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Thesis Summary

Wireless sensor networks have been identified as one of the key technologies
for the 21 century. They consist of tiny devices with limited processing and power
capabilities, called motes that can be deployed in large numbers over a physical
environment providing the end user with a number of useful sensing capabilities.
Even though, they are flexible and easy to deploy, there are a number of
considerations when it comes to their fault tolerance, conserving energy and re-
programmability that need to be addressed before we draw any substantial
conclusions about the effectiveness of this technology.

In order to overcome their limitations, we propose a middleware solution. The
proposed scheme is composed based on two main methods. The first method involves
the creation of a flexible communication protocol based on technologies such as
Mobile Code/Agents and Linda-like tuple spaces. In this way, every node of the
wireless sensor network will produce and process data based on what is the best for it
but also for the group that it belongs too.

The second method incorporates the above protocol in a middleware that will
aim to bridge the gap between the application layer and low level constructs such as
the physical layer of the wireless sensor network. A fault tolerant platform for
deploying and monitoring applications in real time offers a number of possibilities for
the end user giving him in parallel the freedom to experiment with various
parameters, in an effort the deployed applications to run in an energy efficient manner
inside the network.

The proposed scheme is evaluated through a number of trials aiming to test its
merits under real time conditions and to identify its effectiveness against other similar
approaches. Finally, parameters which determine the characteristics of the proposed
scheme are also examined.

Keywords: Wireless Sensor Networks, Middleware, Intelligence, Mobile Code,
Tuple Spaces
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CHAPTER 1

introduction

1.1 Motivation

Wireless sensor networks are one of the key promising technologies for the
21% century (Alkyildiz et.al 2002). They consist of tiny devices, with limited
computation abilities, that can co-operate their actions over a wireless link and
provide a number of sensing modules. The power of this technology lies in the fact
that those devices, motes, can be deployed in a large scale over an environment
without the constant attention of an end user. Usage scenarios for these devices range
from geophysical monitoring to real time tracking, to military applications and in the
near future they may even incorporated to our everyday lives with health monitoring

applications leading currently the way.

The most straightforward application that someone can think of applying this
technology is in the area of environmental monitoring. With a low cost distributed
network and a few hundreds of sensors, an area even in the hardest physical location
could be monitored providing to the end user useful information about the progress of
a certain harvest. ".../magine smart farmlands where literally every...vine plant will
have its own sensor...making sure that it gets exactly the right nutrients, exactly the
right watering. Imagine the impact it could have on difficult areas of the world for

agricultural purposes." Intel Chief Technology Officer Pat Gelsinger said when he
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was asked about the future plans of their project, wireless vineyard, Figure 1-1 (Intel

Magazine 2006).

Aston University

Content has been removed for copyright reasons

Figure 1-1: Part of the vineyard with sensors placed by Intel researchers across the
monitoring area www.intel.com/research/vert_agri.htm

Currently, wireless sensor networks are beginning to be deployed at an
accelerated rate with new promising projects, both academic and industrial, appearing
in a monthly base. Thus, it is not unreasonable to expect that in 10-15 years the world
will be covered with wireless sensor networks with access to them via mediums such
as the Internet. This new technology is exciting with unlimited potential for numerous
application areas as we mentioned above. In order for the wireless sensor dream to
become a reality, there are a number of limitations and hurdles that need to be

addressed and resolved.

Most of the sensor devices such as the Berkeley mica2 motes, Figure 1-2, are
battery supplied, instantly raising the issue of energy conservation in a wireless sensor
network. The life expectancy of the network is tightly bound with the life expectancy
of its nodes which in terms is regulated by the energy levels that these batteries are

providing. Thus, a mechanism that will regulate the activity pattern of each node
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inside the wireless sensor network is important, as is equally important the generation

of a scheme that will try to conserve as much energy as possible.

Figure 1-2: A mica2 mote attached on a MIB510 programming board, two AA
batteries are its only power source once it’s been deployed

One of the main advantages of the wireless sensor networks, as we already
mentioned, is the easiness in deployment of a vast number of wireless tiny sensor
nodes. Without though the proper mechanisms for monitoring and controlling a
network of such a scale, problems such as package loss and buffer overflows can
easily lead to catastrophic scenarios where the whole network will stall its operation.
A reliable communication protocol and a strong hierarchy are a necessity, in order
that complicated interconnections between the wireless nodes and the unreliable radio
do not lead to network failures and also the wireless sensor network applications

should have a clear scope inside their activity range.

Last, but not least, the tiny sensor devices usually are pre-programmed with a
specific application prior to any deployment. For example, mica2 sensors need to be
attached to an interface programming board such as the MIB510, and then connected

to the user’s terminal in order for a certain module or an application to be uploaded.
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Thus, in most cases post development re-programming is not feasible, as it would
imply that a programmer must access the environment, collect all the sensor nodes,
re-program them and re-deploy them while in parallel making sure that such
interference has not altered any of the experimental parameters of the environment. A
mechanism that would provide the user with the freedom, to alter individual
parameters for each sensor such as bandwidth and wake up calls and even re-install

part of the application remotely incase of an unexpected error, is of great importance.

1.2 Aims of the thesis

1. To investigate how we can increase the reliability, fault tolerance and
flexibility of a wireless sensor network by focusing mainly on the application
layer of these networks.

(a) Investigate the wireless sensor network theory and identify key
limitations of this technology

(b) Identify architectures and approaches in wireless sensor networks by
categorizing them in terms of functionality and organization

(c) Focus on the application layer and investigate the middleware
approach as a viable solution for overcoming the limitations that the

wireless sensor networks inhabit

2. To develop a method that will be able to moderate effectively the
interconnections between the wireless nodes and that will provide recovery
mechanisms incase of a failure.

(a) Devise a dynamic communication protocol with the means of:

I Mobile code technology and some axioms of agent technology
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II. Linda like tuple spaces

111 Behavioral rules based on a model of bacterial strains

3. To develop an energy efficient method that will be able to provide remote
mechanisms for controlling and monitoring the wireless sensor network during
the lifetime of an application.

For the above methods, it is also required:

(a) To develop a prototype framework for deploying applications in a wireless
sensor network

(b) Incorporate the communication protocol in the system (s)

(¢) To develop a number of prototype applications for experiments and
testing in order that the end system can be evaluated.

(d) To develop a comparison model for evaluating our approach against a

number of other approaches that exist in the same category.

More analytically, the first aim of the thesis requires a critical investigation in
the wireless sensor network literature in order to identify key methodologies and
theories behind this technology. What also needs to be determined is the main
organization and functionality of those networks. The organization will provide us
with a number of controlling and monitoring methods that will enable us to
understand better the nature and applicability of the network. Regarding the
functionality review, this will reveal us a number of approaches and architectures
aiming to provide attributes such as fault detection and managing power resources at

an application level.
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As far as the second aim is concerned, it should be determined whether certain

interconnections between the wireless nodes can affect the network performance.
Should this prove to hold, a communication protocol should be developed
incorporating all those parameters and aiming to normalize the performance by

providing fault detection and recovery mechanisms.

The last aim deals with the creation of a powerful framework that will try to
address and resolve problems in the wireless sensor networks such as the ones
mentioned above. It is quite obvious that it should provide an energy efficient way for
deploying applications in a wireless sensor network and a flexible mechanism for
collecting readings from the nodes. Also, it should be able to incorporate in its
infrastructure the above communication protocol and be able to react in unexpected
scenarios in an efficient manner. For evaluating its applicability and correct
functionality a number of trials should be generated identifying possible development
and application errors. A comparison model for evaluating our method against others
in the same domain is necessary in order to identify the strengths and the weaknesses
of our approach. Ideally, real time trials in a dynamic environment should be carried
out through complicated applications, helping us understand better both the nature of

the deployed network as well as the effectiveness of our proposed method.
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1.3 Research methodology

1.3.1 Literature review

e Wireless sensor networks

We investigate the wireless sensor network theory and we categorize those
networks in terms of functionality and organization. A number of system architectures
such as MANNA (Ruiz et.al 2003), WinMS (Lee et.al 2006) and MOTE-VIEW
(Touron 2005) are critically reviewed. Finally, we focus on the middleware role in the
wireless sensor networks by identifying how it can establish a framework for bridging
the gap between applications and low levels constructs such as the physical layer of
the sensor nodes. A number of design parameters and considerations are elaborated
together with the requirements of a flexible wireless sensor network, in an effort to
identify how this approach can resolve the limitations that those networks inhabit.
Last, but not least, we present a classification and analysis of current middleware

approaches since they are the foundations of our proposed approach.

o The key methodologies of our approach

Rather than re-inventing the wheel, for our proposed approach we use a
number of well established architectures and technologies that we bound together
under the same framework. Thus, we review the mobile code/agent technology and
we define what we name as In-Motes agent inside our wireless sensor network,
reflecting in parallel concepts that we incorporate in our mobile code framework for

the development of the system (s). The communication methodologies for those
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entities are presented as well. The concept of network management based on an
analogy with bacterial strains is analyzed since it has been elaborated in the
communication protocol we developed. Lastly, the TinyOS operating system key
terminologies are explained in order to understand better the medium between our

approach and the hardware we are using.

1.3.2 Prototyping

Two prototype middlewares were developed and implemented namely the In-
Motes and the In-Motes Reloaded (Georgoulas & Blow 2006), for carrying out our
proposed approach using a combination of nesC and Java programming languages.
Their design and coding was based on the key methodologies we mentioned above
and were aiming to overcome in the most reliable way the limitations that the wireless
sensor network proved to inhabit. The In-Motes Reloaded is an updated version of the
In-Motes middleware and it was created based on the lessons learned after a four

month trial of In-Motes in a dynamic real time environment.

1.3.3 System evaluation

A series of experiments and trials were followed, for testing and evaluating the
functionalities of both middlewares. Initially, all the tests were carried out in the
laboratory with simple applications and small scale wireless sensor networks. The
information gathered was then cross checked with the information gathered when the
middlewares were tested under real conditions in dynamic environments by deploying
more complex applications in larger scale networks. For the In-Motes middleware we
developed the In-Motes Bins application that was a mobile code based application for

monitoring light and temperature variations in a wine store for a period of four
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months. In-Motes EYE was deployed from the In-Motes Reloaded middleware and it
was the second complex application that was developed for monitoring the
acceleration of moving objects. Graphical representations of the results were used in
all the scenarios in order to visualize the experimental data and the performance of the

middlewares with respect to certain parameters.

1.4 The novel aspects of the thesis

The novel aspects of this thesis are:

e A method for making wireless sensor nodes highly interactive and application
specific in a given environment by incorporating (Chapter 4):
v Mobile code technology
v' A federated architecture for the software communication
v Linda-like tuple spaces architecture for the hardware communication
v" Behavioral rules based on bacterial strains for added hierarchy
e A method for deploying applications in the wireless sensor network in an
efficient manner in terms of conserving energy, re-programmability and fault
tolerance by developing (Chapters 4/6):
v" The In-Motes middleware using nesC and Java programming tools
v" The In-Motes Reloaded middleware which is an updated version of In-
Motes with added flexibility and a more efficient programming engine
(better resource management, less run time errors)
e A method for monitoring environmental conditions in a dynamic everyday

environment by developing (Chapters 5/6):
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v" The In-Motes Bins application which stands as a multi-hop mobile
code based In-Motes application for measuring variations in light and
temperature

v" The In-Motes EYE application which stands as a multi-hop mobile
code based In-Motes Reloaded application for measuring variations in

the acceleration of moving objects

1.5 The outline of the thesis

The outline of the thesis is organized as follows: Chapter 2 presents the
fundamentals of wireless sensor network, thus providing the necessary background
required for understanding the organization, functionality and limitations of those
networks. The middleware solution is also investigated through a critical presentation
and analysis of some of the most well established approaches. Chapter 3 presents the
key methodologies that were used for the development of our proposal, thus providing
the foundations of our research approach. Technologies, communication schemes and
architectures such as the Mobile code/Mobile Agents and the Linda-like tuple spaces
are explained. Last, but not least, we explain and reason the programming tools we
used for the development of our middleware. Chapter 4 describes the design of the In-
Motes middleware. All the communication and architectural concepts are presented
and explained together with an analysis of the low level design of In-Motes core
programming engine. In Chapter 5 the evaluation of the In-Motes middleware is
taking place through a series of tests aiming to identify the merits of our approach.
Preliminary laboratory tests together with the In-Motes Bins application are explained

by using a series of graphs together with a list of lessons learnt for each experimental
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procedure. The In-Motes Reloaded middleware is presented in Chapter 6 as an
updated version of In-Motes. The main modifications of the new approach are
explained followed by an evaluation trial of the system through the In-Motes EYE
application. Finally, the conclusions and proposals for future research are presented in

Chapter 7.
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CHAPTER 2

Wireless Sensor Networks

2.1 Introduction

Wireless sensor networks have been identified as one of most important
technologies for the 21% century (Culler et.al 2004). As technologies advance and
hardware prices drop, wireless sensor networks will find more prosperous ground to
spread in areas where traditional networks are inadequate. The foundational concept
which applies in a vast number of networks can be identified through the simple
notion: Sensing Capabilities plus CPU Power plus Radio Transmission equals A

powerful framework for deploying thousands of potential applications.

However, this notion is underlined by some complex and detailed
understanding of each separate network components capabilities and limitations as
well as understanding in areas of modern network management and distributed

systems theory.

The primary goal of wireless sensor networks is to make useful measurements
for as long as possible. To do this it is essential to minimize energy use by reducing
the amount of communication between nodes without sacrificing useful data
transmission. Each node is designed in an interconnected web that will grow upon the

deployment in mind. Wireless sensor networks are highly dynamic and susceptible to
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network failures, mainly because of the physically harsh environments that they are

deployed in and connectivity interruptions (Hill et.al 2000).

To make the wireless sensor network dream a reality, an architecture must be
developed that will monitor and control the node communication in order to optimize
and maintain the performance of the network, ensure that the network operates
properly and control/instruct a set of cluster nodes without human intervention

(Boulis et.al 2003).

In order to develop a system architecture with the above characteristics, we
focus explicitly on the functions and the roles of wireless network management
systems. Additionally, we present the middleware concept as a novel solution to the
limitations that wireless sensor networks inhabit. A number of network systems are
presented, critical reviewed and categorized providing the motivation and support for

the design choices of our system that will be presented in the next chapter.

2.2 Network management systems organization and
functionality

Around 1980s computer networks began to grow and be interconnected in a
large scale. This growth produced problems in maintaining and managing those
networks, thus the need of network management was realized. Today, networks are
far more dynamic and interconnected than before, especially in the area of wireless
sensor networks, thus a managing infrastructure is one of the most basic requirement

for monitoring and controlling such networks (Cisco Systems 2000).
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A network management system can be defined as a system with the ability to
monitor and control a network from a central location. Ideally there are four key

functional areas that this system must support (Stallings 2004):

Fault Management: This area provides the facilities that allow the discovery of any
kind of faults that the managed devices of the network will produce, determining in
parallel the possible causes of such errors. Thus, the fault management function
should provide mechanisms for error detection, correction, log reports and diagnostics

preferably without the user interference.

Configuration Management: Responsible for monitoring the entire network
configuration information and also having access to all the managed devices in terms

of reconfigure, operate and shut down if necessary.

Performance Management: Responsible for measuring the network performance
through analysis of statistical data about the system so that it may be maintained at an

acceptable level.

Security Management: This area provides all those facilities that will ensure that
access to network resources can not be obtained without the proper authorization. In
order to do so, it provides mechanisms for limiting the access to network resources

and provides the end user with notifications of security breeches and attempts.

Those four functional areas of network management are far more challenging

and vital for a network that will consist of tiny sensors which can be supplied to a
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specific environment running applications such as habitat monitoring, microclimate
research, medical care and structural monitoring (Culler et.al 2004). For €Very sensor
network application, the network is presented as a distributed system consisting of
many autonomous nodes that cooperate and coordinate their actions based on a
predefined architecture. Every node is assigned with a specific role inside the network
such as data acquisition and processing. Also, nodes can be used as data aggregation
and caching points in order to reduce the communication overhead (Akyildiz et.al

2002).

2.2.1 The system organization of a sensor network system

The organization of sensor network systems is based upon the approach that
they will adapt in order to monitor and control the state of the wireless sensor

network. There are four predominant approaches (Lee et.al 2003):

Passive Monitoring: The system role is to collect data during the lifetime of the
network. The data will identify the state of the network in different time intervals
without any action taking place during the data gathering. An analysis of the data will

take place in later stages.

Fault Detection Monitoring: The system dedicates its resources to identifying faults
and errors during the lifetime of the network. All the information is gathered and
reported back to the operator whose responsibility is to correct those problems in later
stages. No action is taken by the system towards the resolution of those problems in

real time.
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Reactive Monitoring: The system has a double role to accomplish during the lifetime
of the network. Firstly, as we identified in the previous approaches, the collection of
data that will provide information about the states of the network, is the main role.
This time though, the system will be eligible to identify and detect any events and act
upon them in real time mainly by altering the parameters of the fixed asset under its

control.

Proactive Monitoring: The system collects and analyzes all the incoming data
concerned with the state of the network. Then an analysis is taking place similar to the
one of the reactive monitoring with the big difference that certain events, described by
the collected information, are stored. The system is then able to maintain better

available network performance by predicting future events based on past ones.

Wireless sensor systems can be categorized according to their architecture
which can be centralized, hierarchical or distributed (Akyildiz et.al 2002). The
centralized one identifies the role of the base station as the most important one in the
whole architecture. The base station will collect the information from all the nodes
and will monitor and control the entire network. Benefits to this architecture can be
found in areas of processing power and decision making. A base station with
unlimited power resources can perform complex analysis of data and process a variety
of information, reducing the weight of this energy consuming task from the nodes of

the network.

The distributed architecture focuses on the deployment of multiple manager

stations across the network usually in a web based format. Thus, each substation can
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coordinate its actions and co-operate based on knowledge that it can acquire from a
neighboring substations. In this approach, the communication cost is less than the
centralized one and more energy efficient since all the workload will be distributed
evenly across the network. However, due to the scalability and complexity of wireless
sensor networks it is proven quite difficult to manage and quite expensive in terms of

memory cost.

The hybrid between the centralized and distributed approach is that of the
hierarchical one. In this architecture we have the existence of substations in the
network but this time no communication is allowed between them. The design tends
to be cluster based, with the heads of the cluster be responsible for a set of network
nodes in terms of processing and transmitting information. All the cluster heads will

report back to a single base station.

2.2.2 The functionality of sensor network systems

The main functionality of sensor network systems is based on the theory
behind network management systems, thus is focusing on two attributes those of
monitor and control. In this section, we classify some well known sensor systems in
terms of the functionality they provide inside the network. Figure 2-1 is

demonstrating this classification.
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Figure 2-1: The Functionalities of Wireless Sensor Networks in different categories

Two characteristic examples of wireless sensor networks that are based on
traditional management systems are those of MANNA (Ruiz et.al 2003) and BOSS
(Song et.al 2005). MANNA provides a general architecture for managing a wireless
sensor network by using a multidimensional plane for the functional, physical and the
informational architecture of the network. The functional plane is responsible for the
configuration of the application specific entities, the information plane is object
oriented and specifies all the syntax and semantics that will be exchanged between the
entities of the network and lastly the physical plane establishes, according to the
available protocols profiles, the communication interfaces for the management entities

that will be present inside the network.
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Figure 2-2: The BOSS architecture, Song et.al 2005

The BOSS architecture, Figure 2-2, is based on the traditional method of the
standard service discovery protocol, UpnP. With the UpnP protocol the user does not
need to self configure the network and devices in the network automatically will be
discovered. However, due to computational power consumption required by the
devices and memory space allocation limitations, the protocol itself is not suitable for
tiny sensor devices. BOSS architecture is overcoming this problem by acting as a
mediator between UpnP networks and sensor nodes. In order to do that, it combines
four different components: service manager, control manager, service table and a

sensor network management service, under the same framework.

Routing protocols is another alternative way of monitoring and controlling a

wireless network when they get embedded in an application with examples such as

LEACH (Heinzelman et.al 2000) and GAF (Xu et.al 2001).
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LEACH is a routing protocol for users that want remotely to monitor an
environment. The protocol is build upon two foundational assumptions. The first one
acknowledges that the base station is at a fixed point and in a far distance from the
network nodes and the second one assumes that all nodes in the network are
homogeneous and energy constrained. In order to maximize the system lifetime and
coverage, LEACH is using a set of methods such as distributed cluster formation with
randomized selection of cluster heads and local processing. LEACH dynamic
clustering method, splits time in fixed intervals with equal length. Also, it does not
allow clusters and cluster heads to be at a fixed point inside the network. LEACH,
dictates that once other sensors of the network receive a message they will join a

cluster with the stronger signal cluster head.

GAF, which stands for geographic adaptive fidelity, focuses its architecture on
the extension of the lifetime of the network by exploiting node redundancy. This
node redundancy is achieved by switching off unnecessary sensor nodes in the

network without any effect on the level of routing fidelity.

sleeping

receive

discovery msg
from high rank
nodes

after Td

after Ta

Figure 2-3: The GAF nodes state transitions, Xu et.al 2001
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GAF recognizes three transition states for the nodes, Figure 2-3, active,

sleeping and discovery. Initially all nodes in the network are in a discovery state. This
means that all nodes will turn their radio on and exchange discovery messages in
order to identify neighbor nodes in the same grid. When a node is active it will set a
timeout, Ta, that will determine for how long it will stay in that state before it returns
back to the discovery state. While active, the node periodically re-broadcasts its
discovery message at time intervals, Td. The sleeping state is regulated by a time
interval Ts which is dependent upon the application. GAF assumes that sensor nodes

can identify their location in the forming virtual grid with the use of GPS cards.

Systems, such as WinMS (Lee et.al 2006) and Sympathy (Ramanathan et.al
2005) focus more on the importance of fault detection in a wireless sensor network.
WinMS uses a novel management function, called systematic resource transfer, in
order to provide automatic self-configuration and self-stabilization both locally and
globally for the given wireless sensor network. This function allows the network, in
case of a failure, to have a predetermined period of time where nodes will listen to
their environment activities and self-configure. No prior knowledge of the topology of
the network is necessary. WinMS, uses a TDMA-based MAC protocol, called
FlexIMAC (Lee et.al 2006), in order to support resource transfer among nodes in the
network. FlexiMac protocol provides synchronized communication between the
nodes. Thus, it can adaptively adjust the network by providing local and central

recovery mechanisms.

Sympathy is a tool for detecting and debugging failures in wireless sensor

networks, but unlike WinMS it does not provide any automatic network
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reconfiguration incase of a failure. One of the main functionalities of the system is the
collection and analysis of network information metrics such as nodes next hop and
neighbors. By doing so, it is able to identify which of the nodes deliver insufficient
data to the sink node or to the base station and locate the cause by reporting back to
the end user. One of the major advantages of Sympathy is that it takes into account
interactions upon multiple nodes however, by doing so it will require nodes to
exchange neighborhood lists, something that has proven highly costly in terms of

energy levels.

Another very useful functionality of wireless sensor systems is that of the
visualization of the actual network. This ability of an end user to demonstrate
graphical representations of the different states of the network at various time
intervals can be found in systems such as the TinyDB (Maden et.al 2005) and MOTE-

VIEW (Touron 2005).

TinyDB is a distributed query processor for sensor networks. It uses an SQL
like interface for collecting data from nodes in the given environment and also
provides aggregation, filtering and routing of the acquired results back to the end user.
With the use of a declarative language for specific user queries, TinyDB proves to be
flexible in two domains. Firstly, all the queries that are generated are easy to read and
understand and secondly the underlying system will be responsible for the generation
and the modifications of the query without the query itself to need any modifications.
In the core of the system we find a metadata catalog that identifies the commands and

attributes that are available for querying.

34




The MOTE-VIEW system is an interface system between the end user and the

deployed network of wireless sensors. Through this interface the user can make
alterations to node characteristics in terms of radio frequency, sampling frequency and
transmission power. The system architecture is based on four layers; data access
abstraction, node abstraction, conversion abstraction and visualization abstraction
layer. The data abstraction layer acts as the database interface where all the data is
been stored. The node abstraction layer collects and stores all the nodes metadata
which will create relational links with the database. All the raw data that is going to
be collected from the nodes will be translated into understandable engineering units at
the conversion abstraction layer. Finally, the visualization abstraction layer will

provide to the end user displays of the data in forms of spreadsheets and charts.

MOTE-VIEW is a passive monitor system in that it does not provide any
interpretation of the displayed graphical data on behalf of the user. However, in terms
of network and other failures MOTE-VIEW does not provide any self-configuration

scheme.

The resource management is one of the key aspects of every wireless sensor
network. Systems such as the Agent Based Power Management (Tynan et.al 2005)
and SenOS (Kim & Hong 2003) have been created with that concern in mind. The
Agent Based Power Management is a system that builds its architecture upon mobile
agents. These intelligent entities are set responsible for local power management
processing by applying energy saving strategies to the nodes of the network. This
agent-based scheme is suitable for applications where the state of the network is

partial visible at a known time or location. One of the major concerns of this approach
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is that by minimizing the transmission power, the communication range of the nodes

will be reduced accordingly, threatening the network connectivity.

SenOS is managing network power resources by instructing nodes to sleep
when they are not active inside the network. To achieve this, SenOS adapts a dynamic
power management algorithm known as DPM. The DPM algorithm, by observing
events inside the network, can generate a policy for state transitions. Based on that, all
redundant nodes are placed inside a cluster with only one node awake for a period of
time per cluster while the others are in a sleep mode for conserving energy. The
SenOS architecture is based on a finite state machine which consists of three
components. Firstly, we have the kernel which provides a state sequencer and an
event queue. The second component is a transition table and the final component is a

call back library.

Siphon (Wan etal 2005) and DSN RM (Zhang et.al 2001) are two
representative systems that provide traffic management functions in their architecture.
Siphon, is based on a Stargate implementation of virtual sinks in order to prevent
congestion at near base stations inside the network. These virtual sinks act as
intermediates between the actual nodes and the base stations and they are distributed
randomly inside the network. If at any point the rate of generate data increases beyond
a level that exists in a predetermined threshold inside the system then the virtual sinks
will redirect the traffic to other visible nodes. The visibility of the available nodes by
the virtual sinks is one of the disadvantages of this approach, as there is a high

probability that some nodes will be not covered by any virtual sink.
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DSN RM (Distributed sensor network resource management) uses single radio

nodes to evaluate each of their incoming and outgoing data rate and apply delay
schemes to those nodes when necessary in order to reduce the amount of the traffic in
the network. In every DSN there are a number of decision stations whose role is to
act as data managers in a hierarchical format. However, the effectiveness of this
technique is tightly bound on finding reliable data for every decision station inside the
wireless sensor network that from its nature can provide inaccurate data during its

lifetime due to connectivity and radio problems.

Table 2-1 presents a tabular evaluation of the currently available systems in

terms of their organization and functionality.

Wireless Reactivity | Architecture | Function Energy Adaptability | Memory | Scalability

Sensor Efficienc efficiency

Network y

Systems

BOSS Proactive | Centralised Management | Yes Yes Yes Yes
System

MANNA Proactive | Hierarchical | Management | N/A N/A N/A N/A
System

LEACH Proactive | Distributed Routing Yes Yes Yes Yes
Protocol

GAF Proactive | Distributed Routing Yes Yes Yes Yes
Protocol

WinMS Proactive | Hierarchical | Fault Yes Yes Yes Yes
Detection

Sympathy Proactive | Centralised Fault Yes Yes Yes No
Detection

TinyDB Passive Centralised Visualization | Yes No Yes Yes
Tool

MOTE- Passive Centralised Visualization | Yes No Yes Yes

VIEW Tool

SensOS Reactive Hierarchical | Management | Yes No Yes No
resources

ABPM Proactive | Distributed Management | Yes Yes Yes No
resources

DSN RM Proactive | Hierarchical | Traffic Yes Yes No No
Control

Siphon Proactive | Distributed Traffic No Yes Yes No
Control

Table 2-1: Wireless sensor network systems evaluation based on designed criteria
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2.3 The role of middleware in wireless sensor networks

Many researchers have identified, that a middleware inside a wireless sensor
network can establish a framework for bridging the gap between applications and low
levels constructs such as the physical layer of the sensor nodes (Hadim & Mohamed

2006).

A middleware can be visualized as a network managing software mechanism
that will create communication bonds with the network hardware, the operating
system and the actual application. A fully implemented middleware should provide to
the end user a flexible interface through which actions of coordination and support

will take place for multiple applications preferably in real time.

This section identifies some of the most well known middleware approaches
that have been developed in recent years and classifies them according to their
programming paradigm. This classification presents middlewares as virtual machines
based on modular programming, virtual database systems and adaptive message

oriented systems.

The use of a virtual machine inside a middleware is a flexible approach since
it can allow a programmer to partition a large application into smaller modules. The
middleware will inject and distribute those modules inside the wireless sensor
network with the use of a predefined protocol that will aim to reduce the overall
energy and resource consumption.  The main role of the virtual machine is to
interpret those distributed modules. The communication protocol can be designed

based on modular programming. The use of mobile code can facilitate an energy
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efficient framework for the injection and the transmission of the application modules

inside the network.

The Mate (Levis & Culler 2002) middleware is among those that use a virtual
machine in order to send applications inside the wireless sensor network. The
developers having identified the predominant limitations of wireless sensor networks
such as energy consumption and limited bandwidth propose a new programming
paradigm that is based on a tiny centric virtual machine that will allow complex
programs to be very short. In order to achieve that, Mate’s virtual machine acts as an

abstraction layer with content specific routing.

Maté
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PC —’3'(93 M Stack M ate
Clp Context

Figure 2-4: Mate architectural concept, P.Levis and D. Culler (2002)

Figure 2-4 presents Mate architecture and execution model. This high level
architecture will enable the programming code to break up into small capsules of 24

instructions each that can self-replicate inside the network.

This architecture enables Mate to begin execution in response to a specific
event such as a packet transmission or a time out. This is applicable through the three

execution contexts that refer to an equal amount of events: clock timers, message




receptions and message send requests. Each of the three contexts has an operant stack
and a return address one. The operant stack will be used for instructions handling all

the data while the return address stack will handle all the subroutine calls.

Every capsule that is sent inside the network includes a type and a version
number. Based on that information, Mate can achieve easy version updates by adding
a new number to the capsule every time a new version of the program is uploaded.
However, Mate middleware suffers from the overhead that every new message
introduces and also all the messages are transmitted by flooding the network in order
to minimize asynchronous events notifications, raising issues with the energy

consumption of every node inside the network.

Agilla (Fok et.al 2005) is a middleware that provides a mobile code paradigm
for programming and making effective use of a wireless sensor network. Agilla
applications consist of mobile agents that can clone or migrate across the network.
The framework is based on the fact that each agent is acting as an autonomous entity
inside the network allowing the developer to run parallel processes at the same time.
Agilla is based on the Mate architecture in terms of the virtual machine specifications
but unlike Mate, which as we described above divides an application into capsules

flooding the network, Agilla uses mobile agents in order to deploy an application.

Figure 2-5 presents the Agilla model identifying the communication principle

between two neighbor network nodes.
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Figure 2-5: The Agilla architectural concept, C. Fok and G.Roman (2005)

In every network node we can have one or more agents residing and working
independently. Their inter-communication and coordination is established by local
tuple spaces that are accessible by all the agents resident in that node and a neighbor
list. The local tuple space is a shared memory architecture that is addressed by field-
matching. A tuple can be defined as a sequence of data objects that is inserted into the
tuple space of each node by every agent. These data objects will remain in the node
regardless of the agent status. In due time, an agent can retrieve an old tuple by
template matching. In order to do so the sending agent must generate a query for that
tuple, matching the exact same sequence of fields. The neighbor list contains the
addresses of neighboring nodes and is accessible for every agent in the network that

wants to clone or migrate in a different location.

Based on these attributes, Agilla allows network reprogramming thereby
eliminating the power consumption cost of flooding the network. However, the lack
of a hierarchical communication model for the agent society and the absence of
precise real location information of every node in the network can lead to deadlocks

and memory management problems.
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What is known as a database middleware will visualize the whole network as a

virtual database system. The middleware in this case will provide the user with an
data.

interface for sending queries to the sensor nodes of the system to extract the desired

The Cougar middleware adopts the above approach by considering the

extracted sensor data to be a virtual relational database. The developers by using an

SQL-like language assume that the whole network is the database. The contents of

such a database are stored data and the sensor data. The stored data is represented as a

virtual relationship between the sensors that participate in the network and the

physical characteristics. The sensor data which is the outcome of processing functions

is represented as time series that will be adapted towards the query formulation.

TinyDB or Cougar

Distributed in network

Client PC-Bose station

Query input

Regult collection

Catalog

TinyQs

Samipling, communication

v

Figure 2-6: Cougar architecture for query processing, G. Gehrke and S. Madden (2002)

Figure 2-6 shows a block diagram that can explain the Cougar architecture for

querying processing. One block presents the user end with the base station in the

active role of transmitting and receiving queries from the wireless sensor network.

Wireless sensar network
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The second block presents the distributed network query processor that consists of a
number of abstract data types with virtual relationships with the operating system of
the network. In an SQL query format of SELECT-FROM-WHERE-GROUP-
INCLUDES Cougar can allow the user to access this object relational database which

mirrors the actual network.

The third class of middleware is message oriented. Their core architecture is
based on creating a communication model that will facilitate message exchanges
between nodes and the sink nodes of the wireless sensor network. To achieve that
most middlewares will adapt a publish-subscribe mechanism, an asynchronous
communication paradigm which allows a loose coupling between the sender and the

TreCeIvVer saving precious pOwWer resources.

Mires (Souto et.al 2004) middleware provides such an asynchronous
communication model. This model defines three distinct faces for the nodes resident
in the network. Initially the network nodes will advertise their sensed data (topic).
Using a multi-hop routing algorithm Mires will route those advertisement messages to
the sink node. Lastly, a user application interface will select the desired advertised

topics to be monitored.
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Figure 2-7: The Mires architecture, E. Souto and G. Vasconcelos (2004)

Figure 2-7 demonstrates the key characteristics of the Mires architecture. The
bottom block consists of the hardware components of the node which are directly
interfaced and controlled by the operating system. The middleware is placed on top of
the operating system to implement its publish-subscribe communication model. This
model 1s able to advertise the sensor data (topics) provided by the running application
while it maintains a topic list provided by the node application. Mires send only
messages referring to subscribed topics thus reducing like that the numbers of the

transmitted packets and therefore saving energy.

2.4 Towards the design of the In-Motes middleware

In order to design and develop a successful middleware solution for a wireless
sensor network that will be able to satisfy some if not all the functionalities of a
network management system for monitor and control there are certain design criteria,
which we described in the previous sections, and must be considered and brought
forward in our design. In the following paragraphs we are going to present those

design principles for a substantial middleware development.
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A wireless sensor network consists of tiny devices that are battery powered

and provided with a small CPU processor. Usually, and as we have already
mentioned, they can be deployed in hundreds and typically in physical harsh
environments. It is obvious, that after the deployment a physical contact for
replacement or maintenance is highly unlikely. A middleware should be able to
provide remote access to these nodes making sure that they will exhaust all their
resources in terms of battery power and memory in a timely manner. Hence, one of
the basic design principles for our middleware is the ability to manage limited power

and resources.

Our approach in order to satisfy the above design criterion will be based in the
creation of a flexible communication protocol between the nodes of our network and
the base station. Thus, inspired from the GAF protocol that was described in the
previous section, we are aiming to develop a protocol having node redundancy in
mind, thus to regulate in an energy efficient manner which of the nodes of our
wireless sensor network will be active and which ones will be in a sleep mode.
Subject to our trials and the development of our middleware this protocol will be
introduced both hand written in the middleware engine as well as it will be introduced

as part of the running application.

Field trials such as the CodeBlue Project (Welsh et.al 2007) and the Wireless
Sensing Vineyards (Holler 2008) identified that a wireless sensor network topology is
subject to frequent changes due to factors such as device failure, interference,
mobility and moving obstacles. Also, they proved that it is very possible that an

application will grow in time, therefore mechanisms for a dynamic network topology
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should be available from the middleware. A middleware should be able to adapt to
parameter changes caused by unexpected external factors of the environment and also
provide mechanisms for fault tolerance and self configuration of the nodes inside the

wireless sensor network.

Based on the above observations, and inspired from approaches similar to
WinMS and Sympathy our middleware will incorporate some mechanisms for fault
detection and prevention together with a flexible way of reconfiguring the network in
real time. As Sympathy is a fully automated system, we will be aiming to provide
some kind of automatic mechanisms in our middleware for the above design criteria

without though this to be our first priority.

Unlike traditional networks, sensor networks and their applications are real-
time phenomena with dynamic resources. Upon deployment of an application, core
parameters such as energy usage, bandwidth and processing power cannot be
predefined due to the dynamic character of these networks. A middleware should be
designed with mechanisms that should allow the network to run efficiently and as
long as possible. Such mechanisms include resource discovery and location awareness
for the nodes in the system. Low-level programming models must be introduced as

well in order to bridge the gap between the running application and the hardware.

As we mentioned before, mechanisms that are predominant in traditional
networks are not sufficient to maintain the quality of service of a wireless sensor
network because of constraints such as the dynamic topology and the power

limitations. A middleware should be able to provide and maintain the quality of

46




service over a long period of time while in parallel to be able to adapt in changes
based on the application and on the performance metrics of the network like these of

energy consumption and data delivery delay.

Inspired both form the work of the Mate and Agilla middlewares we will
introduce a mechanism that will allow mobile code to be transmitted inside our
network and will be able to allow changes in network parameters such as the
bandwidth of each node as well as application parameters such as switching between
available sensors of each node. Thus, an architecture will be developed adapting
technologies such as Linda-like tuple spaces and agents/mobile code transmission

with the support of a virtual machine engine.

Wireless sensor networks can be widely deployed in areas such as healthcare,
rescue and military, all of these are areas where information has a certain value and is
very sensitive. The environments of those areas tend to be very active and harsh,
increasing the chances for malicious intrusions and attacks such as denial of service.
Traditional approaches and mechanisms used to secure the network cannot be applied
in this kind of network since they are heavy in terms of energy consumption. A
middleware must be able to provide a secure framework for deploying applications
inside the network. During the life-cycle of the network the middleware should
establish protective mechanisms to ensure security requirements such as authenticity,

integrity and confidentiality.

Although the above design criterion is of vast importance especially when it

comes to real time applications as the ones mentioned above our approach as we will
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demonstrate in later chapters lacks in this area, as no security mechanisms were
introduced mainly due to time limitations. Even though, this aspect of network
management is not covered by our middleware we will be presenting a number of

possible ways that this can be covered in the future work section of this thesis.

2.5 Summary

This chapter presents and demonstrates the wireless sensor networks as one of
the predominant technologies for the 21* century. The foundational concept behind
this technology is explained together with the limitations and barriers that are
incorporated and need to be addressed in the process of making a wireless sensor
network applicable for a number of useful applications in modern societies. The
chapter opens by presenting the foundational functions of a network management
system. Functions that are based upon two main attributes those of monitor and
control and are critical for every wireless sensor system. A number of wireless sensor
network systems are critically reviewed providing an analytical explanation of their
architecture and identifying pros and cons thus helping us draw some important
lessons for our proposed system. The chapter continues by presenting the middleware
solution as a key player in overcoming the wireless sensor networks limitations and as
our main methodology behind our proposed approach. A classification and analysis of
the current middleware approaches for the wireless sensor networks is produced. The
chapter concludes by presenting the role and the key design principles our middleware

approach.
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CHAPTER 3

The Key Methodologies of the In-
Motes Middleware

3.1 Introduction

The previous chapter presented the notion of wireless sensor networks and
analyzed different approaches and architectures that are aiming to overcome the
limitations of these networks. In order to understand and evaluate the In-Motes

middleware, the key methodologies behind it must be first identified.

Rather than re-inventing the wheel, In-Motes middleware embeds in one
framework approaches that they have been established in the research community for
many years. The In-Motes platform consists of concepts such as mobile code/agents,
Linda-like tuplespaces, behavioral rules based on bacteria strains and federated
systems, applied over the TinyOS operating system. The next sections will discuss the
properties of the above methodologies that were used in our approach creating the

foundation for presenting and evaluating the In-Motes middleware in later chapters.

3.2 Defining an agent/mobile code in the In-Motes
environment

The limitations of centralized solutions, the need for accurate results in

complex problems and the growth of decentralized approaches in the recent years are
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some of the reasons that agent technology has become a current trend in many areas

of network technology.

Bradshaw (1997), having identified the above evolution, points out the
difficulty of defining an entity as a software agent. For this reason, the author tries to
distinguish the notion “agent” in two broad categories, those of ascription and
description. Defining an agent entity as ascription and labeling it under one global
definition is a rather difficult task as many researchers admit. “Agent 1s what agent

does” (Bradshaw 1997:5). Table 3-1, presents various agents definitions.

System Definition

The MuBot Agent (1994) The term agent is used to represent two orthogonal concepts. The first is the agent ability for
autonomous execution. The second is the agent’s ability to perform domain oriented reasoning.

The Aima Agent (1995) An agent is anything that can be viewed as perceiving it’s environment through sensors and
acting upon that environment through effectors
The Maes Agent (1995) Autonomous agents are computational systems that inhabit some complex dynamic

environment, sense and act autonomously in this environment, and by doing so realize a set of
goals or tasks for which they are designed

The KidSim Agent (1994) | Let us define an agent as a persistent software entity dedicated to a specific purpose.
“Persistent” distinguishes agents from subroutines; agents have their own ides about how to
accomplish tasks, their own agenda.

The Hayes-Roth Agent Intelligent agents continuously perform three functions: perception of dynamic conditions in

(1993) the environment; action to affect conditions in the environment; and reasoning to interpret
perceptions, solve problems, draw inferences and determine actions

The IBM Agent (1995) Intelligent agents are software entities that carry out some set of operations on behalf of a user

or another program with some degree of independence or autonomy, and in so going, employ
some knowledge or representation of the user’s goals or desires

SodaBot Agent (1994) Software agents are programs that engage in dialogues [and] negotiate and co-ordinate transfer
of information.

The Brustoloni Agent Autonomous agents are systems capable of autonomous, purposeful action in the real world

(1995)

Table 3-1: Agent Definitions, Franklin & Graesser (1996)

The foundation for intelligent physical agents (FIPA) is an IEEE Computer
Society standards organization that promotes agent-based technology and the
interoperability of its standards with other technologies. In their specification section
they provide us with what it could be characterized as the latest global definition for a

mobile agent.
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“An agent is a computational process that implements the autonomous,
communicating functionality of an application. Agents communicate using an Agent
Communication Language. An Agent is the fundamental actor of an application which
combines one or more service capabilities, as published in a service description, into
a unified and integrated execution model. An agent must have at least one owner, for
example, based on organizational a}_’ﬁziation or human user ownership, and an agent
must support at least one notion of identity. This notion of identity is the Agent
Identifier (AID) that labels an agent so that it may be distinguished unambiguously

within the Agent Universe.” (FIPA, Agent Management Specification, 2005:5)

The best way to identify the agent entity as being of the description type is to
view Figure 3-1, which provides us with different typologies of agents based on what

those entities can do inside an environment.

Smart

AQents

Collaborative
earning Agents

Collaborative

AgEnts

1

' Autonomous

Figure 3-1: Nwana’s (1996) Typology of agents

Therefore according with Nwana’s (1996) primary attribute dimension we can

categorize agents in the following way:
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Collaborative Agents: Autonomous agents that in order to accomplish a specific task

can cooperate with other agents of the society identifying a common goal.

Interface Agents: Autonomous agents that are able to learn by creating dynamic

relationships with their environment.

Mobile Agents: Autonomous agents which have the ability to migrate executing

“hops™ in a given environment.

Internet Agents: Collaborative agents which are capable of migration inside a

network.

Reactive Agents: Agents which are not proactive but can react for a collection of

specific inputs.

Hybrid Agents: Those are agents that are able to combine attributes from the above

categories.

Our In-Motes approach is based on mobile code that will be injected in the
wireless sensor network with predefine instructions targeting the available nodes.
These user predefined small fragments of code are application specific and act on
behalf of the programmer inside the network at specific time intervals. Although, as
we are going to see in the next chapter, they set up the communication links between
the end user and the network they are not embed with any degree of social behavior

neither incorporate any learning capabilities. They migration process inside the
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wireless sensor network is based on “hops™ from one node to another according with

the communication protocol we developed.

Based on the above and in our best effort to find a suitable definition for what
we will call In-Motes agents in our thesis, we conclude that an In-Motes Agent is a
small computer program that is the fundamental actor of an In-Motes application
which combines one or more instruction capabilities, as published in the instruction
set, into a unified and integrated execution model for every node in the wireless
sensor network. The In-Motes agent will have a specific agent identifier in order to be
distinguished from similar agents that will co-exist locally in a node or globally inside
the network at the same time. The In-Motes agents do not embed any level of learning
or social capabilities, thus in the descriptive domain of a generic agent definition they
pass only as individual mobile processes with pre-defined instructions that act on

behalf of an end-user.

3.3 Agent architectures and communication schemes

Until now we have presented various definitions and classifications in order to
understand what an agent is and how much it differs from any other software
program. In this section we are going to describe how we can build an agent system

that will satisfy the above theoretical views.

According to Wooldridge & Jennings (1995), agent architectures may be

divided into three main categories: Deliberative, Reactive and Hybrid.
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The Deliberative Architecture builds its foundation upon symbolism. More

precisely a deliberative agent is going to be capable of perceiving a symbolic model
of the world and through logical reasoning take some action towards a solution to a
problem. The challenges of generating such architecture are located in translating and
representing a real word via symbolic notation and also providing reasoning to the
actions of the agents based on that notation. Two well known systems that use this
kind of architecture quite successfully are IRMA (Bratman et. al 1988) and HOMER

(Vere & Bickmore 1989).

The Reactive Architecture design aims to overcome the challenges that the
previous architecture had introduced such as the reasoning of agents. Therefore the
agents of this category don’t use any kind of symbolic notation in order to take a
specific action. Their mechanism is based on sensing the current environment that
they are embedded in and act to specific real time calls (inputs). One key challenge of
this architecture is that of what will happen if the environment changes. A system
that is based on this architecture is the Pengi System by Agre & Chapman (1987).

Pengi is a simulation video game where you are able to control a character.

The Hybrid architecture combines the two above architectures in one, aiming
to overcome the challenges that the individual ones have. An example in this category
is that of TouringMachines (Ferguson 1992). In Figure 3-2, the key components of
Ferguson’s (1992) architecture are demonstrated. The TouringMachine architecture
provides reasoning for its agent entities based on a symbolic notation that is stored in
the system under the notion of perception and is updated in every real time call. Every
agent action is taking place in real time as well after the environmental Inputs are

produced by the three layers.
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Figure 3-2: TouringMachine Architecture, Ferguson (1992)

A critical issue in any of the above architectures is communication. Designing
a collection of mobile code that will be present in a network at the same time, inside
our architecture the establishment of good communication bridges between all the
participant software is vital. Obstacles that need to be overcome are those of
deadlocks and confusion of the mobile code that is going to be active or resident in a
sensor. The following table consists of a collection of proposed solutions that will

allow agents to exchange information with ecach other, Table 3-2

Method Description
Direct Communication | Agents communicate with each other directly using protocols such as TCP/IP
Federated Systems Agents are organized in a federated system. Agents can communicate with each
(Generserth & other via the use of facilitators. Overcomes the problems of direct communication
Ketchpel 1994) cost and implementation complexity (Figure 2.3)
Broadcast Agents broadcast the message to all the agents in a given environment. One
Communication approach of doing so is the contract net one
Blackboard A store where an agent is allowed to access and leave a particular message to be
System(Chaib-draa & | retrieved later by the corresponding agent. One approach to this method is the
Moulin 1987) MARS (Gabri et. al) for mobile agents.

Table 3-2: Communication Schemes for Software Agents
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In-Motes, is imitating the Federated Systems architecture for providing a

communication scheme to its mobile code entities. We identified in the beginning of
our research that agent to agent communication will generate problems with any kind
of transmission in our wireless sensor network. This direct communication will
increase the traffic in the form of N?, where N is the number of agents, something that
will scale badly and will eventually lead to transmission failures and packet losses.
Thus we tried to find a more flexible communication scheme that will scale better

mside our network.

Generserth & Ketchpel (1994) have identified that the direct communication
method between agents has many benefits since it does not rely on the capabilities,
existence and biases of any other subsystem or software program. However, this
method is efficient only for small agent groups. For larger and more complex groups
the communication cost and the implementation complexity is high, identifying the
need for a more suitable communication method. Based on those facts the authors
proposed the federated system method as the suitable communication architecture for

complex multi-agent systems. Figure 3-3 demonstrates this approach.

Facilitator

Facilitator |

Facilitator

Figure 3-3: Federated System Architecture Generserth & Ketchpel (1994)
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In the above figure, the federated system consists of three groups, one with

three agents and two with two agents apiece. Agents they are not allowed to
communicate directly with each other. Instead, they communicate only with the group
agent called facilitator, and only facilitators can communicate with each other. Based
on that, the traffic will scale better as it will be generated based on an Nm formula,
where N is the number of facilitator agents and m is a small number of local agents

which communicate with each other.

The facilitator agents will collect and transform all the data gathered by the
agents and route them to the appropriate places. Thus, the agents form a “federation’’
in which their autonomy is passed to their facilitator agents who held responsible for

fulfilling their needs.

3.4 Tuple spaces for mobile agent co-ordination

Mobile agents can produce peculiar problems when it comes to co-
coordinating software components of a system (Gabri et.al 2004). A mobile agent
inside a society will have a rather active life, either this is located in the co-ordination
with other agent entities or with software components of the system. The deployment
and the successful completion of an application may consist of many mobile agents
that need to organize their actions towards a successful implementation of their
primary goals and also agent entities will be distributed usually in remote sites to

collect and access the services that are allocated.

Based on the above, Gabri etal (2004) identify four main models for

coordinating a mobile agent society, Figure 3-4.
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Figure 3-4, Coordination Models for multi-agent systems Gabri et.al (2004)

In direct communication, agents establish a communication by explicitly
identifying (spatial coupling) and synchronizing with the involved partners. The
agents coordinate their actions by choosing a communication protocol which is
usually a peer-to peer one and they are accessing all the available environmental
resources in a client-server scheme (Adler 1995). Systems that have adapted this

coordination model include Sumatra (Acharya et.al 1997) and Agent Tcl (Gray 1996).

However, this approach of coordination requires stable network connections
something that is not, most of the time, feasible. Also, since agents have a dynamic
character, any application based on them will grow, expand and even generate

additional agent entities for the society in time. Thus, identifying and synchronizing at

the beginning all the involved parties is not applicable and highly inflexible at an

application level.
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In order to overcome the limitations that the spatial coupling poses, the
meeling oriented coordination scheme avoids all together the explicit identification of
the involved parties by the agents. This is applicable by instructing the agents
explicitly or implicitly to communicate and synchronize with each other at predefined
meeting points. Constraints such as locality in terms that only local agents can
participate in a given execution environment and assumptions such as the existence of
an Initiating entity for opening a meeting point are applied in order to overcome the
problems of unreliability and delays. A representative system that uses this model of
coordnation is Ara (Peine & Stolpmann 1997). However, extreme synchronization of
the agent entities is required as well as creation of additional entities that will have the
role of the initiator every time a new meeting point occurs. Thus, any application in a
large scale execution model will generate way too many initiators with undetermined
life expectancy that could be easily susceptible to attacks by malicious agents that can

take advantage of this generic time frame of the “meeting agents”’.

The blackboard-based coordination is based on shared data spaces that are
local to every hosting environment. Agents can retrieve or store messages at any time
as long as there is a common message identifier between the agent and the
blackboard. This model fits perfectly the character of agent entities that most of the
times are unpredictable in terms of scheduling a task. An agent can leave a message
on the blackboard without needing to know where the corresponding receivers are and
when they will read it. Also multi-tasks or queries can run simultaneously from the
system simply by placing a job description on the blackboard and setting a marker
that the agents will use as identifier for the job. However, they are no guarantees of

how long a group of agents will take in order to accomplish a task. Also, there is a
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lack of inner agent coordination since each agent will work autonomously in the
environment without exchanging any messages during the search and retrieval of a
resource. Systems that have adapted and applied the above coordination scheme

include the Ambit (Cardelli et.al 1997) and ffMAIN (Domel et.al 1997).

The Linda-like coordination model is based on associative blackboards called
tuple spaces (Carriero & Gelernter 1989). A tuplespace is a virtual shared memory
scheme that can be accessible to all the running processes of a system no matter
where those are located and it consists of a collection of tuples. As in the blackboard
scheme all the processes in the system don’t need to know anything about other
residing processes. A tuple can be defined as an ordered collection of values. For
cxample, the tuple <18, 1980, “Dimitrios”> is a tuple of size 3, with the first two
elements being an integer and the last one is a string. Tuples are accessible in the
system not based on their address location rather than by their value and structure
therefore it doesn’t really matter where they are stored. Thus, the tuplespace can be

either resident in one node or spread over several ones.

According to (Carriero & Gelernter 1989) a Linda system will have three basic
primitives, out(tuple), in(template) and rd(template). The first primitive is responsible
for taking a given tuple and adding it to the tuplespace. The second one returns a tuple
matching the template. A template is a tuple as well but with some elements replaced
by the programmer that can be matched with some of the tuples in the tuplespace.
When a template matching is successful the matched tuple will be removed from the
tuplespace. If no tuples matching the template that are currently in the tuplespace then

the call blocks until a tuple is outputted that does match. The last of the basic

60



primitives is identical to the in primitive with the only difference that it creates a copy

of tuple rather than removing it completely when a template matching is successful.

There are two types of Linda systems, a closed and an open one. Initially all
systems that were using the Linda scheme for coordinating their actions were closed,
meaning the existence of a foundational requirement that was stating that all programs
and processes should have been compiled at the same time along with the topology
information. However, this scheme was quite inflexible especially when systems were
responsible  for complex and dynamic environments. Therefore, the open
implementation of Linda which is currently used allows any program to connect to the
system with no prior information needed by the compiler. The benefits of this type are
all located in the flexibility that this scheme provides although there is an underlined

threat that programs with incompatible types will try to connect simultaneously.

This associative coordination model suits well any mobile agent application.
In a wide, dynamic environment that can be either the Internet or a wireless sensor
network, agents will require pattern matching mechanisms to deal with issues such as
the uncertainty and heterogeneity of those environments. With the Linda model those
issues are embedded inside the coordination model simplifying the agent

programming and reducing dramatically the application complexity.

Denti et.al (1998) proposes the addition of certain reactions inside the
tuplespace scheme in order to influence the access behavior of the tuples. Thus, the
tuplespace is more abstract and meaningful rather than a bag of tuples since it has its

own state and can react to specific actions. Reactions by having permission to access
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the tuplespace can change its context and modify the semantics of the visited agents.
Benefits of this approach include better control between the interaction of the agents

and good integrity against malicious agents.

The In-Motes middleware is adapting the Linda open coordination model with
added reactions in order to allow the specification of the In-Motes inter-agent
coordination rules (Georgoulas & Blow 2006). This scheme was also chosen in order
that hardware devices can communicate in a synchronized manner with the software
entities. Reactions inserted in the tuplespace of a sensor, by the predefined agent,

were instructing the device to act upon this input.

3.5 Network management inspired by bacterial strains

Roadknight and Marshall (2000) proposed a model for network management
inspired by a community of bacterial strains. Having identified problems such as vast
number of failures and the inability to accurate predict the network performance of
data networks, the authors envisage a solution of a model that will use the unique way
in which bacteria transfer and share genetic material, in order to propose a more

robust approach for overcoming those problems.

Neural networks and genetic algorithms have been successfully implemented
for overcoming problems such as the above (Roadknight et.al 1997). One of the big
advantages of applying methods like these is their ability to learn from their success
and failures producing an adaptive way of solving problems leading to the best fit

solution.
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Bacteria are simple, single cell organisms with no complicated internal

structure. Their evolution is more advanced than the Darwinian “survival of the

fittest” algorithm (Darwin 1859) since the individuals are capable of exchanging

clements of their genetic material during their lifetime. This migration of genetic

code allows a much quicker adaptability in situation where a sudden change occurs

due to environmental factors (Lenski & Travisano 1994).

Their proposed management algorithm is based on the following foundational

assumptions (Roadknight & Marshall 2000):

1.

A number of users will be requesting services either directly from the network
or through a service provider.

The network is established by interconnecting all the nodes.

Giving permission to all nodes to reach maximum capacity of servicing
request often leads to poor network resource distribution.

Service requests cannot stay static over time.

New services will become available over time while old ones will become
outdated.

The Holistic management approach is not feasible for large scale networks

Their proposed solution is identifying each node as been responsible for its

own behaviour with a level of “selfishness”. Decomposing a complex system into

autonomous selfishly adapting subsystems has been proved to be a viable approach

for overcoming complex non-linear problems (Kauffman et.al 1994).
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Figure 3-5, Schematic of the proposed structure Roadknight & Marshall (2000)

The Figure 3-5, demonstrates the proposed structure of the network. Their
implementation supports four services, A, B, C, and D. Nodes are divided into two
categories switched on (solid borders) and switched off (dashed borders) with each
one of them having its own genetic material that codes for the rule set by which it
lives. The rule set of each node regulates the way that each node will handle requests

for a service.

The system initially populates a random selection of vertices for each active
node. Each vertex is injected with a number of services that are placed in an array. If
the vertex is populated by a node, the items join a queue based on the FIFO principle.
It there is no node the requests are forwarded to a neighboring vertex. Every node
checks if the requests are certifiable by its rule set. If a match between a rule and a
request 1s obtained then the request is deleted and the node is rewarded. If no match is

obtained the node is not rewarded and the request is forwarded. Only four requests
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can be processed per measuring period and the more time a node is spending to deal

with a request the busier it will appear for the rest of the network community.

The authors suggest that an analogy can be created between the above rule
based plasmid migration and the metabolic diversity of bacteria, capable of using
various energy sources as food. Inside the network we can have the random alteration
of one value into a single rule thus a process of mutation. Also, based on the level of
business if a node acquires more than 4 rules through interchange, the newest rules
are reserved so that no more than four rules are active thus a process of plasmid

migration.

In-Motes middleware, as we are going to describe in the next chapter, is
adapting this structure and rules to build a list of behavioral rules for its facilitator
agents inside the wireless sensor network. Thus, we were able to generate a strongly
hierarchy for our agent society where its agent is working based on what is the best
for it but also for the group that it belongs too. The In-Motes behavioral rules are the

following (Georgoulas & Blow 2006):

1. Each facilitator evaluates the items that arrives in its input queue on a FIFO
principle
2. Only four requests can be processed in a measurement period (epoch)

The more time a facilitator spends processing a request, the busier it will

(OS]

appear to be.
4. If a facilitator’s busyness is higher than 50% then the job is forwarded to the

next available facilitator whose busyness is less than or equal to 50%
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3.6 The TinyOS operating system

TinyOS is an open source component based operating system designed to run
in wireless sensor devices. The programming core of the platform is developed to
accommodate event based programming.  TinyOS provides high degree of
optimization by tightly coupling software and hardware components and by allowing

a large number of application modules to be developed.

The execution model of the operating system is similar of that of a finite state
machine but far more flexible when it comes to programming. The TinyOS event
based scheduling structure enables a high level of concurrency to be dealt with by
small amount of space. Each existing module continually checks the environment for
specific events and responds accordingly. When an event occurs the execution context
will be addressed by the module and after finishing the required processing it will be

returned back to the system.

In order to deal with power consumption limitations, TinyOS instructs all
modules associated with an event to declare when they finish their processing task
therefore conserving CPU power. The tasks in TinyOS are programming entities that
were developed to satisfy long computational modules. A TinyOS task is an execution
context that runs in the background without interfering with other concurrent system
events. All tasks are processed by the operating system in a FIFO scheduling

algorithm.

TinyOS also permits component programming giving the freedom to an

application developer to combine effectively different components under the same
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framework. Figure 3-6, presents a representative example of a TinyOS component
whose role is to dispatch messages to a predefined location in the system. The
component consists of four interrelated parts. As can be shown from the Figure 3-6
those are; a number of predefined tasks, a set of commands (upside down triangles), a
block state (component frame) and a set of handlers (triangles). Components such as
the above are the responsible units for all the routing, control and data

transformations.
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Figure 3-6, A sampling messaging component in TinyOS Hill et.al (2000)

3.7 Summary

This chapter presents the foundational theoretical concepts behind our
middleware development. The notion of an agent as an ascription and description is
analytically explained and a categorization of the most well known types of agents is
given. A definition of what is an In-Motes agent and what characteristics this mobile

process will have are presented. The predominant agent architecture schemes are
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explained and their communication schemes are analyzed through a series of well
known systems. The coordination techniques are presented through the notion of the
tuples/tuplespaces theory. Additionally, an innovative idea of network management
through a parallelism of bacterial strains and concepts of biology is also incorporated.
The chapter ends with an introduction to the supporting software of our middleware,

namely TinyOS.
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CHAPTER 4

The In-Motes Middleware Design

4.1 Introduction

The aim of this chapter is twofold. Having identified from the previous
chapters the notion of a wireless sensor network, the limitations and the most feasible
approaches towards a substantial system, our aim is to present a framework that
would be able to satisfy those standards and if possible to overcome some of the
limitations that those networks inhabit. The middleware was developed combining the
axioms and techniques that were presented in Chapter 3 having in mind the

development and the efficiency of the application layer for wireless sensor networks.

The In-Motes middleware can be defined as a mobile code middleware that
generates a flexible framework for deploying applications in wireless sensor networks
(Georgoulas & Blow 2006). In the next sections the specification and the low level

design of the In-Motes middleware version 1.0 will be presented.

4.2 The specification of the In-Motes middleware

The inspiration had derived from a number of middlewares that have been
developed in the recent years but mainly from those of Mate (Levis & Culler 2002)
and Aggila (Fok et.al 2005). The sections of the specification part will present the In-
Motes agents, the communication protocols both for the software and hardware and

the coordination principles. Last but not least, the nesC language under the TinyOS
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environment will be recognized as our basic tool for the development of our

middleware.

4.2.1 The In-Motes agents

The In-Motes agents consists of four different mobile code categories that can
co-exist at the same time inside the wireless sensor network according to the user
needs and the specification of the deployed application. Figure 4-1 displays the

different categories.

Figure 4-1: A categorization of the In-Motes Agents

The Facilitator category consists of In-Motes agents that are responsible for
forming a “federation” of the active mobile code in the selected nodes. Their role is
twofold, first they set up the communication protocol, described in the next section,
and secondly they are responsible for collecting all the results from the Job In-Motes
agents and forwarding them to the base station for analysis. Their life expectancy in
the network is tightly bound to the life expectancy of the application. They are able to
exchange messages with each other but are unable to take any readings from the
nodes that hosted. They have the ability to provide a simple form of decision making

based on their level of business. Thus, if a facilitator level of business is above 50%
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the query will be passed to the next available facilitator. Each facilitator In-Motes
agent is divided into small packets of 41 bytes each, upon deployment in order to
minimize message loss and deadlocks. They each consume 135 bytes of virtual

memory from the In-Motes engine.

The Slave category consists of mobile code that is responsible for capturing
the available nodes in the wireless sensor network. By the term capture we mean the
ability to assign a predefined number of N nodes under the same facilitator In-Motes
agent. Slave agents are practically clones of the facilitator agents and they do not
provide any local decision making. After a successful capture of a node they report
back to the facilitator agent and then die. Each slave agent being a facilitator clone

consumes 135 bytes of virtual memory during its active period.

The Job category consists of mobile code that is responsible for carrying out
the user requests to the wireless sensor network. Their role is to collect readings from
the sensing devices of the hardware and their specification is tightly bound with the
application. Thus, a job In-Motes agent could be reporting temperature, light or
acceleration readings to the facilitator agent. They can report only one set of readings
at the same time. Job agents are able to be transferred either by cloning or by
migrating inside the wireless senor network based on the application and the available
memory. Therefore, for large scale, complex applications which needed most of the
memory resources, job agents are migrating while for simple applications they are
cloning. The difference between cloning and migrating is based on how the code is
transferred inside the wireless sensor network. Thus, a Job agent is migrating when

the same code is visiting the predefined nodes alters their parameters, but it never
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stays resident in any of them, while with cloning, a Job agent creates multiple copies

of its code that are transferred and stay resident in all the predefined nodes.

According with their status, defined as static or dynamic, In-Motes job agents
are able to provide a simple level of local decision making (Georgoulas & Blow
2007). The term “static” describes In-Motes Jjob agents which perform a single user
request measurement and then die while “dynamic” describes In-Motes job agents
which perform multiple measurements and respond to changes in user defined
parameters. The dynamic In-Motes job agents consume 118 bytes of virtual memory
and they migrate inside the system while the static ones 68 bytes and they clone inside

the wireless sensor network.

The Fix category consists of mobile code that is used as a debugging tool for
the wireless sensor network. Their role is to flush the memory of a single node in case
of a problem such as buffer overflow or to flush the memory of the total number of
nodes of the network. They are small in size, 25 bytes, and do not provide any local

decision making.

In the next chapter the testing process for this mobile code will be presented.
Through a series of simple tests we were able to inject individually the four different
In-Motes agents to a number of predefined nodes and observe their functionality. It is
important that the above mobile code is tested before we move on with the creation of

any complex application.
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4.2.2 The In-Motes architecture

The In-Motes architecture (Georgoulas & Blow 2006) is shown in Figure 4-2
and is divided in two layers. The first layer consists of the In-Motes agents that we
have described above. Based on the fact that we could have one or more mobile codes
active at the same time on the same node lead us to the need for a second layer that
apart from the In-Motes engine would include a manager scheme for regulating issues
such as context and reactions. Without this layer the In-Motes agents would have a
loose hierarchy that would lead to confusion between their roles and responsibilities
inside the wireless sensor network and also the system would consume unnecessary
physical and virtual memory. Thus, the second layer consists of a facilitator manager,

agent manager, rules manager, operation manager and an instruction manager.

Facilitator/Slave/
Job/Fix Agents

In-Motes

TinyOS

Figure 4-2: The In-Motes Architecture, the first layer consists of the In-Motes agents,
the In-Motes layer sits on top of the TinyOS platform.
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The Agent Manager is responsible for maintaining the context of the

facilitator, slave and job agents. When any of those agents arrives in a mote, the agent
manager allocates to the entity a specific amount of memory which is predefined by
the user. With this scheme we were able to overcome the memory problem that
appeared in the beginning of the development of In-Motes. Having only 4 Kb of
physical memory and many active agents in the network consuming virtual memory a
regulating mechanism offering an assigning function reduced problems such as stall
of the mote due to insufficient system memory. We have pre-programmed the agent
manager to be able to handle up to two agents due to memory restrictions. The agent
manager 1s also responsible for notifying the In-Mote engine when an agent 1s ready

to run in the network.

The Rules Manager is responsible for maintaining the behavioural rules for
each facilitator. Every time a new facilitator is ready for execution it informs the
instruction manager and creates a list of behavioural rules that is maintained until the

termination of the facilitator agent.

The Instruction Manager constantly checks for new arrivals of agents in the
network in order to allocate to any new agent a specific amount of instructions by
retrieving the next executable instruction. Thus, agent instructions are not stored
within the agent but rather are managed within In-Motes. This role is of critical
importance in our middleware since TinyOS does not provide any dynamic memory

allocation.
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The Facilitator Manager is responsible for all the tuplespace and reaction

operations. The facilitator manager dynamically allocates memory for every tuple
insertion. Following the Mate (Levis & Culler 2002) example, each tuple can contain
up to 4 fields in order to fit the 27 byte payload of a single TinyOS message. It also
stores all the reactions registered by a slave or a job agent. During a tuple insertion the
facilitator manager checks the registry for a match. When a match is obtained it

notifies both the agent manager and the instruction manager.

The In-Motes Engine acts as a virtual machine on top of the TinyOS platform
controlling the execution as well as all the departures and arrivals of the In-Motes
agents. Initial tests of our hardware, mica2, conclude that our sensors had unreliable
radio. Thus, each agent was sent into the wireless sensor network not as a single
message but as numerous types of messages, Table 4-1. This provides us with a better
way of controlling the agent transmissions and incase of a failure to retransmit only a

number of packets rather than transmitting the whole agent again.

Type | Size (Bytes) Content
State 20 Program counter, code size, condition code, stack pointer
Code 25 Stack pointer (points the next available instruction)
Heap 34 Five vanables and their addresses
Stack 30 Five variables

Reaction 38 One reaction

Table 4-1: In-Motes messages send during deployment of an agent

Following the Mate and Agilla example the default number of instructions is

4. The engine switches context when an agent is in one of the states: sense, wait or
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sleep. In case of a failure such as packet loss it retransmits the packet up to R times
and then stalls operation. The specific optimum value for R will depend on both the

hardware and the software.

4.2.3 The In-Motes agent architecture

The In-Motes agent architecture is shown in Figure 4-3. It consists of a stack,

heap and four 16 bit registers.

Figure 4-3: The In-Motes mobile agent architecture

The In-Motes agents use a predefined stack of 8 bits per block instruction. The
8 bits is the maximum instruction size an agent can use, most of the agents use 3-5
bits per instruction block. The heap consists of 40 bit blocks and is used as the store
room for every In-Mote agent. The chosen number of blocks is the optimum number
for handling the agent context of In-Motes. From the heap, agents can access up to 13
variables which describe the functionality and the actions of the agents. Every agent
also has four 16 bit registers that contain the agent 1D, the condition code, the
program counter (PC) and the facilitator group ID. The agent ID which is controlled
by the agent manager is chosen prior to deployment and must be unique for every
agent. The slave agents that are able clone inside the network are the only ones that

will be assigned with a new ID upon this action. The program counter consists of the
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address for the next available instruction for the given agent. It is used by the
instruction manager in order to assign new instructions. The condition code is a 16 bit
register that is assigned to record the execution status of each active agent in the
environment. Finally, the facilitator group ID distinguishes which agents are working

under the same facilitator agent and is unique for each agent “federation”.

The In-Motes instruction set is based on those of Agilla and Mate. However,
there are many modifications and differences in order to support the facilitator agent’s
scheme and the tuple space operations. A full list of the instruction set is available in

Appendix A. For reference, Table 4-2 demonstrates some unique In-Motes

instructions.
Instruction | Opcode | Parameters | Return Val. Description
getslv 0X21 value id Get a slaves id
sclone 0X2d location n/a Clone slave
fwait 0X1b n/a n/a Stops slaves execution allows it to
wait for a reaction
fout 0X34 tuple n/a Inserts a tuple to facilitator local
tuple space
srd 0X38 template tuple Block slave to find a tuple

Table 4-2: An example of unique In-Motes agent instructions

The In-Motes agent instruction set can be divided into three categories:
General purpose, tuple and facilitator instructions. The general purpose instructions
are 1dentical to those of Agilla and Mate such as pushc, halt, sense, and putled.
However, the In-Motes instruction set includes instructions such as srd, waket and

sleept that enable agents to act with better hierarchy and with more robustness. For
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example, an In-Motes dynamic job agent can perform some application specific
actions providing reasoning with the instructions waket and sleept, something that is
not supported by the Agilla agents, and it would take the flooding of the whole

network with timer capsules in Mate in order to achieve something equivalent.

The ruple instructions allow an In-Motes agent to communicate with the
hardware through the tuple space that each sensor hosts. Instructions such as out and
rd are common for both In-Motes and Agilla agents and for every host they are
providing with the accessibility of the local tuple space. Additional instructions such
as fout and srd were added in order that federation communication scheme be
applicable and that facilitator and slave tuples can be accessed both remotely and

locally from the In-Motes agents.

The facilitator instructions allow an In-Motes agent to move or clone from
one node to another following the federation scheme. Those instructions are unique
for the In-Motes agents and they make our communication protocol, which we will
present in the next section, applicable to the In-Motes agents. Instructions such as
getslv and sclone are applicable only to facilitator and slave agents and define the
character of them inside the wireless sensor network. Lastly, instructions such as fousy
and fregst are derived from the behavioural rules that each facilitator agent must

comply with.

4.2.4 The communication protocol

The In-Motes communication protocol is based on the federation

communication scheme which was described in chapter 3. In order to implement it,
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we are sending a facilitator In-Motes agent to the network in order to capture and
create facilitator and slave nodes before any user requests or the actual application is
forwarded. The life cycle of a facilitator In-Motes agent is shown in Figure 4-4

(Georgoulas & Blow 2006).

Insert
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Figure 4-4: The life cycle of the In-Motes facilitator agent

The facilitator agent works by continuously checking whether any of the
nodes are available for capture. The user sends a single facilitator into the wireless
sensor network, although this is not limited by our infrastructure, allowing more than
one facilitator to be deployed in large scale applications where the nodes exceed the
total number of 20. Preliminary tests that we run and we will demonstrate in the next
chapter conclude that for a wireless network that consists of more than 10 nodes a
parallel approach where two or more facilitator agents deployed at the same time is
more applicable as it consumes less virtual memory and establishes the

comimunication protocol faster.
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Upon arrival at the first available node, the facilitator will insert a facilitator
tuple into the tuple space assigning thus the first facilitator node. The capturing
procedure takes place when a facilitator agent during its migration registers a capture
or a slave reaction to the corresponding node. An alternative is for the facilitator agent
to clone rather than migrate and generate what we have described earlier as a slave
agent inside the wireless network. During our trials both approaches were tested

equally successfully.

A counter will be incremented every time a capture reaction takes place; here
we restrict the registration of two agents under each facilitator purely based on the
motes we had available. When the counter reaches two, the facilitator agent will
migrate again to the next available node assigning this time around a new facilitator

tuple and slave reaction and the capturing procedure will repeat.

It is expected that during the lifetime of a wireless sensor network some nodes
will eventually die and information will be lost. In-Motes can adapt and dynamically
take actions upon unexpected scenarios like the ones mentioned above. If a facilitator
node goes down the network will dynamically adapt since the lifecycle of the
facilitator agent that we described above never terminates and a new capturing

procedure will take place.

4.2.5 The nesC programming language

The In-Motes middleware architecture was developed using the nesC
programming language which is an extension of the C language. The nesC

programming model is suitable for networked embedded systems since in its
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programming model it incorporates elements such as event driven execution and
component oriented application design (Gay et.al 2001). Also nesC has been used to
implement the operating system we were using, TinyOS. Thus, it was easier to create
and generate the communication paths in a language that the operating system was

built in.

Our middleware with the use of the TinyOS operating system handling the
sensor devices addresses a number of challenges upon development. As presented
above, the agents and the environment we are planning to generate and deploy are
highly event driven. The motes as well as the agents of our middleware are reacting to
the changes in the environment and user inputs and also they are working under a
concurrent framework which is trying to eliminate network problems such as race
conditions between messages or sensor acquisitions. The nesC programming language
provides a very rich concurrency model with a powerful compiler. Moreover, its
programming model is suitable for event driven environments and devices since it is

based on a number of bidirectional interfaces.

The second challenge faced during the creation of In-Motes was that of limited
resources. We have already made reference in previous chapters to the fact that the
mote life expectancy is tightly bound with the life expectancy of the batteries. NesC is
suitable for developing applications with small need in power resources since its
model is suitable for reducing code size and its compiler can perform dead-code
climination. Also the concurrent behavior that it adapts needs very limited resources

in order to be executed.
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Thirdly, with the creation of In-Motes applications, we needed to address the

issue of reliability in a real environment. For In-Motes applications such as
environmental monitoring, that we will present in the next chapter, it was necessary to
collect data in a monthly period reducing as much as possible the human intervention.
Thus, we needed a system that would be able to provide the smallest number of run
time errors possible. Once again the nesC programming language was able to offer
component instantiation and extensive compile- time analysis thus creating
programming modules that are able to detect and eliminate errors such as the one

described above.

Lastly, the developers of the nesC language, in order to create a simple
programming model that will support and reflect to the TinyOS design, made it as a
static language although it is not restricted to that character (Gay et.al 2001). This
means that the TinyOS operating system does not offer dynamic memory allocation
for its applications although the nesC programming core can support it. Even though
this was a limitation for our middleware development, which as we said carlier was
finding insufficient the 4 Kb of motes physical memory, with the use of nesC
programming model we were able to develop a dynamic virtual memory allocation

scheme for our middleware and more specific for the In-Motes agents.

4.2.6 The interface programming language

The In-Motes middleware interface has been implemented using Java. The
reasons behind this selection can be found in the object oriented character of the
language, the Java virtual machine (JVM) and the remote method invocation (RMI)

which is applicable for remote objects.
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Java is an object oriented language and much of its syntax derives from C and

C ++ programming languages but with a simpler object model and fewer low-level
facilities. Since In-Motes is a multi-agent platform applied in a distributed
environment, Java was the ideal choice as it is suitable for distributed programming,
To that extent, the fact that nesC, which is a modular version of C, was the unifying
language between our middleware and the operating system made Java the most
suitable language for combining distributed nesC objects, used at the low level

architecture with query oriented messages, used from the user front end.

Using the remote method invocation that Java provides, we were able to
invoke methods on objects residing on other machines, in our case sensors, as well as
invoking methods on local objects. Figure 4-5 demonstrates how this is applicable in
In-Motes middleware. A local java object hosted by the application which was usually
the query of the user could be easily accessible to the remote Jjava object of the sensor,
the resident agent. Also, based on the communication protocol we described earlier a
local java object could invoke the methods of a nesC object residing in a different

sensor, with the use of the Java remote method invocation.

TN

S mpplication o

Local Java
Object

Java RMi

Figure 4-5: Representation of the Java remote method invocation
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The concept of the Java virtual machine states that programs written in Java

are compiled into a machine language, commonly referred to as Java byte code. This

byte code is accessible to all machines as long as they have an interpreter installed,

Aston University

Content has been removed for copyright reasons

The use of the same bytewcode f01 éll platr;orms ali/(ﬁ);vs Java to bé described as
"compile once, run anywhere", as opposed to "write once, compile anywhere", which
describes cross-platform compiled languages such as Ada and Pascal. This description
fitted perfectly all the applications we were sending in the wireless sensor network as
well as the actual middleware since both were compiled once during the lifetime of
the network. The Java virtual machine also enables such unique features as automated
exception handling which provides 'root-cause' debugging information for every
software error (exception) independent of the source code. This attribute helped with
fixing problems that were caused in the wireless sensor network by the individual

sensors such as when a sensor was stalling its operation.
In order to create a flexible and easy to use interface for our middleware we

used the Swing toolkit for Java. Swing provided us with a powerful application

programming interface (API) that enabled us to create the graphical user interface
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(GUI) for In-Motes. Swing GUI Components includes everything from buttons to
split panes to tables. Many components are capable also of sorting, printing, and drag
and drop. In-Motes uses the Java standard edition provided by Sun Microsystems,

Figure 4-7.

Aston University

Hlustration rem oved for copyright restrictions

Figure 4-7: Java SE overview taken from http://www.java.com [03/02/08]

4.3 The Design of the In-Motes middieware

The sections of the low level design will cover the functional modules of our
middleware recognizing how Java modules together with the nesC programming
language had constructed the high level specification which was described above.
Moving from the theoretical perspectives to the practical ones we provide a look
behind the scenes of our middleware by explaining how issues such as In-Motes

agents, tuple spaces and communication protocol were effectively created.
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The In-Motes middleware consists of two packages, one containing the Java

code for the front end of the middleware and the other containing the nesC modules,

Figure 4-8.
In-Motes Middleware
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Figure 4-8: The In-Motes Middleware packages

4.3.1 The In-Motes Java Package

The In-Motes middleware Java package consists of 26 main Java classes and 4
individual sub packages with the corresponding classes of each. Each one of the main
classes imports various methods from the sub packages such as the variables and
messages which contain methods responsible for the interface message parsing and
for the sensor variables, Figure 4-9. The next paragraphs briefly discuss some of the

most important Java classes and methods of the In-Motes middleware.
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Agent.java B
ErrorDialog java
Agentinjectorjava

AgeniSender java Variables B
Argumentjava 00 [ TTTTTTTTTTmomome
Assemblerjava
Debuggerjava
ErrorDisplayerjava
{_] injector_java messages b.
Java Package InmotesAssemblerjava L ________________|

inmotesConstants. java
_________ > InmotesDataltils.java
inmotesOpcodes java
InmatesStackVariable java clients B
InstructionAnalyzerjava ~ [TTTTTTTTTTTTTo
InvalidinstructionException java

OpStackjava
OpStackException java
ProgramTokenizer java i D&

SNIinterface.java
TimeoutTimer. java
TupleSpace.java
Tuple.java
TupleSpaceException java
TupleUtil java

Varltil java

Figure 4-9: The In-Motes Middleware Java package decomposition

Agent.java

This class is one of the most important in the whole system as it contains the
agent descriptions. It imports methods from the variable sub package and implements
InmotesConstants and InmotesOpcodes. The class method below is responsible for
outputting the agent ID, the condition code, the program counter (PC) and the

facilitator group ID for every active agent in the system, Figure 4-10.

public Agent (InmotesAgentID id, int pc, int codeSize, int condition)

this.id = id;

this.pc = pc;

this.codeSize = codeSize;

this.condition = condition;

code = new byte[codeSize];

for (int i = 0; i < INMOTES HEAP SIZE; i++) |
heap[i] = new InmotesInvalidvariable() ;

}

Figure 4-10: The class method Agent containing some of the agent descriptions
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Also the class allows the agents to move to the next available instruction or halt their

operation according to their instruction set.

AgentSender.java

This class is responsible for all the messages that will be exchanged between
the agents and between the user and the agents. It imports methods both from the
variables and messages sub package. The methods of the class allow the
encapsulation of an agent context and provide the destination it wants to migrate to,

Figure 4-11.

public void send(InmotesLocation dest, Agent agent) {
Debugger.dbg ("AgentSender", "Sending " + agent) ;
gqueue.add (new PendingAgent (dest, agent));
synchronized (queue) {

try {
queue.notifyAll () ;

} catch(IllegalMonitorStateException e) {
e.printStackTrace () ;

}

}

Figure 4-11: This void method regulates the transmission of the sending agent

Also the void method of the class specifies that the sender thread sits in a loop where

sending agents are placed into a queue.

InmotesConstants.java

In this class we have stored all the constants the In-Motes middleware is using
such as the maximum number in tuples, the size of the tuples and the maximum

number of agents a node can host per measuring period (epoch), Figure 4-12. Also
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we have stored all the active message types that the agents will exchange during the
lifetime in the wireless sensor network as well as the maximum number of user
requests a facilitator can handle before passing the job description to the next

available facilitator (level of busyness).

// Agent context specification
public static int INMOTES OPDEPTH 20;// depth of operand stack
public static int INMOTES_TS_SIZE = 100;// size of tuple space stored
//in data memory
public static int INMOTES_NUM AGENTS = 2;// max no of agent on a node
public static int INMOTES_HEAP_SIZE = 12;// size of heap on each
//agent
public static int INMOTES_CODE BLOCK SIZE = 22; // the size of each
//code block
public static int INMOTES_NUM CODE BLOCKS = 20; // the total number
//of code blocks
public static int INMOTES_ SENSOR PERIOD = 2048; // time between
//taking sSensor measurements
public static int INMOTES_MSG TIMEOUT = 512;
public static int INMOTES MSG RETRY = 256;

i

// Active message types
static final int AM INMOTESSTATEMSG 0x10; // 16
static final int AM INMOTESCODEMSG 0x11; // 17
static final int AM INMOTESHEAPMSG = 0x12; // 18
static final int AM INMOTESOPSTACKMSG 0x13; // 19
static final int AM INMOTESRXNMSG = 0x14; // 20

il

static final int AM INMOTESACKSTATEMSG
static final int AM INMOTESACKCODEMSG 0x16; // 22
static final int AM INMOTESACKHEAPMSG 0x17; // 23
static final int AM INMOTESACKOPSTACKMSG = 0x18; // 24
//.. some code is missing

0x15; // 21

i

Figure 4-12: The agent context specification of In-Motes

The class methods as we have seen above are invoked both from the Agent
class as well as from the AgentSender one. This class was also frequently modified
since 1t contained the agent context specification. For different applications we were
using different values. The above ones are the optimum ones that generate the less
memory problems for an average size application such as the In-Motes Bins one

which we will describe in the next chapter.
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InmotesOpcodes.java

In a similar way of the above interface class we have created the
InmotesOpcodes class. In this class we stored all the instructions that were available
in the system. Zero operand, one operand two and three operand instructions were

stored and they were accessible from the AgentSender class, Figure 4-13.

// zero operand instructions

public static final byte OPfhalt = 0x00;
public static final byte OPfloc = 0x01;
public static final byte OPfaid = 0x02;
public static final byte OPrand = 0x03;
public static final byte OPfcpush = 0x04;
public static final byte OPfdepth = 0x05;
public static final byte OPswait = 0x0a;

// One operand instructions

public static final byte OPsmove = 0x17;
public static final byte OPfmove = 0x18;
public static final byte OPsclone = 0x19;
public static final byte OPfclone = 0xla;
public static final byte OPfgetvars = 0xlb;
public static final byte OPsetvars = Oxlc;
public static final byte OPfgetnbr = 0x1d;
public static final byte OPcisnbr = 0xle;
public static final byte OPssense = Ox1f;
// Two and three operand-instructions

public static final byte OPdist = 0x21;
public static final byte OPswap = 0x22;
public static final byte OPland = 0x23;
public static final byte OPlor = 0x24;
public static final byte OPand = 0x25;

Figure 4-13: Part of the In-Motes Instruction Set

Tuple.java

This class was defining and generating the tuples of our system. The methods
that exist in this class were allowing the retrieval of the number of bytes contained
within the field of the tuple and template matching when a specific tuple was

matching a template, Figure 4-14.
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public boolean matches (Tuple t) |
booclean result = true;
if (t.size() == size()) {
for (int i = 0; i < size() && result; i++) |
System.out.println("Tuple.matches(): " + i +
" Comparing: " + getField(i) + ", with " + t.getField (1)) ;
result = getField(i) .matches(t.getField(i)) ;

} else result = false;
return result;

Figure 4-14: Method that is accessed for tuple matching

The class was importing methods from the variables sub package and the java.util

package.

Tuplespace.java

This class through its methods provides all the tuple space operations for the
middleware. The most important methods of the class are the ones that produce what

we described in earlier sections as template matching, Figure 4-15.

public Tuple in(Tuple template) |

Debugger.dbg ("TupleSpace.in", "||[----> Performing an in()
operation.");
Tuple result = inp(template) ;
if (result != null) ({
return result;
} else {
while (true) {
synchronized(blocked) {
try {
Debugger.dbg (" ||---->
Tuplespace.in", "BLOCKED while doing an in().");
blocked.wait () ;
Debugger.dbg("|]|---->
Tuplespace.in", "UNBLOCKED while doing an in{()."):

} catch(Exception e) {
e.printStackTrace() ;
}

Debugger.dbg ("||----> Tuplespace.in",

"Trying to find a match.");
result = inp(template) ;
if (result != null)
return result;

Figure 4-15: Template matching method returns Returns a tuple matching for the
specified template
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The above method Returns a tuple matching the specified template. If no

match is found then it blocks until there is an available one. If more than one match is
found, it chooses and returns one randomly. The tuple is kept in the tuple space. Also
this class provides a method that allows agents to flush their tuple. This action was
allowing a developer to continue reusing the same agent rather than resending a new
one every time a user request was satisfied. This method was invoked and used by all

the facilitator agents of our wireless sensor network, Figure 4-16.

public void flush(AgentID aID) {
synchronized(ts) |
for (int i = 0; 1 < ts.size(); i++) {
Tuple t = (Tuple)ts.get(i);
if (t.isOwnedBy (aID)) {
ts.remove (i) ;
i--;

Figure 4-16: Method used by the facilitator agent for flushing tuples

Debugger, ErrorDialog, OpStackException, TupleSpaceException

InvalidInstructionException {.java}l

We have mentioned in previous sections that one of the main problems we
were facing during the development of the middleware was that the sensors we were
using were provided with built in specification. That implied that errors that were
produced during any kind of testing of the system were difficult to identify. Therefore
In-Motes comes with a built in debugging capabilities that are generated from the
above classes. These classes were able to produce warning messages or if the
debugger option was selected to output a number of variables to the end user
allowing him to monitor better both the behavior of the deployed application as well

as the correct functionality of the middleware.

92



Agentlnjector.java

The Agentlnjector class contains the Graphical User Interface (GUI) for the

In-Motes middleware. It is the basic class of the system that also contains some of the

main methods to be executed firstly. In particular, it imports a number of Java SE

packages such as the swing and the java.awt.event as well as TinyOS packages such

as net.tinyos.message and net.tinyos.packet.

The clients sub package

The clients sub package, Figure 4-17, contains the oscilloscope application

which was embedded in our middleware in order for the user to have a graphical

display of the readings of every sensor in real time.

—

Clients sub package

<cactess >

GraphPaneljava
oscilloscope.java
OscopeReset sy jav
Oscopesy.java

Figure 4-17: The Clients sub package

The source code of the Java classes was obtained from the TinyOS open source

package where the oscilloscope application is available. Minor modifications were made in

order to embed this application in our middleware.
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The messages and variables sub package

The messages and variable sub packages contain classes with methods that are

invoked from all the main classes of the middleware. The first package contains all

the message types that are exchanged in our system such as the acknowledgement

messages and the state messages. The variable one is a collection of classes with

methods that are generating the various different types and ids for the agents and the

sensors of the system as can be seen from the following method, Figure 4-18.

private String type2String(int
switch (dType)

case INMOTES

return

case INMOTES

return

case INMOTES

return

case INMOTES

return

case INMOTES '

return

case INMOTES '

return

case INMOTES '

return

case INMOTES '

return
default:
return

dType) {

TYPE INVALID:
"INVALID";
TYPE VALUE:
"VALUE" ;

TYPE READING:
"READING" ;
TYPE STRING:
"STRING" ;
TYPE ANY:
NANY " ;

TYPE TYPE:

n TYPE " '.

TYPE AGENTID:
"AGENTID" ;
TYPE_LOCATION:
"LOCATION";

"UNKNOWN'" ;

Figure 4-18: The different In-Motes sensor types parsed as strings

The rmi sub package

This package contains 4 classes all together responsible for the remote actions

that are available in our system and more precisely with remote agents and tuple

access. For example, the AgentInjectorRMI java class specifies the interface of the

object that allows a remote host to inject an agent into our wireless sensor network.
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package edu.ee.acnr.inmotes.rmi.agentInjector;

import java.rmi.Remote;

import java.rmi.RemoteException;

import edu.ee.acnr.inmotes. *;

import edu.ee.acnr.inmotes.variables. *;

public interface AgentInjectorRMI extends Remote

public boolean inject (InmotesLocation dest, Agent ma) throws
RemoteException;

}

Figure 4-19: The In-Motes remote agent method invocation

4.3.2 The In-Motes nesC Package

The In-Motes middleware nesC package consists of 4 sub packages that
contain all the important modules in order for the middleware to communicate both
with the TinyOS operating system as well as with the Java graphical user interface
(GUI), Figure 4-20. Those modules as we are going to see in the next paragraphs
generate a concurrent structure and define system parameters such as the message
interfaces that are responsible for transferring the obtained data from the sensors to

the user and the In-Motes engine components.

nesC Packagye

components i
________________ >lirterfaces
<<ACCESS~ <<ACCBSE> Hf

opcodes B] types TSJ

Figure 4-20: The nesC package decomposition
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The tvpes sub package

The types sub package contains 3 nesC modules that initialize and set the
parameters for the In-Motes engine. Namely, Inmotes.h sets the network size, the
communication of the base station with the nodes of the wireless sensor network and
also all the middleware message definitions. Also, it specifies amongst others the size
of the operand stack in bytes, the maximum number of agents on a node, size of heap

on each agent and the total number of code blocks, Figure 4-21.

enum {

INMOTES_OPSTACK SIZE = 110
INMOTES SLAVE NUM AGENTS = 4
INMOTES_FAC NUM AGENTS = 2
INMOTES NUM AGENTS = 2
INMOTES HEAP SIZE = 12
INMOTES_CODE BLOCK SIZE = 22
INMOTES_NUM CODE_BLOCKS = 15

} InmotesSizeConstants;

Figure 4-21: Some of the In-Motes engine parameters

The above values where optimum and depended upon the application and the
size of the wireless sensor network. For example, the number of agents was set to 4 as
that was the maximum number of concurrent agents that would be active under the

same facilitator for our applications.

The Tuplespace.h module initializes all the optimum values for the
tuplespaces of the middleware. Namely, the size of RAM for every tuple space in
bytes, the maximum number of field bytes in a tuple, the maximum number of times a
request is sent and the maximum number of reactions. Also, it generates all the

tuplespace operation request/response messages as can be seen below, Figure 4-22.
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typedef struct InmotesTSReqMsg {
InmotesLocation destLoc;
InmotesLocation replylLoc;
uint8_t op;

InmotesTuple tuple; // agent template
} InmotesTSRegMsg; // 36 bytes
typedef struct InmotesTSResMsg {
InmotesLocation destLoc;

uint8 t op;

bool success;

InmotesTuple tuple;

} InmotesTSResMsgq;

Figure 4-22: Request/Response tuplespace messages

The MigrationMsgs.h module generates and initializes all the message
parameters that will be exchanged between the agents and between the agents and the
In-Motes engine. Thus, the module produces the optimum values for the maximum
time a node will be waiting for an acknowledgement, the maximum number of agents
sent to a node and the maximum number of agents that had been received from a
node. Also, as can been seen below it includes all the agents migration message

contents and all the agent migration states, Figure 4-23.

typedef enum
INMOTES RECEIVED NOTHING
INMOTES RECEIVED CODE
INMOTES RECEIVED STATE =
INMOTES RECEIVED OPSTACK =
INMOTES RECEIVED HEAP = 8,
INMOTES RECEIVED RXN = 16,
INMOTES_AGENT_READY = INMOTES_RECEIVED CODE |INMOTES RECEIVED STATE
| INMOTES_RECEIVED_OPSTACK | INMOTES_RECEIVED HEAP|INMOTES RECEIVED RXN

7

7

7

BN = o

!

[eo]

Figure 4-23: The In-Motes agent migration messages

The interfaces sub package

The interfaces sub package contains a number of modules that handle mainly
the execution model of the In-Motes middlewares. Their modules specify the

gateways of the hardware components to the java graphical user interface. For
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example AgentExecutorl.nc provides the interface for executable agents of the
wireless sensor network and checks if the middleware is in an error state. The below
code is taken from the BehaviorRulesl.nc which produces the interface for the list of

behavioral rules to be generated for every facilitator agent, Fi gure 4-24.

includes Inmotes;

/x*
* This interface is provided by the component that can produce the
behavioral rules list

*/

interface BehaviorExecutorI |
/**
* Produces the list.
*

*/

command result_t run(BehaviorRulesContext* agent) ;

/xx
* Returns SUCCESS if a facilitator agent can satisfy the rules
list
* elgse returns FAIL.
*/

command result t inErrorState();

Figure 4-24: The nesC interface for producing the behavioral rules list

The components sub package

The components sub package contains all the structural modules of the In-
Motes middleware. In total there are 31 different modules that combine all the various
managers of the system that we presented above such as the Facilitator manager and
the Rules manager. Thus, the modules specification identifies amongst others, how an
agent can handle its context, how the middleware is orchestrating all of the
components involved with sending an agent to a remote node, the In-Motes tuple
space implementation with the use of the mote's internal data memory and the In-

Motes engine.
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The opcodes sub package

The last and largest in terms of modules sub package of the nesC is the
opcodes one. Inside there is a collection of modules that handle every single Opcode
of the In-Motes middleware. The system individual actions such as whether the type
of the second variable on the stack matches the TYPE variable on top of the stack and
every single instruction that In-Motes is using are generated inside 103 different

opcodes modules.

4.4 Summary

This chapter presents the development of the In-Motes middleware. Initially
we present the specification of the middleware by identifying key concepts such as
the In-Motes agents and the architecture both for the middleware and the agents of our
system. The communication protocol is also explained identifying how the facilitator
scheme was applied in our framework. The selection of the two programming
languages that In-Motes is using, Java and nesC, are substantiated and reasoned
having always as reference both the middleware and the nature of the network it was
created for. Moving one step further we present the two packages that generate the In-
Motes middleware describing through modules and classes the creation and design of
some of the theoretical concepts of the framework that were identified in the previous

chapters.
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CHAPTER S5

The In-Motes Testing and Evaluation

5.1 Introduction

The aim of this chapter is to present the results of a series of tests applied to
the In-Motes middleware and provide an overall evaluation of the applicability of our
system. The testing process which is discussed in detail in the next section was
divided into two parts. In the first part, some preliminary tests were executed based on
simple applications that were deployed in the wireless sensor network. Also, the
merits of the middleware were tested against the Agilla middleware and the TinyOS
framework. All those tests were undertaken in the controlled environment of the
laboratory. In the second part, the creation of a complex application, namely In-
Motes Bins tested the middleware’s functionality and applicability under real life

conditions in a trial that lasted for four months in a wine store.

5.2 The preliminary tests of the In-Motes middleware

A set of preliminary tests were generated in order to verify the correct
execution of the In-Motes middleware main functionalities and correct any possible
problems. Moreover, we wanted to test our middleware and its applicability against

the Agilla middleware and the stand alone TinyOS framework.
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The laboratory experiments were based on a MICA2/DOT Professional Kit

(MOTE-KIT 5x4) as shown in Figure 5-1.

Figure 5-1: Our experimental motes kit with six MICA2 motes and two MIB510
Programming and Serial Interface Boards

Initially we focused our efforts on the correct delivery and functionality of the
4 different mobile codes (In-Motes Agents) in the network that was verified when a
node was sending back readings to the user or when it was blinking its LED’s in a
predefined order set by us. The network consisted of 4 sensor nodes. The facilitator
was injected and captured the first available node, in our case the one that was
plugged-in in the interface board and then was migrating and storing the “’slave’’
instruction to the rest of the available nodes in a random order. Upon arrival and every
time a new node was discovered a new tuple was inserted to the newly discovered
node’s tuplespace having as a reaction the blink of its three LED’s for one second.
Simple In-Motes job agents were deployed, 45 bytes in size each. The agents were
carrying only one instruction for every single sensor which was triggering them to
sense the environment and collect a single reading, either light or temperature, that

was then send back to the user. The fix In-Motes agent was visiting all the available
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nodes at once and it was blinking all three LED’s of each one of them for one second

while in parallel was flashing the internal memory of the network nodes.

Single hopping and multi-hopping migration was also successfully tested by
instructing a job agent to blink one of the LED’s of the sensors every time they visited
a node of the wireless sensor network, allowing us like that to visualize how the
agents were migrating to the available nodes. For example, a job agent would visit
node 1 and upon collecting the reading it would blink the GREEN led. If the agent 1s
programmed to migrate to node 4, the agent execution is suspended by the In-Motes
Agent Manager, it blinked the RED led, and then the code is serialized by the
Operation Manager and transferred to node 4, node 1 would blink the YELLOW led

and node 4 when the packet arrived would blink the GREEN led.

Since the above tests were mainly based on the predefined blinking of the
LED’s of the MICAZ2 nodes a video camera was used for recording the above tests, a
number of those videos are available on the In-Motes web site at

http://www50.brinkster.com/georgoud/Videos.htm!

Using the In-Motes de-bugging option we were able at any point to monitor
the In-Motes engine that was running in the background by observing the number of
acknowledgements and outputs that were produced during the lifetime of an

application, Figure 5-2.

102



Figure 5-2: In-Motes middleware was able to output a set of variables that identified if
the software engine was facing any problems

A point of concern appeared when a repeatability test was applied to a single
node that was set to report one reading at a time to the base station, in our case
temperature, for every job In-Motes agent. Every node was set to uphold all mobile
code instructions in a sequence without flashing its memory for every new instruction
that was added. This had as result the stall of the mote after the 5" consecutive
instruction. Observing the error code that was produced from the middleware,
AgentSender: Fail sending agent, we concluded, that due to memory limitations every
node in the wireless sensor network could not store more than five instructions at a

time.

The next step was to create a more complicated scenario that would involve
the facilitator framework and protocol and would test the In-Motes engine. For this
reason we developed the Senselight application (Georgoulas & Blow 2006).
SenseLight is a multi-hop application that uses mobile code to collect light readings
and report back to the end user. The application and small variations of it was

deployed in the wireless sensor network by using the In-Motes middleware, the Agilla
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middleware and the TinyOS framework respectively. Figure 5-3 presents the core

differences between the three systems.

Platform Communication Network Rules Mobile
Topology Code/Agents

TinyOS Event Driven Pre-Programmed | Application | None
Specific

Agilla Tuplespace Grid Based Program Single Agents
Specific

In-Motes Tuplespace with | Dynamic/ Not Both Dynamic

added reactions | pre-programmed | application | Mobile code

and program
specific

Figure 5-3: Comparison Table of the three testing platform/middlewares

Both Agilla and In-Motes are using dynamic job mobile code that
communicate with the hardware of the sensors using the Linda like tuplespace
communication scheme, with the core difference that an Agilla mobile code has
multiple roles in the wireless sensor network while In-Motes mobile code has
predefined roles and tasks regulated by the facilitator communication scheme.
TinyOS on the other hand, is a stand alone event driven platform based on the nesC
interface modules that are pre-programmed for every available node of the wireless

sensor network prior to any deployment of the application.

The SenseLight application, Figure 5-4, produced two types of In-Motes
agents: a Facilitator Agent and a Slave Agent. For the trial we used two facilitator
agents and four slave agents. Each slave agent transmitted 1 light reading per message
to the facilitator node to which it was associated. Each facilitator agent was instructed
to transmit back to the end user 2 light readings per message. The SenseLight
application was valid only for data that was produced at an equal rate. Every node in

our network was able to handle up to 3 instructions at a time.
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BEGIN

// some code is missing..
// flapplies to facilitator instructions), s/ applies to
// slave instructions)

pushc 26
Jjump
fpushc 28

fputled // blink yellow led to indicate presence of the
agent on the slave node (ACK)

rjump

fputled // blink green LED

sgetvar 0

scopy

sinc

setvar 0

spushc PHOTO // specify which sensor you are using

sense // sense the environment

spushc 2

spushloc

fpusht VALUE //collect the value from the slave node
fpushn abc

fpushc 2 // template on top of stack

in // wait for matching tuple

fclear // clear the opstack

spushc 26

putled // blink green LED

frout 1 // remote out tuple containing first light
reading to the laptop

frout 2 // remote out tuple containing second light
reading to the laptop

spushc 1

sleep

rjump BEGIN

Figure 5-4: The SenseLight application that was deployed from In-Motes middleware

(Georgoulas & Blow 2006)

Running the Agilla engine in our motes, we deployed the same application

with the difference that this time all the agents were reporting back to the end user 1

light reading per message based on the Agilla engine specification and available

mnstruction set.

Removing the middlewares by flashing all the motes we run our SenseLight

application on the TinyOS platform. This time, because of the absence of tuple and

tuple spaces we made use of the EEPROM that the TinyOS platform offers. The

EEPROM serves as a persistent storage device for the mote, and is indispensable for
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many applications involving data collection, such as sensor data and debugging
traces. The EEPROMRead and EEPROMWrite interfaces provide a clean abstraction
to this hardware. The EEPROM may be read and written in 16-byte blocks, called
lines. Read and write to the EEPROM are split-phase operations: one must first
initiate a read or write operation and wait for the corresponding done event before

performing another operation.

As can be seen from the below graphs, Figure 5-5 to 5-7, In-Motes produced a
higher moving average of 2 light readings to the end-user over a period of 2 minutes.
Given a sequence @y of the packets delivered, the #-moving average was a new
sequence (5™ defined from the @ by taking the average of subsequences of 2

terms, which in our case was 120 seconds.

= )
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Figure 5-5: Packet Delivery Performance of Agilla over a period of 2 minutes
(Georgoulas & Blow 2006)
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Figure 5-6: Packet Delivery Performance of In-Motes over a period of 2 minutes
(Georgoulas & Blow 2006)
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Figure 5-7: Packet Delivery Performance of TinyOS over a period of 2 minutes
(Georgoulas & Blow 2006)
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We conclude that the use of a middleware has significantly improved the

performance in packet delivery. Both In-Motes and Agilla deliver better results than
of those produced by the TinyOS platform. In-Motes, based on the facilitator scheme,
was able to create a better performance rate than Agilla. The throughput of the In-
Motes middleware in the above graphs seems to vary and at some point to increase.
This behaviour was based on the fact that initially the facilitator nodes were
processing acknowledgements from the slave nodes, which they captured, that were
ready to receive requests. Each acknowledgment was a 4 bytes packet. Thus, there
was a small delay in obtaining the results initially but as soon as this was satisfied the
facilitators were reporting light readings back to the terminal, although this process
produced some delays in obtaining the data, it guaranteed that all nodes of the

wireless sensor network were active and communicating with the middleware.

All three systems as can be seen from the above graphs showed similar
behaviour in that after a time, on average more than 3 minutes of continuous
transmission, the rate of successful light readings delivery was reduced, mainly based
on the unreliable low-bandwidth radio that leads to transmission failures and packet
losses. The longest period that the application was set up running was 10 minutes
during which the packet delivery performance was varying for all three systems in a
similar way with the displayed graphs above. No catastrophic scenarios in terms of
total network failure were observed. On average, for all three systems, after the first
100 seconds the decrease in performance was sustained and remained roughly
constant on every trial even for the longest periods of continuous transmission (10
minutes). This was a first indication that our motes, independent of the platform that

were assigned to, were subject to failures of transmission leading to packet losses,
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especially when they were constantly active without any timeouts or sleep stages. The
success rate of packet delivered after the end of this trial was 65%, 57% and 55% for
In-Motes, Aggila and TinyOS respectively. Working with motes such as the ones we
used you can observe and identify failures only at the receiving and tr.ansmitting end.
One of our first lessons learned was that it was almost impossible to identify errors in

between those two ends during a transmission.

Another hurdle that was identified through the above experimental process
was the build in specification of the motes. Thus, identifying a fault in a mote and
recognizing the reason behind it, were two different things with reasons extending
from limited battery power to packet losses and internal race conditions. The abstract
character that the In-Motes middleware gives to the wireless sensor network and the
ability to observe at any point the actual behavior of the middleware engine proved
really helpful in order to identify and explain unexpected behaviors from the sensors

of our system.

The last part of the laboratory tests include a repeatability test between the
three approaches we described above. The test evaluated the total number of packets
received by the base station in a period of two minutes for 5 consecutive sessions
during which we point out that the sensing is not scheduled but the sampling/wait is

due to periodic request.

Figure 5-8 demonstrates the results of this test. Once again In-Motes
middleware had a better performance although due to errors mainly concerned with
packet losses and memory limitations of the individual sensors this performance

wasn’t steady. More precisely, In-Motes had variability in the results between each
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repetition of + 6 packets slightly better than that of Agilla that had + 7. TinyOS
maximum variability was + 10 packets. Also, In-Motes in all five repetitions of the
testing session had the higher number of packets delivered although it used 2 motes
less, occupied by the corresponding facilitators, than Agilla and TinyOS thus

demonstrating better use of the available motes of the wireless sensor network.
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Figure 5-8: Repeatability chart performance of In-Motes, Agilla and TinyOS
for S consecutive sessions (Georgoulas & Blow 2006)

5.3 The In-Motes Bins application

Having identified certain behaviors for both our middleware and the wireless
sensor network, we wanted to test the merits of our software in a real time
environment where the wireless sensor network would be applied in a busy everyday
location. The instability and the frequent errors of the network that were reported in
the laboratory initial trials was of a major concern and we were aiming to identify if

this behavior was generic and due to the character of the sensor nodes or if noise and
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interference from other electronic equipment in the laboratory made the wireless

sensor network susceptible to errors.

5.3.1 The wine merchant store

The wine merchant store is located in one of the busiest roads in Birmingham,
Hagley Rd and it is one of the largest ones in the West Midlands. Permissions were
acquired from Miss Jude Fenner, area manager, and the shop manager Mr. Cameron
Foreman to allow us to set up our wireless sensor network in the premises for a period
of four months. We had access to the whole store including staff areas during the
opening hours, as well as at the weekends. Based on that, we were able to set up the
network and run the application during a specific time period. Thus, we were not able

to have the network active during the night.

The store can be divided in two main areas, the public one which is the main
floor and consists of shelves and various wine displays along the floor and a store

room containing a huge number of wine boxes.

When we visited the store we were informed about a problem that they were
facing affecting them both financially and ethically, the problem of what they called
in generic terms, “corked” wines. An interview with the assistant manager, Mr. James
Gormley, gave us a better idea about the product, the problem they were facing and
the environment that we would apply our application (Appendix B). According to
Larsson and Spittler (1990) wine is a product which is very sensitive to light and
temperature variations. Wine must be stored in temperatures between 5°C up to 18°C.

The degree and the speed of the temperature changes are critical as large temperature
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changes or fluctuations will oxidize the wine. Also light/direct light is another factor
for ageing the wine faster. Thus, our trial involved the investigation of which areas of
the wine store were inappropriate for storing/displaying wine. The outcome of these
tests would be reported to the store manager. Figure 5-9 identifies the problem with
the “corked” wines which we were aiming to explain and provide a solution through

our trial.

Figure 5-9: “Corked” wines were a frequent phenomenon at the store prior to our visit

Thus, we developed the In-Motes Bins application, a mobile code real time
application developed for monitoring environmental conditions (Georgoulas & Blow
2007). In terms of hardware we have used in total a set of 10 mica2 sensors with the
accompanied MTS310CA sensor boards. One base station, a laptop connected with an
MIB520CA interface board fixed in a secure area of the store served as the
aggregation point. All the hardware was provided by the Crossbow Technology Ltd.
All the sensor motes were working under the TinyOS operating system and the

application was deployed through our In-Motes middleware, Figure 5-10.
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Figure 5-10: The In-Motes V1.0 GUI and the Oscilloscope Interface that were used for

the In-Motes Bins Trial

5.3.2 The In-Motes Bin design

Our trial was divided into two areas as we are going to demonstrate in the next
sections. Between the months June 06 and July 06 the In-Motes Bins application was
applied exclusively to the warehouse of the store while between August 06 and
September 06 the wireless sensor network and the application were deployed in the
main floor of the store. As we mentioned earlier we had access to the store only

during the opening hours and not during the night.

To deploy the In-Motes Bins application in the warehouse we used in total 3
mica2 sensors and one interface board connected with the laptop which served as the
aggregation point. One facilitator agent was responsible for capturing the available
nodes of the wireless sensor network and all the queries were forwarded using static

job agents (Georgoulas & Blow 2007).
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The facilitator captured the nodes and was ready to receive the first request in
I5sec. We were sending static temperature job In-Motes agents, which did not
provide any local decision making to the wireless sensor network every 30min and the
facilitator was reporting readings from its slaves back to the base station“for a period

of Imin.

The job In-Motes agents were transferred to the wireless sensor network by
cloning. Thus, each node was assigned with a residing static job agent for the duration
of the measurement period, consuming 68 bytes of the available memory. Before we
re-deployed the application, we flushed the slave nodes by removing the temperature

job tuples in order to have enough memory space.

In two months we collected 64800 readings from the slave nodes in the
warehouse giving a very clear picture of the temperature variations that were taking
place. Figure 5-10, demonstrates the In-Motes Bins application code that was

deployed to the wireless sensor network during the warehouse trial.
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BEGIN

// some code is missing.

fpushloc 3

fceq

frjumpc CLONE 3 // make 3 clones of the agent
CLONE 3

fpushloc 3

fclone

halt

CLONE 3

fpushloc 3

fclone

CLONE 3

fpushloc 3

fclone

halt // stop cloning

sputled // blink the green LED

sgetvar 0 // increment the counter stored in heap [0]
scopy

sinc

setvar O

spushc TEMP // specify which sensor you are using
sense // sense the environment

spushc 2

spushloc

srout // remote out tuple containing temperature
//reading to the facilitator

fpushc 1

frjump BEGIN

Figure 5-11: The In-Motes Bins application that was deployed from In-Motes

middleware during the warehouse trial

In order to deploy the In-Motes Bins application in the main floor we used all

our available mica2 sensors. For reasons that we are going to present next and explain

further in the analysis section of this chapter we have changed the In-Motes Bins

specification, with the application this time having core design differences with the

one that was deployed in the warehouse.

Firstly, we used dynamic job agents for forwarding all the queries in order to

provide a more energy efficient way for the motes to present measurements by

eliminating re-deployments (Georgoulas & Blow 2007). Every job request that was

forwarded to the wireless sensor network provided a specific critical parameter used

to locally determine if a measurement should be reported. Thus, the total collected
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readings would be less than before and the data more meaningful making our analysis

in the end far easier.

Secondly, the dynamic In-Motes job agents were transmitted in the wireless
sensor network by migration rather than cloning. For the warehouse trial and since the
application involved only three sensors, cloning was sufficient enough but still quite
energy consuming. Considering the scale of the network in the main floor and the fact
that we were trying to conserve as much energy as possible, agent migration in terms

of forwarding user queries and collecting results was the right decision.

The dynamic In-Motes job agent was sent once inside the network and was
capable of local decision making. The dynamic In-Motes job agent works by inserting
a job tuple upon arrival. The job tuple this time apart from the string containing the
job description will also contain the string ‘crt’” which matches the specific critical
parameter for the job. As before if the behavioral rules of the facilitator are satisfied
the dynamic job agent will migrate to all its slaves. The slaves wake up every 30
minutes and sense one reading. If the reading is above the critical parameter then the
slave node will transmit readings for 1 minute and then it will sleep until the next

wake up time (Georgoulas & Blow 2007).

Figure 5-11, demonstrates part of the In-Motes Bins application code that was

deployed to the wireless sensor network during the warehouse trial.
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// Variable Declaration code omitted
spushm TEMP

spushm CRT

sense // sense temperature or light

IF TEMP > CRT THEN

spushm 2

spushloc

rout // remote out tuple containing temperature reading
//to facilitator

spushm 1

sleep // for 1 minute

ELSE

sleep // for 1 minute
// some code 1s missing ..
rstart BEGIN

Figure 5-12: Part of the In-Motes Bins application that was deployed from In-Motes
middleware during the main floor trial (Georgoulas & Blow 2007)

We initialized our wireless sensor network by injecting once two In-Motes
facilitator agents with four nodes acting as slaves to each of them. The facilitators
captured the nodes and were ready to receive the first job requests in an additional 35s
based on the fact that the capturing sequential procedure was repeated twice with an
equal amount of slave nodes, making the total time of 50s. We send, once, two

dynamic job agents to the wireless sensor network.

The above procedures, as well as the wake up calls and the transmission of
data readings were executed by the application without us interfering with the process
unless a failure was noticed. Since this time our application was autonomous, no
flushing of the slave nodes took place unless a network failure occurred. Using the
dynamic In-Motes job agent and the facilitator agent, the wircless sensor network
could report temperature and/or light readings, if the two facilitator nodes were

instructed to work independently by allocating to each of them a different job agent.

117



5.4 The In-Motes Bins field tests

In the next sections we are going to provide an analytical report of the findings
of the field trial that lasted for four months in a wine chain store (Oddbins) between

June and September of 2006.

5.4.1 In-Motes Bins: The Warehouse

The warehouse was the perfect location to start the trial and deploy our In-
Motes Bins application based on facts such as its business in terms of people
interactions and size as it was smaller than the main floor. Thus, we were able to set
up a small wireless sensor network, using initially half of our sensors and deploy our
application measuring only temperature variations since the warehouse had at all

times constant artificial lighting due to absence of any windows.

The warehouse was divided in three sections with a single sensor placed on

the highest point of each section. The aggregation point was placed in the office that

existed in the warehouse. Figure 5.13
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Sector 1 Sector 2

Sector 3

Aggregation
Point

Figure 5-13: The warehouse was decomposed in three sections with one sensor each
reporting back to the interface board at the aggregation point

The mote’s output, Figure 5-14, was converted to Kelvin degrees using the following
approximation over 0-50 °C:

VUT(K)=a+ bXIn(Rthr) + ¢ X [In(Rthr)]3 (2)

Where:

Rthr = R1(ADC_FS-ADC)Y/ADC

a=0.00130705

b =0.000214381

c = 0.000000093

R1=10 kQ

ADC_FS=1023

ADC = output value from Mote’s ADC measurement
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Figure 5-14: Display of temperature readings from the sensor in section 1 of the
warehouse (Georgoulas & Blow 2006)

Section 1

Section 1 was quite close to the office and to the warehouse door. Thus, its
sensor was the closest one to the aggregation point, 10.2 meters, and also the one that
would have encounter the biggest volumes of outside interference. By this term we
mean the members of the staff that would move quite frequently around it. Due its
location we weren’t expecting really high temperatures since the air seemed that was

circulating enough.

On average we were collecting 250 temperature readings per day from the
sensor that was placed in Section 1. Figure 5-15 and 5-16 display the maximum
temperatures that Section 1 reported during two days in the third week of June. The
straight line in the graphs identifies the borderline of 18 °C, anything above that

temperature and the products would have been affected.
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Figure 5-15: Section 1 maximum temperature readings during 20/06/06
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Figure 5-16: Section 1 maximum temperature readings during 24/06/06

From the above graphs we identify that Section 1 was reporting quite high
temperature variations but without overcoming the borderline of the 18 °C. These
graphs are representative of the temperature readings we collected during that month.

Thus, the wines that were stored there suffered from those temperature fluctuations in
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a long term and only if they were located there for more than one month the quality of

the product would be reduced.

A similar behavior was reported during July with the main difference that the
fluctuations were higher than those of June and the maximum readings were closer to

the borderline of the 18 °C as shown in Figure 5-17.
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Figure 5-17: Section 1 maximum temperature readings during July

Section 2

Section 2 was located in the middle of the warehouse and on the right, 13.72
meters away from the aggregation point. It was relatively far away from the
warehouse door so although we were expecting less interference from the employees,
the air did not circulate equally well as in Section 1 making us to predict that we

would monitor higher temperatures.
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Figure 5-18 demonstrates the maximum temperature readings that the sensor

was reporting in Section 2 during July. We were right with our predictions, as this
time the temperatures were raising even above 18 °C. From this analysis it was
obvious that products that were stored in that section if they were not placed soon

enough in the main floor they would be affected relatively easy.
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Figure 5-18: Section 2 maximum temperature readings during July

Section 3

Section 3 was located towards the end of the warehouse next to the fridge and
underneath a powerful fridge motor. The sensor was placed 16 meters away from the
aggregation point and it was not in the line of sight of the interface board. Also it was
the section of the warehouse where there was a lot of human activity and movement

of boxes.

Figure 5-19 demonstrates the maximum temperatures that the sensor of
Section 3 reported during July. We were impressed as temperatures reached even to

levels above 30°C making the area totally inappropriate for storing any kind of wine.
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Figure 5-19: Section 3 maximum temperature readings during July

In terms of identifying the bad sectors for storing wine in the warehouse our
analysis of the results provided us with a really good view of the problem that the
store was facing. Especially Section 3, where the fridge motor engine that existed on
top of the boxes was generating extremely high temperatures. Our trial analysis was
forwarded to the manager and as can be seen for Figure 5-20 changes took places in

the warehouse after the end of our trial.

Figure 5-20: The warehouse before (left) and after (right) the finish of our trial
(Georgoulas & Blow 2007)

124




5.4.2 In-Motes Bins: The main floor
The In-Motes Bins application was deployed in the main floor of the shop
during August and September and as we mentioned above the application had

significant changes from the one that was applied in the warehouse.

In total the main floor was divided into 8 sections, one facilitator node for

every four nodes, as can be seen from Figure 5-21.

Figure 5-21: A 3D representation of the 8 sections of the main floor

A mica2 sensor was also placed outside the store in order to observe the
outside temperature changes creating a better comparison model, Figure 5-22. This
node was communicating directly with the interface board at the aggregation point
and it was accessed at random intervals. The wireless sensor network was reporting
either temperature or light readings for most of the days. At random time intervals in
order to examine the flexibility of our middleware we were assigning one facilitator
and its “federation” of nodes to report light readings while the other facilitator was

continuing reporting temperature readings.
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Figure 5-22: A mica2 sensor was placed on a top of tree providing us with outside

temperature readings

Temperature Analysis

The facilitator node 1 was set to collect temperature readings from sections 1-

4 and the distance from the aggregation point was 14.5 m. The distance between the

facilitator node and its slave’s nodes was less than 2 m. Figure 5-23 and 5-24 shows

the maximum temperatures that were recorded during August in all four sections.
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Figure 5-23: Section 1 and 2 maximum temperature readings during August
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Both Sections as can be seen were reporting temperatures above 18 °C at some
point during August with Section 1 alerting the system fewer times than Section 2.
The temperature fluctuation pattern for both sections that was produced was quite

similar with the outside temperature changes.
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Figure 5-24: Section 3 and 4 maximum temperature readings during August

Section 3 was by far reporting the highest temperatures than any other section
of the facilitator node 1 and its sensor alerted the system more times than any other
sensor of the group. As before both Sections 3 and 4 were following a similar

fluctuation pattern as this of the outside temperature.

The facilitator node 2 was set to collect temperature readings from sections 5-
8 and the distance from the aggregation point was 55.5 m. The distance between the
facilitator node and its slave’s nodes was as before less than 2 m. Figure 5-25 and 5-
26 shows the maximum temperatures that were recorded during August in all four

sections.
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Figure 5-25: Section 5 and 6 maximum temperature readings during August
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Figure 5-26: Section 7 and 8 maximum temperature readings during August

Section 5 and 6 were following the pattern of the other sections with
temperatures rising above 18 °C especially during the hot days of the month. Section
7 was the worst section and the most active of the whole main floor with temperatures

above 20 °C and fluctuations almost identical to the outside ones. This can be
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explained as this section was the closest one to the front window of the shop. The
lowest temperatures and alerts were observed in Section 8. This section although
quite close to the shop windows it had the advantage that it was next to the main door
and only 2 m away from the air-conditioning unit. During our trial in the main floor

the air-condition unit was set constantly at 20 °C.

An additional problem of the store in terms of its temperature fluctuations was

this of the wooden selves and displays, Figure 5-27.

Figure 5-27: Se‘ction 7 that reportd te highest temperature readings'.”Wines were
displayed on wooden boxes that were cooling down very slowly (Georgoulas & Blow
2007)

During the summer months almost every single wine of the main floor was
exposed to temperatures that were not appropriate and it was almost certain that wines
that would have stayed for too long especially on sections such as 4 and 8 would have

been corked and aged faster.

Light Analysis

The collection of the light readings was executed in an identical way as the

temperature one. The light sensor is a simple CdSe photocell. The maximum
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sensitivity of the photocell is at the light wavelength of 690 nm. When there is light,
the nominal circuit output is near VCC or full scale, and when it is dark the nominal

output is near GND or zero (Crossbow manual 2004).

In order to obtain a critical parameter for the light readings we instructed the
wireless sensor network nodes to report one light reading per packet for 2 minutes
during the beginning of the trial. From the collected resuits from all 8 sections we
used as critical parameter the value that was reported most often from all the sensors.
This value was set to be 515. We were aiming through the light trials to identify the

sections with the longest fluctuations and the highest values.

Figure 5-28 and 5-29 display the maximum light readings that were reported

from Sections 1-4 from the facilitator node 1 during September.
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Figure 5-28: Section 1 and 2 maximum light readings during September

130



Maximum Light Readings

700

600 +
500 1+ 7}
400 -
Section 3
300 + Section 4
- Borderline

200 +

100 -

-100

1

-
N
N

1 2
7/819/0(1|2
Section3 [0(51/0/0]0]0/0ls10]51]0]0 0/s1/51s1/0/0
Section 4 |5152/5151 0 | 0 52/5456/52/58/57 53 51|56/55/54/57/59/59/545
Borderline |51/5151/51|5151/51/51/51/51/51/51/51/51/51/51/51/51/51/51|51|51/51/51/51

olaN
folo N

2
7

0|52|54/51|51
0 |54/56/59/57
51511515151

o olo -

2R
(S 0F e
i N
)]

Days (Dates)

Figure 5-29: Section 3 and 4 maximum light readings during September

As can be seen from the above graphs Sections 1 and 2 where the ones that
alerted the system the fewer times from the facilitator group one and they did not
report frequent or very high light variations. This can be explained as they were quite
far away from the front windows of the store and they had a constant artificial
lighting. On the other hand, Section 4, which was quite close to the store windows,
had alerted the system every single day reporting readings to the facilitator node 1 that

exceeded quite often the borderline of 515.

Figure 5-30 and 5-31 present the maximum light readings that were reported

from Sections 5-8 from the facilitator node 2 during September.
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Figure 5-30: Section 5 and 6 maximum light readings during September
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Figure 5-31: Section 7 and 8 maximum light readings during September
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The facilitator at node 2 was by far more alerted than this of node 1. All of its
Sections were relative close to the store windows affecting them accordingly. Thus,
Section 7 and 8 which were the closest ones recorded the highest values and the most
frequent light variations. Wines that were stored there and more precisely in Section 7
which the temperature analysis identified a major problem, were almost certain that if
they stayed for a period of one week or more at the same location would be oxidized

really fast.

5.5 The In-Motes Bins analysis

The two months we spend in the warehouse helped us to understand better the
nature of the wireless sensor network we deployed and was the first test of our
middleware in a real environment. Packet delivery did not affected by the distance
between the aggregation point and the sensors rather from facts such as human
interference with the environment and location in terms of eye of sight of the sensors

as the below analysis presents.

The maximum number of packets that Section 1 should report back to the
terminal according with the application was 21,600 per trial that was lasting for 12
hours per day, 1h and 20 minutes of which was constantly sending readings to the
base station, 1 reading per second for a period of 1 minute. Figure 5-32 demonstrates
the total number of packets, containing one reading each, that were received per day

from Section 1 during July.
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Figure 5-32: Total number of readings received from the base station from Section
1during July

It is obvious from the above graph that we didn’t reach at any point the
maximum number of readings per day. We concluded that the success rate of
receiving the total readings from Section 1 was 1.49% during July and 1.55% during

June.

Reasons behind this rate were memory limitations from the sensor and
interference from the employees which were moving around the warehouse during the
transmissions both resulting in the sensor stalling its operation. Even though, the
sample of readings was large enough to provide us with a clear picture of the

temperature variations of Section 1 during those months.

The total numbers of readings that Section 2 produced was slightly better than

this of Section 1 during July, Figure 5-33.
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Figure 5-33: Total number of readings received from the base station from Section 2
during July

Although still below the maximum number of readings the sensor could send
to the base station, the successful rate of packet delivery was 4% during June and
3.87% during July. This increase can be explained due to the fact that the area was not

affected by the employee’s movements during the transmissions in a same way we

observed in Section 1.

Section 3 also had the worst rate of packets delivered to the base station,

Figure 5-34.

135



600

500

400

300

200

Total no of Readings

o9

Days (Dates)

Figure 5-34: Total number of readings received from the base station from Section 3
during July

The successful rate was on the levels of 1.08% during June and 1.11% during
July identifying that the transmission was affected by factors such as the busyness of
the environment and of the fact that the sensor was not in the line of sight of the
interface board of the aggregation point. Still, the data that was collected was

sufficient enough for the purpose of the experiment.

Overall, we observed and recorded the following type of errors (Figure 5-35)

for the duration of the warehouse trial:
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Figure 5-35: A collection of In-Motes errors/warnings notifications as they were
displayed during the trials

1. Stall of the whole network: 25

Describes the condition where the whole network was inactive and no readings
were received at the user end. Reasons behind this behavior could be identified
due to the below error types. The remote action that was taken was to send a fix
In-Motes agent to flash the memory of all the network nodes and reinstall the
application.

2. AgentSender Fail sending agent: 280

Describes the condition where one or more nodes were not responding to user
requests. The mobile code transmitted from the facilitator node never reached its
destination. The middleware was providing this information and the actions that
were taken were: Either send a fix In-Motes agent to flash the node’s memory and
then send the user request again with a new In-Motes job agent or physically visit
the node turn it off and on again. The problem was visualized from the user as the

problematic node was blinking its red LED.

137



3. Null Readings: 350

Describes the condition where the facilitator node was sending back to the end

user a null reading. No actions were taken place.

4. Facilitator Buffer_Overflow: 275

Describes the condition where the facilitator node could not handle all the
receiving traffic resulting in stalling its operation. The red LED was blinking and
a pop up window was informing the user about the error. A fix In-Motes agent

was send from the user in order the internal memory of the node to be flashed.

5. Node Buffer_Overflow: 180

Describes the condition where one or more nodes of the network could not handle
any queries and wasn’t reporting back to the facilitator node although it had
accepted and stored a new instruction (AgentSender Success sending agent). The
red LED was blinking and a pop up window was informing the user about the
error. A fix In-Motes agent was send from the user in order the internal memory

of the node to be flashed.

6. AgentReceiver Fail receiving agent: 231

Describes the condition where one or more nodes of the network could not handle
any queries and wasn’t reporting back to the facilitator node. Although the
destined node had accepted (AgentSender Success sending agent) the new In-
Motes job agent the new instruction was never matched with any template in the
tuplespace so the new tuple that was added did not trigger any reaction from the

node. The red LED was blinking and the In-Motes engine was informing the user
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about the error. A fix In-Motes agent was send from the user in order the internal

memory of the node to be flashed.

7. Misplacement of sensor/Drop/Other: 30
Describes the condition where a sensor accidentally was misplaced, dropped, or

switched off during its operation.

From the above error codes and the behavior of the network during the
warehouse trial we concluded that the main reasons of a mote to malfunction in a

relative active physical environment were:

e The fraffic, which in some nodes could easily lead to packet losses or store
and forward delays for the facilitator nodes, packets containing either sensor
results back to the end user or parts of an In-Motes agent. Re-transmission that
were taken place incase of an In-Motes agent not reaching its destination did

not decrease the levels of the problem.

e The limited memory of the hardware that did not allow us to store more
mnstructions to the actual mote. The In-Motes engine virtual memory and the
Instruction Manager although provide better memory management at that set

up still did not lead to an ideal memory allocation.

e The battery levels of a mote. For every trial (warehouse/main floor) we were

using a new set of AA batteries for every mote. We observed that the network
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under the same conditions and set up was producing more errors such as the

ones mentioned above towards the end of the first month.

e The physical interference. The warehouse was a relative active environment
with staff members moving in various locations during the trial. We observed
that errors that recorded above tend to be more frequent when during a
transmission from a specific location physical activity was taken place i.e.

someone was moving and repositioning boxes in that area.

o The reaction registry and the instruction manager of In-Motes. The In-Motes
communication protocol that was based on a tuplespace scheme with added
reactions produced some minor problems, as we recorded that at certain
instances although an In-Motes agent had arrived and stored a new tuple in the

tuplespace of a mote, a reaction was never fired resulting the stall of the mote.

The In-Motes Bins trial in the main floor tested the merits of the middleware
at a maximum level. The sensors at random time intervals continued to stall their
operation and especially in Sections that were alerted more often. When a mote was
offline or stalled its operation the rest of the network continued to function normally
and we did not observe any catastrophic scenario where the network or a group of

nodes would stop working due to this reason.

As before, the moment this error was noticed, simply we were sending a fix
agent to that specific mote and we were flushing its memory. Due to the facilitator

communication protocol that we presented in the previous chapter the slave node was
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re — captured and joined the same federation as before, a process that was

accomplished in less than 60 sec from the moment the error was observed.

In terms of packet delivery, the performance rate was higher although we were
using more motes in the wireless sensor network. Figure 5-36 presents the maximum
number of temperature packets send from Section 7 node during August. We realized
that the introduction of the critical parameter in the application had improved the
dissemination of the available resources for the wireless sensor network. Thus, as an
immediate effect the packet delivery performance of the network was improved even
for sensors that they were active most of the time. The successful rate of packet
delivery for Section 7 was calculated, according with equation 3, to be 25.6% during
August and 36.3% during September. This performance did not get affected by factors
such as the location or distance from the aggregation point or the topology of the
nodes in the environment that was quite dynamic due to the fact that nodes

accidentally could be misplaced from customers or staff.
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Figure 5-36: Total number of readings received from the base station from
Section 7 during August

Also, we did not observe any store and forward delays, from the facilitator
nodes as it was very rarely phenomenon all four nodes under the same facilitator to be
activated at the same time. We applied some test also where one facilitator node will
report only light readings while the second one only temperature ones and we did not
observe any problems. The flexibility of the middleware was even allowing us to
instruct individual nodes of the same facilitator to report dual readings at random

interval and as before no transmission or packet delivery problems where observed.

Applying a WSN application in a dynamic environment such as that of the
wine store can introduce many unexpected errors. People can accidentally misplace or
drop a node and this can cause node or even network failures. To deal with these

problems we introduced a very flexible interface where a job request or even the

142




whole application could be reinstalled in less than lmin. Also our high level
architecture based on the bacterial strains behavioural rules and the facilitator
communication model enabled sections of the network to continue to report readings

even if node failures were present (Georgoulas & Blow 2007).

Overall, we observed and recorded the following type of errors for the last two

months of the main floor trial;

—

Stall of the whole network: 20

2. AgentSender Fail sending agent: 200

3. Null Readings: 400

4. Facilitator Buffer_Overflow: 200

5. Node Buffer Overflow: 120

6. AgentReceiver Fail receiving agent: 245

7. Misplacement of sensor/Drop/Other: 40

As can be seen from the below graph (Figure 5-37) both the middleware and
the network produced less errors although the scale of the application was larger. The
In-Motes engine and all the middleware functions including the communication
protocol were unmodified. The only changes that took place, as we discussed earlier,
were the dynamic In-Motes job agents and the insertion of another facilitator node.
Thus, the creation of a more flexible application reduced both the traffic and the
energy levels of the individual motes resulting in less network errors and better packet

delivery.
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Figure 5-37: Comparison error chart between the warchouse and the main floor
trials

5.6 Summary

This chapter presents the In-Motes V1.0 middleware testing and evaluation.
Initially we carry out experiment in the controlled environment of the labs where we
observed the behaviour both of the wireless sensor network and the middleware. We
compared and analysed our approach with two middlewares by creating a simple
application, in order to see where our middleware stands in comparison with the other
two approaches. Having identified a number of problems through those trials such as
frequent stall of the motes and network failures we wanted to test our middleware in a
real environment. Therefore, we created the In-Motes Bins application that was
deployed in two phases for a period of four months in a wine merchant chain store.
We were able through our trial to provide with a detailed analysis of the
environmental conditions of the store and identified bad sections which were causing

problems to the selling product. Graphs were produced showing temperature and light
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variation in both the warehouse and the main floor of the store. The merits of our
middleware were also tested and various conclusions were made. For example,
through the packet delivery analysis we observed that the transmission of packets is
highly dependent with the battery power of the motes and concluded that the more a
mote is used in an environment the more susceptible would be to failures such as

stalls of its operation as its battery levels are reduced.
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CHAPTER 6

The In-Motes Reloaded Analysis

6.1 Introduction

The aim of this chapter is to present the In-Motes Reloaded middleware and
the application that was developed, as part of the testing of the updated platform,
called In-Motes EYE. The four months trial in the wine store of the In-Motes through
the In-Motes Bins application offered us a lot of valuable lessons concerned with the
applicability and adaptability both of the wireless sensor network and of the actual
middleware we developed. The next step was to use this experience and produce an
updated version of In-Motes which we called In-Motes Reloaded. In the next sections
we are going to present the number of changes that were applied in some of the core
functions of In-Motes together with additional attributes that were added in an effort
to make our middleware more adaptable and flexible than before. In order to test the
merits of the In-Motes Reloaded we developed an application that was measuring the
acceleration of moving objects in an environment and which we named it In-Motes

EYE.

6.2 The In-Motes Reloaded middleware design

With the updated version of the middleware design we want to address certain
issues such as the fault tolerance of the software and its ability to reconfigure

effectively the wireless sensor network. Also we realized through the previous trials
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that if motes are overactive in an environment they will quite often stall their
operation. The reasons, behind that behaviour as was shown in the previous chapter,
were mainly the memory limitations of the motes and the energy consumption of the
batteries. Thus, with In-Motes Reloaded our basic aim is to overcome those problems
by creating a more flexible and less energy consuming platform for the applications
that we will deploy in the wireless sensor network. As we are going to see in the next
paragraphs we focus on altering some of the In-Motes engine parameters, add more
op codes and nesC interfaces, update the instruction set and in general pass more
responsibilities to the actual middleware, allowing us to deploy less complicated and

less energy consuming applications to the wireless sensor network.

One of the foundational changes that can be found in the updated version of
the middleware 1s the way in which the mobile code is transmitted inside the wireless
sensor network. As we showed, with the In-Motes Bins application, this attribute was
application dependent and what we name In-Motes agents could travel either by
migrating or cloning. In-Motes Reloaded specifies that In-Motes agents are able to
travel from one node to another only by migrating. The cloning instruction and the
according op code still exist in the middleware, incase a developer wants to use it, but
unless it is instructed otherwise through the deployed application the middleware
assumes and registers all In-Motes agents for migration for all the applications. Thus,
there is no need to add a cloning or migrating instruction to the application, as we did
before upon deployment, as the rule manager of the middleware will deal with it.
Figure 6-1, presents part of the nesC interface code, AgentMgr.nc, for the In-Motes
agent migration that is called inside the rule manager of the In-Motes Reloaded, the

commented section is part of the cloning method that we do not use anymore.

147



// Some code is missing..
if (call LocationUtilI.equals(&dest, call ContextMgrI.getLoc())) {
// Allow an agent to migrate
(op == OPmove) {
context->condition = 1; // move was successful
context->pc = 0; // reset program counter
call OpStackI.reset (context) ;
call HeapMgrI.reset (context) ;
call RxnMgrI.flush(&context->id) ;
return SUCCESS;

// WARNING: IF YOU UNCOMMENT THE FOLLOWING LINES YOU NEED
//TO SPECIFY IN THE APPLICATION IF YOUR AGENTS ARE
//MIGRATING OR CLONING
//if (op == OPclone) {
//id.id = call AgentMgrI.getNewID(); // create a new ID
//for the clone

//Some code is missing..

Figure 6-1: The above nesC code was allowing all the In-Motes Reloaded agents to
migrate in order to move inside the wireless sensor network

Having used the cloning method in the warehouse of the store for transmitting
agents we realized that this method was quite consuming both in terms of memory
and energy. By flooding the available network with clones of a single In-Motes job
agent means that nodes are awake more often therefore consume more energy for
every transmission. Also, as we have mentioned in earlier chapters, the agents of our
middleware are transmitted not as a single packet but they are divided into a number
of packets in an effort to overcome the unreliable bandwidth of the wireless sensor
network. Thus, cloning was increasing the traffic inside the network and the number
of re-transmissions from every node, incase of a packet loss, affecting badly both the

middleware as well as the nodes memory/energy resources.

The In-Motes Reloaded engine is updated as well, through the InMotes.h

component in an effort to create a better debugging option for the developer and a
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better management scheme of the available memory of the system in an effort to

increase the fault tolerance of the middleware’s core engine.

Figure 6-2 presents the additional debugging code that is added to the In-
Motes Reloaded engine interface. The main reason behind this addition is to identify,
before we install and run any applications, the correct functionalities of the facilitator
and slave In-Motes agents and acknowledge any initial errors such as race conditions

and queue overflows.

WARNING: COMMENT THE FOLLOWING LINES WHEN YOU ARE RUNNING AN
APPLICATION

#define EXPERIMENT_MODE_INMOTES_RELOADED

#define NUM EXP EPOCH 4

#define BASESTATION~ADDR 0

#define UART X O

#define UART Y 1

#define BCAST X 0

#define BCAST Y 2

// epoch settings

#define EPOCH PERIOD 2048 // base epoch rate

#define INMOTES RAND 1024 // random delay

#define INMOTES TIMEOUT 10240 // time before visiting a neighbour
// The FACILITATOR can communicate with 4 SLAVE MOTES
#define INMOTES MAX NUM SLAVES 4 // must = MAX(4)

// blinks the red and green LEDs for half a second when the
//facilitator captures and communicates with the slaves
#define SHOW_BOUNCE_LED

#define BOUND_LED TIME 256

#define REPORT_ALL_ ERRORS

Figure 6-2: The additional experimental code that was added to the In-Motes Reloaded
engine for identifying errors prior the deployment of an application

The above code, when uncommented, is allowing the developer prior of the
deployment of any application to test the communication protocol and the capturing
procedure of the facilitator agents, verifying in parallel that all the available nodes are
communicating with the right facilitator. Also, in the end of the predefined epoch it
produces a list of any initial errors during this communication set up that otherwise

would have passed undetected.
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The engine is also initialized with a set of new values for important parameters
such as the number of In-Motes agents available in a node per measuring period and
the size of the operand stack of the middleware. In the first version of the In-Motes
engine, a node could handle up to 5 different In-Motes agents at the same time.
During the In-Motes Bins application this number was reduced to 2 and now In-Motes
Reloaded is assigning only 1 In-Motes agent per node in the wireless sensor network.
Reasons behind these reductions were purely memory limitations of the sensor
devices caused by the number of instructions that were processed per agent during an
application. Also, by having a large number of mobile codes residing in a node but
without been active was an extra cost for the virtual memory of the middleware.
Using dynamic In-Motes agents, as we did in the case of the In-Motes Bins
application, a single In-Motes agent per node was sufficient for the execution of even

complex scenarios.

The above lightweight approach of assigning a single In-Motes agent per node
allowed us to reduce the size of the operand stack in bytes, since the numbers of
instructions that would be processed by a node were less than before. Thus, the In-
Motes Reloaded operand stuck is set to be 100 bytes from 150 bytes that it used to be.
This change improves the middleware’s ability to handle multiple packages and
queries by allocating more resources to the In-Motes Reloaded Rules manager and

Facilitator Manager.

Last but not least, the states of an agent inside the wireless sensor network are

updated as well, Figure 6-3. To the already existed ones of RUN, SLEEP and WAITING

we add the ARRIVING, LEAVING, HALT, READY and BLOCKED. Thus, we are able to
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control better the interconnections between the In-Motes agents and we can identify

easier any deadlocks during the lifetime of an agent, caused mainly by packet losses

during a transmission.

typedef enum {
INMOTES_STATE HALT
INMOTES STATE WAITING
INMOTES STATE_RUN
INMOTES _STATE ARRIVING
INMOTES_STATE LEAVING
INMOTES_STATE BLOCKED
INMOTES STATE READY
INMOTES_ STATE SLEEPING
INMOTES STATE WAIT

} InmotesAgentContextSta

// no agent present in a node

~

// execute the given reaction

// due to behavioural rules

// sleeping waiting for a reaction

~

il
W00 Uk WNRHEO

te;

Figure 6-3: The In-Motes Reloaded agent states were updated by adding more in an
effort to control better their interconnections

Based on the above modifications the MigrationMsgs.h nesC module was

updated. Thus, the In-Motes Reloaded sender buffer size is reduced to 2 from 4 and

the receiving buffer size from

3 to 2. By this reduction we are aiming to overcome the

buffer overflow problems that we faced when we had more agents in the sending and

transmitting end, Figure 6-4.

enum {
INMOTES_HEAP MSG_SIZE
INMOTES_OS_MSG_SIZE
INMOTES_SNDR_BUFF_SIZE

INMOTES RCVR_BUFF_SIZE
INMOTES SNDR_MAX TIMEO
INMOTES SNDR_MAX RETRI

32,

31,

= 2, // max number of agents being
//sent

= 2, // max number of agents arriving

UTsS = 4,

ES = 2,

Figure 6-4: The In-Motes Reloaded Sender/Receiver buffer changes were aiming to
overcome the buffer overflow problem

Modifications are also applied in the tuple space specification in an effort to

conserve energy during the

communication of an In-Motes job agent with the

hardware and also to overcome the error we noticed in the In-Motes Bins application

with specific reactions not been able to trigger a predefined action from the node.
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Thus, we alter the TupleSpace.h interface by decreasing both the individual size of the
tuple spaces allocated physical memory and the maximum number of field types for

every tuple, Figure 6-5.

typedef enum |

INMOTES TS SIZE = 50, // size of RAM tuple space in bytes
INMOTES_MAX TUPLE_SIZE = 25, // the max number of field bytes in a
//tuple

INMOTES OUT Q SIZE = 3, // the max number of pending OUT operations
INMOTES RTS TIMEOUT = 512 // remote op timeout in binary
// milliseconds
INMOTES_RTS_MAX NUM TRIES = 2 // the max number of times a
//request is sent
REACTION MGR BUFFER_SIZE = 5 // the max number of reactions
} TupleSpaceIConstants;

Figure 6-5: The In-Motes Reloaded tuple space modifications

The In-Motes Reloaded tuple space size is reduced by 50 bytes and the
maximum number of field types per tuple by 25. With these changes we are aiming to
reduce the physical memory that every mote is consuming when a reaction enters a
tuple space. Moreover, we left the maximum number of reactions a tuple can handle
the same but we decreased the maximum number of request we were sending in order
to minimize any chances for race conditions to appear during a transmission that

would lead the mote to stall its operation.

The In-Motes Reloaded middleware comes with a new graphical user
interface, Appendix B, which allows the user to deploy applications to the wireless
sensor network easier and faster. Thus, agent definitions such as fix agents and
facilitator agents are loaded to the wireless sensor network directly with the press of a
button since their code exists in the middlewares engine. Also, the In-Motes Bins
application can be selected directly as well without the user to have to write any code

for it. A grid format for the wireless sensor network is also available, as described in
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the In-Motes Reloaded User Guide in Appendix B. We used this format for debugging
reasons only but it can be applied to certain applications as well, allowing the user to

instruct individually every node with a specific unique task.

6.3 The preliminary tests of the In-Motes Reloaded

The SenseLight application that was developed for the preliminary tests for
the In-Motes middleware was used to test the merits in terms of packet delivery
performance of the In-Motes reloaded as well. The wireless sensor network this time
consisted of 11 mica2 nodes and 1 MIB510 interface board. Two facilitator In-Motes
agents were deployed at once and captured four slave nodes establishing the
communication protocol prior to installing the application. The application was using
45 bytes job agents as we described before and were reporting one light reading per
message for a period of two minutes. The longest period that the application was set
up running was as before 10 minutes during which the packet delivery performance
was varying. No catastrophic scenarios in terms of total network failure were
observed. On average, after the first 100 seconds the decrease in performance was
sustained and remained roughly constant on every trial even for the longest periods of

continuous transmission (10 minutes).

Figure 6-6, presents the packet delivery performance of the In-Motes

Reloaded when running the SenseLight application.
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Figure 6-6: Packet Delivery Performance of In-Motes Reloaded over a period of 2
minutes

As can be seen from the above graph there were variations in the maximum
number of packets that the middleware was reporting through its two facilitator nodes
to the end user, having as the ideal value the eight packets per second. We concluded

that the success rate of receiving the total number packets was 82.6%.

We run the SenseLight application with the same wireless sensor network

specification using the In-Motes engine for a period of two minutes, Figure 6-7. The

success rate of packets delivered this time was calculated to be 55.6%.
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Figure 6-7: Packet Delivery Performance of In-Motes over a period of 2 minutes

We conclude that the modifications of the In-Motes engine has significantly
improve the performance of the middleware, with the In-Motes Reloaded having a
higher average packet throughput when compared with this of In-Motes, Figure 6-8.
A point of concern is that the performance seems once again to be affected as time
pass by with nodes reporting fewer packets to the end user. The reasons for this
behaviour as before were mainly the memory limitations from the hardware especially
in a scenario that was stating that a node would report continuously readings to the
end user for a long period of time. The longest period that the application was set up
running was 10 minutes during which the packet delivery performance was varying in
a similar way with the displayed graph above, Figure 6-6. No catastrophic scenarios
in terms of total network failure were observed. On average, after the first 100
seconds the decrease in performance was sustained and remained roughly constant on

every trial.

155



Packet Delivery Performance In-Motes VS In-Motes Reloaded

o

a

3]

—— In-Motes Reloaded
- In-Motes

M\‘JN/V—U\ ﬂ B FH N\

o

w

Maximum packets delivered

[N

1 10 18 28 37 46 55 64 73 82 91 100 108 118

Time (sec)

Figure 6-8: Packet Delivery Performance of In-Motes Reloaded and In-Motes over a
period of two minutes

The updated engine of the middleware, the way that the mobile code was
transmitted inside the network and what we described as dynamic behaviour of the
motes were the three main factors that lead to the improved performance of the In-
Motes Reloaded over In-Motes middleware. Even though we managed an increase in
the throughput the problem of lower performance after some time of continuous
transmissions still existed. As we explained before, the nature of the hardware
(memory limitations, unreliable radio, battery levels) together with the large amounts
of traffic during the longest trials created problems in the performance which was still

decreased after some time.
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6.4 The In-Motes EYE application

Having finished the preliminary tests of the In-Motes Reloaded middleware
we wanted to test the merits of our software by deploying a more complicated
application in terms of In-Motes agent interconnections and readings collection, in the
wireless sensor network. Also, we wanted to verify if the packet delivery performance
which we observed earlier would be established again in a more complex scenario.
Last but not least the deployment of such an application would reflect on how well the
In-Motes Reloaded middleware was performing when hurdles such as buffer
overflows, race conditions and stalls of the hardware might appear. Thus, we
developed the In-Motes EYE application, an agent based real time application for
monitoring the acceleration of moving objects.

In terms of hardware we have used a set of 5 mica2 sensors with the
accompanied MTS310CA sensor boards. One base station, a laptop connected with an
MIBS510 interface board fixed in an area served as the aggregation point. Two radio
controlled cars with an attached mica2 sensor had the role of the moving objects in
the environment, Figure 6-9. The last 2 mica2 sensors were occupied by the two
facilitators and they where placed in a straight line 2 meters apart communicating
with the aggregation point that was 6 meters away and in the line of sight the
facilitator nodes. All the hardware was provided by the Crossbow Technology Ltd.
All the sensor motes were working under the TinyOS operating system and the

application was deployed through our In-Motes Reloaded middleware.

Our trial took place in an outdoor environment with a sufficient space for the
radio controlled cars to accelerate without any obstacles. The laboratory controlled

environment was avoided all together mainly because of the limited space and our
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assumption of noise interference from the laboratory equipments that seemed to

interfere with the wireless sensor network transmissions.

Figure 6-9: One of the radio controlled cars with the attached mica2 sensor that was used for the
In-Motes EYE trial

The In-Motes EYE application uses dynamic job In-Motes agents for
forwarding all the user queries in the wireless sensor network. Every monitor request
that is send from the user contains a critical parameter which is used locally to
determine if a sequence of readings should be reported or not. The nodes that are
attached to the cars are waking up every two minutes and report to their facilitator
node one acceleration reading. When the critical parameter is breached, each
facilitator sends one packet containing one acceleration reading per 10 seconds for a

period of 2 minutes.

The user also has the freedom to choose a random radio control car and at
random intervals to check its acceleration behavior for a period of two minutes. In
order to do so, the memory of the node of the selected car firstly must be flushed, by
sending a fix In-Motes agent in order the resident job agent with the critical parameter

and the according reactions to be erased. Then a new job agent is migrating to the
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desired location. After the end of the measuring period the job agent stops its

execution and dies.

Figure 6-10, demonstrates part of the In-Motes EYE application code that was

deployed to the wireless sensor network during our trials.

// Variable Declaration code omitted
spushm ACCELX

spushm CRT

sense // sense temperature or light

IF ACCELX > CRT THEN

spushm 2

spushloc

rout 10 // remote out tuple containing acceleration
// reading to facilitator per 10 seconds

spushm 1

sleep // for 2 minutes

ELSE

sleep // for 2 minutes
// some code is missing ..
rstart BEGIN

Figure 6-10: Part of the In-Motes EYE application that was deployed from In-Motes
Reloaded middleware

We initialize our wireless sensor network by injecting once two facilitator
agents to the according nodes that are placed in a straight line and 2 meters apart, with
one node attached to each car acting as slave to them. The facilitators captured the
nodes and were ready to receive the first job requests in 35s. We send, once, two

dynamic job agents, 40 bytes each to the wireless sensor network.

The above procedures, as well as the wake up calls and the transmission of
data readings are executed by the application without us interfering with the process
unless a failure 1s noticed or as we mentioned above a user desires to monitor the

acceleration of a specific car.
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6.5 The In-Motes EYE field tests

The main location of the In-Motes EYE trial was based on the outdoor
environment of a garden. As we mentioned above the two facilitator nodes where
placed in a straight line 2 meters apart and they were communicating with the
aggregation point that was 6 meters away and in the line of sight the facilitator nodes,
no physical obstacles where intervening during the transmissions. We used two radio
controlled cars which at random time intervals were accelerating in a square area of
the garden, 10x30 meters. The motion of the cars was random and it was not

following any patterns, Figure 6-11.

Figure 6-11: A representation of the In-Motes EYE trial environment and its
actors

We used the accelerometer sensor which exists on the MTS310CA interface
boards, a MEMS surface micro-machined 2-axis, = 2 g device that can be used for tilt

detection, movement, vibration, and/or seismic measurement (Crossbow User Guide
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2004), Figure 6-12. According with the manufacturer (Analog Devices manual 2003)
it is advised that for accurate measurements, after every trial the accelerometer needs
to be recalibrated for every sensor in both axes. During our trials no recalibration of

the devices took places as it was beyond the scope of the experimental procedure.

Anatog Devices
ADXLZ202JE
Accelieromelar

Figure 6-12: The accelerometer we used for the In-Motes EYE trials that was mounted
on the MTS310CA interface boards

Since the voltage response for the accelerometer is linear with respect to the
measured acceleration the motes ADC value can be translated into meaningful

engineering acceleration units following the below linear equation:

Reading (m/s?) = 1.0 (Cal_pos_1g-ADC)/Scale factor (1)

Where:

Scale factor = Cal_pos_1g - Cal_neg_1g/ 2
Cal_pos_1g =500

Cal_neg_1g =400

ADC = output value from Mote’s ADC measurement

The critical parameter for the In-Motes EYE application was set to be 1.082
m/s” a value that was selected as it was the average acceleration reading reported

from both of the radio controlled cars when they moved randomly in the environment.

161



Figure 6-13 is a representative graph that was produced when one of the radio
controlled cars was accelerating above the critical parameter. The facilitator node that
was assigned to that vehicle was reporting readings back to the end user for a period
of 2 minutes by sending 1 packet containing one acceleration value per 10 seconds.
Figure 6-13 does not represent continuous values of acceleration rather than values of
acceleration when the critical parameter was breached, thus a single reading is
reported that it only goes back to the previous transmission which happens every 10
seconds. Many of the graphs were produced by the In-Motes Reloaded Oscilloscope

application allowing us to observe the acceleration of the cars in real time.
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Figure 6-13: Car 1 acceleration readings reported to the end user when the critical
parameter was breached

As we mentioned earlier the application was allowing a user to monitor the
acceleration pattern of a moving car even if the critical parameter was not breached by

simply injecting a new job agent to the vehicles sensor. Figure 6-14 presents the graph
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that was produced in the scenario where the user was monitoring the acceleration
pattern of car 1 for a period of two minutes while car 2 was accelerating at the same
time breaching the critical parameter of the application. The values for car 1 were the
current single values of acceleration that were recorded every 10 seconds for the
given period while the values for car 2 are as before values of acceleration when the
critical parameter was breached. The sensors for each car in this case were working

under two different dynamic job agents.
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Figure 6-14: Car 1 is under surveillance by the user while Car 2 accelerates
breaching the critical parameter

6.6 The In-Motes EYE analysis

Overall, we spend one month running different scenarios with the radio

controlled cars and changing experimental parameters such as the epoch time per trial
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circle helping us to understand better the nature of the wireless sensor network we
deployed and evaluate better the engine of the In-Motes Reloaded middleware. Packet
delivery did not affect by the distance between the aggregation point and the sensors
rather from facts such as the duration per measuring period and buffer overflows at

the facilitator node end.

Figure 6-15 presents the total number of packets that were delivered from a
facilitator node monitoring one car that breached the acceleration critical parameter

for different epochs.
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Figure 6-15: Packet delivery performance of the middleware running the In-
Motes EYE for different measuring periods

From the above graph 1t is obvious that the packet delivery performance was
affected as the measuring period was increased. Packet losses were observed mainly

due to two reasons. Firstly, increasing the activity of a slave node of a radio controlled
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car 1t meant that we were increasing the battery power consumption of the mote. For
mica2 motes this increase usually affects the performance of the hardware resulting to
delays in obtaining a sensing value and even stalls the operation of a node as the
battery levels are exhausting. Secondly, the facilitator node when the traffic is heavy

1t will drop some packets as its sending buffer will overflow.

Although, those problems affected the performance of the middleware we
observed a success rate that was above 50% in all the trials. That can be explained
due to the modifications that we applied to the core engine of the middleware
eliminating in most cases race conditions, re-transmissions and overuse of memory

resources both virtual and physical ones.

Overall, we observed a better behavior of the In-Motes Reloaded middleware

than this of In-Motes for the duration of the trial as can be seen bellow:

8. Stall of the whole network: 5

9. AgentSender Fail sending agent: 12
10. Null Readings: 100

11. Facilitator Buffer_Overflow: 5

12. Node Buffer_Overflow: 6

13. AgentReceiver Fail receiving agent: 15

14. Misplacement of sensor/Drop/Other: 20

Failures that as before solved instantly by our middleware the moment they
were noticed, by simply flashing the sensors and reinstalling remotely the application.

Stalls of the 2 sensors of the radio controlled cars we were using were not observed
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frequently mainly cause of the middleware ability to handle and allocate better the
memory resources of the system than before. The facilitator scheme and In-Motes
Reloaded communication protocol worked as expected and we did not observe any

store and forward delays.

6.7 Summary

This chapter presents the updated version of In-Motes middleware, which we
named In-Motes Reloaded, core programming changes, testing and evaluation. The
In-Motes Bins trial and the lessons that we learned by running the application in a real
~environment helped us to update some of the core functionalities of the middlewares
engine in an effort to resolve issues such as poor packet delivery performance and
internal race conditions. Initially we carry out our experiments in the controlled
environment of the laboratory where we observed the behaviour of the wireless sensor
network under the new middleware engine. We compared and analysed our approach
using the SenseLight application, in order to see where our new middleware stands in
comparison with the older approach. Moving one step further we created a complex
application, the In-Motes EYE, that was deployed in an open environment and was
measuring acceleration variation of moving objects, in our case radio controlled cars.
Our successful implementations of the In-Motes EYE application together with the
steady performance of the new version of the middleware compared with the previous
version, lead us to envisage a near future where the wireless sensor technology could
establish a framework that will overcome various limitations that those networks

inhabit.
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CHAPTER 7

Conclusions

The findings of the thesis are summarized in this chapter. They consist of

evaluation, conclusions and observations, followed by suggestions for future research.

7.1 Aims of the thesis

The aims of the thesis were:

1. To investigate how we can increase the reliability, fault tolerance and
flexibility of a wireless sensor network by focusing mainly on the application
layer of these networks.

(a) Investigate the wireless sensor network theory and identify key limitations
of this technology.
(b) Identify architectures and approaches in wireless sensor networks by
categorizing them in terms of functionality and organization
(c) Focus on the application layer and investigate the middleware approach
as a viable solution for overcoming the limitations that wireless sensor
network inhabit.

2. To develop a method that will be able to moderate effectively the

interconnections between the wireless nodes and that will provide recovery

mechanisms incase of a failure.
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(a) Devise a dynamic communication protocol that will be able to incorporate
intelligence in terms of perception cognition and control to every active
node in the wireless sensor network

[.  Incorporate mobile code/agents.
I[I.  Incorporate Linda-Like tuple spaces.

1. Add behavioural rules based on a model of bacterial strains.

3. To develop energy efficient method that will be able to provide remote
mechanisms for controlling and monitoring the wireless sensor network during
the lifetime of an application.

(a) Develop a prototype platform(s) for deploying applications in the wireless
sensor network.
(b) Incorporate the communication protocol in the system(s)
(c) Develop a comparison model for evaluating this approach against a
number of other approaches that exist in the same category
(d) To develop a number of prototype applications for experiments and

testing in order the end system(s) to be evaluated.

7.2 Evaluation

7.2.1 Wirelesses sensor network issues

The literature in the field of wireless sensor networks revealed the
fundamentals of sensor networks organization and functionality. Constraints such as
energy, flexibility in re-programming and fault tolerance were made apparent as well

as the need to effectively bridge the gap between the applications and low level
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constructs such as the physical layer of those networks. The middleware approach
seems as a promising way of achieving the above but again the systems we reviewed
raised a number of consideration that need to be addressed before we can conclude

that this approach is a viable one.

Firstly, most of the middlewares were based upon a virtual grid format that the
developers will try to imitate when they will deploy an application in a real world.
Thus, the whole system will be quite inflexible and susceptible to errors since real
world environments tend to be quite dynamic and the locality of the nodes can be
altered due to unexpected scenarios very easily. Secondly, the approaches we
reviewed did not incorporate any fault tolerant mechanisms incase of a node failure.
Thus, the smallest malfunction of a node can lead to catastrophic scenarios where a
wireless sensor network will stall its operation. Last, but not least, the communication
protocols that they adapted proved to be quite energy consuming and dysfunctional
since in most cases a flooding of network was a necessity for altering the simplest
parameter of the network and based on loose hierarchy internal race conditions and
buffer overflows were taking place leading to poor package delivery and eventually
the stall of individual nodes. All those considerations were taken into account when

we started the development of our approach. This completed the Aim 1 of the thesis.

7.2.2 The key terminologies of our approach

The literature in areas such as mobility of a code and Linda-like tuple spaces
was investigated in an effort to focus on ways in creating a dynamic and flexible
communication protocol for the wireless sensor nodes. Using mobile code in the form

of our In-Motes agents, we were able to transfer small fragments of code to every
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node in the wireless sensor network thus making the post development
reprogramming feasible. The mobile code inside our network had a specific character
defined by their development specification, a character that was accumulated from
every node they were occupying. In-Motes agent communication was achieved by
adapting a facilitator model which states that a predetermined number of agents
communicate with a specific facilitator agent thus forming a number of small
“federations” inside our network. Each “federation” was able to communicate with
another existing one only through their facilitators (Aim 2(a) I). In order to increase
the flexibility of the communication protocol a list of behavioural rules based on
bacterial strains was compiled and allocated to each facilitator In-Motes agent. This
added hierarchy was useful for overcoming problems such as buffer overflows and

packet delays (Aim 2(a) III).

The next step was to create a communication link between the mobile code
and the actual hardware. This was achieved by making use of the Linda-like tuple
space scheme. This virtual shared memory framework was accessible to all the
running processes of the network. Added reactions in the tuple space were generated
so that each tuple resident in a node could have its own state and react to specific
actions provided by the hosted In-Motes agent. Reactions by having permission to
access the tuple space could change the context and modify the semantics of the
visited In-Motes agents thus altering a number of parameters such as bandwidth and
packet frequency for every node (Aim 2(a) II). Overall, the scheme was providing

better control between the interactions of the hardware and the mobile code.
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7.2.3 The proposed middleware for wireless sensor networks

In Chapter 4, our proposed middleware, In-Motes, was outlined and described,
exhibiting how technologies such as mobility of a code and Linda-like tuple spaces
could be combined and integrated under the same framework. The main idea was to
create a flexible and energy efficient platform for deploying applications in a wireless
sensor network (Amm 3(a)). The communication protocol, which our theoretical
analysis in the previous chapter verified its usefulness in terms of monitor and control
of the wireless sensor nodes, was successfully incorporated in the middleware’s

engine (Aim 3(b)).

A number of preliminary tests were performed in the laboratory control
environment in order to identify if any problems with the programming code of the
middleware existed. Small trials aiming to verify the correct delivery of the mobile
code and their ability for single and multi hopping migration were successfully
implemented. Since no major faults were reported we moved in the next step which
was the creation of a simple application, SenseLight, which was deployed in a small
scale network through our middleware. SenseLight is a multi-hop application that
uses mobile code to collect light readings and report back to the end user. The
application and small variations of it was deployed in the wireless sensor network by
using the In-Motes middleware, the Agilla middleware and the TinyOS framework
respectively, thus meeting Aim 3(c). This comparison model identified that our
approach was more efficient in terms of packet delivery than the other two but also
that both In-Motes and Agilla middlewares were experiencing problems such as stall
of sensor nodes, after a period above 2 minutes of continuously sending data to the

aggregation point.
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In Chapter 5, the In-Motes Bins application was presented as the first complex
application of our research that was deployed in a large scale wireless sensor network
in a dynamic everyday real time environment. In-Motes Bins is a mobile code based
real time application developed for monitoring environmental conditions and more
specifically variations in light and temperature and it was implemented for 4 months
in a wine store Aim 3(d). The trial was divided in two parts and a number of schemes
concerned with the typology of the mobile code and migration techniques were
applied in an effort to increase the efficiency of our middleware at an application
level. The advantages of what we named dynamic In-Motes job agents against static
In-Motes job agents were identified as well as the limitations that cloning
transmission of the mobile code inhabits when compared with multi-hop migration in
terms of conserving energy. The merits of the communication protocol were tested as
well and no problems were identified to that extend. The dynamic In-Motes job agents
increased the packet delivery performance and the efficiency in energy resources of
the network although our approach suffered from packet losses and stalls of nodes

mainly due to internal race conditions and buffer overflows.

Moreover, the wireless sensor network was active for a longer period than in
the laboratory trials, so we had a clear picture of its behavior. We concluded at that
stage that both the battery levels of the individual motes and the In-Motes tuplespace
communication could cause in time unexpected errors that we listed in Chapter 5.
Overall, the In-Motes Bins application successfully tested the merits of our
middleware in a very dynamic environment and even provides a practical solution for

a problem that the store was facing prior to our visit.

172



The lessons learned from the In-Motes Bins trial were very useful for the
further development of our middleware. We applied a number of modifications in
some of the programming parameters of the In-Motes engine such as the number of
active mobile per node and the size of tuples while in parallel programming code
blocks were added to both nesC and Java packages aiming to improve the overall
efficiency in terms of energy usage and packet delivery of our approach. Thus, In-
Motes Reloaded was developed as an updated version of In-Motes. In order to test the
merits of the new middleware we developed the In-Motes EYE application. In-Motes
EYE is a mobile code based real time application developed for monitoring variations
in acceleration of moving objects Aim 3(d). Compared to the In-Motes middleware
the new version proved to be superior, since the packet delivery performance was
dramatically increased and most of the buffer overflows and internal race conditions
that were reported before were mostly eliminated. The recovery mechanisms incase of
failures and unexpected scenarios were as before very steady and efficient since the

whole network and the deployed application could be rebooted in less than 1 minute.

7.3 Recommendations for future research

7.3.1 Prototype middleware approach

Perhaps one of the most important issues that would render the proposed
system truly applicable for real time applications is the automatic process and analysis
of the obtained data deriving from the wireless nodes. During our trial with both In-
Motes Bins and In-Motes EYE application, the sensing data that was delivered to the

base station was processed and categorized into useful information by transforming it
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to meaningful engineering units manually, since it would not have any impact to the
experimental results. Future research would investigate whether this process could be
automated. This involves additional programming and raises questions such as where
this process would take place and what impact would have to the energy levels of the

nodes in the scenario where it would be placed at the facilitator level.

When we conducted trials in the laboratory controlled environment we noticed
poor performance of the systems in terms of packet loss and unexpected stalls of the
nodes of the wireless sensor network, something that surprisingly enough was not
observed in real time dynamic environments to that extend. It was then conjectured
that one of the possible reasons for this phenomenon was interference deriving from
the other electronic units that were active in the laboratory. Other possible reasons
were the battery levels of the individual motes and the tuplespace communication
scheme that we adapted in our platform. An investigation aiming to identify and prove
the reasons for this interference would considerably help and perhaps aid the inclusion
of a correct radio transmission set up for the nodes. Also further testing could be
applied for a small scale wireless network for a long continuous period in order to

record better the behavior of the nodes in terms of performance.

In both In-Motes Bins and In-Motes EYE we used the same communication
protocol. The facilitator scheme was used for the inner communication, the Linda-like
tuple spaces for the mobile code-node interactions and finally the list of the
behavioural rules for added hierarchy of the facilitator nodes all in an effort to make a
flexible platform for deploying applications, This choice was justify in our trials by a

good balancing between packet/recovery transmissions and complexity. However,
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other communication protocols could be implemented for the middleware such as the
GAF communication scheme. Future research could experiment with more protocols,

in order to establish the best one available.

The energy levels of the individual motes were not recorded rather than
observed concluding that as the time increases and the battery levels drop, motes can
stall their operation with higher frequency. Thus, a more substantial test is needed in

order the above trial observation/assumption to be verified.

Last, but not least, both systems were developed and applied without any
security framework build in for data protection. Wireless sensor network nodes had a
specific 1d and were transmitting data over a predefined user selected radio; however
this 1s not secure and could be easily tampered from an intruder. Future research could
mcorporate security mechanisms for protecting the application data from a number of

attacks.

7.4 Conclusions

Overall, the research has achieved its aims, providing two middleware
solutions for flexible deploying applications in a wireless sensor network with both of
them incorporating an energy efficient and adaptable communication protocol. Both
systems showed good performance for trials that were executed in real dynamic

everyday environments.
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Regarding, the two prototype applications that were developed as part of the
middleware evaluation, their success reflected upon the fact that with the right
infrastructure a wireless sensor network implementation can be incorporated in our

everyday lives and provide us with adequate solutions for complex problems.

It was shown through our research that the middleware approach is a
promising way of overcoming the limitations that the wireless sensor networks
inhabit.  Our middleware approaches addressed and resolved some of those

limitations in a satisfying way.

Last, but not least, there is a rule that applies to every wireless sensor network
approach. That 1s, regardless of the amount of formal proofs and computer
simulations which support its applicability, it should be tested under real dynamic
environments in an extensive way. Only in this way can any unforeseen flaws be
detected, which will lead to either the creation of a revised version of the scheme, or

its rejection. The developed communication protocols are no exceptions.
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In-Motes Instruction Set
(Includes both In-Motes and In-Motes Reloaded Instruction Set Architecture)

Instruction Set Architecture

Instruction Classes

Class Format Key

b-class 00ii iiii i = instruction

t-class 0100 ixxx i = instruction, x = argument

e-class* 0101 ifii xxxx XXXX XXXX XxxX i = instruction, x = argument
v-class 011i xxxx i = instruction, x = argument

x-class 11xx xxxx X = argument
* stored in big-endian format

Instruction Categories

N kS R

3
o

.,
o

O
o

General purpose instruction
Facilitator Instruction

Slave Instruction

Job Instruction

Fix Instruction

Sets condition code
Accessor to acquaintance list
Migration instruction
Accessor to the heap
Accessor to sensors

Local tuple space operation
Remote tuple space operation

halt Halt execution 0x00 Halts execution of the issuing agent. This frees the
agent's context for another incomming agent. Used for all the In-Motes
agents.

jobhalt Halt execution 0x01 Halts execution of the job agent. This frees the
agent's context for another incomming job agent.

loc Push host location 0x02 [location] Pushes the mote's location onto the
operand stack as a value. Used for all the In-Motes agents.

aid Push agent ID 0x03 [agentid] Pushes agent's ID onto the operand stack.

rand Push random number 0x04 [value] Pushes a 16-bit random number onto
the operand stack as a value.

cpush Pushes condition onto the stack 0x05 [value] Pushes the issuing
agent's condition variable onto its stack as a value. Used for all the In-Motes
agents.

depth Push stack depth 0x06 [value] Pushes the depth of the agent's operand

stack onto the stack as a value; the depth is the value before executing this
operation.
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vicinity Checks if dist <= 2 0x07 [location] Checks whether the location on
the stack is within a distance of <= 2 of the location(s) on the heap. Heap [0]
must be the number of locations, Heap[1...n] must be the locations.

clear Clear the operand stack 0x08 Clear the operand stack.

numslave number of slaves 0x09 [value] Pushes the number of slaves onto
the stack.

wait make agent wait Ox0a Stops agent execution without deallocating its
resources. Allows it to wait for a reaction to fire

fwait make a facilitator agent wait Ox0a Stops agent execution without
deallocating its resources. Allows it to wait for a reaction to fire

inc Increment value Ox0b [value] [value+1] Pops a value off the operand
stack and pushes the incremented value back onto the stack.

clearvar Clear heap variable 0x0Oc [value] Pops a heap address value off the
operand stack and clears the heap at that address.

inv Invert a value 0x0d [value] [value] Pops a value off the operand stack,
multiplies it by -1, and pushes the result onto the stack.

not Boolean not Ox0e [value] [value] Pops a value off the operand stack. If
the value is not 0, push a 0 onto the stack, else push a 1.

Inot logical not OxOf [value] [value] Pops a value off the operand stack and
pushes its logical not (e.g. Ox2e will result in Oxffd1).

copy Copy top of operand stack O0x10 [var] [var], [var] Pops a variable off the
operand stack, pushes it back onto the stack twice.

pop Pop top of operand stack Ox11 [var] Pops a variable off the operand
stack.

cpull Pulls value from stack onto condition Ox12 [value] Pops the value off the
stack and sets it to be the condition.

sleep Sleep 0x13 [value] Halt the slave agent for [value] * 0.125 seconds.

fsleep Sleep 0x14 [value] Halt the facilitator agent for [value] * 0.125
seconds.

putied Actuate LEDs 0x15 [value] or [reading] Takes a single operand and
lights the LEDs as follows. If the operand is a value: It uses the lowest five
bits of the operand to determine how to actuate the LEDs. The lowest three
bits denote the 3 LEDs; bit 0 is red, bit 1 is green, and bit 2 is yellow. The
next two bits (3 and 4) specify which operation to apply; 00 is set, 01 is off
(active on 0), 10 is on, and 11 is toggle.
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Operation Binary Value Decimal Value

set only red on 00001 1
set only green on 00010 2
set only yellow on 00100 4
Toggle red 11001 25
Toggle green 11010 26
Toggle yellow 11100 28
Toggle all 3 LEDs 11111 31
Turn off red 01110 14
Turn off green 01101 13
Turn off yellow 01011 11
Turn off all 3 LEDs 01000 8
Turn on red 10001 17
Turn on green 10010 18

Turn
Turn

on yellow 10100 20
on all LEDs 10111 23

If the operand is a reading, it simply displays the lower 3 bits in on the LEDs.

o,
EX3

smove Slave migration 0x16 [location] Performs a slave migration to a
remote host. The location of the remote host is specified by the parameter on
top of the operand stack. A slave migration does not affect the execution of
the agent (the pc, stack, and heap are all maintained). The condition code is
set as follows: 0 - move failed (agent continues to run on original host/slave)
1 - move succeeded (agent now running on remote host)

fmove Facilitator migration 0x17 [location] A facilitator version of smove.

sclone Slave clone 0x18 [location] Pops the value off the operand stack.
Clones itself at node with address value. The clone inherits the initiating
agent's program counter. The condition code is set as follows: 0 - clone failed
(agent continues to run on original host) 1 - clone succeeded (agent now
running on remote host) 2 - child (this is the code set on the child agent prior
to running)

fclone Weak clone Ox1a [location] A facilitator version of sclone.

getvars get a heap var, address in stack Ox1b [value] [var] Retrieves a
variable off the heap and pushes it onto the operand stack. The address of the
heap is specified by the value on top of the stack.

setvars set heap var, address in stack Ox1c [value] [var] Saves a variable on
the heap. The variable and address to store it must both be on the operand
stack.

getslave get federations slave address Ox1d [value] [location] Get the
address of the slave neighbor. All neighbors are stored in a list. The value
specifies which position in the list to get. The value must be between 0 and
numnbrs- 1. Sets condition = 1 if success, else sets condition = 0.

sense take a sensor reading Oxle [value] [reading] Reads a sensor. The
sensor type is specified by the value on top of the operand stack, defined as
follows: Photo = 1 Temp = 2 Microphone = 3 Magnometer X = 4 Magnometer
Y= 5 Accelerometer X =6 Accelerometer Y= 7 Sounder = 8

dist distance 0x19 [readingl], [reading2] [value]Pops two variables off the

operand stack. The two variables are both sensor readings, this calculates how
far apart they are.
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swap Swap top two variables 0x20 [vari],[var2][var2],[varl]Pop [varl] then
[var2] off the stack, then push [var2] then [varl] back on stack. This swaps
their positions on the stack.

mul Multiply 0x21 [variablel],[variable2]][variablel]*[variable2] Pops two
variables off the stack and performs a multiplication. Valid parameters are:

div Divide 0x22 [variablel], [variable2] [variable2] ----=------ [variablel]
Pops two variables off the stack and performs a division operation. Valid
parameters are: Two values A value (variable 1) and a sensor reading
(variable2)

add Add two values 0x23 [valuel], [value2] [value] Pop [valuel] and
[value2] off the stack, push [valuel] + [value2] onto the stack.

cgt Greater than Ox2e [Valuel],[Value2] or[Readingl],[Reading2]
Pops the top two values off the stack. Set the condition to true if [Value2] > [
Valuel] or [Reading2] >[Readingl1], false otherwise

out out on host tuple space 0x24 [tuple] Pops a tuple off the operand stack
and places it into the local tuple space. This tuple become a public tuple
accessible to anybody.

inp inp on host tuple space 0x25 [template] [tuple] ? Searches the host's local
tuple space for a tuple matching a template. If a match is found, remove it
from the tuple space, push its fields onto the operand stack and set the
condition to 1. If no matching tuple is found, set condition to 0.

rdp rdp on host tuple space 0x26 [template] [tuple] ? Same as inp except do
not remove tuple.

in in on host tuple space 0x27 [template] [tuple] Same as inp except blocks
until a tuple is found.

rd rd on host tuple space 0x28 [template] [tuple] Same as rdp except blocks
until a tuple is found.

srd rd on slave tuple space 0x28 [template] [tuple] Same as rdp except
blocks until a tuple is found for slave agent.

tcount counts the number of tuples in the local tuple space that match a
template x29 [template] [value] Pops a template off the op stack and pushes
the number f tuples that match it onto the op stack. This operation only
considers tuples that are public, system, or private o the executing agent.

rout remote OUT 0x30 [location], [tuple] Inserts a tuple into a remote hosts's
tuple space. Sets cond=1 if successful, 0 otherwise. The tuple becomes a
public tuple accessible to anybody.

fout remote OUT 0x31 [location], [tuple] Inserts a tuple into a facilitators
tuple space. Sets cond=1 if successful, 0 otherwise. The tuple becomes a
public tuple accessible to anybody.

regrxn register reaction 0x3e [value], [template] Registers a reaction on the
tuplespace. The template specifies the type of tuple that causes the reaction
to fire. The value specifies what the program counter should be set to when
the reaction fires. Reactions are carried across strong migrations and clones.
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deregrxn deregister reaction Ox3f [template] Deregisters a reaction from the
tuplespace.

getslv 0x31 [value] [id] gets a slave id.

T-Class Instructions [0100 ixxx]

pushrt push reading type 0x40-0x47 [type] Pushes a reading type onto the
operand stack.001 - photo reading [PHOTO]010 - temperature reading [TEMP]
011 - microphone reading [MIC]100 - magnometer x-axis reading [MAGX]101
- magnometer y-axis reading [MAGY] 110 - accelerometer x-axis reading
[ACCELX]111 - accelerometer y-axis reading [ACCELY]

pusht Push type 0x48-0x4d [type] Pushes a type onto the operand stack.000
- ANY 001 - AGENTID 010 - STRING 011 - TYPE 100 - VALUE

E-Class Instructions [0101 iiii XXXX XXXX XXXX XXXX ]

o,
£

pushn Push a name onto the operand stack 0x31 [name] Pushes a name onto
the operand stack. A name is a 16-bit value with the following format: [a-z,0-
9][az,0-9][a-z,0-9]. It is encoded as follows: [a =1,b =2, ...,0 = 26, 1 = 27,

pushci Push constant long 0x32 [value] Pushes a 16-bit value onto the
operand stack. This is more powerful than pushc since pushc can only push a
6-bit value onto the operand stack.

V-Class Instructions [011i xxxx]

getvar moves a variable from the heap to the stack 0x60 - O0x6b [var] Copies
a variable from the heap and pushes it onto the stack. The address within the
heap is specified by the last 4 bits of the instruction. Since there is only a 12~
word heap, only addresses 0-b are valid. If the heap variable is INVALID, it
does not push anything onto the stack and sets condition=0. Otherwise, it sets
condition=1. Ox6¢ - Ox6f

setvar Moves a variable from the stack to the heap 0x70 - Ox7b [var] Pops a
variable off the operand stack and puts it into the heap. The address within
the heap is specified by the last 4 bits of the instruction. Since there is only a
12-word heap, only addresses 0-b are valid. 0x7c-0x7f

X-Class Instructions [11xx xxxx]

o,
oo
Q

pushc Push a constant value onto the stack 0xc0O - Oxff [value] Pushes the
least signicant 6 bits onto the operand stack as a value (range is 0 to 63).
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In-Motes Reloaded User Guide

IN MOTES RELOADED MIDDLEWARE
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< Installing In-Motes Reloaded middleware in your computer

The following steps will install the In-Motes Reloaded middleware in your

computer. The middleware is applicable for all the versions of the TinyOS operating

system and was tested using Windows XP and earlier versions. A user should not

have any problems with Linux systems but in the case of Windows Vista make sure

that you have set yourself as the administrator of the machine you are using otherwise

access problems will occur.

1.

Install TinyOS operating system in your computer

In-Motes Reloaded comes as two separate packages with a portion of code
in NesC and a second one in Java. Unzip both of them in an area of your
computer. They exist in the In-Motes Reloaded folder of the accompanied
CD.

Create a folder myApps in the TinyOS root path /opt/tinyos-1.x
Copy/Paste the portion of the NesC code and add it to the myApps folder
Copy/Paste the portion of the Java code and add it to the root path
/tools/java

Download the makelocal file (displayed below) and install it in
/tools/make. Customize the radio frequency, group address and serial port
number defined within it. The group address should be unique to you. The
serial port number is the port that your mote programming board 1s

connected to.

193



# Radio Frequencies for Mica2 motes: uncomment the line which
# has the frequency that you want your motes to use

#Channel 0:

#PFLAGS += -DCC1K DEF FREQ=433002000

#Channel 2:

#PFLAGS += -DCC1lK DEF_FREQ=433616400

#Channel 4:

PFLAGS += -DCC1lK DEF_FREQ=434107920

#Channel 6:

#PFLAGS += -DCClK DEF FREQ=434845141

# channel 0-2: 614400
# channel 2-4: 491520
# channel 4-6: 737221
#PFLAGS += -DCC1K DEF_ PRESET=4

# Define for your local group in hex (otherwise it is 0x74d).
DEFAULT LOCAL_GROUP=0x07

# Choose programmer and port. If nothing uncommented, then assumes
MIB500.
#MIB510=/dev/ttyS5

7. Install the In-Motes Reloaded NesC code on every mote, including the
base station.

8. Compile the In-Motes Reloaded Java code

9. In a command window specify the TinyOS root /tools/java and type the
following command: java -Djava.security.policy=java.policy

edu.ee.acnrg.InmotesReloaded. AgentInjector\-comm COM1:57600 -d &

Considering that the portions of In-Motes Reloaded were placed as instructed
above and that there were no problems such as exception errors during the
compilation of the middleware’s Java code, completing the above step us should have
the In-Motes Reloaded Java user interface up and running in a new window in your
machine. (Take extra care when you setting up the make file so all your sensors in the

wireless sensor network are communicating under the same frequency.

194




« The In-Motes Reloaded middleware in pictures

The following section contains a selection of screenshots of the middleware
that will explain the main functions of the graphical user interface and will help you

to inject your first application in the wireless sensor network

The Main Graphical User Interface of In-Motes Reloaded.:

rdote File - YWSN = In-Mates EYE - WSN Experiments.” Try
RMiInjector: Disabled . . | @ 0.

Destination x: f -

Warning:

Please, unless you are using a grid format for your wireless sensor network do not
add anything in the bottom destination boxes. The In-Motes Reloaded engine does not
require any pre-specified grid format for the network although it has the ability to
generate one. The boxes were added for testing purposes and comparison trials (In-
Motes EYE application) and they are purely optional.

The Mote File Menu: Drop down menu allowing a user to open/close/save/save as
and quit an application
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ectin-Motes Agent

: s Mindis )
Mote File'. WSN | in-Motes EVE "

miety

RMI Injoctor: Dlsahl,é

D bio The LoveCrave ENG.doc
Y bio The LoveCrave iTa.doc
D Capture 4 nodes.ma D Logitech QuickCam
Dycapture attma - D) n223211691_3322939_247.jpy
D cover athumbig.jipg D n223411691_3482695_9276.4pg
D CyberLink PowerDVD D nassios_-_breathiess.avi

D Cygwin
D in_Motes_bins_cork.doc

é

TOS Address: i

RMI Injector: Disabled | o D T m

pushc O

setvar O
BEGIN pushc 26

putled // toggle green LED

getvar 0

copy

nc

setvar O

pushc temp

sense /! sensea ¥ axis of accelerometer

pushc 2

pushioc uan_x uart_y

rout // remole out tuple containing ternperature reading to laptop

/fpushc B8

//steep

nump BEGINM
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The WSN Menu: Drop down menu allowing a user to connect all/reset all/reset a
specified mote in the wireless sensor network or expand or shrink the original
network size.

(Every time you use one of the reset option a Fix Agent is released that will flush the
memory of the specified motes of the wireless sensor network)

Destination x: .Q__Aj V. ]@_J TOS Address; _Q____J =

Inject In-Motes Agent!

The In-Motes EYE Menu: Drop down menu that automatically opens and installs the
In-Motes EYE application.

RMI Injector: Digaty

ln}e:ttlneMMeé,Ageg;il 1
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The WSN Experiments Menu: Drop down menu that can start a pre-specified epoch
Jor all the connected motes of the sensor network, assuming that already an
application is been injected, it starts also the In-Motes Oscilloscope Interface.

- Injer‘;t;!n,#f‘Mé'tgslAg [

[);esiinaiiéqn“xﬁ‘ o ' JY?!Q___J TOS Audress -
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The Try Debug Menu: Drop down menu containing all the options for debugging the
middleware or a specified application in real time. If selected, all the additional
debugging information will be displayed in the dos command prompt window.

Destination x: £ | . TOS address: [0

- inject In-Motes Agentl!

The Remote Menu: Drop down menu that if selected will allow a user to remotely
inject agents in the wireless sensor network using the java remote method invocation.
(The user must have first download and install download java.policy and install it in
/tools/java TinyOS root directory)
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In-Motes User Guide

in-Motes: Am Iintellifent Agend Based Middieware for
Wireless Sensor Networks

=
ASTON
UnNnivirsttY
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«% Installing In-Motes middleware in your computer

(We strongly recommend to install In-Motes Reloaded as it is a far more stable and
energy efficient platform for deploying application in the wireless sensor network.
Applications of the In-Motes middleware are compatible with the In-Motes Reloaded
middleware)

The following steps will install the In-Motes middleware in your computer.

The middleware is applicable for all the versions of the TinyOS operating system and

was tested using Windows XP and earlier versions. A user should not have any

problems with Linux systems but in the case of Windows Vista make sure that you

have set yourself as the administrator of the machine you are using otherwise access

problems will occur.

10.

11.

12.

13.

14.

15.

Install TinyOS operating system in your computer

In-Motes comes as two separate packages with a portion of code in NesC
and a second one in Java. Unzip both of them in an area of your computer.
They exist in the In-Motes Reloaded folder of the accompanied CD.

Create a folder myApps in the TinyOS root path /opt/tinyos-1.x
Copy/Paste the portion of the NesC code and add it to the myApps folder
Copy/Paste the portion of the Java code and add it to the root path
/tools/java

Download the makelocal file (displayed below) and install it in
/tools/make. Customize the radio frequency, group address and serial port
number defined within it. The group address should be unique to you. The
serial port number is the port that your mote programming board is

connected to.
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# Radio Frequencies for Mica2 motes: uncomment the line which
# has the frequency that you want your motes to use

#Channel O0:

#PFLAGS += -DCC1K_DEF_FREQ=433002000

#Channel 2:

#PFLAGS += -DCC1K DEF_ FREQ=433616400

#Channel 4:

PFLAGS += -DCC1lK DEF_FREQ=434107920

#Channel 6:

#PFLAGS += -DCC1K DEF_FREQ=434845141

# channel 0-2: 614400
# channel 2-4: 491520
# channel 4-6: 737221
#PFLAGS += ~DCC1K_DEF_PRESET:4

# Define for your local group in hex (otherwise it is 0x7d).
DEFAULT LOCAL_GROUP=0x07

# Choose programmer and port. If nothing uncommented, then assumes
MIBS00.
#MIB510=/dev/ttySS

16. Install the In-Motes NesC code on every mote, including the base station.

17. Compile the In-Motes Java code

18. In a command window specify the TinyOS root /tools/java and type the
following command: java -Djava.security.policy=java.policy

edu.ee.acnrg.Inmotes.Agentlnjector\-comm COM1:57600 -d &

Considering that the portions of In-Motes were placed as instructed above and
that there were no problems such as exception errors during the compilation of the
middleware’s Java code, completing the above step us should have the In-Motes Java
user interface up and running in a new window in your machine.

(Take extra care when you setting up the make file so all your sensors in the

wireless sensor network are communicating under the same frequency)
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Send Fix Agents, nitialize
the WSN

Start a predefined epoch

Open/Save/Save as/Quit
an Application

Mote File:' WSN,Limone . Experiment

Debugging Options

RMIInjector: Disabled/ \

_ Serial Forwarde

11

Load Limone Agent

Reloaded)

(Doesn’t exist in In-Motes

Send remotely an agent

2 Dpe

1 LookIn: - [f]lnmotes -

3 build
[ interfaces
7 opcodes
types

D Inmotes.nc

onents

D InmotesOpcodes.h

D installer_m2.awk
[ Makefile
[y pratforms.properties

f
|

Fites of Type: |AllFiles -

Application Directory

There are neither grid options nor “Inject
Agent” button. Applications are loaded the
moment they are selected and deployed at the
same time.
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The In-Motes Bins Application

1
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Aston University

Content has been removed for copyright reasons

< Three main parameters can affect wine: Light, Temperature and Temperature
Variations

<+ We had incidents of corked wines in the sections of France and Italy

< Not everyone brings the corked wine back, we have an average figure of 10
bottles per month

< Customer service is the aim, we try to minimize the number of corked wines
as possible

<« We believe that In-Motes Bins Application will help us on that extend

RAw Fasmeon £ amwbas,

Aston University

llustration rem oved for copyright restrictions
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The Problem of Corked Wines:

The Solution:
HARDWARE

10 MTS310CA, 11 MICA2 and 1 MIB520CA

SOFTWARE:

1n-fEete An intefligent Agend Buced Middleware Tor
Wiveless Senser Metworks

k-7
ASTON

tiivinsslyY
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The Location:

Warehouse:

Main floor:
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Before and After the trial:
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Appendix B
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