gas forward product at time step t� 2:

D.2 ACF and PACF of the electricity demand and WT compo-
nents

We computed the ACF and PACF of the electricity demand and its WT components (see
Figure D.2). They were used to select input variables for the linear models for forecasting
the electricity demand.
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Appendix D RESULTS ON PRE-PROCESSING PROCEDURES
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Figure D.2: ACF and PACF of daily electricity demand and WT components. (a1) and
(a2) are the PACF and ACF of the electricity demand, respectively. (b1) and (b2) are
the PACF and ACF of component A2, respectively. (c1) and (c2) are the PACF and ACF
of component D2, respectively. (d1) and (d2) are the PACF and ACF of component D1,
respectively.
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E
Results on di¤erent scenarios
of the adaptive models

This appendix presents results on the di¤erent scenarios of the adaptive models which
were mentioned in Sections 5.4 (pages 103) and 5.5 (page 106).

Table E.1 shows results on di¤erent scenarios of the adaptive models on the electricity
demand dataset. The second column presents RMSE on the case where only bias of the
models were updated. The third column presents the results on the case where we tried
to update more parameters of the models: in the LR model, we tested on updating all
parameters; in MLP and RBF models, we tested on updating all second layer parameters;
and in the LR-GARCH model, we updated both e� and b�. The experimental results showed
that results on updating the bias is slightly better than updating more parameters. Similar
results on the gas forward price dataset are shown in Table E.2.
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Appendix E RESULTS ON DIFFERENT SCENARIOS OF THE ADAPTIVE MODELS

RMSE Updating
the bias only

Updating
more parameters

LRGARCH+EKF 21312 21667

LRGARCH+PF 21232 21571

LR+EKF 21337 21485

LR+PF 21343 21493

MLP+EKF 17266 17268

MLP+PF 17493 17493

RBF+EKF 19792 19811

RBF+PF 19810 19830

Table E.1: RMSE of the di¤erent scenarios of the adaptive models on the electricity
demand forecasting.

RMSE Updating
the bias only

Updating
more parameters

LR+EKF 1.06916 1.07094

LR+PF 1.06917 1.07138

LRGARCH+EKF 1.04144 1.04191

LRGARCH+PF 1.04145 1.04231

MLP+EKF 1.06588 1.06613

MLP+PF 1.06586 1.06615

RBF+EKF 1.06347 1.06359

RBF+PF 1.06327 1.06368

Table E.2: Average RMSE of di¤erent scenarios of the adaptive models on the gas forward
price forecasting.
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F
Training the Student-t
LR-GARCH

This appendix presents a maximum-likelihood methodology for training the Student-t
LR-GARCH model. It is used in Section 6.5.2, page 136. The structure of a LR-GARCH
model is presented in Section 3.3.4, page 50. We assume that the data is corrupted by a
Student-t noise distribution ":

p("j�; �) = �(�=2 + 1=2)

�(�=2)

�
1

��
:
1

�2

�1=2 �
1 +

1

�2
"2

�

���=2�1=2
,

where � is the number of degrees-of-freedom and � is the scale parameter of the distrib-
ution. Note that this equation is another expression of Equation (6.1), page 120. We use
this form of Student-t in order to make it convenient to compute the likelihood. In the
LR-GARCH model, �2 is denoted by nt and it changes over time.

Given training data D = f(x1; y1); (x2; y2); :::; (xT ; yT )g, the negative log likelihood is
given by:

L = � log(p(D=�;�;; �))

= �T log
(
� (� + 1)

�(�=2)

�
1

� (� � 2)

�1=2)
+
1

2

TP
t=1
log(nt) +

1

2
(� + 1)

TP
t=1
log

�
1 +

"2t
(� � 2)nt

�
.

We used scaled conjugate gradient to optimise L with respect to � = f�, �, , �g.
This local optimal algorithm requires partial derivatives of L. Because it is di¢ cult to
analytically compute these partial derivatives, we used the following �nite di¤erence ap-
proximation:

@L
@�

� L(� +��)� L(� ���)
2��

.

The code for this is derived from (Press et al., 1992). One of the disadvantages of this
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Appendix F TRAINING THE STUDENT-T LR-GARCH

approach is that it is computationally expensive.
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