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Summary

The present thesis evaluates various aspects of videokeratoscopes, which are now
becoming increasingly popular in the investigation of corneal topography. The
accuracy and repeatability of these instruments has been assessed mainly using
spherical surfaces, however, few studies have assessed the performance of
videokeratoscopes in measuring convex aspheric surfaces. Using two
videokeratoscopes, the accuracy and repeatability of measurements using twelve
aspheric surfaces is determined. Overall, the accuracy and repeatability of both
instruments were acceptable, however, progressively flatter surfaces introduced greater
errors in measurement, the possible reasons for these errors is discussed.

The corneal surface is a biological structure lubricated by the precorneal tear film. The
effects of variations in the tear film on the repeatability of videokeratoscopes has not
been determined in terms of peripheral corneal measurements. The repeatability of two
commercially available videokeratoscopes is assessed. The repeatability is found to be
dependent on the point of measurement on the corneal surface. Typically, superior and
nasal meridians exhibit poorest repeatability. It is suggested that interference of the
ocular adnexa is responsible for the reduced repeatability. This localised reduction in
repeatability will occur for all videokeratoscopes. Further, comparisons with the
keratometers and videokeratoscopes used show that measurements between these
instruments are not interchangeable.

The final stage of this thesis evaluates the performance of new algorithms. The
characteristics of a new videokeratoscope are described. This videokeratoscope is
used to test the accuracy of the new algorithms for twelve aspheric surfaces. The new
algorithms are accurate in determining the shape of aspheric surfaces, more so than
those algorithms proposed at present.
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Chapter One

Descriptors of the Normal Cornea

1.1 Introduction

Eyecare practitioners have developed numerous methods of correcting refractive error.
The numerous papers regarding the structure of the cornea makes it a considerable
task to keep up-to-date with the latest developments in this field. A brief discussion of

the anatomy of the cornea is relevant to the present text.
1.2 General Anatomy

Functionally, the cornea represents the ‘window to the eye’. The cornea has the
principle function of refracting light to form an image of the outside world and to
protect the contents of the globe. In order to fulfill this function, the cornea must be
transparent and avascular. In terms of its gross anatomy, it has an average diameter of
approxiamtely 12mm and is generally Imm longer horizontally than vertically. Its
thickness is approximately 550um centrally and 700pm peripherally (Waring 1984).
The cornea represents the most powerful refracting surface of the eye. It must
therefore possess a high quality surface structure. The precorneal tears create a
smooth surface and also prevent the dessication of epithelial cells. It is the tear-air

interface that produces the most powerful refracting surface of the eye.

The cornea is generally thought to be a rather delicate structure. However, it plays an
important role in protecting the internal contents of the globe. The corneoscleral
connective tissue has been shown to be able to withstand significant blunt force
(Skg/em?) (Maurice, 1988) before rupturing. Most of the strength of the cornea is

provided by the connective tissue within the stromal layer.
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Descriptors of the Normal Cornea

For an optical surface to successfully transmit light, it must be transparent. The cornea

18 composed of five layers. The fact that each structure is visible on unstained

microscopic slides indicates that the refractive index is not idententical from one layer
to the next. Numerous explanations have been postulated regarding the maintenance
of corneal transparency (Cogan et al, 1942; Maurice, 1957). The least extravagant and
most logical explanation was proposed by Maurice (1957). Maurice (1957) suggested
that stromal fibrils are arranged such that they act as a series of diffraction gratings
arranged in a hexagonal plane. Diffraction gratings effectively eliminate scattered light
by destructive interference, thus, for the cornea, normally incident light would be
transmitted through the stroma undeviated. A loss in transparency can also be
explained using this theory.  For example, when the cornea is oedematous,
transparency is reduced. Using this lattice theory, the loss in transparency can be
explained as a result of excessive liquid disturbing the spacing between stromal fibrils
and thus reducing the efficacy of the diffraction grating. However, even with the
results and conclusions of such extensive research, the high transparency of other

layers of the cornea cannot be explained (Ruskell, 1989).

The maintanance of corneal transparency is clearly not only dependent on its
anatomical nature. The cornea is a permanent resident in a liquid environment and
maintains a solid to liquid ratio of approximately 1:4 (Ruskell, 1989). In certain
conditions the cornea may become oedematous, for the cornea to return to its normal
solid to liquid ratio certain physiological processes are involved. These physiological
factors are beyond the scope of the present chapter and have been described in several

other texts (Ruskell, 1989). The microscopic anatomy of the cornea will now be

considered.
1.3  Microscopic Anatomy of the Cornea

The structure of the cornea is similar to other tissues in the body; both the epithelium
and the endothelium lie on basement membranes (the epithelial basement membrane

and Descemet’s membrane, respectively). In addition, both basement membranes lie
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Descriptors of the Normal Cornea

adjacent to a connective tissue layer (the stroma). The cornea is composed of five

layers:
® epithelium
® Bowman’s layer
® stroma

@ Descemet’s membrane

@ endothelium

Each layer will now be described in detail (also shown diagrammatically in figure

Aston University

Content has been removed for copyright reasons

Figure 1.01: A section of the human cornea. Source: an atlas of clinical
ophthalmology, 2nd edition, by Spalton, Hitchings and Hunter.

1.3.1 The Corneal Epithelium

The corneal epithelium is composed of a five to seven layer structure of stratified

squamous epithelium and is between 30 to 50um thick (Thoft et al, 1979). The
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Descriptors of the Normal Cornea

epithelium has an important role in the prevention of infection from microorganisms
and also represents a barrier for protection against foreign bodies. It also has a role in

the maintanence of corneal hydration as it acts as a barrier to the diffusion of water and

solutes (Thoft et al, 1979).

There are three types of cells within the corneal epithelium. From anterior to posterior
they are the superficial flat squamous cells (approximately three layers), the wing
shaped polygonal cells (two layers) and the regular, single layered columnar cells
(Gipson et al, 1987). The layers of cells are shown in figure 1.02. However, other
cells are also present within the corneal epithelium such as melanocytes, neurons,
leucocytes and Langerhans’ cells. Langerhans’ cells are essentially modified
macrophages that are thought to have a role in the first steps of processing antigens
(Rodrigues et al, 1981). Corneal epithelial cells contain apparatus (such as the
endoplasmic reticulum and Golgi apparatus) that have a function in synthesis of
protein. High protein synthesis is required because of the high turnover rate of the
epithelium. The number of mitochondria are relatively few for such an active
structure, this would suggest that energy requiring processes are less important

compared to the production of structural molecules.

Aston University

Content has been removed for copyright reasons

Figure 1.02: Diagram showing the various layers of the corneal epithelium. Source:
an atlas of clinical ophthalmology, 2nd edition, by Spalton, Hitchings and Hunter.
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Descriptors of the Normal Cornea

A, Squamous Epithelium

The squamous epithelium layer is in direct contact with the tear film. The surface of
the squamous cell layer is not smooth, instead there are numerous microvilli and
microplicae. These fingerlike projections create a surface that helps to stabilise the
tear film. Another function of the projections is in the absorption of metabolites, this is
facilitated by the large surface area to volume ratio of the microvilli. However, the
squamous cells also prevent the passage of fluid and other metabolites between the
cells by having intercellular attachments known as demosomes and tight junctions.
Oxygen may however diffuse across the barrier. Therefore, the majority of nutrients
required by the cornea must be obtained from the posterior corneal surface. So far,
only the passive nature of the barrier has been discussed, however, there is also an
active barrier known as the chloride pump which has a small but useful role in the
maintenance of corneal hydration. As mentioned earlier, it is not the aim of the present
text to discuss any physiological concepts, but rather provide a basic overview of the

anatomy of the cornea.
B. Polygonal Wing Cells

As their name implies, polygonal wing cells are irregularly shaped, multisided epithelial
cells which interdigitate with each other. A combination of the interdigitation and the
large number of desmosome attachments prevents the epithelium from splitting

(Rodrigues et al, 1982). Polygonal wing cells constitute the second layer of the

corneal epithelium.

C. Basal Epithelial Cells

The basal epithelial cells are columnar shaped cells arranged in a regular fashion along
the basement membrane. These cells undergo mitosis and then differentiate into
squamous and polygonal cells. Basal cells have the function of producing the

basement membrane and the intercellular attachment complexes. The basal cells
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(primarily because of their shape) interdigitate less. They also have fewer desmosome

attachments compared to the polygonal wing cells (Waring, 1992).

D. The Epithelial Basement Membrane

The corneal epithelial cells rest upon the basement membrane. The epithelial cells
remain attached to the basement membrane through complex attachments. The nature
of these attachments is beyond the scope of this text, however, a detailed discussion of
some of these attachments has been published by Gipson et al (1987) and Mosher
(1984). Abnormalities in the attachments of the epithelium to the basement membrane

may lead to recurrent corneal erosions.
1.3.2 Bowman’s Layer

Bowman’s layer lies adjacent to the basement membrane and is composed of a
compact network of randomly orientated collagen fibrils. Bowman’s layer is acellular
and approximately 12pum thick. With respect to the physical properties of this layer,
the thickness and composition helps to maintain corneal shape, Bowman’s layer also
exhibits little elasticity. However, exact knowledge of the biomechanical properties of
this layer are not known at present. Owing to the acellular nature of Bowman’s layer,
it is not capable of regenerating. The implications of removing Bowman’s layer in

photorefractive keratectomy have yet to be investigated.

1.3.3 The Stroma

The corneal stroma is predominantly composed of collagen fibrils. The fibrils are of
uniform diameter and are stacked in sheets of approximately two hundred lamellae.
The significance of the arrangement of collagen fibrils was discussed earlier (Waring
1992). The regular array of the collagen fibrils is maintained by proteoglycans
molecules. As well as collagen fibils, the stroma contains cells called keratocytes

which synthesise the extracellular matrix of the stroma. Other cells that are found in
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the stroma include phagocytic histocytes, plasma cells, lymphocytes and
polymorphonuclear leukocytes. These cells are present in the normal stroma but
become concentrated in areas of wound healing. Neurones also pass through the

stroma at the limbus and eventually terminate as free nerve endings in the corneal

epithelium (Ruskell, 1989).
1.3.4 Descemet’s Membrane

Descemet’s membrane is the basement membrane of the corneal endothelium.
Endothelial cells are attached to the basement membrane, however, no attachment
complexes are visible, thus the mechanism of attachment is unknown (Waring, 1982).
Descemet’s membrane thickens throughout life and serves as a barrier to prevent

leukocytes and blood vessels from entering the stroma.
1.3.5 The Corneal Endothelium

The corneal endothelium is the most posterior layer of the cornea. The cells are
arranged in a single layer between 4pim to 6pum thick. The cells are uniformly arranged
in the form of a ‘honey comb’ mosaic (Sturrock et al, 1978). Cell divsion has been
demonstrated in the corneal endothelium, however, the rate of regeneration is slow
(Waring, 1982). As a result, when endothelial cells are damaged, neighbouring cells
enlarge and reorganise themselves to maintain coverage of the cornea and also
maintain the monolayer structure (Waring, 1982). Endothelial cells contain numerous
mitichondria, their presence being explained by the energy requirements of the pump
mechanism responsible for corneal hydration. Intercellular endothelial attachments are
present but they do not prevent the passage aqueous into the stroma. Gap junctions

between endothelial cells allow intercellular communication.
The corneal endothelium is responsible for maintaining corneal hydration and thus

corneal transparency. The semi permeable, mechanical barrier provided by the

intercellular endothelial attachments prevents most of the aqueous from entering the
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cornea.  One should note that some degree of permeability is required as certain
corneal nutrients are derived from the aqueous humour. Another mechanism also
exists to maintain corneal hydration. This mechanism relies on the active removal of
water from the corneal stroma. The pump mechanism is known as the sodium-
potassium, adenosine triphosphate-bicarbonate pump. Dysfunction of the pump leads

to oedema and loss of transparency (Maurice, 1957; Ruskell, 1989).

1.4 Classification of Corneal Topography

Numerous terms are used to describe corneal topography, defining the terminology

would provide greater understanding and clarity.
1.4.1 Surface Zones on the Corneal Surface

Since the early investigations by Javal and Helmholtz, a basic model of corneal
topography was established (Miller et al, 1980). This classical model of the corneal
contour was of a surface comprising of two distinct zones, a central spherical area
(known as the corneal cap) measuring 4-5mm in diameter, and a peripheral zone that
flattens progressively towards the limbus. The central zone is responsible for forming
the foveal image and also corresponds to the entrance pupil. More recently, the cornea
has described more specifically in terms of four anatomical zones (Waring, 1989).

These zones are the central, paracentral, peripheral and limbal zones (see figure 1.03).

The centre of the cornea shown in figure 1.04 is known as the geometric centre. Once
again, the significance of the geometric centre is only for localisation. The geometric
centre should not be confused with the corneal apex which represents the point of
maximum curvature on the cornea. The position of the corneal apex is independent of
the geometric centre of the cornea and has been shown to lie, on average,
approximately 0.5mm temporally (Edmund, 1987; Mandell et al, 1965b). In reality,
classification of the cornea in terms of anatomical zones is inappropriate as the cornea

is a smooth surface whose curvature changes in a continuous manner. Waring (1989)
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suggested that classification of the cornea into anatomical zones is of use when

designating locations on the cornea.
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Figure 1.03: The anatomical zones on the corneal surface as described by Waring
(1989).

1.4.2 The Central Cornea

The central corneal zone measures approximately 3-4mm (Waring, 1989), this area of
the cornea is the most important region for image formation. There are two reasons
for this, firstly, it is this portion of the cornea that overlies the entrance pupil.
Secondly, the Stiles-Crawford effect states that when light of equal intensity passes
through various points of the pupil, it is not perceived as being equally bright. Enoch
(1958) showed that the more peripheral the ray of light entering the eye, the less the
perceived brightness. Therefore, owing to the anatomical location of the central

corneal zone and the Stiles-Crawford effect, the central corneal zone has the most

significance in the determination of visual acuity.
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The central cornea has sometimes been referred to as the apical zone and it represents
that area in which the central refraction varies by less than 0.25D (Mandell et al, 1971).
The terms apical zone should be reserved strictly to describe the location of the corneal
apex. There is a wide variation in central corneal curvature within the general
population, however, a mean keratometric value of 7.80mm +0.25mm within the
Caucasian population was found by Clark (1973a,b) and later confirmed by Ruben
(1975). Guillon et al (1986) presented values in terms of the two principal meridians.
The mean keratometric values were 7.856 +0.254 (range 7.24-8.49) for the flattest
meridian, and 7.692 +0.256 (range 7.02-8.31).

1.4.3 The Paracentral Cornea

The paracentral zone is an annulus of approximately 4-7mm and extends 7-8mm across
the diameter of the cornea (Waring, 1989) (see figure 1.03). It may also be known as
the mid periphery of the cornea and represents a relatively spherical zone which is

generally flatter in radius than the central portion of the cornea (Waring, 1989).
1.4.4 The Peripheral Cornea

In the majority of normal corneas, the peripheral radius of curvature flattens (Guillon
et al, 1986). The peripheral zone is roughly a 7-11mm annulus (see figure 1.03).
Townsley (1970), for the first time, reported the shape of human corneas from a
sample of 350 patients. Peripheral corneal shape was modelled on an ellipse and
described numerically using a term known as the eccentricity (defined in section 1.6.1).
This term describes the rate of change in peripheral radius (a more detailed decription
is provided in section 1.6.1). A mean eccentricity of 0.5 (a flattening ellipse) was
found by Townsley (1970). Unfortunately, only 91 of the 350 patients could be said to
be representative of the normal population. At present, the largest study is that
conducted by Bibby (1976). With 2100 patients, Bibby (1976) found the peripheral

cornea to resemble a flattening ellipse of mean eccentricity 0.387.
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Guillon et al (1986) found a mean p-value of 0.83 +0.13 (or an eccentricity of 0.41)
with a range of 0.21 - 1.2 for flat meridians and 0.81 +0.16 (or an eccentricity of 0.44)
with a range of 0.11 - 1.16 for steep meridians. The term p-value has been shown to
be uniquely related to the eccentricity as p=1-e” (Bennett, 1968). It is worth noting
that a shape factor greater than 1 was found, indicating a steepening ellipse and also a
large variation within the normal population. The peripheral zone therefore exhibits
the most drammatic change in shape where the corneal profile deviates from a

relatively spherical profile to an elliptical curve.

1.4.5 The Limbal Zone

The limbal zone marks the junction between the cornea and the sclera, otherwise
known as the corneoscleral junction. The limbal annulus measures approximately
0.5mm. With respect to measuring corneal topography, this zone is of least
significance as most of its topography will be masked due to disturbances in the tear

film.

1.4.6 Defining points on the corneal surface

It is important to be able to locate and describe a point on the corneal surface and
therefore some form of arbitrary notation is required. Having described some
important landmarks such as the geometrical centre, a numerical system to locate a
specific point on the cornea is required. Viewing the cornea from the front, it may be
radially dissected through its geometrical centre into 180 meridians. An unknown
point may then be located by its meridian (e.g. 90° superior or 180° left) and its

distance along that meridian from the geometrical centre (see figure 1.04).
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90 degree superior

meridian This point is localised as
being along the 90°
superior meridian and
3mm from the geometric
centre of the cornea

180 degree
meridian

0 degree
meridian

270 degree
meridian

Figure 1.04: Notation used when localising a point on the corneal surface.

1.5 Qualitative descriptors of corneal topography

Once the three dimensional structure of the cornea has been derived, methods must be
devised where the numerous data points may be presented in a clear and concise
manner. The earliest qualitative descriptor of corneal topography was the Placido disc,
where the image of a ring shaped target provided the user with information regarding
the degree of corneal toricity, corneal apex position and peripheral corneal shape.
More recently, with the development of computerised videokeratoscopes, investigators
have been able to create more sophisticated qualitative descriptors. Some of these

descriptors are described below.

1.5.1 Classification Of Topography With Contour Maps

Maguire et al (1987a) and Gormley et al (1988) have described the use of coloured
isoptor contour maps in order to schematically present data obtained from
topographical systems. A variety of colours are used to denote the sagittal power
distribution across the entire cornea. Klein (1993) showed that the algorithms used in

the calculation of corneal power are incorrect for areas outside the paraxial zone
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because the formulae do not account for spherical aberration. Therefore, these maps
are more useful qualitatively rather than quantitatively. Numerous patterns may be
observed that may be used to describe certain forms of corneal topography. Bogan et
al (1990) further simplified these by describing them as round, oval, symmetrical
bowtie, asymmetric bowtie and irregular. In their classification scheme, Bogan et al
(1990) used the shapes formed by colour coded contour maps in the paracentral and
central corneal zones to define specific patterns (see figures 1.05 and 1.06). The
paracentral and central areas of the cornea were used because they are the most
important optically and also because these are the areas measured most accurately by

the Corneal Modelling System (Hannush et al, 1989).

After observing the patterns from 216 eyes, Bogan et al (1990) defined these 'shapes'

as follows:

e Round: When the ratio of the shortest to the longest diameter at the colour
zone chosen for the pattern reading is two-thirds or more. This would represent an
approximately spherical cornea as the change in power in the zone would not be

significant.

e QOval: When the ratio of the shortest to longest diameter at the colour zone is
less than two-thirds. This would represent an approximately spherical cornea; there
is no detectable difference between oval and round patterns in terms of refraction
and keratometry. One possible reason for this could be that keratometry only
measures the central 3 - 4 mm of the cornea and this may not be a large enough area
to detect any differences in astigmatism for the two patterns. Round and oval

patterns accounted for 43.4 % of the patterns observed by Bogan et al (1990).

e Symmetric Bowtie: This pattern represents regular astigmatism. For a
pattern to be classified as a symmetric bowtie there must be a central constriction in
the outline of the colour zone from the colour coded contour maps. Also, the ratio

Xo/X; or Xo/X, must be one-third or less and the ratios Xi/X; and Y1/Y, must be
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two-thirds or more (where Y represents the radius of the long axis of the bowtie
and X represents the diameter of each half of the bowtie perpendicular to the long
axis). Bogan et al (1990) found a statistically significant difference in the level of

astigmatism between symmetric bowtie patterns and the round or oval patterns.

Aston University
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Fxg_ureIOS shows the five patterns observed in colour-coded topographic maps of
normal eyes as described by Bogan et al (1990).

® Asymmetric Bowties: These patterns are very similar to symmetric bowtie
patterns in that there is an area of constriction in the bowtie and the ratio of Xo/X;
or Xo/X; is one-third or less. However, the difference in classification is that the
ratio of Xy/X, and/or Y,/Y, is less than two-thirds. Statistically significant
differences between symmetric and asymmetric pattern astigmatism have been
found and are attributed to factors such as eccentric fixation, corneal apex position,
contact lens wear and radial asymmetry in the rate of change of peripheral
curvature. Bowtie patterns accounted for 49.6 % of patterns observed by Bogan

et al (1990).

e Irregular: No clear pattern can be identified according to the above criteria.
Bogan et al (1990) found 7.1 % of subjects with this type of pattern, however, no
sign of corneal disease in these people was observed. It is possible that tear film

disturbances could cause this type of irregularity.
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Figure 1.06: Shows classification of bowtie patterns as symmetrical and
asymmetrical, based on specific ratios.

1.5.2 The Photogrammetric Index Method (PIM)

Cohen et al (1984) calculated several numerical indices that describe the pattern of
keratoscopic ring shapes as they depart from circularity and also the pattern of several
ring shapes from an individual cornea. Contrary to describing corneal power and
radius, the numerical indices differentiate between symmetrical, regularly astigmatic
and keratoconic corneas. Numerous indices are calculated, each ring index will now
be described. The eccentricity (E) is simply calculated as the minor chord length
divided by the major chord length (see figure 1.07). Angularity (A) assesses the angle
between the major and minor chords, the measured angle is scaled such that 90° would
be 1 and acute angles would be close to zero. Another indice of a particular
keratoscope ring is the major symmetry index (SM,). The index is the shorter length

divided by the longer length of the major chord segments created by intersection of the
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minor chord. The minor symmetry index (SM,) is comparable to SM, except that it
relates to the minor chord.

Maximum
chord

............................................

.............................................

\Z

Minimum chord

Figure 1.07: Major and minor chords, the looped profile represents a single
keratoscope ring image.

Another three indices were also developed that combine the chords of all the rings of
the keratograph. The angle cluster and distance cluster (Cx and Cp) are a measure of
consistency. Angle cluster is the standard deviation of the angle between each chord
and a reference line, it represents the consistency of chord directions. The distance
cluster describes the trend of each chord to pass through a common point. The final
whole eye index is the trend index (T). The trend index is the correlation (Spearman

Rank) of each ring for each individual ring index (i.e. eccentricity, angularity etc.).

In order to validate these indices, Cohen et al (1984) assessed the indices on 30 eyes
from a group of twenty subjects. The thirty eyes were then grouped into three
astigmatic groups:- symmetrical (S), comprising six right and four left eyes in which
the keratometer readings for the principle meridians were equal; regular (R),
comprising five right and five left eyes with regular astigmatism > 0.5D. The final
group (a keratoconic group, K) comprised of five right and five left eyes diagnosed
according to defined clinical criteria. The eccentricity index successfully differentiated
between the three groups. The symmetry indices were also able to distinguish between

the keratoconic and other groups. However, angular indices for the regular
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astigmatism and keratoconic groups showed no difference between the angular
separation of the major and minor chords. Thus, the angular index was not capable of
distinguishing between keratoconics and regular astigmatism.  Angular cluster
correctly distinguished between the symmetrical and regular astigmatic groups for the
minor chord (showing greater variability for the symmetrical group). Distance cluster
variability for the minor chord showed greater variability for the keratoconic group
than the symmetrical and regular astigmatic groups. The results therefore showed that
the combined use of all the proposed indices is a useful way of differentiating between
different corneal forms. However, a study involving a larger sample should be

performed in order to calculate ‘normal’ values for each group.

There are unfortunately two drawbacks of the PIM method of quantitative corneal
topographic classification. Firstly, the number of indicies makes it difficult for the
clinician to obtain a clear picture of the corneal shape: particularly as within their study
some of the indices rendered conflicting results. Ideally, the PIM method should
provide the clinician with a single index that carefully weights the values of all the
indices calculated. Secondly, only twenty patients were used and yet thirty eyes were
measured, it is therefore possible that statistically the results were biased because of

any similarities in corneal shape between the two eyes in the same patient.
1.5.3 The surface regularity index and surface asymmetry index

Computer algorithms may be derived in order to calculate indices which complement
the data from contour maps. Two such indices, the surface regularity index and the
surface asymmetry index have been derived and assessed in a clinical study by

Dingeldein et al (1989) and Wilson et al (1991a).

The surface regularity index (SRI) determines the central corneal optical quality, it is a
measure of localized surface regularity. The lower the value of this index the smoother
the surface. Thus, for a perfectly smooth surface a theoretical value of zero would be

found. However, in practice this is not possible due to instrument errors. Wilson et al
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(1991a) found a high correlation between the SRI and best corrected spectacle acuity
(r=0.8, p<0.001) in 31 eyes which met their criteria for inclusion. Clinically, the SRI

may be used to differentiate between reduced visual acuity due to factors other than

corneal topography.

The surface asymmetry index (SAI) determines the asymmetry of the central corneal
surface power. The value represents the centrally weighted summation of differences
in corneal power 180 degrees apart over 128 equally spaced meridians. For a perfectly
regular surface, such as a sphere, a theoretical value of zero would be found. Again,
due to instrument errors, this is not the case. Dingeldein et al (1989) found a
reasonable correlation between SAI and best spectacle corrected visual acuity (r=0.76,
p<0.001) in 39 eyes with keratoconus, compound myopic astigmatism,
epikeratophakia and 2 corneas from patients with 20/20 vision. The differences in
values of SAI for normals and those with keratoconus with best corrected spectacle
acuity of 20/20 were statistically significant (p<0.001). In a more recent study by
Wilson et al (1991a), a relatively low correlation was found between this index and
best corrected spectacle acuity (r=0.62, p<0.005). This discrepancy may be due to the
relatively small sample sizes. Clinically, the SAI may be used as a quantitative
indicator for monitoring changes in corneal topography. The derivation of these
indices is described in the article by Wilson et al (1991a). They suggest that the
incorporation of these indices would be a useful tool when combined with colour

coded maps for the assessment of corneal topography.
1.6 Quantitative descriptors of corneal topography

For purposes such as contact lens fitting and surgical modification of the corneal
surface, accurate knowledge of the corneal surface parameters is essential. Qualitative
assessment is of use only to summarise the enormous amount of data derived from
corneal topographic systems. However, quantitative descriptors in the form of
mathematical functions may also be used to describe the corneal surface whilst

allowing the practitioner to retain the concrete information provided from
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videokeratoscopy. Details of some of these mathematical descriptors are provided
below.

1.6.1 Corneal Radius and Shape

The radius of curvature of the anterior corneal surface and its refractive index
determine the power of that surface. The smaller the radius the greater the refracting
power of that surface. The apical radius of the cornea defines the size of the corneal
profile. Guillon et al (1986) showed a wide variety of corneal shapes within the
normal population. Therefore, mathematical descriptors that show a continuous
change in curvature would more accurately model the shape of the cornea. It appears
that descriptions have taken two separate forms; certain researchers have provided
precise descriptions using complex polynomial formulae (Howland et al, 1992),
whereas others have approximated corneal contour to conic sections (Townsley, 1970;
Townsley, 1974; Bibby, 1976; Guillon et al, 1986). Generally the results of these
studies have shown that modelling the corneal surface in terms of second order
polynomials is acceptable. The family of second order polymonials curves that are
used as desriptors of the cornea are known as conics. Mathematically, they are defined

as follows:

[N

2

+
[

=1 Lquation 1.01

QNI =

where @ and b are the semi major and semi minor axes respectively. x is the sagittal

depth at a chord length of y.
The family of surfaces and curves that may be derived from a cone (a solid surface
produced by the revolution of either of two straight lines meeting at a point about the

other) are defined below:

e (Conicoids: On rotating conic sections about an axis symmetry, one produces

surfaces known as conicoids.
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DD - Directrix
S - Focas
PS/PN = QS/QM =RS/RN =e

D

Figure 1.08: Defines a conic section. Bennett (1968) has defined a conic section as
follows: conic section is considered as the locus of a point which moves such that its

distance from a fixed point S, bears a constant ratio from a fixed straight line, the
directrix (DD). '

e Conic Sections: Bennett (1968) has geometrically defined a conic section as 'the
locus of a point which moves such that its distance from a given fixed point, the
focus, bears a constant ratio from a fixed straight line, the directrix (see figure

1.08). This ratio is termed the eccentricity (¢) and may have any numerical value.

In addition, Baker (1943) also derived an equation to describe a conic section :-

Yy =2rx— px’ Equation 1.02

where x and y are the Cartesian co-ordinates (the origin is conveniently placed at the
corneal apex), 7, is the radius of curvature at the apex, p is an index of peripheral
flattening and indicates the level of asphericity. For example, p <0, hyperbola; p = 0,
parabola; 0 < p < 1, prolate (flattening) ellipse; p = 1, sphere; p > 1, oblate
(steepening) ellipse. As well as detailing the derivation of equation 1.02, Bennett
(1968) also showed a direct relationship between p and e where,

p=1-¢ Equation 1.03
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The advantage of Baker’s and Bennett's notation is that the formula is simplified and it
is capable of describing all conic sections. Furthermore, by changing the values of r,

and p, all conicoids are described. A simple mathematical relationship can be shown to

link equations 1.01 and 1.02:

2 2

r,=— and p=— Equation 1.04
a a

In summary, the cornea can be described in mathematical terms using conic sections,

the formulae derived by Baker (1943) and Bennett (1968) permit the cornea to

described simply and effectively.

1.6.2 High Order Polynomial Descriptors

The corneal surface is a complex shape, in order to describe it mathematically high
order polynomial expressions may also be used to describe its shape. A study by
Howland et al (1992) attempted to describe corneal shape in precisely this manner.
Using the Corneal Topographic Modelling System (TMS) (Computed Anatomy Inc.,
New York), 4th order polynomial expressions from the Taylor series were fitted to
corneal surface coordinates. From these expressions the mean corneal curvature
(MCC) at any point on the surface was computed and compared with the measured

curvature derived from the TMS.

Howland et al (1992) concluded that polynomials captured gross features of curvature
but did not resolve fine details. However, from their study they suggested that the use

of polynomial fitting could form a classification scheme for describing corneal
topography.

1.7 Summary

The human cornea is a tranparent, avascular five layered structure. Its shape has been

shown to be highly variable within the normal population (Guillon et al, 1986).
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Descriptions of corneal topography have taken two forms. Qualitative descriptors
such as colour coded maps (where the sagittal power distribution of the cornea is
denoted by a colour), and numerical indices, such as the PIM, SAI and SRI indices,
have been used to summarise the enormous amount of data from topography systems.
Quantitative descriptors of the cornea have applied mathematical functions to fit
topographic coordinates. The use of conic sections has been the most commonly used

mathematical function in corneal profile curve fitting.

Chapter 2 describes the various instruments used in deriving corneal topography.
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Chapter Two

Past and Present Techniques Used In the Assessment of Corneal

Topography
2.1 Introduction

The cornea is the most powerful refractive surface of the eye accounting for almost
two-thirds of its total dioptric power. The importance of accurate measurement of the
corneal contour has been appreciated for many years in the fields of contact lens
design, computerised ray-tracing and ophthalmic surgery. More recently, with the
development of modern day computer systems, researchers have been able to the
process large amounts of information that has enabled the reconstruction of the cornea
using detailed models. The present chapter has therefore been written to provide a
review of the current principles and techniques used in resolving the topographical

structure of the corneal surface.

Numerous methods have been proposed in order to calculate the topography of the
cornea. However, the success of these methods ultimately depends on their accuracy,
repeatability and ease of use. The accuracy of an instrument may be defined according
to the tolerance that is expected when the instrument is to be used for a clinical
function. For purposes such as contact lens fitting, Stone (1962) has stated that the
radius of curvature should be measured within + 0.02mm. Table 2.01 shows how the

expected accuracy of radius of curvature was derived by Stone (1962).
Repeatability, on the other hand, may defined as the ability of an instrument to

reproduce the same measurement on two independent occasions when no change in the

structure to be measured has taken place.
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2.2 Keratometry

In optometric practice, the keratometer is the most frequently used instrument to
measure the central radius of curvature of the anterior corneal surface. The principle
utilises the reflecting properties of the cornea so that when the size of the reflected
image (of a mire object) is measured, the central radius the cornea is determined. The
cornea thus acts as a convex mirror producing a virtual image behind the corneal

surface. The optical principles are shown in figure 2.01.

h, object

/ height

8

h’, image

.............. T
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N

Central radius

med to be spherical
Cornea, (assu P — of curvature, r

between mire reflection points)

d

Figure 2.01: shows the optical principle of the keratometer. f’ is the focal distance of
the surface. d represents the object to image separation and x the distance from the
object to the focus of the surface. The cornea is assumed to be spherical between the
reflection points at the cornea.

43



Techniques used in the Assessment of Corneal Topography

From similar triangles the following equation can be derived:

nooftoor
—_—=r——— Equation 2.01
T T quation

Thus, as linear magnification (m) is ratio of the image to object heights,

¥ =-2mx Equation 2.02

In practice, d is large and may be approximated to x. Equation 2.02 may therefore be

rewritten as

r =-2md Equation 2.03

Owing to involuntary eye movements, the value of 4’ is difficult to determine,
therefore, a doubling prism was introduced such the operator would simply have to
measure the separation of the reflected object mires to determine the size of the

reflected image. In this manner, the effect of errors due to poor fixation were reduced.

Figure 2.01 also shows that the central corneal radius is being measured between two
points. Thus, the assumption is made that the central radius of curvature of the corneal
surface between these two points is spherical. Although the magnitude of this error is
small for measurements close to and on either side of the optical axis, it still exists and
will invariably depend on how much the shape of the cornea deviates from that of a
spherical surface. Measurements of peripheral corneal radius cannot be accurate using

the keratometer due to the aspheric nature of the corneal surface (Stone, 1962).

Further errors in determining the central radius of curvature were discussed by Littman
(1951), who suggested that the primary cause of any inaccuracies were due to
incorrect focusing of the eyepiece of the instrument. When an eyepiece is incorrectly
focused, the whole instrument has to be repositioned in order to view the reflected
image of the mire clearly. As a result two errors occur. Firstly, a change in working
distance inevitably alters the size of the reflected mires, thus the operator must adjust
the mire separation. Secondly, in instruments where the doubling prism is placed

between the eyepiece and the objective lenses of the keratometer, the amount of
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doubling alters with the distance of the objective lens to the image. To eliminate the
first error, the mires are collimated as this prevents any change in image size. The
second error is eliminated by placing the doubling prism at the focal point of the

objective, this is known as the telecentric principle.

Modern day electronics have led to some manufacturers developing automated
keratometers. The use of electronic systems has enabled manufacturers to overcome
some of the optical problems encountered in the design of keratometers. Two
examples of automated keratometers will be discussed -the Canon Autokeratometer

(Cannon USA Inc.) and the Humphrey Auto Keratometer (Allergan Humphrey).

The Canon Autokeratometer K-1 uses a ring target that is reflected from the cornea
and focused by an objective lens (Goss et al, 1991). As opposed to an eyepiece
system, a television monitor is used to view the reflected image; the use of a monitor
eliminates the errors introduced from inaccurate focusing of the eyepiece.. The ring
image is split into five images in the optical system and photodetectors are used to
detect the separations of the rings in all five meridians. From the separations of the
rings, the radius of curvature is calculated in each meridian and the principal meridian
located. The instrument can measure up to 7D of astigmatism. Peripheral
measurements can also be made by asking the patient to view peripheral fixation

targets.

The Humphrey Auto Keratometer measures corneal radius in 3 locations by projecting
3 beams of light from an infra-red light emitting diode onto the cornea in a triangular
pattern (Goss et al, 1991). The light from the L.E.Ds passes through a condensing
lens system and a rotating chopping disc. The purpose of the disc is to modulate the
illuminating sources. Light then passes through a series of apertures and a lens system,
finally, an image is formed behind the corneal surface. Directional photodetector
amplifiers are used to detect light which is at a specific angle from the optical axis of
the instrument. The signals from the photodetector amplifiers are converted into

digital values from which the radius of curvature is calculated.
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The Humphrey Auto Keratometer can be used to measure peripheral radius of
curvature by asking the patient to view peripheral fixation targets. The instrument uses
the central and peripheral radii measurements to calculate the position of the corneal
apex, the shape factor (Wesley-Jessen shape factor, ¢, see section 1.6.1 for a
definition of e), the corneal vault height (which is the sagittal depth of the cornea at the

apex) and the refractive power of the cornea at the line of sight (defined in section

2.6.1) and the corneal apex.

In a clinical trial by Tate et al (1987), two autokeratometers (the Canon and Humphrey
autokeratometers) and a manual keratometer (the Javal Schiotz by Haag-Streit), were
assessed in terms of their accuracy and reproducibility for spherical surfaces and 24

eyes. All three instruments showed a high level of accuracy and reproducibility.

2.3 Eye Impressions

Producing an impression of the eye would appear to be the most obvious method of
determining the contour of the whole cornea. Unfortunately, there are limitations to
this technique as the inevitable result of introducing impression material into the
conjunctival sac is corneal deformation. Lid pressure also has an effect on corneal
topography and therefore the final mould. Furthermore, corneal insult is likely and
measurement of the cast is difficult (another error is introduced due to shrinkage of the
cast material). Therefore, in view of these drawbacks, the technique of eye
impressions is no longer considered a suitable technique in determining corneal

topography.
2.4 Keratoscopy

Keratoscopy has for decades been used to determine the contour of the anterior
corneal surface by observing the reflected image of an object. Various forms of
keratoscopes have been developed since the first keratoscopic disc by Placido in 1880.

The Placido disc is a simple hand held instrument used for observation rather than
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actual measurement of corneal contour (see figure 2.02). The following valuable

information may be found:-

Whether the central portion of the cornea has marked toricity.
The approximate location of the principal meridians of a toric cornea.

Whether the cornea flattens in the periphery or steepens, and the approximate

degree to which this occurs.

Whether the changes in peripheral curvature are symmetrical in all meridians.
e Whether there are any localised surface irregularities.

® The approximate position of the corneal apex with respect to the line of sight.

Concentric ring
mires, viewed
after reflection
from the cornea

Focusing lens

Figure 2.02: Concentric ring target used in the Placido disc.

Information of this nature would be of great use in clinical practice, particularly if a
hard copy could be made such as a photographic recording. Gullstrand (1966) was
one of the first investigators to introduce the photokeratoscope. Many new designs

have since emerged all of which have attempted to measure a larger area of the cornea
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by utilising various shaped targets. Gullstrand (1966) used a plane object surface,
which prevented larger areas of corneal surface from being measured. Nevertheless,
he found that the normal individual had a smooth corneal surface that flattened away
from the corneal apex. Later, using a flat object of tangential design, measurements of
up to 7mm in diameter were obtained (Fincham, 1953). Knoll et al (1957) used a
hemispherical or cylindrical object surface that enabled an area of 10mm of corneal
surface to be measured. The advantage of using an object of hemispherical design

was that the size of the target was much reduced, thus making the instrument less

bulky (see figure 2.03).

Camera
system

Cornea

Hemispherical

Plane target target

Figure 2.03: the difference in area of corneal surface measured for a plane target and
a hemispherical target.

Ludlam et al (1966) considered the limitations of the photokeratoscopes at that time.

Three suggestions were made from their study:-

e The image plane (located behind the cornea) should be flat. This point is
particularly important with respect to the design of a target for the following
reason: if the image lies on a curved image plane then there will be one point of
focus on the flat plane of the photographic film. Ludlam et al (1966) found that for

an ellipsoidal target surface, the image from a spherical reflecting surface lay on a
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flat plane. The seven target rings of the Wesley-Jessen photoelectric keratoscope

are arranged in the manner described by Ludlam et al (1966).

The analysis of the data should be detailed and accurate. Numerous methods have

been adopted to calculate the parameters describing the corneal profile, the various

techniques are discussed in chapter 3.

® There should be accurate and reproducible alignment of the patient's line of sight
with that of the instrument. Accurate alignment is necessary in order to position the
vertex normal of the cornea (that point on the corneal surface that is perpendicular
to the keratoscope axis when the subject is viewing the fixation target) relative to

the line of sight. Alignments systems are discussed in section 2.6.1.

More recently, computers have been used to analyse the data supplied from the
photographic image of the corneal surface. ~ Known as computer-assisted
photokeratoscopy, it has been used for clinical applications such as contact lens
fitting. Bibby (1976) has described a system (Wesley Jessen PEK Mark IIIA) of this

type for the use of contact lens design.

Bibby (1976) stated the technical requirements for reliable photokeratoscopy as:

e the units to describe corneal topography must be independent of the shape being

measured.
e The instrument should measure the total area of interest.
e All information should be acquired simultaneously.

e The technique should have high accuracy and reproducibility.

If one accepts the above technical requirements then it is possible to assess the
suitability of other techniques. Thus, applying the first requirement, instruments such

as the keratometer that only measure central radius of curvature make the assumption
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that the surface being measured is spherical. This is not true for the cornea which has
been shown to be best approximated to a conic section (Bibby, 1976; Guillon et al,
1986). Further, keratometry does not fulfill the second requirement because only the
central three millimetres of the corneal surface is measured. In order to measure larger
areas of the surface, the keratometer requires the use of an accessory device (the
topogometer) which involves repeated measurement and the additional inaccuracy of

asking the patient to alter fixation to another point (see third requirement).

The Wesley Jessen photoelectric keratoscope consists of seven concentric rings on an
ellipsoidal surface, this permits the analysis of the central 9mm of the cornea from
which an enlargement (X50.8) of the reflected image is made (Bibby, 1976). The
computer then begins its analysis in order to determine the shape of the cornea. A
device, similar to a densitometer head, is moved over the projected image to locate
position of the reflected rings on the photograph. Bibby (1976) stated that the
positional accuracy of the densitometer in locating the reflected rings is 1/360mm.
Data from a number of points is then taken along a specific meridian, from this the

central radius of curvature and the 'shape factor' are calculated.

The term 'shape factor' describes the degree of peripheral flattening. Bennett (1968)
described this term mathematically as 1-¢> where e is the eccentricity (defined in
section 1.6.1). The shape factor referred to by Bibby (1976), the Wesley-Jessen shape
factor, is e>. The Wesley-Jessen system occasionally produces a negative value for

shape factor which is not mathematically possible for the square of a, real number.
- [
Aplad,

A variety of corneal topographic systems are available, a description of the past and

present systems based on the principles of keratoscopy are now presented.
2.5 The Autocollimating Photokeratoscope

As its name implies, the autocollimating photokeratoscope (Wesley-Jessen IIIA PEK)

was a keratoscopic device that captured the image of reflected ring targets on a
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photographic film. The primary advantage of this instrument over its predecessors was
that it was capable of accurate alignment. Basically, light from a neon fluorescent
source (see Figure 2.04) was reflected through a series of mirrors and fine apertures
such that when light was incident normal to the corneal surface, it would be reflected
back along its original path a process known as autocollimation. Under this condition
the observer would see a dark centre spot with a bright surround. By reducing the
depth of field, errors were further reduced. Thus, measurements were only performed

when the line of sight was coaxial with the optic axis of the instrument and light was

normal to the cornea.

Observer Neon Lamp

Film Lens system Cornea

Figure 2.04: Shows a simplified version of the mirror and aperture system used to
increase accuracy and reproducibility during the alignment procedure. Light from the
neon source reflects off mirror A to B, this mirror also has a small pinhole through
which the light travels to mirror C where light is reﬂected- to the cornea. If at this
point the light incident on the corneal surface is normal to it, then it will be reﬂec.:ted
back along its own path (there is however some divgrgence) an'd some of ‘Fhe light
travels to the photographic film and some back to mirror B which reflects it to the

observer.

The accuracy of the system, according to instrument manufacturers, was within
0.015mm for radius of curvature of 3 known spherical steel balls (Bibby, 1976). Clark
(1974) performed extensive validation tests on the autocollimating photoelectric

keratoscope with actual aspheric and displaced spherical surfaces. Errors in
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asphericity ‘at the edge of the observed field of approximately 4 micro-metres' were
found. Unfortunately, Clark’s definition of asphericity was not in accordance with the
standard terms used by Bennett (1968), Bibby (1976) and Guillon et al (1986). Clark
(1974) defined asphericity as the departure of the actual surface normally from the
reference spherical surface. In clinical terms this value is difficult to interpret.
Townsley (1974) compared the accuracy of the photokeratoscope on non-spherical
and spherical surfaces. After the values were compared with those obtained from
mechanical measurements, he found that the mean sagittal depth reading fell within

0.002mm of the mechanical reading out to a semi-chord of 4.5mm for spherical and

non-spherical surfaces. Again, the units used do not provide a clear indication of the

accuracy of the instrument in clinical terms.

2.6 Computer-Assisted Videokeratography

Computer-assisted videokeratography combines the principle of keratoscopy with
computerised image analysis and data processing using personal computers (Gormley
et al, 1988). Examples of commercially available systems are the TMS-1 (Computed
Anatomy), EyeSys Corneal Analysis System (EyeSys Laboratories), MasterVue Smart
Topography (Optical Radiation Corporation, California, U.S.A) and C-Scan Colour-

Ellipsoid-Topometer (Technomed Technology, Baesweiler, Germany).

With the development of computer hardware in terms of both processing speed and
storage capacity, the number of points analysed on the corneal surface has increased
dramatically. The number of rings and points of analysis are chosen in order to
provide adequate resolution of the corneal surface (the TMS-1 has 22 rings, 256 points
are digitised along each mire; the CAS has 8 rings, 360 points are digitised at the
centre and periphery of each ring, the MasterVue has 20 rings with 360 degree semi
meridian analysis and the C-scan has alternating coloured rings with a maximum of
11520 point analysis). Images obtained from the videokeratoscopes are digitised and

topographic data points are extracted in polar coordinates. Various forms of
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presentation of this data are available such as colour coded dioptric maps,

photokeratoscopic images, wire mesh models and solid models.

A significant amount of research has taken place regarding the accuracy of modern
computer-assisted keratoscopic devices on test surfaces (Hannush et al, 1989; Koch et
al, 1989; Hannush et al, 1990; Koch et al, 1992). The results show an acceptable level
of accuracy and reproducibility. Hannush et al (1989) found measurements to be
within 0.5D in 76% of the readings on human corneas for rings 2 through to 13 for the
TMS. In a study by Koch et al (1992), the mean absolute differences between the
keratometer and the EyeSys in terms of power were 0.19D and 0.21D for the steep
and flat meridians, respectively. Tsilimbaris et al (1991) found a clinically significant
difference between the EyeSys and Javal keratometer when measuring astigmatic eyes
with a cylinder greater than 1.50D. A mean difference of 0.84D was found but only 18
eyes were measured. Tsilimbaris et al (1991) suggested that a possible explanation

could be poor focusing on one of the two astigmatic meridians.

Antalis et al (1993) compared the EyeSys (CAS) and the TMS-1 in terms of central
corneal curvature in 18 eyes with a variety of corneal conditions. The average
differences for the two instruments were -0.2+0.7D for the flat central meridian and
-0.7+0.9D for the steep central meridian. Correlations for the two instruments were
0.9901 and 0.9937 for the flat and steep meridians, respectively. Both instruments
were also found to correlate relatively well with the keratometer (correlation
coefficient, r, 0.9617 and 0.9844). The use of correlation coefficients to compare the
agreement of instruments is not an appropriate statistical test. Bland et al (1986)
suggested that a plot of the difference of the two readings versus their respective

means 1S a more accurate method.

Unfortunately, there are limitations of the keratoscopic approach in the analysis of
corneal shape. Firstly, as already stated by Ludlam et al (1966), the image of the
target mires should lic on a flat plane. Even with the modification of the target plane,
it is not possible to achieve this for all corneas because of the large variety of normal

corneal shapes. Thus there could be errors induced from poor focus of different rings.
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Secondly, it has been shown that slight decentration of the alignment and focus results

in large errors in actual measurement (Nieves et al, 1992).

Various modifications in the design of instruments have a role in reducing errors due to

poor focus and misalignment, these will now be discussed.

2.6.1 Design Factors

A. Working Distance

Working distance, mire size and the size and position of the reflected mire image are all
intimately related. For example, as working distance decreases the influence of
instrument alignment error will increase (Nieves et al, 1992; Antalis et al, 1993),
however, the influence of facial anatomical factors is reduced. Using a micron
positioner (a device used to accurately position a test surface with respect to the
videokeratoscope axis), Nieves et al (1992) determined the effect of working distance
on the accuracy of measurements found with the TMS and EyeSys videokeratoscopes
for two acrylic spheres (r=7.1153mm and r=7.9497mm). The results showed that the
EyeSys (which has a larger working distance) consistently measured the sphere to a
higher degree of accuracy than the TMS for both frontal plane (x and y-axis) and axial
(z-axis) misalignment (see figure 4.02 for definition of axes, section 4.3.1). Applegate
(1992) pointed out that the working distance chosen by the manufacturers of the

EyeSys and TMS probably represents two extremes of realistic values.
B. Defining a Reference Point for Corneal Modelling

Irrespective of manufacturer design, all videokeratoscopes at present use the same
alignment principle (Mandell, 1992). The subject views a luminous fixation point, the
image of which is viewed by the practitioner on the monitor. At this point, the
subject’s line of sight is coaxial with the instrument axis. Finally, the practitioner must

then centre the reflected image of the luminous markers with respect to a reference
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marker on the monitor. The final stage of alignment fulfills one of the assumptions and
criteria for videokeratoscopy (stated in chapter 3):- that the instrument axis should be
perpendicular to the cornea. The consequence of the alignment procedure is that the
instrument axis may be perpendicular to any point on the cornea. Figure 2.05 shows
the point of alignment with the cornea when the conventional procedure of alignment

is performed. Definitions of the terms used are given below.

Fovea
Pupillary Axis

Line of A
Sight

Videokeratoscope
Axis

Figure 2.05: Shows the position of the various reference points and axes after
alignment has been performed. E and E’ are entrance and exit pupils respectively, C is
the centre of curvature of the cornea. The videokeratoscope axis is aligned with an
unknown point on the cornea.

e The entrance pupil is the image of the real pupil as formed by the optics in front of
it. When light is directed towards the entrance pupil it will emerge through the exit
pupil.

e The exit pupil is the image of the real pupil as formed by the optical components of
the eye of behind the iris.

e The line of sight: is the straight line from fixation to the centre of the entrance pupil.
A light ray passing along the line sight passes through the exit pupil to the fovea
because the subject is actually fixating on the object. Hence, the line of sight
specifies the beginning and end of a light pathway. The use of the entrance pupil
has the additional advantage that it may be easily determined in a non-laboratory
environment. The commonly used reference line known as the visual axis should
not be used in videokeratoscopy (Mandell, 1992; Mandell et al, 1993). The visual

axis is defined as the line from fixation that passes undeviated through the nodal
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points to the fovea. As the nodal points cannot be determined in a clinical

environment, the visual axis should not be used.

The pupillary axis: is the line from the centre of the entrance pupil that is
perpendicular to the corneal surface. The principal feature of the pupillary axis is

that as it is perpendicular to the corneal surface, it must therefore pass through an

instantaneous centre of curvature of the cornea.

Angle lambda: is the angle formed at the intersection of the pupillary axis and line of
sight. Angle lambda is present in most eyes and is due to the fact that the fovea is
decentred slightly temporally with respect to the eye’s axis of symmetry. As the

fovea is decentred horizontally, angle lambda is greatest on the horizontal meridian.

Although after alignment, the optic axis of the instrument is perpendicular at a point on
the cornea and is therefore directed towards the instantaneous radius of curvature,
measurements are performed from an eccentric and unknown point. The point on the
cornea from where measurements are performed with present videokeratoscopes is
unique, however, as the measurements are centred about an unknown eccentric point,
another method of alignment is required that would enable alignment with a suitable

reference point.

Earlier investigators attempted to align the instrument axis with the corneal apex.
Alignment with the apex was been performed using luminous cross targets (Ludlam et
al, 1967), Moire targets (Mandell et al, 1971) and a small mire keratometer (Mandell
et al, 1971). With the latter technique a keratometer was used to locate the corneal
apex and the optic axis of the photokeratoscope was aligned perpendicular to this
point. Unfortunately, this technique was time consuming and cumbersome. Alignment

with the corneal apex is not suitable as its anatomical position does not necessarily

relate to the line of sight.
From a clinical and functional view point, the ideal reference point would be the

intersection of the line of sight with the corneal surface. Manufacturers of

videokeratoscopic systems have recently updated instruments to locate the entrance
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pupil on dioptric maps. Mandell (1992) described a simple modification to
conventional videokeratoscope alignment where measurements are centred about a
unique point on the corneal surface where the line of sight and the instrument axis
intersect. This point is not as peripheral on the cornea as with conventional alignment

procedures. Figure 2.06 summarises the modification as described by Mandell (1992).

Fovea
Pupillary Axis

Videokergitoscope
Axig Line of
Sight

Eccentric Fixation

Figure 2.06: Alignment proposed by Mandell (1992) in order to align the
videokeratoscope axis with the line of sight at the corneal surface.

Observation of figure 2.05 shows that from the videokeratoscope view, the monitor
reference pattern will be displaced away from the centre of the entrance pupil. The
reason for this is that the instrument requires the optic axis of the instrument to be
perpendicular to the corneal surface. In figure 2.06, the subject is asked to view an
eccentric target so that the monitor reference pattern of the videokeratoscope is placed
in the centre of the entrance pupil as viewed in the monitor. Once this has been
accomplished, the luminous fixation marker is then aligned with the monitor reference
pattern. Observation of figure 2.06 shows that after alignment in this manner, the line
of sight and the optic axis of the videokeratoscope intersect at a unique point on the

cornea and measurements are centred about a point where the line of sight intersects

the cornea.

More recently, Hubbe (1994) evaluated the effect of alignment of the EyeSys CAS in
five corneas and three aspheric test surfaces of varying radius with the line of sight

directed at 2.5°, 5° and 10° below the videokeratoscope axis (the instrument axis was
still perpendicular to the surface under test). Hubbe et al (1994) found that a 5 °

deviation from the fixation source, a significant difference between opposing semi-
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meridians in the aspheric surfaces and patient corneas (p<0.05) occurred.
Furthermore, the colour coded maps mimiced the appearance of keratoconus. Hubbe
(1994) concluded that accurate alignment with the line of sight is important as it can

induce errors in the subsequent calculations to determine corneal topography.

C. Focusing Systems

User errors can only be attributed to alignment inaccuracy. The importance of
accurate z-axis (i.e. along the instrument axis) alignment has been shown to be critical
in the accurate measurement of corneal topography (Mandell, 1992; Nieves et al,
1992). Mandell (1992) found that the impact of z-axis alignment error on corneal
radius derivation was greater with instruments that operated at shorter working
distances. Using the EyeSys and the TMS videokeratoscopes (the EyeSys has a longer
working distance than the TMS), Mandell (1992) found that the effect of z-axis
defocus was greater with the TMS than the EyeSys. The graph below (figure 2.07)
shows the results of radius of curvature measurements obtained with the TMS using a
42.5D spherical surface for z-axis defocus. It can be seen that errors in measurement
of up to +1.00 D in the periphery of the cornea occurred due to small errors in
defocus. Nieves et al (1992), confirmed these results in a similar study using the same

instruments.

Aston University

Content has been removed for copyright reasons

according to the results by Mandell (1992).
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More recently, manufacturers have attempted to redesign instruments in order to

minimise errors due z-axis misalignment. The MasterVue Smart Topography system

Incorporates a dual camera system that enables the operator to view a magnified image

of the centrally reflected rings as well as the overall cornea. Theoretically, z-axis

errors should be reduced because smaller depth of focus is obtained using the second

high magnification camera. Figure 2.08 shows how the dual camera system operates

(reproduced from MasterVue literature).

Aston University
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Figure 2.08: The MasterVue dual camera system used to obtain accurate z-axis
alignment (reproduced from MasterVue literature).

D. Analysis of Distorted Images

Videokeratoscopic systems have a major role in analysing irregular corneas for
purposes such as therapeutic contact lens fitting, refractive surgery or post-operative
cataract management. If irregular corneas cannot be analysed, then there is a major
drawback associated with videokeratoscopy. Modern day videokeratoscope can
analyse most distorted corneas due to advances in the digitisation of the image and
improvements in computer software. However, a recently developed system (the C-
Scan Colour Ellipsoid Topometer) uses coloured ring mires to enable accurate
localisation of the rings on the corneal surface (Ocular surgery news, 1994).

Unfortunately, no papers have been published regarding the superiority of this system

over the current videokeratoscopes.
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2.7 Rasterstereography

Rasterstereography was initially used for the measurement of corneal topography by
Bonnet et al (1962). It has been used successfully in other fields of medicine, for
example, in the assessment of spinal curvature (Koepfler, 1983). The principle
involves projecting a grid of light onto the corneal surface. As the cornea is
transparent, the technique involves rendering the cornea opaque. Originally, talcum
powder (with the use of a suitable anaesthetic) was used to form a real image of the

target. The use of talcum powder to make the cornea opaque was the major drawback

of this technique.

More recently, this method has attracted more popularity as the use of talcum powder
has been replaced with sodium fluorescein. The mechanics have been concisely
described by Arffa et al (1989), where a projected grid of light is used to illuminate the
cornea and then viewed at a specific angle from the projection source (see figure 2.09).
The whole system is incorporated on a Zeiss stereo photo slit lamp. Image aquisition
involves focusing the slit lamp on the corneal surface, when in focus, a flash is
triggered which provides the required intensity for image analysis. The flash light
passes through the cobalt blue excitation filter causing the projected grid pattern to
fluoresce. The image is then viewed by the video camera through a yellow barrier
filter so that the residual blue light is absorbed. The resulting image is then digitised

and analysed using suitable computer software.

The shape of the corneal surface can then be determined by the distortion and
separation of the projected grid. The computer calculates the elevation of the corneal
surface by comparing the displacement of the projected grid lines on the cornea to the
position of the grid lines when projected on a flat plane. A two dimensional matrix of
approximately 3000 elevation points is created for each image. From this, a three

dimensional display of the corneal surface is produced.
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Figure 2.09: The design of the apparatus used by Arffa et al (1989).

The accuracy of elevation measurements is dependent on the magnification used on the
slit lamp. At X16 the whole of the cornea can be visualised and elevation has an
accuracy of approximately 10pm. At higher magnifications even more accuracy is
possible. Furthermore, the accuracy is also dependent on the length of the profile
examined. Arffa et al (1989) found that for a length of 8mm of the corneal profile, the
accuracy was 0.11D, but for only 5Smm the accuracy was reduced to 0.5D. This was
determined in a laboratory using matt finished steel balls, no aspheric test surfaces

were used in their analysis.

With respect to alignment, any section of the projected grid may be analysed and used
as a reference point. Generally, the apex of the cornea is chosen as the reference point.
A commercially available device has been developed (the PAR technology Corneal
Topography System). Recent studies (Belin et al, 1992; Belin et al, 1993) indicate that
the instrument is both highly accurate and reproducible in determining the topography
of spheres. An 8mm test area was used on non-calibrated steel balls of 20mm, 18mm
and 12mm diameter, from which standard deviations of 0.03, 0.02 and 0.01D,
respectively were found. Contrary to the study by Arffa et al (1989), smaller test areas
did not result in significant reductions in the accuracy of elevation measurements. No

tests were performed on mechanically measured aspheric test pieces.

61



Techniques used in the Assessment of Corneal Topography

Belin et al (1993) assessed the accuracy of the PAR system using decentred spheres,
whole cadaver eyes before and after epithelial removal, lamellar keratectomy and laser
photoablation. Four spheres were used (37.49, 42.21, 48.05 and 55.76D), the effect of
decentration (0.5mm in the X, Y and Z axes) and the size of the optical zone (5,6 and
8mm) were assessed and the best fitting sphere determined. The principle of
rasterstereogrammetry calculates elevation points and thus, in theory, there is no need
for accurate alignment with the apex of a surface as it will be the point with the
greatest elevation with the smallest radius of curvature. Belin et al (1993) found an
average error of 0.04D when decentring by 0.5mm, the maximum error was 0.1D for
the 37.49D sphere with a 5.0mm optical zone. They concluded that the effect of

misalignment and optical zone diameter had little effect on the results obtained.

Rasterstereography is a very accurate technique for measuring corneal curvature. It
utilises a real image as opposed to a virtual image as used in reflective methods such
that used in keratometry and keratoscopy. The analysis of a reflected image on highly
distorted corneas can cause significant distortion of the image such that analysis is
almost impossible. On the other hand, a projected target is effected considerably less
(Belin et al (1993) successfully obtained images from de-epithelialized, keratectomized
and photoablated corneas). Unfortunately, there are very few publications that have
assessed the accuracy of the technique of rasterstereography using aspheric surfaces.
Assessment of the accuracy of an instrument in determining the topography of
spherical surface is not suitable when we are performing measurements on corneas

which most resemble aspheric surfaces.

2.8 Summary

Eye-care practitioners have always been aware of the need to understand the
topographical nature of the corneal surface. Within the last decade, researchers in this
field have made a number of improvements to older systems. Data is now stored as
digitised images on computer disks to enable easy access and to eliminate errors such

as shrinkage and distortion that occurred with photographic storage media. Accurate
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localisation of the target rings (using techniques which allow the reflected Placido rings
to be located accurately) from digitised images has also aided the increase in accuracy
compared to instruments where ring images were located manually. The improvement
of target design (by having a greater number of rings and by modifying the spatial
arrangement of the rings) has also permitted more detailed analysis of the cornea.
Representation of the data has now evolved into detailed mathematical descriptors and

schematic colour coded topographical maps (see chapter 1).

Commercially available systems have mainly adopted the principle of computerised
videokeratography. However, a system is available that is based on
rasterstereogrammetry (PAR technology corneal topography system) where
preliminary research has shown promising results (Belin et al, 1992; Belin et al, 1993).
There are numerous applications for use of topographical systems in areas such as
contact lens fitting (Hodd et al, 1993; McCarey et al, 1993), diagnosis and monitoring
of keratoconus (Maguire et al, 1989; Maguire et al, 1991; Wilson et al, 1991b),
monitoring of corneal shape after refractive surgery (Maguire et al, 1987b; McDonnell

et al, 1989), corneal grafting and post-operative management of cataract patients.

The final stage of determining corneal topography requires processing the data derived
from image digitisation. In order to calculate the parameters of an unknown surface,

numerous algorithms have been proposed, these are discussed in the next chapter.
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Chapter Three

Calculation of the Corneal Profile in Videokeratoscopy

3.1 Introduction

The first method of quantitatively measuring corneal contour was introduced by
Gullstrand (1896). Using a four ring target, Gullstrand (1896) attempted to calculate
the angular subtense (see figure 3.01) of the normal at a point on the corneal surface
with the optic axis of the instrument. The small size of the target effectively meant that
the corneal diameter measured was small. Gullstrand increased the length of corneal
profile measurement by asking the subject to view a peripheral point within the same

semi-mernidian.

y-axis

&

Film
Cornea
[e— (1))
(x2,0) T e
| [ b X-axis
l (0,0)
(x3,YB)

Figure 3.01: Outlines the problem described by Gullstrand (1896). Given (x,y), (x2,0)
and (xs,ys), the aim is to find x, as a function of y;. The angle ¢ is the angle between
the x-axis and the normal to the surface at (x1,y1).

Gullstrand (1896) derived the formula (equation 3.01 and figure 3.02) to calculate the

radius of curvature, 1.
Voo = Yo =1, (Sin(B,,) = Sin(B,)) Equation 3.01
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Figure 3.02: Calculation of the tangential radius of curvature r, where y, and yy.; are
the heights at which reflection at the cornea occurs at points n and n+1. B is the
angular subtense of the normal to the optic axis.

Yot
Yu

Numerous discrepancies in equation 3.01 exist. Firstly, in order for the equation to be
valid, the centre of curvature C, and C,.; must coincide: in a normal cornea they would
not. Secondly, Gullstrand (1896) calculated angle 8 using the following formula:

actual ring height from axis

Tan(2p,) = Equation 3.02

horizontal distance of ring from cornea

For equation 3.02 to be valid, the reflected light from the cornea must be parallel to the
keratoscope axis. For this to occur, a stop must be placed at the principal focus of the
camera lens. There was no mention of this in Gullstrand’s paper. Finally, during
measurements of the photographed rings (after accounting for the system
magnification), Gullstand (1896) assumed that the values measured were equivalent to
ya and yn+1. The basic aim of Gullstrand’s method was correct - to determine the
angular subtense of the normal for points on the corneal surface, however, the design

and algorithms were not appropriate to accurately derive the corneal coordinates.

With the improvement in contact lens design and the advent of refractive surgical
procedures, there has been a renewed interest in the measurement of corneal contour.
For the last decade the only instruments used to measure the corneal surface have been

the keratometer and the photokeratoscope. Although the use of the keratometer has
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been firmly established in routine clinical practice, it has limitations in the screening for
keratoconus, contact lenses fitting and refractive surgery. The photokeratoscope, on
the other hand, has been more useful to practitioners as its reflected mires cover a
larger proportion of the corneal surface. However, a system that provides accurate
quantitative results has long since been required. Since the work of Gullstrand (1896),
numerous other investigators have constructed new keratoscopes and evaluated the
performance of their algorithms. Most of the earlier work is accurately described in a
critical review by Clark (1973c). The present chapter will therefore concentrate on the

more recent proposed methods of calculating corneal topography.

3.2 Difficulties of Deriving Corneal Topography from a Reflected Target

Image

To appreciate the basic problems involved in corneal shape measurement, it is worth
considering what actually occurs when capturing the reflected image of a known target

source (see figure 3.03).

Faceplate

Cornea

Focusing lens

Figure 3.03: The principles of videokeratoscopy.

Essentially, a target source of known dimensions and shape (housed in a faceplate)
illuminates the cornea. Owing to the reflective properties of the cornea, light is
reflected towards the focusing lens so producing a virtual image of the target source
behind the cornea. As the shape of the reflecting surface dictates the appearance of the

reflected image, reverse ray-tracing from the image plane to the target source would
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enable calculation of the reflecting surface parameters. Unfortunately, the problem is

not as simple as it may initially appear.

A, Reconstruction of a 3D Surface from a 2D Photograph

In order to define the corneal profile, three parameters are required, the value of x, y,
and z coordinates of the corneal surface. The image captured in videokeratoscopy is
two dimensional. In order to determine the corneal profile, the two dimensional image
must be converted into a three dimensional surface. Unfortunately, the two
dimensional image in videokeratoscopy has insufficient information to enable a point

by point localisation of the reflected mires in three dimensional space.

Target

Virtual image
plane

B
Film [T g

Focusing lens C2 |

0

Working distance

Figure 3.04: shows how two corneal surfaces of different rad'ii of curvature (C1 aqd
C2) can result in the reflected mire image lying at.the same point on the photographic
film. When the system is in focus, the working distance is always constant and spans
from the focusing lens to the virtual image behind the cornea. Therefore, the two
surfaces cannot be differentiated at the film plane. After Wang et al (1989).

Wang et al (1989) concisely illustrated this problem (see figure 3.04). It can be seen
from figure 3.04 that the difficulty arises because two corneal surfaces with different
radii of curvature and at different distances from the film plane can produce a reflection
of the target rings at the same point on the film. Thus, the instantaneous radius of

curvature at a point on the corneal surface cannot be uniquely determined from

[

Nt e et e
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measurements of the film plane unless assumptions are made. All that can be stated is
that there is a reflecting surface that intercepts the reflected ray path and that the
distance from the focusing lens to the virtual image (and therefore the focal plane) is
constant. A unique relationship for corneal curvature can only be determined if the
object and image distances are known. However, assumptions need to be made as the

object distance is not known (i.e. the distance from the target to the cornea).
B. The Effect of Continuous Targets and Meridional Skew

A common assumption made in some videokeratoscopes using concentric ring targets
(e.g. Wesley-Jessen PEK IIIA) is that light commencing at one meridian from the
object plane lies in the same meridian at the film plane. This does not apply to targets
which consist of point sources as each point can be easily located in the image plane
(as with the L.E.D. targets used in chapter 6), therefore any ‘skewing’ of the image
can be easily detected as the target is not continuous like a ring. Assuming that there
is no meridional skew could to lead errors in the reconstruction of the corneal surface.
The magnitude of this error has yet to be evaluated. =~ Inconditions such as keratoconus,

the magnitude of this error will increase significantly.
C. Instrument Misalignment with the Corneal Surface

The dimensions of the reflected rings can be easily found by simply measuring their
horizontal and vertical positions. In order to reconstruct the cornea three
dimensionally, the sagittal depth of the reflected target points at the surface must be
determined (i.e. the value of z, defined in figure 3.05). However, it is necessary to
adopt a suitable reference point from which numerical data such as peripheral radius of
curvature may be identified. The various reference points and the most suitable point

to use in videokeratoscopy has been discussed in section 2.6.1.

At present, the reference point used in corneal videokeratoscopic systems is the

geometric centre of the central mire (once alignment has been performed). It is worth
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considering the consequence when the videokeratoscope axis is not perpendicular with
the cornea. Figure 3.06 shows that the net result is that of induced corneal asymmetry.
It has been widely accepted that the cornea is asymmetric (Mandell, 1965a; Dingledein
et al, 1989; Wilson et al,1991a), however, if the instrument induces asymmetry (due to
improper alignment) then it is difficult to differentiate between actual asymmetry and
artifactual (or instrument induced) asymmetry. All videokeratoscopic instruments now

have the facility to enable correct alignment with the videokeratoscope axis and the

cornea.

Cornea
X-axis

» Z-aXiS

A

/7T

%

y-axis

Figure 3.05: Defines the directions of the axes in relation to the corneal surface.

Instrument axis Instrument axis
Videokeratoscope
@ axis
Target points Target points % Ring image
position relative to
videokeratoscope

axis

Frontal view
of cornea

Figure 3.06. Shows the effect of the misalignment (when the videokerato_scope axis is
not perpendicular to the corneal surface) on the position of the reflected image of the

targets relative to the videokeratoscope axis.
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D. Data Resolution in Videokeratoscopy

Before any assumptions are made in the actual reconstruction of the corneal profile,
measurement of the reflected rings is performed. The x and y measurements are used
in all subsequent calculations to find the third geometric co-ordinate, z, shown in figure

3.05. The accuracy of the reconstruction will therefore ultimately depend on the

resolution of the digitisation procedure.

Maguire et al (1987a) calculated the effect of frame resolution on corneal position
accuracy and the subsequent error that could occur for a 40D surface (see table 3.01).
The EyeSys corneal analysis system measures ring separation to sub-pixel resolution
(Hodd et al, 1993). Andersen et al (1993b) have described a similar procedure, where
the distribution of light intensity is measured and plotted as a function of pixel distance.

The location of the ring was given by the peak of the intensity distribution.

Table 3.01: the influence of frame resolution on the localisation accuracy of the cornea
and measurement error for a 40D surface (after Maguire et al, 1987a).

Frame resolution
(lines per frame)

Localisation accuracy
at the cornea (pm)

Measurement error
with 40D surface (D)

500
1000
2000

30
15
7.5

1.2
0.6
0.3

3.3  Algorithms used in the Reconstruction of the Corneal Profile

Having captured and digitised the reflected mire image, the corneal profile must be
reconstructed. As described earlier, there are numerous difficulties in reconstructing a
three dimensional surface from a two dimensional image but by making certain
assumptions these difficulties may be overcome. In general, the following assumptions

are made for the various reconstruction techniques:

e the working distance from the target to the image is constant.

e The instrument axis is perpendicular to the corneal surface.
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The light from one meridian of the target is reflected in the same meridian in the
film plane. The assumption here is that there is no circumferential tilt of the

corneal surface. For point targets, this assumption is not required.

The position of the image at the film plane is unique for a particular surface.

® The image plane lies on a flat plane.

The various methods of reconstruction of the corneal surface have generally taken

three forms, these will now be described.
3.3.1 Calibration Method

The classical method of calibration involves taking photographs of reflected target
rings from steel balls of known radii. The separation of adjacent ring images are
measured and a set of calibration graphs are constructed that plot ring image
separation for various spherical surfaces against the radius or power of that surface
(Mandell, 1967; Mandell et al, 1968; Townsley, 1970). Then, for actual subjects, ring
separations are measured again and radius values are obtained from the calibration
graphs. The calibration method assumes that the cornea is spherical between adjacent
rings. Errors result in this technique because it is assumed that the instantaneous
centre of curvature for the various reflected rings lie on the optic axis of the
instrument, although this applies to a spherical surface, its does not apply to an
aspheric cornea where the instantaneous radius of curvatures lie on an evolute

(Bennett, 1968).

Mandell et al (1969) used decentred spherical steel balls so that the error of the
calibration method in measuring corneal radius of curvature could be assessed. Figure
3.07 shows an aspheric surface, the point (x, y) has an instantaneous radius of
curvature of r, The instantaneous radius of curvature of the point (%, y) would be the
same for a spherical surface with its centre at (x’, y’) and a radius of curvature of r.
Mandell et al (1969) thus simulated aspheric surfaces by decentring spheres by a

distance y’ from the optical axis of the instrument (the value of y’ was calculated for an
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ellipse of predefined central radius of curvature with an eccentricity of e=0.48). The

accuracy of the technique was assessed by comparing the difference in size of the

separation of adjacent reflected ring images. From their calibration graphs, although

little variation was found for the central ring, differences in ring separation increased
for the 2nd and 3rd rings and also the 9th to 10th and 10th to 1lth rings.
Unfortunately, Mandell et al (1969) did not qualify this difference in ring separation in
terms of an error of radius of curvature for the various surfaces measured, therefore,

any  differences in adjacent ring size were of no significance as they were specific to

the instrument used in their study.

Knoll (1961) found an error in radius of curvature of +0.2mm using spherical surfaces
for the calibration method. Stone (1962), also found a comparable error of +0.25mm,
again, with spherical surfaces. Calculating peripheral radius of curvature of non-
spherical surfaces such as the cornea using a calibration method based on spherical
surfaces unnecessarily introduces and biases the derived radius to that of a spherical

surface.

y-axis (% y)
A /
Aspheric
surface r
t
x-axis <= ®
C
@
! <, y)

Figure 3.07: shows an aspheric surface. The instantaneous radius of curvature at
point (x, y) in any one meridian is given by .
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3.3.2 One Step Curve Fitting

Originally proposed by El-Hage (1969), this method attempts to fit a polynomial curve
of the form,

to the cornea with the origin (0,0) at the corneal apex. Differential equations were
used to derive the polynomial equation matching the corneal surface. The order of the
polynomial used was dependent on the number of rings in the keratoscope target.
Furthermore, the keratoscope used was unusual in design in that a stop was placed at
the principal focus of the camera lens to ensure that reflected light would return
parallel to the instrument axis. Designing the keratoscope in this manner enabled El-
Hage (1969) to simplify the differential equation used to calculate the polynomial
function describing corneal shape. Using spheres and conic surfaces, El-Hage (1972)
found an error of 0.02mm in terms of sagittal depth measurements at the periphery of

the curve.

More recently, Edmund et al (1985) derived a method where the size of reflected rings
from hypothetical conic sections were found by calculation and compared with the size
of reflected rings from a photograph of a surface. The corneal profile is fitted to a

conic curve by comparing the reflected ring size by the use of least squares.

The disadvantage of one step curve fitting is that the cornea is modelled on a specific
mathematical function, as a result of such approximations it is likely that the derived

profile will be relatively insensitive to local corneal variation.

3.3.3 The Multiple Arc Technique

Originally devised by Townsley (1967), Doss et al (1981) ascribed the name to this
method of calculating the corneal profile. The model considers that a meridional

section of the cornea can be composed of several multiple arcs between corneal
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reflection points. A smooth curve would be guaranteed by the fact that each adjacent

arc would share a common tangent where they meet (see figure 3.08).

Common
tangent

T\

Cornea

Figure 3.08: The multiple arc technique. r is the radius of curvature of the arc.

A detailed analysis of how the corneal contour is reconstructed using this method will

now be described.

A. Calculation of the Central Corneal Radius

The first value that must be calculated after image digitisation is the central corneal
radius. It is the value of the central corneal radius that will determine the 'size' of the
cornea when modelling ellipses to the profile. Doss et al (1981) preset the value of the
central radius of curvature to 7.80mm. It is well known that the range of central radius
varies significantly within the normal population (Guillon et al, 1986). Therefore,
biasing the central corneal radius introduces an unnecessary error into the calculation
of corneal profile. Klyce (1984) derived a method where the value of the central
corneal radius need not be preset. Figure 3.09 shows a diagrammatic representation of
a videokeratoscope where I is the distance between the camera and the target ring and

wd is the working distance of the videokeratoscope (i.e. the distance from the

videokeratoscope and the cornea).
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The average value of y,, the distance from the innermost or first ring, to the

geometrical centre of the innermost ring, may be written as:

Z Vi
_ =1

V= Equation 3.03
n
In addition, through simple geometry, further geometric statements may be made
from figure 3.09.

tanq = 2L Lquation 3.04

wd
tan(2¢ —a) = 4=y Equation 3.05

wd
$=0+a Equation 3.06
20-a=20+a Equation 3.07
Viewing system
Normal to
the cornea l
A . Innermost ring
d o
do W a. d)
¢ o
Z-ax1s
| e I
v z] == =/ _
y-axis
A
0
o yl

Figure 3.09; Note that r; and r,. represent the incident and reflected rays respectively.
Definitions of the labels are shown below:
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o is the angle subtended by the reflected ray at the videokeratoscope axis.
¢ is the angle between the reflected and incident rays to the normal.

0 is the angle between the normal and the vertical axis.

A is the angle between the ring target and the videokeratoscope axis.

d, is the distance from the videokeratoscope and the origin (O).

Z Is the position of the first corneal reflection point along the z-axis.

1 1s the position of the first corneal reflection point along the y-axis.

Ultimately, the value of z; is required. Figure 3.10 (below) shows the relationship of

the normal to the cornea and the videokeratoscope axis.
Z-axis

zl

y-axis

0 5
Figure 3.10: The sagittal depth (z1) of the first ring reflection point at the cornea.

The origin is the intersection of the normal to the first ring reflection point and the
videokeratoscope axis.

From figure 3.10 it can be seen that

Tan(0) = 24l Fquation 3.08
%
Solving equations 3.03 to 3.08 in terms of z an estimate of the mean elevation of the

corneal surface at the central target point can be derived:

Vi
4 = Tan(05tan [, - 7,)/ wd]-0.5tan (¥ /wd)}

LEquation 3.09

Note that the assumption here is that the central ring is reflected from a point on the
cornea that is close to the videokeratoscope axis. Klyce (1984) suggested that
measurement error may be reduced by careful focusing of the central mire on the

cornea. The central elevation calculated by Klyce (1984) was different to that in

equation 3.09. It would appear that there was a typographical error.
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At this point it is essential to note that both Doss et al (1981) and Klyce (1984)
assumed that the reflected image heights (b, in figure 3.11) were at the same as the
reflected heights at the corea (a, in figure 3.11). The image, however, lies behind the
cornea at the tangential plane. Wittenburg (1966) demonstrated that the finite distance

between the camera and the eye introduced a difference between image height and the
height at the corneal reflection point.

Objective lens

Figure 3.11: Shows the different ‘image’ sizes measured. The multiple arc technique
assumes that b and a are equal. Such an assumption leads to errors in the calculation
of corneal topography.

B. Calculation of z, the Elevation of Peripheral Reflected Target Points

After calculating the central corneal elevation, the elevation of other target points at
the cornea must be found. Each point of elevation is related to the origin. Figure 3.12
illustrates the basis on which these elevations are calculated. The angle £ represents the
angle between the tangent to the cornea and the y-axis. For a point corresponding to

rings i-1 and i an expression for the angles 7 and #; may be written as

sint,_, = (/) Equation 3.10
r

and

sint; = .4 Equation 3.11
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(4,B)

yi-1 yi

Figure 3.12: shows the relationship between the corneal reflection points and the
corneal elevation from a point (A,B). The angles #;_1 and f; represent the angle
between the tangent to the cornea and the horizontal.

Equating 3.10 and 3.11 in terms of A,

Vi —Fsint_ =y —rsint, Equation 3.12
also,
cost, , = (= B) Equation 3.13
r
and
cost, = (Gt )] Equation 3.14
r
Equating 3.13 and 3.14 for B,
7, —rcost, =z, —reost,, Equation 3.15

Substituting equation 3.12 into 3.15 for  , an initial estimate of the corneal elevation
can be found.

(¥, — y;)(cost, —cost,_)

Equation 3.16
(sint,_, —sint;)

AR

From simple geometry, an approximate estimate of £, is A/2 (see figure 3.13).
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ST line joining
A ! target to origin

ti

Figure 3.13: shows how an initial estimate of # is found from the angular subtense of

the first ring target at the origin. r; and r,. represent the incident and reflected rays
respectively.

The initial estimate of ¢; (4/2) may therefore be calculated as

t, =0.5x tan™ (!‘—)
dﬂ

Where the distance of the viewing system from the origin may be written as

d,=wd +7, Equation 3.17

If equation 3.16 is used to calculate the corneal elevation, errors will be introduced due
to the initial estimate of #. Therefore, the value of ¢ must be refined and then
repeatedly iterated in equation 3.16. From figure 3.09, a set of equations may be

derived that enable refinement of the angle #;.

From the Pythagoras theorem,

= -y)+d,~z) Equation 3.18
rP=d,-z) +y Equation 3.19

using the Cosine rule,

3

(-2rr)

A'=cos FEquation 3.20

~

~
~
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T A d —z
L . )] Equation 3.21
2 2 (L-y)

The initial value of z; is then substituted into equations 3.17 to 3.21 in order to
calculate a new value of t.. t;is then re-substituted into equation 3.16. The process
of re-substitution is continued to improve the accuracy of ¢; and eventually, z; . Klyce
(1984) suggested that this process should be performed until successive changes in the
value of z; are less than 0.00001%. Thus, for an entire profile, the values of the x, y

and z co-ordinates of all the target reflections points are found.

C. Corneal Radius Calculation from the Corneal Profile

Once the x, y and z locations of the reflected targets have been calculated, the actual
radius of curvature of the surface at the reflection points may be found. As stated
earlier, the multiple arc technique assumes the cornea to be composed of multiple

spherical arcs which together form a non spherical smooth surface (see figure 3.08).

Using the Pythagoras theorem, three equations may be derived from figure 3.14.

r*=(y,—a) +(z,~b)’ Equation 3.22
r=(y,—a) +(z,- b)* Lquation 3.23
r* =(y,—a)’ +(z,~b)’ Equation 3.24

Equations 3.22-3.24 can be solved for r, a and b (3 equations and 3 unknowns):

10 =2 = 2D = 2D+ (& )~ )+ (5 = ) (s = 9]
“= {Zl(zl_zz)(yz“y3)+(z3"zz)(y1""yz)]}

Equation 3.25

(y1 +yz)__ (zl +zz”2a)(z1 -"zz)
2 z(yl—yz)

b= Equation 3.26
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spherical arc

cornea

tangential radius

sagittal radius

(a,b)

Figure 3.14: shows a small portion of the cornea which, because of its small size, may
be regarded as spherical. The point (a,b) may be defined as the centre of curvature of
the spherical arc between y; and y;. The points yi, y, and ys represent the horizontal
displacement of the targets at the cornea. Conversely, z;, z; and z3 represent the
elevation of the target points at the cornea. The spherical arc enclosed by y; and y3 has
a radius of curvature r.

Having located the co-ordinates of the centre of curvature of the spherical arc,
substitution of these values back into either equation 3.22, 3.23 or 3.24, the value of r

can be found.

e l\Kyl —a)* +(z, - b)* Equation 3.27

The multiple arc technique, in its present form, is not a suitable method to resolve the
topographic details of a non spherical surface (Wang et al, 1989). The fact that the
image height is assumed to be equal to the height at which reflection from the corneal
surface occurs is a significant source of error (Wang et al, 1989). Wang et al (1989)
corrected this source of error by calculating the value of the angle o, using an angle
avoided making the above assumption. Further, they compared the accuracy of the old

and new methods for a spherical and aspheric surface (r,=7.33, €=0.5). They found
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that the new method significantly improved the accuracy of the algorithms for an

aspheric surface. There was very little difference in the accuracy in calculating the

radius of curvature for a spherical surface.

D. What Radius is Measured ?

When light from an off-axis, oblique point is reflected from a curved surface, two focal
points arise. These are generally referred to as the tangential and sagittal points of
focus. They arise due to the aberration effects of oblique astigmatism. The calculated
value of r in equation 3.27 is of the tangential radius. Tangential radius is the value
which is of most interest as it represents the radius of curvature of the corneal surface
that contains the target row of light emitting diodes (L.E.Ds). The sagittal radius
would represent the radius of the corneal surface perpendicular to the targets. Figures

3.15 and 3.16 clarify the difference between the tangential and sagittal radius.

Figure 3.15: measurement of tangential radius.

angential radius
Normal Tangential r:

Tangential image plane
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Figure 3.16: measurement of sagittal radius.

Sagittal radius
Target below axis Normal

Sagittal image plane

Klyce (1984) suggested that once the local radius of curvature was calculated, the

local power could be calculated,

g (=1
r

Equation 3.28

where # is the refractive index of the cornea and # the local radius of the spherical arc.
This formula only holds for paraxial rays. Klein (1993) suggested that the use of this

method was incorrect as it was being applied to non paraxial zones of the cornea.

A distinction must be made between anterior corneal power and total corneal power.
For clinical purposes, such as post cataract surgery etc., total corneal power is
required. In order to calculate total corneal power, the effects of the steeper posterior
corneal surface must be considered. As the posterior corneal surface cannot be
measured using videokeratoscopy, the refractive index of the cornea must be adjusted.
In addition to adjusting the refractive index of the cornea, the calculation of total
corneal power 18 complicated by the fact that the cornea has a variable refractive index.
Therefore, one must reassess the average value of the refractive index of the cornea.

Dunne et al (1992) calculated the refractive index of the total cornea as 1.3283.

83



Calculation of the Corneal Profile in Videokeratoscopy

3.4 Summary

Chapter 3 has described the difficulties encountered during videokeratoscopy. The key
problems area are in reconstructing a three dimensional surface from a two dimensional
image. Wang et al (1989) have shown how two surfaces of differing radius reflect
target rings at identical points on a film. The solution to this problem involves locating
the apical point of the surface being measured. Once a video image of the surface has
been obtained, the effects of image skew must also be accounted for. The use of point

source targets would detect skew and thus the user would be informed of the

possibility of error being introduced.

The present chapter has also described algorithms used in deriving the corneal profile.
The calibration method is the most inaccurate as it biases results to a spherical surface.
The multiple arc technique originally proposed by Townsley (1967) and later modified
by Klyce (1984) attempts to derive the corneal profile by considering the cornea as
multiple spherical sections of changing radius. Wang et al (1989) have shown that the
algorithms used in the multiple arc technique are not suitable for measurement of
aspherical surfaces. The principle reason for this is that an incorrect assumption is
made - that the height of the reflected image is the same as the point of reflection at the

cornea.
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Chapter Four

A Clinical Trial of the SUN SK-2000 Computer Assisted
Videokeratoscope - its Accuracy and Repeatability

4.1 Introduction

Over the last decade investigators have tried to develop instruments that accurately
measured corneal topography. Most concentrated on the development of keratoscopic
devices (Knoll et al, 1957; Ludlam et al, 1966; Townsley, 1967; El-Hage, 1971; Klyce,
1984; Wang et al ,1989; Andersen et al 1993a). The SUN SK-2000 (Version 3.1, Sun
Contact Lens Company Ltd, Kyoto, Japan) was a computer assisted
videokeratoscopic device, it was based on the principle of keratoscopy where a target
(usually a Placido disc type) was reflected from the cornea and the resulting image
analysed. By measuring the consecutive target separations and then using algorithms,
the corneal profile could then be reconstructed (Mandell and York, 1969; El-Hage,
1972; Doss et al, 1981; Klyce, 1984; Edmund et al, 1985; Wang et al, 1989; Andersen
et al, 1993b). Depending on the algorithms used, various assumptions would be made

in the calculations (see Chapter 3).
42  Aims
There were four principle aims in the study:

o to assess the accuracy of the instrument in determining an 8mm calibration sphere.

e Assess the level of agreement with the Javal Schiotz keratometer.
e Assess the repeatability or precision of the SUN SK-2000 videokeratoscope for the
central cornea and eight peripheral meridians at a point which was approximately

4mm in the periphery of the cornea (according to manufacturers). This value
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Accuracy and repeatability of the SUN-SK 2000

would vary from one surface to another. Unfortunately, manufacturers did not

state for what surface the instrument performed measurements.

® Evaluate the alignment system used in the SUN SK-2000 videokeratoscope.
4.3  Instrumentation

43.1 The SUN SK-2000

The faceplate of the SUN SK-2000 housed 15 rings arranged on an ellipsoidal surface,
which enabled a large area of the cornea to be measured (approximately 8mm
according to manufacturers) and also reduced the peripheral blurring of targets due to
curvature of the image plane (Knoll, 1961; Stone, 1962; Mandell and St. Helen, 1968;
Mandell and York, 1968). The alignment system comprised of two luminous fixation
targets which after reflection off the cornea were viewed on the monitor by the
operator. The monitor had two square reference alignment markers (see figure 4.01)
that were used to align the reflected luminous targets. Alignment was accomplished by
adjusting the joystick so that the reflected fixation targets were centred and focused
within the reference squares. The purpose of the alignment procedure was to align the

videokeratoscope axis such that it was perpendicular to the corneal surface.

The importance of accurate z-axis alignment was clearly noted by Nieves et al (1992)
who showed that for the TMS (Topographical Modelling System, by Computed
Anatomy) an error of 0.9D occurred for 0.33mm misalignment in the z-axis (see figure
4.02 for illustration of misalignment axes). The focusing mechanism in the SUN SK-
2000 was automated. Presumably, an automated approach to focusing was adopted by

the manufacturers in order to reduce errors due to z-axis misalignment.
Once alignment was accomplished, the image of the reflected Placido rings was

captured by pressing the joystick button. Digitisation of reflected rings was shown by

a small cross being superimposed at each ring along the eight semi-meridians. The
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SUN SK-2000 had the facility for the user to manually adjust the position of the

crosses in case an error in digitisation occurred.

Figure 4.01: The alignment system in the SUN SK-2000 videokeratoscope.

Ellipsoidal
faceplate

Joystick control

z-axis A

y-axis
Figure 4.02: Shows the classification of axes of alignment and the videokeratoscope
faceplate.

As previously stated in section 4.2, peripheral measurements were taken at a point on
the cornea 4mm from the vertex normal. This value was only approximate and would
change from one corneal shape to another. The manufacturer’s instructions, however,

provided no information regarding the point on the corneal surface from where the
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results of central radius of curvature measurements were performed using the SUN
SK-2000 device.

Similar to other videokeratoscopes, the SUN SK-2000 displayed data in various forms
such as colour coded maps, wire mesh models and simple Placido ring displays with
superimposed radius measurements. Unfortunately, radius measurements of only eight

peripheral meridians at approximately four millimeters from the reference point were

available.

Calibration was performed by taking 4 readings of an 8mm calibration surface
(provided by manufacturers). The results were transferred directly into the internal
computer of the SUN SK-2000. During calibration it was essential that the surface
was aligned correctly otherwise asymmetries occurred in the measurement of the

surface. Calibration was performed prior to the usage of the SUN SK-2000.

4.3.2 Keratometer

A Javal Schiotz keratometer was used. The principle of the keratometer was described
in chapter 2. Basically, the keratometer calculates central radius of curvature by
measuring the size of the reflected image and comparing it to the size of the object (of
known size and position). The central radius of curvature is measured between two
points, thus the assumption is made that the corneal surface between these two points
is spherical.  Although errors resulting from this assumption are small for
measurements on either side of the optical axis, it still exists. Furthermore, the
magnitude of the error depends on how much the shape factor of the cornea deviates
from a spherical surface. Comparisons were made with the keratometer because at the
present time it is the most widely used instrument for the measurement of central
corneal curvature. The Javal Schiotz keratometer was used to compare central radius

of curvature measurements with the SUN SK-2000 videokeratoscope. The Javal

Schiotz keratometer was calibrated prior to its use.
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44  Method

The SUN SK-2000 computer assisted keratoscope was used to derive central and
peripheral corneal radii. Peripheral measurements were displayed even though ring
images were not necessarily in that particular area of the cornea. In these cases one
assumes that the SUN SK-2000 extrapolated the profile to compute the radius at the
required point. There were unfortunately some limitations in that only eight peripheral

points could be measured and no other points along a semi-meridian could be assessed.

The calibration procedure was performed prior to conducting each trial, measurements
were performed by a single operator. Only one 8mm spherical calibration surface was
provided by the manufacturers. No aspheric surfaces or other spherical surfaces were
available. During the trial, calibration was checked before each experimental period on
the keratometer and the SUN SK-2000. The influence of centration of the first

Purkinje images with respect to the alignment system was noted.

The accuracy and repeatability of the system was assessed by observing the mean and
standard deviation of five measurements using the calibration sphere. The level of
agreement between SUN SK-2000 and the keratometer was also assessed. The
importance of this comparison was that as the keratometer is the currently used
standard for measuring central corneal curvature, the interchangeability of the two
instruments must be examined. An instrument may be said to be in agreement with
another when both can be used interchangeably and when any difference that may
occur from one instrument to another will be so small as to have no clinical
significance. The mean of three measurements of keratometry and videokeratoscopy

compared (the method of statistical comparison for both agreement and repeatability is

described in the results section).

In order to demonstrate any agreement between keratometry and the SUN SK-2000
videokeratoscope, central radii were converted to the Mean Refractive Error (MRE) of
the cornea (a mathematical description of MRE is shown below). The term MRE is

misleading when used in the present context. MRE was originally used to represent
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the mean corneal power (particularly for an astigmatic eye) when assessing a patient’s
refractive error (or correction). In order to avoid any confusion, MRE will be referred
to as Mean Corneal Power (MCP). The MCP was used to account for differences in
the directions (or axis) of the flattest meridians found on both instruments so that
direct comparisons of the results could be made. The process of astigmatic

decomposition (converting radius of curvature into MCP) as described by Bennett and

‘Rabbetts(1989) is shown below:

MCP=S§ +~C:;:— Equation 4.01
where § is the spherical component and C the cylindrical component of corneal

power. A cylindrical component can be resolved into two plano cylinders at an axis of

0° and 45°. These two components may be written as follows:

Cy) =C.cos20

where 0 is the true axis of the cylinder C.

Thus, for example the keratometer may measure corneal power as +43.00/-2.00x50,
and a videokeratoscope +43.50/-1.00x40, the power measured could be compared
directly due to the difference in axis. However, converting the measurements into

MCP permits direct comparison.

MCP for the keratometer = +42.00D
MCP for the videokeratoscope = +43.00D

For the cylinder with keratometry C, = -2.00 x Cos (100)
For the cylinder with videokeratoscopy C, = -1.00 x Cos (80)

Repeatability of the instrument in measuring central and peripheral radius of curvature

within subjects was evaluated by comparing the differences between two repeated sets

of measurements. The mean of three readings was taken on each occasion and
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compared. For an instrument to be repeatable, it must be capable of consistently

reproducing the same result when no change in the topography of that surface has
taken place.

Previous studies investigated agreement and repeatability by analysing data in terms of
correlation coefficients, standard deviations and significant tests (Hannush et al, 1989;
Tsilimbaris et al, 1991; Koch, 1992; Antalis et al, 1993). In the present study, the level
of agreement and repeatability were assessed by analysis of the variance of the
difference between either the keratometer and the SUN SK-2000 (in the case of
agreement analysis) or measurements from one occasion to another (in the case of
repeatability). Although observation of the variance would be correct, it would not

present a clear picture of agreement or repeatability (particularly graphically).

A population of 20 male optometry students was chosen for this study. From these,
three measurements of auto refraction, keratometry and videokeratoscopy were made
in the right eye. A list of these 20 subjects , their age and refractive error is shown in

table 4.01.
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Taple 4.01: List of subjects’ age, race, mean ocular spherical and cylindrical refraction
(using an autorefractor).

Subjects Age Race Mean Sph Mean Cyl

RE RE

AK 18 c -2.35 -0.25
BM 20 A -0.05 -0.05
BW 18 C -3.00 -0.50
cw 19 Cc +4.25 -1.75
Cs 20 Cc +0.50 -0.65
Ds 39 C -4.10 -0.25
GH 18 C -5.25 -0.60
JD 20 A -3.00 -1.65
KD 18 C -1.55 -0.20
LS 35 C -1.55 -1.20
MH 19 Cc +0.50 -0.35
MM 20 A -2.45 -1.20
NC 19 C -6.00 -0.50
NP 18 C -0.25 -0.65
NS 19 A -0.20 -0.35
PS 18 A -0.30 -0.30
RS 19 A -0.90 -0.5
RSB 18 C +0.90 -0.10
SB 19 A -7.90 -1.15
VK 19 A -0.45 -1.15

* C -Caucasian  A-Asian
4.5 Results
4.5.1 Accuracy and repeatability in determining the 8mm calibration surface

Evaluation of the accuracy of the SUN SK-2000 for five measurements of the 8.00mm
sphere showed no significant difference between the mean spherical equivalent radius
of curvature (this value was the mean of the central flattest and steepest radii of
curvature) and the actual value of the calibration sphere (»p=0.776). The standard

deviation (£ 0.013mm) of the mean of central and periphera] radius of curvature for
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five measurements showed that the instrument was repeatable for spherical surfaces.
The central mean spherical equivalent radius was found to be 8.001mm and the mean
peripheral radius 7.999mm. Unfortunately, no measurements such as micrometry or
interferometry were performed on the 8mm sphere. Thus, unless one accepted the
manufacturer’s measurements, there was no way of knowing whether the surface was

actually 8mm. No other surfaces were provided by the manufacturers and therefore

the range over which this accuracy holds was unknown.
4.5.2 Thelevel of agreement between the SUN SK-2000 and the keratometer

A plot of MCP against keratometry was made (see figure 4.03). However, it has been
shown that representation of results in such a manner is largely incorrect. The
weakness of this method was described by Bland et al (1986) and Shaw et al (1994).
A plot of SUN SK-2000 MCP against keratometer MCP was a useful initial step,
however, unless there was very little agreement, the points would be clustered near a
straight line and between method differences would be difficult to assess. The
correlation coefficient is a measure of association not necessarily agreement; it depends
directly on the variation within individuals (or measurement error). Also, the
correlation coefficient would be predictably high for repeat measurements because the

same variable was being measured on each occasion.

Altman et al (1986) and later and Shaw et al (1994) suggested that a plot of the
difference between the variables against their mean would be more useful and
informative. Both methods were used so that the results could be compared with other
studies that used either form of presentation. Observation of table 4.02 and figure 4.03
shows that a high level of correlation was found in terms of MCP between the SUN
SK-2000 and the keratometer, however the 95% limits of agreement (table 4.02 and
figure 4.04) showed that there was very little agreement between the two instruments.

The 95% limits of agreement (or confidence Jimits) were calculated as follows:

95% Limits of agreement = Bias + 1.96 x Standard deviation Equation 4.02
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The bias represents the mean of the differences. It must be stressed that the 95% limits
of agreement were only estimates and only applied to this trial. However, one would
not expect significantly different results in another trial providing the sample was
normally distributed. The bias (the mean of the differences) showed that on average

the SUN SK-2000 over estimated central corneal power by 0.33D compared to

keratometry.

Table 4.02: Summary of the results obtained, where bias represents mean of the
difference between keratometry and SUN SK-2000 videokeratoscopy; S.D represents

the standard deviation, and r the correlation coefficient.

Accuracy and repeatability of the SUN-SK 2000

Bias S.D r paired t-test | 95% limits of

(D) (D) agreement (D)

MCP | +033 | +£0.52 | 0.97 0.011 +1.32 to -0.69
Co -0.52 +132 | 031 0.093 +2.07 to -3.11
Cius +0.09 +0.67 | 0.00 0.555 +1.40 to -1.22

Figure 4.03: Comparison of MCP (or MRE) obtained using the SUN SK-2000 and

the Keratometer in the R.E of 20 males. =0.97.
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Figur.e 4.04: Agreement between the Javal Schiotz keratometer and the SUN SK-
2000 in terms of MCP (or MRE).
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A paired t-test was also performed on the two samples. There was a significant
difference between the central MCP of the SUN SK-2000 and central MCP of the
keratometer (p=0.011). With regards to the C, and the C,; components of corneal
astigmatism, the paired t-test showed that the mean values were not significantly
different (p=0.093 and p=0.555, respectively). However, the correlation coefficient
showed a lack of association between the keratometer and the SUN SK-2000 with

respect to the C, and C,; components of corneal astigmatism.

4.5.3 The repeatability of the SUN SK-2000 videokeratoscope

The central flattest and eight peripheral meridians were compared on two separate
occasions using the SUN SK-2000. Topographic analysis of the subjects’ corneas was
repeated three times on each occasion and the mean of the three readings from each
occasion were compared in order to assess the repeatability. The abbreviations used to

represent the central and peripheral curves are shown in figure 4.05.

95



Accuracy and repeatability of the SUN-SK 2000

Figure 4.05:  Shows the abbreviations used in the assessment of repeatability.

Table 4.03 shows the bias, standard deviation and the 95% limits of agreement of the

central flattest meridian and eight peripheral meridians. Figures 4.06 to 4.14 show the

repeatability results for each meridian.

Table 4.03 and figure 4.06 show that repeatability of the central flattest radius was
reasonable (95% limits of agreement of +0.079mm to -0.013mm). As far as the
peripheral radii were concerned, there seemed to be a trend such that the superior
peripheral radius of curvature measurements were far less repeatable than those in the

horizontal meridian.

Table 4.03. repeatability results of the R.E. The bias, standard deviations and 95%
limits for the peripheral meridians (K1 to K8) are shown.

Meridian | Bias (mm) | Standard deviation (mm) | 95% limits (mm)
KO 0.003 +0.023 +0.079 t0 -0.013
K1 0.165 +0.276 +0.705 to -0.376
K2 0.179 +0.403 +0.969 to -0.610
K3 0.056 +0.045 +0.144 to0 -0.033
K4 0.072 +0.038 +0.145 to -0.002
K5 0.043 +0.032 +0.106 to -0.021
K6 0.061 +0.083 +0.233 to -0.102
K7 0.095 +0.232 +0.549 t0 -0.36
K8 0.115 +0.239 +0.583 to -0.354
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Figure 4.06: Repeatability of the central flattest radius of curvature (Ko).
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Figure 4.07. Repeatability of the superior meridian (K,).
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Figure 4.08: Repeatability of the superior nasal meridian (K3).
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Figure 4.09: Repeatability of the nasal meridian (K3).
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Figure 4.10: Repeatability of the inferior nasal meridian (Ky).

204

1 T 1
o b N
@ LD

o
[
(%]
|
[
L

.' .
[os]

N
kN

7.8 8.0 8.2 8.4

Mean (1st & 2nd reading) mm

Figure 4.11: Repeatability of the inferior meridian (Ks).
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Figure 4.12: Repeatability of the inferior temporal meridian (Kg).
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Figure 4.13: Repeatability of the temporal meridian (K5).
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Figure 4.14: Repeatability of the superior temporal meridian (Kg).
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4.5.4 Evaluate the alignment system used in the SUN SK-2000

videokeratoscope

The SUN SK-2000 was also used to measure the 8mm spherical surface with normal
alignment and then at a point that was superior temporal to the apex. Figures 4.15 and
4.16 show the effect of misalignment on induced asymmetry. Misalignment caused
significant asymmetry in the peripheral readings. Unfortunately, at the time of
performing the experiment, there was no method of accurately locating the position of
the sphere relative to the videokeratoscope axis. However, it was not the purpose of

the study to investigate the effect of degree of misalignment on induced asymmetry.
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Figure 4.15
Peripheral radius with
correct alignment.

Figure 4.16
Peripheral radius misaligned
superior and temporally

4.6 Discussion

4.6.1 Accuracy in Determining the 8mm Calibration Surface

Assuming that the manufacturer's value for the radius of curvature of the 8mm
calibration sphere was correct, then the SUN SK-2000 videokeratoscope measured
this to a high degree of accuracy (mean spherical equivalent radius of 8.001lmm and
mean peripheral radius of 7.999mm). No significant difference between the actual and
measured radius of curvature was found (p=0.776) and the SUN SK-2000 exhibited a
high level of reproducibility (standard deviation=+0.013mm). However, the accuracy
of the system could not be judged by the accuracy of the SUN SK-2000 in measuring a
single calibration sphere. Multiple spherical and aspheric surfaces would have to be
used (see chapter 5 for the use of spherical and aspheric surfaces with the EyeSys

CAS, EyeSys Laboratories, Houston, TX, USA). Unfortunately, at the time of the

study, no such surfaces were available.

In a comprehensive study by Hannush et al (1989) the accuracy of a keratometer
(Bausch and Lomb, Rochester, New York), Kera Corneascope (Kera Corp., Santa
and the Corneal Modelling System (Computed Anatomy Inc, New
g four steel spherical balls (43.00D, 42.52D, 50.14D and

Clara, California)

York) was compared usin,
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38.66D). Each instrument was compared with the Bausch and Lomb keratometer by
calculating the simulated keratometer values of the Kera Corneascope and the Corneal
Modelling System. Their results showed that the Corneal Modelling System was the
most accurate (mean deviation, or bias, of 0.10D; standard deviation of the difference
between the actual and measured value=+0.07). There was no significant difference
between the keratometer and the Corneal Modelling System in terms of accuracy
(p=0.19) or precision (p>0.05). However, both the Keratometer and the Corneal

Modelling System were more accurate and precise than the Kera Corneascope

(P<0.01)

Centration of the Purkinje images (figure 4.01) with the alignment squares was
essential for accurate measurement, although no physical measurements of
decentration were made, on deliberate decentration along the x and y axes (see figure
4.02) asymmetries occurred with the calibration sphere. This observation was in
agreement with the results of McCarey et al (1992) who actually controlled x and z
axis decentration using a micrometer and then measured the radius of a 47D sphere
using the EyeSys CAS. McCarey et al (1992) found that a lateral decentration of
approximately 1mm led to significant differences in radius/power measurements from
the true value of the sphere; they also noticed the EyeSys measured the sphere to be
more toroidal on decentration. For z-axis misalignment, the accuracy of the EyeSys
deteriorated after Imm decentration towards the sphere and up to 2mm away from the

test sphere.

4.6.2 The level of agreement between the SUN SK-2000 and the

keratometer

In clinical practice most eye-care practitioners only have access to the keratometer,

nevertheless. it has been successfully used to measure central corneal radius for many
>

years. Based on results of the present study, the level of agreement between the

keratometer and the SUN SK-2000 was not acceptable in terms of MCP (95% limits

from +1.32D to -0.69D and p=0.011) on the grounds that in a clinical environment
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measurements need to be performed to the nearest 0.02mm or 0.1D for applications
such as contact lens fitting (Stone, 1962).

Zadnik et al (1992) assessed the agreement Bausch and Lomb keratometer (Bausch
and Lomb, Rochester, New York) and a nine ring Kera Corneascope (Kera Corp.
Santa Clara, CA) using the same method of statistical analysis as the present study in
forty subjects. Their results also showed a lack of agreement between the two
methods of central corneal curvature analysis (95% limits of agreement: +0.59D to -
1.72D). However, the bias (or the mean difference between the two instruments) of -
0.57D was different to that found in the present study. The bias found in the study by
Zadnik et al (1992), indicates that on average, measurements of central corneal power
using the Kera Corneascope were less than the keratometer (Bausch and Lomb) by -
0.57D. Discrepancies between the two types of instruments may be attributed to the
method of central corneal alignment (see section 4.6.4), the algorithms used in the
subsequent reconstruction of a three dimensional corneal surface and the ring zones

used in the videokeratoscopes to simulate keratometer readings.

In another study by Tsilimbaris et al (1991) comparisons of the Javal Ophthalmometer
and the EyeSys Corneal Analysis System were made in ninety-two normal eyes. A
mean difference (bias) of +0.03D was found indicating that the EyeSys only slightly
over-estimated central corneal power compared to the Javal Ophthalmometer.
Although no limits of agreement were stated, a standard deviation of £0.46 was found,

From this it was possible to calculate the 95% limits of agreement (see table 4.04).

Table 4.04: Summarises the results of comparative studies of keratometers and
videokeratoscopes. VK is an abbreviation for videokeratoscope.

Stud VK Keratometer | Bias SD 95%, Limits
’ ® | M (D)
Present SUN Javal +033 | £0.52 +1.34 to
-0.69
stud SK-2000 .
Zadnik };t al Kera B+L -0.57 | +£0.59 +O.53 2to
-1
1992 Corneascope .
Ts(ilimb;ris EyeSys Javal +0.03 | +£0.46 +0.9§7to
-0.
et al (1991)
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The limits of agreement found in the study by Tsilimbaris et al (1991) were not within
the narrow band whereby videokeratoscopy would be interchangeable with
keratometry. None of the studies showed that the two types of instruments were
interchangeable. The low bias found by Tsilimbaris et al (1991) showed that on
average the EyeSys resembled keratometer readings more than the Kera Corneascope
and the SUN SK-2000. Nevertheless, Tsilimbaris et al (1991) stated that there was no
significant difference between the Javal keratometer and the EyeSys CAS in terms of
mean central corneal power (p=0.471). However, the statistical test performed was
not an appropriate method of assessing agreement between two methods (Bland and
Altman, 1986; Shaw et al, 1994), hence the incorrect conclusion drawn by Tsilimbaris
et al (1991) that both instruments were in agreement. According to Bland and Altman
(1986), tests of significance may show that two methods are related but to prove that

the two methods are significantly different would be highly unusual.

It is worth considering the actual radius measurement performed by each instrument.
Whenever rays from an oblique point are reflected from an optical surface (as in
videokeratoscopy), oblique astigmatism is induced. The result is that two images are
formed - the sagittal and the tangential images (see figure 4.17). Hence, two radii
must be considered. Bennett et al (1991) showed that the keratometer is focused on
the tangential image plane. However, measurements are made on the axis of the
keratometer and therefore it is impossible for a standard keratometer to perform
measurements of tangential radius. The eventual outcome of the numerous
computations and proofs made by Bennett et al (1991) was that the radius measured
during keratometry most closely approximated the sagittal radius of the surface. In
addition, Bennett et al (1991) found that for central corneal measurement, the sagittal
radius of curvature was a better determinant of the actual central radius of curvature
than the tangential radius. Indeed, the radius of curvature found with keratometry

(which is effectively r, x constant) is a more accurate method of finding r, (the apical

radius of an aspheric surface).
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The sagittal radius, for a flattening conic, is always less than the tangential radius and

both are larger than the apical radius (r,)). The difference between the two

measurements depends on the actual central radius of the surface and the degree of
peripheral flattening (the p-value). Observation of the results show that the SUN SK-
2000, on average overestimated MCP by 0.326D i.e. the radius obtained using the
SUN SK-2000 was steeper. If the central corneal radius obtained using the SUN SK-
2000 was tangential then the error of the instrument in determining central corneal
radius was actually worse than has been shown by the results. Unfortunately, the
manufacturer's literature did not state whether radius measurements were tangential or
sagittal. In contrast, Zadnik et @/ found that the Kera Corneascope on average
underestimated corneal power. The different types of radius measured may therefore

have a role in the lack of agreement in their study.

From data values published in a paper by Bennett et al (1991), for a surface having an
apical radius of 8.00mm, p-value of 0.8 at a chord length of 1.4381mm, the sagittal
radius was found to be 8.026mm and the tangential radius 8.078mm (a difference of
0.052mm). Thus, the actual radius measurement performed has a significant influence

on the radius obtained.

Tangent to surface

Principal Axis ~.C

B ¢y

Figure 4.17: Shows the location of the sagittal €, and tangential C, radius of
curvature (after Bennett et al, 1991). The tangential plane is in the plane of th'e
diagram, containing the normal and the principal axis. The sagittal plane is

perpendicular to the tangential plane and also perpendicular to the plane of the
diagram, it also contains the normal.

106



Accuracy and repeatability of the SUN-SK 2000

The €, and C4s components of corneal astigmatism for the SUN SK-2000 showed
poor correlation with the keratometer (r=0.31 and 0.00, respectively). The low levels
of association between the keratometer and the SUN SK-2000 were accounted for by
the fact that the magnitude of the corneal cylinder values were comparable to the
differences found between the two instruments. A two dioptre difference in MCP
would not significantly alter the correlation coefficient as the values of MCP were
often in the 40D range. However, as corneal astigmatism was small, differences as
little as 0.5D would alter the correlation coefficient. The 95% limits of agreement

showed that the keratometer and the SUN SK-2000 were not in agreement for

measurements of MCP, C, and C,,.

4.6.3 The repeatability of the SUN SK-2000 videokeratoscope

For effective use of an instrument in clinical practice the instrument must be repeatable
i.e. any changes in the results of the SUN SK-2000 on two separate occasions should

not be due to the of instrument but due to an actual change in corneal topography.

The SUN SK-2000 exhibited greatest repeatability in measuring central radii. This was
demonstrated by the low bias (mean difference=0.003mm) and also the 95% limits of
agreement having the narrowest bands (+0.079mm and -0.013mm). The 95% limits of
agreement showed that in 95% of cases a difference from one occasion to another of
+0.079mm to -0.08mm could be attributed to the instrument and not to an actual
change in corneal topography. The obvious assumption made was that from one
occasion to another no change in corneal topography had taken place in subjects’

corneas. Depending on practitioner criteria, such variance in the instrument

measurement may or may not be acceptable.

Zadnik et al (1992) examined the repeatability the Kera Corneascope in the central
region of the cornea. The 95% limits were presented in terms of dioptres. Their
results may be converted to radius measurements so that a comparison can be made.

Assuming that a difference of 0.50D from one measurement to another corresponds to
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a 0.Imm difference in radius, the 95% limits in the Zadnik et al (1992) study in

millimetres would be +0 1 18mm to -0.344mm. A considerable difference between the

two  studies was observed, indicating a very poor repeatability for the Kera

Corneascope for the central area of the cornea.

Although experimental studies have been performed on reproducibility (Koch et al,
1989; Koch et al, 1992; Legeais et al, 1993), few studies have used the statistical
methods suggested by Bland and Altman (1986). The SUN SK-2000 only displayed
the peripheral radius at one point in a semi meridian and there was no option available
to display the radii of other points. Therefore, as opposed to other studies, where the
repeatability of individual rings was assessed (Koch et al, 1989; Hannush et al, 1990;
Legeais, 1993), for the SUN SK-2000 the repeatability of peripheral readings was

evaluated.

Peripheral radii showed variable repeatability depending on the meridian measured.
Generally, the horizontal and inferior meridians were more repeatable than the superior
meridians. One possible reason could be the influence of the ocular adnexa i.e. the lids
and lashes. If this were the case, then repeatability would be poor in all
videokeratoscopic devices of this nature. Another factor that could have accounted for
the reduction in repeatability was incomplete target ring imaging (therefore there could

be some extrapolation to calculate peripheral radii).

4.6.4 Evaluation of the alignment system used in the SUN SK-2000

videokeratoscope

The actual alignment system was useful in that the position of the entrance pupil with
respect to the Placido rings could be seen. Hard copies also displayed the entrance
pupil, Applegate (1992) suggested that from a functional and clinical viewpoint, the

entrance pupil represents a good reference point from which other keratographs could

be compared.
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It was interesting to note the actual point from which measurements were being taken.
The alignment system required the patient to view a fixation point in an attempt to
align the line of sight with the optic axis of the instrument. According to Klyce (1984),
for the algorithms to be valid, the instrument axis must be perpendicular to the cornea
Le. the instrument axis must be directed towards the centre of curvature of a point on
the cornea. In the case to the SUN SK-2000 this was achieved when the first Purkinje
images were aligned inside the reference squares (see figure 4.01). Unfortunately,
when this condition was met the instrument axis was no longer coincident with the line

of sight and measurements were being performed from some unknown point (Mandell,
1992; Mandell, 1994), see figure 4.18.

Fovea
Pupillary Axis E

Sun Sk-2000
Axis

Figure 4.18: Current alignment system in the SUN SK-2000 videokeratoscope,
alignment was made at a unknown point on the cornea. E and E' are the entrance and
exit pupils, respectively and C the centre of curvature of the unknown peripheral point.

Therefore, with reference to the MCP found using the keratometer and the SUN SK-
2000, the lack of agreement could be explained because measurements were not being
taken from the same point on the cornea. A more suitable reference point on the
cornea would be where the line of sight intersects with the cornea. Alignment with the
line of sight could be made by asking the patient to view an eccentric fixation point and
then centring the system at the centre of the entrance pupil. In this way, the

videokeratoscope would be aligned at a point on the cornea through which the line of

sight passes (see figure 4.19).
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In chapter 3, the conditions or assumptions of videokeratoscopy were stated. One of
the assumptions was that the centre of curvature of the surface being measured should
be coincident with that of the videokeratoscope axis, this was to prevent artifactual
asymmetry from occurring (see figure 3.03). The method of alignment suggested by
Mandell (1994) enables the videokeratoscope axis to be perpendicular to the centre of
the curvature of a point on the cornea, however, the fundamental difference is that
alignment is being made at a point on the cornea that is closer to the apex and

coincident with the line of sight. The alignment of videokeratoscopic systems should

be performed with respect to the line of sight.

Fovea
Pupillary Axis

Sun Sk-2000
Xis

Line of
Sight
Eccentric Fixation

Figure 4.19: Modification of the alignment system (after Mandell, 1992; Mandell,
1994) so that alignment is at a unique point on the cornea where the line of sight and
the videokeratoscope axis intersect. E and E' are the entrance and exit pupils,
respectively and C the centre of curvature of a unique point on the cornea where the
line of sight and the optic axis of the SUN SK-2000 coincide.

4.7 Summary

The SUN SK-2000 computer assisted videokeratoscope attempted to provide
potentially useful information that if repeatable would be of invaluable use to eye-care
practitioners. Colour coded maps, on screen rigid contact lens fitting and a feature
that suggested the optimal commercial contact lens were useful features of this system.
Unfortunately, little agreement was found between the keratometer and the SUN SK-
2000. Furthermore, peripheral corneal measurements showed poor repeatability

particularly in the superior corneal region. It was suggested that the ocular adnexa and
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possibly extrapolation of data points could have a role in the poor repeatability in the
superior meridian.

Manufacturer's should clearly state which radius videokeratoscopic systems are

measuring. With the development of software both sagittal and tangential radii could

be displayed. Other limitations were that only eight peripheral meridians could be

analysed and that colour coded maps did not allow the user to assess corneal radius

values with a cursor. Finally, method agreement and repeatability analysis should be

performed using appropriate statistical methods (Bland and Altman, 1986; Shaw et al,

1994). Further investigations as to the accuracy of the system using spherical and

aspheric test pieces should be conducted.
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Chapter Five

A Clinical Trial of the EyeSys Model II Computerised

Videokeratoscope

5.1 Introduction

The development of contact lenses has provided a major step forward in the correction
of refractive error. However, since their development many problems have also arisen.
For example, every practitioner involved in contact lens fitting will have noticed a case
where a soft contact lens moves either excessively or not at all when fitted in the
recommended manner. This shows how little bearing keratometer readings have on
the final fit of a soft contact lens as more information on the shape of the periphery of
the cornea is required. Similarly, with the development of numerous rigid lens designs
manufacturer’s claims of superior fitting design may only be said to apply to a specified
proportion of the population because there is such a wide range of normal corneal
shapes (Guillon et al, 1986). These problems, together with the difficulty encountered
in surgically modifying the corneal surface, necessitate the use of an instrument that is

capable of evaluating the corneal surface quantitatively and qualitatively.

Since the development of the Placido disc, many researchers have attempted to
accurately measure the corneal surface (Knoll et al, 1957, Townsley, 1967; Koch et al,
1989; Klyce 1984; Wang et al 1989). The majority of investigations have concentrated
on the development of devices based on the Placido disc method - namely keratoscopy.
The technique and the subsequent derivation of the corneal profile has been described
in chapter 3, however, essentially the consecutive ring separations of a reflected ring
shaped target are measured and then algorithms are applied that enable the shape of

corneal surface to be calculated. The algorithms have taken three forms, a brief

summary is appropriate to the present study.
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Calibration method - this method was devised by Mandell (1967) where ring
separations were compared and matched with those from a known reflecting
sphere. This technique is no longer used as it assumes that the corneal surface is

spherical and that the images of the rings are focused at a fixed distance from the

videokeratoscope.

One step curve fitting method - in this method the derived geometry of the
corneal surface was fitted to a predetermined model of the cornea. Researchers
have generally used conic sections as models to represent the corneal surface
(Edmund et al, 1985, Edmund, 1986). El Hage (1972) derived a differential
equation for a specific type of keratoscope (where a pinhole was inserted between

at the focal point in the image plane). The Computerised Corneal Topographer

(EH-270) utilises these principles.

One step curve fitting to an entire section of the cornea placed a global constraint
on the reconstructed surface and inevitably resulted in a reduction in the resolution
of the system. It is important to appreciate that although the cornea can be
modelled using conic sections, the asphericity of the cornea may not necessarily be
constant in a single meridian. It would be more accurate to fit conic sections or
polynomial curves to a semi-meridian (i.e. from some peripheral point to the point
of alignment) after individual co-ordinate points of the reflecting surface have been

calculated.

One step co-ordinate method - originally described by Doss et al (1981), this
novel method assumed that the reflecting surface could be reconstructed using
multiple arcs of varying radius of curvature which shared the same normal. The
multiple arc model was analogous to the continuous curve or ‘offset’ lens design
(see figure 5.01). The principle disadvantage of the one fit method was that the
various radii of curvature were all directed towards the origin of the co-ordinate
system. Klyce (1984) improved the algorithm by adding a separate algorithm for

the calculation of central corneal elevation (previously Doss et al (1981) pre-set the
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central radius of curvature to 7.80mm and thereby biased the profile). Further,
Klyce (1984) also made an allowance for the centres of curvature to lie on a point
other than the optic axis of the instrument. One fundamental assumption made in
the calculations was that the height of the point of reflection at the cornea was
equal to that at the image plane. More recently, Wang et al (1989) modified this
approach such that the latter assumption was not made. Andersen et al (1993a,
1993b) derived a similar technique based on locating the angular subtense of the
targets at the image plane using a reference sphere and then using these values to

derive the corneal co-ordinates using other algorithms (a detailed description is

provided in chapter 7).

Figure 5.01: shows how the cornea may be compo.sed of two sphprical arcs that
share a common normal BC,. This allows continuity between adjacent sections.
The arc containing the part of the cornea AB z}nd BD is assumed to be .spherlcal. T
is the apical radius of the cornea, 1, is the radius of curvature of a peripheral point

on the cornea at point D.

Many corneal topographic systems have now been developed each with their own
proprietary software for corneal profile reconstruction. It is therefore essential that a
clear evaluation of these systems is performed. Numerous studies have been published

regarding the accuracy and repeatability of computerised videokeratoscopes (Hannush
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et al, 1989; Koch et al, 1989; Hannush et al, 1990; Tsilimbaris et al, 1991; Koch et al,
1992; Zadnik et al, 1992; Dave et al, 1995). The statistical analysis has varied,

comparisons of instruments have been performed with correlation coefficients and
paired t-tests.

52 Ailms

The repeatability of videokeratoscopic devices in various meridians and any
relationship regarding the repeatability with respect to the distance from the vertex
normal has not been well documented. Moreover, in the previous chapter, the
repeatability of the SUN SK-2000 (SUN Contact Lens Company, Kyoto, Japan) was
assessed in eight meridians, a poorer repeatability in the superior meridian of the
cornea was found. It was suggested that the reduced repeatability was due to a
combination of some form of extrapolation from curve fitting and the interaction of the
ocular adnexa with the measurement process. Unfortunately, the SUN SK-2000 did
not permit evaluation at specified points on the cornea. Furthermore, the analysis of
the accuracy was limited due to the unavailability of aspheric and spherical surfaces. In
present study, the EyeSys Corneal Analysis System (EyeSys Laboratories, Houston,

Texas) was used to evaluate the following:

the level of agreement of the EyeSys CAS with the Bausch and Lomb keratometer
(Bausch and Lomb, Rochester, NY) in forty eyes.

e To assess the repeatability of the EyeSys CAS in four meridians (nasal, temporal,
superior and inferior) in twenty-two eyes.

e To assess any relationship between repeatability and the distance from the vertex
normal in 22 subjects. The vertex normal refers to the point on the cornea whose
tangent is perpendicular to the videokeratoscope axis.

o To evaluate the accuracy of EyeSys CAS in measuring aspheric surfaces.

e To evaluate the repeatability of the EyeSys CAS in measuring aspheric surfaces.
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3.3  Instrument Description

The EyeSys CAS is based on the familiar principles of keratoscopy. The target system
comprised of an eight ring Placido disc (eight light and eight dark shown in figure
5.02) mounted on a conical surface (Hodd et al, 1993). The conical surface had the
effect of optimising target size and reducing the curvature of the image plane (Bibby,
1976). The EyeSys version model I operates at a working distance of 92mm (Koch,
1992) this relatively moderate working distance has been shown by Nieves et al (1992)
to reduce the error due to misalignment and defocus compared to the TMS (Computed
Anatomy, Inc.). As a consequence of the working distance and the cone design, the

EyeSys has been shown to measure a diameter of 9.2mm for a 42.5D cornea (Koch et
al, 1993).

{ptical cross
hairs

rings

Figure 5.02: shows the eight rings of the EyeSys CAS.

Typically, the system hardware comprised of a high resolution (512x5 12) CCD (charge
coupled device) camera for image capture, a 486 processing IBM compatible computer
and an ink-jet colour printer. Fixation was achieved by the subject viewing a green
fixation light. The instrument was then focused by alignment of the optical cross hairs
(shown in figure 5.02). Once the image was captured, the EyeSys applied a

sophisticated and proprietary ‘sub-pixel’ resolution program that located the ring
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interfaces (see figure 5.03). The purpose of such a program would be to accurately
locate the reflected ring images. The inner edge of the white rings were outlined by a
yellow line and the outer edges with a red line. Having located and digitised the image,
analysis of each of the sixteen white/black ring interfaces was commenced at one
degree intervals over 360°. The result was a high resolution analysis brought about by
the analysis of a total of 5760 points. Manual digitisation was also possible in cases

where there was significant distortion of the reflected rings.

Incorrect
digitisation

Figure 5.03: The EyeSys ‘sub-pixel’ digitisation for a human eye. Note how the left
inferior rings were incorrectly digitised.

More recently, EyeSys manufacturer’s devised a method for the location of the
entrance pupil. For the purpose of measurement and alignment it has been suggested
that the entrance pupil serves as the most suitable reference point (Applegate, 1992).
Mandell (1992) suggested a modified method for alignment in which the entrance pupil
was used in the actual alignment procedure to permit alignment with a unique point on

the cornea where the line of sight intersected the instrument axis (see chapter 2, figure

2.05).

It was suggested by Antalis et al (1993) that the radius and the sagittal depths of each
point analysed are calculated using the method of one step corneal profile fitting as
described by Doss et al (1981), Klyce (1984) and more recently by Wang et al (1989).
However, the algorithms used by the EyeSys CAS were unique and proprietary.
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Numerous data presentations were available such as keratometric displays, profile
graphs, colour coded contour maps, data fusion displays and raw data tables. The
present study obtained data from the keratometric plots and the raw data tables (see
figure 5.04 and 5.05). These tables could be used to find the radius at any meridian for

each ring imaged on the cornea. Only the radius of curvature of points where the rings

were imaged was displayed.
5.4  Samples and Procedure

For the comparison of the EyeSys CAS and the Bausch and Lomb keratometer, forty
eyes were compared. The Bausch and Lomb keratometer was also calibrated in the
normal fashion and the eyepiece focused. The simulated keratometer readings at 3mm
from the vertex normal (figure 5.04) were used in the comparison with the
keratometer. Instrument accuracy was assessed by measuring twelve convex aspheric
surfaces (CLS Ltd., Huntington, U.K.) and comparing the measured central and
peripheral radius with the actual central and peripheral radius at the same points on the
surfaces. The accuracy of the manufactures values were confirmed by Form Talysurf

analysis (by Rank-Taylor-Hobson laboratories, Leicestershire, U.K.).

In order to assess the repeatability of the EyeSys CAS, a total of 22 eyes were
measured twice. The measurements were repeated by the same operator by aligning
the EyeSys with the subject’s eye then withdrawing the patient and then realigning the
instrument. Repeatability of only the instrument i.e. not including any variation from
human subject variability was evaluated by performing repeated measurements in four
meridians (superior, inferior, nasal and temporal) for each of the aspheric surfaces.
The raw data tables (figure 5.05) were used analyse any relationship between
peripheral radius and the distance from the vertex normal from where measurements
were taken. The operator had used the EyeSys CAS many times as part of the patient
examination procedure in a busy contact lens practice, the keratometer used was that
resident in the operator’s consulting room. Prior to the experimental procedure, the

EyeSys CAS was calibrated in accordance with manufacturer’s recommendations.
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Figure 5.04: The simulated keratometric display in the EyeSys Corneal Analysis

Syst.er.n. The astigmatic torque describes the change in directions of the principal
meridians at two zones on the corneal surface.

KERATOMETRIC DATA

(3. mm Zone) ASTIGMATIC TORQUE
GE.0B0 (7.49) & 95°
42 93D (7 86) & 5°

gk Z 3D (03718 957

SEMIMERIDIAN DATA

3 mm Zone (Central)
45 200 { ¥ .48) gn 2807
44 83 (? 525 6n 1017
43.14D (7.832) @ 186°

4264D (7.91) @ 11°

S mm Zone (ParaCentral)
A5, U4.3 {7.49) g 27es
44 S35 (759 &2 1G22~
42.88D (7.837) @ 183°

441.59D (8.11) @ 14°

7 mm Zone (Peripheral)
0.000 000 g 0~
D.GCD (0.00) €0 DY
0.00D (0.00) & 0°
0.00D (0.00) @ O°

Figure 5.05. The EyeSys raw data table shows the distance along a meridian from
which measurements were performed and also the actual sagittal radius at these points.

Filattest Axls (at 4 degreas)
NAS quad Distance Radlus{mm) Diopters TMP quad Distance Radius{mnt) Diopters

# 01 0.47 7.84 43.05 # 01 0.47 7.83 43.10
¥ 02 0.7% 7.84 43.05 #02 0.75 7.82 43.16
#03 0.99 7.85 42.99 #03 0.99 7.81 43.21
#04 1.27 7.87 42.88 #04 1.28 7.81 43.21
#05 1.54 7.90 42.72 #05 1.52 7.82 43.16
# 06 1.84 7.93 42.56 # 06 1.80 7.83 4310
¥ 07 210 7.98 42.29 #07 2,05 7.84 43.05
#08 2.42 8.03 42.03 ¥ 08 2.35 7.85 42.99
# 09 2.70 8.08 41.72 #0838 2.61 7.87 42.88
#10 3.05 8.16 41.36 #10 2.91 7.88 42.78
#11 3.36 8.22 41.06 #11 3.18 7.92 42.61
#12 3.77 8.26 40.86 #12 3.48 7.95 42.45
#13 0.00 0.00 00.00 #13 3.78 8.00 4218
#14 0.00 0.00 00.00 #14 4.11 8.05 41.93
#1565 0.00 0.00 00.00 #1595 4.45 8.09 41.72
#16 0.00 0.00 00.00 #16 4.80 8.11 41.62
Steepeast AXs {3t 85 degress)

SUP quad Dismware Raglusimim; Diopters  IWF guad Distance Radlus{mrm) Lloplers
# 01 0.44 7.45 45.30 # 01 0.44 7.44 45.36
#02 0.70 7.47 4518 #02 0.69 7.48 45.30
#03 0.92 7.48 45.06 #03 0.92 7.46 45.24
¥ 04 1.21 7.51 44.94 #04 1.198 7.47 4518
# 0% 1.42 7.53 44.82 #05 1.42 7.47 45.18
# 06 1.71 7.54 44.76 # 06 1.69 7.47 45.18
¥ 07 1.9% 7.55 44.70 #07 1.91 7.48 4512
#06 2.21 7.56 44.53 # 08 218 7.46 4512
# 09 2.46 7.60 44.41 #09 2.41 7.49 45.06
#10 2.76 7.63 44.23 #10 2,67 7.51 44.94
#11 3.07 7.64 4418 #11 2.92 7.55 44.70
#12 0.00 0.00 00.00 #12 3.20 7.60 44.41
#13 0.00 0.00 00.00 #13 3.48 7.66 44.06
¥14 0.00 0.00 00.00 #14 3.81 7.71 43.77
#15 0.00 0.00 00.00 #15 4.23 7.75 43.55
#16 0.00 0.00 00.00 #16 0.00 0.00 00.00
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5.5 Statistical Analysis

The results of previous studies that have evaluated the EyeSys CAS have shown that
the instrument to be accurate and repeatable for spherical surfaces and human corneas
(Koch et al, 1989; Tsilimbaris et al, 1991; Koch et al, 1992). When a sample of
subjects are used to assess the repeatability of an instrument, the influence of human
subjective variation is included. In a clinical environment the crucial element of human
biological variability must be considered upon the effect of measurement error and
therefore the measurement of repeatability using a subject sample is necessary.
However, when the accuracy and repeatability of the instrument alone is required, test
surfaces must be used. Most studies have only evaluated the accuracy and
repeatability of instruments using spherical surfaces with respect to central radius of
curvature (Koch et al, 1989; Hannush et al, 1989; Legeais et al, 1993); this is not
appropriate as the normal cornea is not spherical. Furthermore, by only measuring one
particular shaped surface the implication is that the accuracy of the instrument is

constant for all shapes.

In order to assess measurement error all that is required is a repeated set of readings.
One method is to observe the standard deviation of the differences and also the mean
difference. The mean difference or bias suggests how much on average one instrument
over estimates or under estimates the other (when comparing two different
instruments) or the average difference of two readings (when assessing repeatability).
The bias, for comparative studies ie. when comparing the keratometer with the
EyeSys, should be calculated as the mean of the actual difference (including the sign)
and not the absolute difference. The absolute difference estimates the mean difference
in readings between two measurements and results in an exaggerated value. For
repeatability, on the other hand, it is not important for the sign of the difference to be

taken into account. Hence, the bias for repeatability was the mean ab solute difference.

Alternatively, if the measurement error follows a normal distribution, then

measurement error may be described in terms of the 95% confidence limits. The
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confidence limits show the probable range over which 95% of the measurement errors
(the difference between the two measurements) are likely to lie. In addition, it is
necessary to observe any relationship between measurement error and the actual value
of measurement or another independent variable. This was accomplished by plotting a
scatter graph of the difference (or measurement error) for each subject against its mean

or another independent variable. Repeatability and agreement for the EyeSys and the

keratometer were evaluated in this manner.

Part of the present study evaluated the agreement between the EyeSys CAS and the
Bausch and Lomb keratometer. Two instruments may be said to be in agreement with
each if they can be used interchangeably and when any difference between them is so
small as to be clinically insignificant. In order to account for any differences in the
location of the principle axes, dioptric measurements from the keratometer and the
EyeSys were converted into a term called the Mean Corneal Power (MCP).
Transforming measurements to MCP was achieved using a process known as

astigmatic decomposition as described in chapter 4.

When evaluating the accuracy of the EyeSys in determining the aspheric test surfaces,
comparisons of radius measurements were made in the central and peripheral areas of
the surface. The radii measured by the EyeSys were clearly displayed in an output
table (see figure 5.05). The table also displayed the distance from the vertex normal
from where measurements were performed. This distance could then be used to
calculate the actual sagittal radius of the known aspheric surface at the specified points.

The equation used to derive peripheral sagittal radius was derived by Bennett (1968)

and is shown below.

o= \/r? +(Q- p),y2 Equation 5.01

The terms in equation 5.01 are as follows: 7, is the sagittal radius at a point on the

surface y mm away from the vertex normal. p is the p-value of the aspheric surface

and 7, is the apical radius.
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5.6 Results

Evaluation of the EyeSys CAS was performed using two distinctly different samples: a

subject sample and a aspheric test surface sample. The results from each of these

samples is described separately.

S.6.1 Agreement between the EyeSys and the Bausch and Lomb

keratometer

Any relationship between measurements obtained using the keratometer and the
EyeSys was shown by figure 5.06. The correlation coefficient of 0.973 showed that
the readings from both instruments had a relationship. The central dotted line showed
the best fit line from linear regression analysis, the two other lines represent the 95%
confidence intervals for the regression line. The confidence intervals showed that the
However, the use of

accuracy of the regression line was relatively constant.

correlation coefficients did not show that both instruments were in agreement.

Figure 5.06: the correlation between the EyeSys CAS and the Bausch and Lomb
keratometer in terms of mean corneal power for 40 eyes.
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In order to assess the agreement between the two instruments, the deviation scores
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(the difference in readings of both instruments) were plotted against the MCP for both
instruments (see figure 5.07). The 95% confidence intervals ranged from +0.353D to -
0.758D. Assuming a normal distribution, 95% of the differences would lie within this
range, therefore, as the difference could be up to -0.758D, the two instruments were
not in agreement as such a difference would be clinically significant. Further, the bias
of -0.2D suggested that on average the EyeSys underestimated MCP compared to the
Bausch and Lomb keratometer. A linear regression line (method of least squares) was
also fitted to the scattered data in figure 5.07. No relationship was found (correlation

coefficient, r, of 0.04) in terms of the difference between EyeSys/keratometer values

and their mean.

As stated earlier, the 95% confidence limits were based on the assumption that the
sample distribution was normal. Bland (1993) stated that by calculating the differences
the resulting distribution was likely to be normal. The reason for this being that the

difference solely represents the disparity in measurement between the two instruments.

Figure 5.07: the level of agreement between the EyeSys CAS and the Bausch and
Lomb keratometer. The linear regression line showed little or no correlation (r=0.04)
in terms of measurement error i.e. the difference in readings obtained from both
instruments and the mean MCP.
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5.6.2 The repeatability of the EyeSys CAS and the Bausch and Lomb

keratometer for MCP in the central corneal region

The repeatability of both instruments was determined in measuring the central MCP.
Figures 5.08 and 5.09 show the repeatability of the keratometer and the EyeSys CAS
respectively.  The keratometer showed a marked improvement in repeatability
compared to the EyeSys CAS for central MCP, this was shown by the narrow
confidence limits for the keratometer (+0.295D to -0.069D) and the smaller standard
deviation (£0.093D), see table 5.01 for complete results. The bias for both
instruments was close to zero, it suggested that on average there was little difference
between repeated measurements for central corneal curvature. The linear regression
line (method of least squares) fitted to figures 5.08 and 5.09 showed that there was

little correlation between the difference in repeated readings and their mean.

Figure 5.08: the repeatability of the Bausch and Lomb keratometer for central MCP
in 20 subjects. 1=0.046.
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Fig}xre 3.09:  shows the repeatability of the EyeSys CAS for central MCP in 20
subjects. 1=0.274.
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Table 5.01: the standard deviation, bias and confidence limits for repeatability analysis
of MCP with the keratometer and the EyeSys CAS for central corneal curvature.

Bias (D) 95% confidence Standard
limits (D) deviation (D)
B & L Keratometer +0.113 +0.295 to -0.069 +0.093
EyeSys CAS +0.183 +0.700 to -0.335 +0.264

5.6.3 Repeatability of EyeSys CAS for peripheral corneal measurements

The level of repeatability required for peripheral measurements in a clinical
environment has not been well documented. Any reduction in repeatability using a
subject sample would be induced from a combination of two factors: the variation due
to instrument error (this includes errors from digitisation, alignment, operator error)
and also the variation induced by subjective variability. In chapter 4, subjective
variability was suggested to be caused by localised corneal variation due to factors
such as blinking, lachrimation and possibly corneal deformation. The importance of
assessing subjective variability was obvious: if an instrument had excellent in vitro
repeatability, but the in vivo repeatability was poor, then practitioners must be aware

of the magnitude of variability and also the areas on the corneal surface where this

variability was greatest.
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The criteria for accuracy and repeatability of peripheral measurements (i.e. after 1.5mm
from vertex normal within a semi-meridian) was +0.1mm. The reason for this was
that the peripheral cornea has been shown to have reduced importance in the image
forming properties of the eye (Enoch, 1958). The repeatability of the EyeSys CAS
was assessed in four meridians (nasal, temporal, superior and inferior). The

corresponding graphs are shown (figures 5.10-5.13).

The figures 5.10 to 5.13 show that from the two measurements there was greatest
variation in the superior meridian closely followed by the nasal meridian. The inferior
and temporal meridians showed considerably less variation. In addition, a significantly
larger proportion of the corneal surface was analysed in the latter two meridians. For
the superior and nasal meridians, a poorer repeatability occurred further into the
periphery of the cornea. All the bias lines were close to zero, showing that on average

there was little variation between repeated measurements over the corneal profile.

Figure 5.10: shows the repeatability of the inferior meridian with respect to the actual
points of measurement on the corneal surface. r=0.108.
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Figure 5..11: shows the repeatability of the superior meridian with respect to the
actual points of measurement on the corneal surface. r=0.209.
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Figure 5.12: shows the repeatability of the nasal meridian with respect to the actual
points of measurement on the corneal surface. =0.284.
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Figure 5_.13: shows the repeatability of the temporal meridian with respect to the
actual points of measurement on the corneal surface. =0.092.
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Table 5.02: shows the bias, standard deviations and 95% confidence limits for the
repeatability of the EyeSys CAS in four meridians

Bias (mm) Standard deviation 95% confidence
(mm) limits (mm)
Inferior 0.05 +0.09 +0.2264 to -0.1264
Superior 0.07 +0.22 +0.5012 to -0.3612
Nasal 0.06 +0.16 +0.3736 to -0.2536
Temporal 0.03 +0.09 +0.2064 to -0.1463

The standard deviations and confidence limits shown in table 5.02 were as a result of
the variation within the whole corneal profile. Figures 5.10 to 5.13 showed a tendency
for poorer repeatability in the periphery of the cornea, particularly for the nasal and

superior meridians. Tables 5.03 to 5.06 show the standard deviation and bias for data

points grouped with respect to four annular zones on the corneal surface (from Imm to

Amm within a semi-meridian). From tables 5.03 to 5.06 it was observed that generally,

the standard deviation and the bias were less for measurements taken up to the two
millimetre zone, indicating that a greater repeatability was achieved in the central 4mm

of the cornea. Thereafter, repeatability was significantly worse in the superior and

nasal meridians.  The temporal and inferior meridians showed only a minor

deterioration in terms of repeatability further in the periphery of the cornea.
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Table 5.03: Inferior corneal meridian repeatability at four corneal zones. For the

inferior meridian, there was onl {oration i Tty i :
> y a small deterioration in re
of the cornea. repeatability in the periphery

Corneal zone (mm) | Bias (mm) | Standard deviation (mm)
Omm to 1mm +0.04 +0.05
Imm to 2mm +0.03 +0.03
2mm to 3mm +0.05 +0.12
3mm to 4mm +0.07 +0.13

Tat.)le. 5.94: Temporal corneal meridian repeatability in four zones. Very little
variation in standard deviation occurred from the centre to the periphery of the corneal

profile.
Corneal zone (mm) | Bias (mm) | Standard deviation (mm)
Omm to 1mm +0.03 +0.02
Ilmm to 2mm +0.02 +0.02
2mm to 3mm +0.02 +0.02
3mm to 4mm +0.02 +0.04

Table 5.05. Nasal corneal meridian repeatability at four zones. ~Although the
repeatability for the central 2mm of the cornea was good, there was a marked
reduction in the periphery.

Corneal zone (mm) | Bias (mm) | Standard deviation (mm)
Omm to 1mm +0.03 +0.03
Imm to 2mm +0.03 +0.03
2mm to 3mm +0.07 +0.16
3mm to 4mm +0.18 +0.33
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"l;lable 3.06: Superior corneal meridian repeatability at four zones. The repeatability
showed the most marked reduction in the corneal periphery for the superior meridian.

Corneal zone (mm) | Bias (mm) | Standard deviation (mm)
Omm to Imm +0.04 +0.04
Imm to 2mm +0.04 +0.07
2mm to 3mm +0.11 +0.35
3mm to 4mm +0.21 +0.37

5.6.4 Accuracy of central radius of curvature measurements using twelve

aspheric surfaces

When the exact parameters of surface are known, assessing the accuracy of an
instrument is a relatively easy task. The standard deviation and 95% confidence limits
of the difference between measured and actual radius were used to describe the
accuracy of the instrument. The central or apical radii of the test surfaces were taken
to be the radius readings at ring 1 (see figure 5.05). The reason for this was because
for an aspheric surface, changes in curvature would occur as soon as measurements
were taken away from the apex. Figure 5.14 shows the correlation between measured

and actual central radius for all twelve surfaces.

A high level of association was found between the actual values and measured values
of central radius (r=0.996). However, the accuracy of the EyeSys CAS in determining
the exact value was clearly illustrated in figure 5.15 where the difference of the EyeSys
values from the true values were plotted against the actual central radius. The
standard deviation was small (£ 0.04mm) showing that only a slight deviation occurred
in the EyeSys values. The 95% limits of agreement were also narrow (+0.121mm to
-0.037mm), indicating that the EyeSys CAS accurately calculated central radius of

curvature. The EyeSys CAS also has a tendency to overestimate the central radius of

curvature (bias=+0.042mm).
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Fig}lre 3.14: The relationship between the actual and measured values of central
radius of curvature for 12 aspheric surfaces using the EyeSys CAS.
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Figure 5.15: shows the limits of agreement of the EyeSys central radius curvature for
all twelve aspheric surfaces.
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Grouping each of the differences in terms of the shape of the surface (the p-value)
showed that greatest accuracy was obtained in measuring spherical surfaces. With

progressively flattening surfaces greater error in the measurement of central radius of

curvature occurred (see table 5.07).
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Table 5.07: The accuracy of the EyeSys CAS in determining central radius of
curvature for three p-values.

p-value | Bias (mm) Standard deviation (mm)
0.5 +0.088 +0.02509
0.8 +0.031 +0.02500
1.0 +0.008 +0.01974

5.6.5 Accuracy of the EyeSys CAS in calculating peripheral radius for

known aspheric surfaces

The disparity between calculated and actual sagittal radius of all twelve aspheric
surfaces were plotted against the distance from the vertex normal from which the
measurements were performed (see figure 5.16). Typically, within a semi-meridian, up
to sixteen measurements were assessed. On average, the EyeSys overestimated
peripheral sagittal radius (bias=+0.022mm). The error from the upper 95% confidence
limits was found to be +0.105mm or 0.525D.

The measured and actual peripheral radii of all twelve aspheric surfaces were also
grouped in terms of their respective p-value in order to evaluate any relationship
between the disparity in measurements and the shape of the surface being measured.
Figures 5.17 to 5.19 and table 5.08 show the accuracy of peripheral radius

measurements for each group of aspheric surfaces.

Table 5.08: the accuracy of the EyeSys CAS in determining the peripheral radius of
12 known aspheric surfaces grouped in terms of their respective p-values.

p-value | Bias (mm) Standard deviation (mm) 95% limits (mm)
Overall +0.022 +0.0422 +0.105 to -0.061
1 +0.0003 +0.0134 +0.026 to -0.026
0.8 +0.0167 +0.028 +0.072 to -0.038
0.5 +0.049 +0.056 +0.159 to -0.061
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Spherical surfaces (p-value=1), were measured to a high level of accuracy (standard

deviation=+0.0134mm). However, a clear trend was observed through figures 5.17

to 5.19 such that with progressively flatter surfaces greater error occurred particularly

in the extreme periphery.

Figure 5.16: The accuracy of peripheral measurements for all twelve surfaces.
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Figure 5.17: The accuracy of peripheral radius measurements for all surfaces with a p-
value of 1.
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Figure 5.18: The accuracy of peripheral radius measurements for all surfaces with a p-
value of 0.8.
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Figure 5.19: The accuracy of peripheral radius measurements for all surfaces with a p-

value of 0.5.
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5.6.6 Repeatability of the EyeSys CAS for twelve aspheric surfaces

In order to assess instrument variability alone, each surface was measured twice and
the disparity between each reading at comparable locations was observed for four
meridians. No difference in bias and standard deviation was observed with respect to
each meridian analysed. The bias (+0.01mm) showed that on average there was very
little difference on repeated readings, furthermore, the narrow range of the 95%
confidence limits (+0.0296mm to -0.0096mm) confirmed that EyeSys CAS had a high
level of repeatability. Figures 5.20 to 5.23 show scatter graphs of the difference in

repeated readings as a function of the mean distance from the vertex normal.

Table 5.09: Repeatability of the EyeSys CAS for measurements of twelve aspheric
surfaces.

Meridian | Bias (mm) Standard deviation (mm) 95% limits (mm)
Temporal +0.01 +0.01 +0.0296 to -0.0096
Nasal +0.01 +0.01 +0.0296 to -0.0096
Superior +0.01 +0.01 +0.0296 to -0.0096
Inferior +0.01 +0.01 +0.0296 to -0.0096

Figure 5.20: Repeatability of the temporal meridian.
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Figure 5.21: Repeatability of the nasal meridian.
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Figure 5.22: Repeatability of the superior meridian.
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Figure 3.23: Repeatability of the inferior meridian.
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5.7 Discussion

5.7.1 Agreement between the EyeSys CAS and the Bausch and Lomb

keratometer

The majority of practitioners utilise the keratometer to measure the central radius of
curvature of the cornea. When a videokeratoscope is introduced into practice it is
important to establish whether readings are in agreement and interchangeable with the
keratometer. The present study showed that the measurements obtained using the
keratometer and the EyeSys were not in agreement. Although figure 5.06 illustrated a
strong relationship between keratometer readings and EyeSys simulated keratometer
readings (1=0.973), the 95% confidence limits (figure 5.07) ranged from +0.353D to

0.758D. Clearly this range was not acceptable for two instruments to be used

interchangeably.

The previous chapter investigated the agreement of the SUN SK-2000 (SUN Contact

Lens Company, Kyoto, Japan) with the Javal keratometer. A poor level of agreement

was established between these instruments (+1.32D to -0.69D). In a similar study by
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Zadnik et al (1992) using the Bausch and Lomb keratometer and the Kera
Corneascope (Kera Corp., Santa Clara, CA), the 95% confidence limits ranged from
+0.59D to -1.72D. Again, this range showed that the two instruments were not in
agreement. However, the EyeSys compared more favourably with the keratometer
than the SUN SK-2000 and the Kera Corneascope as the confidence limits were

considerably more narrow. Table 5.10 summarises the results from these studies.

Tsilimbaris et al (1991) compared the EyeSys CAS with the Javal keratometer and
found a standard deviation of the differences between the EyeSys and keratometer of
+0.46D. In spite of the fact that the standard deviation was higher than that
calculated in the present study, Tsilimbaris et al (1991) stated that there was no
significant difference between the EyeSys and the keratometer based on the results of a
paired t-test (p=0.471). The confidence limits for the Tsilimbaris et al (1991) study
(calculated in chapter 4) were too large to suggest that the two instruments were in
agreement. Medical statisticians (Bland and Altman, 1986) state the following with

respect to the use of tests of significance for evaluating agreement and repeatability:

“The test of significance may show that the two methods are related, but it would be
amazing if the two methods designed to measure the same quantity were not related.

The test of significance is irrelevant to the question of agreement.’

Thus, the conclusions drawn by Tsilimbaris et al (1991) were in fact incorrect due to
method of statistical analysis of their data. Fortunately, as standard deviations were
provided, the confidence limits could be calculated. Bland and Altman (1986)

advocate the use of confidence limits and scatter plots as used in the present study.

Koch et al (1992) compared the EyeSys CAS with the Marco model I keratometer
(Marco, J acksonville, FL.) and showed that both instruments were in agreement (only
504 of measurements differed by more than 0.50D for the steeper meridian of the
cornea). Their results differed from those in the current study, one possible

explanation would be that both studies used different keratometers, it was therefore
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possible that the EyeSys was in agreement with the Marco model I keratometer used
by Koch et al (1992).

The bias (or the mean difference) varies from one study to another. The mean
difference between two instruments ultimately depends on the instruments used. It
would be interesting to compare the bias from comparative studies on identical
instruments in order to determine exactly how much one instrument over or under
estimates the other. The lack of agreement between the Bausch and Lomb
keratometer and the EyeSys CAS in the present study could be attributed to the fact

that measurements from both instruments were being taken at different points on the

cornea.

Table 5.10: Comparison of the results from other studies. The standard deviation is
denoted by S.D..

Study Sample | Instrument Bias S.D. | 95% confidence
size compared (D) (D) limits (D)
Present study 40 EyeSys .02 | +/-028| +0.35t0-0.76
Chapter 4 20 SUN SK-2000 | +0.33 | +/-0.52 +1.34 to -0.69
Zadnik (1992) 40 Corneascope | -0.57 | +/-0.59| +0.59to-1 12
Tsilimbaris 92 EyeSys 4+0.03 | +/-0.46 | +0.93 to -0.87
(1991)

5.7.2 Repeatability of the Keratometer and the EyeSys CAS

In addition to analysing the agreement between the Bausch and Lomb keratometer and
the EyeSys, the repeatability of both of these instruments was also evaluated. Figures
5 08 and 5.09 show that the keratometer was more repeatable than the EyeSys. From
consideration of the confidence limits (see table 5.01) the obvious conclusion was that
the keratometer had greater repeatability than the EyeSys CAS. However, more

information regarding the central cornea was available with the EyeSys as more of the

central cornea was resolved.

Other studies have also assessed the repeatability of the keratometer and other
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videokeratoscopes. However, comparisons between studies are difficult due to the
variety of statistical methods used. Hannush et al (1990) compared the Bausch and
Lomb keratometer with the Corneal Modelling System (Computed Anatomy, Inc.,
New York). Using a criteria of a 0.5D difference from one reading to another, the
percentage of repeated readings within this criteria were found for each instrument.
The results obtained by Hannush et al (1990) agree with those found in the present
study i.e. that the Bausch and Lomb keratometer was more repeatable than the

videokeratoscope for measurements of central corneal curvature.

Zadnik et al (1992) determined the repeatability of the keratometer and Corneascope.
The confidence limits were +0.84D to -1.03D for the Bausch and Lomb keratometer
for the vertical meridian and +1.76D to -2.24D for the Corneascope. The limits
suggest that photokeratoscopy had poorer repeatability compared to keratometry.
One explanation could be that the keratometer, because of its doubling principle, was
relatively insensitive to small involuntary ocular movements. Measurements performed
using videokeratoscopy, on the other hand, were not independent of these small ocular

movements and therefore the repeatability could be reduced.

5.7.3 Repeatability of the EyeSys CAS in the corneal periphery

The repeatability of the EyeSys CAS was determined by calculating the 95%
confidence limits for the difference in sagittal radius of two readings at comparable
locations on the corneal surface. Table 5.02 showed that the repeatability was
dependent on the meridian in which measurements were performed. Temporal and
inferior meridians showed the greatest repeatability with the superior meridian having
the potential for the largest disparity in repeated readings. The graphs shown in figures
5.10 to 5.13 were plotted in order to ascertain whether there was any relationship
between the position from the vertex normal where measurements were taken and the
difference in sagittal radius from repeated measurements. For each graph a linear
regression line (method of least squares) was fitted and the correlation coefficient
calculated. The degree of correlation indicated the likelihood of any relationship
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between the difference in repeated readings and the distance from the vertex normal
from where measurements were performed. The graphs in figures 5.11 and 5.12
showed a positive correlation (r=+0.209 and +0.284 for superior and nasal meridians,
respectively) indicating that for these meridians, a greater difference in repeated
measurements occurred further into the periphery of the cornea. Conversely, figures
5.10 and 5.13 showed almost no relationship (r=0.108 and 0.092 for the inferior and
temporal meridians, respectively). In order to quantify the observations from figures
5.10 to 5.13, the standard deviations of the differences for four, one millimetre corneal

zones were calculated. For each meridian, differences in the sagittal radius of

curvature increased in the corneal periphery.

In the previous chapter the repeatability of the SUN SK-2000 device also deteriorated
in the corneal periphery. It was suggested that the ocular adnexa could have caused
the reduction in repeatability. However, the SUN SK-2000 displayed peripheral radii
even if the Placido rings were not imaged. Thus, extrapolation could also have
reduced the repeatability. With the EyeSys CAS, only points on the cornea where the
Placido rings were imaged were analysed, any errors due to extrapolation were
therefore eliminated. Measurements beyond 2mm from the vertex normal in the
superior and nasal meridians were subject to error from human biological variation due
to the interaction of the ocular adnexa. Another error that could have influenced the
poorer repeatability in the peripheral cornea was the accuracy of the digitisation
process. On occasions, the red and yellow digitisation markers (see section 5.3)
incorrectly located the ring intersections. Figure 5.03 showed that part of the ring in
the nasal area of the cornea was missing. The digitisation process would therefore
incorrectly locate the ring interface and the calculated sagittal radius at this point on
the cornea would not be correct. Careful inspection of the Placido image should be

performed, particularly in the periphery of the cornea prior to topographic evaluation.
Hannush et al (1990) determined the repeatability of the Corneal Modelling System in

corneal periphery of 17 eyes. They analysed the mean dioptric power of each ring (1

to 27), only 54% of the rings repeated measurements within 0.5D. Hannush et al
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(1990) suggested that the poorer repeatability of the peripheral rings was presumably
due the algorithms not accounting for the aspheric nature of the corneal surface.
However, their suggestion would not explain why different levels of repeatability were
encountered in different meridians of the cornea. Furthermore, the algorithms would
have a bearing on the accuracy of an instrument, not the repeatability. In addition, one
should note Hannush et al (1990) did not localise measurements to a specific meridian
on the corneal surface as they calculated the difference in mean power of each ring on
repeated measurement. Hannush et al (1990) therefore assessed the repeatability of
peripheral corneal power for a particular zone rather than specific points on the cornea.
Comparing repeated measurements of the mean power of a ring is not an accurate
method of assessing the repeatability of an instrument as the assumption is made that

the repeatability is constant within a meridian.
5.7.4 Accuracy of central and peripheral measurements using the EyeSys CAS

A high level of association was found between the EyeSys values of central radius of
curvature and the actual values for all twelve aspheric surfaces (r=0.996). Overall, the
upper 95% confidence limit suggests that an error of +0.121mm or 0.61D would
occur. Comparing this error to that obtained from other studies shows an apparent
exaggerated error for the current study. Hannush et al (1989), using the Corneal
Modelling System (Computed Anatomy), found that 96% of measurements of central
radius of curvature were obtained within 0.25D for four spherical surfaces. Koch et al
(1992) reported the EyeSys CAS to obtained measurements using a 42.5D sphere to
within 0.25D. The primary difference between these studies and the present study was
in the surfaces used to investigate the accuracy. Grouping surfaces in terms of their
respective p-values showed much more comparable results for the accuracy of central

radius of curvature (upper 95% confidence limit of 0.047mm).
Furthermore, grouping the radii in terms of the p-value of the surface also showed that

errors in accuracy increased :n surfaces with lower p-values (table 5.07). For example,

with a 7.80mm spherical surface, the innermost ring was reflected from a point

142



Clinical trial of the EyeSys CAS

0.46mm from the vertex normal, the corresponding radius of curvature was measured
to be 7.83mm. For a surface with the same central radius but with a p-value of 0.5, the
point of reflection was 0.48mm and the radius of curvature was found to be 7.93mm
(see appendix 1). Thus, the primary factor causing the error in measurement of central
radius of curvature would appear to be the level of central resolution (the central
resolution of a videokeratoscope was the distance from the vertex normal to the point
of reflection of the innermost ring at the surface). Since the present study was
conducted, the manufacturers of the EyeSys have launched a new version of the
EyeSys model II - the EyeSys system 2000 which has an additional two rings. The
improved central resolution of the new EyeSys 2000 should help increase the accuracy
in determining the apical radius of curvature. However, based on the 0.02mm
accuracy suggested by Stone (1962), the EyeSys model II was not accurate in

measuring aspheric surfaces (95% confidence limits of +0.121mm to -0.037mm).

Although studies have evaluated the accuracy of peripheral measurements performed
by computerised videokeratoscopic devices for spherical surfaces, few have evaluated
these systems using aspheric surfaces. Matilla et al (1994) determined the accuracy
and precision of the TMS videokeratoscope using thirty conicoidal buttons. High
levels of association for both p-value and central radius of curvature were found
(r=0.9997 and 0.995, respectively). The 95% confidence intervals for p-value showed
that the TMS overestimated the p-value from +0.028 to +0.077. The TMS also
overestimated central radius of curvature by +0.063 to +0.092 (95% confidence
interval). However, it must be noted that the confidence intervals are not the same as
the confidence limits or the 95% limits of agreement used in the present study. The
confidence intervals represent the range over which the bias is likely to lie in 95% of
cases. Unfortunately, Matilla et al (1994) did not state the standard deviation of the
differences between TMS measured and actual p-value or central radius of curvature,

therefore, the confidence limits could not be calculated.

For the present study, the accuracy of peripheral measurements were evaluated in

terms of the deviation of measured peripheral radius from the actual peripheral radius
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of twelve aspheric surfaces. The actual values of sagittal radius of curvature were
determined by substituting the values of the distance from the vertex normal in the raw
data table (figure 5.05) into the variable y in equation 5.01. The error from the upper
95% limits was found to be 0.105mm or 0.525D. For clinical purposes, this level of
accuracy was acceptable. The error in measurements were found to increase in the
periphery (figure 5.16) with maximum errors occurring after 4mm from the vertex
normal. Figures 5.17 to 5.19 showed that a distinct relationship existed between the
nature of the surface i.e. the p-value and the error in measuring it. For flattening
surfaces greater error was observed with the EyeSys CAS in the periphery of the
surface. A reasonable explanation would be an error or inappropriate assumption
made in the EyeSys algorithms. Other studies have assessed the accuracy of the
EyeSys CAS in measuring spherical surfaces (Koch et al, 1989; Hannush et al, 1989)
and concluded that it was an accurate instrument. With regards to the present study,
the narrow confidence limits (+0.105mm to -0.061mm) and low standard deviation
(+0.022mm) showed that the EyeSys CAS model II had an acceptable level of

accuracy.
5.7.5 Repeatability of the EyeSys CAS for twelve aspheric surfaces

As opposed to investigating the repeatability of the EyeSys in measuring human
corneas, using aspheric surfaces eliminated any biological variation in the cornea
induced by the tear film, lids and lashes. Therefore, not surprisingly, the repeatability
was equal for each meridian. Furthermore, the EyeSys CAS was found to be highly
repeatable (bias=+0.01mm and standard deviation=+ 0.01mm). Figures 5.20 to 5.23
illustrated that there was no deterioration in the repeatability of peripheral
measurements across the entire profile for aspheric surfaces. Thus, the maximum error
induced by the characteristics of the instrument alone, such as focusing and alignment,
resulted in an error in measurements of only 0.0396mm, or 0.198D (upper 95%
confidence limit). As a result of the repeatability analysis using aspheric surfaces, it

would appear that the EyeSys CAS was a highly repeatable instrument.

In a study conducted by Matilla et al (1994), repeatability was assessed by measuring
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two surfaces ten times and then observing the standard deviation. A standard
deviation of +0.025mm and +0.022mm was found for the two surfaces indicating
that the TMS also had acceptable repeatability. Few studies have evaluated
repeatability using aspheric test surfaces. Further, those that have do not state which

aspheric surfaces were used in their analysis (Koch et al, 1989; Matilla et al, 1994).

58  Summary

The EyeSys CAS was compared with the Bausch and Lomb keratometer in order to
assess the agreement between the two instruments. A poor level of agreement from
the 95% confidence limits (+0.353D to -0.758D) was found in a sample of forty
subjects. The results suggested that the measurements obtained using the EyeSys CAS
and the keratometer were not interchangeable. Unfortunately, direct comparisons
were not possible with other studies as a result of different statistical methods used to
evaluate agreement (Tsilimbaris et al, 1991; Hannush et al, 1990). In order to assess
agreement, observation of the variance in the difference between readings obtained by

both instruments must be performed as described by Bland and Altman (1986).

The repeatability of the keratometer was also greater in measuring 20 normal corneas
(standard deviation==+0.093D for the keratometer and +0.264D for the EyeSys).
One possible reason was that the doubling principle allowed the keratometer to be
relatively independent of small involuntary ocular movements. With respect to the
repeatability of the EyeSys in the periphery of the cornea, poorest repeatability was
found in the superior and nasal meridians (figures 5.11 and 5.12). Repeatability
decreased as a function of distance from the vertex normal and thus it was suggested
that measurements beyond 2mm in these meridians should be viewed with some
scepticism. The poor repeatability in these areas was attributed to the interference of
the ocular adnexa on measurement and not to instrument error. Further confirmation
that repeatability was reduced due to the variation induced by the adnexa was shown

by the fact that no difference in repeatability was found with the twelve convex

aspheric surfaces (figures 5.20 to 5.23).

145



Clinical trial of the EyeSys CAS

The accuracy of the EyeSys CAS in measuring central and peripheral radius of

curvature was shown to be dependent on the shape of the surface to be measured. For

flatter surfaces a decrease in accuracy was found for both central and peripheral radius
of curvature (figure 5.17 to 5.19). Overall, the EysSys CAS was an extremely
powerful tool in the assessment of corneal topography. The present study showed that
although it was relatively accurate in measuring aspheric surfaces, the biological
variations in the human cornea restricted the instrument’s performance. Practitioners
using the EyeSys CAS and indeed any other videokeratoscopic system should be aware

of these practical constraints inherent in the principles of videokeratoscopy.
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Chapter Six

Description of a New Videokeratoscope
6.1 Introduction

At the present time, few commercially available videokeratoscopes are available. The
instrument review has described these instruments. In addition, part of this thesis has
evaluated the accuracy and repeatability of two of these instruments (chapters 4 and
5). Owing to the commercial availability of these videokeratoscopes, little is known
regarding the algorithms used to calculate the corneal surface parameters by these
instruments. The analysis of the reflected mires has so far resulted in assumptions
being made with regard to the corneal surface (chapter 3). Furthermore, descriptions
of the corneal surface have resulted in analysis of radius/power descriptions, colour

coded dioptric maps, meridional curve fitting and various numerical indices (chapter

1).

The purpose of the remainder of this thesis is to describe the construction of a
videokeratoscopic device and software capable of deriving the three dimensional
nature of the corneal surface without prior assumptions of the nature of the surface
under test. The basic principle involved in videokeratoscopy was considered in chapter

3 (figure 3.03).

Essentially, an array of light sources of known size and position illuminate the cornea.
Owing to the reflective properties of the cornea, light is reflected towards the focusing
lens so producing a corresponding virtual image of the array of light sources behind the
cornea. As the shape of the reflecting surface dictates the size and position of each
image (Purkinje image 1), calculation of the shape of the cornea effectively involves
tracing backwards from the image plane to the target source. Unfortunately, this
problem is not as straight forward as it may initially appear. Firstly, the output image

(usually a photograph or a video image) is a two dimensional image, the aim is to
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derive a three dimensional image. Secondly, no knowledge regarding the location of
the position of the vertex normal of the cornea is available (the term vertex normal
defines the point on the corneal surface that is perpendicular to the videokeratoscope
axis); this point was clearly illustrated by Wang et al (1989) (see chapter 3, figure
3.04). The net result of which is that surfaces of differing radii may produce images of

equal size. The remainder of the present chapter describes the apparatus and software

used to overcome these problems.
6.2  Apparatus description

A diagram of the apparatus is shown in figure 6.01. The target and camera system
were mounted on a X, Y, Z axis moveable table that facilitated alignment and focusing
of the mires. The target consisted of a series of light emitting diodes (LE.D.s)
arranged in a radial pattern (figure 6.02). A total of 8 semi-meridians were analysed
each containing eight L.E.D.s, thus a total of sixty four points on the corneal surface
could be evaluated. The L.E.D.s were mounted on a matt black plastic hemispherical
bowl (the faceplate). The use of a hemispherical faceplate enabled a larger area of the
cornea to be measured (see figure 2.03). Further, the hemispherical design reduced
peripheral image blur due to curvature of the image plane (Knoll, 1961; Stone, 1962;
Mandell and St. Helen, 1968; Mandell and York, 1968). Thus, for a 8.2mm spherical
surface, the outermost L.E.D. was capable of performing measurements at a point
4 7mm from the centre of the sphere. The centre of the faceplate housed a telescopic

lens system (aperture 10mm) that provided a magnified view of the reflected mires on

the monitor.

The video camera used was a charge coupled device (Monochrome CCD, ZA35Q,
Maplin clectronics), this had the advantage of portability and reduced power
consumption. CCD systems are based on an image unit that convert light focused by a
lens into an electronic charge using the photoelectric principle. The monochrome
CCD camera was used as a colour camera offered no advantages over monochrome

when capturing the raw image. In fact, a colour camera would have had the
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T~

detrimental effect of increasing computation time due to the requirement for more

computer memory when analysing colour images.

Hemispherical faceplate housing a

total of 64 LE.D.s. Each

meridian, contains 16 LE.D s.
Personal computer (Apple
Macintosh Centris 610)

/Vidcocamcra

LED Joystick control for
X,¥,z axis alignment

Telescopic
lens system

Figure 6.01: Apparatus used in the construction of the videokeratoscope. A
magnification factor of approximately 32.4 pixels/mm was found using the above
system for manual digitisation. The magnification factor was approximate because is it
may be altered during each calibration procedure (which will be described in section
7.4.3.).

Matt black
faceplate

system

Figure 6.02: A frontal view of the faceplate, showing the radial arrangement of
LE.D.s (8 within each semi-meridian and a total of 64). The centre of the faceplate

housed the telescopic lens system which enabled a magnified image of the reflected

mires to be viewed.
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Subjects were held steady with a chin and forehead rest. Alignment of the
videokeratoscope axis with the cornea (viewed on the monitor) was achieved using the
joystick control to align the central L.E.D.s with an on-screen reference marker (an

overlay on the monitor) that was coaxial with the videokeratoscope axis (see figure
6.03).

Perspex overlay

sheet.
Central alignment markers. These
represent a boundary within which
the L.E.D.s must be situated.

Circular window

Figure 6.03: The alignment on-screen reference marker. The circular window
matched the size of the output from the telescope. The references L.E.D. markers
were positioned at the centre of the circular window.

A power supply was connected to the L.E.D.s (not shown in figure 6.01). The voltage
of this power supply was adjusted to obtain an image of all the LE.D.s - particularly
the central ones. Earlier (Chapter 2), the relevance of alignment with respect to the
cornea was described. The procedure used here was that described by Mandell (1993)
where alignment was centred about the entrance pupil. This was achieved by guiding
the subject’s fixation to a series of eccentric targets. These targets comprised of

markings on the faceplate that could only be observed by the patient.
The video image was captured using a image grabber (QUICKIMAGE 24, Ver 2.0,

MASS Microsystems, Inc.) situated in the Apple Macintosh personal computer. Two
image capture sizes were available; large (640 x 480 pixels) and small (320 x 240
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pixels). The image grabber software was capable of displaying 1-bit, 8-bit gray-scale
or 24-bit colour images. Images could be captured in sequential time intervals or as
single images, however, only single images were captured. Each image could be
saved on the computer hard disc in various formats. Ideally, 24-bit images would
retain the maximum amount of detail. The computation time and the expense of the
hardware required to be able to perform intricate image analysis using 24-bit images
prohibited their use. Both 1-bit and 8-bit images were used depending on the type of

image analysis program used. Two such image analysis program were devised, both

are discussed in section 6.3.

Once the reflected image of the L.E.D.s was located in terms of their position and
distance from the geometric centre of the innermost reflected L.E.D., the data was
transferred to the topography analysis program. In general terms, this program
calculated the exact L.E.D. reflection point at the cornea. After computation was
complete, the resulting data could be used to derive the sagittal radius of curvature at
each reflection point, or to calculate the subsequent p-value and apical radius of
curvature (chapter 1). Figure 6.04 summarises the procedures involved in the

calculation of corneal topography.

Alignment
procedure

v
Image
capture

v
Image analysis

program
v
Topographic
analysis
program
| Peripheral radius Quantitative Analysis p-value calculation and
calculation apical radius calculation

Figure 6.04: Procedures involved in videokeratoscopy.
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6.3  Image analysis programs

Accurate location of the L.E.D. images was essential to ensure a high degree of
accuracy of the instrument. Previous keratoscopes have used projectors to magnify
keratographs to enhance measurement accuracy (Bibby, 1976). With the continual
advances made in computing, the more modern videokeratoscopes use computer
software to digitise and locate the reflected mires. As mentioned earlier, two image
analysis programs were devised through the course of the study; the manual

digitisation program and the automated digitisation program. Each method is now

described.
6.3.1 Manual digitisation

Using the QUICKBASIC (Microsoft Corporation, version 1.0) application program
for the Apple Macintosh, a program was written to allow an image to be imported and
analysed. Whilst writing the program, the principal aim was to analyse the reflected
mire images such that each L.E.D. could be located relative to a specific point (the
geometric centre of the reflected central LED. images). A description of the
procedure involved in manual digitisation follows; however, for a full listing and

documentation of the program see appendix 2.

The manual digitisation program requires the operator to locate the geometric centre
of individual L.EED.s displayed on the computer monitor. The program begins by
importing a 1-bit image of the reflected LED.s. Although the 1-bit image had the
least amount of detail, it was the only type of image capable of being imported into the
QUICKBASIC programming application. The disadvantage of using a 1-bit image
was known prior to developing the program, however, the QUICKBASIC
programming application was used only as a trial. The digitisation program imported
the captured image and then magnified it by a factor of X3.75, this allowed only the

central L.E.D.s to be viewed on the computer monitor.

152



1

Description of the Videokeratoscope

In order to make the location of the geometric centre of each L.E.D. easier to find, the
appearance of the mouse cursor was changed from an arrow to a cross-hair. All
L.E.D. positions were found relative to a reference point, this reference point was the
geometric centre of the innermost L.E.D.s (see figure 6.05). The geometric centre was
found by drawing two lines perpendicular to one another from opposing L.ED.s . The
position of a central L.E.D. was then found by moving the cursor to the centre of the
L.E.D. and pressing the mouse button. Whilst keeping the mouse button depressed,
the cross-hair was moved to the reference point. The mouse button was then released
and the distance of the central L.E.D. from the reference point calculated. For the
central L.E.D.s, measurements were performed twice and the mean obtained. The

manual digitisation program contained a sub-program called SUBR that calculated the

distances of the L.E.D. images in pixels.

The intersection point of the Reflected central
dotted lines corresponds to LED.s

the geometric centre of the '

central LE.D.s. *. . L’

Figure 6.05: Ilustrates how the geometric centre is derived from the central or
innermost L.E.D.s.

In order to calculate the position and distance of the peripheral L. E.D. images, the
program imported the image again, however, now all the L.E.D.s were available.
Furthermore, the user had the ability to increase the magnification. Once again, the
geometric centre was obtained using the same method as described earlier. L.E.D.
positions were then found for each meridian in turn. Both the central and peripheral
L E.D. distances were then scaled according to their respective magnification factors.
The pixel distances of the L.E.D.s measured were then displayed in an output that

could then be printed or saved on the computer hard disc.
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6.3.2 Semi-automated computerised digitisation

A software package called NIH Image 1.52 (Public Domain software, version 1.55)
was used to analyse the image captured from the QUICKIMAGE (Microsoft
Corporation, version 1.0) software package. Before describing how NIH Image 1.52
was used, it is useful to consider what a digital image actually is. A digital image is
simply an array of numbers that are displayed on the monitor as image points (pixels),
each with specific intensity and colour. When an image is processed, the array of
numbers is altered. Like most image processors, NIH Image works with 8-bit numbers

giving a maximum of 256 colours or grey-levels on the monitor at any one time.

Unlike the program written in QUICKBASIC (which could only analyse 1-bit images),
NIH Image 1.52 was capable of performing image analysis using 8-bit grey scale
images, which has the obvious advantage of maintaining image quality (see figure
6.06). A useful and very powerful feature of NIH Image 1.52 was the ability for the
user to write a macro program. This program was written in a Pascal-like
programming language and enables the user to automate a specific sequence of image
operations. A macro program was written and used to calculate the pixel distances
from the centroid of each L.ED. to the reference geometric centre of the central

L.E.D.s. (see appendix 3 for a complete listing and documentation).
A detailed description of the semi-automated digitisation program follows.

The semi-automated digitisation program started by displaying a set of instructions for
the user (see appendix 3). The user was asked to open the image that was previously
saved using the QUICKIMAGE application and then centre the cursor at a point that
represented the geometric centre of the innermost L.ED.s. Throughout the program,
NIH Image 1.52 displayed the coordinates of the position of the cursor. The co-

ordinates at the reference point were noted by the operator.
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Figure 6.06:

Shows an 8-bit 256 grey-scale image of a subject’s cornea.

Image analysis for a complex image such as that shown in figure 6.06 requires that the
background intensity (i.e. the intensity of light outside the reflected L.E.D. zone) 18
constant. If one considers a videokeratoscope image of a human eye then it is obvious
that there are obvious differences in background intensity at the centre of the cornea
compared to the peripheral cornea because of the influence of the iris. The changes in
background intensity were removed by firstly inverting the image i.e. forming a
negative and then subtracting a predefined level of light intensity from the digitised
image. It was found, mainly through trial and error, that inverting the image led to
more accurate detection of the LE.D.s.. The background removal process effectively
eliminated any variability in the light intensity of the background (figure 6.07). Once
background intensity was constant, the user had the option to adjust the threshold level
for the overall image. Thresholding altered the total image intensity and was used to
refine the background normalisation procedure and displayed L.E.D.s as ‘hot-spots’ on
the monitor (see figure 6.08). If any other ‘hot-spots’ were visible, they too were
digitised. Once the digitisation procedure was complete the L.ED. images were
shown with numbers superimposed. These numbers showed the order in which each
LED. was digitised. Each numbered L.E.D. was therefore allocated a co-ordinate.
The final part of the macro program therefore reorganised the digitised L.E.D.s into

radial order in terms of the meridian analysed (figure 6.08).
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ted L.E.D.s, one
n the pupil and the
in the iris.

The dotted line shows the amount of
intensity removed from the image in
order to make the background
uniform

e

Figure 6.07. Illustrates how the background intensity was made constant. The line
graph shows a profile of intensity across the image. The thresholding procedure
simply moves the position of the dotted line (A) up or down, thereby revealing more or
less of the image.
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Figure 6.08: Right - shows the image at threshold with the background luminance
constant. The radial lines of LE.D.s were labelled according to the meridian in which
they were located. Left - shows the L.ED. images with superimposed numbers,
showing the order in which the L.E.D.s were digitised.

156




Description of the Videokeratoscope

Reorganisation of the L.E.D. positions was performed using basic geometry. The co-
ordinates of the geometric centre were noted when the image was first imported into
the semi-automated digitisation program. Although the L.E.D.s were not in any order,
their co-ordinates were known. Thus, the final part of the program scanned through
all the digitised particles (a particle is that point on the image that had a superimposed
number, see figure 6.08) selecting those particles whose co-ordinates most closely
matched the co-ordinates of the points on an imaginary straight line orientated along
the four meridians (see figure 6.09). It was possible that not all of the L.E.D.s would
share the same co-ordinates as the grouping line (the solid line in figure 6.09).
Therefore, an error margin of 15 degrees was permitted between the inclination of the
line at the geometric centre and the L.E.D.s. Whilst the program grouped all the
L.E.D.s with respect to their radial arrangement, the distance of each L.E.D. was also

calculated from the geometric centre.

. Solid line,
representing the
grouping meridian

Geometric centre
of the innermost
LED.s

15 degree error
boundary. < Z

Figure 6.09: Reorganisation of each L.E.D. in terms of its meridian.

The LED. distances from the reference point for the 180°% 45°  135° and 90°
meridians were then displayed in a results table (see figure 6.10). The table could then

be saved as a Apple Macintosh text file and be input into the topography program (see

appendix 4).
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r @ File Edit Options Enhance Analyze Special Stacks Windows

SE=E=—————————-———-— Results
X v Length Angle X~x0 Y-yo
i -28.94 -147.02 117.80 0.00 117.06 -13.97
2 84 .01 -132.90 88.24 0.00 87.45 -11.74
3 —-148.43 -129.63 i51.62 0.00 -i51.16 -11.74
4 -29.53 ~129.44 97.55 0.00 -96.70 -12.86 k
S. 3.1 -121.07 105.00 0.00 103.96 -14.76
6 -138.20 -118.59 115.96 0.00 -115.32 ~12.16
? -28.43 -{12.12 133.90 0.00 —-133.46 -10.91
8 62.75 -109.26 62.61 0.00 68.62 ~11.70
9 -126.55 -106.35 186.86 0.00 -186.61 ~-9.62
10. 50.74 -97.16 169.98 0.00 -169.69 -9.94
11. -113.99 -84 .55 52.07 0.00 51.14 -9 .80
12. -28.53 -94.80 63.38 0.00 -62.50 -10.50
i3. 39.39 -84.55 58.29 0.00 -56.57 14.04
14, -101.34 -82.42 197.07 45.00 —-148.43 ~129.63
15. —28.84 ~-76.93 i82. 11 45.00 -138.20 -118.59
16. 27.70 -72.10 165.31 45.00 -126.55 -106.35
17. ~88.36 ~70.53 148. 10 45.00 -113.99 -94 .55
18. -74.65 -58.39 130.63 45.00 -101.34 ~-82.42
19. 15.97 -58.68 113.06 45.00 -88.36 -70.53
20. -32.43 -40.43 94.77 45.00 -74.65 ~58.33%
21. ~59.09 -36.24 51.83 45.00 -32.43 ~-40.43
22. -8.02 -34.88 65.94 45.00 -55.09 -36.24
23. 117.06 ~13.97 74.12 45.00 40.84 61.85
24. B87.45 -11.74 a0.71 45.00 593.29 ?73.40
25. -151.16 -11.74 108.98 45.00 67.63 85.45
il

Figure 6.10: Results table showing reorganised data from the digitisation program.

6.4  Apparatus characterisation

6.4.1 Focusing characteristics

Before evaluating the accuracy of the instrument, it was important to assess the
performance of the videokeratoscope with respect to image capture. Focusing
precision is an important factor in the absolute accuracy of any videokeratoscopic
system (Applegate, 1992; Nieves et al, 1992). In order to assess the focusing precision
of the videokeratoscope, a flat engineers ruler was placed in front of the
videokeratoscope and focused ten times. The distance between the ruler and the

videocamera was measured using an electronic micrometer capable of performing

measurements to within £ 0.01mm.
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In order to analyse the influence of defocus on linear measurements, images of the
ruler were captured with the ruler situated at specific distances from the optimum point
of focus (a distance of 128mm). The ruler was defocused by 1mm intervals up to
+ 5mm from the best focus, this defocus will be referred to as z-axis defocus as the

ruler was displaced along the z-axis. Accurate positioning of the object was achieved

by displacing it using the electronic micrometer.

Eleven images were captured and the pixel distance between eleven millimeter
markings on the.ruler measured. Measurements were performed using the NIH Image
1.52 software package which has the facility to display light intensity profiles. In
addition, NIH Image 1.52 also displayed the x and y co-ordinates (in pixels) of any
point on the intensity profile specified using the mouse cursor. Thus, the exact
location of the markings on the ruler could be found by positioning the mouse cursor
at each minima of the light intensity profile (figure 6.11 shows a typical intensity

profile).

In order to characterise the errors induced on linear measurements due to focusing
errors, the videokeratoscope was focused on a the target ten times. The procedure
involved focusing, defocusing and then re-focusing on the target. Electronic calipers
(capable of measurement to + 0.01mm) were used to measure the distance from the

object to the optical centre of the lens system.

Pixels 2

T

Figure 6.11: A - Shows the image of the target ruler used to assess the effects of
linear defocus (in this case the target was defocused by 3mm). B - Shows the intensity

profile plot of the same target.
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6.4.2 Central corneal resolution

Observation of the point of reflection of the innermost L.E.D.s at the corneal surface
indicates the resolution of the videokeratoscope in determining the topographical
nature of the central corneal surface. The central resolution of a videokeratoscope is
the distance from the vertex normal to the point of reflection of the innermost L.E.D.
at the surface. Using an 8.20mm sphere, the semi-automated digitisation program was
used to calculate the reflection points of the L ED.s. These values were obtained for
the 135 degree inferior meridian (see figure 6.08 for classification) and were then input

into the topographical analysis program in order to calculate the surface coordinates.

The further away measurements are performed from the vertex normal the less the
resolution of the central cornea or surface under test. Central resolution is dependent
on two factors - the spatial separation of the central LE.D.s and the working distance
of the instrument. Measurements with the videokeratoscope were compared to the

data collected using the EyeSys CAS on same 8.2mm sphere (see appendix 1).

6.5 Results

Analysis of the accuracy of focusing showed that the mean position of focus was

0.336mm from the optimum focus. The precision of the working distance was
calculated as +0.157mm (the standard deviation of the focusing distances found using

the electronic micrometer).

Figure 6.12 demonstrates the linear relationship between the relative image size and
the level of z-axis defocus. Linear regression showed that the equation of the best fit
line (method of least squares) was

y =100.17 + 0.69x Equation 6.01
and the correlation coefficient, R, 0.998. The gradient (Ay/Ax) of the regression line
was found to be 0.69 (% relative image size/mm). Therefore, a 1mm level of defocus

resulted in 0.69% change in linear measurement of the image. Focusing precision was
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calculated to be +0.157mm, therefore, the corresponding error in relative image size
for the instrument was found to be 0.11% (calculated by multiplying the precision of
the instrument, +0.157mm and the percentage change in image size per millimeter of
defocus, 0.69%/mm). The true value of the central L.E.D. distance and the value of
the L.E.D. distance when maximum error occurred in image size (i.e. in 95% of cases)
was input into the topographic analysis program to determine the error in central
radius of curvature due to focusing precision. The value of the L.E.D. distance when
maximum error occurred was calculated as follows:

% Maximum error due to focusing in 95% of cases= 1.96 X 0.157mm

=0.3077mm

The change in relative image size induced by 0.3077mm defocus was then calculated
by substituting this value into equation 6.01. The change in image size was found to
be 0.382%. For a 7.80mm spherical surface, the central L.E.D. distance measured
36.297 pixels, the measured L.E.D. distance for the maximum defocus error (in 95%
of cases) would be 36.436 pixels. Computing these values into topography program
(see appendix 4) showed that the error in calculating the correct central radius of
curvature would be 0.039mm or 0.195D. This error would be dependent on the size
of the image, however, for the example used, the actual central radius of curvature was
7.80mm, therefore, the 0.195D error represents the maximum error that would be

encountered from inaccurate focusing.

Table 6.01: Data values showing effect of linear defocus on relative image size.

Linear defocus (mm) Image size (pixels) Relative image size (%)
5 417 103.731
4 414 102.985
3 411 102.239
2 407.5 101.368
1 405 100.746
0 402 100
-1 400 99.502
) 398 99.005
3 395 08.2587
-4 391 97.264
-5 389 96.766
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Figure 6.12:  The effect of linear z axis defocus on image size.
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Computing the results obtained from image processing showed that for an 8.2mm
sphere (135 degree inferior meridian), the central L.E.D. was reflected at a semi-
diameter of 0.926mm (see table 6.02). For the same surface but using the EyeSys
CAS, the central ring was reflected about a semi-diameter of 0.495mm (see appendix
1). In effect, the EyeSys CAS provided greater resolution of the central portion of the

surface.

Table 6.02: The sagittal depth and distance from the vertex normal for reflection
points of 8 L.E.D.s on the spherical surface.

Sagittal depth Distance from vertex
(mm) normal (mm)
000000 .000000
051629 926473
201041 1.817931
322430 2.290937
473246 2.758418
648932 3.207948
864533 3.674382
1.099325 4111281
1.372723 4.552123
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6.6 Discussion

Accurate description of the anterior corneal surface plays a major role in our
understanding of the image forming properties of the eye. Although principally correct
in design, many videokeratoscopes have not succeeded in accurate measurement
because of out dated methods of image processing and inappropriate algorithms that

derive the corneal profile (Bibby, 1976; Mandell et al, 1969; Edmund et al, 1985;
Zadnik et al, 1992, Dave et al, 1994).

The mean error in focusing was found to be of 0.336mm from the optimum focus and
the focusing precision was found to be high (standard deviation + 0.157mm). Figure
6.12 shows the linear relationship between level of defocus and relative image size. A
1mm level of defocus introduced an error in linear measurement of 0.69%. With
respect to focusing precision of the videokeratoscope, the error in linear image size for
the instrument was 0.11%. From a statistical point of view, 95% of measurements
would be performed at a working distance of +0.307mm from the true value (1.96 X
standard deviation). Substitution of the error in working distance into the regression
line equation results in a change in image size of 0.382%. For a 7.8mm sphere, the
central L.E.D. was situated at a distance of 36.297 pixels from the geometric centre.
In 95% of measurements performed, the central L.E.D. distance from the geometric
centre would range from 36.297 pixels to 36.437 pixels. Computing the later value
into the topography and radius program resulted in an error in central radius of
curvature of 0.039mm or 0.195D for 95% of cases. Therefore, the focusing
characteristics of the videokeratoscope were found to be accurate and any errors

introduced were clinically insignificant.

Andersen et al (1993a) also evaluated the accuracy of their photokeratoscope, they
found that from the 95% confidence intervals, errors due to inaccurate focusing
resulted in a 0.1D error. Comparing their results to those obtained with the present
videokeratoscope, very little difference was observed. Nieves et al (1992) found that

for 0.33mm decentration along the z-axis, the TMS (Computed Anatomy, Inc.)
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produced an error of 0.9D using two spherical surfaces. However, Nieves et al (1993)
did not evaluate the focusing accuracy or precision of the TMS and therefore the

errors discussed do not relate to the absolute error induced from focusing accuracy.

Errors in z-axis alignment occur as a resulted of a combination of two factors, firstly
from inaccurate determination of the point of focus and secondly, from the change in
image size introduced from inaccurate positioning of the videokeratoscope. The latter
only occurs as a result of the former. Short working distances enable a smaller depth
of focus and therefore more accurate determination of the optimum point of focus
(Nieves et al, 1992). However, when a small error in positioning occurs, the use of a
shorter working distance introduces a larger degree of error in image size than a longer
working distance. This explains why the present system obtained similar accuracy in

focusing to the system used by Andersen et al (1993a).

The reason for the high accuracy of the videokeratoscope was attributed to the
magnification system, which provided a small depth of focus, and the long working
distance. These factors led to only small changes in linear magnification of the image
when the system was defocused. Other corneal topography systems are capable of
higher focusing accuracy (Andersen, 1993a), however, the design of such systems
makes it difficult for them to be easily incorporated into a clinical environment.
Nevertheless, it must be stated that the system designed by Andersen et al (1993a) is
an experimental system and presumably not intended as atool to be used in clinical

practice.

With the present videokeratoscope, the instrument design enabled a large area of
measurement by the use of a hemispherical bowl (table 6.02). In a study conducted by
Nieves et al (1992), the effect of working distance on alignment error was evaluated.
A large working distance was found to reduce errors in focusing. The EyeSys CAS
(which has a larger working distance than the TMS-1) was found to be more accurate
(Antalis et al, 1993). The EyeSys CAS operates at a working distance of 92mm. The

videokeratoscope used in the present study operated at a working distance of 128mm,
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this together with the spatial separation of the central L.E.D.s enabled a central
resolution of 1.92mm for an 8.2mm sphere. For the same surface the EyeSys CAS
central resolution was 0.99mm. The EyeSys CAS therefore, would provide greater
resolution of the central cornea. Andersen et al (1993a), using their photokeratoscope,
obtained central corneal resolution of 0.2mm. This significantly high level of
resolution was attained by a combination of using a modified Haag-Streit perimeter as
the faceplate and a large working distance (312mm). The only disadvantage of their

system was in its design - namely that it was bulky; the trend in modern consulting

room equipment is portability.

Compared to the keratometer, the videokeratoscope provided greater central
resolution and therefore would be more likely to measure that portion of a cornea
representing the true apical radius. Older keratoscopic systems have been shown to
resolve only 2-3mm of the central cornea (Bibby, 1976; Rowsey, 1983). The central
resolution of the present videokeratoscope may be improved by simply inserting
another ring of L.ED.s closer towards the optical system or increasing the working
distance. The importance of having a high degree of central resolution must be put
into perspective. Anomalies that occur in the central portion of the cornea are most
detrimental to vision. The keratometer measures about a 4mm diameter of the cornea
and hence has the greatest potential for overlooking irregularities in this area.
However, with respect to the design of the current videokeratoscope, an introduction
of another ring of L.E.D.s would introduce disturbances in the digitisation procedure
i.e. the adjacent L.E.D.s would interfere with one another and hence introduce
digitisation errors. Nevertheless, the videokeratoscope provided twice as much

resolution of the central cornea than the keratometer.

6.7 Summary

Numerous computerised videokeratoscopes are currently available (see Chapter 2).
Little detailed information has been published regarding the methods by which images

are processed or the algorithms used to derive the topographical nature of the corneal
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surface. In the present chapter a detailed description of a new computerised

videokeratoscope was provided. The accuracy of the topographical system with
respect to central corneal resolution showed that although the new videokeratoscope
did not provide as much central resolution as the EyeSys CAS, it provided twice as
much resolution as the keratometer. Furthermore, evaluation of the focusing system
and its influence in radius and power measurements showed that the videokeratoscope
exhibited a high level of focusing accuracy and that 95% of measurements would be
performed to within 0.039mm radius of curvature. The characteristics of the
videokeratoscope were suitable for corneal topographic analysis. However, further
evaluation of the algorithms that derive the corneal topographic coordinates must be
performed. Chapter seven will therefore describe the optical theory used to derive the

topographic coordinates.
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Chapter Seven

Accuracy and Repeatability of a Computerised Videokeratoscope

using Convex Aspheric Surfaces
7.1  Introduction

An accurate and repeatable description of the corneal surface is essential for numerous
ophthalmological and optometric procedures. In Chapter 6 the design and
characteristics of the computerised videokeratoscope were described. This device was
designed to provide a quantitative description of the central and peripheral cornea.
Few studies have evaluated the accuracy and repeatability of corneal topographic
systems using convex aspheric surfaces. The present chapter will therefore describe
the algorithms used in the derivation of the corneal/test surface coordinates and
evaluate the accuracy (i.e. how close the videokeratoscope results are to the actual
dimensions of the convex aspheric surfaces) and precision (i.e. the variation in repeated

observations).

Various quantitative methods of presenting topographic data have been published
(Edmund et al, 1985; Edmund, 1986; Dingledein et al, 1989; Wilson et al, 1991a). For
purposes such as contact lens fitting and for a gross overall description of corneal
topography, a mathematical model applied to the corneal surface coordinates would, in
theory, provide an adequate description of its topography. Researchers have already
used mathematical models to describe the corneal surface (Bibby, 1976; Edmund et al,
1985; Edmund, 1986; Howland et al. 1992). Howland et al (1992) applied complex
4th order polynomials to corneal coordinates, although it has been shown that simpler
conic sections may be sufficient to model the cornea (Townsley, 1970; Townsley,
1974; Bibby, 1976; Guillon et al, 1986). However, the normal cornea is asymmetric,
thus, mathematical fitting of a conic section to the cornea is not appropriate.
Nevertheless, the use of conic sections would provide a useful descriptor of peripheral

corneal shape within semi-meridians. Conic sections utilise a term known as the p-
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value (or conic constant) which determines the level of peripheral flattening; this term,
together with apical radius (r,) of the surface describe the whole family of ellipsoids.
For the videokeratoscope developed in the present study, a quantitative method of data

presentation was therefore adopted that fitted a conic section to corneal semi-
meridians.

7.2 Aims

e Describe the quantitative method of analysis.

Assess the accuracy and repeatability of the computerised videokeratoscope for 12
convex aspheric surfaces.
e Compare the accuracy and precision of the manual digitisation program (section

6.3.1) with the semi-automated program (section 6.3.2) for all 8 semi-meridians.
7.3 Convex Aspheric Test Surfaces

In order to assess the accuracy and precision of the videokeratoscope, twelve convex
aspheric test surfaces were used. Each surface was aligned and captured as a video
image (as described in section 6.2) and saved on the computer hard drive. The

parameters of the twelve surfaces were as follows:

p=1 (sphere) with an apical radius (1) of 7.0mm, 7.4mm, 7.8mm, 8.2mm,
p=0.8 (oblate ellipse) with an apical radius (ro) of 7.0mm, 7.4mm, 7.8mm, 8.2mm;
p=0.5 (oblate ellipse) with an apical radius (r,) of 7.0mm, 7.4mm, 7.8mm, 8.2mm.

The 7.8mm radius sphere was used for calibration of the videokeratoscope.
The test surfaces were produced on a computer-controlled lathe capable of making
convex aspheric buttons (CLS Ltd., Huntington, UK.). The surface with an apical

radius of 7.0mm and p-value of 0.5 was sent to a laboratory (Rank-Taylor-Hobson,

Leicestershire, U.X.) for Form Talysurf analysis, this is an extremely accurate method
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of measuring the surface parameters, From the laboratory printout, the apical radius

and p-value were calculated, the results confirmed the manufacturer’s values.

7.4 Methods

Analysis of the captured video images was performed in two ways; using manual

digitisation and semi-automated digitisation.

7.4.1 Manual Digitisation

The entire program listing and documentation is provided in appendix 2. However, a
brief description of procedure is relevant to the present section. In order to accurately
locate the position of the central L.E.D.s, the captured 1-bit video image is enlarged so
that it almost occupies the entire monitor. The mouse is then used to locate the
geometric centre of the innermost L.E.D.s (see figure 6.05). The user then positions
the mouse cursor at the geometric centre, depresses the mouse button and then moves
the mouse cursor to the centre of the innermost L.E.D. whose distance is to be
measured. This procedure is performed twice and the computer then averages these
readings. Next, the entire image is displayed and the user is required to locate the
centre of the L.E.D.s (from the innermost to the most peripheral) of each meridian. In
the assessment of accuracy and repeatability of the videokeratoscope, all the eight
meridians were measured. The procedure is time consuming; digitisation of all 64

L.E.D.s takes approximately 15 minutes. Manual digitisation was performed for all

twelve surfaces..
7.4.2 Semi-automated Digitisation

Through the course of this study, it was appreciated that current topography systems
were already capable of complete automated digitisation and that the videokeratoscope
would greatly benefit from this form image processing. Towards the end of this study

an image processing application (NIH image 1.52, Public Domain software, version

169




Accuracy & Repeatability of a Videokeratoscope

1.55) became available that allowed semi-automated digitisation thereby eliminating
some of the subjective error from manual digitisation. This alternative technique was
therefore included for direct comparison with manual digitisation in terms of the
accuracy and precision of the videokeratoscope. The NIH Image 1.52 image
processing application and associated macro programs were described in chapter 6,
section 6.3.2.. Briefly, the procedure involved importing an image (previously saved
from the image capture program, Quickimage 24) and then removing the background
light intensity variation so that accurate detection of the L.E.D.s was possible. A
thresholding procedure was applied so that refinements to the total image intensity
could be made to enable only the L.E.D.s to be viewed and not any other artifacts in
the image. Digitisation of the L.ED.s was then commenced that resulted in each
LE.D. being labelled with a number. As the computer sequentially detected each
L.ED. from the top left of the monitor to the bottom right, the L.E.D.s were in
incorrect order. A reorganisation program then grouped each L.E.D. into a radial
format with respect to its meridian (a detailed description of the semi-automated
digitisation program is provided in section 6.3.2). Outpui of the results was displayed
in terms of a results table that showed the x and y coordinates of each L.E.D. (the
origin of the Cartesian coordinates was at the geometric centre of the innermost

LED:.s.

7.4.3 Topography Calculation

The most recent method of calculating the corneal coordinates has been based on the
multiple arc technique devised by Doss et al (1981) and later modified by Klyce (1984)
(see section 3.3.3). Here, the cornea is considered to comprise of a non spherical
surface that is composed of several small spherical arcs of varying radius of curvaturs.
Rach arc would extend over three rings (the rings were equivalent to the L.E.D.s uged
in the present videokeratoscope). Depending on the separation of each of the rings,
such a model may not be wholly appropriate as large separation would extend aver &
larger portion of the cornea and the assumption of sphericity between the rings would

nat be valid. Tn addition to this, the multiple arc technique assumes that the distance of
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the L.E.D. or ring images from the videokeratoscope axis corresponds to the distance
from the point of reflection at the corneal surface to the videokeratoscope axis. As the
image of the reflected rings or L.E.D.s actually lies behind the corneal surface (see
figure 7.01) the distance of the imaged L.E.D. from the videokeratoscope axis (labelled

b in figure 7.01) will not equal the distance of the point of reflection from the cornea to

the videokeratoscopic axis (labelled a in figure 7.01).

LED.

Incident ray

Normal to the cornea Virtual image of

LED.

Reflected ray

N

Videocamera

Videokeratoscope
axis

Cornea

Sagittal depth of a specific
point on the corneal surface

Figure 7.01: shows that the cornea acts as a convex mirror that forms a virtual image
of the object L.E.D. behind the corneal surface. The multiple arc technique assumes
the distances a and b are equal.

Wang et al (1989) described a method which assumes that only the central cornea is
spherical. According to Wang et al (1989), the reflected ring images are assumed to
originate from some point behind the cornea. The major difference between the
method multiple arc technique described by Klyce (1984) and the algorithms used by
Wang et al (1989) is that Klyce (1984) only calculated the sagittal depth of specific
points on the corneal surface using ring image distances from the videokeratoscope

axis. Conversely, Wang et al (1989) used the angular subtense (o) of the image to the
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optical system to calculate the sagittal depth and height of the point of reflection from
the videokeratoscope axis (a).

The method of deriving topographic coordinates for the videokeratoscope used in the
present study was much the same as that described by Andersen et al (1993a,b) and
will now be described. The procedure involved analysing the reflected mire image
from a suitable reference sphere (a 7.8mm sphere was used in this case, Andersen et al
used an 8.00mm sphere) in order to calculate the angular subtense (F) of the target

mires at the optical axis of the videokeratoscope (see figure 7.02).

. Faceplate
y-axis
A
x-axis
z-axis < P .
Focal plane Reference
!sphcre
v
a
O,
I b OE A B C
Working distance (wd)
Screen

Figure 7.02: Shows the various notations used, after Andersen et al (1993a), for the
calculation of F using the reference sphere.

i- is the angle of incidence,

- is the angle of reflection,

4- isthe actual height of the reflected mire from the videokeratoscope axis,

b- isthe height of the reflected mire at the screen or film plane,

B- is the distance along the z-axis (defined above) of the plane of focus,

C-  isthe central radius of curvature of the reference sphere,

o- isthe angular subtense of the reflected ray at the videokeratoscope axis,
.- is the angular subtense of the incident ray at the videokeratoscope axis,

F- isthe angular subtense of the LED.s at the videokeratoscope axis,
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AF - %s the angular separation of A and B from point M,

U - is the angle between the normal at  any point on the surface and the
videokeratoscope axis, Tt

X, Y, z are the reference axes with origin at O (the vertex normal of the reference
sphere),

R - isapoint on a surface defined by (y, z, U),

E - isthe distance along the z-axis for a point on the surface,

A - isthe distance along the z-axis of the intersection of the incident ray,

O.- isthe optical centre of the objective lens,

O - isthe origin of the Cartesian coordinates (placed at the vertex normal).

A. Calculation of the Angular Subtense of the each L.E.D. at the Image

Plane

From the video image or photograph of the reflected L.ED.s, b was measured for a
reference spherical surface (r=7.80mm). b may be equated to a (the actual height of
the virtual image) by simply dividing b by the magnification of the videokeratoscope
system. The magnification was determined by focusing on an engineer’s ruler over
10mm and then measuring the same distance in pixels in both the manual digitisation
and semi-automated digitisation programs. The linear magnification of the entire
system was then calculated as follows:

Image size (pixels)

Magnification factor (pixels/ mm) = Equation 7.01

Object size (mm)
The magnification of the system and the L.E.D. distances for the 7.80mm reference
sphere within semi-meridians were calculated as part of the calibration procedure (see
section 7.4.3F.). The angular subtense of light entering the optical centre of the
focusing lens may therefore be written as:

a=tan” (—C—lj) Equation 7.02
w

One assumption made was that as the object (the L.E.D.s) to image distance was large
(by a factor of 16.4) for the spherical reference surface, the resulting image of the
central mires would lie at half the central radius of curvature from the point O (i.e. at

point B). Confirmation of this was obtained by simple substitution into the vergence

formula:
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- Lguation 7.03

1
Substituting the values for r (in metres) and the object distance / (a negative value must

be mput as the incident ray is divergent), the image distance may be found. Thus,

l 2000 1000
I 78 128
= 3785 mm

‘Comparing this value to the case if the incident light were actually from infinity, then

orily a difference of 0.11mm exists.

Using the sine rule in triangle CRO, a relationship for angle U can be obtained in terms

of wd, o and 1.

Sing Sin(180—-U —a)
r (wd +05.7)

Eqguation 7.04

Sin(180-U-c) may be rewritten as Sin(U+e); iransforming equation 7.04 in terms of
U,
(wd + 05r).Sina
r

(wd + O.S.r).Sin(a)) 4y

r

= Sin(U + )

Equation 7.05

U= Sin"(

By the law of reflection, the line CR bisects the angle MRO.,

therefore, =i'=U+a Equation 7.06
also, F,=2U+u Equation 7.07

The angle F, denotes the angle at the axis from the LE.D. (M) through the point of
reflection at the reference surface. However, the aim is io calculaie angle F (ihe

angular subtense of the central mire at the focal plane).

Using the sine rule in triangle ABM provides a solution for angle AF.
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Sin(AF) _ Sin(180—F))
BA BM

Equation 7.08

Equation 7.08 may be rewritten as

Equation 7.09

AF = Sin-! (B’A.Sin(Fo ))

BM
The distance BM is derived using the Pythagoras’ theorem knowing the horizonial and
vertical location of each L.E.D. on the faceplate (these must be measured manually and
are shown in table 7.01). Measurement was accomplished using a set of external
calipers, the distance between opposing L.ED.s within a meridian was measured, the
distance of each L.E.D. was therefore determined by halving each distance. Each

L.E.D. was located in terms of its numerical and meridional label, the convention is

shown in figure 7.03.

Figure 7.03: sign convention used to describe the position of each L.E.D..

90°

Faceplate

Camera

system \

180° 8 180°

135°
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thzle Tﬂall the dISt?j“‘feS of opposing LED.s on the faceplate was measured using

rnal calipers. Individual L.E.D.s were located by halving the distances shown in
the tab,le‘ Measurement accuracy was within +0.25mm, each distance was measured
threae times and the mean calculated. Each meridian was denoted by a number and
meridian, the convention is shown in figure 7.03. S

1 2 3 4 5 6 7 8
90° 54 117.5 | 147.5 | 1755 | 200 220.5 | 2365 | 248
180° | 5575 | 117 147 175.5 | 20025 |220.5 |2365 |2475
45" 5575 | 1165 | 147 1755 |200 220 237 247.5
135" | 5575 | 118 148.5 | 176 200 220.5 | 237 248

However, the distance BA is not known and may be calculated as follows:
BA=CE-AE-CB Lguaiion 7.10

Andersen et al (1993b) calculated the distance AE as follows,

Sin{U)

iwd I,

AL =

the term ¢ was not defined in their paper. The formula for caleulation of AE is shown

in the equation 7.11.

= r.5in(¥) Equation 7.11
Tan(F))

Substitution of CE, AE and CB into equation 7.10 results in the following:

BA=r.Cos(U)~ r-SinU) _ 05.r Equation 7.12
Tan(F)

From the triangle BMA, angle F is calculated as
F=F,-AF Equation 7.13
Hence, through step-by-step computation of equations 7.02 to 7.12 the angular

subtense of each L.E.D. at the optic axis can be found.
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B. To find the position of the vertex normal (the origin, OB) and the central

radius of curvature (r) for an unknown surface

In order to calculate the central radius of curvature for an unknown surface, the value
of U (the angular subtense of the normal to the cornea at the first reflected L.E.D. on
the corneal surface and the videokeratoscopic axis) and o (the angular subtense of the
reflected ray for the central (first) L.ED. and the videokeratoscopic axis) must be

found. o can be easily calculated from equation 7.02. From equation 7.07:

g F-a)

5 Equation 7.14
Because the distance between A and B is small, we state that

(F-a)
2

U=~

Equation 7.15

and therefore U, can be found for the surface under investigation.

With respect to the angle au,

Tan(a,) = 2= RE Equation 7.16
wd EO,
also,
RE =r.Sin(U) Equation 7.17
EO, =wd +05.r —r.Cos(U) Equation 7.18

Substitution of equations 7.17 and 7.18 into equation 7.16 gives:

a _ r.Sin(U)
wd  (wd +05.r —r.Cos(U))

Equation 7.19

Therefore, in terms of 7 (the central radius of curvature of the surface),

3 awd
"= wd Sin(U) +a.Cos(U) - 05.a)

Equation 7.20

Having found r the position of the intercept OB is given by 0.5.r. Locating the
position of OB is important as it defines the position of the vertex normal and also

forms the origin of Cartesian coordinates.
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C. Describing the corneal topography

The origin of the axes is defined by the point O (see figure 7.04) located at the
intersection of the normal to the surface and the optical axis of the videokeratoscope.
Individual points on the corneal surface may be defined according to the points y, z
(which simply represent the reference coordinates), and U (the angle subtended by the

tangent to the point on the corneal surface and the videokeratoscope axis).

Mn+1 ’
Figure 7.04
y-axis
X
P, R,
\ L M
R,
P _ = L
\\\ =1 . | Dvllf
S : M . N
’\$ S
. Fo . Fm-l
z-axis = e .
N 0, OR E, Z A, B

AYo

pa—1
3
e




Accuracy & Repeatability of a Videokeratoscope

Figure 7.0.4: above, shows R,, the approximate reflection point on the cornea
correspoang to an LED. M. R, is derived from R, (the exact location of the
corneal point for the previous L. E.D. M,). My and Mg, represent the virtual images of
L..E.D.s M, and M,.;. The second part of figure 7.04 is simply an enlargement of the
triangle R, P, R,, where Ay, the distance along the y-axis from point R, to R, and Az,

t(k)le N({iistance along the z-axis from point R, to R, Ay is the y-axis intersept of the line
clvlf.

At the corneal surface location, O (the vertex of the corneal surface) z=0, y=0, U=0.
The next step is to calculate the reflection point of the first LE.D. (R,) at the corneal
surface. As an initial approximation, the angle U, is considered to be constant when
moving from the point R, to Ry (i.e. Uy =Un+1). The reason for this is that at present
no values relating to the point R,; are known, using an iterative procedure (which is
described later in the calculations) the values of R, may be used in order to calculate
the geometric coordinates of Ry1. Each approximated point on the corneal surface is

denoted by R,. From figure 7.04, triangles O Eq P1 and Oc B Mg are similar.

_ Aa.(wd-05r+z,)
o wd

Therefore, Ay Equation 7.21

where Aa is the difference in the measured L.E.D. heights at the image plane. In the

case of finding the coordinates of the first LE.D., Aa would simply be equal to a.

The central radius of curvature is found from equation 7.20 and Aa is found by Ab/m
(where m is the system magnification and Ab the adjacent mire separation). Ay
represents the vertical elevation from the nth point on the corneal surface to the nt1th
point. However, observation of figure 7.04 shows that the values required are Ay, and
Az, in order to calculate the point of reflection. The following steps illustrate how

these values can be calculated.

Applying the Sine rule to triangle RoRaP1
AR, _ Ay
Sin(U,) Sin(90-U, ~ a,..)

and thus,
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_ Ay.Sin(U )
e Cos(U, +a,,,)

Equation 7.22

From PiR,, Az, and Ay, can be found from triangle P;P,R,.

Thus, Az, = PR, .Cos(a,,,) Equation 7.23
and Ay, =Ay+ PR, .Sin(a,,;) Equation 7.24

The coordinates of the point R, (the approximate position of the point of reflection

initially for the first L.E.D.) may therefore be written as:

(z,,y,)=(,+,,y,+&,) Equation 7.25

D. Refining the coordinates to find the exact value of (Zu+1, Yu+1)

The coordinates of the L.E.D. (My+1) may be written as
(-BM ,,.Cos(F,,,)+05.r,BM

n+l n+l

Sin(F,))) Equation 7.26

+1
where Fy.1 (derived from the reference surface) is known from equation 7.13. Using

the equation of a straight line, the equation of line MxuR, is determined.

:(yM_ya

Thus, y ) {z—z,)+Y, Equation 7.27
(ZM - za

and the intercept at the z axis, A, (which is dependent on the surface to analysed), is
then calculated from

(zp —2,)

A =z,-Y,.
(yM _yo)

Equation 7.28

The sine rule is then applied to triangle Mq.BA,. in order to calculate AF,,.

BA,Sin(F,,) )
BM,., - BAOCos(EM)

Thus, AF, =T an"( Equation 7.29
Combination of equations 7.07 and 7.13 gives

g o B HAF,~ )
° 2

Equation 7.30

The values of Zo, Yo, Uo have are now calculated, these parameters characterise the
position of R,. The estimated value of U, is then replaced with the mean of U, and the

new value of U, The new value of U, is re-substituted into equation 7.22 and the
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whole procedure repeated until successive values of U change by less than 0.01%
(according to Andersen et al (1993b)). A complete listing of the program is available in

appendix 4. The program prints out raw data values i.e. the values of z and y for each

reflection point of the unknown surface.

The present method of calculation makes two initial assumptions. Firstly, that when
calculating the values of angle F, for the reference sphere, the image is assumed to lie
at the focus of the sphere (i.e. half of the central radius of curvature of the reference
sphere). Using the standard vergence formula it was shown that the actual distance of
the image was only slightly different from the assumed distance, hence this assumption
was valid. The second initial assumption, that the angle U remains constant when
moving from a known point to an unknown point was also valid as by process of
iteration the error in successive estimates of U was reduced to less than 0.01%. Thus,
contrary to other methods (Mandell et al 1971; Doss et al, 1981; Klyce, 1984) the
algorithms derived by Andersen et al (1993b) and modified in the present study make

no assumptions regarding the pre-existing shape of the unknown surface.
E. Conic section curve fitting to semi-meridian coordinates

Numerous studies have fitted conic sections to the topographic coordinates of the
entire corneal profile (Bibby, 1976; Edmund et al, 1985; Guillon et al, 1986; Edmund,
1986). However, it is well known that the cornea is asymmetric (Koch et al, 1993) and
therefore using conic sections to model the entire corneal profile is appropriate.
Quantitative analysis using the present videokeratoscope was performed using
quadratic regression analysis to fit a conic section to the data points (derived from the
topography calculation program) within a semi-meridian.  Considering Baker’s
equation for a conic section:
y2 = 27X - pr

it is obvious that the equation does not have a constant. Furthermore, Baker’s
equation in its present form it is not a true quadratic equation. In order to fit a

quadratic equation and thus find the p-value, the value of yz must be replaced by Y.
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Quadratic regression was performed using the statistical package SPSS (release 6.0,
SPSS Inc.). SPSS allowed the user to choose whether a constant was required or not
in the regression analysis. The values derived from the topography program were
therefore input into the SPSS data sheet in order to derive the p-value and central
radius of curvature (r,). The p-value provides a unique quantitative description of

every surface measured (see section 1.6.1 for a detailed mathematical description).

F. Calibration

Calibration was performed by capturing an image of the 7.8mm reference sphere and
using either the manual or semi-automated digitisation method to measure the L.E.D.
distances (see section 6.3). The procedure was performed three times and the mean
distances were recorded. The distances were then inserted into the appropriate section

of the topography calculation program (see appendix 4).
7.5 Statistics

The accuracy of any measurement device refers to its ability to determine the true
value of the parameter being measured. Conversely, repeatability or precision is the
ability to consistently reproduce the same result. Instrument accuracy and repeatability
were assessed using the statistical technique advocated by Bland et al (1986). The
method of statistical analysis was described earlier in chapter 5, however, a description
is relevant to the present section. The accuracy of the present videokeratoscope was
evaluated by taking measurements of 12 aspheric surfaces and then calculating apical
radius and p-value. The accuracy of was determined by observation of the variance of
the differences between the calculated and actual values. Bland et al (1986) also
suggest that a plot of the differences against the actual values should be made (see
figure 7.05). On the graph, three reference lines are drawn: the bias line and the 95%
confidence limits. The bias simply shows the mean of the differences. The 95%

confidence limits represent the range over which 95% of the difference would lie.
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Another widely used method of assessing accuracy is to observe the cumulative

frequency distribution (Hannush et al, 1990) of the difference between calculated and

actual radius.

Repeatability was assessed by observation of the variance in measurements of p-value

and apical central radius of curvature of five repeated reading on the same

surface(p=0.8, r,=7.8mm).

difference
(calculatc‘ail -actual) 95% confidence
limits
¢ t
¢ J !
{ . r
............................ Bias
4

A 4

Actual

Figure 7.05: shows the plot suggested by Bland et al (1986). The bias represents the
mean of the difference, the 95% confidence limits show the differences likely to be
encountered in 95% of cases.

7.6 Results

As discussed in the method, not only was the accuracy and repeatability of
videokeratoscope under investigation, but a further aim was to compare computerised
automated digitisation with manual digitisation . Therefore, the results of accuracy and
repeatability are presented in two sections - for the manual and automated digitisation

techniques, respectively. The complete results are shown in appendix 5 and 6.

7.6.1 Accuracy of p-value using manual digitisation
The results obtained from quantitative analysis of the raw aspheric surface coordinates

provided the p-value and apical radius of each semi-meridian for all twelve surfaces.

Table 7.02 shows the means and standard deviations obtained for the calculated p-
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values determined in eight semi-meridians for those surfaces with a p-value of 0.5, 0.8
and 1.

Table 7.02: Accuracy of determining individual p-values during manual digitisation.

p-value | Mean Standard Deviation

0.5 0.47 +0.07
0.8 0.79 +0.05
1.0 1.01 +0.04

On average, each p-value was determined to a high degree of accuracy from analysis of
a total of 32 semi-meridians (4 surfaces x 8 semi-meridians). The standard deviation
was least for the spherical surface and small increases were seen as the surfaces

became flatter in the periphery.

Figure 7.06: The correlation between calculated and actual p-value for twelve
aspheric surfaces.
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Figure 7.06 shows that there was a linear relationship between the actual and the
measured p-values (r = 0.9695). Furthermore, as the 95% confidence intervals (the
limits over which 95% of the points would be expected to lie from the regression line)
were close to the regression line the best fit line (method of least squares) accurately
modelled the scattered data. Bland et al suggested that the graph shown in figure 7.06

only shows a association and is not an accurate method of assessing accuracy.
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The central line in figure 7.07 shows the bias (-0.009) and the two other lines show the
95% limits of agreement (from +0.105 to -0.123). Figure 7.07 represents the
differences in p-values obtained for all the meridians of all twelve surfaces. The bias,
standard deviation and 95% limits of agreement therefore represent overall values.

The limits of agreement show the range over which the mean difference is found in

95% of cases.

Figure 7.07. Disparity between calculated and actual p-value for convex aspheric

surfaces.
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Table 7.03: The bias, standard deviation and 95% limits of agreement for overall p-
value accuracy.

Bias Standard deviation 95% limits of agreement

-0.009 +0.0581 +0.105 to -0.123

Another method used to confirm this result was by consideration of the cumulative
frequency distribution of the difference in calculated and actual p-values. Table 7.04
shows that 90% of the results were obtained 1o within 0.1 of the true p-value. For
errors in calculated and actual p-value, both methods showed similar levels of error; of

the order 0.1.
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Talble 7.04: Cumulative frequency distribution of difference in calculated and actual p-
value.

Error (difference) Cumulative frequency (%)
<0.05 62%
<0.10 90%
<0.15 93%
<0.21 100%

7.6.2 Accuracy of central radius using manual digitisation

The calculated central radius of curvature of the aspheric surfaces were first compared
in terms of the four radius groups. Table 7.05 shows the mean and standard deviations
for all four radii. The mean shows that on average, central radius of curvature was
determined correctly. However, the standard deviations show that greatest variation in
central radius of curvature was obtained for the 7.00mm surfaces. The image of the
7.00mm surface was relatively small and therefore inaccurate localisation of the centre

of L.E.D.s could have induced the variability in measurement.

Table 7.05: Accuracy of central radius of curvature for the videokeratoscope.

Radius (mm) | Mean (mm) | Standard deviation (mm)
7.00 7.02 +0.075
7.40 7.45 +0.047
7.80 7.82 1 0.066
8.20 8.21 +0.067

The correlation coefficient shows a high degree of association between calculated and
actual radius (=0.989). The 95% confidence lines alongside the central correlation

line show that the best fit line accurately fits the scattered data.
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Fl;g;lre 7.08: The correlation between calculated and actual radius for twelve aspheric
surfaces.
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Comparison of actual and calculated radius using correlation coefficients was not an
appropriate statistical procedure as it is only showed that a relationship exiated
between the calculaied and actual radius. Therefore, the difference between calculaied
and actual radius was plotted againsi the actual radius (see figure 7.09 and iable 7.06).
The bias was low showing that, on average, the central radius was aly 0.027mm

flatter than the actual radius.

Table 7.06: summarises the results computed from figure 7.09. The results of the
central radii were pooled in this table.

Bias (mm) | Standard deviation (mm) | 95% limits of agreement (mm)

+0.027 +0.066 +0.156 to -0.102

The 95% limits of agreement show that the variation of the videokeratoscope was not
within the accuracy suggested by Stone (1962) (see section 2.1), however, the upper
05% confidence limit suggests that greatest difference between calculated and actual

radius in 95% of cases would be 0.156mm or 0.78D.
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Figure 7.09: Disparity between calculated and actual radius for twelve aspheric
surfaces.

Difference (Calculated - Actual)
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Table 7.07 shows that 83.3% of readings were obtained are within 0.1mm or 0.5D.
These results are similar to those obtained from the limits of agresment and variance

analysis.

Table 7.07: Cumulative frequency distribution of the differences (actual-calculated).

Error (difference) Cumulative frequency (%)
<0.25D 45.8%
<0.50D 83.3%
<0.80D 100%

7.6.3 Repeatability of the videokeratoscope for manual digitisation

t

In order to evaluate repeatability or the precision of the Aston University
videokeratoscope, five repeat readings were taken on a convex aspheric surface
(ro=7.8mm, p-value=0.8). Analysis of the standard deviation effectively showed the
precision of the manual digitisation process. However, errors could also have occurred
due to inaccurate focusing and therefore a further four images were captured. Each

image was then digitised five times and the mean distance of each L.E.D. computed.
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Table 7.08: Means and standard deviations of the computed p-value and central radius
of curvature of 5 repeated readings for 5 different images after refocusing and

recentring the videokeratoscope. The surface analysed was the p=0.8, r,=7.8mm along
the 180° meridian.

Mean | Standard deviation

p-value 0.782 +0.0486

central radius | 7.807 +0.067

Taple 7.09: Means and standard deviations of the computed p-value and central
radius of curvature of 5 repeated readings for the same image, along the 180° meridian.

Mean | Standard deviation

p-value 0.732 +0.0322
central radius | 7.846 +0.0453

The results showed that the standard deviation was greater for the radii than for p-
value on both occasions. The effect of refocusing and recentring had little influence on
p-value and central radius measurements. This was shown by the fact that little
difference in standard deviation was observed between one single image and five
images. The precision of the videokeratoscope was primarily effected by manual
digitisation. The instrument was highly repeatable for p-values, however, central
radius showed reduced repeatability. However, calculating the mean of both the p-

values and central radius of multiple images improved the accuracy of the system.

7.6.4 Accuracy of p-value for semi-automated digitisation

The semi-automated digitisation system was developed in order reduce computation
time and reduce subjective variability in determining L.E D. positions from the manual

digitisation program. A similar analysis was therefore performed to evaluate the

accuracy of the automated system for the aspheric surfaces.

Manual digitisation assessed the accuracy of p-value and central radius of curvature of

96 semi-meridians, for the semi-digitisation procedure 74 semi-meridians. The reason
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for this was that some of the meridians were not included for analysis as some detail
was lost during the thresholding procedure. The surface r,=7.00mm, p-value=0.5 was
also not included in the comparison for semi-automated digitisation as almost all the
LE.D.s merged during threshold digitisation. Furthermore, the images used for

analysis of semi-automated digitisation were the same images used during the analysis

of manual digitisation.

Table 7.10: calculated p-value with semi-automated digitisation.

Bias Standard deviation | Limits of agreement

+0.001 +0.043 +0.086 to -0.083

Table 7.10 shows that the use of semi-automated digitisation improved the accuracy of
the p-value. The bias was very close to zero, indicating that on average little or no
difference was observed between calculated and actual p-value. Furthermore, the 95%
limits of agreement were smaller compared to those obtained with manual digitisation
(see table 7.03). As stated earlier, another advantage of the automated technique was
that subjective error from manual digitisation was eliminated, hence repeatability or

precision was only influenced by instrument characteristics (see chapter 6).

Figure 7.10: Disparity between calculated and actual p-value for convex aspheric
surfaces.
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Comparing the cumulative frequency distribution for the semi-automated method

showed that 98.6% of measurements were performed with less than 0.1 difference

between calculated and actual p-value (see table 7.11).

Table 7.11: The cumulative frequency distribution of the differences between
calculated and actual p-value.

Error (difference) Cumulative frequency (%)
<0.05 74%
<0.10 98.6%
<0.11 100%

Analysis of the variance of calculated p-value for each asphericity showed greatest
variation for flatter surfaces (see table 7.12). Greatest accuracy was obtained for

spherical surfaces. The same trend was also observed with manual digitisation (table

7.02).

Table 7.12: Accuracy in determining individual p-values during semi-automated
digitisation.

p-value | Mean Standard Deviation

0.5 0.509 +0.05
0.8 0.784 +0.042
1.0 1.012 +0.035

However, comparison with table 7.02 reveals that the mean p-value is closer to the
actual p-value with semi-automated digitisation. Also, the standard deviation is smaller

for semi-automated digitisation - indicating that the spread of results was less with the

semi-automated method.
7.6.5 Accuracy of central radius for semi-automated digitisation
Evaluating the accuracy of central radius of curvature for aspheric showed that little

variation was found for those surfaces with central radii of 7.00, 7.40 and 7.80mm.

However, greatest variation was found with the 8.20mm central radius surfaces (see

table 7.13).
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Analysis of the differences of calculated and actual radii, showed that the use of semi-
automated digitisation improved the accuracy of central radius of curvature
measurements (table 7.14). The narrow confidence intervals show that a maximum

error of only approximately + 0.56D occurs in 95% of cases.

Table 7.1;’:: the means and standard deviations for surfaces grouped in terms of
central radius of curvature.

Central radius (mm) | Mean (mm) | Standard deviation (mm)
7.00 6.970 +0.059
7.40 7.396 +0.053
7.80 7.798 +0.041
8.20 8.203 +0.070

Table 7.14: calculated radius for semi-automated digitisation.

Bias (mm) | Standard deviation (mm) | Limits of agreement (mm)

-0.009 +0.057 +0.103 to -0.121

The graph shown in figure 7.12 displays the dispersion of the differences between
calculated and actual radius for 11 aspheric surfaces. Furthermore, the cumulative
frequency distribution showed that 95.9% of the differences between calculated and
actual radius were obtained within 0.5D with semi-automated digitisation (see table
7.15). As with the p-value comparison, the 7.00mm apical radius surface with p-
value=0.5 was omitted from calculations because digitisation could not be performed

due to poor image quality

Table 7.15: Cumulative frequency distribution of the differences between calculated
and actual radius with semi-automated digitisation.

Error (differences) Cumulative frequency (%)
<0.25D 473
<0.50D 95.9
<0.60D 100
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Figure 7.11: Disparity between calculated and actual radius for convex surfaces.
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7.7 Discussion

The principal purpose of the current study was to analyse the accuracy and
repeatability of the videokeratoscope. Previous investigators have analysed the
accuracy of corneal topography devices by evaluating measurements performed on
spherical surfaces (Hannush et al, 1989; Koch et al, 1989; McCarey et al, 1992;
Legeais et al, 1993; Andersen et al, 1993b). Analysis of instrument accuracy using
spherical surfaces is not appropriate as some methods of topography calculations
perform better for spherical surfaces than for non-spherical surfaces (Mandell et al,
1969). In addition, the normal cornea is not spherical, its shape conforms more
accurately to the family of ellipses (Howland et al, 1992). Wang et al (1989) evaluated
the accuracy of their algorithms using a single convex aspheric surface (r,=7.73mm,
¢=0.5) and compared the calculated sagittal radius to the actual radius of the surface.
Wang et al (1989) found a maximum error with their algorithm of less than 2%. Using
the modified multiple arc technique devised by Klyce (1984), Wang et al (1989) used
the same surface to compute the saggital radius and a maximum error of 8% was

found. Further, the multiple arc technique was found to be biased towards spherical

surfaces.

The algorithms used in the present study were originally proposed by Andersen et al

(1993b). No evaluation of the performance of the algorithms for convex aspheric
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surfaces has been published to date. The present study showed a maximum error of
only 1.15% (at the vertex normal) which reduced to only 0.876% at 4.52mm from the
vertex normal along the 135 degree semi-meridian of a convex aspheric surface using
manual digitisation (r,=7.4mm, p=0.8). Using automated digitisation a maximum error
of only 0.41% was found at the vertex normal. A minimum error of 0.06% was found
at 4.19mm along the same semi-meridian. Furthermore, the current study evaluated
the accuracy of the algorithms for 12 aspheric surfaces and showed a high level of
association between calculated and actual p-value (r=0.9695 - manual digitisation).
With respect to individual asphericities, lower asphericites showed higher variation for
both manual and semi-automated digitisation procedures. However, the standard
deviations were small and the mean asphericity was accurately determined (table 7.02
and table 7.12). A decrease in the accuracy for progressively flatter surfaces could be
accounted for when considering the central resolution of the central L.E.D.s (see
chapter 6). The central resolution of the videokeratoscope was not sufficient to
provide information regarding the central cornea. Thus, for a progressively flattening
surface, the central L.E.D.s would be reflected off a peripheral point whose radius has
already begun to flatten (see figure 7.12). Therefore, an error occurred due to the
incorrect assumption that the central L.E.D.s were reflected off a point on the surface
that was close to the vertex normal. This error was confirmed by the greater error
observed when individual p-values were compared (table 7.02 and table 7.12).
Principally, the error was due to a design fault which could easily be remedied by
reducing the spatial separation of the central L. E.D.s such that reflection would occur

off a more central point.

The analysis of the differences between actual and calculated p-value for all the
meridians of the twelve surfaces using manual digitisation showed that the bias was
close to zero, thus indicating that on average there was little difference between
caloulated and actual p-value. The small standard deviation and narrow confidence
intervals showed that p-value measurements were accurate using the present

algorithms - this was also confirmed by tables 7.04 and 7.11 (for manual and semi
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automated digitisation, respectively) which showed that more than 90% of

measurements of p-values were calculated to within 0.1.

Central LE.D.

Flattening aspheric surface
with same apical radius as

spherical surface Spherical

surface

Figure 7.12: shows the differences in reflected central L.ED. heights obtained by
reflection from two surfaces with different asphericities. As central resolution 1s not
sufficient, the central L.E.D.s are reflected from a peripheral point on the aspherl.c
surface. The L.E.D. distance is not the same as the spherical surface and an error 18
introduced.

However, before drawing any absolute conclusions as to whether the videokeratoscope
was capable of accurately calculating p-values, the effect of the error in p-value on
peripheral sagittal radius must be established. To evaluate this, a small program was
written in QUICKBASIC to print out the sagittal radius from a specified conic section
at a point on a semi-meridian 1, 2, 3 and 4mm from the vertex normal. The error
introduced in p-value calculation may be described by 1.96 x the standard deviation of
the differences between actual and calculated p-values (i.e. 0.11). Using a theoretical
p-value of 0.8 and apical radius of 7.8mm, the error in p-value in 95% of cases (using

the data derived from the manual digitisation program) would be 0.91. Therefore,
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computing these p-values with an apical radius of 7.8mm would result in the following

errors in sagittal radius.

Table 7.1.6: Comparison between calculated and actual peripheral sagittal radius for
an aspheric surface of p-value=0.8, r=7.8mm.

Distance from Actual sagittal radius Calculated sagittal radius
centre (mm) (p-value=0.8, r=7.8mm) (p-value=0.91 (1.96xS.D)
r=7.80mm)
Imm 7.81 7.81
2mm 7.85 7.82
3mm 791 7.85
4mm 8.00 7.89

Table 7.16 shows that the error in sagittal radius at 4mm from the centre would be
0.11mm. The error introduced corresponds to approximately 0.5D. For clinical
purposes such an error would be acceptable. Thus the errors introduced by the
videokeratoscope in the calculation of p-value were small and therefore acceptable for
use in clinical practice. The automated digitisation further improved the accuracy of p-

value measurement..

In chapter 5, the accuracy and repeatability of the EyeSys CAS was evaluated. The
95% confidence limits when determining the accuracy of peripheral radius of the all
twelve aspheric surfaces in 4 semi-meridians were +0.105mm to -0.061. Thus, the
maximum error in 95% of cases was also found to be approximately 0.5D (after

transposing the upper confidence limit into a dioptric value).

Mean central radius of curvature was determined accurately (table 7.05), furthermore,
the correlation coefficient between calculated and actual central radius was high
(r=0.989) for manual digitisation. ~ Little change in variance was observed in
determining the 7.00, 7.40 and the 7.80mm radii using semi-automated digitisation,
however, a greater variation is observed for those surfaces with 8.20mm central radii.
This error was again due to insufficient central resolution as larger surfaces (such as
the 8.20mm radii surfaces) caused the central L.E.D.s to be reflected from a peripheral

point on the surface where the radius had already begun to change. Manual
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digitisation showed a tendency for larger errors in determining the central radius for
the 7.00mm radii (table 7.05), the smaller image size of these surfaces required the user
to be more precise in locating the L.ED.s, this was thought to be the most probable
cause of the reduced accuracy (note that the corresponding standard deviation for

semi-automated digitisation was not as high for the 7.00mm surface, table 7.13).

For the analysis of central radius of curvature of all the surface pooled together, the
95% confidence limits were wide - ranging from +0.156mm to -0.102mm (table 7.06)
with manual digitisation. The use of semi-automated digitisation improved the
accuracy however, the confidence limits (ranging from +0.103mm to -0.121mm) were
still too wide for routine use in contact lens fitting (Stone, 1962). The cumulative
frequency distribution showed that 83.3% and 95.9% of results obtained were within
0.50D for manual and semi-automated digitisation methods, respectively. The
masximum error introduced in 95% of cases was +0.65D (for manual digitisation) and
+0.56D (for semi-automated digitisation). In comparison, evaluation of the EyeSys
CAS in calculating the central radius of curvature (chapter 5) for the same twelve
surfaces in four meridians showed narrower confidence limits (+0.121mm to
~0.037mm), however, the maximum error in 95% of cases was the same as the present

videokeratoscope.

Tnorderto compare the results of the present study with other studies, similar samples
must be compared. The sample used in the present study clearly differed to that used
by other investigators (Hannush et al, 1989; Koch et al, 1989; McCarey et al, 1992;
Legeais et al, 1993; Andersen et al, 1993b) as measurements were performed using
aspheric surfaces. If the results of central radius measurements of the aspheric surfaces
were excluded so that only the central radii of spheres were analysed the results
obtained compared even more favourably with those obtained from other studies (see
table 7.17). The videokeratoscope in the present study was found to exhibit greater
accuracy than the CorneaScope for central radius of curvature measurements in
spherical surfaces. However, the Corneal Modelling System (Computed Anatomy,
Inc.) and the photokeratoscope devised by Andersen et al (1993b) showed greater
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accuracy. The values for the videokeratoscope in table 7.17 represent the means and
standard deviations of the deviations between calculated and actual radius over an all 8
semi-meridians for spherical surfaces. In the study performed by Hannush et al (1989),
measurements were taken at selected points on the surface in order to compare their
results with the keratometer. Also, their measurements comprised of only assessing
two points 90 degrees apart and then calculating the mean. The analysis for the
present videokeratoscope was more comprehensive as it not only assessed the disparity
along the entire semi-meridian, but also evaluated the disparity for each meridian (eight
semi-meridians as opposed to only two in the Hannush et al (1989) study). Rowsey et
al (1989) assessed the mean and standard deviations of the differences along the entire
profile of an 8.00mm sphere using the CorneaScope. A mean and standard deviation

of +0.004 and +0.021mm, was found, respectively.

The principal reason for the greater accuracy of the Andersen et al (1993b)
photokeratoscope was attributed to the high level of central resolution provided at
vertex normal (1.92mm for the present videokeratoscope versus 0.2mm for the
Andersen et al (1993b) photokeratoscope). However, as in the study by Hannush et al
(1989), Andersen et al (1993b) also calculated the mean and standard deviation of the
differences between calculated and actual radius at specific locations using spherical
test surfaces. Inthesamepaper, they assessed the deviation scores (the difference
between calculated and actual radius) along the entire profile of an 8.00mm sphere (the
reference sphere used for their photokeratoscope). They found a mean deviation of
+0.003mm and a standard deviation of +0.0Imm. Further evaluation of the deviations
of calculated and actual radius for spherical surfaces would have enabled better

comparison with the results obtained with the present videokeratoscope.
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Table 7.17: shows the averaged means and standard deviations of the difference
between calculated and actual central radius of curvature for spheres. The values of
mean a'nc.i standard deviation for the Hannush et al (1989) study have been converted
into millimeters so that they may be compared with the other results (conversion
assumes 0.25D change is equivalent to 0.05mm change in radius of curvature).

Instrument Sphere Bias Standard
deviation

7.00)
e 740
Present study (manual digitisation) 280 . +0.019 +0.054

820

7.00
(semi-automated

Lo 7.40
Present study digitisation) 20 - -0.014 +0.047

8.20

7.85

7.94
Hannush et al CorneaScope ' -0.056 +0.078

(1989) 6.73
8.73]

7.85)
Corneal Modelling 794
Hannush et al System +0.020 +0.014

(1989) 6.73
8.73)

7.00
Andersen et al Own design 3 OO} +0.009 +0.010
(1993b)

In order to evaluate any relationship between the accuracy of measurements and the
point on the surface from where measurements were performed, the results of the
peripheral sagittal radius for all 4 spherical surfaces at each L.E.D. reflection point
along all 8 semi-meridians were calculated. L.E.D. image distances were calculated
using the semi-automated digitisation program. Figure 7.13 and equation 7.31 below,

show how the sagittal radius was determined.
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Figure 7.13: shows how the sagittal radius, r, was determined from the angular
subtense of the normal at the z-axis, U, and the Cartesian coordinates, yn and zy.

From basic geometry, the sagittal radius, r, of a peripheral point on the surface may be

calculated as follows:

r= Y
Sin(U)

Equation 7.31

These results were then compared to the actual sagittal radius which, for a sphere,
would be constant. The means and standard deviations of the absolute differences of
calculated and actual sagittal radius were computed for all 4 spherical surfaces relative
to each L.E.D. point of reflection. Table 7.18 shows the results obtained. Greatest
variation was observed at the central L.E.D.s and the accuracy was seen to improve at
the periphery. The primary cause of the larger error for the central L.E.D.s was due to
the high level of accuracy required when determining the position of the central
LED.s. compared to the most peripheral L.ED.s. Nevertheless, the accuracy of

central and peripheral radius measurements across the profile showed an acceptable

level of accuracy for spherical surfaces.
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Table 7.18: shows the mean and standard deviation of the absolute differences
between calculated and actual radius for all four spherical surfaces (with radii of
7.00mm, 7.40mm. 7.80mm, 8.20mm) in terms of each L.E.D. point of reflection.

L.E.D number Mean absolute difference | Standard deviation

1 (innermost) +0.025 +0.014

2 +0.024 +0.013

3 +0.022 +0.013

4 +0.021 +0.012

5 +0.019 +0.011

6 +0.017 +0.011

7 +0.014 +0.011

8 (most peripheral) +0.011 +0.012

For videokeratoscopy, a fundamental requirement for the analysis of corneal
topography is the ability to accurately locate the reflected L.ED. or ring images.
Analysis of the literature shows that numerous methods have been employed to
improve the accuracy of measurements of the reflected L.E.D.. For example, the early
studies by Ludlam et al (1966) used a microscope to measure reflected mires. With
the development of computer systems manual measurements have been performed
using computers (Klyce, 1984). More recently, sophisticated image processing
applications have been used to analyse detailed images (Gormley et al, 1988). For the
present system, the use of a versatile image processing application (N/H Image 1.52)
enabled accurate detection of the reflected LE.D.s. The macro program for semi-
automated LED. detection was described in Chapter 6. Basically, the program
effectively removed the irregularities in background illumination from the iris to pupil
(of complex 8-bit images) and then calculated the geometric centre of each L.E.D..
Accuracy of both radius and p-value measurements was improved using semi-
automated digitisation. The improved accuracy was primarily attributed to the sub-
pixel accuracy in locating the geometric centre and also because 8-bit images were
used (which contained more detail than the 1-bit images used in the manual digitisation

program). In addition to these factors, the influence of subjective variability was

eliminated.

For a single image the videokeratoscope was found to be repeatable for both central

radius of curvature and p-value (standard deviation of +0.0322mm and +0.0453,
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respectively). Therefore, variation due to manual digitisation (as it was the only
variable introduced is in the digitisation procedure) was the factor responsible for the
variability. With respect to multiple images, the mean p-value and central radius were
found to be calculated with greater accuracy (see tables 7.08 and 7.09). However, the
repeatability was found to be slightly reduced (standard deviation + 0.0486 for p-value
and £0.067 for central radius of curvature), this was thought to be due to the
increased variance introduced by taking multiple images. The use of semi-automated
digitisation improved repeatability and any variability introduced was attributed to the

instrument characteristics (such as alignment errors) which were shown to introduce

only small errors (see chapter 6).

Koch et al (1989) performed an experiment where three spherical surfaces were
measured four times along the horizontal meridian for the EyeSys topography system.
Analysis of the variance showed that poorest repeatability was found at the central

rings. However, the EyeSys topography system was in experimental development.
7.7  Summary

The classical method of calculating corneal topography has been to compare the radial
distances of reflected mires from an unknown surface to the radial distances of
reflected mires from spherical surfaces (Knoll, 1961; Townsley, 1967). This method
had the greatest potential for inducing error. The main reason for this was because it
was assumed that the instantaneous centre of curvature of each peripheral point on the
cornea would lie on the optic axis of the instrument, although would this apply to a
spherical surface, it would not apply to an aspheric cornea where the instantaneous

radius of curvatures lie on an evolute (Bennett, 1968).

Later. Doss et al (1981) developed the multiple arc technique where constant
curvature was assumed between each reflected ring or L E.D.. Furthermore, Doss et
al (1981) assumed a constant central radius of curvature of 7.80mm. Klyce (1984)

refined the technique proposed by Doss et al (1981) by developing an algorithm to
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calculate central radius of curvature. However, even with this modification, the
technique assumed that the height of the reflected image corresponded to the point of
reflection at the corneal surface. Wang et al (1989) showed that even with the
modification by Klyce (1984), measurements on a single aspheric surface were biased
towards sphericity. Subsequently, Wang et al (1989) avoided the error introduced by
latter assumption by the use of the angular subtense of the reflected image in their
algorithms. Other methods of calculating corneal topographic coordinates have also

been developed such as comparing the radial profile of the cornea with geometric

shapes (Edmund et al, 1985; Edmund, 1986).

The primary aim of the present study was to evaluate the accuracy of a new algorithm
initially devised by Andersen et al (1993b) using convex aspheric surfaces. In order to
achieve this, a videokeratoscope was constructed whose exact parameters were
known. Unlike previous algorithms (Knoll, 1961; Townsley, 1967; Doss et al, 1981;
Klyce, 1984; Edmund et al, 1985; Edmund, 1986), the algorithms modified in the
present study make no assumptions regarding the pre-existing shape of the surface
under test. The 7.80mm reference surface was used only to locate the angular
subtense of the target mire with respect to the focal plane. The only initial assumptions
involved in the analysis were that for the reference sphere, the image plane was
situated at halve the centre of curvature of the reference sphere (it was proven that in
reality the actual distance was very close to the assumed distance). Another initial
assumption was that the value of angle U for an known point on the surface was equal
to its preceding value. By the use of a iterative procedure the error induced by this

assumption was reduced as the value of U was recalculated until successive values of

U differed by less than 0.01%.

The results show greater accuracy than achieved by Wang et al (1989) for a similar
aspheric surface (a maximum error of less than 2% and 0.41% for the Wang et al
(1989) and present study, respectively). In fact, for all twelve aspheric surfaces only a
small error in the determination of asphericity was found (S.D. of +0.0581 and

+0.043 for manual and semi-automated digitisation, respectively). Therefore, the new
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algorithms used in the present study had little or no effect in biasing the shape of
aspheric surfaces. With respect to central corneal radius measurement, the accuracy
(maximum error of +0.65D for manual digitisation and +0.56D semi-automated
digitisation) was not sufficient for the instrument to be used for applications such as
contact lens fitting (Stone, 1962). The insufficient level of central resolution was
considered to be the cause for this error. However, it was not the purpose of the study
to devise a state of the art corneal topography system but rather to devise a system to

evaluate the new algorithms. Nevertheless, increasing central resolution would have

increased the accuracy.

Repeatability was found to be acceptable for p-value but not for radius of curvature
measurements. The principal reason was due to the manual digitisation procedure.
The use of semi-automated digitisation would eliminate the variation induced by the
manual digitisation pfocedure. For repeat readings the variation increases only slightly,

confirming that errors due misalignment were small (as stated in chapter ©).

With the small modification of increasing central resolution, the present
videokeratoscope would be a very accurate and useful tool to assess corneal
topography. The algorithms were capable of successfully calculating the asphericity of

unknown surfaces.
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Chapter Eight

Conclusions

8.1 Introduction

The principal aims of this study have been to investigate the accuracy and repeatability
of some of the commercially available videokeratoscopes and also to assess the
accuracy of new algorithms in measuring the shape of aspheric surfaces. In order to
achieve the latter, a videokeratoscope had to be constructed. The specific aims
relating to each individual study have been described at the beginning of each chapter,
the conclusions drawn from each of these aims is discussed below with respect to the

preceding statistical analysis.
8.2 Investigations of the SUN SK-2000 and the EyeSys CAS

Although two different subject samples were used, the results were much the same for
investigations of the SUN SK-2000 and the EyeSys CAS. For example, in the
comparison of videokeratoscopy with keratometry, both the SUN SK-2000 and the
EyeSys CAS showed a lack of agreement with the keratometer. In contrast to other
studies (Tsilimbaris, 1991; Antalis et al, 1993), where an agreement between
videokeratoscopy and keratometry was found, the results from the investigations in
this thesis suggest that measurements performed using keratometers and

videokeratoscopes should not be used interchangeably.

Using the SUN SK-2000 device, a decrease in the repeatability in the superior regions
of the corneal surface was observed. It was suggested that this decrease may have
been due to the influence of the ocular adnexa. However, as the SUN SK-2000
extrapolated the corneal profile, it was possible that the error in repeatability was also
due to the extrapolating procedure itself. The EyeSys CAS on the other hand,

produced a raw data table of points that were actually analysed on the cornea. The
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results confirmed the hypothesis that measurements in the superior cornea were less
repeatable than those in other meridians as a result of the interference of the ocular
adnexa.  Furthermore, the repeatability of measurements also decreased in the
periphery of the cornea such that for the superior meridians results should be
considered carefully after 1mm from the vertex normal; 2mm for the inferior meridian,

2mm for the nasal meridian, and 3mm for the temporal meridian.

The EyeSys CAS was also used to evaluate the accuracy in determining twelve convex
aspheric surfaces. As the cornea cannot be measured mechanically, convex aspheric
surfaces were used to assess the accuracy of measurements derived by the EyeSys
videokeratoscope. In this way, the accuracy of the algorithms employed to reconstruct
the surface profile were assessed. With respect to central radius of curvature
measurements, the EyeSys algorithms exhibited greater error in measuring flatter
surfaces. The most probable cause was the central resolution of the innermost Placido
ring. For flatter surfaces, the central ring was therefore reflected off a point away from
the vertex normal. The accuracy of peripheral measurements also showed a
characteristic trend with respect to the shape of the surface being measured. Again,
the measurement of flatter surfaces resulted in greater error in the periphery of the
profile. The algorithms within the EyeSys CAS were accurate up to 4mm from the
vertex normal for convex aspheric surfaces (Figure 5.16). Although a small bias was
observed for spherical surfaces, the accuracy of the algorithms was sufficient for
measurement of the peripheral comeal surface. As expected, no variation in the
repeatability of measurements in terms of the meridian was detected for the aspheric

surfaces.

8.3  Evaluation of a New Videokeratoscope

The accuracy of a videokeratoscope is dependent on two factors: the instrument design
and the algorithms used to derive the surface coordinates. In order to assess the latter,

a videokeratoscope was constructed. Basically, the only error in the construction was

in the spatial separation of the central LED.s. As their separation was too large, the
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central resolution of the videokeratoscope was limited, however, the insertion of
another ring of L.E.D.s would resolve this problem. The instrument characteristics
showed that typically for Imm defocus, an error of only 0.039mm or 0.195D would be

found. Only a small error was induced due to the relatively large working distance

used and the shallow depth of focus.

Having described the characteristics of the new videokeratoscope in chapter 6, chapter
7 evaluated the accuracy and repeatability of the videokeratoscope for twelve aspheric
surfaces. Unlike previously proposed algorithms (Knoll, 1961; Townsley, 1967, Doss
et al, 1981; Klyce, 1984; Edmund et al, 1985; Edmund, 1986), the algorithms modified
in the present study made no assumptions regarding the pre-existing shape of the
surface under test. As a result, the algorithms accurately calculated the asphericity of
all twelve surfaces. This method of deriving the topographic coordinates of aspheric
surfaces was shown to be highly effective, more so than the most recently proposed
algorithms (Wang et al, 1989). The repeatability of the videokeratoscope was shown
to be acceptable, the main reason for this was due to the accuracy of the instrument

focusing characteristics and the digitisation programs.
8.4  Future Study

The present thesis did not examine every factor involved in the reconstruction of the
corneal profile. Moreover, it showed that the accuracy of videokeratoscopy is limited
by the variance induced be the cornea itself. Furthermore, the accuracy of a new
modified algorithm proposed in this thesis shows that the error in peripheral
measurements is less than the most recently proposed algorithm (Wang et al, 1989).
Future studies should concentrate on the development of newer methods of
quantitative analysis and their ability to clearly distinguish between pathological and
non-pathological corneas. In addition, there are still some examples where computer
hardware and software may be improved. For example, with pathological corneas, the

reflected target image may be difficult to digitise, the development of software that

207




Conclusions

would accurately detect the reflected image would greatly benefit the evaluation of

keratoconic corneas and those corneas suffering from pathologies.
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Appendices
Appendix 1: Comparison of EyeSys CAS central resolution for convex surfaces

1,=7.80mm, p=0.5

Flattest Axis (at O degrees)

NAS quad Distance Radius(mm) Diopters TMP quad Distance Radius(mm) Diopters

zg; 8.«%2 7.83 42.56 # 01 0.47 7.93 42.56
% o5 . 7.93 4a2.56 # 02 0.75 7.83 a42.56
Zoa 0.88 7.94 4a2.51 # 03 0.8 7.84 42.51
% 1.29 7.95 42.45 # 04 1.29 7.95 42.45
05 1.54 7.97 42.35 # 05 1.53 7.96 42.40
# 06 1.84 7.89 42.24 # 06 1.84 7.98 42.2S8
# 07 2.09 8.03 42.03 # 07 2.07 8.01 a42.13
# 08 243 8.07 a1.82 # 08 2.38 8.04 41.88
# 08 2.70 8.11 a1.62 # 09 2.65 8.08 a1.72
# 10 3.03 8.16 a1.36 # 10 2.98 8.14 41.46
# 11 3.32 8.22 4a1.06 # 11 3.27 8.20 41.16
#H 12 3.68 8.27 40.81 H12 3.62 8.26 40.86
# 13 4.00 8.33 40.52 # 13 3.82 8.32 40.56
# 14 4.37 8.38 a0.27 # 14 4.28 8.37 40.32
# 15 a.72 842 40.08 # 15 4.63 8.41 40.13
# 16 513 8.45 39.94 # 16 4.98 8.44 39.99
. Srespast Axis (st B0 degress)
SR guesd Qistance Radius(rmm) Diopters INF gquad Disternce Radius{mm) Diopters
## 01 0.47 7.88 42.83 ## 01 0.4a7 7.87 42.88
# 02 0.73 7.89 a2.78 # 02 0.73 7.88 42.83
# 03 0.97 7.91 42.67 # 03 0.97 7.89 42.78
# 04 1.26 7.93 42.56 # 04 1.25 7.92 42.61
# 05 1.51 7.95 42.45 # 05 1.48 7.95 42.45
## 06 1.81 7.88 a2.29 ## 06 1.80 7.88 42.29
# 07 2.06 8.02 42.08 # 07 2.04 8.02 42.08
## 08 2.37 8.05 41.93 # 08 2.35 B8.06 41.87
# 09 2.63 8.10 a41.67 # 0S8 2.61 8.10 41.67
# 10 2.96 8.15 a1.41 # 10 2.92 8.15 41.41
# 11 3.26 8.21 a1.11 # 11 3.20 8.20 a41.16
12 3.60 8.27 40.81 #12 3.51 8.26 40.86
#H# 13 3.93 8.33 40.52 H# 13 3.82 B8.32 40.56
## 14 4.30 8.39 40.23 # 14 4.17 8.37 40.32
H# 15 4.63 8.43 40.04 # 15 4.50 8.40 40.18
# 16 5.03 8.46 328.889 # 16 a.73 8.43 40.04
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1,~7.80mm, p=1

FIAOEST AXIS \al U aegrees)

NAS guad Distance Radius(mm) Dicpters TMP quad Distance Radius(mm) Diopters

# 01 0.46 7.83 43.10 # 01 0.47 7.83 43.10
1##8% 0.75 7.82 43.16 H#02 0.75 7.82 43.16
% on 0.99 7.82 a43.18 # 03 0.88 7.82 a3.16
7 oe 1.28 7.82 43.16 # 04 1.27 7.82 43.186
%52 1.51 7.82 43.16 # 05 1.51 7.81 43.21
oo 1.80 7.82 43.16 # 06 1.80 7.81 43.21
o5 2.04 7.81 43.21 # 07 2.04 7.81 a3.21
2.35 7.81 43.21 # 0B 2.33 7.81 43.21
# Q9 2.58 7.81 43.21 # 09 2.57 7.81 43.21
# 10 2.89 7.80 a3.27 # 10 2.87 7.81 a3.21
11 3.14 7.80 a3 .27 # 11 3.13 7.81 a3.21
#12 3.45 7.80 43.27 #12 342 7.82 43.16
#H13 3.73 7.80 43.27 # 13 3.88 7.82 43.16
# 14 4.01 7.80 43.27 H# 14 3.98 7.82 43.16
# 15 4.31 7.80 43.27 # 15 4.27 7.82 43.186
# 16 4.58 7.80 43.27 # 16 4.55 7.82 43.16
R N Stecpeat Sxis {at 80 degress)
SiE guad Distance Fadivse(mng) Dicpters HNF guRd Distance FRadcius(imnn) Dioptsrs
# 01 0.46 7.83 43.10 # 01 0.47 7.83 43.10
# 02 0.72 7.82 43.16 # 02 0.73 7.83 43.10
# 03 0.96 7.82 3.18 # 03 0.96 7.83 43.10
# 04 1.25 7.81 43.21 # 04 1.26 7.83 43.10
# 05 1.47 7.81 43.21 # 05 1.49 7.83 43.10
# 06 1.78 7.81 43.21 # 06 1.76 7.82 43.16
# 07 2.00 7.81 43.21 # 07 2.00 7.82 43.16
# 08 2.30 7.81 43.21 # 08 2.27 7.82 43.186
# 09 2.55 7.81 43.21 # 09 2.52 7.82 43.16
# 10 2.85 7.81 43.21 # 10 2.81 7.82 43.16
## 11 3.10 7.81 a3.21 # 11 3.05 7.82 43.16
H# 12 3.40 7.81 43.21 H# 12 3.33 7.82 43.16
#H13 3.67 7.81 43.21 # 13 3.59 7.82 43.16
# 14 3.97 7.81 43.21 # 14 3.86 7.82 43.16
# 15 4.25 7.81 43.21 # 15 4.14 7.82 43.16
# 18 4.53 7.81 43.21 # 16 4.43 7.82 43.18
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Appendix 2: A listing and documentation of the manual digitisation program.

PROGRAM

REM set diam dimension array

DIM diam(64)

REM more resolution for
central reading (mag=x3.75)
OPEN "clip:picture" FOR
INPUT AS #1
Image$=INPUT$(LOF(1),1)
CLOSE#1

PICTURE (-900,-600)-
(1404,1128) , image$

REM change mouse cursor
CHANGECURSOR 2

1 REM Calculates Geom.
Centre

FORI=1TO 2

LOCATE 1,1

PRINT "Geom. Centre ";|;" “

GOSUB SUBR

LET diam (l)= DIST
CALL PENMODE (10)
CALL MOVETO (X1,Y1)
CALL LINETO (X2,Y2)

DOCUMENTATION

The DIM command told the computer that
variable DIAM contained 64 numbers
labelled as DIAM(1), DIAM(2) etc..

Once the image was captured and copied into
computer memory, the OPEN command
created a window within QUICKBASIC and
displayed the image over a span of 2304
pixels by 1728 pixels. In this way, the image
was magnified by a factor of x3.75. This
resulted in only the central L.E.D.s being

displayed - thus allowing greater resolution.

The mouse cursor was changed from an arrow
10 a cross wire so that accurate location of

each L.E.D. was possible.

Before measurements of the central L.L.D.s
was commenced, a reference point from which
measurements were laken was established (see
figure 6.05). This point was the geometric
centre of the central L.E.D.s. It is found by
drawing two lines ninety degrees apart
extending from opposing L.E.D.s. The point
of intersection of the two lines represented the

measurement reference point.
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NEXT |

REM measure central LED
FORa=1TO 2

LOCATE 1,10

PRINT " 1st ring ";a;" "
GOSUB SUBR

LET di(a)= DIST

LET di(a)=(di(a)/3.75)
NEXT a

REM choose your resolution
OPEN "clip:picture" FOR
INPUT AS #1
image$=INPUT$(LOF(1),1)
CLOSE#1

LOCATE 11
PICTURE (0,0)-(614.4,460.8),
image$

PRINT "More mag. (y/n)";
INPUT z$

IF z$="n" THEN GOTO 10
5 OPEN "clip:picture” FOR
INPUT AS #1
image$=INPUT$(LOF(1),1)
CLOSE#1

Appendices

The FOR/NEXT loop made the user measure
the magnified central L.E.D.s twice. A sub-
program, known as a subroutine in
programming jargon, sent the compuler [o
another section of the program (SUBR:”**%¥)
which calculated the pixel distance from one
L.ED. to the reference point. Once this
distance was calculated, the computer
returned to the next program line from where
it was originally diverted. A numerical
variable DI(A) was defined that was equal to
the magnified L.E.D. distance (DIST). In
order to account for the magnification, DI(A)
was divided by the magnification factor

(x3.75).

The original image was again pasted in
another window within QUICKBASIC. The
magnification factor was now reduced so that
the entire image could be viewed. A choice of

two magnifications were given (o the user.
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PICTURE (-250,-1 90)-
(902,674) ,image$

10 REM Calculates Geom.
Centre

FORI=1TO 2

LOCATE 1,1

PRINT "Geom. Centre ";I;" ©
GOSUB SUBR

LET diam (I)= DIST

CALL PENMODE (10)
CALL MOVETO (X1,Y1)
CALL LINETO (X2,Y2)
NEXT |

REM meridians

LET a=7
20 FOR a=a-6 TO a
LOCATE 1,1

PRINT "meridian point
gt

GOSUB SUBR

LET diam(a)= DIST

IF z$="y" THEN
diam(a)=(diam(a)/1.5)*.8
NEXT a

LOCATE 1,20
PRINT"another meridian
(yes/no)"

INPUT v$

IF v$="no" THEN GOTO 30

Appendices

Before measurements on the location
peripheral L.E.D.s was commenced, a

reference point was established once again.

A FOR/NEXT loop was set so that
measurements of peripheral points could be
made. Measurement was governed by the
subroutine called SUBR.  The measured

value was assigned 1o the variable DIAM(A).

Depending on which magnification was used,
a simple  division/multiplication  was
performed 1o rescale the value. The user was
also given the choice as to whether another
meridian needed to be analysed. If the user

chooses ‘yes’ then the computer recommenced

the measurement again with the value of the
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LET a=a+7
IF v§="yes" THEN GOTO 20

REM output data

30 CLS
FORb=1TO a
LOCATE b,1

PRINT b;"point =";diam(b)
NEXT b

PRINT a+1;"central dist =
*di(1)

PRINT a+2;"central dist =
" di(2)

LET di(3)=(di(1)+di(2))/2
LET di(1)=(di(1)+di(2))/2
PRINT di(3)

REM copies output window to
clipboard

OPEN "clip:" FOR OUTPUT
AS #1

WRITE #1, di(1)
FORb=1TO7

WRITE #1, diam(b)

NEXT b

CLOSE #1

END

SUBR: '"*******measurement

*hkkkkk

subroutine

Appendices

variable ‘A’ adjusted. If the ‘no’ option is
chosen then the program continued to the next
section.

Once the measurements were completed, the
values were displayed on the computer
screen. A simple FOR/NEXT loop was set-up
to display the values of DIAM. Then, both of
the central L.E.D. values were shown with the

calculated mean.

The L.E.D. positions were eventually to be
input into the fopography calculation
program. The output values of the L.L.D.
positions were therefore copied into computer

memory.

END terminated the program.

The measurement subroutine was defined.
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WHILE MOUSE (0) =0
WEND

'stops program to wait for

mouse click'

X1 =MOUSE (3)
Y1 = MOUSE (4)
LOCATE 1,45
PRINT "x1="; X1
LOCATE 2,45
PRINT "y1="; Y1

WHILE MOUSE (0)= -1:
WEND

'stops program to wait for
mouse click'

IF MOUSE (0) = 0 THEN X2 =
MOUSE (1)

IF MOUSE (0) =0 THEN Y2 =
MOUSE (2)

LOCATE 3,45

PRINT "x2="; X2

LOCATE 4,45

PRINT "y2="; Y2
DIST=SQR((X2-X1)"2+(Y2-
Y1)*2)

LOCATE 5,45

PRINT "Distance ="

PRINT USING "##HHE# ",
DIST;

PRINT " "

RETURN

Appendices

The program was halted until the user
depressed the mouse button (the cross hair
cursor was by this time placed at the
measurement  reference  point). Two
numerical variables X1 and Y1 were assigned
the horizontal and vertical locations of the
mouse, respectively. These values are

displayed on the monitor.

Until the user had correctly aligned the
mouse cursor on the L.E.D., the mouse button
was depressed. The WHILE and WEND
commands told the computer fo stop
continuing the program whilst the mouse
button was depressed. The 1F and THEN
commands set the condition that if the mouse
button was released then the numerical
variables X2 and Y2 must be assigned the
new horizontal and vertical positions of the
mouse. Once again the position of the mouse,
the new mouse position, was displayed on the
monitor. The distance between the old and
new mouse positions was calculated and the
value displayed. The command RETURN
signified the end of the subroutine and the
computer returned back to the next line after

the GOSUB command.
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Appendix 3: A listing and documentation of the semi-automated digitisation program.

PROGRAM

{*** Find Centroids 4 ***

{Program to segment the input
image into a set of blobs, and ljst
their centroids (x,y) in the Results
arrays}

{Run the first 3 macros in that
order, & follow instructions at each
stage}

{1: the user finds the image centre
by eye, and notes coords from
values window}

{2: Then image is processed &
blobs found}

{3: Finally x,y coordinates are re-
expressed rel. to centre, and
grouped by meridian}

{Distance from centre is given as
Length }

VAR

nBlobs,i,j,k,x0,y0,x1,y1 : Integer;

Macro 'Instructions..’;

Begin
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DOCUMENTATION

General information regarding the
primary functions of the program for

the user.

Sets up variables to be used in the

program calculations

Reminds the user to make sure that the
the
The

‘Invert y-coordinates’ box in
preferences is nol selected.

computer locates points on the screen




PutMessage('NB: “Invert

Y-
coordinates" must NOT be selected
in Preferences. Image origin (0,0)
top LH corner; Y

downwards.');

1S is +ve

PutMessage('Open test image:
move cursor to centre & note xy
coords. Then select ROl & run

Process K-scope...");

End;
MACRO 'Process K-scope image",
VAR

left,top,width, ht,

nBlobs, i

Integer;

BEGIN

nBlobs:=80;

SetBackground(0);

SetOptions('X-Y

Center:Angle;Length;User1;User2’)

SetCOUNTER(0);

SetCOUNTER(nBlobs);

For i:=1 to nBlobs do Begin
rUser1[i]:=0; rUser2[i]:=0; End;

PutMessage('Region of Interest set

already ?');

GetRoi(left,top,width,ht);

rUser1[1]:=left; rUser2[1]:=top;
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according fo pixel distances from a
point of origin at the top left-hand
corner of the monitor. Inverting y-
coordinates would alter the position of

effect
The

the origin and  hence
calculations of L.E.D. distances.
other ‘PutMessage’ commands display
inform the user to open the test image
and then centre cursor so that it is at
the geometric centre of the innermost
L.E.D.s, the x,y value of this point must
be noted by the user. The region of
interest on the image must be selected
and then the user must select the
process k-scope command situated in
the special menu.

Commences  digitisation — of  the
L.ED.S. First the user must select the
region of interest in the picture and
the

then select ‘Process K-scope

image’ macro in the SPECIAL menu.

Produces two windows with only the

selected portion of the image. The

windows are labelled ‘test0’ and

‘testl’.




SetPicName(‘TestO‘)
Duplicate('Test0");
SetPicName('Test1')

SelectWindow('Test0");
SelectWindow('Test1');

Invert;

SubtractBackground(2D Remove
Streaks',15);
SetDensitySlice(57,254);
PutMessage('Set best slice level,
then Analyze Particles');

END;

MACRO 'Re-order data by radii’;
VAR
nBlobs, meridian, orient,ijk
Integer,

x,y,r,x1,y1,x0,y0,crit,range,c,s,pi

Real;

BEGIN

{Assume particles analyzed; rX, ry
contain the uncorrected blob
locations}

{& rUser1[1] rUser2[1] contain

coords of ROI, from 'Process K-

scope..."' }
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The image within the ‘test!’ window is
inverted - i.e. a negative is produced.
Invert is another command part of
Image. Inverting the image improved
the detection of the L.E.D.s.

A predetermined level of intensity is
subtracted from the whole image so
that a uniform background is present
to enable accurate digitisation. The
user is then asked to select the Analyse
particles command which counts and
locates the co-ordinates of any high
intensity area in the region of interest.
The scanning procedure employed by
the computer is such that particles are
analysed from top to bottom of the
image. Hence, L.I..D. co-ordinates are
not in order. Another macro program
was therefore devised that re-orders

the data into a radial format.




nBlobs:=rCount; {the no. of blobs
found}

pi:=3.1415927;

range:=15; {blob must lie within +/-
range deg of the meridian to be
accepted}

crit:=cos(range*pi/180);
x0:=GetNumber('Xcentre=",100);
y0:=GetNumber('Ycentre=',100);
{First express blob locations re
Centre, compensating for effect of
ROl offset }

For i:=1 to nBlobs do Begin
rX[i]:=rX[i]+rUser1[1]-x0
rY[i]:=rY[i]+rUser2[1]-y0 ;
End;

SetOptions('X-Y
Center;Angle;Length;User1;User2")

k)

SetCOUNTER(nBIlobs);
{NB Horiz merid is O, Robl=45,
Vert=90, Lobl=135}

Begin

orient:=45*meridian; {degrees}
c.=cos(orient*pi/180);
s:=sin(orient*pi/180);

For i=1 to nBlobs do
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Four meridians are analysed -
horizontal, vertical, 45 degrees and
135 degrees.  Before analysis is
commenced, the user is asked to type in
the co-ordinates of the geomelric
centre of the central L.E.D. s (this is
found by centring the cross-hair cursor
on the test image and noting the x and
y values). This macro is therefore
merely an organisation sub-program
that sequentially selects those particles
with co-ordinates that lie on a linear
of the four

meridians. Only those particles within

line through each
+/- 15 degrees of each meridian are

accepted.




Begin

x=rX{i];

y:=r Y
r=sart(xXx+y*y);
x1:=x"c+y*s;

{if angle betw meridian & dirn of
point is less than criterion....}

{then the pt

meridian}

belongs to that

if abs(x1/r)>crit then begin
j:=j+1; rUser1[j]:=x; rUser2[j]:=y;
rLength[jl:=r; rAngle[j]:=orient;
end;

End;

End;

SetUser1Label('X-x0");
SetUser2Label("Y-y0');
ShowResults;
{SetExport('Measurements');}
{Export(resultsfile);}

END; {end of macro}
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The newly formatted data is then
‘exported’ into a resulls table that
shows the x, y co-ordinates, the
distance of the particle from the
defined  geometric  cenire  the
orientation of the meridian and also
the new x, y co-ordinates assuming the
origin is al the geometric centre of the
L.E.D.’s. This information is all that
is required to located the position and
length of each L.E.D. along each semi-

meridian.




Appendices

Appendix 4: Listing of the topography calculation program (written in Quickbasic
programming language for any IBM compatible personal computer).

REM INPUT b and calc a
CLS

DIM b(1 TO 8)

DIM a(1 TO 8)

DIM vr(0 TO 8)

DIM ur(0 TO 8)
FORp=1TO8

READ b(p)

LET a(p) = b(p) / 33.045832#
NEXT p

DATA 31.3956, 60.81118, 76.38062, 91.93476, 106.1037, 122.3806, 136.5613,
151.3803

REM TARGET L DATA

DIM I(1 TO 8)

FORp=1TO38

READ I(p)

NEXT p

DATA 27.875, 58.25, 73.5, 87.5, 100, 110, 118.5, 123.75

REM TARGET Z DATA

DIM m(1 TO 8)

FORc=1TO38

READ m(c)

NEXT ¢

DATA 124.2281, 117.5225, 108.3531, 97.1263, 80.5592, 68.9069, 53.0319, 36.6108

REM D
LET d =128

REM 7.8mm reference sphere
LETc=0

DIM ba(1 TO 8)

DIM BM(1 TO 8)

DIM fo(1 TO 8)

DIM (1 TO 8)

DIM CHF(1 TO 8)

FORe=1TO3

LET vr(e) = ATN(a(e) / d)

LET ur(e) = (d +3.9) * SIN(vr(e)) / 7.8
LET ur(e) = (ATN(ur(e) / SQR(-ur(e) *ur(e) + 1))
LET ur(e) = ur(e) - vr(e)

LET fo(e) = (2 * ur(e)) + vr(e)
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LET ba(e) = 7.8 * (COS(ur(e)) - .5 - (SIN(ur(e)) / TAN(fo(e))))
LET BM(e) = SQR(I(e) " 2 + m(e) ~ 2)

LET j = ba(e) * (SIN(fo(e)) / BM(e))

LET CHF(e) = ATN( / SQR(- *j + 1))

LET f(e) = fo(e) - CHF(e)

NEXT e

REM origin location

DIM v(0 TO 8)

DIM u(0 TO 8, 0 TO 1500)

CLS

DIM led(0 TO 8)

PRINT " TYPE IN LED HEIGHTS ";
FORp=1TO 8

INPUT led(p)

LET led(p) = led(p) / 33.045832#
LET v(p) = ATN(led(p) / d)

LET u(p, 0) = (fp) - v(p)) / 2
NEXT p

LET r1 =led(1)

REM CENTRAL RADIUS

LET r1 =11 * d/(d * SIN(u(1, 0)) + (r1 * (COS(u(1, 0)) - .5)))
DIM x(0 TO 10000)

DIM y(0 TO 10000)

LET x(0) =0

LET y(0) =0

LET u(0, 0) =0

REM 1st point

LET k=1

LET x(0) =0

LET u(0,0)=0

LET y(0)=0

LET led(0) =0

¢ = ((led(1) - led(0)) * (d - (S *rl) + x(0)))/d
LET PRO = ¢ * SIN(u(0, 0)) / COS(u(0, 0) + v(1))
LET w =PRO * COS(v(1))

LET t = ¢ + (PRO * SIN(v(1)))

REM EST COORDINATE
LET x(1) = w + x(0)
LET y(1) =t +y(0)

REM CALC A(E) - THE INTERSEPT

LET sept = y(1) * (BM(1) * COS(f(1))) + (.5 * r1)) - x(1))
LET sept = sept / (BM(1) * SIN(f(1))) - (1))

LET sept = x(1) - sept
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LET ba(1) = (.5 * r1) - sept
LET CHF(1) = ATN(ba(1) * SIN(f(1)) / (BM(1) - (ba(1) * COS(f(1
LET u(l, 1)~ (i(1) + CHI() - (1) 12 (BM(I) - (ba(1) &)
LET u(1, 0) =u(1, 1)
I}:ET u(l, 1)=(u(1, 1) +u(0, 0))/ 2
=1
DO
h=h+1
GOSUB REFINE
10 LET Z = 100 * (ABS(u(1, h) - u(1, 0))) /u(1, h)
LET u(1, 0) =u(l, h)
LET u(1, h) = (u(1, h) +u(0, 0)) / 2
LOOP UNTIL Z < .01#

REM 2nd point

LET k=2

c=((led(k) - led(k - 1)) *(d-(5*r])+x(k-1)))/d
LET PRO = ¢ * SIN(u(1, 0)) / COS(u(1, 0) + v(2))
LET w = PRO * COS(v(2))

LET t=c+ (PRO * SIN(v(2)))

REM EST COORDINATE
LET x(2) =w +x(1)
LET y(2) =t +y(1)

REM CALC A(E) - THE INTERSEPT

LET sept = y(2) * (BM(2) * COS(f(2))) + (.5 * r1)) - x(2))
LET sept = sept / (BM(2) * SIN(f(2))) - y(2))

LET sept = x(2) - sept

LET ba(2) = (.5 * r1) - sept

LET CHF(2) = ATN(ba(2) * SIN(f(2)) / (BM(2) - (ba(2) * COS(f(2)))
LET u(2, 1) = (f(2) + CHF(2) - v(2)) / 2

LET u(2, 0)=u(2, 1)

LET u(2, 1)=(u(2, 1) +u(1,0))/2

h=1

DO

h=h+1

GOSUB REFINE

20 LET Z = (100 * (ABS(u(2, h) - u(2, 0)))) / u(2, h)

LET u(2, 0)=u(2, h)

LET u(2, h) = (u(2, h) +u(l, 0)) /2

LOOP UNTIL Z <.01#

REM 3rd point

LET k=3

¢ = ((led(k) - led(k - 1)) * (d - (.5 *r1)+xk-1))/d
LET PRO = ¢ * SIN(u(2, 0)) / COS(u(2, 0) + v(3))
LET w = PRO * COS(v(3))
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LET t=c + (PRO * SIN(v(3)))

REM EST COORDINATE
LET x(3) =w + x(2)
LET y(3) =t +y(2)

REM CALC A(E) - THE INTERSEPT

LET sept = y(3) * (BM(3) * COS(f(3))) + (.5 * r1)) - x(3))
LET sept = sept / (BM(3) * SIN(f(3))) - y(3))

LET sept = x(3) - sept

LET ba(3) = (.5 * r1) - sept

LET CHF(3) = ATN(ba(3) * SIN(f(3)) / BM(3) - (ba(3) * COS((3)))))
LET u(3, 1) =(f(3) + CHF(3) - v(3)) / 2

LETu(3,0)=u(3, 1)

LET u(3, )=((3, 1)+ u(2,0))/2

h=1

DO

h=h+1

GOSUB REFINE

30 LET Z = 100 * ABS(u(3, h) - u(3, 0)) /u(3, h)

LET u(3, 0)=u(3, h)

LET u@@, h) = (u@3, h) +u(2,0))/2

LOOP UNTIL Z < .01#

REM 4th point

LET k=4

¢ = ((led(k) - led(k - 1)) * (d - (5 *r1) +x(k - 1))) /d
LET PRO = ¢ * SIN(u(3, 0)) / COS(u(3, 0) + v(4))
LET w = PRO * COS(v(4))

LET t = ¢ + (PRO * SIN(v(4)))

REM EST COORDINATE
LET x(4) =w + x(3)
LET y(4) =t +y(3)

REM CALC A(E) - THE INTERSEPT

LET sept =y(4) * ((-BM(4) * COS(f(4))) + (.5 *rl)) - x(4))
LET sept = sept / (BM(4) * SIN(f(4))) - y(4))

LET sept = x(4) - sept

LET ba(4) = (.5 *rl) - sept

LET CHF(4) = ATN(ba(4) * SIN(f(4)) / (BM(4) - (ba(4) * COS(f(4))))
LET u(4, 1) = (f(4) + CHF(4) - v(4)) / 2

LET u(4, 0)=u(4, 1)

LET u(4, 1) = (u(4, ) +u(3,0))/2

h=1

DO

h=h+1

GOSUB REFINE
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40 LET Z = 100 * ABS(u(4, h) - u(4, 0)) / u(4, h)
LET u(4, 0) =u(4, h)

LET u(4, h) = (u(4, h) +u(3, 0)) /2

LOOP UNTIL Z < .01

REM 5th point

LETk=5

c=((led(k) - led(k - 1)) * (d- (5 *r]) +x(k-1)))/d
LET PRO = ¢ * SIN(u(4, 0)) / COS(u(4, 0) +v(5))
LET w =PRO * COS(v(5))

LET t =c + (PRO * SIN(v(5)))

REM EST COORDINATE

LET x(5) = w + x(4)

LET y(5) =t + y(4)

REM CALC A(E) - THE INTERSEPT

LET sept = y(5) * ((BM(5) * COS(f(5))) + (.5 * r1)) - x(5))
LET sept = sept / (BM(5) * SIN(f(5))) - y(5))

LET sept = x(5) - sept

LET ba(5) = (.5 *rl) - sept

LET CHF(5) = ATN(ba(5) * SIN(f(5)) / (BM(5) - (ba(5) * COS(f(5)))))
LET u(5, 1) = (f(5) + CHF(5) - v(5)) / 2

LET u(5, 0)=u(5, 1)

LET u(5, 1) = (u(5, 1) + u(4, 0)) / 2

h=1

DO

h=h+1

GOSUB REFINE

50 LET Z = 100 * ABS(u(5, h) - u(5, 0)) / u(5, h)

LET u(5, 0) =u(5, h)

LET u(5, h) = (u(5, h) + u(4, 0)) / 2

LOOP UNTIL Z < .01#

REM 6th point

LETk=6

¢ = ((led(k) - led(k - 1)) * (d - (.5 * r1) +x(k - 1)) /d
LET PRO = ¢ * SIN(u(5, 0)) / COS(u(5, 0) + v(6))
LET w = PRO * COS(v(6))

LET t = ¢ + (PRO * SIN(v(6)))

REM EST COORDINATE
LET x(6) = w + x(5)
LET y(6) =t + y(5)

REM CALC A(E) - THE INTERSEPT

LET sept = y(6) * ((-BM(6) * COS(f(6))) + (.5 * r1)) - x(6))
LET sept = sept / (BM(6) * SIN(f(6))) - y(6))

LET sept = x(6) - sept
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LET ba(6) = (.5 * r1) - sept
LET CHF(6) = ATN(ba(6) * SIN(f6)) / (BM(6) - (ba(6) * COS(f(6)))))
LET u(6, 1) = (f{6) + CHF(6) - v(6)) / 2
LET u(6, 0) = u(6, 1)
I};ET u(6, 1) = (u(6, 1) +u(s, 0)) /2
=1
DO
h=h+1
GOSUB REFINE
60 LET Z =100 * ABS(u(6, h) - u(6, 0)) / u(6, h)
LET u(6, 0) =u(6, h)
LET u(6, h) = (u(6, h) + u(5, 0)) /2
LOOP UNTIL Z < .01#

REM 7th point

LET k=7

¢ = ((led(k) - led(k - 1)) * (d - (5 *r1) +x(k - 1))) /d
LET PRO = ¢ * SIN(u(6, 0)) / COS(u(6, 0) + v(7))
LET w =PRO * COS(¥(7))

LET t=c + (PRO * SIN(v(7)))

REM EST COORDINATE
LET x(7) = w + x(6)
LET y(7) =t + y(6)

REM CALC A(E) - THE INTERSEPT

LET sept = y(7) * ((-BM(7) * COS(R7))) + (.5 * r1)) - x(7))
LET sept = sept / (BM(7) * SIN(f(7))) - y(7))

LET sept = x(7) - sept

LET ba(7) = (.5 *rl) - sept

LET CHF(7) = ATN(ba(7) * SIN(f(7)) / (BM(7) - (ba(7) * COS(H(M))))
LET u(7, 1) = (f7) + CHF(7) - W(7)) / 2

LET u(7,0)=u(7, 1)

LET u(7, 1) = (u(7, 1) +u(6, 0)) / 2

h=1

DO

h=h+1

GOSUB REFINE

70 LET Z = 100 * ABS(u(7, h) - u(7, 0)) / u(7, h)

LET u(7, 0) =u(7, h)

LET u(7, h) = (u(7, h) +u(6, 0))/ 2

LOOP UNTIL Z < .01#

REM 8th point

LET k=38

¢ = ((led(8) - led(7)) * (d - (5*r1)+x(7))/d
LET PRO = ¢ * SIN(u(7, 0)) / COS(u(7, 0) + v(8))
LET w = PRO * COS(v(8))
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LET t = ¢+ (PRO * SIN(v(8)))

REM EST COORDINATE
LET x(8) =w +x(7)
LET y(8) =t + y(7)

REM CALC A(E) - THE INTERSEPT

LET sept =y(8) * (((-BM(8) * COS(f(8))) + (.5 * r1)) - x(8))
LET sept = sept / (BM(8) * SIN(f(8))) - y(8))
LET sept = x(8) - sept

LET ba(8) = (.5 * r1) - sept

LET CHF(8) = ATN(ba(8) * SIN(f(8)) / (BM(8) - (ba(8) * COS((8)))))
LET u(8, 1) = (f(8) + CHF(8) - v(8)) / 2

LET u(8, 0)=u(8, 1)

LET u(8, 1)=(u(8, 1) +u(7,0))/2

h=1

DO

h=h+1

GOSUB REFINE

80 LET Z = 100 * ABS(u(8, h) - u(8, 0)) / u(8, h)
LET u(8, 0) =u(8, h)

LET u(8, h) = (u(8, h) +u(7, 0)) / 2

LOOP UNTIL Z < .01

FORs=0TO 8

PRINT x(s)

NEXT s

FORs=0TO8

PRINT y(s)

NEXT s

END

REFINE:

LET PRO = ¢ * SIN(u(k, h - 1)) / COS(u(k, h - 1) + v(k))
LET w = PRO * COS(v(k))

LET t = ¢+ (PRO * SIN(v(k)))

REM EST COORDINATE

LET x(k) =w +x(k - 1)

LET y(k)=t+y(k-1)

REM CALC A(h) - THE INTERSEPT

LET sept = y(k) * (-BM(k) * COS(f(k)) + (.5 *r1)) - x(k))

LET sept = sept / (BM(k) * SIN(f(k))) - y(k))

LET sept = x(k) - sept

LET ba(k) = (.5 *rl) - sept

LET CHF(k) = ATN((ba(k) * SIN(f(k))) / (BM(k) - (ba(k) * COS(f(k)))))
LET u(k, h) = (ftk) + CHF(k) - v(k)) /2

RETURN
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Appendix 5

Appendices

Results of calculated p-value and central radius of curvature for manual digitisation.

p=0.5215
=7.1776
O
O
p=0.3986 O o P=0.4016
=7.1718 @) @) O~ 1=7.2595
O O O
O 0O O
OO o OO
O
oO OO
p=0.5365 actual p=0.5341
P 00000000 p-05 00000000 ;4
r=7.0
o) %%
o© 3 o
O O
o) O e
o 0 o)
O o O
=7.3177 ) =7.0853
O
~0.5628
=7.3923
p=0.4317
1=7.5098
O
O
=7.4445 O o O~ r1=7.4995
@] O (@)
o) 0O O
@) o O
O o o°
OO 0
actual =0.4210
p=0.5253 50000000 p=05 00000000 F™>
1=7.4058 =74 =7.4679
0 Oq
oOO o %
O o O
O O O
o 5 o
1-0.4895 S O p=0.4464
=7.5641 & r=7.3820
O
p=0.5822
r=7.4308

238




Appendices

p=0.4457
=7.9243
O
O
p=0.4802 o O o p=0.4070
=7.8524 o) @) O~ r=1.8125
OO o O
O
OO o OO
O O
OO o
actual ,
p=0.4860 . p=0.4099
D, Q0000000 p=05 00000000 Y u
r=7.8
O
O
o 3 o
O O
0 ) o)
O 0 O
=0.5065 OO o O
p=0. o O p=0.5199
r=7.8646 o r=7.7378
O
p=0.3639
=7.7202
p=0.3437
=8.1703
O
0)
p=0.4042 0O p=0.3342
=8.2626 O 0o O r=8.0698
O O O
O 0 O
@ 3 ®
o0, & o°
OO o
actual
p=0.5867 _ p=0.4421
8 1138 00000000 p=05 OOO0OO0O0O0O0 _¢ig
=8.2 o
O
oo o ©
®) O
o o o)
0 o O
) O O
OO 0O O
p=0.5725 0O O p=0.5787
r=8.2803 o) r=8.1698
O
p=0.5648
r=8.1823

239



Appendices

p=0.8165
=6.9569
@)
O
p=0.8531 0 p=0.5908
=7.0362 o ) OO =6.6964
O @) @)
@) O ®)
O @)
O S o°
OO o)

0.8042 actual 07618
p=0. =0.8 p=4.
o5y 00000000 00000000 = s

) @)
O
© 2 o
@) @)
OO o OO
@) 8 O 5
p=0.8031 O p=0.764>
=7.0748 O r=6.8764
@)
p=0.8039
=6.8981
p=0.8195
=7.4586
O
O
p=0.7729 O p=0.7666
=7.6082 OO '0) OO r=7.4567
O O O
O O o
'0) @)
O 8 o°
OO 0O
actual p=0.7677
p=0.7934 ) OOOOOOO p=0.8 O000 0000 =7.5221
=7.5370 =74
O
O
° 9 o
'®) O
0 O O
O @) O
O o o
o 9 O p=0.8114
50,7666 S =7.4852
=7.4567 0O
p=0.9029
r=7.2881

240



Appendices

p=0.7803
=7.8750
O
O
p=07606 O p=0.7727
=7.8259 o ) o r1I0M2
O O O
O O O
O o O
% o o°
O o
3 actual B
p=08152 50000000 p=08 00000000 PO
=7.9046 g =7.7514
O
O
OOO 8 OO
O O o
o O %

_ @) O p=0.8261
p=0.7302 O r=7.8259
=8.0273 O

O
p=0.8850
1=7.9046
p=0.8254
r=8.3003
O
O
p=0.8014 O p=0.7572
=83592  Op o OO 78533
O O O
O O O
O S O
o0 o o°
% o
actual —0.7236
p=0.7904 00000000 p=08 00000000 FF
=8.2721 =82 r=8.2621
o @
o o O
o O o
O O O
O O O
O o O
~ ) o O p=0.8024
p=0.8371 ) =8.2641
r=7.8533
O
p=0.8147
=8.2936

241




Appendices

p=1.0415
=7.078
O
B O
p=0.9911 0O p=0.9842
r=7.0079 o 0 o° 1=6.9708
O O O
O 0O O
O O O
O S OO
OO o
0.9985 actual 0.9604
p= =1.0 P
16,9707 OO00O00000 1;:70 00000000 6,967
O O
®) O
o° 3 ®
O O
O O )
O 0 O
o° O S
p=0.9399 o O p=0.9792
r=7.0800 o) r=6.9600
O
p=1.0650
r=7.0250
p=1.0111
r=7.4950
O
O
p=1.0520 @) p=0.9778
=14855  Og o 0O 74127
O O O
O 0 O
OO O OO
O O
OO 0
actual p=1.0120
p=1.0120 00000000 P10 O00000O0O0 =7 4358
r=7.4451 =7.4 :
0 O
o o ©O
o 3 ®
O O
O o O
O O O
oo O Oo p=1.0008
p=0.9857 0O L
=7.5117 3 r=7.322
O
p=1.0473
r=7.4089

242



Appendices

p=1.0253
=7.8104
O
O
p=1.0305 O p=1.0031
r=7.8548 O ol r=7.8006
O O
o) @)
@]
O O
O @]
0O O
tual
p=1.0153 ad p=1.0231
Cqim 00000000 p10 00000000 ryyps
O
O o o
o O
O
o o}
O OO
p=1.013 8 O p=1.0292
r=7.89 o r=7.8069
O
p=1.0717
r=7.8290
p=1.0696
=8.2362
O
O
p=1.0755 0 o P=L0196
=8.301 O O~ r1=8.2178
O O
0O O
O
o O
O O
0O @)
actual
p=0.9564 actua p=1.0082
—8224] ©QOOOOO0O0 p“é'g OO0O0O0 000 549
I—=06.
O O 0O
o O
O
) o)
O O
5=0.9197 8 Oo p=1.0345
e 2002 3 =8.2043
O
p=1.0451
=8.1627

243




Appendices

Results of calculated p-value and central radius of curvature for semi-automated

digitisation.
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Appendix 6: Repe.atability data. Numerical data shows the L.E.D. pixel distances
using the manual digitisation method for A. five repeated images measured once and B.

a single image digitised five times. Only the horizontal meridian was measured for the
surface p=0.8, r=7.80mm.

A 180 right meridian, five images.
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B 180 right meridian, one image.
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B 180 left meridian, one image.
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