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SUMMARY

This thesis presents a thorough and principled investigation into the application
of artificial neural networks to the biological monitoring of freshwater. It contains
original ideas on the classification and interpretation of benthic macroinvertebrates,
and aims to demonstrate their superiority over the biotic systems currently used in
the UK to report river water quality.

The conceptual basis of a new biological classification system is described, and
a full review and analysis of a number of river data sets is presented. The biological
classification is compared to the common biotic systems using data from the Upper
Trent catchment. This data contained 292 expertly classified invertebrate samples
identified to mixed taxonomic levels.

The neural network experimental work concentrates on the classification of the
invertebrate samples into biological class, where only a subset of the sample is used
to form the classification. Other experimentation is conducted into the identification
of novel input samples, the classification of samples from different biotopes and the
use of prior information in the neural network models. The biological classification is
shown to provide an intuitive interpretation of a graphical representation, generated
without reference to the class labels, of the Upper Trent data.

The selection of key indicator taxa is considered using three different approaches;
one novel, one from information theory and one from classical statistical methods.
Good indicators of quality class based on these analyses are found to be in good
agreement with those chosen by a domain expert. The change in information asso-
ciated with different levels of identification and enumeration of taxa is quantified.

The feasibility of using neural network classifiers and predictors to develop nu-
meric criteria for the biological assessment of sediment contamination in the Great
Lakes is also investigated.

Key words: Freshwater biological monitoring, indicator taxa, multilayer
perceptrons, river water quality, sediment toxicity.
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Glossary of Terms

As this dissertation covers work from two disparate areas, so this short glossary
is provided for some of the more common biological and neural network terms.

AspT

The Average Score Per Taxa is derived by dividing the BMWFP score (ibid.) by the
number of scoring taxa (ibid.). It has a more monotonic response, with respect to
organic pollution, than the BMWIP score.

AUTECOLOGY

Contraction of ‘auto’‘ecology’, refers to the specific ecology of individual taxa
(ibid.).

BENTHIC

Pertaining to the bed of a river or lake, etc.

BERT SYSTEM

An expert system, based on Bayesian inference, which classifies river water quality
from a set of 41 invertebrate taxa. The acronym stands for Benthic Ecology Response
Translator, but was named after the expert from whom the knowledge base was
elicited, namely Bert (H.A.) Hawkes.

BioLoGICAL CLASSIFICATION
A classification based on the status of the biological communities.

BMwP SCORE

The Biological Monitoring Working Party score. A simple system of biological as-
sessment, commonly used in the UK, based on the presence/absence of families of
invertebrate taxa.

CHEMICAL CLASSIFICATION

A method of classifying water quality based on measurements of particular chemicals
in the water.

DETERMINAND

A feature that can be described numerically. Usually a range of determinands are
considered to characterise water quality.

(GENERALISATION
The ability to correctly classify or predict previously unseen (i.e. new) data.

MACROINVERTEBRATE
Invertebrate animals which are large enough to be retained in a net. Typical benthic
macroinvertebrate fauna includes worms, snails, leeches, fly nymphs and crustacea.

14



Glossary of Terms

Nwc CLass

A system for reporting and classifying river water quality based largely on chemical
determinands (ibid.). Devised by the National Water Council.

Mvrp

Multilayer perceptron, a neural network model, commonly used for classification
and prediction problems.

NBEURAL NETWORK

Networks of neurons which make up the brain (Biological). A flexible non-linear
mathematical model (inspired by the structure and function of the brain). (Com-
putational)

OVER-FITTING

Occurs when a model with too many degrees-of-freedom starts to fit the noise in
the data. A model which suffers from over-fitting would be expected to have a poor
level of generalisation.

RARE, ESTABLISHED and ABUNDANT

For the BERT system (ibid.) the presence of any taxa (ibid.) was described by one
of three states, namely rare, established and abundant. The thresholds for each state
were set individually for each taxon.

REGULARISTION

The act of controlling the ‘smoothness’ or the complexity of the neural network
mapping. Ideally, regularisation should assist the network to generalise (ibid.), but
there is, as always, a trade-off between too little and too much regularistion.

Taxon (pl. TAXA)

A given taxonomic group.

TBI

The Trent Biotic Index. A popular biotic index, which has been used as the basis
for many other systems (especially in mainland [Europe).

TRAINING, VALIDATION and TESTING DATA

Training data are used to estimate the model’s parameters. Validation data are used
to optimise generalisation and prevent the occurrence of over-fitting (ibid.), and the
testing data are used to evaluate model performance.

WEIGHT DECAY
A commonly used method of regularisation (ibid.) for neu ral network models.

WEIGHTS
The adjustable parameters in a neural network model.



Chapter 1

Introduction

1.1 Background

Freshwater is a resource of immense importance and its quality is of consid-
erable significance to its users. As a resource it needs to be managed, and
it is in man’s interest that it also be conserved [53]. Man’s interference in
the hydrologic system, both quantitatively and qualitatively, must be care-
fully managed so as to maintain the functional condition of the system, taking
account of both water and environmental quality. It seems natural to use ob-
servations of the state of freshwater biotic communities as measures of such
qualities, as these communities constitute a key and integral component of the
riverine environment. As the issues concerning the environment become in-
creasingly prominent, there seems to be a greater acceptance that information
relating to the health of ecological systems has an important role to play in
any environmental management programme. Since the biology is central to
the environment it is perhaps surprising how much reporting and classifying
of river water quality is based on chemical determinands, with little reference,
if any, to the biology.

The system presently used in the UK to classify and report river water
quality is the National Water Council (NWC) classification [114]. This clas-
sification is based primarily on three basic chemical measures, namely the
biochemical oxygen demand and the concentrations of dissolved oxygen and
ammonia. In addition, there is a secondary component based on the EIFAC
(European Inland Fisheries Advisory Commission) standards for freshwater

fish, which again are mainly chemically based. The problems associated with
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the NWC and its application have been well documented [112], with many
questions concerning compliance, seasonal adjustment and statistical inter-
pretations of confidence intervals still unresolved [146, 29]. Notwithstanding
these contentious issues, chemically based quality measures are useful for set-
ting discharge consents or for identifying a specific pollutant, but for routine
monitoring they leave much to be desired.

There are three main deficiencies of routine chemical methods of monitor-

ing [122]. These are that:
i. there is an unknown number of chemical species to be detected,

ii. there are some chemicals for which the available analytical methods are

not sensitive enough to detect the concentrations that cause concern, and
i1, chemical tests represent only a snap-shot of the long term conditions.

At present it is possible to detect 1% or 2% of the chemical species that could
be found in a river [122], and the number of possible species is forever increas-
ing. For example, it has been estimated that there may up to 50000 different
substances being poured into the Rhine [46], while other sources estimate over
100 000 chemicals in commercial use, increasing at a rate of about 1000 new
chemicals a year [30]. Severn-Trent NRA has a list of over 2000 determinands
which can be used in reporting water quality, but with due consideration of
cconomic constraints, it would be prohibitive to test for all of these determi-
nands. Even when testing for a specific chemical there is no guarantee that
the test is sensitive enough to detect the pollutant at the level where it be-
comes toxic to the biota. Budgetary restraints require that there is a selective
clement to what is tested for, and biological indicators can provide useful infor-
mation on which to base this selection. Finally, most of the chemical samples
that are taken only represent the conditions at an instant mn time, thus it 1s
possible to miss sporadic or periodic discharges. Although continuous chem-
ical monitoring stations are available, they only monitor for a limited range
of determinands, and are comparatively costly to run and maintain, although
the relative cost of the technology is continually decreasing.

All too frequently the chemical and biological information is treated sepa-

rately and rarely integrated together. Ideally a fusion between chemical and
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biological data should be considered, but this is either lacking in present sys-
tems or they do not utilise available technology as well as they could. Even
when chemical and biological information have been integrated the results have
been mixed, with them occasionally even appearing contradictory in nature.
This was the case in the National Pollution Survey of 1970, but the problem
was partly due to the shortcomings in the biologically-based index that was
used. More recent proposals, for example NRA [113], have suggested using a
combined system where the biological information can over-ride that provided
by the chemistry. The problems of using and interpreting the biology, how-
ever, are very apparent. There is a large amount of subjectivity associated
with the interpretation of a biological sample, personal bias on the part of
experts which reflect their experience and training. There may even be some
antagonism between zoologists and botanists, each defending their own patch.

The present biologically based systems used for monitoring can best be
described as inadequate. Too much effort is being placed on the interpretation
of scores and indices than on interpreting the source data, the invertebrate
community (or any of the floral or faunal groups) living 1n the river. The focus
of interpretation should be the biotic community, not the biotic or diversity
indices. The score systems are of use, but more eflicient methods of inter-
pretation and classification must be developed, and this dissertation aims to

improve upon these presently used systems.

1.2 The Scope of this Dissertation

This project is concerned with the development of new efficient and effective
methods of interpreting and classifying biological data, so it 1s first necessary
to consider which tools are most suitable for this task. Since the task, when
performed by humans, requires considerable knowledge and expertise, 1t ap-
pears that the best tools presently available are ones which have recently been
developed within the field of Artificial Intelligence (Al). Within AT there are
several different paradigms, of which neural computing (or connectionism) is
an expanding field of interest.

This dissertation explores possible applications of artificial neural networks

to the field of the freshwater biomonitoring, and aims to partly redress the
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perceived technological imbalance between chemical and biological monitoring.
Two principal applications of neural networks are considered. The first is the
classification of invertebrate samples into biological-based classes. The second
is the classification of community structure and toxicity test group type n a
sediment toxicity problem.

The project is just not restricted to the application of neural networks.
For example, a key element that does not involve neural networks is the iden-
tification of indicator taxa. Here, three ‘non-neural’ selection methods for
identifying indicator taxa are considered, with the results being of possible use

for the future design of monitoring programmes.

1.3 Organisation of the Dissertation

This dissertation is divided into four parts.

The first part consists of two review sections; Chapter 2 is a discussion
of the present status of biological monitoring of freshwater systems, with the
emphasis on rivers, while Chapter 3 is a review of artificial neural networks.
These chapters differ slightly in their emphasis, with the biological monitoring
review being more critical, and highlighting the need for this research, while
the neural network review is more of an overview of the technology, drawing
out the pertinent work and areas of concern which have direct relevance to
this study.

The second part consists of three chapters. Chapter 4 contains the details
of the benthic invertebrate data sets, taken from rivers, that have been used.
The difficulties in the present monitoring programs are highlighted, with the
result that unnecessary uncertainty is being added to the data. The various
classification systems presently used in the UK are compared and discussed,
and a national database is used to present distributions of taxa which underhe
the presently used score systems. The bulk of the neural network experimen-
tal work that has been completed is described in Chapter 5, and mainly uses
supervised learning techniques in conjunction with the multilayer perceptron
model as the standard tool of analysis. The main concern is the direct interpre-
tation of invertebrate samples into a quality class based on organic pollution.

The detection of novel input patterns is investigated, as well as a model which
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handles the direct interpretation of both riffle and pool biotopes. Unsupervised
learning models, Kohonen maps, are investigated as a graphical means ol rep-
resenting the biological classification. Chapter 6 is an investigation into the
methods of selecting good indicator taxa for use in computer models. Three
methods to identify good indicators of quality class are considered, and the
changes in information with respect to different levels of identification and enu-
meration are quantified. The relationship between the number of taxa used
to form the classification and model performance is investigated, and a novel
data encoding format is presented.

The third part of the dissertation, Chapter 7, is an investigation into the
use of neural networks within a system for the classification and prediction of
sediment toxicity in the Laurentian Great Lakes. This work was carried out
during a three month period spent at the National Water Research Institute,
Burlington. The neural network models are used within the framework of the
community structure group prediction, based on a similar procedure to that
of Wright et al. [181].

The final part, Chapter 8, critically appraises the work presented in the
dissertation and reiterates the dissertation’s principal contributions. Possible

directions for future are also discussed. Finally, the dissertation is concluded.
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Chapter 2

Freshwater Biomonitoring

2.1 Introduction

The fundamental principle that forms the conceptual basis of freshwater bio-
monitoring is that a biological community structure undergoes changes induced
by changes in its environment. Freshwater biomonitoring (i.e. using the infor-
mation provided by biological communities to assess the functional condition
of their environment) has a long history, but has played a somewhat secondary
role to chemically based methods of monitoring. The difficulty in using bio-
Jogically based information stems from the inherent complexity of ecosystems.
As any biologist’s interpretation is to some extent subjective, their conclusions
have not been seen to provide either an effective monitoring system or the basis
for quality standards at a national level.

This dissertation is particularly concerned with the methods of surveillance
and monitoring of freshwater systems. Hawkes [53] and NERC [115] provide

definitions of these terms:

surveillance is the repeated and standardised measurement of a

variable so that a temporal trend may be detected,

monitoring is surveillance carried out to determine trends in rela-

tion to predetermined standards.

These definitions are sufficient for a single site over a period of time, but
fail to emphasise the need for uniform spatial application when dealing with

more than one site. In order to permit comparisons between different sites
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the reporting procedure needs to be consistent, either being independent of
biotope or else to have taken the biotope into consideration.

The original definitions apply to the work which is routinely undertaken
by the NRA. This is where a particular stretch of river Is intensively sampled
because of an apparent pollutional problem. For this, it 1s enough to report
qualitative differences between samples over a period of time (e.g. an improve-
ment in the diversity of the fauna over the duration of the sampling programme,
or an increase in the number of sensitive species present). The concern is not
for absolute quality, but rather the change, hopefully improvement, over time.
However, when absolute quality is required, for example in national monitoring
programmes, the importance of spatial consistency becomes paramount. The
need for a uniform system is to allow for the dissemination of the biological
‘nformation in the form of classification systems, which provide valuable infor-
mation for managers, and for the foundation of statutory objectives. This lack
of spatial consistency is the major problem with the present biotic systems,
since a particular value of a score always requires additional information before
the score can be properly benchmarked.

Considering all the flora and fauna available for monitoring purposes, the
benthic macroinvertebrates are the ones most frequently studied in the UK [55],
and consequently they have been used for this study. This is not to say that
other biological groups do not provide valuable evidence, some may positively
strengthen a biologist’s conclusion, while others may provide insights to new
interpretations. Many, if not all, of the methods presented in this dissertation
are applicable across the whole range of biological groups. 1t would be a good
exercise to fuse data from a range of flora and fauna, but constraints on data

and available expertise restricted this study to the benthic macroinvertebrates.

2.1.1 Benthic Macroinvertebrates

As stated in the previous section, benthic macroinvertebrates are the most
common element of a river’s biota to be used for monitoring. The main reasons

for the popularity of macroinvertebrates are:
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i. the comparative ease and relative low cost of sampling,

7. their well defined taxonomy and the availability of good keys for identi-

fication,

iii. their relatively sedentary nature, unlike fish for example, making them

representative of the site from where they are sampled,
. they cover a wide range of trophic and pollution tolerance levels,

v. they are found in almost all water courses of any quality (except for

extremely toxic conditions).

Even so, a skilled biologist will take notice of biota other than the benthic
invertebrates and use information from a wide variety of sources to identify
any problems existing at a site.

The methodological and ecological considerations associated with biological
surveillance have been well documented by Hawkes [49, 51, 53], Hellawell [55]
and Metcalfe [103]. Figure 2.1 summarises the environmental effects acting
upon the benthic community and also the interactions between these these
effects. As the diagrams depicts, water quality determinands cover a number
of dimensions, some of which are unnatural (i.e. definitely caused by human
interference). Different current velocities, substratum types, hardness, etc., all
have direct effects on the community structure, thus it is expected that different
community structures are to be found in different environments. Thus the
information on the habitat (biotope) should be considered in any interpretation

or classification of the communities.

2.2 Traditional Methods of Biomonitoring

For the purpose of this dissertation the traditional methods of biomonitoring
are considered to be those which are not computer intensive. This allows for a
fairly clear delineation between the diversity and biotic indices, and the newer
methods, such as RIVPACS and the knowledge-based systems approach of
Walley et al. [170]. The most important methods for the monitoring of river

water quality, mainly in relation to organic pollution, are discussed below.
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Figure 2.1: Water quality and non-water quality determinands of
benthic community in rivers (after Hawkes [53]).

2.2.1 Saprobic Approach

The early Saprobic system, (saprobia is the dependence of an organism on
decomposing organic substances as a nutrient source [127]), was developed by
Kolkwitz and Marsson [85, 86]. They initially suggested four zones based on
different saprobia, these being polysaprobic, a-mesosaprobic, f-mesosaprobic
and oligosaprobic. Polysaprobic waters are generally characterised by high
levels of pollution, few community groups and active bacteriological decom-
position; a-mesosaprobic waters are distinctly polluted and have an oxygen
content less than 50% saturated; S-mesosaprobic have mild to moderate pol-
lution; and oligosaprobic are clean, healthy with a wide variety of plants and
animals. These zones have since been increased to ten [103], but most ambient
waters will normally be in one of the above four groups. The Saprobic Index
is calculated as follows [123]:
>i((sihi)

S = ~h (2.1)
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where:
S is the Saprobic index for the site,
s; is the Saprobic valency for each indicator species (1),

hi is the abundance level of each species (i); rare(1), frequent(2),
abundant(3).

The major criticisms of the Saprobic system are that [127]:

/. the taxonomy is controversial, especially for micro-organisms,

3.

i. the pollution tolerances of organisms are very subjective, generally based

on ecological studies and not experimental work,
iii. the sampling regime is intensive, and
iv. the taxonomic list is not be applicable to many geographic locations.

The use of the Saprobic system in Britain is very limited with no NRA region
using it regularly [71], although it is commonly used in Furope [53]. Unlike
the systems discussed below the Saprobic system is readily applicable to all
the flora and fauna of the river system, and thus indicator species include
bacteria, algae, protozoans, benthic macroinvertebrates and fish. This must

be considered an advantage over the following biotic systems.

2.2.2 Diversity Indices

These are mathematical expressions used to describe the response of a com-
munity to the quality of its environment. Generally communities under stress
undergo a reduction in diversity and this results in changes in the diversity
index. However, low diversity may not be indicative of polluted conditions be-
cause these may be caused by other factors, for example the physical condition
of head streams. Three components of community structure are used in diver-
sity indices; richness (number of species present), evenness (uniformity in the
distribution of individuals among the species) and abundance (total number
of organisms present).
Commonly used diversity indices include:

e Menhinick’s Diversity Index [102]

D=S/VN (2.2)
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o Shannon-Weiner or Shannon-Weaver Index (155, 171],

5. N; N; .

e Simpson’s Index [156],

S N(N; — 1)

D= 2.4
2NN D) (24
e Margelef’s Community Diversity Index [97]
AS' - l
D=——— 2.5
In N (2:5)

where:
S is the number of different species in the sample,
N s the total number of individuals in the sample, and
N; is the number of individuals belonging to ith species.

Pinder et al. [129] used the above diversity indices in their study of a chalk
stream. In all the above, the higher the value the greater the diversity and
hence the better environmental quality. The main advantages of the diversity

indices are [103]:

i. they are strictly quantitative, dimensionless and lend themselves to sta-

tistical analyses [22],
ii. they are generally independent of sample size [175],

jii. no assumptions are made about the relative tolerances of the individual

species, unlike the subjective Saprobic system [129],

iv. they can be applied to measures of biomass which are less labour intensive

than individual species counts [99].
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Criticisms of diversity indices have been many, some of which are:

;. there is considerable variation in the index values depending of the equa-
tion used, sampling regime, biotope and the level of taxonomic identifi-

cation,

i, wide variations of values for unpolluted conditions have been cited [22].
Standards have been set for interpretation [175] but these scales are not

universally applicable,

iii. they do not make use of species or autecological information, as the

species are regarded as anonymous numbers (53],

iv. the response of the community to increasing pollution is not necessarily
linear. For example, moderate organic pollution may lead to an increase

in community diversity.

Other indices, sometimes referred to as coefficients of similarity, are occa-
sionally used. These include Kothes’ Species Deficit [50], Hellawell’s Index [55],
Jaccard’s Coefficient [68], Sgrenson’s Quotient of Similarity [158] and lager’s
Index of Affinity [33]. Mason [98] details applications ol the above coeflicients
in experimental work, Hawkes [50] contains some example calculations, and

Washington provides a comprehensive review [171].

2.2.3 Biotic Methods

Metcalfe [103] describes, using Tolkamps [164] definition, the biotic approach

to biological assessment as:

“one which combines diversity on the basis of certain taxonomic
groups with the pollution indication of individual species of higher

taxa or groups into a single index or score.”

Essentially, biotic scores and indices are based on subjective assessments of the
effects of organic pollution on the invertebrate fauna. The major difference be-
tween scores and indices are that scores are additive (i.e. they are calculated
by summing individual indices for each taxon), while this is not the case for

‘ndices. The main driving force behind the development of biotic indices and
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scores is the need for experienced biologists to present their findings in a form
readily understandable to non-biologists. Although this is desirable, especially
to managers within the water industry, a single index represents a substan-
tial reduction in the total information available. Thus, many of the reported

statistics require an explanatory note to make them meaningful.

Trent Biotic Index

The Trent Biotic Index (TBI1) was developed by Woodiwiss [179] for use by the
Trent River Board and now forms a basis of many modern biotic indices and
scores [127]. It originally had eleven quality classes (0-10) but was extended
to cover a wider range of water qualities (0-15), the latter version being called
the Extended Biotic Index (EBI), Table 2.1. The most sensitive taxon of a
preselected set (which have been ordered in terms of recognised tolerance to
organic pollution) is used as a benchmark for the index, with the final TBI
value being determined from the total number of Trent groups present [24].
Clean streams were given the higher scores, thus with increasing levels of pol-
lution the TBI would become smaller. The TBI and EBI are popular due
to their practicality. The taxonomic requirement in determining the index is
not prohibitive, only the key Trent groups are identified to species level, and
the sample is only qualitatively assessed, the counting of individuals is not
required. Cook [22] cites this lack of abundance measure as a drawback to the
TBI as the accidental presence of an organism (e.g. due to drift) could lead
to misclassification. It can also be criticised because of its brittleness, which

stems from its reliance on only a few key indicators.

Chandler’s Score System

Originally designed for the Scottish upland rivers, Chandler’s system [19] uses
a cumulative points system as opposed to a look-up table, as in the TBL
Also, the method incorporates an abundance measure and an increased list of
macroinvertebrates compared to that of the TBI. To calculate a sample score
all the organisms present are identified to the appropriate level (species for
some, genus for others) along with an abundance level (present, few, common,

abundant or very abundant). The sample’s score is calculated by summing
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the appropriate points, which are read off from a table, for all of the samples’s
taxa. An interesting feature of the system is that for increasing abundance
the points allotted to sensitive groups increase, while for intolerant groups the
points decrease with greater abundance. Metcalfe [103] refers to some possible
criticisms of the method, these include its complexity, its rigorous taxonomy
plus enumeration, its inconsistent level of taxonomic identification, that it can
only be applied to upland streams, that it is geographically restricted due to

the indicator species identified to genus and that the scores are subjective.

Biological Monitoring Working Party (BMWP) Score

In the 1970 National River Pollution Survey a biological assessment was imple-
mented to supplement the chemical classification. The biological system used
was based on four quality classes A, B, C and D, each of which was associated
with a group of organisms characteristic of that particular water quality. The
results of the survey were disappointing in that the degree of correlation be-
tween biological and chemical classifications was smaller than expected. The
main reason for the low correlation was that the biological system used was
designed for fast flowing riffle sites. This resulted in the slow flowing lowland
rivers being placed at a lower biological class than the comparative chemical
class. This highlighted the importance of biotope in relation to the expected
benthic communities at that site.

In the light of the 1970 Survey the Department of the Environment, Stand-
ing Technical Advisory Committee on Water Quality (STACWQ) set up a
Biological Monitoring Working Party with the aim to recommend a national
biological classification of river water quality. A ‘score’ system was recom-
mended, which was based around a simplified Chandler System. The major
differences being that all organisms would be identified to family level and
the abundance level for each group would be disregarded. Each family is only
counted once when calculating the index, no matter how many species 1t repre-
sents or how many of its species are present. The comparatively simple BMWP
score resulted [20], Table 2.2. In effect it is not a biological classification of
river water quality but a biologically-based score “of the biological condition of
rivers” [53]. The different invertebrate groups are allotted points according to

their intolerance of organic pollution. The score is calculated in the following
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manner: list all the different families present in the sample, then find each
family’s particular score and sum them to arrive at the BMWP score for the
sample. An important point affecting the application of the final score is that
the system was designed to be applied temporally (surveillance of a particular
site through time) but not spatially (for the comparison of rivers in different
geographic locations). Strictly this means that rivers, and even adjacent sites
on a water course, may yield different scores due to differences in biotope, even
when there is no change in the water quality. Also the scores for each family
are conservative, in that the most tolerant species of each family is used as the
benchmark.

Prior to the computerisation of the invertebrate sample records, the BMWP
score was the most commonly used index, in fact all 10 of the then water
authorities used it routinely [71]. The main reason the BMWP was used In
all regions was that it was nationally recognised and easy to use. Other scores
seemed to be included in the monitoring programs just as an extra measure.

The key points to note about the BMWP score are that it implicitly as-
sumes independence between taxa, all identification is to family level, all the
tamilies are assumed to be equally reliable as indicators and no measure of
abundance is included [168]. Perhaps the most problematic aspect of the
BMWP is its misuse. It was designed to allow for monitoring of one site over
time, and the comparison of scores between rivers was to be discouraged [53].

However, this proviso is generally disregarded.

ASPT

The ‘Average Score Per Taxon’ is a frequently used index and simply represents
the number derived when the total score for a sample is divided by the number
of scoring taxa [4]. It is applied mainly to the BMWP score, but was first
applied to the Chandler score [5, 111]. Pinder & Farr [128] have studied
the comparative performance of four diversity indices and three biotic indices
(TBI, Chandler, BMWP and ASPT versions of the Chandler and BMWP). In
the paper, the authors recommended the ASPT based on the BMWP score,
because of its simple calculation, the limited degree of taxonomic expertise
needed and that it is little affected by sample size. Armitage et al. [4] describe
the performance of the ASPT and the BMWP for different locations, sampling
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Families Score

Siphlonuridae Heptageniidae Leptophlebiidae Ephemerellidae
Potamanthidae Ephemeridae

Taeniopterygidae Leuctridae Capniidae Perlodidae Perlidae
Chloroperlidae

Aphelocheiridae 10
Phryganeidae Molannidae Beracidae Odontoceridae

Leptoceridae Goeridae Lepidostomatidae Brachycentridae
Sericostomatidae

Astacidae

Lestidae Agriidae Gomphidae Cordulegasteridae Aeshnidae 8
Corduliidae Libellulidae

Psychomyiidae Philopotamidae

Caenidae

Nemouridae 7
Rhyacophilidae Polycentropidae Limnephilidae

Neritidae Viviparidae Ancylidae

Hydroptilidae

Unionidae 6
Corophiidae Gammaridae

Platycnemididae Coenagriidae

Mesoveliidae Hydrometridae Gerridae Nepidae Naucoridae
Notonectidae Pleidae Corixidae

Haliplidae Hygrobiidae Dytiscidae Gyrinidae

Hydrophilidae Clambidae Helodidae Dryopidae Elminthidae 5
Chrysomelidae Curculionidae

Hydropsychidae

Tipulidae Simuliidae

Planariidae Dendrocoelidae

Baetidae

Sialidae 4
Piscicolidae

Valvatidae Hydrobiidae Lymnaeidae Physidae Planorbidae
Sphaeriidae

Glossiphoniidae Hirudidae Erpobdellidae 3
Asellidae

Chironomidae 2
Oligochaeta (whole class) 1

Table 2.2: The BMWP Score System
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efforts and seasons. They found the ASPT to be less variable (which would
be expected because it is an ‘average’) and could be more reliably predicted
from physical and chemical data. The ASPT can be criticised because of the
inherited characteristics of the BMWP score, and it should be noted that it

also excludes ‘absent’ evidence [168].

LQI

Extence et al. [32] proposed a new index, called the Lincoln Quality Index
(LQI), which used both the BMWP score and the ASPT. They argue that the
reporting of the BMWP scores and ASPT figures are “somewhat cumbersome”,
and that the figures often need an interpretive comment. The LQI is designed
as a single readily understood index. To derive the index all sampling sites
must be classified as either habitat-rich riffles, or habitat-poor riffles/pools.
After calculating the BMWP score and the ASPT a rating for each sample
is obtained from the appropriate habitat table. The average of these ratings,
the Overall Quality Rating, can then be converted mnto an equivalent LQI
value. The LQI can also be related to NWC class or river use (River Quality
Objectives), but the index has not become nationally recognised within the
water industry. Again it can be criticised because of its reliance on the BMWP

SCOrIe€.

2.2.4 Other Indices

Metcalfe [103] reviews the biological systems that are used in Burope and North
America. In Europe the Saprobic Index is still popular, but other indices (e.g.
the Indice Biologique de Qualité Générale, Indice Biologique Global and the
Belgium Biotic Index) have been developed [25]. De Pauw et al. [23] list over a
100 different indices which have been developed for monitoring purposes, with
the majority of these being based on one of the previously discussed indices,
but with modified sampling strategies and adjusted taxonomic lists to suit the
region of interest. The proliferation of indices indicates the increasing role of
biological monitoring, but also highlights the subjectivity as workers feel the

need to develop systems with which they are comfortable using.
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2.3 Recent Developments in Biomonitoring

2.3.1 River InVertebrate Prediction and Classification
System (RIVPACS)

An important new approach to biological surveillance using multivariate sta-
tistical techniques was developed by a team from the Ireshwater Biological
Association.! The major objectives of the programme, as outlined in Wright

et al. [181], were:

i. the development of a biological classification of unpolluted running-water

sites in Creat Britain based on the macroinvertebrate fauna; and

ii. the prediction of the macroinvertebrate community at a site from 1its

physical and chemical features.

The work was conducted in three phases, initially examining the possibility of
predicting ‘expected’ communities from physical and chemical variables using
data collected from 268 sites on 41 rivers. These sites were regarded as either
being of ‘good’ or ‘fairly good’ quality [4]. Multiple linear regression equa-
tions were computed using BMWP score and ASP'T as the dependent (target)
variables and various physical and chemical parameters being the independent
(predictor) ones. A standardised sampling regime was implemented, three
minute samples taken three times a year, in Spring, Summer and Autumn.
One conclusion from this work was that the predictive equations, based on the
physical and chemical data, would enable theoretical ASPT’s to be calculated.
The BMWP score equations were less reliable due to the score being more
sensitive to sampling effort and seasonal change. In Wright et al. [181] the
same data was used to develop a classification of running-water sites based on
all macroinvertebrate taxa, and a method of predicting community structure
of a site from environmental data. The sites were ordinated using detrended
correspondence analysis (DCA), and then classified into 16 groupings using a

two-way indicator species analysis TWINSPAN [59].

1The RIVPACS project is now associated with the Institute of Freshwater Ecology (IFE),
which was recently ‘demerged’ from the FBA.
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TWINSPAN constructs a ordered two-way table between both samples and
species, and also produces a key which enables further sites to be classified.
Multiple discriminant analysis (MDA) was used to classify the site groupings
from the environmental data. Using the full data set of 268 samples 76.1%
of the dependent sites were correctly predicted, with a further 15.3% of sites
being the second most probable. When the data was split into 228 training
and 40 testing samples, the training data was predicted with an accuracy of
67.5%, while the testing data were predicted to 50% accuracy, with the second
most probable group being correct in 25% of cases. In IFurse et al. [41] the
influence of season and taxonomic factors on the performance of the system
are assessed. The predictive accuracy of the model was found to be higher
when identification was taken to species level. Also, the model was found to
perform better when the species lists from all three scasons were combined.

Field trials were conducted using 21 new unpolluted sites [109] using Wright
et al.’s [181] model. The main impetus bemg to predict the species occurrence
at the new sites, as opposed to trying to classify the sites. The fauna were
predicted using sets of 28, 11 and 5 physical and/or chemical determinands.
The authors felt that a major use for the prediction system would be the
provision of a ‘target’ macroinvertebrate community to act as a standard for
a given site when it is unpolluted. Where a site is currently polluted, the
difference between the actual fauna observed and the target fauna gives a
measure of the loss of biological quality as a result of the pollution. IFor phase
9 of the work the database was enlarged to cover 370 sites on 61 different river
systems, including more small streams and lowland river sites. Phase 3 of
the work saw the database expanded further to encompass 438 sites, with the
RIVPACS software package being developed, which allowed for the prediction
of fauna at one or all of the following taxonomic levels: species (qualitative);
all families (log. categories of abundance); all families (qualitative) and the
BMWP families (qualitative). Also, four sets of environmental variables were
available, these being 11 or 5 physical and chemical variables and 11 or 5

physical variables only. Quoting the authors [180]:

“RIVPACS offers site specific prediction based on environmental fea-
tures and can therefore set a target from which any loss of biologi-
cal quality due to environmental stress can be measured by the ‘ob-

served/expected’ ratio.”
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At present, RIVPACS is being extensively tested nationally and undergoing
continued development by the NRA [113].

To digress slightly, it seems that a potentially valuable piece of information
from the RIVPACS models is not being utilised. The actual difference in the
composition of the expected and observed family list could be exploited, and
would provide real scope for interpretation and possibly provide a significant
supplement to any classification system. For classification purposes, however,
the best information source is the benthic community itself, thus the direct
interpretation of this into water quality terms provides the best basis for a
robust classification system.

The methods of Wright et al. represented a major change in direction of
freshwater biomonitoring, increasing the reliance on numerical models. Their
methodology has being frequently applied in other studies and is adopted in
Chapter 7 of this dissertation for the analysis of benthic community structure

in the Great Lakes.

2.3.2 Ecological Quality Index (EQI)

Within the 1989 Water Act powers were provided to allow the Secretaries of
State for the Environment and for Wales to introduce new classification sys-
tems and to use them as the basis for new legislation. The NRA proposals for
the new classification system are set out in their document Proposals for Statu-
tory Water Quality Objectives [113]. The aim of the proposals is to expand
the existing NWC classification schemes to all types of water on a consistent
basis. The main elements of the new proposals are the introduction of Use Cat-
egories, the relevant EC Directives and a new General Classification Scheme.
The Use Classes will form the main element of the regulatory framework.

An ecosystem use-related class is recommended, and would have an assess-
ment of the biological component of the watercourse. The intended system for
implementation is based upon RIVPACS, utilising the predictive aspect of the
system to estimate the expected BMWP, ASPT and Number of Taxa (NOT)
scores of the unpolluted site according to physiographic properties.

Comparing the estimated unpolluted scores with the actual (observed)

score determined from sampling, a ratio can be developed to describe the
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General
Ecosystem EQI EQI EQI
Class Description | (ASPT) | (NOT) | (BMWP)
1 Good > 0.89 > 0.79 >0.75
2 Fair 0.77-0.88 | 0.58-0.78 | 0.50-0.74
3 Poor <0.77 <0.58 <0.50

Table 2.3: Proposed EQI bandwidths [113].

status of the site. The ratio of observed to predicted scores is expressed as an
Ecological Quality Index (EQI). The EQI would be used to define classes In
a hierarchical style, and objectives and compliance assessed in terms of EQI
banding. In Appendix 2 of the document possible values of the bands are
given, and these are shown in Table 2.3. The General Ecosystem Class would
be the median value of the three class assessments. The major theme running
through the document is that the use of biological information should be used
more objectively in making decisions on class assignment. The biological qual-
ity of a river gives a very different assessment to that which can be derived
from chemical monitoring. The biological information indicates the living state
of the river while the chemical criteria are more suited to discharges and pol-
lution control requirements. Both kinds of information are important for the
purposes of water quality management, but the new classification system will
have strict rules governing the application of chemical criteria and it was sug-
gested that a biological over-ride feature may be incorporated into the system,
but this has been subsequently dropped.

The shortcomings of the EQI system can be demonstrated using IFigure 2.2,
which is based on the BMWP score for a typical riffle site. The z-axis rep-
resents increasing pollution while the y-axis gives the likely score at a typical
riffle site. An EQI is calculated by taking the value of the observed BMWP
score and dividing it by the site’s expected BMWP score, which is generated
by RIVPACS. The main problem with this is that the non-monotonic and
non-linear nature of the relationship between the BMWP and quality. Irom
Figure 2.2 only one sample out of the three, sample C, would have an EQI of

less than unity. Thus, the EQI system may result in classifying some moder-
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BMWP —

Decreasing quality ——*

Figure 2.2: Schematic illustration of the EQI system. T'he response
of BMWP score for a typical riffle site is shown, and the EQI for an
observed sample A is the ratio S4/St, where the expected ‘clean’
score is given by St.

ately polluted sites as being unpolluted. This behaviour would also be expected
to occur for EQIs based on the BMWP or the number of taxa, but would be
less of a problem for the ASPT based EQls. Additionally, there is an implicit
assumption that the EQI system applies across all biocoenoses, thus an EQI
of, say, 0.8 is equivalent in both riffle and pool biotopes. A further criticism
of the proposed EQI system is that it inherits the family level implementation
of the BMWP system, and this implies the much of the available biological

information will be lost or be unused in the classification system.

2.3.3 Al Methods

A novel approach to the interpretation and classification of invertebrates, based
on probability theory, has been developed by Walley and a small team of re-
searchers at the University of Aston [170, 167, 13, 168]. The relationship
between the abundance and frequency of occurrence of a taxa and water qual-
ity lends itself to a Bayesian interpretation. For example, Hynes [65] depicts
the changes in macroinvertebrates downstream of a discharge of organic efflu-
ent, showing the response of Tubificidae, Chironomus and Asecllus as virtually
Gaussian in nature. Treating these distributions as probabilities, the combi-
nation of the probabilities for either classification or interpretation is easily

handled in a mathematically sound way within a Bayesian framework [26].

38



Freshwater Biomonitoring Chapter 2

Figure 2.3 gives the fundamental principles to the probabilistic interpreta-
tion of river water quality. In Fig. 2.3a the response of each species is different
for a given quality dimension, that response may by particularly specific (Sp. A
or Sp. C) or relatively vague (Sp. B). In Fig. 2.3b the difference in the abun-
dance of a taxon can be represented, again, by using different distributions.
For the BERT system three levels of presence were used for each taxon, namely
rare, established and abundant (see Table 4.1 for the exact definitions of these
terms). If a taxon is present in abundance then this is more informative than
if the taxon is established or rare. For taxa which occur with a very high
absolute abundance (e.g. Gammarus pulex or Asellus aquaticus), 1t was pos-
tulated that a bimodal distribution for rare and established states may be the
natural representation, indicating the taxon had been found on either side of
its preferred quality (see Tables 6.1 and 6.3 for some justification of this). IM-
nally, in Fig. 2.3c¢ the evidence from different taxa can be combined to give a
probability distribution of quality class given the taxa.

Using the conceptual basis described above, Walley et al. [170] have devel-
oped a knowledge-base system that uses a Bayesian inference model to clas-
sify water quality from the direct interpretation of benthic macroinvertebrate
data. The model used forty-one indicator taxa selected by the domain expert,
these same species being used in this project. Knowledge was elicited from
the Expert in the form of histograms. Irom the histograms the conditional
probabilities of four states of abundance (absent, rare, established and abun-
dant) could be calculated. The model was tested using fifty-three samples and
achieved a good degree of correlation between the predicted classes and the
Expert’s classification. Boyd et al. [13] reports a similar methodology, using
Dempster-Shafer’s Theory of Evidence in place of Bayesian inferencing. This
worlk has been drawn upon in this study, and is discussed further in Chapter 4.
Recently, Walley [168] has applied the Bayesian approach to the Severn-Trent
data (Section 4.3) and shown that 1t significantly outperforms TBI and ASPT.
Several paradigms from machine learning have also been applied, with moder-
ate success, to the problem of classifying river water quality [27].

In a broader context, the Bayesian approach has been demonstrated as an
alternative to classical frequentist statistical methods. The reliance, perhaps

over reliance, on classical statistics based on hypothesis testing and assump-
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Figure 2.3: Probabilistic interpretation of species response.
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tions of data normality has also been commented on within an ecological con-
text [133, 21]. Both Reckhow [133] and Conquest [21] describe the frequent
misunderstanding of the ‘P-value’ in hypothesis testing. The ‘P-value’ gives
the probability of the extreme values (tails of the distribution) given that the
null hypothesis is true, but this is often mistaken for the probability that
the particular hypothesis is true given the observed data. Within a Bayesian
framework the probability of the hypothesis being true given the data 1s a
natural result of the calculation (see also Section 3.6).

Other knowledge-based system work is reported by Wishart et al. [177], who
also consider expert systems for interpreting river quality data. One system
is used for the automation of compliance testing and classification, while a

second application is described for interpreting ammonia levels in fish.

2.3.4 Other Techniques

All of the methods so far described fall into the category of structural ap-
proaches. Contrasting methods, often termed functional approaches [138], are
also gaining in popularity. These include toxicity tests and studies based on
the functional feeding groups [132]. Chapter 7 describes and uses toxicity test
responses of four taxa for the development of sediment toxicity guidelines.
The use of invertebrates for the rapid assessment of water and habitat qual-
ity is becoming more widespread. For example, in the United States the Iin-
vironmental Protection Agency (EPA) has produced a document which gives
a series of protocols (three macroinvertebrate and two fish) which are techni-
cal references for conducting cost-effective rapid biological assessments of lotic

systems.

2.4 Summary of Biological Monitoring

Papers by Walley et al. {170] and Hawkes (53] contain sections discussing the

limitations of biological surveillance. These can be summarised as follows.

i. Biological surveillance provides an indirect measure of the water qual-
ity, thus chemical analysis is still required to pinpoint the cause of any

pollution.
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i1. Biological surveillance should ideally incorporate all aspects of the ecosys-
tem, but such appraisal demands considerable sampling effort and pro-

cessing.

{ii. At present the data generated by the biological surveillance can only be
fully understood by an experienced river ecologist, thus score systems and
indices have been developed to simplify the data to an easily understood

form, but hence result in a substantial loss of information.

. Poor quality water, when determined by biological methods, can be con-
sidered to be poor quality, but biologically good quality water may not be

good from a human point of view, since in may contain many pathogens.

v. Water quality is not the only factor affecting the composition of benthic
communities: others include the substratum composition, current veloc-
ity and the nature of the surrounding catchment. This makes spatial

comparison between sites difficult using the traditional score systems.

vi. It is difficult to use biological measures to set environmental quality
objectives, as it is very hard to predict what remedial action 1s necessary

to restore a degraded environment to achieve a biological objective.
Despite these weaknesses biological surveillance provides the following benefits.

.. The benthic communities act as continuous monitors, in contrast to the

periodic sampling regimes used for chemical analysis,

i, The response of the benthic communities covers a wide range of deter-
minants and pollutants, whereas chemical tests are only carried out for
chemicals which are likely to be found. Thus, the less common or com plex
chemicals will not be tested for and hence not detected, even if present

in significant concentrations, other than by biological surveillance.

The potential of artificial intelligence in overcoming some of the above lim-
itations, especially in the classification and interpretation, is very real. How-

ever, its acceptance into mainstream use is likely to meet resistance because of

its novel approach and the relative complexity of its mathematical foundations.
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Chapter 3

Artificial Neural Networks

3.1 Introduction

This chapter reviews the areas of neural network research that are pertinent to
the applications considered in this dissertation. There is only a small body of
literature on the specific application of neural networks to the interpretation
or classification of benthic invertebrates for river water guality classification,
including Ruck et al. [148] and Walley [168] which 1s discussed in Chapters 4
and 5.

The term ‘neural network’ envelops a wide range ol static and dynamic
mathematical models that are characterised by a high level of interconnectivity
of simple processing units. Iven this broad definition, however, fails to cover
all of the models that fall within neural network research. The term ‘neural’ is
a little misleading, for although the original motivation behind early research
was to model the structure and function of the brain, present-day models are
often biologically implausible, and are frequently referred to as connectionist
systems to remove the biological overtones. What neural nets do represent are
generalised non-linear models which are well suited for use in prediction and
classification tasks, for they are universal approximators capable of performing
complex function approximations and mappings (145, 40]. The models, while
not being strictly non-parametric, incorporate no prior assumptions of the
relationship between the input/output mapping [141], and are occasionally
referred to as semi-parametric models [142]. There have been numerous review
articles [91, 92, 64, 60], books [172, 124, 7, 58], and collections of papers [3, 2]

published which are good introductory texts to the discipline.
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All the networks considered within this dissertation are static deterministic
models, in that the equations used have no temporal component; the output of
each network is a function of the current input only [64]. In contrast, dynamic
systems, for example recurrent neural nets, have a time component, usually
via feedback connections [173]. Of all the possible static models available the
Multilayer Perceptron (MLP) has received the most attention in the scientific
literature, and is the basic model considered n this dissertation. Another
popular model is the Radial Basis Function (RBF) network [15, 134, 135]. The
performance of the RBI networks are typically of the same order as that of the
MLPs, and have not been considered 1n detail in this dissertation. However,
recently their hidden layer units have been used to provide an additional level
of interpretation that is not possible with MLPs[143]. This is discussed in the
Section 5.5 which looks at novelty detection in the input data.

The field of neural network related research has grown rapidly since the
landmark publication by Rumelhart et al. [151). This is demonstrated by a
quick search on the terms ‘neural network’ and ‘multilayer perceptron (MLP)’
of the Science Citation Index, which shows a huge increase in the frequency
of the references since that publication. As shown in Table 3.1, there was a
geometric increase in the nuniber of publications over the first few years, which
has only recently began to level off. This makes a comprehensive literature
review difficult on two counts; firstly the diversity and sheer quantity of the
references means that it is infeasible to cover (or even find) all the work relevant
to this study; and secondly the expansion is happening so quickly that anything
published may be out of date or superseded by the time it 1s published in a
journal or has been presented at a conference.! The range of applications that
have seen neural networks applied to them has been vast, with two large areas
of interest being speech processing [11, 135, 108] and handwritten character
recognition [89, 61].

The majority of the models in this report have been trained using su-
pervised learning procedures. Supervised learning uses data sets that have
class labels that specify the correct classifications for a particular input vector;

whereas in unsupervised learning the data have no labels, the classes are iden-

IEven keeping track of the relevant journals and conferences is no easy task.
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H Year ] Frequency H

1986 64
1987 109
1988 550
1989 941

1990 1281
1991 2055
1992 2650
1993 2608
1994 2538

Table 3.1: Frequency of papers published with key-words of ‘neural
network’ or ‘multi-layer perceptron (MLP) since 1986 from the
Science Citation Index.

tified after the learning phase. Thus supervised systems are presented with a
set of example input-output pairs, and are modelled (trained) to implement a
mapping from input to output that matches the underlying generator of the
data as closely as possible, to an appropriate level of precision. Whereas un-
supervised systems form their own classifications, where the class membership
is based on common features in the input data [7]. The words training and
learning, in neural network parlance, refer to the selection of the model’s pa-
rameters, in statistics this is referred to as estimation. Ior simple networks
the parameters are the interconnecting links between the nodes of the network,
the links can take on different strengths (weights) which are adjusted during
the learning phase. The selection of the most suitable (probable) parameters
is dependent upon one set of data, this data being referred to as the training

data.

3.2 The Multilayer Perceptron

The key building block of a MLP network is the single perceptron unit, [Fig-
ure 3.1 [100, 147]. A single perceptron unit takes an n-dimensional input vector
and produces a single scalar output. A weighted sum of the inputs is computed
and to this a bias value is added. The result is passed through a non-linear

transform to produce the output. The non-linear function 1s referred to as
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Figure 3.2: A typical multilayer perceptron (MLP) network.

the activation or transfer function, and in early networks it was commonly the
step (Heaviside) function.

A cascade of single perceptron units into layers creates the topology known
as the multilayer perceptron (Figure 3.2). The action of a single unit or node in
the network is equivalent to a single perceptron or processing unit, although it
is more usual to use a sigmoidal activation function (similar to the one shown in
Figure 3.1) rather than the step function. A wide range of activation functions
can be used, including sigmoids, linear and hyperbolic (e.g. tanh). All these
functions are continuous, vary monotonically and are differentiable, conditions
which are necessary for gradient evaluations (derivative information) in the

minimisation algorithm.
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It has been demonstrated that a three layer MLP (i.e. having one hidden
layer) is capable of forming an arbitrarily close approximation to any singled-
valued continuous mapping [92, 64]. These results require that the non-linear
transform is a continuous, smooth, monotonically increasing function that 1s
bounded above and below, but there is no requirement for the non-linear func-
tion to be present on the output layer. For this reason, it is quite common to
see linear transfer functions on the output units as this makes the learning pro-
cess less costly computationally. However, the number of hidden units required
to achieve these mappings may be exceedingly large, and problems relating to
training time and function minimisation become important constraints.

The first two-layer MLPs were shown by Minsky and Papert [105] to be
computationally limited. Extensions to three layers (i.e. more computation-
ally capable models) were unable to be implemented as no algorithm had been
developed which could solve the so-called credit assignment problem. The
error back-propagation algorithm, which allowed a three layer MLP to over-
come the credit assignment problem (and hence to learn), was introduced by
Rumelhart et al. [150].? Similar work had also been independently described
by Werbos [174] and Parker [125].

The most commonly used arrangement of perceptron units 1s a three layer
network, composed of input, hidden and output layers.® The nodes on the
input layer are not processing units, for there is no computation carried out
on these nodes; the values placed on the input nodes are simply the mput
part of the input-output pairs in the training data. The nodes on the hidden
and output layers are processing units, with their inputs being generated by
preceding layers. The interconnection scheme is usually of the form; all input
units are connected to all hidden units, and all hidden units are connected
to all output units, as in Figure 3.2. This is described as a fully connected
network. Alternatives are possible; these include additional hidden layers,
skip layer connections (e.g. input to output) or a sparser connection scheme

between layers.

2MLP describes the architecture of the network, while back-propagation is the learning
algorithm that is used to adjust the strength of the links between the processing units.

3Notationally, this kind of network is also frequently referred to as a two layer network.
In this dissertation the network shown in Figure 3.2 1s a three layer network, and is the one
which is used for the majority of the experimental work in Chapter 5.
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3.3 The Back-Propagation Algorithm

The back-propagation algorithm [150] consists of two distinct phases. The
first stage is the forward propagation of the input pattern from the input
units, through the hidden units, to the output umits. Firstly, the hidden units’

values are calculated by:

y; = ‘/-H (Z wyT; + 07> (J])

where y; is the output of the jth hidden unit, wj; is the weight connecting the
sth input unit to the jth hidden unit, z; is the value of the ith component of
the input vector, 6; is the bias to the jth hidden unit, and f7(-) is the hidden

layer (H) activation function. Secondly, the network’s outputs are given by:

ye =17 (Z Wiy, + Ok) (3.2)
f

where yj, is the output of the kth output unit, wy; is the weight connecting the
gth hidden unit to the kth output, y; is the output from the jth hidden unit
(as defined in Equ. 3.2 above) and 0y is the bias for the kth output unit, and
fT(-) is the output (or target, T layer activation function.

In the second stage the output signals from the network are compared to
the desired or target outputs, and an error signal 1s back-propagated through
the network to adjust the strengths of the links. The usual error function used
is the mean square error (MSE), thus:

—net ] P Y4 2 g oF
et = o5 ) vk =tk (3.3)

pk

where E™ is the MSE, P is the total number of patterns, {7 is the target
for the kth output unit and y} is the network output of the kth unit for
the pth pattern. Other error terms are commonly encountered, for example
when the output units are considered to represent probabilities a cross-entropy
error term is used in conjunction with soft-max constraints [14]. The soft-max
algorithm constrains the outputs to sum to unity and to take on values between

0.0 and 1.0.
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A steepest (gradient) descent algorithm can be used for minimising the

function E™! with the change in link strength being given by:

aE;,et

awi]—

Aw;; = =1 (3.4)
where w;; is the strength of the link between units 7 and 7, the parameter n
is the learning rate (usually lying in the range of 0.0 to 1.0) and L7 is the
error for the pth pattern. A commonly used extension to this equation is the
addition of a momentum term, thus:
a];net
Awijnew = —?? . + CY(AU.)'”)O{({ (35)

JWi 5

The first derivative of the error (E}¢") with respect to the hidden-output

weights is given by:

QL [Owe; = Sify i (3.6)
where:
5}; = (yk — tk) (37)
and
1T a T 90
Je = 5;/& (3’,‘) IlZ:Z]-U!k]'yj-I—o;; : (‘;E))

Likewise, the derivatives of the error with respect to the input-hidden layer
weights 1s thus:
jane 1 H ¢
(9/3,/;”/310]»,» = (Sljjl X; (Jg)

where the delta term is given by:

8§ = 8 frl we (3.10)
k
and 5
fi7 = I (@) o= ks, - (3.11)

The weights can then be adjusted either after all the patterns in the training
set have been presented (batch or off-line learning) or after each individual
pattern has been presented (on-line learning). Other processes are also en-

countered. The weights are adjusted in an iterative fashion until a suitable
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stopping criterlon is met.

The problem of minimising the error function can be considered as an un-
constrained optimisation problem, as the weight values are not constrained
and can take any real scalar value. The two most commonly unconstrained
optimisation procedures used for neural net minimisation, apart from steepest
descent, are the quasi-Newton style algorithms and conjugate gradients meth-
ods [44, 38, 131]. These methods tend to be very robust when compared to
simple steepest descent (with or without a momentum term), and this removes
the need to choose suitable values for the learning rate, 77, and the momentum,
o, which has been discussed and endlessly refined in the literature [62, 130].

All descent based algorithms suffer from problems of encountering local
minima during the training phase, which can halt learning before a reasonable
solution has been reached. Even so, many of the solutions obtained are satis-
factory and provide good results in practice. Global optimisation procedures,
such as simulated annealing, are available but are costly computationally and

are rarely used in practical problems at the present time.

3.4 Generalisation

The performance of classifiers should be judged on new data, not just on
the set of training examples used to determine the model’s parameter. The
ability of the model to predict or classify new data, independent of the training
data, is referred to as the generalisation ability of the model. A measure of
the generalisation capabilities of each model should be included in the model
selection process to safeguard against a highly biased, and possibly unreliable,
model being selected for use in the final system. Learning can be considered a
two-level process: firstly the classifier learns the coarse features that distinguish
between sets of objects in different classes; then further learning produces a
more exact mapping by fitting the model to the noise. The process 1s not
discrete, but continuous, and it is essential to stop the learning procedure
hefore the fitting of the noise starts to degrade the model’s ability to generalise.

The level of fitting allowed is related to the smoothness of the error function.
The more complex the network the less smooth the fitted function is likely to

be, and hence the greater the possibility of over-fitting the data. In feed-
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forward networks the smoothness can be controlled by a regularisation term,
which is added to the error term £ to penalise the complexity of the network.
The total error E is then given by:

£ =E" 4+ )C (3.12)

where E™ is an error measure based on the misfit of the mapping (e.g. Iiqu. 3.3)

and AC is the regularisation term with A being a scaling parameter and C' the
complexity measure.
In neural network literature the regulariser most commonly encountered is

weight decay regulariser, which is defined by:

1 ,
C:§;w3 (3.13)

where w; is the ith weight in the network, and n is the total number of weights
in the network. Here the weights are represented as a single vector, as topo-
logical considerations of the connection scheme are not required. The weight
decay of Equ. 3.13 can also be interpreted from a Bayesian perspective [94, 95].
In linear statistical models weight decay is akin to ridge regression methods,
reducing the effective number of parameters by removing the independence
between the individual weights. Nowlan [120] describes other, more sophisti-
cated, regularisers that can be implemented.

Another factor affecting the complexity of the mapping, and hence the
generalisation, is the number of parameters used to achieve the mapping. The
greater the number of ‘effective’ parameters the more likely it is that overfit-
ting will occur, and thus the more likely that the generalisation ability of the
network will be poor [107, 110]. As the number of input and output units
are determined by the size of the data sets, the number of weights within the
network is dictated by the number of hidden units and the interconnection
scheme used. The larger the number of hidden units the greater the num-
ber of parameters within the network. The most suitable number of hidden
units to use is problem dependent, with some simple mappings needing only
a few units, while others require hundreds or even thousands. There are ad

hoc methods for the determination of the most suitable number of hidden
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units, but the best method is experimentation using either cross-validation or
Bayesian based analyses.

There are various formulae for assessing the ability of a network to gen-
eralise, but these only provide upper and lower bounds limits. The difficulty
in obtaining a reliable generalisation measure is due to the non-linear transfer
functions and the intractability of the mathematics involved with this. Most
of the formulae (e.g. the Vapnik-Chervonenkis Dimension (VC dim, (166, 64]),
or the Generalised Prediction Error (GPE, [107])), suggest that the number
of effective parameters (weights) should be much smaller than the number of

training cases.

3.5 Model Selection

Final model selection should be based on data which are independent of the
training data. This requires that the full set of data, all the available samples,

be split into three parts as illustrated in Figure 3.3:
i one for the determination of the model’s parameters (training data),
ii. one for the selection of the most suitable model (validation data), and

iii. one for the testing the model’s performance on the independent data
: |

(testing data).

This is considered further in Section 5.2.2.

Henery [57] discusses comparative methods of model selection for classifi-
cation problems, and some of his ideas have been used in this dissertation to
aid comparison between different neural net models. These include the esti-
mation of error-rates using train and test methods, cross-validation, and the
organisation of comparative trials. Hypothesis testing can be carried out be-
tween individual experiments, based on the t-test, and also confidence Imits
can be placed around a regression network’s predictions [72], but these must
be treated with caution as assumptions made may not be strictly valid. Al-
ternative methods can be used, including boot-strapping, cross validation and
Bayesian analyses [94, 95, 28, 162].
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Comparisons of neural networks with other classification systems have been
made by Thrun et al. [163], Ripley [141] and Michie et al. [104]. In Michie et
al. [104] a number of machine learning, neural and statistical algorithms are
compared over 22 large data sets. I'rom these studies it can be seen that the
relative performance of classification methods is very problem dependent, and
although there may be some prior knowledge of when particular algorithms are
unsuitable, very little can be inferred about relative performances on specific
data until experiments on them have been conducted. Although some work
was carried out within this project which compared the performance of stan-
dard statistical techniques with that of neural networks, it was not the major
concern of this dissertation.

Another idea which is explored in this dissertation is that of using a combi-
nation of models to form a consensus classification, akin to a panel of experts
which is called upon to make a decision [120, 70, 79, 88, 142]. There are several
possible methods of combining a series of models and these are discussed in

more detaill in Section 5.3.5.
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3.6 Bayesian Perspective

More recently a Bayesian perspective has been applied to the theory of neural
network models [17, 116, 94, 95, 117]. Using Bayes’ theorem the probability

of a model N; given an observed data set D can be written as:

P(DIN:) P(N:)

PNiID) = P(D)

(3.14)

To compare different models only the P(D|N;) term needs to be evaluated for
each model (assuming each model is equally likely), and this term is called the
evidence for model NV;. Bayes’ theorem can be applied to different levels of the
modelling process, and extends naturally to cover regularisation expressions.
The Bayesian framework provides many important features, which include
for prediction (interpolation) problems being able to place error bars or confi-
dence limits on the network predictions. This is especially important in engi-
neering applications where a measure of confidence is essential if a prediction
is to be of any value. The error bars reflect the density of the training data, in
that where the training data is sparse the error bars are larger than in other
regions with a higher density of training data. A second important aspect is
that the regularisation coefficients can be optimized using only the training
data, thus removing the need for a cross-validation data set. It also allows
for comparison of models of different type (e.g. MLPs, linear discriminants or
RBFs) as well as different topologies (e.g. different numbers of hidden units).
The drawbacks of the Bayesian methods are the increased complexity of
the programming required to implement the theory and that numerical insta-
bilities occasionally occur when evaluating the evidence if the parameters of

the network are poorly determined.

3.7 The Future

At the present time, the mathematical and statistical theories of the structure,
function and behaviour of neural networks are being consolidated. Much of
this work is particularly mathematical in nature, especially the development of

Bayesian methods, and this will take some time to filter down into mainstream
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use. Perhaps, the major reason for the popularity of the back-propagation al-
gorithm is its intuitive representation and that it is comparatively easy to
write in computer code or in statistical packages. It is a fairly easy exercise
to implement a working three layer MLP model using the back-propagation
algorithm, and in some respects the benefit of the more sophisticated neural
network models does not outweigh the costs of writing and debugging addi-
tional, and frequently more complex, code. However, the availability of good
quality software packages (both commercial and public domain freeware) which
implement neural network models is steadily increasing and this should help
to promote the use of more advanced networks.

Areas that will receive much greater attention will include the reliability,
confidence (which is related to novelty), model-order selection of the mod-
els and the use of committees of models. With the increasing use of neural
networks, and other non-linear statistical models, in critical tasks and con-
trol problems the need for confidence in the output of the neural network will

become more important. Some of these issues are considered in Chapter 5.

3.8 Summary

Multilayer perceptrons are popular mathematical models for classification and
prediction tasks. They are more successful than what the critics suggest, but
less remarkable than the most ardent supporters claim. However, the technol-
ogy is becoming more common place and will be soon start filtering through
to domains other than, for example, speech recognition, hand written char-
acter recognition and image processing, which are traditionally the interest
of mathematicians and computer scientists. This dissertation aims to demon-
strate that the application of these new tools of Alin the domain of biological
monitoring is relatively easy and has the potential to produce many benefits,

although a radical shift of ideas may be necessary for them to be realised.



Chapter 4

Analysis of River Data

4.1 Introduction

This chapter describes, analyses and discusses both the biological river data
and the underpinning conceptual arguments that form the core of this disser-

tation. The chapter comprises three main sections:

Section 4.2 describes the elicitation of knowledge from the Expert, and ex-
plains the basic assumptions underlying both the elicitation and the clas-
sification system. The latter is used as the conceptual basis for many
of the following arguments. The probabilistic knowledge was elicited n
two ways. The first was by direct elicitation of probabilistic information
from the Expert, which was conducted by Boyd and Walley as part of
an associated PhD project [12]. These probabilities formed the knowl-
edge base of the evidential reasoning system christened BERT (Benthic
Ecology Response Translator) by Walley et al. [170], and this can be
considered as the starting point for the work in this dissertation. The
second, indirect, approach to elicitation, which served the dual purpose
of providing the required probabilities for BERT and a good quality data
set for the training and testing of the neural network models, simply
required the Expert to classify invertebrate samples into a biologically

based quality class.

Section 4.3 describes the Severn-Trent data which was the project’s key

data set. This data is used extensively in the neural network experiments

(Chapter 5) and for the identification of indicator taxa (Chapter 6). The

data set consisted of benthic invertebrate records together with some
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chemical and physical information on the sample sites. The format of
the data is reviewed and many of the problems associated with benthic
data are discussed. The data were classified by the Expert and the
consistency of the Expert’s classifications is investigated and discussed.
The popular biotic indices are compared with the biological classification

mentioned above, by use of the expertly classified data.

Section 4.4 describes the additional river data sets that have been studied.
These include a set from the old Yorkshire Water Authority, the NRA
National Survey database and synthetic data based on the conditional
probabilities of the direct elicitation sessions. The National database 1s
used to present distributions of some of the key taxa families, as well as
the variation in the BMWP score and ASPT between the different NRA
regions. The synthetic data set was used extensively during the neural

network experimental work.

Finally, the chapter is summarised and the main findings are highlighted.

4.1.1 Chronology of Project Data

A feature of the project is that a wide variety of data have been studied because
changes in the availability of data influenced the direction which the project
took. At the start of this project the BERT system’s knowledge base had just
been extended from 20 to 41 taxa, and a small set of Yorkshire River Authority
data, comprising some 50 samples, was available for some preliminary small-
scale neural network experimental work. However, the quality of this data was
poor and no further work was undertaken using this data once more suitable
data became available. The next data made available was that from the Severn-
Trent Region of the NRA, and this was the main data studied in the project.
During the final stages of the project it was decided to extend the neural
network work to provide results from a larger data set, thus a synthetic data
set was created using the probability distributions derived from the direct
clicitation exercise. While this work was being completed the NRA’s 1990
National Database was made available, but at this late stage no more than a

summary analysis was possible.
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4.2 Biological Classification and Knowledge

Elicitation

4.2.1 Introduction

The elicited knowledge from the Expert can be categorised into two types:
qualitative and quantitative. The qualitative knowledge encapsulated the ba-
sis of biological monitoring using benthic invertebrates as indicators, while the
quantitative information specified conditional probabilities of finding particu-
lar taxa in particular levels of abundance in a watercourse of a given water
quality [170]. It was the latter probabilistic information that was encoded into
the BERT system, while the former, qualitative information was unstructured
and quite diverse, and would be difficult to apply in a plausible reasoning sys-
tem like that of BERT. A rule based system could have been developed from
a structured set of qualitative rules, but difficulties in handling uncertainties
would have arisen.

Two methods of elicitation, namely direct and indirect, were used to gen-
erate the conditional probabilities. For the direct elicitation the Expert graph-
ically depicted the conditional probabilities, while the indirect elicitation took
the form of the Expert classifying complete samples of henthic data. The re-
sulting classified data allowed supervised learning procedures to be used for the
training of the neural networks. The classification system which was adopted
was an important part of the knowledge elicitation exercise, and is explained

in the following section.

4.2.2 Biological Classification

Classification can be viewed as a method of introducing convenience into the
description of complex data. The biological classification (i.e. a system of
classes based on measures taken from the biology) used in this dissertation 1s
a simplification of complex naturally occurring phenomena, but is conceptu-
ally valid despite its simplicity. The biological classification is based upon the
level of organic pollution in a river, and as such is equivalent to many of the

biotic indices that are encountered in the literature. Although this may seem
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somewhat narrow, as many of the more serious pollutional episodes do not fall
under the category of organic pollution, it provides a means of comparing the
proposed method with the existing ones, which 1s important for the introduc-
tion of any new system into an existing field. Additionally, if another source
of pollution were to be affecting the community structure then this could be
reflected by the classification. For example, a river with some organic and
some toxic pollution may be classified as one grade worse on the organic scale,
resulting in equivalent organic gradings in biological terms.

Another possibility could be to view water quality as a multi-dimensional
space, with organic pollution considered as a single dimension within this
space. Other dimensions could be considered in isolation, such as heavy metal
pollution or acidification, and for these a similar conceptual classification sys-
tem could be adopted. This implies that the methods used in this dissertation
for classification are extendible to cover other types of pollution apart from
organic.

The continuum of organic pollution was split into five main classes, with
these classes being chosen to mirror the present NWC classification. The
classes were labelled as Bla, Blb, B2, B3 and B4, with Bla being the best
quality and B4 being the poorest.) Figure 4.1 depicts this, as well as a finer
13 class scale that was also used in a later elicitation exercise. The first thing
to note is that there is a distinct ordering to the classes (Bla to B4), but there
is 1o explicit idea of distance between the classes. This can be described as an
ordinal set of classes [31]. The second important aspect to the classification is
that it is based on the Expert’s subjective assessment. This is important as
it implies that the classification will differ between experts, and it is unlikely
that any two experts will agree precisely.

The subjectivity of the classification appears to be a weakness, as most of
the time the goal is for objectivity and the elimination of subjectivity. But,
‘t is much better to make the subjective aspect explicit and use objective
methods for any inferences from the starting assumptions than to assume the
modelling process is objective (when typically it is not) and cloud the results

with implicit (and often unstated) assumptions. Any biomonitoring system

1For the remainder of the dissertation this classification system will be referred to as the
‘biological classes’.
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Figure 4.1: Classification of river water quality into classes based
on organic pollution.

that uses autecological information will be to some extent subjective, just as
water quality is [52], and, for example, the BMWP system has a subjective
basis underpinning its implementation.

The similarity between the biological classification system in this disser-
tation and the Saprobic system is particularly apparent. The core Saprobic
system uses five classes (although additional classes are occasionally drawn
upon) and is based on organic pollution. Figure 4.2 shows the likelihood of
finding Gammarus pulez and Asellus aqualicus in a given biological class. The
Saprobic valencies (which sum to 10 not 1 like the probabilities) for G. pulex
compare quite well with the directly and the indirectly elicited probabilities,
but relatively poorly in the case of A. aqualicus. Iigure 4.3 compares the
Saprobic valencies with the directly clicited probabilities for Baetis rhodani,
showing excellent agreement between the two. Also, during a separate elicita-
tion exercise, the Expert referred to the NWC classes in terms of the Saprobic
classes,? so there is some subjective relationship, in his mind, between our
classification based on the NWC and that of the Saprobic system.

The main utility in using a classification system based on the NWC (and

resembling the Saprobic) is that there 1s a clear monotonic relationship between

21 A. Hawkes, personal communication.
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Figure 4.3: Comparisons of direct elicitation of biological class with
the Saprobic valencies for Baetis rhodani.
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the quality class and the level of organic pollution. This is not the case with,
for example, the BMWP score, where it is possible to have a non-monotonic

relationship between the score and the level of organic pollution.

4.2.3 Direct Elicitation

During the development of the BERT knowledge-based system a series of knowl-
edge acquisition sessions was conducted by Walley and Boyd [12]. A brief
summary is given here as their work was extensively drawn upon during this
project. There were two stages to the direct elicitation process: initial sessions
aimed at extracting the core philosophies and conceptual bases of biological
monitoring, and later sessions directed toward the acquisition of ‘hard” knowl-
edge, which formed the core of the BERT knowledge base. The early interviews
gathered information on the principles of biological monitoring, and without
doubt helped to shape the eventual system. The information garnered included
what the Expert looked for when interpreting a sample, how the information
was recorded and disseminated within the water industry, the utility of using
biological data, the interpretation of the data, its benefits and disadvantages
when compared to chemical methods, and the existing systems used to assess
and classify rivers.

Building upon the first stage, ‘hard’ probabilistic knowledge was elicited
from the Expert using a graphical approach, which required the ISxpert to
draw histograms representing the likelihoods of finding particular taxa given
different quality classes. The list of key indicator taxa used in the BERT system
was elicited in three stages, Table 4.1 lists the taxa and the stages at which
they were selected. The criteria on which the list was drawn up were that
the taxa had to be readily identifiable and, as a set, cover the whole range
of quality classes, and that each taxon should occur fairly frequently in its
preferred class [170]. Four states of abundance were defined: absent, rare,
established or abundant. The precise definition of these states varied between
taxa, the details of which are given in Table 4.1.

Figure 4.4 summarises the probabilities of finding the taxa in each quality
class arranged in ascending order of tolerance to organic pollution. The order-

ing is based on a weighted average of the probability mass, with weightings
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Table 4.1: The forty-one taxa used in the BERT system.

Definitions: Rare = 1 to n;— 1; Established = ny to np— 1; Abundant >= n,.

I

First Set

Third Set

N9

|

\nl t 9 ]

| 7?,} ]

Lymnaea peregra 3 50
Tubifex tubifex! 5 | 200
Erpobdella octoculata 3 20
Asellus aquaticus 3 50
Gammarus pulex 3 50
Leuctra fusca? 3 20
Rhyacophila dorsalis 2 20
Hydropsyche angustipennis | 3 50
Simulium ornatum 3 50
Chironomus riparius 5 {100
Second Set

Lumbriculidae 5 1100
Glossiphonia spp. 2 10
Helobdella stagnalis 2 10
Baetis rhodani 3 50
Rhithrogena spp. 3 20
Ecdyonurus spp. 3 20
Caenis spp. 3 20
Haliplidae 3 20
Sialis lutaria 2 10
Other Hyd1'0p:sychidaue3 3 20

Polycelis nigra
Dendrocoelum lacteum
Potamopyrgus jenkinsi
Bithynia tentaculata
Planorbis spp.
Ancylus fluviatilis
Sphaerium spp.
Pisidium spp.
Hydracarina
Heptagenia spp.
Ephemerella ignita
Amphinemura sulcicollis
lsoperla grammatica
Dytiscidae
Elminthidae
Glossosoma spp.
Agapetus spp.
Polycentropidae
Hydroptilidae
Limnephilidae
Ceratopogonidae

2

w W ow

RIS

10
10
50
20
10
20
20
20
20
10
20
10
10
10
10
50
50
20
50
20
10

ILater accepted as Tubificidae

2T ater accepted as Leuctra spp.
30ther than H. angustipennis

of Bla=1, Blb=2, ..., B4=5 being used. The figure also shows the BMWP
score for each taxon. There is a fairly good correlation between BMWP score
and the order of taxa in the table. As can be observed from the figure, there

is a good coverage of all the quality classes, with a good mixture of taxa from

all the major benthic invertebrate groups.

There were two basic assumptions underlying the elicitation of the condi-

tional probabilities, these being that the sites in question were:

;. riffle sites (i.e. quick flowing river, eroding substratum), and

ii. were affected by only organic pollution.
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Isoperia grammatica (10)
Leuctra spp. (10)
Amphinemura sulcicollis (10)
Ecdyonurus spp. (10)
Polycentropidae (7)
Other Hydropyschidae (5)
Elminthidae (5)

Caenis spp. {7)

Rhyacophila dorsalis (7)
Limnephilidae (7)
Gammarus pulex (6)
Hydropsyche angustipennis (5)
Hydracarina
Ceratopogonidae
Potamopyrgus jenkinsi (3)
Ancylus fluviatilis (6)

Pisidium spp. (3)

I

Baetis rhodani (4)

Figure 4.4: Histograms of the probability of finding a taxon present

i

in a given water quality class (derived from the direct elicitation),
with the appropriate BMWP score given in brackets. Five discrete
levels are shown, these are in descending order of size:

p>07,p>05p>03p >01 and p > 0.0.
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Figure 4.4: Histograms of the probability of finding a taxon present in a given water
quality class (cont’d).
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The probabilities derived by direct elicitation for use in BERT, also proved
useful in this (neural network) study, as they allowed synthetic data sets to
be created which reflected the elicited information. This is fully described in

Section 4.4.2.

4.2.4 Indirect Elicitation

The direct estimation of frequencies and probabilities was somewhat unnatu-
ral for the Expert. It was then realised that an alternative and perhaps more
effective approach would be to elicit the Expert’s knowledge indirectly by get-
ting himn to classify a representative set of benthic samples, and then using this
information to extract the conditional probabilities. This process came more
naturally to the Expert than the estimation of probabilities. The classification
of samples was a particularly attractive approach since it clearly served two

purposes, these being that it provided:

;. the data necessary for the supervised training and testing of the neural

networks developed in this study,

ii. a means of deriving additional conditional probabilities which were rep-

resentative of real-world data.

The main data to be classified in this way was the Severn-Trent data. The
synthetic data was also classified by the Expert, but this was done to gain feed-
back rather than to solely classify samples or to generate conditional probabil-
ities. In addition, the indirectly elicited probabilities later provided the basis
of the study into the indicator value of taxa, which led to improved coding of
the input data to the networks and a corresponding increase in performance
(Chapter 6).

Problems were encountered with the indirect elicitation in two areas. The
first was that the Expert occasionally had difficulty classifying some samples
due to conflict between the nature of the sample and the assumptions underly-
ing the classification system. The most common problem was that the samples
clearly contained several species commonly found in pools, thus indicating that

the site was probably not strictly a riffle.
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The second area of difficulty was how much information should the Expert
be given to classify the samples. Since the computer-based systems, both
neural and knowledge-based, were originally going to use the 41 indicator taxa,
the question arose as to whether the Expert should base his classifications on
the full sample, possibly along with any physical or chemical information, or
only on the same data which would be presented to the computer systems.
The decision was made to allow the Expert to see the full species list when
classifying the samples since the object was to develop systems which correctly
classified river quality, albeit on a subset of the available data, not to test the
ability of the Expert to reason with incomplete information. This also meant
that no further classification would be necessary if the list of 41 key taxa were
increased, modified or even reduced to a few key taxa. However, it also meant
that it was possible to have identical data input to the system having different
classifications. The reason for this was that taxa outside of the subset of the
41 key groups may have swayed the Expert’s classification one way or another,
and this would not be reflected in the data presented to the models. This 1s
the price of data reduction, but it is offset by gains in other areas, such as the

need to record information on fewer taxa.

4.2.5 Sources of Information Loss

Throughout the elicitation sessions, as well as in the experimental work, an
issue that kept emerging was that of information loss. This section briefly
expands on this in qualitative terms, whereas Chapter 6 takes a more restricted
quantitative approach. The problem of information loss arises in many forms
throughout the monitoring process. From the actual population inhabiting the
river bed to the final classification placed in a report there are numerous places
where information is lost (or equivalently, uncertainty is added). Iigure 4.5
shows this pictorially, and it is possible to conjecture about how information
can be lost at any particular stage. As the main focus of this dissertation 1s
the interpretation and classification of benthic samples some issues relevant to
this are discussed below.

As the community represents a complex, multi-dimensional system, and

the goal of classification is the allocation of a single one-of-N class, some
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Figure 4.5: Typical elements of a monitoring programme. All are
possible sources of information loss (after Norris & Georges [119])

wformation loss cannot be avoided. However, some biologists see the use of
quantitative data as detrimental to effective biological monitoring. They claim
that when too much reliance is placed on quantitative systems the biology is
seemingly relegated to second place behind the score or index derived from
them [39]. They view the use of scores as a convenience, to explain the data
succinctly to managers, and that it is a futile procedure to reduce the data
to simple numbers that do not convey the information that is present within
a sample. The line of argument may be valid, but it is not helpful to think
in these terms if biological monitoring is to have an impact on the quality
of classification. A reliable and efficient method is required to interpret and
summarise ecological data, without such a method the biological monitoring
procedures will never gain an equal recognition with their chemical counter-

parts.
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One source of information loss (or shortage, since it was not available) in
this project was that of physical information on the sample site (biotope). The
relevance of this when interpreting a benthic sample is succinctly stated by De

Pauw and Hawkes [24]:

“River benthic invertebrates are only of use as indicators of river
water quality when considered in the context of the biotope in

which they were found.”

However, none of the biomonitoring systems of scores or indices currently
in general use has specifically incorporated biotope type, despite the fact
that there is a definite difference in the fauna associated with pools and rif-
fles [93, 16]. Thus, biotope information is very relevant to the classification of
water quality, as has been recognised by the developers of RIVPACS. Biomon-
itoring methods have long favoured the use of riffle samples because the riffle
communities provide the most reliable means of classification. This is because
in riffles water quality is the most important factor affecting the community
structure. At pool locations environmental forces (e.g. substratum type) be-
come much more dominant. The riffle invertebrate allow greater discrimination
between differences in water quality than corresponding pool communities.
Riffle sites can, by their nature, support a more diverse fauna than a pool
site. In a riffle community an increase in organic matter can lead to either
an increase or decrease in the diversity of the community. For example small,
good quality streams (e.g. Welsh head streams) support only a limited or
restricted community. With the introduction of a limited amount of organic
matter, the nutrient availability increases. The net result of the input ol more
energy into the system is that there Is an increased diversity, with a larger
and more varied assemblage of animals resulting. IFurther increases in organic
load cause a reduction in the number of the sensitive taxa, leading to a less
diverse structure. This is shown schematically in Figure 4.6. Pool sites, which
have naturally higher level of organic enrichment, exhibit a more monotonic
relationship between organic pollution and diversity. An increase in organic
pollution is almost always accompanied by a decrease in the diversity of the

community.
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Figure 4.6: Schematic illustration of riffle and pool diversity.

Another area of uncertainty is sampling. There are two aspects to this prob-
lem; the first is what do you sample (riffles, pools or a proportion of both), and
the second is how do you sample it? The first question is inextricably linked
to the biotopes present at the site, and is particularly pertinent to the Severn-
Trent data described in the following section. Current NRA sampling policy
is that a sample taken at a site should be representative of all the biotopes
present. The samples resulting from the different biotopes are combined into
one species list. The single species list does not reflect any single biotope, so
additional uncertainty is added to any classification or interpretation placed
on these data because there is no indication as to the biotope from which any
particular taxon originated. This could only be avoided by keeping the samples
separate, but this would lead to an increase in costs associated with storage
and handling. In riffles, kick heel sampling 1s popular, but not all sites have
riffles. For slow flowing or deep rivers there are a number of alternative possi-
bilities, but different sampling techniques can produce widely different species
list for the same location, which leads to difficulties in the interpretation [45].

The problems of information loss and uncertainty are always likely to be
present in any form of biological monitoring, so there will never be a definite or
precise system developed. The best recourse is to identify the potential areas
of information loss, and to try and minimise their extent. This will only be

achieved through good design of monitoring programmes.
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4.3 Severn-Trent Data Set

4.3.1 Base Data

The full database contained 1376 routinely taken benthic invertebrate sam-
ples taken from Upper Trent area of the Severn-Trent Region of the NRA.
Fach record contained the invertebrate sample, as well as additional physical
and geographical information (Table 4.2). The invertebrate records consisted
of four fields, these were the taxon’s name, its abundance level, Maitland
code and sample number (see Appendix Al for the database’s full taxonomic
list). The Maitland code [96] is an cight figure number which is split into four
groups of two digits, and is useful for sorting and searching for taxa within
a database. For example in the Severn-Trent database the Maitland code for
Gammarus pulez is 371402 06: 37 is the order Amphipoda, 14 is for the family
of Gammaridae, 02 is the genus Gammarus and finally the species name pulex
is represented by 06. Thus, any taxon which is in the Gammaridae family will
have a Maitland code of 37 14 xx xx, and any species of the genus Gammarus
will be 371402 xx. Fach species has a unique Maitland code number, but un-
fortunately there were subtle differences between the Severn-Trent Maitland
code numbers and those of the National NRA, which meant some of the sorting
algorithms had to be rewritten when the National database was investigated.

The presence of a taxon was banded into six levels, with Table 4.3 show-
ing the total number of occurrences for each of the abundance levels in both
the full database and the 292 sample subset. These numbers, defining the
abundance levels, were slightly different to those used in the direct knowledge
elicitation (¢f. Table 4.1), so that there was no one-to-one correspondence be-
tween the abundances of the Severn-Trent samples and the BERT knowledge
base, but this did not unduly affect the neural network experimental work.
For convenience the six abundances of the Severn-Trent data were grouped
into three states (present, few, and com+) which were the best approxima-
tion to the BERT states of rare, established and abundani. The mapping from
Severn-Trent states to BERT states was: presenl — rare; few — established,;

and (common, abundant, very abundant and 1000+) — abundant.
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H Database Field ] Format (range) “
Water course Text
Site description Text
National grid reference | Alphanumeric
Location Text
Sample 1D 5-digit number
Date Day, month and year
BMWP score Numeric (1-166)

ASPT Numeric (1.0-7.6)
No. of BMWP taxa Numeric (1-30)
Total number of taxa | Numeric (1-36)
(

TBI score Numeric (1-10)

Pebbles % or a/p

Boulders % or a/p

Sand % or a/p

Silt % or a/p

Flow level Above, normal or below
Flow speed Fast, moderate, slow or static
Clarity Clear, cloudy or turbid
Odour None, slight or strong
Shade None, little or much
Depth (cm) Numeric (0-200)

Width (m) Numeric (0-40)

Table 4.2: Sample information available in Severn-Trent database.

WLevel of abundance ] Full database ‘ 292 Samples J}

Absent (0)

Present (1-2) 6416  (31.27%) | 1299 (31.15%)
Few (3-9) 8618  (42.00%) | 1787  (42.85%)
Common (10-49) 4193  (20.44%) | 829 (19.88%)
Abundant (100-499) 824  (4.02%) | 157  (3.76%)
Very abundant (100-999) | 386  (1.88%) 83 (1.99%)
1000+ 80 (0.39%) 15 (0.36%)

Table 4.3: Description of abundance codes in the Severn-Trent
database. The number of occurrences of each state in the full and
292 sample database are also given.
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Figure 4.7 shows a representative sample from the Severn-Trent database.
Some of the physical characteristics are missing and the substratum materials
are recorded as present/absent, not as a percentage showing how much of
each was present. The main difficulties, however, are with the taxonomic
list; some of the animals have been identified to species, some to genera and
others to family level (family level was the minimum, apart for difficult to
identify groups, e.g. Hydracarina). This in itsell is not a problem, but the
inconsistency from sample to sample was. Throughout the database this was
the case, and the main factor governing the level of identification beyond family
level appeared to be the particular biologist examining the sample. The group
of organisms which were of particularly interest to him/her were the ones
identified to the species or genera levels.

Another problem is revealed by the Glossiphoniidae, Glossiphonia com-
planata and Helobdella stagnalis entries. The Glossiphoniidae entry is recorded
as present and thus implies that there were only 1-2 individuals of the family
found in the sample. But, this was clearly not the case because two species of
the family, G. complanata and H. stagnalis are recorded as being few (3-9 indi-
viduals) and present (1-2) respectively. This implies that the Glossiphoniidae
entry should be read as meaning ‘everything else in the family Glossiphoni-
idae expect for species or genera recorded elsewhere’. This causes problems
with data processing on two counts. Ilirstly, the entries in the database are
no longer independent, and therefore require cross-referencing within the sam-
ple, thereby increasing the complexity of any searching and sorting routines.
Secondly, the abundances of, in this case, three groups cannot be combined to
form a single abundance level for the whole family. What exactly is the abun-
dance of a family that is recorded in three separate components as present(1-2),
present(1-2) and few(3-9)? Although such samples caused some concern, an
even more worrying case was where the subclass Oligochaeta was recorded as

present (1-2) and one of its families Tubificidae as 1000+.

4.3.2 Construction of 292 Sample Database

The first step in constructing the database for experimentation was the re-

moval of all the samples originating from canals. The remaining samples were
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Severn-Trent Region

Sow R. - Eccleshall

Sample No. BI 75416
Water Width . m
Sample Depth 20 cm

Flow

0il
Bould/Cobb
Pebb/Grav
Sand

Silt
Substrate
Reason
Lane use

Taxa Group
Oligochaeta

Mollusca

Coleoptera
Ephemeroptera

Diptera

Malacostraca

Hirudinea

Trichoptera

Total Taxa
BMWP Taxa

Normal, Medium

Rocks, Stones, Gravel,

Taxa Recorded

Tubificidae
Sialidae

Valvata sp.
Potamopyrgus jenkinsi
Lymnaeidae
Ancylidae
Sphaeriidae
Dytiscidae
Gyrinidae
Baetidae

Caenidae
Dicranota sp.
Chironomidae
Simuliidae
Asellus aquaticus
Gammarus pulex
Glossiphoniidae

Upper Trent Area

Date

Grid Ref
Location
Colour
Odour
Clarity
Algae
Macrophytes
Sew Fungus
Sand
Saline
Shade

Glossiphonia complanata

Helobdella stagnalis
Erpobdellidae
Leptoceridae

BMWP Score
ASPT

04/02/1991
SJ 831 296
70262820

: None

None
Clear
Present

Abundance

Few
Present
Present
Common
Present
Present
Few
Present
Few
Present
Present
Present
Few
Few

Few
Common
Present
Few
Present
Few
Present

Figure 4.7: A typical sample from the Severn-Trent database.
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ﬂ—Class \ Freq. ] Percentage ”

Bla 14 6.8%
B1b 67 32.7%
B2 104 50.7%
B3 19 9.3%
B4 1 0.5%

Table 4.4: Classification of 205 sample Severn-Trent database.

randomised and every sixth sample was selected, the result being a set of 205
samples. At the start of the project it was envisaged that approximately 300
samples would be sufficient for training the network models, however in the
light of progress made in neural network studies this now appears to be on
the small size. The 205 samples were classified by the Expert into five biolog-
ical classes, as described in Section 4.2.4. Table 4.4 shows the distribution of
the classes of this 205 sample data set. The percentages in the third column
are the best estimates of the prior probabilities of each class occurring in the
Upper-Trent catchment, based upon the available data. It can be observed
from this table that the distribution of the classes was biased heavily towards
those classes of intermediate quality. It was felt that this base set of 205 should
be augmented with additional samples from the remaining data to diminish
problems that could arise from the under representation of some classes.

The additional samples were chosen heuristically in two ways: one to select
more good quality samples (Bla and B1b) and the other was designed to select

more poorer quality samples (B3 and B4). The two criteria were respectively:
o TBI >= 9 and ASPT >= 6.0 for the good quality samples, and
e TBI <= 3 and ASPT < 2.5 for the poor quality samples.

The extra samples made the total data set up to 293 samples. Closer exam-
ination of this data revealed that there was one particularly unusual sample.
This sample contained a single taxon, namely Limnephilidae, and was classi-
fied as B2 by the Expert. As the Expert considered this sample to be very
unusual and unrepresentative it was decided to remove it from the database.

This left a database of 292 classified samples for use in the experimental work,
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H Class l Freq. I Percentage H

Bla 58 19.9%
Blb 71 24.3%
B2 103 35.3%
B3 35 12.0%
B4 25 8.6%

Table 4.5: Classification of 292 sample Severn-Trent database.

and Table 4.5 shows the frequency of the classes within this data set.

A map showing the location of the 292 samples is given in Figure 4.8. The
samples constitute a good mix of upland and lowland sites, and are represen-
tative of the whole of the Upper Trent Region. Also, both quality extremes are
represented; for example the good quality streams of the upland catchments
(e.g. R. Dove and R. Churnet) as well as the poorer quality ones of the indus-
trial West Midlands (e.g. R. Tame). Perhaps the most important aspect of
the Severn-Trent data was that the Expert was familiar with the area, as he
had spent most of his career working in the Severn-Trent region [168].

The Expert expressed some concern about classifying some of the Severn-
Trent samples, since the data did not strictly meet the riffle biotope assump-
tions. The uncertainty concerning the biotope was unavoidable as the NRA’s
present sampling policy is to sample all available biotopes within a site.

The new system of thirteen classes still used the original five class system,
but samples were either unaltered or adjusted up(+) or down(—) within their
original class as appropriate (see Figure 4.1). The best quality class was still a
Bla, as the Expert could not conceive of anything better than a Bla, while the
poorest class was still B4, as likewise the Expert could not picture a sample of
poorer quality classification than a B4. The reliability of these finer classifica-
tions is clearly lower than the original coarser one, as is indicated by the fact
that the new groups (4,—) are under represented in the data set (Figure 4.9).
Of the 13 classes, 8 are suffixed by + or —, but of the 292 samples only 95, less
than a third, fall into these bands. A reason for this disparity was the method
used to obtain the extra classifications. The Expert originally classified the

205 samples to five classes. When the extra samples were added these were
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Figure 4.8: Map showing the distribution of the 292 sample
database taken from the Upper Trent Catchment of the NRA
Severn-Trent Region.

Key: 1) R. Anker, 2) R. Blithe, 3) R. Blythe, 4) R. Churnet,
5) R. Cole, 6) R. Dove, 7) R. Manifold, 8) R. Mease, 9) R. Penk,
10) R. Rea, 11) R. Seance, 12) R. Sow, 13) R. Tame, 14) R. Tean,
15) R. Trent.
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Figure 4.9: Histograms showing the frequency of the biological wa-
ter quality classes (13 divisions) in the Severn-Trent database.

classified to the 13 class scale. The first 205 were then classified to the new
13 classes, with the original class available to the Expert. With this set the
Expert adjusted only a small percentage of the samples. If the exercise were
to be repeated then the samples would be classified to the 13 classes from the
start. Despite these weaknesses the finer classifications represent a gain in

information relative to the coarser classifications.

4.3.3 Confirmation Tests

An important question to be asked concerns the consistency and precision of
the Expert’s classifications, as the lxpert himself is a source of error. ldeally,
the Expert would be consistent from session to session with respect to his
interpretation of the quality class of a given sample. This is, however, unlikely
to occur in practice. In order to assess the Expert’s consistency a confirmation
exercise was conducted. Using a set of test data from a neural network run, all
samples that differed from the Expert’s classification by more than one division
were listed. This gave a set of 22 samples. Six small groups of samples were
formed and the Expert was asked to place the samples in each group into
quality order, and then to classify them. The original classifications were
withheld from the Expert until the completion of the exercise.

The results of the confirmation exercise, Table 4.6, are interesting for a

number of reasons. The largest difference between the original classification
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Expert (Orig.) | Expert (New)
Order ‘ Class | Order \ Class Comments
Group 1
76084 1 B1b 1 B1b A good Bl1b
74700 1= | B1lb 2 B1b- xLast two are
75395 3 B2+ 3 B2+ * closest
Group 2
74743 3 B2+ 1 B1b
74941 1= | Blb- 2= | B2+ * This is slightly
75005 1= | Blb- 2= | B2+ * better than next
Group 3
76023 3 B3- 1 B3
75616 4 B4 2 B3- x These are all quite close
74897 1= | B3 3 B4+ x Presence of Limnophora
75108 1= | B3 4 B4 * in 74897 is significant
Group 4
75881 2= | B2 1= | B2 * Little difference
75532 1 B2+ 1= B2 * between these
75340 2= | B2 3 B3+
Group 5
75334 1 B1b- 1 B2+
75072 2= | B2 2= | B2
75790 2= | B2 2= | B2
75935 2= | B2 2= | B2 C. riparius present
Group 6
74710 4= | B3+ 1 B2-
75610 1= | B2- 2= | B2/B3
74829 1= | B2- 2= | B2/B3
75541 = | B3+ 2= | B2/B3
76020 1= | B2- 5 B3 Clearly the worst

Table 4.6: Results of confirmation tests, with additional explaina-
tory comments from the Expert.
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and the amended class is two gradations on the thirteen class (minor) scale,
which is quite acceptable. It is also worth noting that the Expert was much
more at ease ranking the list of samples in a set than he was classifying them
individually. The ranking of the samples is more in keeping with his usual
methods of interpretation. The Expert was definitely influenced by the abun-
dance of some taxa, and commented to this effect frequently, especially when
finer differences between samples were being considered. The problems of in-
consistent levels of identification of taxa was also commented upon, a particular
case being Chironomidae and Chironomus riparius. A sample containing C.
riparius was considered to be of relatively poorer quality than similar samples
containing Chironomidae. This is because C. riparius is more tolerant of pol-
lution than the other members of its family, so identification to species level
in this case provides much more specific information. Additionally, some taxa
not within the 41 key groups influenced the Expert’s opinion, especially in the
better quality samples where the diversity of the species lists was implicitly

taken into account in this classification.

4.3.4 Comparison of Biological Classification with the
BMWP Score, ASPT, TBI and Number of Taxa

This section compares the biological classification, based on the NWC, to the
BMWP score, ASPT and TBI systems that are commonly used within the wa-
ter industry. In addition to these, the ‘Number of Taxa’ in a sample was also
studied, to give an indication of diversity within different biological classes.
Due to the absence of an absolute standard the biological classification was
taken to be the reference standard. Justification for favouring the Expert
classification, as pointed out by Walley [168], comes from the fact that the
Expert (H.A. Hawkes) was the chairman of the working sub-group of the Bi-
ological Monitoring Working Party (BMWP), so is very well acquainted with
both the BMWP score and ASPT. He also spent most of his carecer working
in the Trent region, hence he is familiar with the TBI. The Expert was thus
not overly biased towards any of these systems, so none should be particularly

disadvantaged.
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Grouping the 292 samples by the five biological classes, the maximum, min-
imum, mean and standard deviation of BMWP score, ASPT, TBI and Number
of Taxa (NOT) were calculated (Figure 4.10). To summarise the graphs:
BMWP Score
The mean descends from class Bla to B5, however there is a large overlap
between the Bla, B1b and B2 classes. The BMWP score discriminates poorly
between the lower quality B3 and B4 classes, and has a particular high variance
for the B2 class, which covers over 80% of the range of the BMWP scores for
this particular data set. The classes of good-to-intermediate quality (Bla-B2)
show the highest ranges. The resulting plot is typical of the BMWP score
because of its cumulative effect, and higher weighting of sensitive taxa.
ASPT
Again, the mean value of the ASPT for each class decreases with poorer bio-
logical quality class. There is better discrimination between the five biological
classes, but there is still an appreciable overlap, albeit much smaller than that
of the BMWP score. There is a better range of values for the poorer quality
classes (B3,B4), however it would be difficult to discriminate between the two
classes when given an ASPT of 2 to 2.5. Like the BMWP score, the range
of the intermediate classes are larger than those at either end of the quality
spectrum, but the standard deviations of the ASPT with respect to biological
class are smaller and more consistent than those of the BMWP score. Irom
these graphs it is possible to say that the ASPT is a more reliable indicator of
organic pollution than the BMWP score.

TBI

Considering only the Bla class, it can be seen that there is good agreement
between the TBI and the Expert. All of the samples classified as Bla had
either a TBI of 9 or 10. For the poorer quality classes, again, the B2 has the
highest range. Also there is some overlap between the B1b/B2 and the B3/B4
classes.

Number of Taxa

This is not usually used for classification purposes, but it does provide a feel-
ing for the diversity of the sample, although care must be taken because of
the methods used by the Severn-Trent sampling and identification procedures.

Again, the mean of scores for each class decrease with respect to increasing
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organic pollution, but both the B1b and the B2 have a higher number of taxa
than the better quality Bla class. This confirms the fact that diversity in-
creases with small amounts of organic pollution prior to decreasing with larger
amounts. There is again a large overlap between the Bla, Blb and B2 classes.

To a certain extent these results are not surprising. The biologoical clas-
sification is based on the Expert’s assessment of organic pollution, and as
the ASPT and TBI were designed to relate to organic pollution this explains
the resonable agreement between these and the biological classification. The
BMWP and NOT relate not only to organic pollution but also to environmen-
tal stresses, hence they do not match the Expert as closely as the ASPT and
TBI.

It appeared during the elicitation sessions that there was a similar line of
reasoning being taken by the Expert to that of the TBI, but it was not known
whether the Expert had been conditioned into this by prior use of the TBIL
[t appeared that the overall classification was decided upon by looking for
the sensitive species that were present, these were usually only a small subset
of the whole set of taxa, and an approximate benchmark was set depending
on the outcome of this secarch. Then by further examination of the other faxa
which were present the benchmark was either adjusted up or down according to
diversity of the sample or other factors which the Expert considered important.
It should be noted that the TBI was developed for rivers within the Midlands,
which is also the region most familiar to the Expert and also the source region
of the data. Thus it would be fair to say that good agreement could be expected
between the two.

A similar analysis using the 13 class scale results in slightly different inter-
pretation, Figure 4.11. The most noticeable difference is that the mean values
of the indices for the classes no Jonger descend uniformly; these graphs can be
used for the justification of the increasing diversity associated with a riffle site
(see Figure 4.6). The results are representative, but not conclusive because
of the small sample size of some of the classes (see Iigure 4.9 and assoclated
text).

Figure 4.12 shows the relationship between BMWP score and ASPT, with
the biological class of each point also denoted. The high variance of the BMWP

score is apparent for the better quality sites. The main feature of the graph is
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Figure 4.12: A plot of BMWP score against ASPT showing biolog-
ical quality class.

that there is high overlap of the samples with respect to the biological classes.
This implies that it would be difficult to predict the biological class if given

just the ASPT and the BMWP score for a particular sample.

4.3.5 Frequency of the Original BERT Taxa

When the Severn-Trent data set was obtained and the preliminary analysis
conducted there appeared to be a distinct difference between the assumptions
made in the BERT elicitation sessions and the Severn-Trent with regard to the
frequency of the taxa. It appeared that the frequency of the BERT taxa in the
209 data was lower than expected. To examine this further, the frequency of
the original BERT taxa (Table 4.1) was calculated, along with a modified set,
given in Table 4.7.

From Table 4.7 it is apparent that a few taxa are particularly infrequent,
for example Ancylus fluviatilis and Baelis rhodant. The frequencies of species

‘0 the 292 Severn-Trent database are much lower than corresponding ones
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H Original Taxa ] Frequency ] Modified Taxa ‘ Frequency ﬂ
Polycelis nigra 9 Polycelis spp. 33
Dendrocoelum lacteum 13 Dendrocoelidae 16
Potamopyrgus jenkinsi 128 Potamopyrgus jenkinsi 128
Bithynia tentaculata 0 Bithynia spp. 12
Lymnaea peregra 103 Lymnaeidae 163
Planorbis spp. 0 Planorbidae 54
Ancylus fluviatilis 16 Ancylidae 130

Sphaeriidae 161
Sphaerium spp. 44 Sphaerium spp. 44
Pisidium spp. 19 Pisidium spp. 19
Tubificidae 273 Tubificidae 273
Lumbriculidae 26 Lumbriculidae 26
Glossiphonia spp. 95 Glossiphonia spp. 95
Helobdella stagnalis 31 Helobdella stagnalis 31
Erpobdella octoculata 99 Srpobdellidae 154
Hydracarina 85 Hydracarina 85
Asellus aquaticus 170 Asellus aquaticus 170
Gammarus pulex 173 Gammarus pulex 173
Baetis rhodani 3 Baectidae 153
Rhithrogena spp. 8 Heptageniidae 75
Heptagenia spp. 2
Ecdyonurus spp. 34 Ecdyonurus spp. 34
Ephemerella ignita 30 Ephemerella ignita 30
Caenis spp. 50 Caenis spp. 50
Amphinemura sulcicollis 0 Nemouridae 39
Leuctra spp. 9 Leuctridae 47
Isoperla grammatica 31 Perlodidae o7
Haliphdae 50 Haliplidae 50
Dytiscidae 115 Dytiscidae 115
Elminthidae 89 Elminthidae 89
Sialis lutaria 8 Sialis lutaria 8
Rhyacophila dorsalis 17 Rhyacophilidae 67
Glossosoma spp. 7 Glossosomatidae 9
Agapetus spp. 2
Polycentropidae 26 Polycentropidae 26
Hydroptilidae 4 Hydroptilidae 4
Hydropsyche angustipennis 2 Hydropsyche angustipennis 2
Other Hydropsychidae 110 Other Hydropsychidae 110
Limnephilidae 87 Limnephilidae 87
Ceratopogonidae 9 Ceratopogonidae 8
Chironomus riparius 21 Chironomus riparius 21
Simulium ornatum 0 Simuliidae 125

Atherix 1bis 30

Table 4.7: Comparison of the frequency of BERT taxa with a mod-
ified set of taxa.
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reported in the data set by Wright et al. [181]. There are some differences
between the two sets of data, notably the reliance of the sample being drawn
from ‘good quality’ sites for the Wright et al. data. But the most probable
reason for the disparity between the frequencies is the effort put into identifying
the animals. Perhaps the biggest criticism of the BMWP score is that it only
requires family level identification, a good example of this is shown by Ancylus.
There are two aquatic species of Ancylidae occurring in the UK, and it would be
a fair assumption that all the occurrences of Ancylidae were Ancylus fluviatilis.
Thus the relatively small effort required to generate a BMWP score for a
sample is reflected in the taxonomic lists of 292 Severn-Trent data, although
other constraints, typically time and money, hinder the biologists work.

In order to investigate the effect of the under representation of BERT taxa
in the 292 data, a simple index was developed. This index, the ‘union value’,
was simply the number of taxa in a sample which were BERT taxa divided
by the total number of taxa in the sample. Thus a union value of 0.0 meant
that no taxa in the sample were common to the BERT taxa, while a value
of 1.0 represented complete coverage. Ideally, the higher the union value for
a sample the better, as this means that more of the taxa would be utilised
for classification within the model. The union value was calculated for each
sample, and the summary of mean and standard deviation of union value for
the whole data set and each of the five individual classes in given in Figure 4.13.
Four sets of taxa were considered, these being the original BERT taxa, the
modified set (Table 4.7), and both the BERT taxa and the modified set taken
to family level.

There are two distinct trends in this figure. The first trend is that between
the different groups of taxa. The mean of the union values are consistently
ordered, with lowest being the BERT taxa, then the modified taxa, the BERT
taxa families to, finally, the modified taxa to families. This would be the
predicted result, as the modified set were chosen with the Severn-Trent data in
mind, and that the families levels are more frequent than the mixed (frequently
species) level of the BERT and modified taxa. The second trend is with respect
to the quality classes, with the union value increasing as the quality decreases.
The implications of this trend is that a higher number of taxa are being ignored

in the good quality classes, and consequently their evidence is not being utilised
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Figure 4.13: Mean and standard deviation of union value based on
class for Severn-Trent database.

to form the classification. So using the BERT taxa with the 292 data set, would
lead to less than 50% of the taxa in a Bla class being used, and would hinder
any resulting classification. Thus for the neural network experimentation the
modified taxa were used, while the family level data was used for the work on

indicator taxa (Chapter 6).

4.3.6 Recapitulation

The Severn-Trent data are typical of data arising from most biological mon-
itoring programmes, but it is a unique data set. This is the first time that
an invertebrate data set has been classified in such a manner by a domain
expert, and it is also unusual for any data, yet alone invertebrate data, to have

accompanying probabilistic domain knowledge as well.
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4.4 Other River Data

4.4.1 Yorkshire Water Authority Data

The first data set to be studied in the project originated from the Yorkshire
Water Authority, sampled in the early 1970s. It included invertebrate species
lists, to a mixed level of identification, the names of the water course {rom
which the samples were taken and the dates of sampling. The data were just
of sufficient quality to be usable, but no better than that. It was the only data
set available at the start of the project and it formed the basis of some of the
carly experimental work, which was reported by Ruck et al. [148].

This paper was the first work to describe the use of neural network models
for the direct classification of river water quality from benthic macroinver-
tebrate data. Two sets of data were used, one consisting of the raw input
data, the other a set of principal component transformations. The models
were trained using leave-one-out cross validation, and were found to correctly
classify the testing data to just under 70%. These results were promising
considering the small size and the relatively poor quality of data. This work
should be viewed as the pilot study to the more extensive tests reported in

this dissertation.

4.4.2 Synthetic Data

This section describes work on a set of synthetic data based on the condi-
tional probabilities derived from the direct elicitation sessions (Section 4.2.3).
These conditional probabilities describe, as fully as possible, the distribution
of the invertebrate taxa with respect to the biological water quality class, and
by working backwards it is possible to generate representative invertebrate
samples from these probabilities.

There were two main objectives behind the creation of the synthetic data
set. The first was to enable some prior knowledge to be used in the training of
the networks (see Section 5.6). The second was to allow for some larger scale
neural network experimental work to be conducted, to augment the study of
the Severn-Trent data. In essence, the synthetic data provided a means to test

various methodologies as applied to freshwater biomonitoring, which would

89




Analysis of Riwver Data Chapter /

not have been possible with the Severn-Trent data.

4.4.2.1 Sample Generation from the Conditional Probabilities

To generate a representative sample the conditional probabilities P(ei|H;)
needed to be ‘conditioned’ with the ‘known’ distribution of the quality classes
(H;’s). The P(ey|H;) represent the probability of finding the ith taxon in
the kth state given the H;th quality class. Thus, by specilying the desired
distribution of biological classes the probability of the taxon being absent,
rare, established and abundant can be calculated. The resulting distribution
was sampled to select the state of the given taxon to be included in the sample.

The P(eix|H;) values were taken from the histograms that were originally
elicited for the absent, established and abundant states. The distribution for
rare was arbitarily taken to be 40% of that of established, with the probabilities
re-normalised to ensure that they summed to unity.

The conditioned P(eix|H; = C) distribution, where C is the quality class,

for each taxon can then be found from:

Plew|H; = C) = Y Plew|H;)P(H;) (4.1)

where the P(H;) are set to reflect the desired class C. If the desired class
was a B2, then the P(H;)’s would be as follows: P(Hy) = 0, P(H;) = 0,
P(Hs) = 1, P(Hy) = 0, and P(Hs) = 0. The above formula also allows for
interpolation between classes. For example, if the desired class was a Blb+,
then the P(H,)’s could be described as follows: P(Hy) = 0.33, P(H;) = 0.67,
P(Hs) =0, P(Hy) =0, and P(Hs) = 0.

To aid understanding a brief example will be worked through. Table 4.8
shows the elicited P(eix|H;) values for Gammarus pulez. To find the proba-
bility of each state, P(ew), for G. pulez in a sample of, say for example, a
Blb+ class we use Equ. 4.1. The result is that G. pulez has a 9.3% chance of
being found absent, 20.0% rare, 25.9% established and 44.8% abundant. This
distribution can then be sampled by generating a number between 0.0 and 1.0
using a uniform random number generator and picking the appropriate state,

which is graphically depicted in Figure 4.14.
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[Class | Abs _Rare Estb. Abund. ||
Bla |0.18 024 038  0.20
Bib |0.05 0.18 020  0.57
B2 |030 020 026 0.23
B3 |08 012 004  0.03
B4 |0.89 0.11 0.00  0.00

Table 4.8: Conditional probabilities, P(eix|H;), for Gammarus
pulex for generation of synthetic data.

1.0

Random Number (0.813)
Abundant (44.8%) <

0.552

Established (25.9%)

0.293

Random Number (0.241)
Rare (20.0%) <

0.093
Absent (9.3%) 0.0

Marginal probabilities for Gammarus pulex

Figure 4.14: Sampling of conditioned distributions, P(ex|H; =
B1b+), for Gammarus pulez in a Blb+ quality class. The values
of P(e;|H; = Blb+) for each state (k) are given in brackets, with
the cumulative mass to the right of these. Two example random
numbers are shown. The first, 0.813, would generate a sample with
G. pulez abundant; the second, 0.241, would give G. puler rare.
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H Taxon ] Riffle ] Pool ) Taxon ’ Riffle l Pool H

Y
v

Polycelis nigra Ephemerella ignita

Dendrocoelum lacteum Caenis spp.
Potamopyrgus jenkinsi
Bithynia tentaculata

Lymnaea peregra

Amphinemura sulcicollis
Leuctra spp.
[soperla grammatica

Planorbis spp. Haliplidae Vv
Ancylus fluviatilis Dytiscidae Vv
Sphaerium spp. Elminthidae

Pisidium spp. Sialis lutaria

Tubificidae Rhyacophila dorsalis

Lumbriculidae Glossosoma spp.

Glossiphonia spp.
Helobdella stagnalis
Erpobdella octoculata

Agapetus spp.
Polycentropidae

<

Hydropsyche angustipennis

LR L

Hydracarina Other Hydropsychidae
Asellus aquaticus Hydroptilidae
Gammarus pulex Limnephilidae

Ceratopogonidae
Chironomus riparius

Baetis rhodani
Rhithrogena spp.
Heptagenia spp.

SN N N N N S SN N NN
L

Simulium ornatum

S NN N S N NN NN

Ecdyonurus spp.

Table 4.9: Occurrence of taxon in pools and riffles.

This is repeated for all the taxa in the species list using different random
numbers to create a synthetic sample. This process can then be used as many
times as desired to create a series of samples, representative of riffles, for any
of the quality classes. The database created for the neural network experimen-
tation contained 5000 samples in total, with 1000 being drawn from cach of
the five quality classes.

A second data set, again comprising 5000 samples, was generated using the
above method to model pool biotopes. As no knowledge elicitation (in the form
of histograms) was available for pool biotopes some (sweeping) assumptions
were made on the occurrence of the 41 taxa. The ones which were considered
to inhabit only riffles were removed from the data (Table 4.9). With guidance
from the Expert, sixteen taxa were removed, and this left twenty-five taxa to

he included into the pool samples. This was unrealistic as other new species
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W Physical Variable ‘ Riffle | Pool H
Froude number 0.51 + 0.26 0.10 £+ 0.10
Velocity /depth ratio | 4.69 £ 3.98 0.66 4+ 0.83
Velocity (m/s) 0.62 + 032 | 020 £ 0.20
Slope 0.016 =+ 0.01 | 0.004 £ 0.0005
Depth (m) 0.17 £ 0.12 | 039 £ 0.32
Pebble
Boulder } 60-100% }" 0-30%
Gravel
Ssaillltfj } 0-40% } 20-100%

Table 4.10: Hydraulic characteristics (means and standard devia-
tions) of riffle and pool biotopes, after Jowett [78].

would be found, such as Tipulidae in the Severn-Trent database, but did allow
for the creation of a data set that was appreciably different from the synthetic
riffle data set.

The BMWP scores and ASPT were calculated on a class by class basis for
the two synthetic sets of data, and these are shown in Iligure 4.15. Comparing
riffles to pools it can be seen that both the BMWP scores and ASPT" are higher
for riffles than for the pool samples. Both of the BMWP score figures have
a similar shape, with higher scores recorded for the Blb samples reducing
towards the B4 samples. The BMWP score for the riffle data shows good
discriminatory power between the B2, B3 and B4 classes, while there is a
greater degree of overlap with the Bla, Blb and B2 graphs. The ASPT,
however, does show a good discrimination between the five classes, with no
overlap between any of the standard deviations. Ior the pool samples, the
BMWP scores exhibits a similar relationship to that of the riffle sites, but on
a more compressed scale, with the ASPT, also mirroring the riffle samples on
a reduced scale.

Additionally a set of physical variables were created for both the pool and
riffie biotopes. Using figures from Jowett [78] the physical characteristics can
be summarised by Table 4.10. These figures were used for the generation of

artificial physical variables, using Gaussian functions with mean and standard
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Figure 4.15: Summary of BMWP Score and ASPT for synthetic

data. The mean, maximum, minimum and standard deviation are

shown for each class.
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Expected | Expert’s Classification
Class Riffle ] Pool
Bla Bla B1b
Bla Bla B2
B1b B1b B2
B1b B1b B2
B2 B2 B2
B2 B1b B2
B3 B2/B3 B3
B3 B2 B3
B4 B3 B3/B4
B4 B4 B3

Table 4.11: Classification of artificial samples. Two sets of 10 sam-
ples drawn from different biotopes (with 2 samples from each class)
were classified by the Expert.

deviation as given in Table 4.10. Each variable was treated as independent
(even though they are obviously dependent in real life), and any values that
were less than zero were removed and an alternative value was generated. The
physical variables were used for the mixtures of experts experiments (Sec-

tion 5.4).

4.4.2.2 Expert Classification of Synthetic Data

In order to gather feedback on the artificial samples, the Expert was asked to
classify a subset of samples from each of the synthetic data sets. Ten samples
were drawn at random from each set, but it was ensured that there were two
samples from each class. This gave a total of twenty samples for the Expert
to classify, which were randomised prior to being given to the Expert. Prior
to the exercise the Expert was not informed that the samples had been drawn
from different distributions, he was just asked to classify the samples directly
into the biological classes from the species list. The results of the elicitation
are shown in Table 4.11.

It was anticipated that the Expert’s classifications of the riffle data would
compare closely with the expected classifications, but that there would not be

such a close comparison in the case of the pool data. Inspection of Table 4.11
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‘ndicates that this was indeed the case. There was good agreement between the
riffle data and the Expert’s classifications, especially in the top quality classes,
Bla and Blb. Note that it has been assumed that the Expert was correct
since even though a sample may have been generated using probabilities for,
say a class B3, the resulting species may have been indicative of a class B2
sample. In contrast to the riffle data, the Expert’s classifications for the pool

data were consistently on the poor side for the good quality sample.

4.4.2.3 Discussion

The synthetic data were thought to be generally plausible, except for a few
samples which, although correctly classified, were deemed to have a slightly
artificial “feel to them’. Most samples that were considered artificial had several
species in abundance, this was especially the case for the Bla and Blb classes
for the riffle data. Usually it is common to have 3 or 4 species in abundance
in sample, but for a couple of the samples this was exceeded. These anomalies
can be attributed to the method in which the samples were generated.

The method considered each taxon as independent (i.e. each was con sidered
in isolation) but within the community there would be competition between
similar ecologically niched species and this competition would tend to inhibit
the abundance of other competitors. This was not taken into account when the
samples were generated, and would require knowledge about the community
structure interactions for it to be introduced. No autecological information
was included in the generation of the synthetic samples, so it was perfectly
possible to create a sample that would not occur in nature. If this ecological
knowledge were to be built into the method of generating the random samples
then a lot of addition knowledge elicitation would have been required. This
would have reduced the number of improbable samples that were generated.

During the stage when the Expert was classifying the samples it became
apparent that this also provided a good method of direct knowledge elicitation.
The original histograms contained probabilistic information from the Expert,
but using this method more traditional ‘rules’ could be elicited. When classi-
fying samples there were occasionally unusual features, mainly concerned with
the biotope/sampling problems. For example, “T wouldn’t expect to find that

i1 a riffle” was a frequent remark made by the Expert. This occasionally oc-
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curred when classifying the Severn-Trent data. With the synthetic samples,
however, there were more occasions for the Expert to express his knowledge in
terms of the relationship between the different species, for example “I wouldn’t
expect to find this taxa to be abundant when this one is established”.

There was a lot more conflicting evidence within the synthetic samples. A
few samples were identified as, for example, B2/B3, and it was apparent that
this was different from the traditional B2/B3 classification. If a real sample
were to classified B2/B3 then the evidence provided by the taxa present would
suggest that the quality is borderline between the B2 and B3 classes, possibly
a B2- or a B34+. But with the synthetic data some B2/B3 classifications
suggested that some of the evidence was indicating a B2 class, while other
evidence was pointing to a B3 class, there was no accord across the whole
sample. This is exemplified by a few samples of the 20, where 1 or 2 species were
inconsistent with the rest. For example, one of the samples contained a number
of good quality indicators as abundant and also Hydropsychidae angustipennis
as established. If this were an actual sample then this would be considered
conflicting evidence, because H. angustipennis needs mild organic pollution
for it to be established. In this case the evidence provided by H. angustipennis
was pulling the quality class lower to a poorer level. The opposite effect also
occurred when one or two sensitive species were present while the rest of the
sample, mainly tolerant species, indicated a higher pollutional load.

As a practical exercise, the classification of the synthetic data by the Ix-
pert was beneficial. It should be noted that since the artificiality of the data
was apparent, then this may be reflected in the classification rates produced
in the experimental work. As a method of knowledge elicitation the classifica-
tion of synthetic samples did bring out more structured rule based ecological

knowledge from the Expert.

4.4.3 National Data

This section uses the NRA database of the 1990-92 National Survey. The
distribution of BMWP scores and ASPT through all 10 NRA Regions is in-
vestigated, as is the distribution of taxa through the 10 regions. The database

comprises benthic invertebrate sample records from the years of 1990-92, iden-
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Number of samples Abundance
Region 1990 [ 1991 [ 1992 | Codings
Anglian 3030 | 3155 | 1948 1-6
Northumbria | 1150 | 1221 0 1-6
North West 2060 | 2879 | 987 1
Severn-Trent | 2830 0 0 1-6
Southern 1189 | 1206 848 1-6
South West 1485 1426 | 1477 1-6
Thames 928 975 563 1-6,11,12
Welsh 2271 | 1600 | 1584 1,6
Wessex 1117 0 0 1
Yorkshire 1293 1074 0 1-6 |
| Total [ 17353 | 13536 | 7407 | |

Table 4.12: Summary of the National NRA database showing, for
cach region, the total number of samples and the taxa abundance
coding adopted.

tified to family level (see Appendix A2 for the full list of recorded families),
and some chemical and physical characteristics of the sam pling sites. Unfor-
tunately, the data were only available late on in the project, and due to time
restrictions only a limited study was undertaken. It was not possible to com-
pare the chemical or biological classifications on a site-by-site basis, and no
attempt was made to investigate any relationship between them. This in itsell
would have been a long term research project.

A preliminary data analysis showed a number of inconsistencies within the
database, mainly between the chemical and biological sampling records. Due
to the time restrictions all suspect samples were ignored. This, in hindsight,
was possibly a little too ‘ruthless’ but did not significantly reduce the number
of samples available. The total number of samples which were used in the
analysis is shown in Table 4.12. Three years of samples were contained in
the database, but as Table 4.12 shows not all the regions were represented
in all years, thus it was decided to concentrate solely the 1990 samples. A
further problem was that there was inconsistency between the regions on the
abundance codings that were used, with some regions having 6 levels (which

could be mapped to the values used in the Severn-Trent database, Table 4.3)
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Aston University

Content has been removed for copyright reasons

Table 4.13: River quality in 1990 by NRA region [112].

while others only recorded the taxa as absent/present. The lowest common
denominator was used, which meant that all taxa records were reduced to

absent /present for the following analysis.

4.4.3.1 Comparison of Scores and NWC Classification

In this section the BMWP score and ASPT are compared to the NWC clas-
sification on a region-by-region basis using the national database and the
chemically-based results of the 1990 survey [112]. The main assumption is
that the biological samples are fully representative of each region, and that all
the regional variations are adequately covered. This is important as the statis-
tics are collected together for each region and not gathered and compared on
a site by site basis. Table 4.13 shows the summary of the percentage of river
length in each NWC class results for all of the 10 NRA regions. There is a
large variation between the regions for the percentage length of class 1a’s, but
the percentage of ‘good & fair’ (1a, 1b and 2) are all above 80% apart for
North West. The percentage of ‘poor & bad’ are all below 10% except for
North West, Severn-Trent, South West and Yorkshire.

Figures 4.16 and 4.17 show the distribution of the BMWP score and ASPT,
derived from the 1990 national database samples for each of the 10 regions.

Looking at the BMWP scores (Figure 4.16) it is apparent that there are
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large differences in the distribution of the BMWP scores between the regions.
The South-West region has the only distribution which is skewed to the right
(i.e. higher BMWP scores), while both Anglian and Severn-Trent regions are
strongly skewed to towards the lower BMWP scores. The South-West region
results are unusual in that, from the histograms, it would appear that South-
West has the best quality streams, but this is not the case when the NWC
classification is considered. In this particular case the chemistry and biology
are revealing different pictures, with the chemistry classification lower than
the biology. For the Anglian region this is reversed, from the BMWP score
histograms the biological system is inferring that, comparatively, the region
scores poorly, while the chemistry informs us that the rivers are better quality
than this.

The ASPT figures are more discriminating than the BMWP scores. An-
glian region’s ASPT histogram is strongly peaked about 4, with virtually all
the ASPT falling between 3 and 5. Recalling Figure 4.10 which showed the
variation of ASPT and BMWP score with the biological classification (Bla,
..., B4) the ASPT histograms would reveal that nearly all of the classes are
B1b and B2. Similarly for South West the ASP'T histogram reveals that the
majority of the sites fall between an ASPT of 5 and 7, which would mean that
the most (i.e. 85% or more) of the samples occupied classes Bla and Blb,
which is conflicting with the information from the chemical classification in
which only 52% are la or 1b. The South West has the most strongly skewed
histogram towards the higher scoring ASPT, but it has the lowest percentage
of 1a and 1b’s out of the 10 regions, which is contrary to expectations.

The distribution of the ASPT and BMWP scores between the NRA regions
is interesting as it shows the tremendous variation, which, if the results of the
1990 national survey are to be relied upon, implies that geography has the ma-
jor effect on the variation as opposed to water quality (which 1s approximately
equivalent for all regions). The figures demonstrate the extent to which the
variation is prevalent, and to investigate this further, the distributions of a

number of taxa was calculated for each of the 10 regions.

100




Analysis of River Data Chapter 4

Anglian Northumbria
0.1 0.1 \
i
> =
50.05 - 20.05
0 fe}
o g
o o
0 i ; § i 7 - + o f—i i | i i T :
0 30 60 90 120 150 180 210 240 0] 30 60 90 120 150 180 210 240
BMWP Score BMWP Score
North West Severn-Trent
0.1 0.1 [ 1
z z |
S0.05 20.05 |
0 0
[ e
o 1 o
0 i i i i ¥ et { 0 4 + i t ! ; + :
0 30 60 90 120 150 180 210 240 ] 30 60 90 120 150 180 210 240
BMWP Score BMWP Score
Southern South West
0.1 0.1 I SR :
= > |
50.05 20.05
O Q2
o e
o o 1
o i ! i i i i e 0 FT
o} 30 60 90 120 150 180 210 240 0 30 60 90 120 150 180 210 240
BMWP Score BMWP Score

Figure 4.16: Distribution of BMWP Scores within each NRA region.
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Figure 4.16: Distribution of BMWP Score within each NRA region (cont’d.)
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4.4.3.2 Distribution of Taxa by Regilon

The distribution of different taxa between regions was probably unknown at the
time when the BMWP system was designed, and even today, there is a degree
of uncertainty to the national incidence of taxa. With the advent of electronic
storage and national monitoring programmes more research would be possible
into the variation of the taxa and the effects of the local environment, and the
following figures will no doubt be improved upon in the near future. But at
the present time they do provide some unique insights into the distribution of

aquatic invertebrates throughout the UK.

Figures 4.18 and 4.19 show the percentage occurrence of seven families of
invertebrates in all of the samples of that region. This is simply the percentage
of the total number of occurrences disregarding abundance level (i.e. a taxon
was either absent/present) to the total number of samples for that region.
Of the seven taxa the more tolerant organisms, Gammaridae, Asellidae and
Baetidae all have a have a frequency of over 30% in all regions (Figure 4.18).
This is in contrast to the four more sensitive families in Figure 4.19 where
there is a much greater variation over the regions. Five regions (Northumbria,
North West, Yorkshire, Welsh and South West) all have all four of the sensitive
families in at least 10% of their samples, while Anglian and Thames have less
the 10% in total. It appears that the distributions are strongly influenced by
geology and topography of catchments, and physiographic characteristics of

rivers, which are the main regional differences.

These graphs, in conjunction with the BMWP score and ASPT distribu-
tions demonstrate the problems of national based monitoring systems. This
naturally high variation, on a national scale, is an important factor to be con-
sidered with respect to the implementation of any national monitoring system.
The establishment of national databases allows for the review of methods of
biological monitoring to a much greater extent than which previously would
have been possible. For example, the graphs of the percentage occurrences of
taxa over the whole of the UK highlights the huge regional variation that is
present, even when only looking at family level. The variation in incidence

results in differences in BMWP score and ASPT even when a similar range
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The NRA Regions Gammaridae

Figure 4.18: Percentage occurrence of Gammaridae, Asellidae and
Baetidae within the 10 NRA regions.

Key: (A) Anglian, (N) Northumbria, (NW) North West, (ST)
Severn-Trent, (S) Southern, (SW) South West, (T) Thames, (WEL)
Welsh, (WES) Wessex, (Y) Yorkshire.
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Heptageniidae Leuctridae

Figure 4.19: Percentage occurrence of Heptageniidae, Leuctridae,
Nemouridae and Perlodidae within the 10 NRA regions.
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Data Set Number of Comments
Samples
Yorkshire River Authority 50 Used for preliminary neural network
experiments.  Inconsistent mixed
level identification
NRA Severn-Trent 292 (1378) | Classified into biological class by the

Expert. Used for neural network ex-
periments and indirect elicitation of
conditional probabilities. Inconsis-
tent mixed level identification.
NRA National 60004 Used to show distribution of taxa,
BMWP score and ASPT over
10 NRA regions. Family level
identification.

Conditional Probabilities n/a Irom direct elicitation.  Used in
Chapter 6 for the selection of indica-
tor taxa, and as basis for synthetic
data. Mixed level identification.
Synthetic Data 4800(x3) | Used for neural network experi-
ments. Mixed level identification.

Table 4.14: Summary of river invertebrate data.

of water qualities are considered, which reaffirms the proviso that the BMWP

score and ASPT should not be used to report comparisons between sites.

4.5 Summary

Within this Chapter several river invertebrate data sets have been described
and studied. The range of data studied in this project is exceptionally broad,
ranging from real world data, to elicited probabilistic domain knowledge and
synthetic data. Table 4.14 gives a summary description of the river data that
have been studied. The Severn-Trent and synthetic data constitute unique
invertebrate data sets, and will be used extensively in the following two chap-
ters.

The foundations of this project are described in Section 4.2, which draws on
the early work of the BERT system. Within this section the conceptual basis
of the biological classification system adopted was described. The biological

classification was designed to mirror the present NWC classes but also has
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a degree of similarity with the Saprobic system which is used elsewhere in
Europe. The importance of information loss and handling uncertainty are also
commented upon.

The Severn-Trent data, which was this project’s main ‘real world’ data
set, was detailed in Section 4.3. This data is typical of many environmental
data sets, having many small inconsistencies in the recorded data and incom-
plete knowledge about the sample. The construction of a database suitable
for neural network experimentation from the Severn-Trent was described. The
reliability of the Expert’s classifications was assessed, and was found to be
consistent to within two grades on a thirteen grade classification. The biolog-
ical classification was compared to four other commonly used biotic systems.
These comparisons demonstrated that, using the Expert’s classification as a
benchmark, a non-monotonic relationship exists between water quality and
both the BMWP score and ‘Number of taxa’. The ASPT and TBI showed a
more linear relationship with absolute quality, but there was a high variance
for intermediate quality classes.

In addition to the Severn-Trent data set three other river invertebrate data
sets were used (Section 4.4). An early pilot study used data from the Yorkshire
Water Authority, and found that MLP models could achieve classification rates
of 70% via the direct classification of invertebrate sample. The creation of two
synthetic data sets, using conditional probabilities from the BERT knowledge
base, were described. The two sets of data represented different cormmunities
‘typical’ of riffle and pool biotopes, with a complimentary set of physical char-
acteristics also being developed. A randomly selected set of the synthetic data
were classified by the Expert, and were thought to be sufficiently realistic to
be of use in experimentation. Finally, the 1990 National Survey database was
used to show the variation of ASPT and BMWP scores between the 10 NRA
regions. The large degree of variation was in contrast to the results of the
1990 regional classification’s based on the NWC, which were broadly similar
across all regions. This was not the case for the distributions of ASPT and
BMWP score. The national distribution of seven families of taxa were studied,
and, these also showed a large variations both between and within the families.
The more sensitive animals had the higher variance, while the more tolerant

organisms were more consistently distributed throughout the 10 regions.
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The invertebrate data sets are typical of many sets of environmental data.
Typically, large amounts of data are available, with the data being more ‘obser-
vational’ in nature than the data generated from designed experiments. The
data represented complex cause-effect relationships, with both seasonal and
geographic variation. They suffered from a lack of standardised methods of
measurement, with both systematic and random errors being present. The
systems described in the following chapter, while still subject to the above in-
adequacies, do demonstrate that the reliable classification and interpretation

of environmental data, especially benthic invertebrate data, is possible.
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Neural Network Experiments

5.1 Introduction

This chapter reports the neural network experimental work undertaken using
some of the river data described in Chapter 4. A briel review of the imiple-
mentation details is given, as well as the general methodology adopted for
the experiments. Following this, the work concentrates on the classification of
biological water quality via the direct interpretation of invertebrate samples.
The results of a series of experiments which investigated the affect of modifi-
cations to the networks on classification performance are reported. The effect
of the method used to encode the input data upon the overall performance is
examined, as is the utility of combining model predictions and using balanced
data sets. Applications other than classification are then considered; including
the detection of novel samples, the handling of data from different biotopes
and the graphical representation of biological class. A qualitative comparison
between these neural network models and the BERT system is made. The

chapter concludes with a summary of its main findings.

5.2 Preliminaries

5.2.1 Implementation

The main neural network simulator that was used was the Xerion library [165]
of routines. The Xerion library is a collection of routines specifically written
for neural network researchers, and was found to be ideal for implementing

many of experimental procedures described later on in this chapter. It was
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used extensively for all the MLP networks and also for the mixtures of experts
experiments (Section 5.4). The library is distributed as source code, which is
comparatively easy to install and compile, provided that you have a reasonably
well maintained system.

Other software was also used for the neural network experimentation. The
SOM _PAK program [84] was used for the work on Self-Organising Maps. This
again was provided as source code, which was easy to install, compile and use.
For the work on the detection of novel samples (Section 5.5) some computer
code had to be written, but this was a straight forward exercise. An alternative
method would have been to implement the algorithm in a specialist package,
such as MATLAB.

The majority of the neural network experimental work was conducted on a
SUN IPX machine runnning a UNIX operating system. This was the preferred
system (as opposed to a DOS/WINDOWS based one) as the Xerion library
could only be compiled for UNIX based systems. Memory management is also
less of a concern on UNIX systems.

In this dissertation the network models under consideration were all rela-
tively small, so training times were not prohibitive (in the order of minutes
and seconds rather than days and hours). The storage requirements were also
not onerous, with 50MB being sufficient for the data sets, models, executables
and scripts. As none of the data sets was particularly large they were stored in
a database on a personal computer, and the various manipulations of variables
(e.g. standardisation) were completed within the database environment. The
transformed data files were exported as ASCII text files for the experiments.

A small library of shell scripts (batch files) were written to allow for the
full automation of the experimental cycle. The library provided scripts for
searching and collating results from the log files, handling the cross-validation
of the data sets (see Section 5.2.2), general training and testing of the vari-
ous models and also the control of various graphical displays of the models if
required. The automation of the experimental cycle lead to the elimination
of data handling errors, which would have most likely occurred if any data
manipulations were carried out by hand. It also meant that experiments could

be run overnight, thus making better use of the available resources.
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5.2.2 Experimental Methods
5.2.2.1 Training, Validation and Testing

As commented upon in Chapter 3, a model’s performance should be assessed
using data independent of the data used to estimate the model’s parameters.
This typically requires the use of three sets of data, referred to as the training,
validation and testing sets. The training data is used to estimate the model’s
parameters, this estimation process is typically halted when an error measure,
usually the mean square error (MSE), calculated for the validation set starts
to worsen. The model’s performance is then assessed using the testing set. A
common alternative method, known as early stopping, uses only the training
and testing sets. Here the learning procedure is continued until some ad hoc
point is reached, for example when 200 epochs (iterations of the minimisation
algorithm) have been completed or a MSE of 0.01 has been reached.

To investigate the relationship of MSE with the training, validation and
testing simulations some networks were trained with a small weight-decay A of
0.01, using 8 hidden nodes and conjugate gradients. The topology of the net-
work was 41-8-5, that is 41 inputs, 8 hidden nodes and 5 outputs. Figures 5.1
and 5.2 show the MSE and error rate! for the training, validation and testing
data using the synthetic riffle data (Section 4.4.2).

The MSEs of the three curves are similar over the first few iterations, but
then the MSE for the training data begin to decrease faster than those of the
validation and testing data (Figure 5.1). Improvement of the training MSI
continues over the full number of iterations, however there appears to be a
tailing off of the performance for the validation and testing data. Both of
these latter sets exhibit a similar relationship, which is as expected since both
were independent of the training data and drawn from the same underlying
statistical distribution. What is slightly unusual for the validation and testing
data is that the MSEs level off but do not begin to increase. One possible
reason is that the data is synthetic and all three data sets closely resemble
the underlying statistical distribution, so the differences between each is small

and overfitting does not have a noticeable effect on the validation and testing

1Brror rate = 1.0 - classification rate, where the rates are expressed as percentages
between 0.0 and 1.0 (e.g. 20% = 0.2).
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Figure 5.1: MSE plotted against number of iterations for training,
learning validation and test data sets taken from the synthetic data.

performances.

The plot of the error rate, Figure 5.2, is analogous to the MSE except that
that the curves are slightly smoother. As can be seen by comparing the two
graphs there is a clear relationship between the error rate and the MSE, but
this does not necessarily mean that this is always the case. Typically, the MSIS
is used as the criterion on which the validation is based, and it is this which

is used for the rest of the dissertation.

5.92.2.2 Cross Validation

For small data sets there can be a problem dividing up the data into the
three sets since this leaves insufficient data on which to estimate the model’s
performance. To overcome this problem and to maximise the utility of the
data, cross validation can be used.?

The k-fold cross validation algorithm involves three steps (after Efron &

Tibshirani [28]):

2Note that cross validation and learning validation are two separate and distinctly dif-
ferent concepts.
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Figure 5.2: Error rate plotted against number of iterations for train-
ing, learning validation and test data sets taken from the synthetic
data.

i. split the data into k (roughly) equal parts,

i, for the k** part train the model on the other k& — 1 parts, and test its
performance by calculating the error rate of the fitted models when pre-

dicting the k™ part,

iii. repeat step ii. for all k parts and combine the k estimates of the error

rate.

Leave-one-out cross validation omits a single example at a time, and is the
most rigorous method that can be adopted without resorting to a bootstrap
analysis.

A problem with k-fold cross validation is that instead of a single model,
k models are generated and it is not possible to combine all £ models into a
single one, except for the case where all the models are linear. Also by training
k models there is an associated increase in the computational effort required
to conduct a series of experiments. Additionally, the estimate provided by any
cross validation procedure has a high variance but a low bias. As always there
is a trade-off between the bias and variance of a model (in a neural net context

see Geman et al. [43]).

115



Neural Network Ezperiments Chapter §

5.2.3 Minimisation

The adjustment of the weights of the network (learning) is equivalent to uncon-
strained optimisation. It is unconstrained as there are, typically, no constraints
on the values which the weights can take, but by the use of regularisation the
distribution of the weights can be indirectly manipulated. The optimisation
is a function minimisation in terms of the weights of the network, so if there
are 100 weights then the problem involves minimisation in 100 dimensions.
This is a little over simplified as parameters other than the weights can be
adjusted during minimisation and there are also various pruning algorithms,
which remove weights, and ontogenic models, which grow or shrink the net-
work to an appropriate degree. The derivative information (obtained from the
back-propagation algorithm) can also be used in the minimisation. The origi-
nal back-propagation algorithm was described using a simple steepest descent

method to update the weight values:

or
Jw;

Wiy = Wy — 1]

It is well documented that simple steepest descent can be a very inefficient,
relatively slow algorithm, which is also prone to getting trapped in local min-
Ima.
Most minimisation schemes can be described by the following simple algo-
rithm [38]:
i. determine a new search direction s*,
7. find o which minimises f(w* 4 o*s*), and
i1, set Wl = w¥ + ofsk.
For example, steepest descent uses a fixed a (which is the learning rate 7),
and a search direction s which is the vector of steepest descent (hence the
name). The minimisation can be broken down into two stages: the first is the
determination of the new search direction, the second being a line search along
this new search direction to determine the starting for the next iteration. The
line search is the most important aspect of the algorithm as this is where most

of the computational time is spent during minimisation. Most minimisation
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algorithms require first order-derivative information; however as is it possible
to obtain second order derivative information (0?E/0w};) this can be incor-
porated into the minimisation algorithm. Buntine and Weigend [18] review
second order derivative methods. Also some pruning schemes use the second
order derivative information to eliminate redundant weights from the network
after learning [90, 48].

In the neural network community the two most common methods for
finding the new search direction (excluding steepest descent) are the con-
jugate gradient and quasi-Newton methods. Only conjugate gradients have
been considered in this dissertation, with the Polak-Ribiere method being
used [44, 38, 131]. To test the minimisation algorithms a simple experiment
was undertaken using the synthetic data to compare the optimisation meth-
ods. The methods tested were steepest descent, quickprop (which is another
popular method [34]) and the conjugate gradient algorithm.

Figure 5.3 shows the relationship between mean square error (MSE) and
time for a typical training run. Of the three minimisation methods considered
the conjugate gradients code is both quicker (in that it reduces the MSE faster)
and finds a better solution than either steepest descent or quickprop. The fact
that the conjugate gradient code reaches a better minimum 1s, perhaps, not
surprising, but it was a surprise that it was quicker as it is a more complex
calculation. Quickprop performed well, but steepest descent did not learn at
all on this large data set. A number of different strategies were ex perimented
with, involving changing both the learning rate and the momentum term, but
none was successful.

The relative complexity of computation of the three different minimisers is
shown in Figure 5.4, where the number of weight updates are plotted against
time. The Quickprop algorithm is the least computationally complex, while
conjugate gradients is the most. The conjugate gradient curve is not quite
linear, but has a slight curvature which indicates that more time is being
spent on the line search routine as the minimisation is nearing completion (all
other aspects of the minimisation remain constant except for the time spent
on the line search). These experiments demonstrated that the most practical
minimiser was the conjugate gradients, as this was both the most reliable and

found the best minima of the methods tested. So for the remainder of the
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Figure 5.3: MSE plotted against time for Quickprop, conjugate
gradients and steepest descent. The results are for the synthetic
data. Note that steepest descent failed to learn in this example.

experimental work the Polak-Ribiere conjugate gradient method was used for

minimisation.

5.3 Direct Interpretation

5.3.1 Overview

This section considers the use of neural networks for direct interpretation of
water quality class from the invertebrate community. A thorough investigation
is presented which looks at a number of issues concerning the implementation
of MLP models, including scaling of input and output variables, model regu-

larisation and the combination of several models.

5.3.2 Hidden Units

The number of hidden units which are used in a MLP can be critical to the
performance of the model. If too few hidden units are used, the model will

be unable to learn (i.e. it will not be flexible enough to model the desired

118



Neural Network Ezperiments Chapter 5

400 I T T T I l I
Quickprop —
350 Coné'uga,te gradients ---

teepest descent ----

300
250

200

Weight updates

0 200 400 600 800 1000 1200 1400 1600 1800
Time (secs)

Figure 5.4: Number of weight updates plotted against time for
Quickprop, conjugate gradients and steepest descent. The results
are for the synthetic data.

mapping). If too many are used, the extra parameters (weights) will increase
the likelihood of the model to overfit the data, and will also slow down the
computation.

To investigate this, a series of models were trained with 2, 4, 6, 8, 10,
12, 15, 20, 25 and 30 hidden units. Two weight decay parameters were also
considered, and each network was trained 10 times using different randomised
values for the weights in each trail. The Severn-Trent data, transformed into
16 dimensions using a Principal Component Analysis (PCA), was used for
training the models (see Section 5.3.4). The results of the MSIE at the point
where the validation error starts to degrade is given, averaged over the 10
trails in Figure 5.5. For the validation data it is apparent that the number of
hidden units had little effect on the accuracy of the mapping achieved, except
for 2 hidden units which had a much poorer performance. The weight decay
parameter also had little effect on the distribution. There is a slight trend of
increasing MSE with the higher number of hidden units. For the rest of the

experiments 8 hidden units were generally used in the MLP models.
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Figure 5.5: Minimum MSE for the validation data plotted against
hidden units for 16 PCA Severn-Trent data.

5.3.3 Regularisation

The regularisation of models is a commonly used technique and can be im-
portant in preventing overfitting of data (see Section 3.4). Two methods of
regularisation were considered for the MLP models, namely weight-decay and
soft-weight sharing [120]. Weight-decay is the most commonly used regulariser,
and is very easy to implement. Soft-weight sharing is a more complex regu-
Jariser that models the weights as a mixture model of Gaussian distributions.
Again, a series of MLPs were trained with different regularisers. Eight reg-
ularisers were considered, five weight-decay A’s (1.0, 0.1, 0.01, 0.001, 0.0001)
and three configurations for the soft-weight sharing (mixture models of 2, 5
and 10 Gaussians). Finally, an unregularised MLP was trained for use as a
benchmark. The average results for 10 runs of cach regulariser are given in
Figure 5.6.

It appears that the regularisers have little effect on the MLP performance
for the Severn-Trent data, except for the case where A = 1.0. The variances
are small as well. The A of 0.1 had marginally the best performance and this

value was used in the subsequent experimental work.
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Figure 5.6: MSE plotted for a selection of regularisers, averaged
over 10 runs, for the 16 PCA Severn-Trent data. Key: ‘none’ refers
to unregularised MLP, sws to ‘soft weight sharing” and the rest to
the weight decay A’s.

5.3.4 Data Encoding

Perhaps the most under reported aspect of neural networlk research is the pre-
processing measures which are implemented before the data is presented to the
network. This is surprising as it is probably the most important single factor
which affects the performance of the model. This section looks at different
pre-processing measures that can be adopted for the invertebrate data (input)
and the quality classification (output). The aim of this section is to show that
it is important to consider pre-processing the input data prior to its use in the
network.

For most continuous variables it is popular to present standardised (zero
mean and unit standard deviation) values to the model. However, for most
of the data used in this thesis this is not applicable. The various qualitative
abundances of the taxa (absent, present, few and com+) form an ordinal group
of discrete intervals, so the standardised transformation is not applicable. A
popular form of dimensionality reduction is that of principal component anal-

ysis (PCA). The algorithm transforms the coordinate axes of a system (an
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orthonormal basis) into another basis which is aligned to maximally explain
the variance in progressing dimensions. The first dimension of the principal
component space explains the highest degree of variance that is possible in a
single dimension, the second dimension explains the highest proportion of the
remaining variance that is possible, and so on down to the final dimension.
As there is an ordering to the components it is possible to pick only those
which have a good explanatory power. This can be achieved either through
examination of a scree plot or by using only the eigenvalues which are greater
than unity; both were employed in this study. Essentially, a PCA is an un-
supervised system (i.e. it takes no account of class labels) that is used to
reduce the dimensionality of the data. Non-linear principal components are

also occasionally used.

5.3.4.1 Procedure

Four different methods of scaling the input data were considered, which are
shown in Table 5.1. The first two methods differ in how absent evidence 1s
weighted, with the three other states being the same. The other two meth-
ods are based on principal component transformations, as described in the
proceeding section.

For the output classification two methods were used: the usual one-ol-N
coding was used (i.e. Bla =100 0 0], referred to as ‘Hard Class’) for the five
category class system, and a probabilistic interpretation of the 13 class system
(see Section 4.3) (e.g. Blb+ = [0.33 0.67 0 0 0] or B3— = [0 00 0.67 0.33],
‘Prob. Class’). For both of these output encoding systems a softmax constraint
was used on the output layer nodes. Softmax constrains each output unit to
between 0.0 and 1.0, and ensures that the sum of the outputs is unity [14].
This allows the output distribution to be interpreted probabilistically.

One possible problem with the representation of the classification system
is that the relationship between the classes is not explicit, because the network
does not take into account the ordering of the output units. For example, the
order of the output classes are typically Bla, Blb, B2, B3 and B4, which is the
intuitive ordering, but from the network’s ‘point-of-view’ this is equivalent to
an order of, for example, B2, Bla, B4, B3 and Blb. The model performance

is not hindered by the apparent mis-ordering of the output classes. A method
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H Name ! Dim. ] Description H
41 Absent(0.0) 41 | Absent(0.0), present(0.33), few(0.66), com+(1.0)
41 Absent(-0.33) | 41 | Absent(-0.33), present(0.33), few(0.66), com-(1.0)
16 PCA 16 | Cut-off taken as eigenvalues greater than unity

5 PCA 5 Cut-off taken as knee of scree plot

Table 5.1: Input data for pre-processing experiments.

to overcome this is to collapse the classification into a single linear index, but
this loses the posterior probability distribution across the networks outputs.
For the single index two methods were considered. The first used the five main
biological classes mapped to integer values (Bla was mapped to 0.0, and B4 to
4.0, this is referred to as ‘Hard Linear’). The second used the thirteen classes,
with the ‘+ increments reducing the class score by 0.33 (i.e. Blb+ = 1.0 -
0.33 = 0.67), while the ‘" incremented the class score by 0.33, and this is
referred to as ‘Prob. Linear’. For the single network output a linear activation
function was used.

The network models were trained using a training, validation and testing
approach, with the data set split into four (i.e. four-fold cross validation). The
results are all in terms of classification rates on the testing data. A weight-

decay term of 0.1 was used, along with 8 hidden units for all the models.

5.3.4.2 Results

The results are shown in Table 5.2. The input data which used the 16 dimen-
sional PCA scaling had the best performance, with the 5 class PCA the worst.
There was little difference between the two full 41 input sets. Considering
the output classifications the ‘hard’ systems where marginally more successful
than the ‘probabilistic’ system, with classification (five outputs) being more

successful than prediction (one output).

5.3.4.3 Using Additional Information

To improve upon the present classification rates, which tend to be in the region

of Tust below 70% for test data, a measure of each sample’s diversity was used
J p Y
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H Name ‘ Hard Class ] Prob. Class l Hard Linear l Prob. Linea.rJJ
41 Absent (0.0) 65.8% 64.2% 64.5% 62.8%
41 Absent (-0.33) 66.4% 64.3% 65.3% 60.7%
16 PCA 70.9% 67.9% 65.8% 63.4%
6 PCA 61.2% 60.4% 61.4% 60.7%

Table 5.2: Effects of classification accuracy for different input and
output encodings of the Severn-Trent data, averaged over 10 runs.
See accompanying text for details of data sets.

Network Output
Bla Blb B2 B3 B4
Bla | 54 4 0 0 0
Bib | 9 49 13 0 0
B2 | 0 14 8 1 0|
B3 0 0 4 26 5
B4 0 0 0 8 17
Classification rate = 80.1%

Target Output:

Table 5.3: Confusion matrix for MLP trained with 16 PCA Severn-
Trent data and the number of taxa as additional input variables.

to augment the input data. As the input data consisted of only a subset of
all of the available taxa, some taxa were not being utilised by the models to
form the classification. To rectify this, the number of taxa in the sample was
added to the input file as an additional input to the 16 PCA data set and the
preceding experiment was repeated using the hard five classification scale for
the output.

The result of this single addition is demonstrated by Table 5.3, where the
classification rate is over 80%. Averaged over 10 runs the networks had an

average classification rate of 78.8% on the testing data.

5.3.4.4 Discussion

This section has demonstrated that the choice of representation for the data

is an important aspect of the overall performance of the MLP models. The
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major factor affecting the performance of the model was the choice of suitable
features. The simple count of the number of taxa improved the classification
rate by over 10%, which is an appreciable gain. The Expert probably used the
diversity information implicitly when making his decision on the likely quality
class, thus reflecting this in his resultant classification.

FExamination of the misclassifications showed that the same samples were
being consistently misclassified, always to an adjacent class. It is interesting
to note from Table 5.3 that most of the misclassifications occurred around the
Blb and B2 classes, which are the two classes with the highest variance in
terms of both sample diversity and biotic indices (see Figure 4.10). 1t appears
that some of these Bla and B2 samples are close to the class boundaries or even
that the boundaries are not clearly distinguished in the Expert’s mind, and
hence more easily misclassified. This is reinforced by Figure 4.9 which shows
a higher proportion of intermediate samples, in this case Blb— and B2+,
between the Blb and B2 classes than the other pairs of classes (Bla/Bl1b,

B2/B3 and B3/B4).

5.3.5 Combination of Models
5.3.5.1 Overview

This section investigates the use of committees (or ensembles or stacking)
of models. The combination of the predictions or classifications of multi-
ple models into a single outcome has been widely discussed in the litera-
ture {120, 70, 178, 47, 88, 142]. Typically a number of topologies, learning
rules, minimisation methods are used and a single ‘best” model is selected for
implementation into a system. This training of multiple models is particu-
larly common in neural network studies, where considerable experimentation
is carried out during the model selection process.

An important aspect in the combination of multiple models is to find the
optimal mixing proportions. The are two general approaches to determine this,
namely Bayesian and Cross Validation. Bayesian methods can take advantage
of the evidence provided by each model, while cross validation determines the
mixing coefficients by using a cross validation procedure. A problem with

the cross validation method is that the training data has to be split into an
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extra set for the determination of the mixing coeflicients, and this can lead to
problems when the training set is small. One simple method is to weight each
model equally (this has been adopted in Chapter 7 for use with the Canadian
data).

In this section three methods of combining models were investigated. These

were:

Simple Average: The average of the output vector for all models was cal-
culated, and the highest value was taken to be the classification of the

committee. Notationally;

m

P J_ Z P
¢ = , Yij
n j=1

.
[
S

~—

where ¢” is committee output for the pth pattern and class 7, y; is the
7th model output for pattern p and class 1, and there are m models in

total.

Product Average: This is similar to the preceding method, except that a

product over the outputs is taken, thus:
1
=114 (5.3)
i=1

The resulting ¢?’s are then normalised, and the largest is taken as the
committees’s classification.

Rogova’s Method: Rogova [144] suggests using Dempster-Shafer Theory for
combining the results of a number of classifiers. The proposed method
introduces a mechanism for the calculation of evidence reflecting the
abilities of each individual classifier. Following the notation of Rogova,
for a set of N classifiers, [, the output vector ¥ is given by [™(X"),
where X" is the input vector. Assuming that we have K classes it is usual
that we assign class j to the input vector X" if y; = max;<k<x yr. This
method is suitable for a scheme such as the majority voting where it is
only required to know the single decision class for each network, however

it does not take into account how categorical the classification has been.
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A majority voting scheme would not take into account the difference
between an output of (1,0,0) and an output of (0.26,0.24,0,24), which

can be considered as unsatisfactory in some situations.

To overcome this Rogova [144] introduces a measure of evidence for
each classifier /™ and class k, denoted by ex(¥™) which is equivalent to
ex(/™(%)). The input data corresponding to class k, {X}, is used to find
the mean of the output vectors for class k and classifier ™, this mean
vector being E?. A proximity measure, df is found between cach E}
and a output vector §" which is used to determine the evidence er(¥™).

L'n on

The term d} is given by a function ¢(E},¥"), which has the properties

of varying between 0 and 1, and has a maximum value when an output
vector, §", is equal to one of the mean vectors, Ej. A number of pos-
sible functions are put forward for the function ¢, and for the following

experiments Equ. 5.4 is used:
dy = cos™(ay) (5.4)

where aof is the angle between E} and y*, and ¢ can be calculated by:

= - (21<i<1\"E"rZ~U?’)2
By, g7) = Bk ik
HELY") = BTyl

~~
(@92
[eh2 4
~—

SN

Using Dempster-Shafer Theory the evidence ex(y") is then given by:

_ dif Tige (1 — d7)
L= dp L= w1 — )]

ek(y’n)

The last step is to combine the evidence from each classifier, which can
be simply written as:

ek(i) = CH ek(y") (57)

where (' is the normalising factor. The final class assignment of the
input vector % is achieved by picking the class j which satisfies e; =

maxlgksf\/ @k(f().

127



Neural Network Experiments Chapter 5

5.3.5.2 Balancing of Data Sets

The balancing of data sets refers to the distribution of the output classes in
the training set. If one class is under represented in the data then it is likely
that the model will have a high error rate for that particular class. There are
a number of possible measures which can be taken to compensate for the low
frequency of some classes, for example, the artificial replication of classes with
an additional random component, the presentation of low f{requency classes
more often and the building of constraints into the ervor term [135]. The
approach which was adopted for the following experiments was to present the
low frequency classes more often to the network, with the effect that all five

classes occurred with equal frequency within the training set.

5.3.5.3 Procedure

90 networks were trained and ranked in order of classification rate for both the
‘plain’ data and the balanced data. The networks were trained using a training,
validation and testing method, so training was stopped when the error on the
validation started to increase. The 292 samples were split into four sets of
equal size, with a four-fold cross validation strategy being used. The resulting
sets of 20 networks were combined using the three methods described above

(Section 5.3.4).

5.3.5.4 Results

The results for both the plain data and the balanced data are presented in
Table 5.4. There is a small difference in the classification rates between the two
data sets, with the balanced data having a slightly lower overall classification
rate. Of the three methods used to form the committees, Rogova’s method

resulted in a slightly, but not significantly, better performance.

5.3.5.5 Discussion

Based on the analysis of the Severn-Trent data, the value of using commuit-
tees of networks is debatable. The committees performed only fractionally

better (usually 1 or 2 additional patterns correctly classified) than the indi-
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Top 10 Top 20
Method Mean (Std. Dev.) | Mean (Std. Dev.)

Plain Data

Simple Average 66.8% +1.1 66.2% +1.8

Product Average 66.7% £1.9 65.5% +1.4

Rogova’s Method 68.2% +1.9 67.1% +0.9
Balanced Data

Simple Average 66.2% £1.1 65.6% £1.2

Product Average 66.4% +1.4 61.8% +1.4

Rogova’s Method 67.7% +1.8 67.3% +1.4

Table 5.4: Classification rates using committees of networks for the
16 PCA Severn-Trent data.

vidual models. This is in contrast to the sediment toxicity experiments where
committees were shown to be more useful (Section 7.5).

The effect of balancing results in a slightly lower overall classification rate,
but there was a small redistribution of the correct and misclassified samples.
The balancing did have the effect of improving the classification of the lower
frequency B3 and B4 classes but to the detriment of the B2 classes. In effect,
the misclassifications for the balanced data are more evenly distributed over
all five classes.

There are some other considerations in the use of committees of models.
One is that if the model is not capable of learning the mapping then there 1s no
point producing stacked models from it. This occurs with, for example, multi-
valued functions, this is where there are two or more possible output values
for a given input. If a function is multi-valued then the network learns the
average of the outputs (note that the average result may not be an acceptable
solution), hence by stacking the models the average is improved, but is still
wrong. The other consideration is that of the mixing proportions. If these
are fixed, the probability of using an individual model’s output is independent
of the data presented to it, which may not be the best policy. IFor example
if there are two models, (e.g. one is good at identifying riffle samples and
the other pool), then some account should be taken of this when the mixing

proportions are selected. This is considered in detail in Section 5.4.
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5.3.6 Discussion: Direct Interpretation

A full and rigorous examination of all the aspects of generating a good neural
network model for the direct interpretation of river water quality has been
made. Somewhat unexpectedly the number of hidden units, methods of reg-
ularisation or combination of models were found to have little effect on the
overall classification of an invertebrate sample. The pre-processing of the in-
put and output data did have some effect, with a 16 dimension PCA set using
a one-from-N classification showing the best overall performance. This pro-
vides some support for keeping the input dimensionality small. The addition
of a simple measure of sample diversity had a noticeably beneficial effect on

the classification performance.

5.4 Classification within Different Biotopes

5.4.1 Introduction

In the previous section only the classification of riffle biotopes was considered.
For a model to be of any practical value it must be able to reliably classify
data from different biotopes. The problem with using a single model for a
number of biotopes is that interference effects may exist which diminish the
classification rates [121]. Thus, a model may get 90% of classifications correct
using data from one source and 85% correct from a different source, when
trained separately for each source. But if the model were trained using data
from both sources together then the classification rates may fall to, say, 80%
and 70% respectively.

It is possible to overcome interference effects by using a modular architec-
ture where a number of models (or experts) are trained simultaneously with
another network, referred to as the gating network, which selects the most ap-
propriate model (expert) to use for the output classification. Fach model can
be considered as an ‘expert’, and the whole system can be described as an adap-
tive mixture model or a (hierarchical) mixture of experts. A number of authors
have described ideas based around this philosophy, for example Nowlan [120],
Nowlan and Hinton [121], and Jacobs et al. [70], and it is receiving an apprecia-

ble amount of attention in the literature. It should be emphasised that there
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is a fundamental difference between the adaptive mixtures and the combina-
tion of models as discussed in Section 5.3.5. The mixing proportions within
the committees of models are determined by validation methods and are fixed
after the learning phase is over, thus remaining the same for all future pat-
terns to be classified. In the adaptive mixture systems, the gating (selection)
mechanism is conditioned on the input data, and leads to the use of different
expert models for different input patterns. The conditioning of the selection of
the models on the input data leads to a partitioning of the classification task
between the models, (i.e. networks become specialised on subsets of the input
space) and in effect focuses each on the classes which it is good at identifying,

and neglects examples where its mixing proportion is small.

5.4.2 Procedure

Using a method as described by Nowlan and Hinton [121] an experiment was
conducted into the utility of these methods for classifying invertebrate samples
from both pools and riffles. The basic model is schematically illustrated in
Figure 5.7. Two MLPs performed the task of the expert networks with the
gating network being represented by a linear model. The two experts receive
identical input, but the input to the gating network can either be the same as
that to the experts or a completely different set of data. IFor this study, two
scenarios were considered for the gating network input, the first was to use the
invertebrate sample as input (i.e. give the gating network the same input as
the two experts), while the second used the physical characteristics of the site
as input. The inputs to the expert networks were samples taken from the riffle
and pool synthetic data sets.

Both riffie and pool data were transformed into a 5-dimensional P’ CA space,
and a training, validation and testing approach was used to monitor model
performance. The training, validation and test data had 1800, 1600 and 1600
samples respectively for both riffle and pool sets. This gave the total number of
training patterns as 3600 (riffles and pools combined). In order to benchmark
the problem, and to quantify the interference effects, a single MLP was trained

using the combined riffle and pool samples.
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Figure 5.7: Schematic illustration of the mixtures of experts net-
work for the classification of samples taken from riffle and pool
biotopes.

The system was trained by using the following error function:

E? = —log Zgie_“tp_y?”z/zalz (5.8)

where EP is the error for training pattern p, g; is the output of the gating net-
work for expert 7, t” is the target pattern and y?! is the output vector of expert
i, and o is a constant term. Equ. 5.8 is suitable for gradient based minimisa-
tion algorithms as the first derivatives can be calculated. Pach output of the
gating network represents the probability that the associated expert is correct.
In theory the true output of the network, for a given input, is stochastic, and
to properly interpret the network stochastic sampling should be performed on
the output. In this work the output vector was determined by using the ex-
pert with the highest mixing proportion, and not by combining the experts
in proportion to their gating weights. In practice the gating network tends
to make very categorical choices as to which expert to use, and the winning
expert rarely has a mixing proportion of less than 0.9. This is explained by
the effect of the error term, Equ. 5.8, which tends to raise, for each particular

case, the mixing proportion of the experts that perform well on that example.
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a) Riffle test data

Network Output
Bla Bib B2 B4
S Bla[266 53 2 0
2 Blb| 45 252 23 0
© B2 56 237 0
o B3 | 0 0 25 14
& B4 0 0 0 310
Classification rate = 84.1%
b) Pool test data
Network Output
Bla Blb B2 B4
[Z Bla]247 59 U4 0 |
£ Blb| 0 239 72 0
© B2 |0 2 215 18
B3 | 0o 0 3 48
€ B4 | 0 0 0 313

Classification rate = 80.2%

Table 5.5: Interference eflects for a MLP trained on the combined
synthetic rifle and pool data. This network exhibits interference
effects as both classification rates are lower than for a corresponding

network trained on a single set (i.e. either riffle or pool) only.

5.4.3 Results

The results from the single layer MLP trained on the combined riffle and

pool data are given in Table 5.5. The overall classification rate of the riffle

data is 84.1%, whilst that of the pool data is 80.2%. Both of these figures are

approximately 10% below the classification which can be achieved by networks

trained separately as riffle and pool models. This suggests that there is some

interference occurring within the combined model between the riffle and pool

data. This is also suggested by the spread of misclassifications in the confusion

matrices.

The results from the first experiment, where the gating network received

the same input as the expert’s, are given in Table 5.6. Both sets of data are
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a) Riffle test data
Network Qutput

Bla Bib B2 B3 B4
Bia | 309 11 0 0 0
Blb | 4 300 16 0 0
B2 0 23 280 17 0
B3 0 0 11 307 2
B4 0 0 0 6 314

Classification rate = 94.4%

Target Output

b) Pool test data
Network Output

Bla Blb B2 B3 B4
Bla 309 11 0 0 0 [
Bib| 4 284 32 0 0 |
B2 0 23 268 29

B3 0 0 21 295 4
B4 | 0 0 0 6 314
Classification rate = 91.9%

Target Output

Table 5.6: Classification of synthetic riffle and pool data where
gating network had invertebrate sample as input.

classified better than for the single MLP, with overall classification rates of
94.4% for the riffle data and 91.9% for the pool data. The classification rates
for the second experiment, where the gating network’s input were physical
variables describing the biotope, are shown in Table 5.7, again both sets of data
are well classified. The riffle data had an overall classification rate of 96.2%

and the pool data 94.3%, which is slightly better than the first experiment.

5.4.4 Discussion

The results demonstrate that there is a sizable benefit in using a mixture of
experts architecture when data from different biotopes are being classified.
This has traditionally been difficult to implement as species provide different
information depending upon the biotope in which they were found [24]. In this

example pool and riffle samples only were considered, but there 1s no reason
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a) Riffle test data

Network Output
Bla Blb B2 B3 B4
*é Bla | 317 2 1 0 0
S Bib| 4 302 14 0 0
© B2 | 0 20 292 28 0
© B3 | 0 0 5 312 3
| < B4 0 0 0 4 316
Classification rate = 96.2%
b) Pool test data
Network Output
Bla Bib B2 B3 B4
S Bla|316 4 1 0 0|
5 Blb| 6 285 29 0 0
© B2 | 0 16 204 13 0
o B3 | 0 0 16 301 3
S B4 | 0 0 0 6 314

Classification rate = 94.3%

Table 5.7: Classification of synthetic riffle and pool data where
gating network had physical variables as input.

to be limited just to these.

An interesting result was obtained by examining the behaviour of the gating
network over the two experiments. With the first system, where the gating
network had the same input as the experts, the two experts were found to
classify different qualities, one classified the Bla and Blb classes while the
other handled the B2, B3 and B4 classes. It was quite a strong split with
over 95% of samples being handled this way. The second system, where the
gating network was given physical information on the biotope, the division of
the problem between the two experts was between riffle and pool sites and this
was a 100% split. So in both cases there was a divergence of what the two
individual experts classified.

Another consideration is that the total number of parameters in such mod-

els can be particularly high, especially if a large number of experts is used.
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This is not such a great problem in reality as the effective number of param-
eters is much less than the total number of weights, due to the effect of the

gating network [121].

5.5 Detection of Novel Samples

5.5.1 Overview

Once a network model has been developed and is applied in a working system,
it can be expected to perform reliably only if the future data presented to 1t
are similar to that used in its training. In more exacting terms, the underlying
statistical distribution of new data presented to a trained model should be the
same as that data used to estimate the model’s parameters. If the data is
unusual then the performance of the model is likely to decrease, and this will
lead to misclassifications and inaccurate predictions [10]. Ideally, this situation
should not arise if the training data is drawn from a sufficiently wide range of
conditions, but this cannot be guaranteed. Thus, the ability to derive some
measure of the novelty of input patterns would provide a basis for a degree of
confidence in the performance of the model.

In networks where there is no normalisation of the output classifications
it may be possible to assume a ‘doubt’ class. For example, if none of the
outputs is greater than 0.8 then the pattern classification could be judged to
be unreliable. This is almost certainly a poor strategy as there is no guarantee
that the outputs will conform in this manner, since it is just as likely that
an unusual sample may strongly activate a particular output (this is not the
case for localised hidden layer functions, e.g. Gaussian RBI's). Typically
the outputs are normalised internally within the network processing, using a
softmax construct. With this the outputs are guaranteed to sum to unity, and
it would be possible to use the normalising factor to assess the reliability of
the classification.

An alternative approach is to use a filter prior to the network to detect
novel patterns in the input data. Bishop and James [10] suggested a non-
parametric density estimation method based upon Gaussian kernel functions

(Parzen windows), and used Bayes’ theorem to calculate a-posterior: probabil-
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p(x| C)P(C)
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Figure 5.8: Schematic illustration of novelty detection (after Bishop
and James [10]). Data which fall in region R, are classified as novel.

ities for the predictor vectors. The input data is drawn from one of two classes,
cach being described by a fixed probability distribution. Class C, contains the
training and testing data used to infer the model’s parameters, while class C;
denotes the novel data configurations. These two classes are exhaustive and
thus the a-priori probabilities of class one P(Cy) and class two P(Cy) sum to
unity, P(Cy) 4+ P(Cy) = 1. Thus sites can be rejected or highlighted as novel
if P(Cy|X) is greater than P(C,|X), where X' denotes the input vector. That
is, if the probability that a site belongs to class Co, given the data, is greater

than the probability that it belongs to class Ci, then reject it (Iigure 5.8).

5.5.2 Procedure

To test out these ideas in the context of this dissertation the synthetic data
sets (Section 4.4.2) were used. The training set consisted of 1800 samples of
the riffle data. Two test data sets were used, both of which had 1600 samples,
one set representing riffle sites (drawn from the same underlying distribution as
the training data) and the other representing pool sites (which is appreciably

different from training data).
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A Parzen estimator, using Gaussian kernels, was used for the density esti-

mation, with the total likelihood for a particular data vector x given by:

1 i |x — x”|2

p(x) = (2 )P ;6:\’}) {—T} (5.9)
where x? is a pattern from the training set (which has n patterns in total),
d is the dimensionality of the input space and o is the smoothing parameter
that controls the width of the Gaussian kernel. A well documented problem
associated with the above models is that of increasing dimensionality of the
density estimation space, and for this reason the dimensionality of the data
sets were reduced from their original size of 41 dimensions (each dimension
representing a single taxon) to a five dimensional space using a PCA analysis.
In addition a MLP having 5 inputs, 5 hidden and 5 output units was trained
using the training data and a validation data set. Training was halted when
the validation error began to increase, and at this point the two test data sets
were processed through the network.

The width parameter for the window functions was set using the following
simple heuristic; set the standard deviation o to the average distance of the

five nearest neighbours.

5.5.3 Results

Table 5.8 shows the confusion matrices for the combined riffle and pool test
data as derived from a MLP trained on riffle data only. As expected the MLP
produced a greater classification rate for the riffle data (93.8%) than the pool
data (71.9%). The riffle sites were all classified correctly to within a single
class, unlike the pool sites where there was a noticeable degradation of the
classification rate because of the absence of the more sensitive indicators. The
MSE from these classifications were plotted against the log likelihood of the
unconditional probability density (Equ. 5.9) from the novelty detector. These
are shown in Figure 5.9.

Examination of Figure 5.9 (a) shows that most (i.e. more than 90%) of the
data fall within a small region of the graph. These points have small M5’s,

which is indicative of correctly classified patterns. The important item to
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a) Riffle test data
1.0

084+ - — - — - —_— - - - -

Mean Square Error

Log Likelihood

b) Pool test data

Mean Square Error

Log Likelihood

Figure 5.9: Plot of MSE against log likelihood from the density
estimation for synthetic riffle and pool test data. The region to the
left of a log likelihood value of -6 can be regarded as representing
novel data.
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a) Riffle test data

Network Output
Bla Blb B2 B3 B4
S Bla[310 10 0 0 0
2 Blb| 3 203 24 0 0
© B2 | 0 20 218 22 0
©© B3 | 0 0 9 304 7
S B4 0 0 0 5 315

Classification rate = 93.8%

b) Pool test data
Network Output

Bla Blb B2 B3 B4
Bla | 178 138 14 0 0
Blb ) 181 103 31 0
B2 0 1 208 89 22
B3 0 0 18 268 34
B4 0 0 0 5 315

Classification rate = 71.9%

Target Output

Table 5.8: Confusion matrices for synthetic rifle and pool test data
for a MLP trained only with riffle data.

note is that all the points have a log likelihood of greater than —5.0. This is in
contrast to the pool data of Figure 5.9 (b) where the majority of the sites have a
log likelihood of less than —7.0. There is a clear division between normal (riffle)
and novel (pool) data, and the majority of the significant misclassifications
would be eliminated if a threshold for the log likelihood of -6.0 was adopted.
For reference, in Figure 5.9 (b) the majority of the points with a log likelihood
of greater than —6.0 (i.e. data which can be considered as normal) are from
classes B4 and B3, and it is these classes which have the greater degree of

similarity between the rifie and pool data.

5.5.4 Discussion

The above results demonstrate that it is possible to define a measure of nor-

mality associated with the input data. For this particular example, normal
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was assumed to be representative of a riffle community and it would be possi-
ble to pick out samples that differed from this assumption. But the technique
is not limited to just the riffle/pool situation, it may be possible to pick out
other examples (e.g. heavy metal pollution) where the sample is unusual.
This should be viable, as throughout the various elicitation sessions the Ix-
pert could identify unusual samples and comment to the eflect that the original
‘organic pollution only’ assumption did not apply to that particular sample.
The experiment assessed novelty using the invertebrate data only, so if biotope
information were included a greater level of discrimination between riffle and
pool data could be expected, and thus a corresponding increase in the differ-
ence between normal and novel. In addition, it should be possible to detect
novelty in the physical characteristics of sites, which could be useful in models

which incorporate this type of information (e.g. Section 5.4).

The question of what constitutes novel data is an important one. Whichever
method of novelty detection is used it will require an implicit assumption to
be made about the distribution of the outliers. In this particular example,
a uniform distribution was assumed over the 5-dimensional PCA space, but
this may not be applicable in all situations, especially where different scalings
or transformations are used for the various components of the input vector.
Additionally, there are implicit assumptions associated with each model. The
main one associated with Parzen windows is that the window width and shape
is the same for all regions of the space of interest. This may restrict the effi-
cient modelling of the unconditional data density. Other models, for example
Gaussian mixture models, could have been used for the density estimation, but
there are a number of trade offs between the complexity, speed of construction

and evaluation of the model that must be taken 1nto account.

The clustering of the data in Figure 5.9 is an artifact of the synthetic
data. If ‘real’ data were to be used, a more uniform density for the log likeli-
hood would occur, and the boundary between normal and novel could be less
clear cut. However, the simple heuristic used to set the width parameter for
the Parzen windows could be improved upon to yield better discrimination,
simply by using cross validation data. A model has been described in the liter-

ature [143] which determines the threshold as part of the training process, but
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this uses a more complex algorithm which incrementally adjusts the number

of components of the density estimator.

5.6 Encoding Prior Information

5.6.1 Overview

This section is concerned with the incorporation of prior knowledge within a
neural network. Up to this stage the neural net models have not utilised any
information which has been elicited from the domain expert (except for the
sample classifications). It appears that the knowledge-based systems and the
neural networks occupy different ends of the spectrum as far as the use of prior
information is concerned. The knowledge-based systems use only the subjec-
tive, probabilistic domain knowledge and do not modify their knowledge base
to reflect the test data, while the neural networks use only information from
the data and make no use of the elicited probabilistic information. Learning
in probabilistic knowledge-based systems has been described [159], as has the
use of objective probabilities (i.e. frequencies from data sets) to refine the
knowledge base in an expert system [161]. But subjective domain knowledge
has not, if ever, been explicitly used to train (or prime) a neural network to
classify real world data.

The use of prior information in neural networks to explicitly encode the un-
derlying functional relationship between input and output has been described
(e.g. monotonic functions [73]). Prior knowledge has also been used to deter-
mine suitable topologies. These are both more implicit in their approach to the
use of prior information, the estimation of the parameters is still only reliant
on the data sets. The principal idea in this section is that it should be possible
to use subjective domain knowledge in the training process to facilitate the

development of a more robust classification tool.

5.6.2 Procedure

The most practical method of introducing prior knowledge was to augment

the Severn-Trent training data with samples of the synthetic riffle data. For
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Network Output
Bla Blb B2 B3 B4
Bla] 46 11 1 0 0 |
B1lb 9 45 16 1 0
B2 0 19 60 22 2
4
10

B3 0 0 7 24
B4 0 0 0 15
Classification rate = 63.4%

Target Output

Table 5.9: Confusion matrix for the Severn-Trent test data from an
MLP using a ratio of 2:1 Severn-Trent/synthetic riffle data for the
training data.

the preliminary experiments a number of different ratios of Severn-Trent to
synthetic data, for use as training data, were experimented with. The MLPs
were trained using the data sets of Table 5.1 with 8 hidden units and a weight-

decay A of 0.1.

5.6.3 Results

It soon became clear that use of the synthetic data was not improving any
of the models’ performances. For the Severn-Trent data the average classi-
fication rate, using only the invertebrate sample as input, would be around
65%-70% (see Table 5.2). Virtually every network with a ratio of Severn-
Trent /synthetic data of less than 1:1 (i.e. 1:2, 1:4), that is more synthetic data
than real, had a classification performance of less than 50%. The classification
rate improved to over 50% only when there was proportionally more Severn-
Trent data than synthetic in the training set. The most successful ratio was
that of 2:1 Severn-Trent/synthetic, an example of which is given in Table 5.9.
Here the classification rate improved to over 60%, which is still lower than was
previously obtained with just the Severn-Trent data. The misclassifications
are spread uniformly over the 5 classes.

Again, of the different encoding formats the most successful was the 16

PCA method.
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5.6.4 Discussion

Unfortunately the results were disappointing and contrary to expectation. The
use of prior information (i.e. the synthetic riffle data) did not improve the
classification accuracy of the MLP for the Severn-Trent data. It is difficult
to pinpoint the reason (or reasons) why this should be so, but perhaps the
most likely explanation is that there is some interference effects occurring
between the Severn-Trent and synthetic datasets. This is similar to those
effects demonstrated by the riffle and pool data (see Section 5.4 and Table 5.5).

The use of subjective expert knowledge for training neural networks will,
undoubtedly, become more common place. For example, Abu-Mostafa (1]
refers to systems learning with ‘hints’, which is very much along the lines
of the efficient use of prior knowledge. But as demonstrated by the results
of this section, care must be taken with the use of prior knowledge, as it can

degrade, as well as improve, the models performance.

5.7 Self-Organising Maps

5.7.1 Introduction

Self-organising maps (SOMs) constitute a popular tool for the visualisation of
complex experimental data [83]. They form a topology preserving nonlinear
projection from the dimension of the input vector to, typically, a two dimen-
sional space. Input vectors which are similar will be mapped to a similar region
of the two dimensional map. They use an unsupervised learning algorithm,
which means that classification labels are not used to form the mapping. If the
classification is known, then it is possible to use a corresponding supervised
learning algorithm, called Learning Vector Quantization (LVQ). The main util-
ity of the SOMs is that they are powerful visualisation tools, especially useful
for the analysis of time series problems where a trajectory can be followed
on the feature map. Other unsupervised visualisation tools are available, for
example Sammon’s mapping [152] and various multi-dimensional scaling algo-

rithms.
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Figure 5.10: Two Self-Organising Maps generated from the Severn-
Trent data.

5.7.2 Mapping the Severn-Trent Data

Using the Severn-Trent data (Section 4.3) two different topologies of feature
map were trained (5x5, and 15x1) using the SOM_PAK software. This was an
explorative exercise to see whether the SOM were able to extract a meaningful
interpretation of the biological classification without prior knowledge of this
classification. Figure 5.10 shows the two trained feature maps. The thirteen
division classification was used to interpret the maps, but these labels were

only added after the training process had been completed.

5x5 Map

This map, Figure 5.10 (a), shows a good ordering of the classes from the lower
right hand corner, round in an anti-clockwise direction to the bottom left hand
corner. There is a fold (or discontinuity) in the map starting from the bottom
edge, lying vertically up two layers. There is a clear trend from the best quality
classes (Bla) to the poorest (B4), with the B2 class occurring with the greatest

frequency.
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15x1 Map

This linear feature map, Figure 5.10 (b), shows an excellent progression from
good quality classes on the left, through the intermediate classes to the poor
quality classes on the right. The ordering is clearly apparent and in good
agreement with the classification systen. As was previously stated, although
the classes are ordered (i.e. Bla > Blb > ... > B4) thereis no information on
the spread of the class. This 1s reflected somewhat in the proportion of the B2
which are present (some 6 out of 15 units). It could be argued that the reason
for the large presence of B2s was they formed a larger proportion of the data
set, but if this was the case then the Blbs should be next best represented

class, but this is clearly not so.

5.7.3 Discussion

As can be seen from Figure 5.10 the two SOMs do represent map pings that can
be intuitively interpreted with respect to the biological classification used in
this dissertation. Although, this is not conclusive or incontrovertible evidence
that the particular classification is the best method of summarising the data,
it does provide supportive evidence that this classification offers a powerful
means of interpreting the invertebrate communities.

If the labels are known, then it is possible to prime the SOM’s so that
the position of key classes or groups are fixed beforehand. This would enable
the desired representation of samples to be forced onto specific locations. FFor
example, this would be useful for the mapping described by Walley [168],
where a truncated diamond topology (with good quality sites at the top and
poor sites at the base) for the biological classification of river water quality 1s
suggested. For a surveillance program of a single site it would be possible to
plot the trajectory of the classification over time, and this trajectory would be
an excellent visual means of presenting the results of a surveillance program.

Manual calibration of the regions of the resulting map was aided by know-
ing the classification of individual samples. If these classes were unknown,
then interpretation of the resulting maps would be considerably more difficult.

There would be a possibility of reading too much meaning into the structure
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of a SOM, for it is possible that some latent artifact of the data influenced the

resultant mapping.

5.8 Comparison to the BERT System

Although outside the scope of this dissertation from an experimental per-
spective, a qualitative comparison is made here between the neural network
models of this project and the knowledge-based approach of the BERT sys-
tem [170, 169). The work in this dissertation was influenced by the BERT
system, and draws on many of its strengths, although there are some signifi-
cant differences.

The main difference is in the process by which each method obtains its
‘knowledge’, which enables it to perform the classification. The BERT system
is primed with the expert knowledge, in fact the main component is the knowl-
edge base, the construction of which was not a trivial exercise. At present,
BERT does not update its database of probabilities in the light of ‘real world’
data, that is it does not ‘learn’. This is in contrast to the typical neural net-
work approach, where no prior knowledge is utilised, and the learning is solely
governed by the available ‘real world” data. Two half-way-houses are possible;
one where the BERT system learns, the other with some prior knowledge en-
coded into the neural networks. The latter was found to produce poor results
in Section 5.6, while the former has not been tried, but would not be difficult
to implement.

Perhaps the biggest obstacle for the BERT system would be its extension to
incorporate other information, such as environmental attributes, in the deriva-
tion of the classification. With the MLP’s this would not be a problem as
additional inputs could easily be used. Also, the Bayesian based BERT system
is readily formulated in terms of discrete attributes, but its extension to con-
tinuous values would increase its mathematical complexity quite substantially,
whereas this would present no difficulty for the MLP networks.

Although the identification of unusual samples was discussed earlier (Sec-
tion 5.5), the BERT system takes a different approach to this problem by
identifying individual taxon as either rogues or victims if the evidence pro-

vided by that taxon is not in keeping with that provided by the other taxa in
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the sample. Rogues are taxa which are unexpectedly present and distort the
conclusion of the system by providing contradictory evidence. Rogues can be
identified and removed by the use of the conformity index. The conformity
index can also be used to identify victims and to define sample consistency.
Victims are taxa which would be expected to be present in the sample but are
absent. Sample consistency provides a measure of the agreement between all
of the individual pieces of evidence provided by the indicator taxa. Decisions
on rogues and victims are made within a probabilistic framework, relying on
the knowledge base, and offer a more detailed interpretation than that possible
with the density estimation method discussed in Section 5.5.

The Bayesian methods of BERT and the neural networks are essentially
complementary in nature, and there is no reason why the two methods could
not be combined. For example, where the classifications of a number of models
are averaged the models do not have to be similar, indeed it may make for a
very much more robust system if the models are different (orthogonal) in na-
ture. Walley [168] experimented with this idea, and showed that a combined
system of a Bayesian model and a MLP provided the most reliable classifica-

tion.

5.9 Summary

This section has demonstrated the utility of neural networks in a number of
different applications relating to the interpretation and classification of benthic
macroinvertebrate samples. The basic neural network model performed well.
In tests based on the Severn-Trent data it proved to be relatively insensitive to
the number of hidden units and regularisation procedures. In addition, when
individual networks were combined to form committees of networks there was
only insignificant improvements in performance. In contrast it was found that
by using an additional input, which reflected the sample diversity, classification
accuracy improved by 10%.

Following on from the development of networks for riffle biotopes, a mod-
ular architecture was used to develop networks for use on a mixed data sef
containing samples taken from different biotopes. These were trained and

tested on the synthetic data and clearly demonstrate the value of such mod-
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els. Another important topic was the reliability of the models when used on
new and novel data. Like all regression models, neural networks are unreliable
when used to extrapolate, so doubt must be cast on predictions made from
data which, by some measure, is different from that which was used to train
the model. By using a novelty detector prior to processing it Is possible to
determine when a normal or abnormal input vector has been presented to the
network. This permits unusual or novel samples to be highlighted and lagged
for special attention. The use of unsupervised learning procedures, based on
Kohonen self-organising maps, demonstrated that the biological classification
system used was reasonable, as the resulting maps could be easily interpreted

by using the biological class labels.
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Chapter 6

Selection of Key Indicator Taxa

6.1 Introduction

Taxa which are frequently used by biologists to identify specific ecological con-
ditions are commonly referred to as ‘indicator’ or ‘key’ taxa. This dissertation
modifies this loose definition to include the selection of indicator taxa for use
in numerical classification and prediction models. In any well designed study
the samples taken should provide sufficient discriminatory information about
the subject of interest to permit reliable classification and/or prediction. Typi-
cally, the sample information is imperfect and limited by the practical confines
of the study. For example, the microorganisms known as Sewage fungus are
excellent indicators of fairly heavily polluted conditions [98], but their pres-
ence is often not reported because they are not benthic macroinvertebrates.
A comprehensive study would utilise information of many faunal and floral
groups [65, 139, 51], as the whole range of ecologists’ expertise could then be
drawn upon. No group would be excluded if it provided telling evidence as to
the state of the river or its environment. Unfortunately, the assimilation of
data from many groups happens only occasionally; so the best must be made
of what is available, which is typically the macroinvertebrate data.

Section 6.2.1 briefly discusses what qualities biologists or ecologists consider
when identifying indicator taxa, while from Section 6.3 onwards the emphasis is
directed towards the selection of taxa which can be considered good indicators
of quality class. Three different methods, of which one is a novel implemen-
tation based on a hybrid frequentist-Bayesian approach (referred to as the

RMS-D method), are described and compared using the Severn-Trent sample
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occur in the field. The transfer of laboratory work to field interpretation is
also complicated by synergistic or antagonistic interactions among the sources
of stress. Thus, in the laboratory the concentration of zinc which kills 50% of
of individuals may be calculated, but this may change dramatically depending
on the acidity of the waters, thus a single recommended safe concentration
of zinc would be misleading. Taxa can also be used as sentinel organisms
where their tissue is examined and its concentrations of any contaminants
are extrapolated to infer the in-situ concentrations. This is becoming more

common, but at present does not lend itself to routine monitoring [75].

6.2.2 Variables for Use in Computer Models

A common desire is to select the most appropriate indicators for use as predic-
tors in the particular model under consideration. In neural network models,
especially where the number of training patterns is small, it is important to re-
move the inputs that are either redundant or spurious to the problem at hand.
For Bayesian knowledge-based systems, the identification of good indicators
would help direct the emphasis of any direct knowledge elicitation (see Sec-
tion 4.2.3), and reduce the time spent on elicitation and thus partly overcome
the knowledge acquisition bottleneck. Also, by reducing the quantity of data
needed within the system, the incidence of conflicting data will be reduced.

The selection of feature variables is common to most studies [154], and the
criteria for selecting the most suitable subset ultimately depends on the under-
lying study [101]. An example is the difference between models which aim for
a low error rate, allocatory, and those which maximise the separation between
groups, separatory. McLachlan [101] demonstrates that the use of allocatory
and separatory criteria can lead to different results in the reduction of the
feature vector’s dimensionality. When selecting a subset of variables from a
large set it is important to note that a selection bias will be introduced [101].
Methods are available for the reduction of selection bias but involve a high
computational penalty.

The necessity of identifying good indicators is particularly pertinent to the
discipline of biological monitoring, because of the great number of possible

sensors that are available to be used. For example, in the current database of
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British Freshwater Animals [96]" there are approximately 3000 species listed,
with around 1500 species of benthic invertebrates. Not all of these, however,
would be suitable as indicators, either due to taxonomic difficulties or low in-
cidence in UK waters. In this study the data sets were supplied by outside
bodies, thus the collecting strategy and level of identification were predeter-
mined. Clearly, this constrained the scope of the study, in terms of the range
and level of taxa under consideration. It also increased uncertainty in the data,
due to problems of interpreting exactly what the data represented. Despite
these constraints the results will clearly demonstrate the value of the methods
developed and provide a sound basis on which to design a more comprehensive
study.

The automation of the methods for the selection of indicator taxa would
be particularly useful where expert knowledge is unavailable or does not exist.
For example, the acidification of streams can be assessed by chemical means
and the resulting pH range, say 4.0 to 8.0, can be banded into different classes.
The conditional probabilities of the taxa and the class can be calculated, and
from this the key taxa can be selected using one of the methods discussed in
the following section. This does not utilise any domain knowledge, and so the

following methods can be thought of as being problem independent.

6.3 Determination of Indicator Taxa

Three methods of quantifying the indicator values of taxa, and thus of identi-

fying key taxa, are considered in the following sections. There are:

i. a novel implementation based upon a frequentist Bayesian approach (the

RMS-D method),?

i a method taken from information theory, namely mutual information,

and

iii. a stepwise discriminant procedure.

1Currently maintained by Dr M.'T. Furse, at the IFE.
2W.J. Walley, personal communication
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The desire is to be able to rank candidate input variables (i.e. taxa) into a order
based on their usefulness for prediction and classification. This information
could be used to reduce the dimensionality of the input vector in neural net
models, and hence help to overcome over-fitting problems by reducing the
number of weights needed in the networks.

The desirable properties of such an indicator index would be that it varies
from zero to an upper bound value; with zero representing the poorest indicator
possible (i.e. a taxon that provides no information as to the class of the river
system) and the upper bound representing the perfect or absolute indicator.
Also, there is a trade-off between the taxa occurring very frequently, which
would imply poor discriminatory power between classes, and very infrequently,
which would imply a restricted utility and a reliance on other taxa being
present in order to provide routine classifications. This trade-off should be

reflected in the indices.

6.3.1 The RMS-D Method
6.3.1.1 Philosophy

The RMS-D (Root Mean Squares of the Deviations) method is based upon
utilising the frequencies of the taxa derived from an analysis of the data set.
It considers each taxon individually and also each state of abundance as being
independent. For each taxon an expression 1s derived to quantify the informa-
tion provided by each state, and these are combined to give an overall indicator
value for each taxon. These indicator values provide a basis on which decisions

can be made concerning which taxa to include in the model.

6.3.1.2 Derivation

Using the distribution of Asellus aquaticus and Gammarus pulez from the
Severn-Trent 292 database as an example, the first step is to derive the prob-
ability for each taxon state given the quality class, P(ex|H;), where H; 1s
the jth class from Bla, Blb, ..., B4 and e;. the kth state of the ¢th taxon
(e.g. A. aquaticusis few). The frequencies of these occurrences, expressed as
probabilities normalised within each class, are shown in Table 6.1. However,

it is the probability of the water class given the state of the taxon, P(H;lei),
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Asellus aquaticus Gammarus pulex
{rClass ‘ Abs Pres Few C0m+J WClass ‘ Abs Pres Few Com+JJ
Bla |0.91 0.06 0.03 0.00 Bla [0.35 0.07 0.43 0.16
Bib 0.52 0.11 0.27 0.10 Bib | 0.14 0.14 0.11 0.61
B2 0.14 0.09 0.24 0.53 B2 0.31 0.11 0.36 0.23
B3 0.14 0.11 031 0.43 B3 0.94 0.03 0.03 0.00
B4 0.52 0.08 0.36 0.04 B4 1.00 0.00 0.00 0.00

Table 6.1: Conditional probabilities, P(ey|H;) for Asellus aquati-
cus and Gammarus pulez derived from the Severn-Trent 292 data.

that we wish to use as the basis of the indicator values. It should be noted
that P(Hjle:) in this case is based on P(H;) = 0.2 (i.e. so the prior proba-
bility of each class is equal, the Principle of Indifference is assumed to apply).
In other words, the system is based on the evidence provided by the sample
alone, not the sample plus prior knowledge of the frequencies of the classes
(H;). We are starting with an open (unbiased) mind and judging the quality
of the indicators by the evidence presented by the data.

From Table 6.1 the marginal probabilities P(eix) can be calculated from:
5
Z P(ei|H;)P (H;) (6.1)
7=1

where P(H;) = 0.2 from the Principle of Indifference. Then using Bayes’

formula the P(H;lei) values can be calculated from:

P(ew|H;)P(H;)

P(H;lei) = P(eir)

(6.2)

with P(ex|H;) given in Table 6.1, P(es) from Table 6.2 and P(H;) = 0.2.
Using the P(H;|ex) values from Table 6.3 the indicator value, ZV;; for a

taxon e; in state k can be defined as:

1/2

2
Vi, = [Z(P(Hﬂ@ik) — P(I{j)> } (6.3)
J
This is shown graphically in Figure 6.1. The shaded area is the difference
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Asellus aquaticus Gammarus pulex

H ]Abs Pres Few Com+ U W ‘Abs Pres Few Com—ﬂ
[ Plex) [ 045 0.09 024 022 [ [ Plew) 055 0.07 0.19 0.20 ||

Table 6.2: Marginal probabilities, P(ei), for Asellus aquaticus and
Gammarus pulex calculated from Equ. 6.1.

Asellus aquaticus Gammarus pulex
Wlass ; Abs Pres Few Com—d ” Class l Abs Pres Few Com—FJJ

Bla |0.41 0.12 0.03 0.00 Bla ]0.12 020 0.46 0.16
Bib ]0.23 0.25 0.22 0.09 Bib | 0.05 0.41 0.12 0.61
B2 0.06 0.19 0.20 0.49 B2 0.11 0.30 0.38 0.23
B3 0.06 0.26 0.26 0.39 B3 0.35 0.08 0.03 0.00

/ B4 0.23 0.18 0.30 0.04 | B4 0.37 0.00 0.00 0.00

/

Table 6.3: Conditional probabilities, P(H;|eix), for Asellus aquati-
cus and Gammarus pulex derived from the Severn-Trent 292 data
using Equ. 6.2.

between the probabilities for each state and the non-informative probabilities.
The square of the distance 1s taken for all values, and the square root of the
sum of these squares is calculated. These values are used later in Section 6.6
as an alternative input encoding format.

Equ. 6.3 gives the indicator value for each taxon (i) in each of its possible
states of existence (k), including absence. The value of knowing that the state
of a given taxon is few could be compared to that of any other given state via
these values. But if we were are to rank taxa in terms of their overall value as
indicators, we need to derive an overall indicator value for each taxon. Two
methods are possible: one is to take the average value of the ZV;; values, the
other is to weight each ZV;; by the frequency of each state. Thus the average
is given by:

o _ 1 ‘ ,
Ve = K%:IV"” (6.4)
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P(H/ley)

0.46

e.g. Gammarus pulex is few

Probability

H, H, H, H, H,

Figure 6.1: Graphical representation of the basis of RMS-D method.
The shaded areas (A-E) are used in the calculation of the indica-
tor value. If the taxon was always absent or always present the
shaded area would be zero, and the indicator value would be zero.
Probabilities shown are taken from Table 6.3.

I [T [V |
Asellus aquaticus | 0.263 | 0.286
Gammarus pulez | 0.386 | 0.359

Table 6.4: Indicator values for Asellus aquaticus and Gammarus pulez.
where there are K states in total, and the weighted value by:
IV;” = Z P(e,-k)IVik (6.5)
3

where P(eir) is given in Table 6.2. Table 6.4 shows both indicator values for
the A. aquaticus and G. pulez data of Table 6.3.

The two methods of deriving the indicator values, Equ. 6.4 and Equ. 6.5,
were compared using the Severn-Trent 292 sample database (see Section 4.3).

Table 6.5 show the best 10 taxa selected by both methods, where the data
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vy AN

Score | Fregq. | Taxon Score | Freq. | Taxon
1 ]0.381 | 185 | Gammaridae 0.673 3 Brachycentridae
2 10.363 | 153 | Baetidae 0.648 | 18 | Chloroperlidae
3 10.344 | 150 | Tipulidae 0.639 | 47 | Leuctridae
4 10318| 75 | Heptageniidae | 0.604 | 39 Nemouridae
5 | 0296 | 179 | Asellidae 0.595 | 57 | Perlodidae
6 |0.296 | 134 | Ancylidae 0.575 | 17 | Taeniopterygidae
7 10286 | 69 | Rhyacophilidae | 0.552 | 20 Piscicolidae
8 |0.282 | 57 | Perlodidae 0.546 7 Phryganeidae
9 10.271 89 | Elminthidae 0.538 | 75 | Heptageniidae
10 | 0.266 | 87 | Limnephilidae | 0.531 69 | Rhyacophilidae

Table 6.5: Comparison of two probabilistic indicator indices with
the best 10 taxa listed in descending order. The was a total of 292
samples.

has been grouped to family level.? From Table 6.5 it is apparent that there
is a considerable difference between the values produced by the two methods.
There is a trade off between the frequency of the taxa and its value as an indi-
cator. If the taxa is extremely frequent and is commonly present in all quality
classes then its value as an indicator is very limited (however its absence may
be important in determining the cause of pollution). The best indicators are
the ones which appear only in one class, but these tend to have a low frequency
within the data set. These are good indicators, but are of limited use because
of their infrequency. Thus of the two indices, the averaging method (ZV*,
Equ. 6.4) identifies the best indicators without regard to frequency, while the
weighted method (ZVY, Equ. 6.5) takes frequency into account and provides
the best overall measure of indicator value. The values of IVY are used in
preference to the TV values in Section 6.4 to compare the three indicator se-
lection methods. Also, the weighted method shows a good correspondence to
the taxa selected for use in the BERT system, and this is investigated further

in Section 6.4.

3Note the derivation of the 2 probabilistic indicators were demonstrated using species
level data on A. aquaticus and G. pulez.
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6.3.2 An Information Theoretic Approach
6.3.2.1 Review

Henery [57] discusses information theoretic measures, and Jones [76] provides
an introduction to information theory. Other related work includes Battiti [6],
Kanaya and Nakogawa [80] and Karin [82]. Some of the diversity indices used
in biomonitoring are in fact derived from information theory, for example the
Shannon-Weiner Index (Equ. 2.3). The following sections provide details of
the further development of these indices. The techniques discussed in this
section are suitable for discrete attributes but can be adapted for continuous

attributes.

Entropy

Entropy may be regarded as a measure of uncertainty, or randomness, of an

attribute, and is defined as:
H(E) == pxlog(pk) (6.6)
k=1

where pj is a probability of an event P(Ey). If p is zero, then zero is assigned
to the indeterminate py log(px) expression. Also the entropy of a variable can
never be negative. If there is complete certainty the entropy is zero, which is
the lower bound, while the upper bound occurs when all events are equally
probable (i.e. maximum uncertainty), and is equal to logn since py = pz =
o =p, = 1/n. Thus, if a variable has attributes that do not vary then it is
not possible to discriminate between classes, and therefore the variable has no

utility as a predictor.

6.3.2.2 Mutual Information of Class and Attribute

The amount of common information, or entropy, between two variables, C' and

E is given by:

M(C,E) =} pijlog ( Py ) (6.7)

Tiq;

159




Selection of Key Indicator Taza Chapter 6

where p;; is the joint probability of observing class C; and the jth state of
variable E, m; is the marginal probability of Class C; and g; the marginal
probability for the state E;. The mutual information, M(C, E), will be zero if
and only if C and E are independent [126, 42), while the maximum value for
the mutual information of a system cannot exceed the sum of their separate
entropies [76]. In the machine learning community the mutual information is
useful as a splitting criteria for decision trees [57]. Henery [57] also discusses
other information theoretic expressions for equivalent numbers of attributes,
noisiness and the identification of irrelevant variables.

Pearl [126] also comments on the use of sensitivity matrices to assess the
utility of information, but considers these to be too detailed a measure. The
deficiency of the mutual information is that scale or ordering information is

not considered in the values that a variable can take [126].

6.3.3 Classical Methods

Three methods are generally available in statistical packages to select predictor
variables for parametric regression and discriminant analysis. The three meth-
ods are referred to as forward, backward and stepwise selection procedures. In
forward selection, the model initially contains no predictor variables, for each
step the variable that adds most to the discriminatory power of the model
is selected and this continues until none of the unselected variables meet the
selection criteria. For backward elimination the model starts with all possible
predictor variables, and for each step the variable contributing least to the
discriminatory power of the model is removed. Again, this is continued until
all the remaining variables meet the criteria to stay in the model. Stepwise
selection is similar to forward selection except that variables can be removed as
well as added to the model. The model is examined at each step and selection
is stopped when there is no unselected variable that meets the criterion to en-
ter the model, and none of the selected variables are suitable to be eliminated.
The selection criterion is based either on multiple correlation coefficients or
the residual variance of the model, with the relevant statistical test being the
Wilks’ A. Only one variable at a time can be added to the model, and no ac-

count is taken of the relationships between the unselected variables. Stepwise
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discrimination does not always produce the best model, and Wilks’ A may not

be the most suitable test of discriminatory power [153].

6.4 Comparison of Indicator Expressions

6.4.1 Procedure

Using the 292 Severn-Trent data set all three of the above methods, namely
the RMS-D weighted index, the mutual information and the stepwise analysis,
were applied to the task of identifying the key indicators taxa from the 80
families occurring in the data. The data were collated to family level with the
biological classification being used as the class attribute. The indicator values
based on the mutual information and the RMS-D approach were evaluated

using a spreadsheet, while the stepwise discriminant analysis was completed

using the SAS procedure STEPDISC [153].

6.4.2 Results

Table 6.6 shows the ranking of the families according to each of the assess-
ment procedures used. Column 1 gives the family, while Columns 2 and 3
give the rank and score for each family for the RMS-D approach. Likewise
Columns 4 and 5 show the rank and scores for the mutual information. Col-
umn 6 shows those families which were selected by the stepwise discriminant
procedure, while Columns 7 and 8 give the rank and number of occurrences of
each family within the 292 samples. The last column shows the stage at which
the family was incorporated into the BERT list of key taxa.? The double en-
tries in the Heptageniidae and Hydropsychidae columns denote that taxa from

within these families were included at different stages in the BERT project.

4This is a little simplified because of the mixed taxonomy of the BERT taxa, as certain
families can be represented more than once within the BERT taxa. In addition, some of
the BERT taxa were species which were considered to be much better indicators than their
families (e.g. Hydropsyche angustipennis instead of Hydropsychidae).
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Table 6.6: Ranking of taxa in terms of three indicator indices: RMS-D

scores, mutual information and stepwise regression.

RMS-D Mutual Step Number of BERT
Taxon vy Information wise Occurrences Taxa
| Rank | Score || Rank | Score Rank | Total
Gammaridae 1 0.381 2 0.180 X 4 185 1
Baetidae 2 0.363 1 0.181 X 9 153 2
Tipulidae 3 0.344 3 0.164 X 10 150
Heptageniidae 4 0.318 4 0.163 X 20 75 2/3
Asellidae 5 0.296 9 0.120 X 5 179 1
Ancylidae 6 0.296 8 0.123 12 134 3
Rhyacophilidae 7 0.286 5 0.138 21 69 1
Perlodidae 8 0.282 6 0.134 X 22 57 3
Elminthidae 9 0.271 10 0.116 17 89 3
Limnephilidae 10 0.266 11 0.112 18 87 3
Hydropsychidae 11 0.263 12 0.109 X 16 112 1/2
Leuctridae 12 0.262 7 0.126 X 29 47 1
Sphaeriidae 13 0.261 14 0.092 X 7 161 3
Simuliidae 14 0.252 13 0.093 14 119 1
Glossiphoniidae 15 0.239 18 0.077 11 149 2
Hydrobiidae 16 0.234 16 0.082 X 13 132 3
Dytiscidae 17 0.220 17 0.081 X 15 115 3
Erpobdellidae 18 0.216 20 0.060 X 155 1
Tubificidae 19 0.200 24 0.053 X 273 1
Nemouridae 20 0.194 15 0.086 X 33 39 3
Hydracarina 21 0.169 21 0.057 19 85 3
Leptophlebildae 22 0.157 19 0.062 X 31 43
Lymnaeidae 23 0.157 35 0.035 6 163 1
Ephemeridae 24 0.150 22 0.055 25= 50
Caenidae 25 0.146 23 0.054 25= 50 2
Oligochaeta 26 0.146 33 0.036 1 280
Chironomidae 27 0.145 37 0.030 X 3 241 1
Leptoceridae 28 0.140 26 0.051 23 56
Sericostomatidae 29 0.133 25 0.053 35= 3
L\_Elanorbidae 30 0.124 27 0.046 24 54 3

Table 6.6 continued overleaf
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Table 6.6: Ranking of taxa in terms of three indicator indices (cont’d).

RMS-D Mutual Step Number of BERT
Taxon vy Information wise Occurrences Taxa
Rank | Score {| Rank | Score Rank | Total
Hydrophilidae 31 0.107 34 0.036 28 49
Rhagionidae 32 0.107 29 0.041 37= 30
Physidae 33 0.106 30 0.038 X 32 42
Chloroperlidae 34 0.104 28 0.043 46 18
Ephemerellidae 35 0.102 32 0.036 X 35= 31
Haliplidae 36 0.094 38 0.029 25= 50
Planariidae 37 0.093 36 0.032 30 414
Taeniopterygidae 38 0.091 31 0.037 47= 17
Sialidae 39 0.083 40 0.028 34 32
Polycentropidae 40 0.082 39 0.029 39= 26
Lumbriculidae 41 0.066 43 0.024 39= 26
Goeridae 42 0.065 41 0.026 44= 20
Lumbricidae 43 0.064 45 0.021 37= 30
Perlidae 44 0.062 42 0.025 X b4= 10
Valvatidae 45 0.059 44 0.023 43 23
Corixidae 46 0.057 47 0.020 42 25
Lepidostomatidae A7 0.056 46 0.020 47= 17
Muscidae 48 0.045 50 0.013 39= 26
Piscicolidae 49 0.043 49 0.016 14= 20
Odontoceridae 50 0.043 48 0.017 5T= 7
Dendrocoelidae 51 0.035 52 0.012 49 16 3
Psychomyiidae 52 0.034 51 0.012 50 15
Coenagriidae 53 0.031 53 0.012 51 12
Calopterygidae 54 0.029 54 0.011 52= 11
Astacidae 55 0.029 55 0.011 54= 10
Gyrinidae 56 0.026 56 0.009 X 52= 11
Scirtidae 57 0.024 58 0.008 57= 7
Dixidae 58 0.021 57 0.008 62= 5
Veliidae 59 0.019 63 0.006 57= 7
Ceratopogonidae 60 0.017 67 0.005 56 9
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6.4.3 Discussion

From Table 6.6 it is apparent that there is a good correlation between ranking
of the indicators selected by the RMS-D method and the mutual information.
The rank correlation coefficient between the RMS-D and mutual information
ranks (columns 2 and 4 from Table 6.6) is 0.9986 (P < 0.0001). 1t is also appar-
ent from Table 6.6 that the taxa ranked as the best indicators corresponded
closely to those identified as key taxa by the Expert during the knowledge
elicitation exercise outlined in Section 4.9.3. This is an important result as
it seems that the taxa which are considered key indicators by the Expert are
also the ones identified from a mathematical analysis. This could prove useful
‘n situations where such expertise is not available, since it implies that key
‘ndicators identified by analysis would most probably be identified as such by
a field expert, if one was available. It should also be noted that two additional
factors were considered by the Expert:

i the ease of identification, which is subjective and therefore difficult to

quantify in a numeric analysis, and

si. the distribution of discriminatory power across the five quality classes.

The latter can, in fact, be treated as part of the selection procedure after the
‘ndicator value of the individual taxa has been determined.

The stepwise discriminant analysis yielded a set of indicators that differed
appreciably from those highlighted by the other two algorithms. For example
of the 20 taxa selected two were ranked numbers 44 and 56 according to the
RMS-D method. There is no guarantee that the model generated by using the
variables selected by the step-wise discriminant analysis would yield the most
accurate model, it is likely that another subset could provide a more accurate
model. It appears that the stepwise approach tries to select the best ‘overall
team’ to discriminate between the classes (as per the task carried out by the
Expert), whereas the other two methods identify good individual ‘players’
without attempting to form a team. However, the ‘team’ requirement seems
to be particularly sensitive to the data as some of the taxa selected cannot be
considered as good indicators.

There is some correlation between the frequency of occurrence of the taxa

within the data set and the rank generated from the RMS-D analysis and the
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mutual information, however the most frequent taxa in the data set are not
necessarily the best indicators of water quality class and this is reflected by the
results. For example, the most frequent taxa in the data were the Oligochaeta,
which were ranked as number 26 and 33 by the RMS-D scores and mutual
information scores, respectively. The Oligochaeta were so ubiquitous that the
presence provided little information as to the quality of the river. Some taxa
with a relatively low occurrence in the data were highlighted as good indicators,
these generally being the good water quality indicators, such as the stone-fly
and may-fly groups, for example Perlodidae and Heptageniidae.

Considering the relationship between the ranks from the RMS-D method
and the mutual information with the BERT taxa, it can be seen that all of
the first ten taxa selected for use in the BERT project (those denoted by ‘1’
in Column 9) occur within the top half of the list. Elsewhere the second ten
and the last 21 are more randomly distributed. It is important to remember
that the Expert used additional criteria, such as the spread across the classes
and the ease of identification, when selecting the taxa for the BERT lists. One
anomaly is Tipulidae, which is ranked number 3 by both the indices, but this
is due to the problem of the sampling strategy used and the assumptions made
‘1 the elicitation of the BERT taxa. Another source of error is the difference
‘1 taxonomic levels between the family groupings (due to the inconsistencies
‘1 identification in the Severn-Trent data and the mixed levels of the BERT
taxa). This was unavoidable with the available data.

There are two drawbacks to using these new methods. Firstly the spread of
the classifications covered by the selected taxa is not taken into consideration.
This means that it would be possible for the best 10 indicators selected to
only discriminate between two classes, say Bla and Blb, while providing no
discriminatory power for the classes B2, B3 and B4. 1t would be possible
to generate ad hoc rules to ensure complete coverage of the target classes,
but this would make the implementation untidy and ineflicient. The easiest
method of overcoming this would be to examine a model’s confusion matrices
and highlight any class which Is poorly classified. Then examine the indicator
scores and the frequencies of the taxa, and select the taxa which is not presently
used and has the highest ranking score. Secondly, the use of probabilities

based on the ‘binning’ of the data can cause problems with the density of
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the occurrences within the bins. For example, in the above derivation with 5
classes and 4 states the total number of bins is 20. However, if the number
of classes or states were to increase the number of bins would increase also,
and this may lead to problems with the adequate coverage of all the bins,
and any sampling error would increase. Thus, if the number of classes and/or
states were large with respect to the number of samples then the reliability
of the methods would be questionable. Also, if the underlying conditional
independence assumption is removed, then the situation is made much worse,
with the number of bins being given by the number of classes to the power of
the number of taxa.

At present the effect of correlations between the variables have not been
considered. It may be advantageous to remove variables that have a high
correlation with one another, but it is important to take into account the clas-
sifications as well. It may be that two species have a high negative correlation
e.g. Gammarus pulex and Asellus aquaticus due to competition [54, 176], for
example, but are indicative of different classes by their presence.

In most studies one group of animals are considered in isolation (e.g. the
macroinvertebrates or diatoms or algae) and the taxonomy is taken to equiv-
alent levels across the whole range of the taxa. It is generally the case that
taxa are identified to species level or family level so the selection of indicator
taxa may be limited in scope. Ideally suitable flora or fauna should be selected
before a study is started, and should comprehensively cover all the available
indicators. If a single group has been selected then the taxonomic soundness
of the group becomes important. It has been suggested that analysis to family
level is sufficient for most studies (this applies more to community structure
prediction) and that nothing extra is to be gained by taking the identification
to species level. This approach may be suitable for community structure work,
but it can result in substantial information loss.

It was found in this study that a few individual species are considered by
the Expert to be unrepresentative of the rest of the family (or genus), and that
knowledge of presence or absence of these species does provide a substantial
gain in information over that provided by group data only. The knowledge
elicitation exercise highlighted three clear examples of species having signifi-

cantly different characteristics from the other members of its family, these were
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Hydropsyche angustipennis, Chironomus riparius and Tubifex tubifex. In the
BERT system the indicator taxa used included Hydropsychidae angustipennis
and ‘Other Hydropsychidae’ since the Expert considered that the tolerance of
H. angustipennis was higher than that of the other species of Hydropsychidae.
The Expert emphasised that classification would be hindered if the distinc-
tion was not made between between Hydropsychidae and H. angustipennis. A
similar argument also applies to Chironomus riparius (or more generally red
chironomids) and Chironomidae, C. riparius being more tolerant of organic
enrichment than the other members of its family. Some groups are considered
difficult to identify to species level (i.e. the Nematodes, Porifera or Hydraca-
rina) and provide little extra information anyway, so it is not desirable to take
the identification to a higher level. Tubifez tubifex was another example, but
none of the data identified it and we were forced to use Tubificidae on practical

grounds.

6.4.4 Absent/Present and Information Loss

Using the indices of the preceding section a comparison was made between the
data for two scenarios, firstly when the taxonomic information was avatlable
in four abundance levels (absent, present, few and com+), and secondly with
the taxa being recorded as either absent or present. This was carried out
to identify any quantifiable gain in the value of the indices (i.e. a gain in
the total information that is available) when going from absent/present to
four levels of abundance. Table 6.7 records the results, giving IV, mutual
formation and rank for both the 4-level abundance (taken from Table 6.6)
and the absent/present data. The final three columns record the percentage
gain in the value of the indices moving from absent/present to the 4-level
abundance, and the change in mean rank position.

Considering the present/absent data it can again be observed that there
is a good correlation between the ZV¥ and mutual information indices, and
generally the best absent/present indicators are the same as those identified
when considered in the four levels of abundance. Comparing the weighted
indices of Table 6.7 with those of Table 6.6 it can be noted that there 1s a

reduction in all of the indicator values for all of the taxa, but the magnitude
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Table 6.7: Comparison of RMS-D scores and mutual information indices
for Absent/Present and 4-Level Abundance of the Severn-Trent NRA
292 family data.

4-Level Abundance Absent/Present Gain Gain +/-

Taxon vy ‘ M.I. l Rank vy ‘ M.1. ‘ Rank vy M.I. Rank
Gammaridae 0.381 | 0.180 1.5 0.336 | 0.151 2.5 13.2% 18.9% 1.0
Bactidae 0.363 | 0.181 1.5 0.338 | 0.159 1 7.3% 13.3% -0.5
Tipulidae 0.344 | 0.164 3 0.330 | 0.151 3.5 4.3% 8.9% 0.5
Heptageniidae 0.318 | 0.163 4 0.313 | 0.158 3 1.8% 3.6% -1.0
Asellidae 0.296 | 0.120 7 0.269 | 0.091 10 10.2% 31.6% 3.0
Ancylidae 0.296 | 0.123 7 0.279 | 0.112 8 6.1% 10.0% 1.0
Rhyacophilidae 0.286 | 0.138 6 0.283 | 0.135 5 1.1% 1.8% -1.0
Perlodidae 0.282 | 0.134 7 0.282 | 0.134 6 0.0% 0.1% -1.0
Elminthidae 0.271 | 0.116 9.5 0.268 | 0.115 8.5 1.1% 1.3% -1.0
Limnephilidae 0.266 | 0.112 | 10.5 0.260 | 0.109 11 2.1% 3.2% 0.5
Hydropsychidae 0.263 | 0.109 | 11.5 0.261 | 0.107 11 1.1% 1.5% -0.5
Leuctridae 0.262 | 0.126 9.5 0.261 | 0.122 8.5 0.3% 3.5% -1.0
Sphaeriidae 0.261 | 0.092 | 13.5 0.245 | 0.076 | 14.5 6.3% 22.1% 1.0
Simuliidae 0.252 | 0.093 | 13.5 0.232 | 0.080 14 8.6% 16.1% 0.5
Glossiphoniidae 0.239 | 0.077 | 16.5 0.227 | 0.063 | 16.5 5.1% 22.8% 0.0
Hydrobiidae 0.234 | 0.082 16 0.227 | 0.071 | 16.5 3.1% 14.7% 0.5
Dytiscidae 0.220 | 0.081 17 0.218 | 0.078 16 1.2% 4.1% -1.0
Erpobdellidae 0.216 | 0.060 19 0.210 | 0.051 20 2.9% 16.0% 1.0
Tubificidae 0.200 | 0.033 | 21.5 0.048 | 0.013 46 316.7% | 310.6% 24.5
Nemouridae 0.194 | 0.086 | 17.5 0.192 | 0.080 16 1.2% 6.9% -1.5
Hydracarina 0.169 | 0.057 21 0.164 | 0.050 | 21.5 3.0% 12.3% 0.5
Leptophlebiidae 0.157 | 0.062 | 20.5 0.157 | 0.060 20 0.2% 3.4% -0.5
Lymnaeidae 0.157 | 0.035 29 0.144 | 0.023 30 8.6% 50.3% 1.0
Ephemeridae 0.150 | 0.055 23 0.149 | 0.055 21 0.8% 1.6% -2.0
Caenidae 0.146 | 0.054 24 0.137 | 0.047 24 6.9% 14.2% 0.0
Oligochaeta 0.146 | 0.036 | 29.5 0.046 | 0.016 16 216.8% | 127.8% 16.5
Chironomidae 0.145 | 0.030 32 0.083 | 0.012 | 42.5 74.5% | 159.0% 10.5
Leptoceridae 0.140 | 0.051 27 0.135 | 0.047 25 3.9% 9.6% -2.0
Sericostomatidae 0.133 | 0.053 27 0.132 | 0.052 23.5 0.9% 1.9% -3.5
Planorbidae 0.124 | 0.046 | 28.5 0.118 | 0.037 27 5.7% 22.3% -1.5

Table 6.7 continued overleafl
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Table 6.7: Comparison of RMS-D scores and mutual information (cont’d).

4-Level Abundance Absent/Present Gain Gain +/-

Taxon IV¥ | ML | Rank || 7V | ML | Rank || IVY M.I | Rank
Hydrophilidae 0.107 | 0.036 | 32.5 || 0.096 | 0.025 34 11.7% | 43.8% 1.5
Rhagionidae 0.107 | 0.041 | 30.5 || 0.101 | 0.035 29 5.8% 18.2% -1.5
Physidae 0.106 | 0.038 | 31.5 || 0.104 | 0.034 | 29.5 2.2% 10.5% -2.0
Chloroperlidae 0.104 | 0.043 31 0.104 | 0.041 7 0.1% 3.5% -4.0
Ephemerellidae 0.102 | 0.036 | 33.5 || 0.100 | 0.034 31 2.0% 7.8% -2.5
Haliplidae 0.094 | 0.029 37 0.091 | 0.026 | 335 3.2% 15.5% -3.5
Planariidae 0.093 | 0.032 | 36.5 || 0.085 | 0.023 | 36.5 9.4% | 41.4% 0.0
Taeniopterygidae 0.091 | 0.037 34.5 0.091 | 0.035 31.5 0.9% 5.5% -3.0
Sialidae 0.083 | 0.028 | 39.5 || 0.080 | 0.026 35 3.9% 9.2% -4.5
Polycentropidae 0.082 | 0.029 39.5 0.080 | 0.027 35 2.5% 8.1% -4.5
Lumbriculidae 0.066 | 0.024 42 0.055 | 0.013 | 45.5 20.0% | 85.3% 3.5
Goeridae 0.065 | 0.026 | 41.5 || 0.063 | 0.022 39 3.8% 16.9% -2.5
Lumbricidae 0.064 | 0.021 44 0.062 | 0.020 41 3.2% 7.1% -3.0
Perlidae 0.062 | 0.025 43 0.062 | 0.025 | 37.5 0.00% | 0.00% -5.5
Valvatidae 0.059 | 0.023 | 44.5 || 0.058 | 0.022 41 2.8% 3.8% -3.5
Corixidae 0.057 | 0.020 | 46.5 0.057 | 0.018 43 1.1% 9.0% -3.5
Lepidostomatidae 0.056 | 0.020 46.5 0.054 | 0.019 | 43.5 3.0% 8.9% -3.0
Muscidae 0.045 | 0.013 49 0.043 | 0.010 | 50.5 4.4% 26.4% 1.5
Piscicolidae 0.043 | 0.016 49 0.038 | 0.012 49 13.5% | 35.4% 0.0
Odontoceridae 0.043 | 0.017 49 0.043 | 0.017 | 46.5 0.00% | 0.00% -2.5
Dendrocoelidae 0.035 | 0.012 | 51.5 || 0.035 | 0.011 51 2.1% 13.3% -0.5
Psychomyiidae 0.034 | 0.012 | 51.5 || 0.030 | 0.009 53 11.8% | 33.3% 1.5
Coenagriidae 0.031 | 0.012 53 0.030 | 0.011 | 51.5 3.5% 9.2% -1.5
Calopterygidae 0.029 | 0.011 54 0.028 | 0.011 53 3.3% 6.8% -1.0
Astacidae 0.029 | 0.011 55 0.028 | 0.008 55 5.2% 25.4% 0.0
Gyrinidae 0.026 | 0.009 56 0.024 | 0.007 | 56.5 83% | 28.8% 0.5
Scirtidae 0.024 | 0.008 | 57.5 || 0.024 | 0.007 | 56.5 0.4% 6.0% -1.0
Dixidae 0.021 | 0.008 | 57.5 0.019 | 0.006 58 10.5% 47.1% 0.5
Veliidae 0.019 | 0.006 59 0.018 | 0.005 59 1.5% 12.5% 0.0
Ceratopogonidae 0.017 | 0.005 60 0.016 | 0.004 60 1.1% 28.3% 0.0
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of the decrease varies. For example, Gammaridae falls from 0.381 to 0.336
(0.045) while Leuctridae falls from 0.262 to 0.261 (0.001). There is a small
reordering of the top 12 taxa while ranks 13 to 20 are unaltered. For the
mutual information scores there is a reduction again in value from the 4 state
abundance to the absent/present scenario, and this can be directly interpreted
as a loss of information.

The most interesting columns in Table 6.7 are those giving the percentage
gain in calculating the indices for 4-level abundance when compared to ab-
sent/present. In all cases there is information lost when the taxa are recorded
as absent /present (except for a few rare taxa which only occurred in two states
in the full data set). It is worth noting that there is a very large range of per-
centage gains ranging from a few percent to over 300% for Tubificidae. Most
of the information gains are in the region of 0-10%, but for some of the more

common taxa the information gain is very much higher than this. This reveals
that for a proportion of the taxa the additional time taken to provide a simple
assessment of the order of abundance is worthwhile, while for others simple
absent /present status is almost as useful as a more detailed recording. It is
possible to categorise and rank the terms of the information gains, and this
may be considered in the design of sampling program. For exam ple, consider

the following (the numbers represent the mutual information):

Oligochaete (a/p) — Oligochaete (+abund.) — Tubificidae (+abund.)
0.016 0.036 0.053

Abundance gain Identification gain

which clearly demonstrates that there is an increase in information progressing
from lower effort processing, recording subclass and absence/presence, to a
more reasonable, in this case,® family with abundance.

An additional consideration in the analysis is that the numerical levels
which differentiate the states of present, few and com+ are the same for all
taxa. Also due to the scale of the Severn-Trent bandings very few taxa occurred

as com-+, those that did are the ones which have the larger information gains

5Considering the appreciable taxonomic difficulties, where, for Oligochaeta, identification
to anything below family level is difficult.
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in Table 6.7. Ideally, each taxon would have it own individual definition of
present, few and com+ (this was adopted for the BERT system, see Table 4.1).
The abundance level adopted was too coarse for the taxa which occur in small
numbers, this implies that the information gains of Table 6.7 are on the low
side. If the ideal analysis was completed then the information gains would
be more uniform across all taxa, but with the common taxa again benefitting

most from the increased level of enumeration.

6.5 Model Performance Using Increasing

Numbers of Indicators

6.5.1 Procedure

This experiment was conducted to investigate the relationship between the
number of indicators used in the model and the resulting performance of the
model. The 80 families were ranked according to their weighted scores given in
Section 6.3.1. For the first experiment the best 9 indicator taxa were selected
and a series of MLP’s, linear and quadratic discriminant functions were trained
using these taxa. The next best 5 were then added to the original set and
another series of models were trained, this was continued until the best 50
indicators had been used. Note that for the input scaling absent was taken to
be 0.0, present 0.33, few 0.66 and com+ 1.00. Eight hidden units were used
in the hidden layer, and each configuration was run 20 times using different

initial weights, while the discriminant networks were processed only once.

6.5.2 Results

Figure 6.2 shows the training and testing results for the linear, quadratic and
MLP networks. The MLP results are the average of 20 runs. From Figure 6.2 1t
is apparent that the difference in the performance between the hnear, quadratic
and MLP networks on the test data was not significant, although the three
models all exhibited slightly different trends. The quadratic classifier per-
formed at about the same level (65-70%) for all the numbers of input taxa

used, but it was the worst performer of the three models. The classification
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Figure 6.2: Performance of Linear, Quadratic and MLP models
using different totals of indicator taxa, selected using the RMS-D
method of Section 6.3.1. All models trained using four-fold cross
validation and plain input coding.

rate of the linear classifier improved from 5 to 15 inputs, and from this point
onward the classification rate degraded {ractionally and then remained fairly
constant. On the other hand, the MLP networks performance improved from
10 to 20 inputs and then started to slowly degrade. This was an expected
result since it merely reflects the effects of overfitting.

The performance on the training set yielded a trend that was repeated 1n
all three methods. With the fewest indicators the performance was at the
lowest level, then with 10 and 15 indicators there was a notable improvement
in the classification rate, the rate of increase tailed off with further additions
to the set. The more indicators that were used the greater the discrimination
between the classes, and hence the higher classification rates. The MLP had

the best performance on the training set over all numbers of inputs.

6.5.3 Discussion

This experiment has shown that by careful selection the nurnber of taxa re-

quired can be substantially reduced whilst at the same time improving the
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predictive performance of the model. A reasonable level of classification was
reached by using just five indicators (Gammaridae, Baetidae, Tipulidae, Hep-
tageniidae and Asellidae), and a simple classification system could be imple-
mented using just these five taxa. But this result may be highly dependent on
the 292 sample data and should not be inferred as generally applicable for all
rivers and regions.

By increasing the number of taxa the training performances of the three
models all improved, but this was not accompanied by a corresponding in-
crease in the performance on the test set. In fact the performance on this
set exhibited the hallmarks of an increased model complexity (i.e. increasing
dimension of input space) resulting in a fall in predictive performance. This
is apparent from a comparison of the training and testing results. The most
capable model, the MLP, had by far the best training performance but on the
test data its performance was only marginally better than that of the linear
network, which had the poorest performance on the training data. This reflects
its greater freedom to fit the data, in fact over-fit the data, as is indicated by

its performance on the test set.

6.6 Input Encoding Using RMS-D Values

6.6.1 Procedure

All the models considered in this dissertation, see Section 5.3.4, use the same
scale of input encoding for all the taxa which are used as predictor variables.
Thus, even though it is known that one taxon may be more significant than
another, the same input weight would be used for both. Ideally, a method
that uses a different scaling for different taxa would be able to encode prior
‘nformation into the network. A possible mechanism for achieving was the
indicator values, IV, from Section 6.3.1. The effects of the scaling is shown
in Figure 6.3. At the top of the figure both Asellidae and Ephemerellidae
have common codings presented to the network. Thus, the absence of each 1s
given equal weighting. This may not be realistic since Ephemerellidae occurs
far less frequently than Asellidae and provides less information with regard

to classification. When the TV;, are used as inputs, the welghting changes
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between the taxa, as does the scaling between their discrete states of presence.
In the bottom of Figure 6.3 the absence of Asellidae has an absolute value
of 0.315, while that of Ephemerellidae is much smaller at 0.055. Thus during
the back-propagation, the change of the weights will be much stronger for the
absence of Asellidae than Ephemerellidae, thus the networks will learn that
the absence of Asellidae has a greater impact on the classification than that
of Ephemerellidae.

The experiment described in the previous section was repeated, but using
the ZV;. indicator values as the input scaling rather than the uniform scale
0.0, 0.33, 0.66 and 1.0. The networks were trained for 10 starts using four-fold

cross validation.

6.6.2 Results

The classification rates for the three models are given in Table 6.8. The linear
network did not perform as well as before, its highest classification rate being
69.5% compared to 74.0% when using uniform scaling. However, the results
from the quadratic model show a marked improvement from a maximum of
69.9% to 74.3%. The MLP produces a similar range of values except for the
15 indicators where the classification rate reached its highest value of 77.2%.
Of the 10 networks trained, the best individual one achieved a classification
rate of 81.2%, which was the highest classification rate achieved by any of the
methods, using an equivalent training scheme. The confusion matrix for this
network is given in Table 6.9. The error rates, Table 6.10, are highest for the

B1b and B3 classes, with a large number of B1b classes being classified as B2’s.

6.6.3 Discussion

The use of input scalings based on the information value of the inputs appears
to have improved the classification rate achieved by the models. For the more
complex (capable) models the classification rate increased, while that of the
linear model decreased. The use of this revised input scaling provides a means
of implicitly encoding a priori information into the network.

An unexpected feature of the method 1s that some of the weightings for

the present, few and com+ do not follow the same order. For example, it may
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Figure 6.3: The effect of scaling the input encoding using the IV
‘ndicator values. The top two scales represent the uniform method
of using the same values for all the taxa, while the lower two use
the intermediate probabilities. The letters in brackets denote the
state of the taxon: a-absent; p-present; {-few; c-com+.
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Best n Linear | Quadratic | MLP

Indicators | Test Test Testl
5 67.5% 66.4% 68.1%
10 67.8% 68.8% 71.6%
15 69.2% 74.3% 77.2%
20 69.5% 72.6% 73.9%
25 68.8% 74.3% 74.6%
30 68.5% 72.3% 70.6%
35 66.4% 72.9% 69.3%
40 67.1% | 71.9% | 69.4%
45 68.5% 71.6% 70.7%
50 | 67.8% | 71.2% | 70.6% |

Table 6.8: Classification rates of linear, quadratic and MLP models
using different totals of indicator taxa, identified from the RMS-D
scores of Section 6.3.1. All models trained using four-fold cross
validation and IV, values as input.

Network Output
Bla Blb B2 B3 B4

pemmsoorms [ smsoommma—

H Bla] 55 3 0 0 0 |
|£ Bib| 5 50 15 0 0 I
|© B2 |0 8 8 6 0 I
|& B3 [ 0 0 5 22 8 I
K= |

B4 | 0 0 0 3 22|
Cllassification rate = 80.2%

Table 6.9: Confusion matrix for the network with the lowest error
rate trained using the ‘best’ 15 indicators and probability values
as input. Note the columns corresponding to the classes output by
the network, while the rows correspond to the desired classes.

rror per class
Bla(58) | B1b(71) | B2(103) [ B3(35) | B4(25)
[ 52% | 282% | 13.6% [37.1% | 12.0% |

Table 6.10: Error per class for the network from Table 6.9. The
overall error rate was 18.8%, numbers in brackets indicate number

of samples in that class.
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be possible that few has a higher absolute value than com+-. The ordering of
states may differ from taxon to taxon, see for example Ancylidae (Fig. 6.4),
and was probably due to sampling error. This did not appear to effect the
performance of the model, and as such it was not explicitly coded in that
present < few < com+. Also this method would not be suitable for use with
continuous variables, unless the variable was idealised to discrete variables on
a fairly coarse scale. Another difficulty associated with the use of the indicator
‘ndices is the ‘binning’ of the data. 1f the classification was taken to thirteen
classes (e.g. see Section 4.3) then the estimated probabilities would become
very uneven and unrepresentative of the true distribution.

Figure 6.4 shows the histograms of the values for absent through to com+
for the best 10 indicators. The graphs show a clear ordering for Gammaridae,
Asellidae, Heptageniidae and Limnephilidae, while the other six have similar
values for present, few and com-. The histogram for Ancylidae shows the
mis-ordering of the inputs that can occur. The similarity between the val-
ues of the histograms for present through to com+ reveals a binary split into
absent /present, which was unexpected. Where there is a difference in the
histograms for present, few and com+ there was an appreciable drop 1n the
indicator indices for these taxa when considered as absent/present (see Sec-
tion 6.4 and Table 6.7). There is also a fall off in the magnitude of the absent
bar, which implies that absence of the lower ranked indicators plays a smaller
part in the classification than that of the top indicators.

To summarise, this is a novel method of applying a variable scaling across
the networks input. It is particularly useful with small data sets because 1t
helps to extract more utility out of the data, casing the model order selection

problems and helping to reduce the problem of network overfitting.

6.7 Summary

This chapter has described three methods of selecting indicator variables for
use in computer models. Of the three, the RMS-D probability method and the
mutual information approaches produced similar results with a good correla-
tion between them. Also, the taxa selected by these two methods correspon ded

well with those elicited from the Expert.
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Figure 6.4: Input values, ZV;x, for the best 10 indicator taxa from Table 6.6.

178




Selection of Key Indicator Taza Chapter 6

The change in information was quantified for different levels of taxa iden-
tification and enumeration. As would be expected the identification to species
and four levels of abundance had a higher information content than that for
family level and absent/present data. The change in information was only sig-
nificant for some taxa, and it was suggested that this could highlight strategies
for optimising the trade-off between the time taken to process a sample and
the amount of useful information produced.

By ranking the taxa according to indicator value the number of indicators
required for classification was investigated. It was found that the number of
indicators used in a model does have an effect on the model’s performance,
but performance does not continuously increase with the number of indicators
used. Indeed peak performance was achieved using the top 15 indicator taxa
only, any further indicators appeared only to be increasing the ‘noise’ in the
system. The use of a variable input encoding, using the RMS-D scores, was

also demonstrated to be of benefit.
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Great Lakes

7 1 Introduction

This chapter aims to demonstrate the utility of neural networks in another area
of freshwater biomonitoring. Using data from the Laurentian Great Lakes, the
classification and prediction of the benthic community structure and toxicity
groups, derived from an ordination analysis, are investigated using the envi-
ronmental variables as predictors. The chapter compares the use of neural
networks to the more commonly used discriminant analyses, and investigates
alternative strategies for classifying community structure type. This work was
completed during a three month visit to the National Water Research Insti-
tute, Burlington, Ontario. It forms a small part of a larger project which 1s
investigating the development of sediment guidelines for the remediation of
contaminated sediments in the Laurentian Great Lakes [137, 140].

The chapter first describes, briefly, the fundamental aspects and the basic
design of the project sampling programme. Section 7.3 reviews the reference
site data, and includes the results of ordination on the three available data
matrices. The next two sections, Sections 7.4 and 7.5, report on the classifica-
tion of community and bioassay group type from the environmental variables,
which is the most fundamental part of the project. The following two sections
discuss alternative ideas that center upon predictive capabilities of the neural

network models, with the final section summarising the findings of the chapter.
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7.2  The Development of Sediment Guidelines

7.2.1 Description of Study

The contamination of sediments occurs in freshwater and marine systems
throughout the world. Chemical methods of classifying the level of contamina-
tion in sediments cannot entirely take account of the biological stress caused
by the contaminants, or whether this stress will continue after the primary
sources of pollution have been controlled. Concern for the degree of envi-
ronmental protection afforded by chemical guidelines, together with a lack of
uniform international criteria and a failure to introduce plans to remediate
degraded areas in the Laurentian Great Lakes [66, 67], prompted scientists
at the National Water Research Institute to investigate more comprehensive
methods of sediment assessment and evaluation criteria. In 1990, they pro-
posed a study into the development of biological sediment guidelines using
two approaches: sediment toxicity tests and benthic invertebrate community
structure [137, 140].

The aim of the study is to develop numeric criteria for the biological as-
sessment of sediment contamination at sites in the Laurentian Great Lakes.

The overall objectives are to:

;. develop a classification system for unpolluted nearshore sites based on

the benthic community structure and selected bioassay endpoints,

i, determine the degree to which the site classification can be predicted

from physio-chemical variables,

i establish the relationship between the community structure and bioassay

assessments,

iv. develop procedures for the prediction of key elements of the fauna ex-
pected at a site from its environmental features not affected by human

activity,
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v. select key species and toxicity tests that show the most robust predictive

response for the purpose of developing guidelines,

vi. establish the sensitivity of selected guidelines at a range of impacted

sites.

The biological objectives are to be based upon benthic invertebrate community
structure and the bioassay response of four benthic invertebrates to samples
of field sediment. The fundamental assumption underlying the development
of sediment guidelines is that it is possible to predict the community structure
and bioassay responses at unpolluted sites from a few physio-chemical vari-
ables [181, 74]. Comparison of the observed community structure, or bioassay
endpoint, with the predicted values determines whether or not the site specific
guidelines have been met. The purpose of the guidelines is to indicate whether
remediation of the site is necessary because of sediment contamination. In
this chapter contamination refers to the presence of chemical species that are
present in the sediment from anthropogenic processes, while toxicity refers to
the response of the flora and fauna to the contamination. Thus a low level
contamination may be extremely toxic, depending on the specific chemical
involved.

The prediction of benthic macroinvertebrate community structure for set-
ting biological objectives was originally explored in a series of papers from the
FBA [4, 181, 41] (see Section 2.3.1), and has been detailed by Reynoldson et
al. [136] in terms of freshwater lakes. Other work on lentic community struc-
ture includes that by Johnson and Weiderholm [74]. The difficulties in using
community structure are its inherent spatial and temporal variability, and the
changes in composition that occur through natural fluctuations. The approach
based on use of benthic community structure is to predict the assemblage of
fauna that would be expected at a site if it were unpolluted, and then com-
pare this with the observed community structure. Any degradation of ‘actual’
below ‘predicted’ is assumed to be the result of stress, which for lakes implies
that sediment contamination is the probable cause. The first step, in this ap-
proach, 1s to establish a database of uncontaminated (clean) reference sites,

containing the community structure data and bioassay data.
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7 2.2 Reference Sites

The selection of reference sites was based upon the eco-regions and eco-districts
of the Great Lakes, and a requirement that ‘unpolluted’ sites be located 10km
‘upstream’ of known discharges and within 2km of the shoreline, have a depth
of less then 30m (except for Lake Michigan) and be known or suspected to
have a fine-grained substrate [136]. A total of 250 sites were identified as
reference locations, Figure 7.1, and the sampling of these was to take place
over 3 years (91-93). Data from 1991 (50 sites) and 1992 (43 sites) are used in
this dissertation. All the sites have been sampled once in late summer or early
autumn, with 10% being sampled in each of the three field years. Also four
sites have been sampled monthly to determine seasonal and annual variation.

Sections 7.3.2 to 7.3.4 give details of the data analyses.

7 9.3 Field Procedures

The establishment of a reliable reference database requires the adoption of
standard sampling methodologies, a full description of those used in this study
can be found in Reynoldson et al. [136]. At cach site samples were taken
for sediment, water and pore-water chemistry. The water chemistry was de-
termined from samples taken at 0.5m above the sediment-water interface. A
mini-box core was used to collect the pore-water chemistry samples, and either
this or a mini-ponar grab was used to collect samples of sediment. Samples
of the benthic invertebrate community structure were aken from a mini-box
core, from which five smaller cores (10cm by 5.5¢cm) were sub-sampled. The
sediment from the smaller cores was sieved using 250pm mesh, and stored.
The five replicate samples were sorted and identified to species level where
possible. The bioassay tests were performed on sediments from five replicate

samples taken using a mini-ponar grab.

7.2.4 Data Analysis

The end products of the field and laboratory work were three matrices; the
first containing the environmental (physio-chemical) variables, the second the

community structure and the third the results of the bioassay endpoints. The
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mean results of the community structure and bioassay endpoints were used, as
opposed to each individual replicate sample. The standard analysis followed a
similar method to that of Wright et al. [181], except that different numerical
algorithms were used to cluster the data. The environmental data are used
as predictor variables for the classification of the community structure and
bioassay data and two classification methods are considered, namely MLPs
and multiple discriminant analysis (MDA).

Figure 7.2 summarises the relationship between the data sets from Sec-
tion 7.3 and the experiments of Sections 7.4 to 7.7. The experimental work

can be broken down into three distinct elements:
i the classification of ordination groups from the environmental data,
ii. the prediction of abundances of key taxa from environmental variables,
i1, the prediction of ordination vectors from environmental variables.

The ability to perform the classification of site groupings from the environmen-
tal variables, item 4, is the fundamental procedure within the project structure.
The group predicted from the environmental variables dictates the expected
composition of the community structure, or bioassay endpoints. The magni-
tude of the difference between expected and observed commu nities will form
the basis of the decision making process. Item u provides an alternative mech-
anism for the determination of the key species, while v provides an alternative
technique for site classification.
In Figure 7.2:

e Path A depicts item ii. This has previously been described by Ruck et
al. [149) using a small data set and is reported again here in Section 7.7

using a larger set.

e Path B represents item 4. This had not previously been attempted on

this data and the results are reported in Section 7.6.

e Paths (' and D cover item i for the community structure; C' is the exper-
‘mental work in Section 7.4, while D is the work reported in Reynoldson

et al. [136] using MDA. There is a difference in the discriminant analyses
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conducted in this study and that of Reynoldson et al., the performance of
a1l the models in this study are reported in terms of leave-one-out cross
validation to allow direct comparison between the neural networks and
discriminant analyses, whereas Reynoldson et al. used a less rigorous

validation procedure for their discriminant model.

e Path E represents the investigation into the disparity between the struc-
ture of the ordination of the environmental data and the ordination of
the community structure data. This disparity may account for some of

the model’s misclassifications, and this is reported in Section 7.4.3.

o Paths F and G depict item 1 for the toxicity test data; with I being
reported by Reynoldson et al. and G being reported in Section 7.5. The
above comments concerning the differences of the analyses apply to these

experiments as well.

From each of the three ordinations, clusters of data were identified and
grouped. Ideally, there should be good agreement between the groups derived
from different ordinations. The number of groups and the dimension of the or-
dination space for each of the three data matrices are summarised in Figure 7.2,
In the classification exercises, Sections 7.4 and 7.5, the groups represent five
unique classes of site based upon their community structure and three classes
of toxicity test results respectively. As a site can only belong to a single class
the classification problem can be considered as a one-from-N classification.

In the following sections the terms biological group and comm unity struc-
ture group refer to the same thing; the groups identified from the ordination of
the community structure, likewise bioassay group and toxicity-test group are
equivalent terms for the groups from the bioassay ordination. The environ-

mental groups are taken from the ordination of the environmental variables.

7 9.5 Numerical Guidelines

These are the decision making criteria that are used to determine if a site is
severely impacted (that is the sediments are highly toxic), and whether reme-
diation is necessary. The guidelines are based upon the results of the statistical

analyses referred to above, but will also have to consider external factors, such
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as cost and the practicality of remediation. The guidelines to be implemented
will not be selected until the performance of the statistical systems has been
fully researched. At present there are a number of statistical mechanisms being
considered [9], and the form of the guidelines will be dependent on the level
of performance of the statistical systems, and thus will only be finalised when

the full data set is available and has been analysed.

7 3 Reference Site Data

7.3.1 Ordination

As described in Section 7.2.4 three data sets were available for analysis. These

were derived from the field and laboratory work, and comprised of:
;. the environmental variables,
ii. the benthic invertebrate community structure, and
i17. the bioassay test responses.

An initial statistical analysis, followed by ordination, was completed for each
data set. The ordination method used in the study is discussed in the following
paragraphs and the results of the analyses are given in Sections 7.3.2 to 7.3.4.

Ordination is a multivariate statistical technique used to summarise the
underlying patterns of a data set. The site or species data are represented
in a low-dimensional (usually 2 or 3) Buclidean space such that separation in
the ordination space is based on the dissimilarity of the sites in terms of their
composition [36]. It is commonly used to interpret community structure, but it
can be applied to any two-dimensional matrix. Generally a two step procedure
is adopted, the first step being a site-by-site comparison or a species by species
comparison using an association measure, with the second step reducing the
dimensionality of the resulting association matrix.

Ordination methods are frequently viewed as ‘objective’ [63, 69], but dif-
ferent choices of association measure and scaling algorithm can lead to very
discordant solutions [69], and thus to different interpretations and conclusions.

3

However, in this study only one technique was used for the association measure
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and scaling, these being the Bray-Curtis [171], and a hybrid multi-dimensional
scaling algorithm [35] respectively.

The Bray-Curtis dissimilarity index is given by:

Y | — k]

D;; =
DY lwa + @i

(7.1)
where ;1. is the number of species k in sample 1, @ 1s the number of species k in
sample 7 and D;; Is the dissimilarity index for samples 7 and j. This index has
been widely used in ecological studies and has been shown to produce results
that can be intuitively interpreted [37, 35, 69, 136]. The semi-strong hybrid
multi-dimensional scaling algorithm was developed for ecological data, [8], and
't maximises the distances between different clusters while compacting indi-
vidual groups. Jackson [69] reviews and experiments with a number of scaling
mechanisms, but does not consider this particular algorithm. Reynoldson et
al. [136] and Faith et al. [35] have shown it to be effective in recent studies. The
scores from the scaling algorithm were clustered by an agglomerative hierarchi-
cal fusion method using Unweighted Pair Group Mean Average (UPGMA) [8].
The selection of the groups was based on information from the dendrogram
produced by the clustering and on the visual (spatial) separation of the groups
in ordination space. The subjectivity in this procedure was noted, but the
scope of the study did not permit an investigation into the comparative worth
of other algorithms. The software package PATN [8], developed by the Aus-

tralian CSIRO, was used for the ordination.

7 3.9 Ordination of Environmental Variables

The environmental variables used in the study are given in Table 7.1. Of the 43
variables listed only 27 (in italics) were considered as the base set of predictor
variables for the experimental work. The base matrix contained data on the 27
variables (columns) for the 93 available sites (rows). Site numbers 5602 and
5802 had 4 and 15 missing data values respectively, the missing data being
replaced with the mean of the remaining cases. Summary statistics for the full

data set are given in the last two columns of Table 7.4.
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Geo-physical Water
Water Depth (DPTH)x  Alkalinity mg/l (ALK )%
Bottom temp. (TMP)  Total phosphorus mg/l (TPW)

Latitude

Kjeldahl nitrogen mg/l (TKN)x

Longitude Nitrate-nitrite mg/l (NO)x
pHx Ammonia mg/I

Ozygen mg/l (OXY)

Sediment Chemistry (i g/g drt wt )

Silica (S1)* %Sand (SN ) Nickel
Titanium %Silt (SL)* Copper
Aluminium (AL)* %Clay (CL) Zinc

Iron (FE) %Gravel (GR) Arsenic
Manganese (MN) Selenium Strontium
Magnesium (MG) Vanadium (V)x Yttrium
Calcium (CA)x Chromium(CR) Molybdenum
Sodium (NA)* Cobalt (CO) Silver

Potassium (K) T. Org. Carbon (TOC)  Cadmium
Total phosphorus (TP)  Loss on Ignition (LOD+ Tin
Total nitrogen (TN) Lead

Table 7.1: Summary of measured environmental variables, italics
denote set of 27 variables used as predictors, “+’ denotes subset of
thirteen.

Further data sets were derived from the base data for training the neural
network models, the key to these sets is shown in Table 7.2. The extra data sets
were generated by standardisation and principal component analysis (PCA).
The data was standardised by subtracting the class mean and dividing through
by the standard deviation, thus producing z scores. The principal component
analysis produced 7 eigenvalues greater than unity, and the corresponding
eigenvectors, following a varimax rotation, were used as the third data set.
The first 7 factors accounted for 78.8% of the variance.

From a preliminary step-wise discriminant analysis using the environmental
variables as predictors and groupings derived from the ordination of the com-
munity structure (see Section 7.3.2), 13 variables were highlighted as a good
set of predictor variables, these are denoted with “x” in Table 7.1. These were

also found to have good correlation with the ordination scores. A further three
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[LDescription of matrix ] Rows ‘ Columns I Key JJ

T Full raw 93 27 E27raw
Full standardised 93 27 E27std
PCA of standardised 93 7 E27pcaT+
Subset of raw 93 13 El3raw
Subset standardised 93 13 E13std*
PCA of standardised subset 93 4 E13pcadx*

Table 7.2: Key to data sets used for training neural net models
(‘+" denotes data sets used in Sections 7.4 to 7.7).

matrices were developed by standardisation and PCA (see Table 7.2 for key).
The PCA reduced the matrix from 13 to 4 columns, with the 4 dimensions
accounting for 83.2% of the variance.

The E13std data were ordinated using the strategy outlined in Section 7.3.1.
A three dimensional ordination analysis suggested that a reduction to two
dimensions may be possible, and two dimensions were chosen after the analysis
gave a stress value of 0.11. The stress value is used to rank separate ordination
analyses, and a value of below 0.15 indicates an acceptable result.

Six groups were ‘dentified from the ordination analysis. Their position in
ordination space is shown in Figure 7.3 and their geographic distribution 1s
given in Table 7.3. Figure 7.3 shows that there is good discrimination between
the groups, and that the Lake Michigan sites (mainly Groups 3 and 6) are
well clustered to the right of the diagram. Table 7.4 shows the mean and
standard deviations of the 13 variables for the six individual groups, and this
shows that the sites in Groups 3 and 6 are characterised by being deeper and
having a greater alkalinity, low Kjeldahl Nitrogen and sodium concentrations
and high Nitrate/Nitrite concentrations. Sites from Lake Erie (Groups 1 and
4) and four sites from Lake Ontario (Group 1) are also well defined, lying on
the leading diagonal of the figure. These sites are relatively shallow, have high
calcium concentrations and pH values and high Kjeldahl Nitrogen concentra-
tions. Finally sites from Georgian Bay, Lake Superior and the North Channel
(L. Huron) form the majority of Groups 2 and 5, to the top and left of the plot.
These sites are characterised by high aluminium and vanadium concentrations,

and low calcium and alkalinity.

191




Great Lakes

Chapter 7

Group 1 o Group 2 + Group 3 O
Group 4 X Group 5 A Group 6 *

2 T T T T T 1
1.5 | =

A A
1+ n A@\ AA A —-
+ + ? )K§

<O X ¢ —

05 + ; + x% X );
+ ¢ KK
0 b O K S
L tgo X
Ry 00
- L s pms B —
0o Sl é])
© I;T'.DBD

-1 O 203 D .
a5k © -

9 | ' T R R B

2 -15 -1 -05 0 05 1 15 2

Figure 7.3: Location of environmental groups in ordination space.

Environmental Group
1 2 3 4 5 6
Lake (n=23) | (n=13) | (n=15) | (n=T7) (n=8) | (n=27)

L.Erie (25) 16 1 1 7 0 0
L.Ontario (5) 4 0 0 0 1 0
L.Michigan (43) 2 0 14 0 0 27
Georgian Bay (9) 1 6 0 0 2 0
L.Superior (5) 0 4 0 0 1 0
North Channel (6) 0 2 0 0 4 0

Table 7.3: Geographic distribution of sites of 6 groups derived from

ordination of environmental variables.
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7.3.3 Ordination of Community Structure

The matrix for the community structure data consisted of the available 93
samples representing the rows, with the abundances of the taxa as the at-
tributes (columns). For all taxa the number of occurrences were recorded, not,
just absence/presence. The list of taxa consisted of 103 species and 44 genera
plus some higher level groups where the taxonomy was only taken to class,
order or family levels (e.g. Porifera, Platyhelminthes and Nematodes). Of
all the taxonomic groups identified, the Chironomids were the most diverse
with 42 genera and the Oligochaeta next with 37 species. For each site there
were 5 replicate samples from which the mean value of the abundance of each
taxon was evaluated and used in the analyses. To make the ordination proce-
dure tractable the number of taxa was reduced to 55, on the basis that each
taxon had to have an abundance of over 0.05% within the data set. The new
data contained 17 Chironomids, 5 Naidids, 7 Tubificid taxa and 6 species of
the Sphaeridae family. Also to be found were other taxa including Valvati-
dae, Sabellidae, Amphipoda and Asellidae. See Appendix A3 for the cornplete
species list.

For the ordination of the community structure a three dimensional space
was found to be the most suitable, the location of the reference sites being
shown in Figure 7.4. Five groups were identified [rom the clustering proce-
dure, and Table 7.5 shows the geographic distribution of these groups. The
L. Michigan sites form a large group, which are all deep, have a low water
temperature and high alkalinity, and have a substrate which is more sandy
and less silty than the other groups, Table 7.6. Sites from L. Erie which form
the majority of Group 1 are deeper than the sites which cluster in Groups 2
and 4, with the shallow sites of Group 4 being from Long Point Bay, L.Erie
and Presque’lle Bay Lake Ontario. There is a strong correlation between the
Vector 1 scores and the depth of the sites, with high (positive) scores on Vec-
tor 1 corresponding to shallow sites, and low (negative) scores the deeper ones.
Positive scores on Vector 2 are indicative of oligotrophic conditions, with neg-
ative values (coupled with positive Vector 1 scores) corresponding to eutrophic

walters.
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Biological Group
1 2 3 4 5
- Lake (n=19) | (n=14) | (n=16) (n=8) | (n=36)

L.Erie (25) 16 4 0 5 0
L.Ontario (5) 0 2 0 3 0
L..Michigan (43) 3 0 4 0 36
Georgian Bay (9) 0 8 1 0 0
L.Superior (5) 0 0 5 0 0
North Channel (6) 0 0 6 0 0

Table 7.5: Geographic distribution of sites of 5 groups derived from
the community structure ordination.

Table 7.7 shows the species (in descending order of occurrence) that occur
‘1 at least 50% of sites in a particular group. The sites of Groups 3 and 5 have
a composition of species that is usually associated with oligotrophic conditions
(e.g. Diporeia hoyt). The fauna in Groups 1 and 3 are associated with more
organic waters, while the shallow sites of Group 4 are dominated by the Porifera
(sponges).

The confusion matrix showing the site classification by biological and en-
vironmental ordination, Table 7.8, gives an indication of the disagreement be-
tween the two methods. Ideally there should be good agreement between the
two ordinations, with a small amount of scatter or overlap between the groups.
From Table 7.8, it can be seen that the L. Michigan sites, which constitute
the biological group 5, are situated in two environmental classes, 3 and 6. The
sites in the biological groups 1 and 4 are concentrated in the environmental
groups 1 and 4, while the biological groups 2 and 3 have some spread over the
environmental classes. Thus, in the prediction experiments it likely that these
sites in the biological groups 2 and 3 will be the most difficult to classify, as
they are poorly correlated with the underlying structure of the environmental

data.

7.3.4 Ordination of Bioassay Data

The endpoints used in the toxicity tests are shown in Table 7.9, along with

the test duration. For complete details of the sediment bioassay experimental

196




‘uorneuiplo 2JN3oNdIls %ﬁSSQ:bOU 93 wod} sdnois mwwﬁﬁdmu;@/ ﬂmpﬁmﬁbco.:.,\/gw 913 JO uoleIasp ﬁ.amﬁz_mww pue ueoJN :0°) ”lqel.

Chapter 7

Great Lakes

10 220 L0-0 £e0 000 100 800 0z-0 800 010 800 [44lv ON
800 410 £0-0 z1-0 800 1€0 z10 61-0 €00 020 €00 61-0 NML
00 z00 00-0 100 100 z0-0 €10 ¢0-0 €00 00 10-0 100 MdL ||
Y112 1,26 9Tv Pe 11l 6¢-01 ¢9-8.L 6S'LC SF L9 61-11 91-Z8 el $8-76 MV
ge-¢ 6911 76T Ly9 171 €741 79°¢C 8491 £ev €T-L1 08T gL Tl dINLL
$S0 182 L60 L84 ¥1-0 918 6%0 €L ¥¢-0 682 610 or-s Hd
6%-1 986 6e1 6¢-01 o1 6€-6 Ly 1 $0-01 91 o¥8 [AU 66 AXO
86°LC §L8T §8-1¢ 8E-8% ¢9°0 981 2074 688 66°€ ¥e8 826 G6-G1 HLJA
009 GlL ov-¥ 10°L $6C 90°¢ 9€'6 0011 659 ¥1-0T £e-¢ €99 00
2021 60°GC 0661 6412 0¢-01 0¢- ST 6€-0C §z-¢e 90-1¢ 98-%¢ 2101 89-1C jSi®)
y8v1 46T 1801 L6l 9z-¢ GL- L1 G002 61-%€ 9p-81 6.°%€ 16°8 £9-8C A
8L-61 9L°LT G412 68-€C 96°C1 8L-6T 91-81 ¥¥-97 86°TC 29-1¢ ¥6-91 eI¥e 10
G6-GC 1262 6112 €Ll [ 44 1.-0¢ L9V L6°SC 90°LT 18T¥ 2161 L2°0F 1S
18-9¢ 8'TYy Gp-¢e 0¢-19 ST1-%€ 8€-€T 18-6€ oLy L0€e 9¢-6T 68-9C 06°%C NS
ot-1 TzT0 ¥40 01-0 ¢e0 10 0z0 §0-0 920 01-0 10-€ 0.0 dD b~
81 00'¢ 0z1 Lyl ¢ze yey 96°1 941 681 68T 0.0 0¢1 D0OL .Ol.u
13coLT | 978881 | 262201 | vO-12T1 | TS¥ElE €9-7€TH | 2P SPPT | €988¢T 110612 | 98:281e | 22659 | 9T-eevl N.L
869 €£0°CT .29 111 %11 76°1¢ €Ty vl 849 es-el 182 PAS AL
e11 L2°0 181 £%-0 <00 L1-0 §0°0 11-0 600 120 200 .10
780 9I'¢ 9¥-0 ¥1-C 180 991 9¢-0 281 8¥0 9¢'T 0¢-0 6¥C
890 9T 1 ¥Z:0 9,0 780 161 ¥8-0 621 090 611 6&-0 91
6¢°G ¥8:9 0¢¢€ L8°6 9¢-6 08-ST 76T pL€ 79°¢ 6.9 ge€ 0r-e
091 86T 00T £¥-e €L°0 661 ge 1 £€2C 161 91T 890 zee
L1-0 A9y gz0 S1-0 z0-0 L00 ¥0-0 200 200 11-0 91-0 €10
AN 84-€ £5C (408 ¥9:0 92T 981 ¥q€ 861 18¥ 99-1 1Ty (e
00¢ T8 L7°T 12-9 ¢1-2 08 [AR> 006 (84 ¥6°01 ¥2°C 8%-6 v
80°F1 0619 $6-€1 L1199 6991 G0 G¥ 9611 12-69 ¥1-6 L9°FS LE°8 0048 s
prs _ uesA ‘p's _ ueaN ‘p's _ uean 'p's ~ uea A ‘p's d ues Al ps _ ueay sjqeLrep
(ge=u) (og=u) (g=u) (91=U) (p1=U) (61=U) [RIUBLUUOIIAUT]
sdnoany |V ¢ dnoany ¥ dnoan) ¢ dnoany 7 dnoan) 1 dnoun




Great Lakes

Chapter 7

Group 1
Tubificidae (co hr)
Tubificidae (c hr)
Procladius spp
Pisidium spp
Pisidium casertanum
Porifera

Spirosperma ferox
Dreissena polymorpha
Platyhelminthes
Limnodrilus hoffmeisteri
Chironomus spp
Aulodrilus pigueti

Group 4

Porifera

Procladius spp
Chironomus spp
Dicrotendipes spp
Microtendipes spp
Cryptochironomus spp
Tubificidae (co hr)
Physella spp
Polypedium spp
Pisidium casertanum
P. nitidum
Endochironomus spp
Pseudochironomus spp

Group 2

Porifera

Tubificidae (co hr)
Procladius spp
Cryptochironomus spp
Chironomus spp
Pisidium casertanum
Tubificidae (¢ hr)
Tanytarsus spp
Valvata tricarinata
Aulodrilus pigueti
Platyhelminthes
Pisidium spp
Polypedium spp

Group 5
Diporeia hoyi

Stylodrilus herringlanus

Pisidium spp

Vejdovskyella intermedia

Platyhelminthes
Heterotrissocladius spp
Pisidium casertanum
Tubificidae (co hr)
Tubificidae (c hr)

Group 3

Tubificidae (co hr)

Tubificidae (c hr)
Procladius spp
Pisidium casertanum
Diporeia hoyi
Micropsectra spp

Table 7.7: Species which occur in at least 50% of sites in a group in

descending frequency of occurrence, bold > 70% occurrence (after
Reynoldson et al. [136]).
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Biological Group

Environmental 1 2 3 4 b}
| Group (n=19) | (n=14) (n=16) | (n=8) (n:BGM
M1 (n=23) 11 6 0 6 0

2 (n=13) ] 5 7 0 0

3 (n=15) 1 0 0 0 14

4 (n=7) 5 1 0 1 0

5 (n=8) 0 2 5 1 0

6 (n=27) 1 0 4 0 22

Table 7.8: Confusion matrix showing classification of sites from or-
dination of biological community structure and environmental vari-

ables.
Length of test
Taxon (days). Endpoints
Hyalella azteca 28 survival and growth
Chironomus riparius 10 survival and growth
Hezagenia spp. 21 survival and growth
Tubifex tubifex 28 production of cocoons and young

Table 7.9: Taxa, test duration and endpoints of toxicity tests.

procedure see Reynoldson et ¢ al. [136]. For each of the four taxa two endpoints
were used, although other endpoints were available which could have been
considered in the analysis. But in order to keep an even weighting, and to
avoid the possibility of the analysis becoming too dependent on any par ticular
test species, equal numbers of endpoints were used for cach. A two-dimensional
ordination space was used in the analysis with 3 distinct groups being identified
from the clustering procedure. IFigure 7. 5 shows the position and grouping
of the sites in ordination space, and Table 7.10 surnmarises the means and
standard deviations of the toxicity tests for each of the 3 groups

From Figure 7.5 and Table 7.10 ‘t can be noted that the Group 3 sites (5600,
5708, 5804 and 5805) represent samples that may be contaminated, with the
survival and growth of H. azleca being much lower than that for Groups 1 and

2. Group 1 can be separated {rom Group 2 by the lower reproduction of T.
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Figure 7.5: Location of bioassay groups in ordination space.

Group 1 Group 2 Group 3 All Groups
Endpoints (n=>53) (n=37) (n=3) (n=93)
Mean I s.d. | Mean | s.d. | Mean l s.d. | Mean ‘ s.d.
C. riparius
% survival 80-2 7-8 86-6 8-6 829 62 | 829 8-6
growthx 0-33 | 0-08 0-37 | 0-08 0-30 | 0-04 0-34 08
H. azteca
% survival 88-7 | 11-8 84-7 | 12-9 24-5 | 224 837 | 19-0
growthx 0-51 | 0-11 0-50 | 0-17 029 | 0-11 0-50 | 0-14
Hezagenia sp.
% survival 97-4 34 96-4 4-8 95-5 4-6 96-9 41
growth 3-07 | 2:56 4-43 | 4-64 1-49 | 0-31 3.5 3-6
T. tubifer
COCoONs 32-8 61 37-6 4-2 35-8 2-8 34-9 5-8
young 585 | 235 | 124-0 | 23-:0 | 1222 | 249 87-7 | 40-0

Table 7.10: Means and standard deviations of environmental vari-

ables for toxicity test endpoints (* mg dry wt); groups based on

ordination of bioassay endpoint data.
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tubifez, but apart from this there is little difference between the endpoints of
these groups. The small overall variation of the toxicity test results is to be
expected, as one of the criteria for including a site in the reference database is
that it represents ‘uncontaminated’ conditions. If a sample did have a large or
unusual deviation from the average, then doubt would be cast on the validity
of the sample representing ‘clean’ conditions, and it would be excluded from

the database.

7.4 Classification of Biological Groups

7.4.1 Objectives

The classification of the environmental variables into ordination groups, as de-
scribed in Fig. 7.2 (Section 7.2.4), is the key to the success of the overall study.
It is a onefrom-N classification which in this study can be accomplished by
two broad alternative methods: multiple discriminant analysis and multi-layer
perceptrons. There are also countless other techniques which have not been
considered in this dissertation. Michie et al. [104], reporting on the Statlog

project, and Ripley [141] compare a number of different learning algorithms.

7.4.2 Preliminary Experiments
7.4.2.1 Procedure

The basic network configuration (see Section 3.2) with a single hidden layer
having 5, 7 and 9 hidden units formed the basic model used in this study. The
four data sets from Section 7.3.2 were used as input to the network. The target
data were the biological groups identified from the ordination (Section 7.3.3);
five nodes being used in the output layer to represent the five different types of
biological group. For each network four values of the weight decay parameter
were also used: 0.0, 0.0001, 0.001 and 0.01. This gave a total of 48 different
configurations for each experiment. In addition ten random starts of the weight
parameters were run for each procedure, with the weights being initialised
between [-0.3:0.3]. Since the available data set was small, containing only 93

samples, a leave-one-out cross validation method was used to gain a measure
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of the generalisation ability of the networks. A conjugate gradient method was
used as the minimisation procedure, with the weights being updated after each

pass of the training data set.

7.4.2.2 Results

Table 7.11 shows the average and standard deviation of the classification rate,
the figures are derived from the average of the 10 random starts. To summarise
the table: the critical factor on networks performance was the training data set,
the E13pcad data gave the poorest performance overall and was generally 10%
worse when compared to the best set E13std. It is interesting to note that
both data sets derived from the principal component analysis had a poorer
performance than the origin al full data set.

Considering all the results, the number of hidden units had little effect on
the performance of the networks, except that there was a marginal benefit in
using more hidden units when the weight decay parameter was not equal to
zero. An interpretation of this may be that as the weight decay parameter
inhibits the complexity of the networl, the mapping requires the extra degrees
of freedom provided by the additional hidden units. Of the three non-zero
weight decay A’s the 0.01 value could be judged to be of least benefit. 1t can
be concluded that the weight-decay term is useflul, and the method is robust

over a range of values.

7.4.3 Analysis of Results of Preliminary Experiments
7.4.3.1 Procedure

In this section a single network is considered, having A\ = 0.001, 9 hidden nodes
and the training set E13std configuration. This network provided the highest
average classification of all the configurations used in Section 7.4.2. The results
from this simulation are analysed with particular emphasis being placed on
the misclassifications, and whether there 1s an underlying explanation for the
errors.

The misclassifications from the 10 individual simulations were collated and
sites that were consistently predicted in error were identified. The structure

of the training set was examined using the ordination analysis of Section 7.3.2
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Percentage Incorrect
Network Correct Classifications
1 83.9% 15
2 83.9% 15
3 82.8% 16
4 82.8% 16
5 82.8% 16
6 81.7% 17
7 81.7% 17
8 79.6% 19
9 78.5% 20
10 77.4% 21

Table 7.12: Rank classification order for networks considered in
Section 7.4.3.

to determine if there was any correlation between the misclassifications and

groupings or general features within the set.

7.4.3.2 Results

The 10 networks were ranked in ascending order of cross-validation error rate,
as given in Table 7.12. In total, for all 10 networks, there were 172 mis-
classified samples, with 34 different samples being misclassified at least once.
Thirteen of these 34 were misclassified 5 or more times, details ol which are
given in Table 7.13. These 13 sites accounted for a total of 124 (72%) of the
misclassifications, and the dendrogram in Figure 7.6 shows the position of the
misclassified sites from the ordination of the environmental data, as well as
the biological and environmental classes of each site.

Examination of the dendrogram indicates that the majority of the sites
consistently misclassified occurred where there was some disagreement between
its biological group and that of its near neighbours. For example, sites 5800
and 5803 (biological groups 1 and 3 respectively) occur in the middle of a
large cluster of group 5 sites. Of the thirteen sites 8 of the misclassifications
can be interpreted in this manner. This suggests that the network is placing
4 site into a class associated with the closest region of the input space, as

sites in close proximity on the dendrogram would also be in close proximity
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Figure 7.6: Dendrogram of environmental ordination showing misclassified sites.
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Figure 7.6: Dendrogram of environmental ordination (cont’d).
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group derwed from the cluster analysis of the communily structure ordination (Sec-

tion 7.3.3), while the second gives the class from the ordination of the environmental
variables (Section 7.3.2).
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Predicted groups.
Site Incorrect Target | Brackets indicate
Ref. | classifications | group | frequency
10109 10 2 1(10)
0110 8 4 2(8)
0302 10 1 5(10)
0601 9 2 3(7),4(2)
0602 9 2 3(9)
1302 9 2 4(9)
1303 10 2 1(10)
1600 10 3 2(9),4(1)
2518 9 3 1(7),2(3)
5602 10 3 5(9)
5800 10 1 3(8),2(2)
5803 10 3 1(9),5(1)
5808 10 5 1(10)

Table 7.13: Sites misclassified more than 5 times by networks in Table 7.12.

in the input space of the network. The above is what would be expected, and
indicates that the grouping of the community structure is conflicting with the
natural grouping of the environmental variables. A reason for this is probably
the small number of samples under consideration, with groups being under-
represented and thus not able to form distinct clusters. As a larger data set
will be used for the final system the present groups will probably change, with

a likely improvement in the definition of the clustering.

7 4.4 Committees of Networks
7.4.4.1 Procedure

The 10 networks used in the preceding section were ranked in order of per-
formance and committees formed using the simple average and product av-
erage methods, described in Section 5.4. Nine committees were formed for
each method: the first committee comprised the two networks with the lowest
error-rate on the cross-validation data, whilst the second committee comprised

the three lowest, and so forth until all 10 networks were combined.

207




Great Lakes Chapter 7

Percentage | Product | Simple
Network Correct Average | Average
1 83.9% — —
2 83.9% 83.9% 86.0%
3 82.8% 83.9% 86.0%
4 82.8% 82.8% 85.0%
5 82.8% 81.7% 86.0%
6 81.7% 82.8% 83.9%
7 81.7% 83.9% 85.0%
8 79.6% 83.9% 83.9%
9 78.5% 83.9% 82.5%
10 77.4% 83.9% 83.9%

Table 7.14: Classification rates of biological group from environ-
mental variables for committees of networks.

7.4.4.2 Results

The results are shown in Table 7.14. The collective performance of the in-
dividuals combined using the product average was no better than the best
individual, while there was a slight improvement when the simple averaging
procedure was adopted (86%). The performance is similar to that obtained
by Reynoldson et al. [136] using MDA, which gave 90% under less exacting
validation conditions. It is interesting to note that the error rate of 14% indi-
cates that 13 samples out of the 93 were misclassified, and that the thirteen
sites were the same as those reported in Section 7.4.3.2. Thus the simple av-
eraging procedure has removed the random risclassifications of the individual

networks, which is what would be expected by such a technique.

7.4.5 Discriminant Analysis
7.4.5.1 Procedure

The most commonly used classification tool in community structure studies
is probably multiple discriminant analysis (MDA). For example, the studies
by Wright et al. [181] and Reynoldson et al. [136]) both used this technique.
Mitchell [106] discusses discriminant analysis and gives details of the algo-

rithms, while McLachlan [101] covers the subjects of discriminant analysis and
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Input data

Method E27std \ E27pca? | E13std ! E13pcad
Linear 774% | 77.4% | 77.4% | 75.3%
Quadratic | 79.6% 77.4% 82.8% 74.2%

Table 7.15: Linear and quadratic discriminant analysis, classifica-
tion rates of biological groups from environmental variables.

statistical pattern recognition in greater depth.

The four data sets: B27std, E27pca’, E13std and 113 pcad (see Table 7.2),
as discussed in the proceeding sections of this chapter, were used as the model’s
predictor variables, with leave-one-out cross validation used to assess the gen-
eralisation of the technique. Each of data sets were run against the linear
and quadratic models, so a series of cight experiments was completed. The
software used was Public Domain code, written by Henery (see [104]), and
was the discriminant analysis software used in the StatLog project, Michie et

al. [104].

7.4.5.2 Results

Table 7.15 gives the results of the classification of the benthic data into commu-
nity structure groups using linear and quadratic discriminant analysis. Irom
Table 7.15 it can be noted that the performance of the discriminant classi-
fiers is not significantly different from those of the individual neural network
classifiers reported in Table 7.11, as the results for the discriminant analysis
(Table 7.15) are within a standard deviation of the majority of the results
of the neural networks (Table 7.11). The quadratic model produced a better
classification rate than the linear model for two data sets (both of which were
standardised data). In Reynoldson et al. [136] a linear discriminant model was
used, with the reported classification rate over the 5 validation runs being 90%.
It can be seen that this was an over-estimate, as the more rigorous validation

procedure used in this study generated a lower classification rate.
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7.4.6 Discussion

The results presented in this section indicate that the classification of the com-
munity structure from environmental variables can be performed by a simple
MLP model, to a reasonable level of performance. The performance was m-
sensitive to the number of hidden units used in the networks, while the weight
decay regulariser was only slightly beneficial. The biggest factor determining
the classification rate was the training data used for the analysis. Both of
the training sets derived from a principal component analysis produced poorer
classifiers than the original unfactored data. The dimensionality reduction of
the principal component analysis seems to remove some of the information nec-
essary to discriminate between the sites. The smaller subset of environmental
variables proved to be the most reliable set of predictor variables.
Comparison of the MLP with the linear and quadratic discriminant models
demonstrated that the results between the parametric models and the individ-
ual neural network classifiers were not significantly different. However, using
a combination of back-propagation classifiers a better classification rate was
achieved. But it should be noted that a greater effort was expended on the

neural net models than for the discriminant ones.

7 5 (Classification of Toxicity Groups

7.5.1 Preliminary Experiments
7.5.1.1 Procedure

A similar experimental procedure was adopted for the classification of bioassay
test groups (see Section 7.3.4), as that used in Section 7.4 for the classification
of biological groups. Only one training set £13std, see Section 7.3.2, was tested
since preliminary experiments showed little difference in performance between
the four sets used in Section 7.4. The network topology was 13 input nodes and
3 output nodes, one for each of the 3 groups identified during the ordination
phase (Section 7.3.4). Once again, networks comprising of 5, 7 and 9 hidden
units were tested over a series of 10 random starts, using four different weight

decay (regularisation) terms.
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Weight decay A | Training data
and number of E13std
hidden units Mean \ s.d.
A=0.0

h=5 69.6% | 2.9

h=7 69.8% | 1.9

h=9 69.3% | 2.5
A=0.0001

h=5 68.6% | 2.8

h=7 68.8% | 2.3

h=9 69.4% | 3.0
A=0.001

h=5 68.3% | 2.3

h=7 67.20% | 2.2

h=9 68.0% | 3.5
A=0.01

h=5 68.6% | 1.7

h=7 68.8% | 2.4

h=9 69.4% | 2.5

Table 7.16: Classification of 93 sites to bioassay group using the
environmental variables as predictors.

7.5.1.2 Results

Table 7.16 shows the results of the prediction of bioassay group using the envi-
ronmental variable data set B13std as predictors. The performance is notably
worse than the preceding experiments, with an error rate of over 30% percent
compared to the 15% previously obtained in the biological group experiments.
This can be explained by the poorer separation of groups 1 and 2, as noted in
the ordination, and that the group which represented slightly toxic conditions
accounted for less than 5% of the data. Relative performance differences be-
tween the number of hidden units were negligible, while the networks which

had a zero weight decay term had a slightly better performance.
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7 5.2 Committees of Networks
7.5.2.1 Procedure

The results from the 10 trained networks with 5 hidden units and a zero weight
decay term were used in the committee experiments. Again two different
methods of combining the results were tried, the product and simple averaging
procedures used previously (Section 5.4). The ten networks were ranked and
combined in the following manner. Firstly all 10 were combined, with the
result for this is given in the row labelled 10" and the column headed by the
relevant combining method, Table 7.17, after this the best 9 were combined,

with the results being in row 9, and so on.

7.5.2.2 Results

It is apparent from Table 7.17 that the performance of the classifier 1s improved
by combining the results from a series of networks. The product and averaging
procedures produced equivalent results with the best classifier obtaining an
error rate of 21.5%, (classification rate of 78.5%). This compares well to the
MDA analysis carried out in Reynoldson et al. [136], where the error rate in the
validation experiments was 32%. (The validation experiments carried out n
this report are based on leave-one-out cross validation, which is more rigorous
than the validation procedure adopted in Reynoldson et al. [136]).

From Table 7.18 it can be observed that Group 3 samples were all incor-
rectly classified. The most probable reason for this is the low relative frequency
of occurrence of these sites within the data set. The classification rates of
Group 1 and Group 2 sites, 84.6% and 78.4% respectively, compare favourably
to Reynoldson et al. [136], 76% and 55%.

7 53  Discriminant Analysis for Toxicity Tests

7.5.3.1 Procedure

This section reports on the classification using linear and quadratic discrimi-
nant models of the toxicity test groups identified from the ordination of Sec-
tion 7.3.4. The four data sets: E27std, K27pca7, F13std and El3pcad (see

Table 7.2) were used as input to hoth linear and discriminant models, with a
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Model | Classification | Product | Simple

Rank Rate Average | Average
1 73.1% — —
2 72.0% 78.5% 78.5%
3 72.0% 74.2% 74.2%
4 72.0% 74.2% | 74.2%
S 69.9% 74.2% 75.3%
6 68.8% 74.2% | 73.1%
7 68.8% 74.2% 74.2%
8 67.7% 73.1% 73.1%
9 67.7% 73.1% 72.0%
10 63.4% 73.1% 73.1%

Table 7.17: Ranking and classification of networks from experiment
reported in Table 7.16, A = 0.0 and h = 5, and classification rate
based upon product and averaging procedures.

Predicted Groups
Expected Groups 1 ] 2 i 3
I 1 44 (86.6%) 0 0
2 8 29 (78.4%) 0
3 2 2 0 (0.0%)

Table 7.18: Confusion table showing predicted toxicity groups and
the within group classification rate. Classifier was based on the

average of 2 networks.
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Training data
Method | E27std ] E27pca } E13std ‘ B13pcad
Linear 62.3% | 62.5% | 64.5% | 66.7%
Quadratic | 61.3% | 63.4% | 64.5% | 69.9%

Table 7.19: Classification rate for toxicity test using discriminant analysis.
leave-one-out cross validation technique being implemented.

7.5.3.2 Results

Table 7.19 shows the classification rate for the bioassay groups for the linear
and quadratic discriminant models. The difference between the linear and
quadratic models was minimal (i.e. one misclassified site for the data sets
E27std, E27pca? and E13std), with the quadratic model using the lowest di-
mensional input data, E13pcad, producing the highest classification rate. All
the neural networks models of Section 7.5.1 had higher classification rates than
the linear models, while their performance was comparable to the best per-
forming quadratic discriminant model. The committees of MLPs produced

noticeably higher classification rates.

7.5.4 Discussion

The neural network models applied in this section perform well when com-
pared to the MDA systems used by Reynoldson et al. {136]. However, the
input variables used in this study were different to those used by Reynoldson
et al. [136], in that a smaller standardised set of 13 variables were used as
opposed to a larger set of 19 variables. The discrimination between groups
was better overall, but Group 3 caused problems due to the low frequency in
the data set. The sites that composed Group 3 have a low survival of Hyalella
azleca and low growth rate of H. azteca and Hexagenia spp., and may be
construed as slightly toxic or sensitive to a particular combination of environ-
mental variables, however the classifier should be able to discriminate between
these sites and the remaining data, which the neural classifiers are not doing

at present.
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The implementation of guidelines would be based on deviations in the end-
point data from the reference database, and it may be that ordination of the
bioassay data is an unnecessary step. At present the difference between the
endpoints of the groups representing the uncontaminated sites is small, and
it may be better just to define a good biocassay result, indicating uncontami-
nated conditions, on the averages of the clean site database, while specifying
toxicity as some measure of deviation from the good assay results. Also, as the
bioassay endpoints provide more direct evidence of possible toxicity problems
it appears that the convoluted route of analysis through ordination is unnec-
essary, as all the sites, bar those at present in Group 3, constitute one large
group representing an uncontaminated condition. The derivation of toxicity
groups based on the physio-chemical variables, at this stage, scems Inappropri-
ate as the link between toxicity and environmental variables is less well defined
than that of community structure and environmental data. However, when the
full reference database is analysed the differences in bioassay response between
‘clean’ sites may become more apparent, and the ordination stage would then

be necessary.

7.5.5 Conclusion

A back-propagation based network was applied to the classification of toxicity
groups using the environmental variables for predictors. A classifier based on
a committee of two networks was found to provide the best performance, and
regularisation, in the form of a weight decay term, was found unnecessary. The
performance of the neural net classifier compared well (a decrease in error rate
of 5%) with the MDA systems previously used (Section 7.5.3 & Reynoldson
et al. [136]), but problems relating to the classification of unusual sites were

noted and two possible methods of overcoming these were suggested.
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7 6 Prediction of Ordination Vectors

7 6.1 Motivation

The motivation behind this experiment is to predict the position of the sites in
the community structure ordination space. Although this is not necessary for
the determination of group membership, it may provide alternative means for
the classification and prediction of expected fauna, without having to average
community structure over the whole group. That is, 1t provides a different
starting point in ordination space from which to predict the expected commu-
nity structure at a site. In essence it may provide an extra degree of confidence

in the classification process.

7 6.2 Preliminary Experiments
7.6.2.1 Procedure

For the preliminary tests the output set of the three-dimensional ordination
vectors were split into three scalar values, with different networks being used
for each scalar value, thus one network predicted the Vector 1 scores, another
Vector 2 and another Vector 3. 1t would be possible to use one network for
all three scores, but it was decided to train separate networks for cach vector
component to avoid over-parameterising the models. The data sets referred
to in Table 7.2 were used as input to the network. The number of hidden
units were 5, 7 and 9 as before. As the problem is one of prediction, tanh
transfer functions were used for the hidden units, while the output activation
function was linear. Four values of weight decay parameter were considered:
0.0, 0.0001, 0.001 and 0.1. The performance of each network was averaged over
10 random starts, with the weights being randomly initialised between values

of -0.1 and 0.1.

7.6.2.2 Results
First Ordination Vector

The results of all the trials are given in Table 7.20. This shows the correlation

coefficient between the values predicted by the network and the target values
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from the ordination scores. To summarise, the E13pcad input set produced
the best results, based on the correlation coefficient of the four input sets
considered. Two of the weight decay terms (0.0001 and 0.001) seemed to
inhibit performance when compared to zero weight decay, but the 0.01 weight
decay produced comparable, 1f not improved, results relative to zero weight

decay. The number of hidden units used had little effect on the results.

Second Ordination Vector

Again the best performance was obtained by using the El3pcad data set,
Table 7.21. The networks with zero weight-decay performed marginally better
than before, but again the number of hidden units used made little difference

to the performance.

Third Ordination Vector

Overall performance was poorer i this case than the other two, the best
performance being from the El13std data, closely followed by the E27pca’
and the E13pcad data sets (Table 7.22). The weight-decay terms 0.0001 and
0.001 again produced networks that had poorer results than the others. The
networks with zero weight-decay produced the best overall performance. 1t 1s

worth noting that the E27std data set produced the worst results in all cases.

7.6.2.3 Discussion

It is apparent from the results that the performances of the predictions of Vec-
tors 1, 2 and 3 decreased in order from Vector 1 to Vector 3. This was only to
be to be expected when one considers the mechanism of the ordination algo-
rithm. The first vector of the ordination contains most of the discriminatory
power and generally has the best correlation with the predictor variables. The
other vectors tend to have decreasing correlation with the predictor variables,
and there is less discrimination between the sites. There appeared to be some
benefit from using the principal component data (E13pcad); in essence 1t ap-
pears that for the regression analyses the smaller the dimension of the input

data the better the resulting correlations of the model’s predictions.
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7 6.3 Committees of Networks
7 6.3.1 Procedure

Using the results of the proceeding section the network with 5 hidden nodes,
weight decay A = 0.1 and training data E13pcad was selected as the basis
of the experiments in this section. The averaging procedure was the only
method considered for the formation of the committees, as the product aver-
aging method is not applicable to regression analyses. The 10 networks were
ranked and the committees formed using the best 2, then the best 3 and so

forth.

7.6.3.2 Results

Table 7.23 shows the ranked performance of the 10 networks along with the
committees’ performance. The optimum combination was obtained by using
the best 2 networks, and the results from this network are displayed graphically
in Figure 7.7. The correlation coefficients between the committee’s perfor-
mance and the target ordination vectors scores arc given in Table 7.24, broken
down by individual groups.

Considering the complete data set it can be observed that the networks
were best at predicting Vector 1, then Vector 2 and finally Vector 3. This
is the same as the findings in Section 7.6.2.2. 1t seems that the number of
samples within the cluster affected the correlation coeflicient, as Groups 1,
3 and 5, those with the greatest frequency, produced significant correlations
Table 7.24. The graphs in Figure 7.7 show the position of the predicted vectors
in ordination space against the target vectors, and clearly show good clustering
of the Group 5 (L. Michigan) sites. If the classes are viewed individually then
it is apparent that the network achieves good discrimination between clusters,

but a poorer performance occurs on the intra-cluster scale.
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Rank of Vector 1 Vector 2 Vector 3
Networks | Corr. ‘ Average | Corr. l Average | Corr. ‘ Average
m 1 0880 ] — o077 — (0626} —
2 0877 | 0.885 |0.717 | 0.757 | 0.606 | 0.656
3 0.865 | 0.882 | 0.701 | 0.764 | 0.583 | 0.651
4 0.863 | 0.880 | 0.700 | 0.764 | 0.564 | 0.654
5 0.860 | 0.879 |0.700 | 0.761 | 0.561 | 0.653
6 0.859 | 0.878 | 0.678 | 0.754 | 0.557 | 0.648
7 0.858 | 0.877 | 0.658 | 0.7562 | 0.548 | 0.647
8 0851 | 0.877 |0.654 | 0.751 | 0.546 | 0.645
9 0.849 | 0.876 |0.637 | 0.745 | 0.491| 0.638
10 0.841 | 0.875 |0.583 | 0.739 | 0.455 ] 0.630

Table 7.23: Ranking and classification of networks from experiment

reported in Ta
cient r based upon averaging.

ble 7.17, A = 0.1 and h = 5, and correlation coeffi-

I ]Gp109)56p204)1cpguﬁ)|Gp4@)|Gp5@6)\AnGp@w§Yﬂ
Vector 1| 0.472 0.454 0.504 0.150 0.651 0.855
Vector 2 0.508 0.386 0.371 -0.135 0.450 0.757
Vector 3 0.218 0.390 0.243 -0.098 -0.070 0.656

Table 7.24: Correlation coefficient r between actual and predicted

ordination vectors for each biological group. (Numbers in italics

P>0.05).
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Figure 7.7: Regression of neural network predictions against vector

scores from ordination of community structure.

Predicted Ordination Score

(a) Vector 1 Scores

Predicted Ordination Score

(b) Vector 2 Scores

Group 1 ¢ Group 2 + Group 3 O
Group 4 x Group 5 A
1.5 H I i 1 1 1 L
XX
LF o <O ]
2 % J5<
0.5 é e -
: £0
0 SRl

S
(&2
]
>
B
X B>
0“'

-1.5 1 ! I 1 ! I

-1.5 -1 -05 0 0.5 1 1.

Target Ordination Score

(&1

15 H T T T T | -
O
] e po—
S g
=
-1.5 1 I I I ] I n

-15 -1 -05 0 0.5 1 1.5

Target Ordination Score

223




Great Lakes Chapter 7

Predicted Ordination Score

-1.5 i ] i ]

Ut

|
15 -1 <05 0 05 1 L
Target Ordination Score

(¢) Vector 3 Scores

7.6.4 Discussion

The use of separate networks to predict each component of the position vector
enabled the location of a site in ordination space to be predicted with some
confidence. 1t was found that the best performance was achieved using a
data set based on a principal component analysis, and that the weight decay
parameter was of little benefit when used with these networks of low input
dimensionality. The groups which occurred most frequently in the data set
were predicted with greater accuracy than the less frequent groups.

The method may prove useful in identifying unusual environmental condi-
tions, as the predicted position of a novel data set would be unlikely to fall
within the bounds of the ordination groups, however this may be difficult to

express in quantitative terms.
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L Family } Freq. } Composil‘.ionJ
Sphaeriidae 86.0% | 14 species
Chironomidae | 84.9% | 42 genera
Naididae 65.6% | 15 species
Tubificidae 82.8% | 19 species
Haustoriidae 51.6% | 1 species

Table 7.25: Summary of the frequency of occurrence and composi-
tion of the five most common families.

7 7 Prediction of the Abundance of Taxa

7.7.1 Procedure

As described in Ruck et al. [149] it 1s possible to predict the abundances of key
clements of the benthic community structure directly from the environmental
variables. This section describes a series of experiments using the database of
93 samples referred to in Section 7.3. Using an earlier database of just 53 saim-
ples, Ruck et al. [149] found that the technique’s ability to predict abundance
varied from taxon to taxon, with some being predicted more reliably than
others. However, some success was evident with a good correlation between
predicted and target abundances being achieved.

The five families (excluding the Porifera) with the highest frequency of oc-
currence were identified and used as the basis for the experiments. The five
families were Sphaeriidae, Chironomidae, Naididae, Tubificidae and Haustori-
‘dac. Table 7.25 shows the percentage of samples in which each of the five
families were present, and also the composition of the families in terms of the
taxa listed in Appendix A3. For each family the number of individuals in each
sample was used as the target value for the network, with the environmental
data as input. The abundance of the family was calculated by simply summing
a1l the occurrences of the taxa that make up the family.

Again, after preliminary tests, one data set was chosen for the experimental
work. This was the subset of 13 standardised environmental variables, E13std
(see Table 7.2) as in previous cases. For cach of the five families ten networks

were trained using 5, 7 and 9 hidden units. Only two values of the weight-decay

225




Great Lakes Chapter 7

term, A, were tested, these being 0.0 and 0.001.

7.7.2 Results

Table 7.26 records the mean, standard deviation and maximum values of the
correlation coefficient of the 10 starts. Irom this is can be seen that the
model predicted Haustoriidae most accurately, followed by the Chironomidae,
Sphaeriidae, Tubificidae and finally Naididae. To achieve 95% significance, as-
suming a one-tailed test, a correlation coefficient of greater than 0.171 would
be needed, for 99% significance the value rises to 0.241 [81]. These values
‘ndicate that the models are achieving statistically significant predictions for
Haustoriidae, Chironomidae, Sphaeriidae and Tubificidae. However, the corre-
lations are poor when compared to those achieved by Ruck et al. [149], and are
not good enough for the model to be considered useful in a predictive system.
Thus, the expansion of the data set has lead to a decrease in the quality of the

predictions, which is contrary to what would be expected.

7.7.3 Discussion

The reliable prediction of individual invertebrate species directly from the envi-
ronmental variables would be a valuable aid, especially when target com muni-
ties are compared to observed communities. However, there are problems with
this approach, and these are essentially to do with the species being treated
as individual units (i.e. taking no account of the other species that make up
the community), and the fact that the same set of environmental variables can
support (slightly) different communities, due to the natural fluctuations asso-
ciated with community structure. Taking a species as independent {rom the
others does not necessarily lead to poor results, but in practice this is probably
not the best policy. The second problem is the property of a ‘normal’ rela-
tionship between community structure and its environment, but for prediction
the problem is compounded by the possible absence of the family. The absent
cases tend to hinder the prediction of the abundances. A further possibility
is that an important environmental parameter that influenced the abundances

may have been absent from the available set of environmental variables.
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Chironomidae
A=0.0

| Sphaeriidae | mean

max mean

0.104 h=>5 0.431 | 0.062 | 0.568
0.089 h="7 0.440 | 0.030 | 0.481
0.095 h=9 0.499 | 0.073 | 0.578
= 0.001
0.116 h=5 0.405 | 0.058 | 0.470
0.181 h=7 0.421 | 0.069 | 0.521
. 0.052 h=9 0.392 | 0.063 | 0.459
| Tubificidae mean | s.d.
A= 0.0 A=0.0
h=>5 0.022 | 0.052 | 0.093 h=5 0.181 | 0.128 | 0.371
h="7 0.048 | 0.026 | 0.082 h="7 0.177 | 0.142 | 0.374
h=9 0.064 | 0.040 | 0.155 h=9 0.235 | 0.093 | 0.390
A = 0.001 A = 0.001
h=>5 0.033 | 0.041 | 0.091 h=5 0.182 | 0.138 | 0.420
h=17 0.048 | 0.045 | 0.121 h=T7 0.257 | 0.111 | 0.412
h=9 0.081 | 0.054 | 0.196 | h=9 0.248 | 0.107 | 0.411
Haustoriidae | mean | s.d. max
A= 0.0
h=5 0.669 | 0.085 | 0.705
h=7 0.682 | 0.052 | 0.798
h=9 0.644 | 0.057 | 0.719
A = 0.001
h=5 0.651 | 0.050 | 0.715
h="7 0.625 | 0.050 | 0.720
h=9 0.624 | 0.048 | 0.705 l

Table 7.26: Mean, standard deviation and maximum values of the
correlation coefficient of model’s predictions against target abun-
!

dances, averaged over 10 networks.
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Figure 7.8: Plot of Sphaeriidae abundance against sample depth.
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Figure 7.9: Plot of Haustoriidae abundance against sample depth.
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Considering the Sphaeriidae and Haustoriidae, Figures 7.8 and 7.9 show
how the abundance of the each family varies with depth. The Sphaeriidae
graph shows that there is a weak relationship between the abundance of the
family and depth, while the Haustoriidae show a distinct change around 18-
19m depth. Although only one variable, depth, is considered extrapolation
to the extra dimensions of the input data is likely to lead to an even more
complex relationship between the abundances and the predictor variables. In
view of the Haustoriidae plot, it may have been better to have used a two stage
process: first predict simple presence or absence, then predict the abundance
of the ‘present’ taxa. For example, from Figure 7.9 it is possible to say with
a good deal of confidence that Haustoriidae will be present in waters with a
depth greater than 18m. This would help to eliminate the interference of the

absent cases when predicting the abundance.

7.7.4 Conclusion

The abundances of 5 families of taxa were predicted using a series of networks.
The best predictions were achieved with the Haustoriidae, which gave the
highest correlation for any single model of 0.798. However, the overall perfor-
mance of the models was disappointing. This was due to the complexity of the
data, and the nature of family abundances with respect to the environmental

variables.

7.8 Summary

Despite the small size of the data set, the results of this chapter demonstrate
that back-propagation neural networks have considerable potential for use as
classifiers in environmental monitoring. Their ability to classify has be shown
to compare well with that achieved by the discriminant analyses carried out in
ihis dissertation and in a previous study by Reynoldson et al. [136]. Indeed, the
networks slightly out-perform discriminant analysis, but owing to the limited
size of the data set this result cannot be taken as conclusive.

On the specific tasks to which they were applied, the networks performed

best when classifying the benthic community group to be expected at a site
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from a knowledge of the site’s environmental variables. The few misclassifica-
tions which did occur (i.e. approximately 14%) mainly corresponded to sites
having conflicting locations in two ordination spaces, namely the community
structure and environmental ordination spaces. Thus they related to what
might be considered difficult or problem cases.

The classification of expected bioassay groups from environmental variables
was less successful than the classification of community structure. This was
mainly due to two factors: the relatively small separation in ordination space
between the ‘clean’ sites (i.e. the vast majority) and sites exhibiting shght
toxicity; and the low frequency of the slightly toxic sites.

The prediction of a site’s location in the ordination space of community
structure was attempted and found to produce good correlations on the frst
and second dimensions of the ordination vectors. The groups which contained
the highest number of samples were the most reliable to predict, with the
performance tailing off with group size. In all cases, the use of committees of
networks was found to result in improved performance over that of individual

networks, even the best individual networks.
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Discussion and Conclusion

8.1 Introduction

This chapter has three principal objectives. The first is to rerterate the prin-
cipal contributions made by this dissertation and to summarise the preceding
chapters. The second is to discuss the experimental work in a wider context;
commenting on the practical application and implementation of the various
models described, and the possible directions for future research. The third is

to conclude the dissertation.

8.2 Discussion

8.2.1 Contributions and Summary

The true potential of freshwater biomonitoring has not yet been fully realised.
This has lead to a reliance on chemically based methods for most monitoring
purposes. The original motivation of this research project was to redress this
“mbalance between biological and chemical monitoring by demonstrating the
potential of applying Al techniques, particularly artificial neural networks, to
freshwater biomonitoring. It has accomplished this goal and more, via its

principal contributions:

i. A thorough and principled investigation of the application of neural net-
works to the direct interpretation of freshwater benthic invertebrate com-

munities.
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i, An extension of the term ‘indicator taxa’ to encompass computer mod-
elling, and the quantification of information loss associated with different

levels of identification and enumeration of invertebrate taxa.

iii. A demonstration of the utility of neural networks within a community
structure based approach to the assessment of sediment toxicity in the

Great Lakes.

After reviewing the present methods of freshwater biomonitoring and the
pertinent areas of neural network research, a full description and analysis of
the available river data was given (Chapter 4). The development of a new bio-
logical classification system (Bla, Blb, ..., B4) for water quality, based on the
present NWC classification, was introduced. As the classes have a biological
basis, there is a clear monotonic relationship between organic pollution and
quality classes. The classification can be applied to different biotopes but has
presently only been developed and tested using riffles. There is no conceptual
difficulty extending it to other biotopes. A possible criticism of the biological
classification is that it is based on the subjective assessment of a single ex-
pert, but this also applies to virtually all of the biotic indices presently used,
where an individual or, more typically, a panel of experts have agreed upon
some particular measure or ranking. Any system designed to interpret a bi-
ological system will be influenced by some degree of subjectivity. There 1s a
maxim to the effect that the ‘best available technology’ should be used, and
one conclusion of this project is that the lxpert (and no doubt any other expe-
rienced river ecologist) was much more reliable than any of the other available
classification systems, especially the biotic indices.

A data set consisting of 292 samples from the Upper Trent catchment of the
NRA Severn-Trent Region was constructed from a database of samples taken
for routine monitoring purposes. This data was classified to biological class
by the Expert, and was used to demonstrate the relationship between the bio-
logical classes and BMWP score, ASPT and TBI indices. This data was used
extensively for the neural network experimentation. The generation of a large
database of synthetic data, based on elicited domain knowledge was described,
and was subsequently used for the neural network experimentation. Using the

NRA national database it was shown that the variation of BMWP score and
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ASPT between the regions was large and that the spatial distributions of seven
common invertebrate families varied substantially. These facts highlight the
difficulties of designing a uniform national monitoring progranmne.

In Chapter 5 the major neural network results were presented. After con-
sidering the experimental methodology and some preliminary work, an inves-
tigation into the direct interpretation of a subset of taxa from the invertebrate
community into biological water quality class was investigated. 1t was demon-
strated that it was possible to classify this subset of invertebrate taxa into the
biological classification with a fairly high degree of accuracy. A classification
rate of over 80% for test data was achieved, with the majority of misclassifi-
cation occurring between the high variance Blb and B2 classes.

A method for identifying unusual samples was presented. Taking synthetic
riffle data as typical it was possible to identify samples that were drawn from
o different distribution, pool biotopes in this case. The method should also
work for other scenarios, for example heavy metal pollution or acidification.
A more complex neural network model, based on a mixture of experts, was
adopted as a means of classifying data which drawn from distinct distribu-
tions, in this case different biotopes. Prior knowledge, in the form of synthetic
samples, was used to ‘prime’ a MLP network, but this was found to hinder
the model’s performance. An unsupervised learning method, namely Koho-
nen’s self-organised maps, was investigated, and it was demonstrated that the
biological classification offered a good explanation of the resulting map.

In Chapter 6 the identification of indicator taxa was considered. After
redefining the term ‘indicator taxa’, a quantitative analysis was undertaken
using the Severn-Trent data. The development of three methods for select-
ing good indicators of quality class was described. 1t was demonstrated that
there is an information gain going from family (absent/present) to family (four
abundance levels) to species (four abundance levels). An important result was
the strong correlation between the Expert’s list of indicator taxa (from the
BERT system) and the corresponding lists of taxa derived from the two selec-
tion methods. It was shown that the selection of inputs, both with regard to
number and coding, is an important factor affecting model performance.

In Chapter 7 the dissertation concentrated on the use of neural networks

for classification and prediction of community structure for use in the assess-
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ment of sediment toxicity in the Great Lakes. The MLP models out performed
the more traditional discriminant analysis for the classification of community
structure and bioassay groups. The community structure misclassifications
could be explained by a conflict in the ordination spaces of the community
structure and the environmental variables. The prediction of a taxon’s abun-

dance was found to be unreliable.

8.2.2 Practical Application and Implementation

Two frequently encountered words associated with neural network applications
are ‘validation’ and ‘verification’. These words refer to the expected perfor-
mance and robustness of (i) the model and (i) the complete system in which
the model is embedded. Verification is concerned only with the model, while
validation involves the whole system, but these terms are not used with any
consistency at the present time. The validation of the whole system is impor-
tant, but is not of such importance in this study as, for example, in an area
like safety critical control.

Verification would typically entail calculating confidence intervals on a
model prediction and/or the flagging of unusual samples (see, for example,
Section 5.5). For the applications considered in this dissertation, there would
always be some degree of doubt in the modelling process as there is no ‘hard’
embedded autecological information. Ideally, the best solution would to build
a numerical equivalent to the physical model (i.e. model the whole of the
benthic system, including chemical, biological and physical relationships), but
this is too complex and is the reason why models like neural networks are used
in practice.

With the advent of large scale recording of benthic sam ples on computers,
the integration of the models into a monitoring programme would be relatively
simple. Once the data is in machine readable form, simple pre-processing is
all that is required in order to prepare the data for input to the network, and
this is easily achievable with the present database technology. The model’s
predictions or classifications would provide additional information that could

be easily added to the existing sample record and then be manipulated at will.
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Another possible use for the models which was considered in this disserta-
tion, apart from classification, was that of smart-pointers to identify samples
of concern. For routine monitoring programs it would be possible to flag sam-
ples which are novel or unusual (i.e. depart from normality in some respect),
and save the ecologist time and effort by avoiding the need to interpret the
many samples which show no cause for concern. The ultimate alm is not to re-
place the expert biologists or ecologists, but to make their work more efficient
and effective by targeting their effort on those samples that require expert
interpretation.

Al tools could prove useful as teaching aids for trainee river biologists
and ecologists. The computer models could be embedded in a hypermedia
system, which could be questioned interactively. For example, a benthic sample
could be shown and the student would see the effects upon the classification
of altering the abundance levels or absence/presence state of certain taxa.
As they have little power of explanation, the neural network models would
be limited in this role, unlike, for example, knowledge-based systems. The
models could be combined with graphics and other information pertaining to
the ecology of the taxa, and would constitute a powerful learning environment.

Another area that is of increasing interest is rapid assessment techniques.
Typically, the sample 1s assessed in terms of a simple index which can be
readily calculated and interpreted on the river bank. With the increasing use
of portable computers the assessment could utilise trimmed down versions of
the networks described in this dissertation. The thing that is rapid in ‘rapic
assessment’ is the quantification of the sample information. This does not

imply the use of simplistic interpretation techniques or models.

8.2.3 Future Research

Within this section some possible directions for neural network research are
suggested, and then a more holistic view is taken, which incorporates other
methods from AT and elsewhere.

Aside from the direct interpretation of invertebrate samples, three ideas
introduced in this dissertation warrant special attention. The first was a de-

tection method for novel (or unusual) samples. A simple method was used 1n
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this dissertation, but this idea could be developed further to take account of,
for example, effects due to metal pollution or acidification. The second idea
was the use of mixtures of experts. This idea is attractive for a number of rea-
sons. Geography is an important factor affecting the composition of the benthic
community, as well as biotope. The use of mixtures of expert models accom-
modate different regions and/or biotopes would result in a more robust and
rational system. Also, interference effects between different regions/biotopes
would be minimised. The mixture of experts model [120] has been the one
used in this dissertation, but there several other models that could have been
implemented [77]. Both of these ideas were successfully tested on a large syn-
thetic set of data, and it seems natural to experiment further on real data, to
see if the success is carried over. The third is the mathematical formulation
of what constitutes an ‘indicator taxon’. The results demonstrated that it is
possible to quantify the nformation loss associated different levels of identifi-
cation and enumeration. Using this kind of information it would be possible to
design monitoring programs so that a reasonable trade-ofl is reached between
the useful information provided by a sample and the effort put into sample
sorting and identification.

The area of biological monitoring research that is likely to be of most benelit
is the further improvement of methods of interpreting benthic samples, espe-
cially with regard to the sourcing of pollution problems. A frequent criticism
of biological monitoring is that even though it is apparent that a community
is ‘stressed’,! the specific cause remains unclear. This is true to a certain
extent, as it is unlikely to be able to categorically name the pollutant, but
with an expert interpretation the most probable qualitative cause can gener-
ally be identified. From a spatial viewpoint the various communities provide
excellent evidence as to the extent and source of the pollution problem. it
must be noted that many one-off pollution problems are identified because of
a change in colour or odour of the water course, so the potential for biological
monitoring contributing to this kind of detection is restricted.

Allied to interpretation is the power of explanation, which, if considered

important, the most promising tools to achieve this appear to be casual belief

11i should be noted thai a community cannot be stressed, it is the individuals within the
community that experience stress.
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Chemistry

Biology

Physical environment

Figure 8.1: Schematic lustration of an example causal belief net-
work for biological monitoring. The lines connecting the various
nodes represent casual links. The effect of changing a single vari-
able propagates throughout the system, and information on the
whole system is available at any particularly instant.

networks and some of the machine learning techniques [27]. A causal belief net-
work is an extension of probabilistic reasoning systems in which dependencies,
or more specifically causal links, are represented in the form a network (I'ig-
ure 8.1). Their exposition has been detailed by Pearl [126], Neapolitan [118]
and Spiegelhalter et al. [160]. As they area knowledge-based systems an appre-
ciable amount of elicitation (either subjective or objective) must be com pleted
before they can be made functional. Although, it is almost always a produc-
tive exercise to elicit probabilities from a domain expert or experts, in large
complex systems the expertise may simply not be available, which would be a
difficult obstacle to overcome. If successful, this would be a significant advance
and would belief networks an advantage over other systems.

A further possibility for future research is the incorporation of the artificial
intelligence models nto a Geographic Information System (GIS). One such
example is the RAISON (Regional Analysis by Intelligent Systems on a Micro-
computer) system, which integrates an expert system shell into a GIS, and can
predict the effect of pollution emissions on water quality [87]. The ability of a

(i1S to handle and store data from many sources (e.g. hydrologic, geographic
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and topographic) would permit the use of a complex spatial interpretation
system. The access to historic data would also be beneficial, as this would
allow for temporal trends to be detected. Another benefit of using a GIS is the
case of visual presentation of the data and the results, hence an improvement
could be expected in the communication and dissemination of the results to

managers, scientists, politicians and the general public.

8.3 Conclusions

The new method of classifying river water quality, using a subset of benthic
invertebrate taxa, compared favourably to the existing biotic systems that
form the current basis of biological assessment in the UK. The use of five
categories for the classification seemed appropriate. It was neither too coarse
to be meaningless nor too fine so that it was difficult to apply. The IExpert was
capable of dividing the five categories into a finer classification (based on the
original five classes), so the system Is capable of finer discrimination if need
be.

Although the neural network models can adequately classify data from the
Severn-Trent region, there is no reason to have confidence that these models
could also classify data from any other NRA region in the UK. This would
also apply, to a certain extent, to any domain expert as well, as their expertise
is generally limited to specific geographic regions. Further data acquisition
would be necessary before the models could be applied on a national basis.

From the experimental work, it is apparent that a heirarchical approach to
modelling (i.e. one that sub-divides the problems into layers or hierarchies)
may be a particularly usefu) idea. Two good examples of this are classification
within different biotopes and the identification of novel data. Both of these
tasks are easily handled by different neural network models, but it is perhaps
the identification of the different sub-problems that is the real progression
forward.

Throughout the project, it became clear that there is tremendous amount,
of domain expertise available for the interpretation of invertebrate commu-
nities. As demonstrated, MLP models don’t handle explicit prior knowledge

well (especially if the prior knowledge is not of really good quality), so obvious
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sources of information (i.e. the domain experts) are not being utilised. Other
tools, such as probabilistic networks, are more suited to handling the domain
knowledge adequately, as well as learning from data (Section 8.2.3). Again,
the probabilistic networks lend themselves to hierarchical modelling, so infor-
mation concerning different regions, from different experts, can be handled in
a consistent and mathematically rigorous manner.

The selection of key indicator taxa was considered, and it was shown that
is was mathematically possible (using ideas from information theory) to rank
taxa in terms of their utility for classification. The idea of selecting key indi-
cator has an intuitive appeal when applied to freshwater biomonitoring. An
mteresting conclusion is that it is not necessary, or even desirable, to use all
of the mvertebrate community to form the classification. Beyond a certain
threshold any additional taxa appear only to add noise (i.e. they contribute
no useful information) and are unreliable indicators (as compared to the other
taxa).

The work on the Great Lakes sediment toxicity problem (Chapter 7) demon-
strated the utility of the MLP models as classification and prediction tools.
The MLPs were the most capable models tested, but their power must be
tempered by the use of adequate data.

This dissertation has presented a thorough and principled investigation
into the interpretation and classification of freshwater benthic invertebrate
communities using artificial neural networks. As demonstrated, neural net-
works can be successfully applied to solve some of the many difficult problems
in freshwater biomonitoring. Yet, the true worth of applying neural networks
to freshwater biomonitoring has still to be determined, but the results of this
dissertation clearly indicate that the methodology has considerable potential

and warrants a more extensive investigation.

239




References

[

2]

3]

v S. Abu-Mostafa. Machines that learn from hints. Scientific American,
pages 68-73, April 1995.

J.A. Anderson, A. Pellionisz, and E. Rosenfeld, editors. Neurocomputing
9. Directions for research. MI'T Press, Cambridge, MA, 1990.

J.A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations
of research. MIT Press, Cambridge, MA, 1988.

P.D. Armitage, D. Moss, J.F. Wright, and M.T. Furse. The performance
of a new biological water quality score based on macroinvertebrates over a
wide range of unpolluted running water sites. Water Research, 17(3):333~
347, 1983.

D. Balloch, C.E. Davies, and F.H. Jones. Biological assessment of wa-
ter quality in three British rivers: the North sk (Scotland), the Lvel
(England) and the Taf (Wales). Water Pollution Control, 75:92-114,
1976.

R. Battiti. Using mutual information for selecting features in supervised
neural network learning. TEEE Transactions on Neural Networks, 5:537—
550, 1994.

R. Beale and T. Jackson. Neural Compuling: An Introduction. Adam

Hilger, Bristol, 1990.

L. Belbin. PATN Reference Manual. CSIRO Division of Wildlife and
Ecology, Canberra, 1988.

P.E. Bertram and T.B. Reynoldson. Developing ecosystem objectives for
the Great Lakes: Policy, progress and public participation. Journal of
Aqualic Icosystem Health, 1:89-95, 1992.

(.M. Bishop and C.D. James. Analysis of multiphase flows using dual en-
ergy gamma densitometry and neural networks. Technical Report ALSA-

InTec-1032, United Kingdom Atomic Energy Authority, 1992.

H. Bourlard and C.J. Wellekens. Speech pattern discrimination and
multilayer perceptrons. Compuler Speech and Language, 3:1-19, 1989.

240




References

[12]

[13]

[14]

[19]

[20]

M. Boyd. The application of methods of uncertain reasoning to the bi-
ological monitoring of river water quality (In preparation). PhD thesis,
Department of Civil Engineering, University of Aston, 1996.

M. Boyd, W.J. Walley, and H.A. Hawkes. Dempster-Shafer reasoning for
the biological surveillance of river water quality. In L.C. Wrobel and C.A.
Brebbia, editors, Proceedings of the Second International Conference on
Water Pollution (Modelling, Measuring and Prediction). Computational
Mechanics Publications, 1993.

1.S. Bridle. Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition. In
F. Fogelman Soulié and J. Hérault, editors, Neurocompuling: Algorithms,
Architectures and Applications. Springer-Verlag, 1990.

D.S. Broomhead and D. Lowe. Multivariable functional interpolation
and adaptive systems. Complex Systems, 2:321-355, 1988.

A V. Brown and P.P. Brussock. Comparisons ol benthic invertebrates
between riffles and pools. Hydrobiologia, 220:99-108, 1991.

W.L. Buntine and A.S. Weigend. Bayesian back-propagation. Complex
Systems, 5:603-643, 1992.

W L. Buntine and A.S. Weigend. Computing second derivatives in feed-
forward networks: A review. [FELE Transaclions on Neural Nelworks,
5(3):480-488, 1994.

J.R. Chandler. A biological approach to water quality management.
Water Pollution Control, 69:413-422, 1970.

R.K. Chesters. Biological Monitoring Working Party. the 1978 national
testing exercise. Dol2 Water Data Unit Technical Memorandum, 19:1-37,
1980.

L.L. Conquest. Statistical approaches to environmental monitoring: Did
we teach the wrong things? Environmental Monitoring and Assessment,

26:107-124, 1993.

§.E.K. Cook. Quest for an index of community structure sensitive to
water pollution. Environmental Pollution, 11:269-288, 1976.

N. De Pauw, P.F. Ghetti, P. Manzini, and R. Spaggiari. Biological as-
sessment methods for running waters. In P. Newrman, A. Piavaux, and
R. Sweeting, editors, River Water Qualily - Eeological Assessments and
Conirol, pages 217-248. Commission of European Communities, Brus-

sels, 1993.

241




References

[24]

N. De Pauw and H.A. Hawkes. Biological monitoring of river water qual-
ity. In W.J. Walley and S. Judd, editors, River Water Quality Monitoring
and Control, pages 87-112. Aston University, 1993.

N De Pauw and D. Roels. Relationship between the biological and chem-
ical indicators of surface water quality. Verh. Internat. Verein. Limnol.,
23:1553-1558, 1988.

R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis.
John Wiley and Sons, New York, 1973.

S. Dzeroski, L. De Haspe, B.M. Ruck, and W.J. Walley. Classification
of river water quality using machine learning. In P. Zanetti, editor,
Computer Techniques in Environmental Studies V (Proceedings of I7ifth
International Conference on the Development and Application of Com-
puter Techniques to Environmental Studies-ENVIROSOFT °94) Vol. I:
Pollution Modelling, pages 129-137. Computational Mechanics Publica-
tions, Southampton, 1994.

B. Efron and R.J. Tibshirani. An Introduction to the Boolstrap. Chap-
man & Hall, London, 1993.

J.C. Ellis and P.J. Newman. Compliance with standards - the problems.
In W.J. Walley and S. Judd, editors, River Waler Quality Moniloring
and Conlrol, pages 115-134. Aston University, 1993.

Environment Canada. A Primer of Fresh Waler. Environment Canada,
Reading, 1993.

B.S. Everitt and G. Dunn. Applied Mullivariale Dala Analysis. Iidward
Arnold, London, 1991.

C.A. Extence, A.J. Bates, W.J. Forbes, and P.J. Barnham. Biologically
based water quality management. Environmental Pollution, 45:221-236,

1987.

E.W. Fager. Determination and analysis of recurrent groups. Icology,

38:586-595, 1957.

S E. Fahlman. An empirical study of learning speed in back-propagation.
Technical Report CMU-CS-88-162, Carnegie Mellon University, 1988.

D.P. Faith, P.R. Minchin, and L. Belbin. Compositional dissimilarity as
a robust measure of ecological distance. Vegetatio, 69:57-68, 1987.

242




References

[36]

[37]

D.P. Faith and R.H. Norris. Correlation of environmental variables with
patterns of distribution and abundance of common and rare freshwater
macroinvertebrates. Biological Conservation, 50:77-98, 1989.

J.G. Field, K.R. Clarke, and R.M. Warwick. A practical strategy for
analysing multispecies distribution patterns. Mar. Ecol. Prog. Ser., 8:37—
52, 1982.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
New York, 2nd edition, 1987.

G. Fryer. Quantitative and qualitative: Numbers and reality in the study
living organisms. Freshwater Biology, 17:177-189, 1987.

K. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183, 1989.

M.T. Furse, D. Moss, J.F. Wright, and P.D. Armitage. The influence
of seasonal and taxonomic factors on the ordination and classification
of running-water sites in Great Britain and on the prediction of their
macroinvertebrate communities. Freshwater Biology, 14:257-280, 1984.

R.G. Gallager. Information Theory and Reliable Communications. Wi-
ley, New York, 1968.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the
bias/variance dilemma. Neural Computation, 4:1-58, 1992.

P.E. Gill, W. Murray, and M.H. Wright. Practical Methods of Oplimiza-
tion. Academic Press, London, 1981.

C. Girton. FEcological studies on benthic invertebrale communilies n
relation to their use in river waler quality surveillance. PhD thesis,
University of Aston, 1980.

A. Giwer. The case for and against (Pan-European standards and sys-
tems). In W.J. Walley and 5. Judd, editors, River Water Quality Mon-
itoring and Conlrol, pages 221-223. Aston University, 1993.

S. Hashem. Optimal linear combinations of neural networks. PhD thesis,
School of Industrial Engineering, Purdue University, 1993.

B. Hassibi and D.G. Stork. Second order derivatives for network pruning:
Optimal Brain Surgeon. In 5.J. Hanson, J.D. Cowan, and C. Giles,

editors, Advances in Neural Information Processing Systems 5, pages
164-171. Morgan Kaufman, San Mateo, CA, 1993.

243




References

[49]

[50]

[60]

(61]

H A. Hawkes. River zonation and classification. In B. Whitton, editor,
River Ecology. Blackwell, Oxford, 1975.

H A. Hawkes. Manual on biological surveillance of rivers using benthic
macroinvertebrates. Unpublished Report, University of Aston: Applied
Hydrobiology Section, 1977.

H.A. Hawkes. Invertebrates as indicators of river water quality. In
A. James and L. Evison, editors, Biological indicators of waler qualily,
pages 2.1-2.24. Wiley, Chichester, 1979.

H.A. Hawkes. Water quality issues: An ecological reaction. Chemistry
and Industry, March:201-204, 1979.

H.A. Hawkes. Biological surveillance of rivers. Water Pollution Control,

81(3):320-342, 1982.

H. A. Hawkes and L.J. Davies. Some effects of organic enrichment on
benthic invertebrate communities in stream riffles. In I. Dufley and
A.S. Watt, editors, The Scientific Management of Animal and Plant
Communities for Conservation. Blackwell, London, 1971.

J.M. Hellawell. Biological Surveillance of Rivers. Water Research Centre,
Medmenham, 1978.

J.M. Hellawell. Biological Indicators of Ireshwater Pollution and [nvi-
ronmental Management. Elsevier, London, 1986.

R.J. Henery. Methods for comparison. In D. Michie, D.J. Spiegelhal-
ter, and C.C. Taylor, editors, Machine Learning, Neural and Statistical
Classification, pages 107-124. Ellis Horwood, 1994.

J. Hertz, A. Krogh, and R.G. Palmer. Iniroduclion to the Theory of
Neural Computation. Addison-Wesley, Redwood City, CA, 1991.

M.O. Hill. Twinspan—A fortran program for arranging multivariate
data in an ordered two-way table by classification of the individuals and
attributes. ecology and systematics, 1979.

G E. Hinton. Connectionist learning procedures. Ariificial Intelligence,

40:185-234, 1989.

G.E. Hinton, C.K.I. Williams, and M.D. Revow. Adaptive elastic models
for hand-printed character recognition. In J.E. Moody, S.J. Hanson,
and R.P. Lippmann, editors, Advances in Neural Information Processing
Systems 4. Morgan Kaufmann, 1992.

244




References

[62]

[63]

(64

[67]

[68]

[69]

73]

[74]

Y. Hirose, K. Yamashita, and S. Hijika. Back propagation algorithm
which varies the number of hidden units. Neural Networks, 4:61-66,
1991.

T. Hruby. Using similarity measures in benthic impact assessments.
Environmental Monitoring and Assessment, 8:163-180, 1987.

D.R. Hush and B.G. Horne. Progress in supervised neural networks:
What’s new since Lippmann? [EEE Signal Processing Magazine, pages

8-39, Jan 1993.

H.B.N. Hynes. The Biology of Polluled Waters. Liverpool University
Press, Liverpool, 1960.

International Joint Commission. Guidance of characterization of toxic
substances problems in areas of concern in the Creat Lakes basin. Report
from the Surveillance Work Group, ppl179, 1987.

International Joint Commission. Procedures for the assessment of con-
taminated sediment problems in the Great Lakes. Sediment, Subcommit-
tee, ppl40, 1988.

P. Jaccard. Nouvells recherches sur la distribution florale. Bull. Soc.

Vaud. Sci. Nat., 44:223-270, 1908.

D.A. Jackson. Multivariate analysis of benthic invertebrate communities
the implication of choosing particular data standardizations, measures
of association, and ordination methods. Hydrobiologia, 268:9-26, 1993.

R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3:79-87, 1991.

M. Jefferies. Water quality and wildlife. Report for Nature Conservancy
Council, Contract HI* 3 03 370, 1988.

B. Jepson, A. Collins, and A. Evans. Post-neural network procedure to
determine expected prediction values and their confidence limits. Neural
Computing and Applications, 1(3):224-228, 1993.

W.H. Joerding and J.L. Meader. Encoding a prior] information in feed-
forward networks. Neural Networks, 4:847-856, 1991.

R.K. Johnson and T. Wiederholm. Classification and ordination of pro-
fundal macroinvertebrate communities in nutrient poor, olgio-mesohumic
lakes in relation to environmental data. Freshwater Biology, 21:375-386,

1989.




References

[75]

[76]

[77]

R.K. Johnson, T. Wiederholm, and D .M. Rosenberg. Freshwater biomon-
itoring using individual organisms, populations, and species assemblages
of benthic macroinvertebrates. In D.M. Rosenberg and V.H. Resh, ed-
itors, Freshwater Biomonitoring and Benthic Macroinverlebrates, pages
40-125. Chapman & Hall, London, 1993.

D.S. Jones. Elementary Information Theory. Clarendon Press, Oxford,
1979.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the
EM alogorithm. Neural Computation, 6:181-214, 1994.

1.G. Jowett. A method for objectively identifying pool, run, and riflle
habitats from physical measurements. New Zealand Journal of Marine
and Freshwater Research, 27:241-248, 1993.

L. Kanal. On patterns, categories and alternate realities. Patlern Recog-
nition Letters, 14:241-255, 1993.

F. Kanaya and K. Nakogawa. On the practical implementation of mu-
tual information for statistical decision making. IEEE Transactions on
Information Theory, 37:1151-1156, 1991.

G.K. Kanji. 100 Statistical Tests. Sage, London, 1993.

ED. Karin. A simple procedure for pruning back propagation trained
neural networks. JEEE Transactions on Neural Networks, 1:239-242,

1990.

T. Kohonen. The self-organizing map. Transactions of the [EELE
g g I . s

78(9):1464-1480, 1990.

T. Kohonen, J. Kangas, and J. Laaksonen. The Self-Organizing Map
Program Package. Laboratory of Computer and Information Science,
Helsinki University of Technology. Program available by anonymous ftp
from cochlea.hut.fi, 1992.

R. Kolkwitz and M. Marsson. Ockolgie der pflanzlichen saprobien. Ber.
disch. bot. Ges., 26A:505-519, 1908.

R. Kolkwitz and M. Marsson. Oekologie der kerischen saprobien. Rev.

Ges. Hydrobiol. Hydrogr., 2:126-152, 1909.

D.C.L. Lam, I. Wong, D.A. Swayne, J. Storey, and J.P. Kerby. Appli-
cation of the RAISON expert system for water pollution problems from
acid rain to mine effluent. In P. Zannetti, editor, Computer Techniques

246




References

[39]

[90]

[91]

[92]

(93]

in Environmental Studies III (Proceedings of Fifth International Con-
ference on the Development and Application of Computer Techniques to
Environmental Studies-ENVIROSOFT 90), pages 273-284. Computa-
tional Mechanics Publications, Southampton, 1990.

M. Le Blanc and R. Tibshirani. Combining estimates in regression and
classification. Technical Report. Department of Statistics, University of
Toronto, 1993.

Y. Le Cun, B. Boser, J. S. Denker, R. E. Howard, W. Hubbard, and
L. D. Kackel. Handwritten digit recognition with a back propagation
network. Neural Computation, 1:541-551, 1989.

Y. Le Cun, J.S. Denker, and 5.A. Solla. Optimal brain damage. In D.5.
Touretzky, editor, Advances in Neural Information Processing Systems
2, pages 598-605. Morgan Kaufman, San Mateo, CA, 1990.

R.P. Lippmann. Introduction to computing with neural nets. IEELE

ASSP Mag, Apr:4-22, 1987.

nl
4

R.P. Lippmann. Pattern classification using neural networks. [FEE
Communications Magazine, Nov.:47-50,59-64, 1989.

P. Logan and M.P. Brooker. The macroinvertebrate fauna of riffles and

pools. Water Research, 17(3):263-270, 1983.

D.J.C. MacKay. Bayesian interpolation. Neural Computalion, 4:415-447,
1992.
D.J.C. MacKay. A practical Bayesian framework for back propagation

networks. Neural Computation, 4:448-472, 1992.

P.S Maitland. A Coded Checklist of Animals Occurring wn Fresh Waters
in the Brilish Isles. Institute of Terrestrial Ecology, Edinburgh, 1977.

R. Margalef. Perspeclives in Eeological Theory. University of Chicago
Press, London, 1968.

C. Mason. Biology of Freshwaler Pollution. Longman, London, 1981.

W.T. Mason, P.A. Lewis, and C.I. Weber. An evaluation of benthic
macroinvertebrate biomass methodology. Environmenial Monitoring and
Assessment, 5:399-422, 1985.

W.S. McCulloch and W. Pitts. A logical calculus of ideas immanent in
nervous activity forms. Bullelin of Malhematical Biophysics, 5:115-133,

1943.

247




References

(101} G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recogni-
tion. John Wiley, New York, 1992.

[102] E.F. Menhinick. A comparison of some species—individuals diversity
indices applied to samples of field msects. Ecology, 45:859-861, 1964.

[103] L.J. Metcalfe. Biological water quality assessment of running waters
based on macroinvertebrates communities: History and present status
in Europe. Environmental Pollution, 60:101-139, 1989.

[104] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors. Machine Learn-
ing, Neural and Statistical Classification. Ellis Horwood, 1994.

[105] M.L. Minsky and S.A. Papert. Perceptrons. An introduction to Compu-
tational Geomelry. Fxpanded edilion. MIT Press, 1988.

[106] J.M.O. Mitchell. Classical statistical methods. In D. Michie, D.J. Spiegel-
halter, and C.C. Taylor, editors, Machine Learning, Neural and Statisli-
cal Classification, pages 17-28. [llis Horwood, 1994.

[107] J.E. Moody. The effective number of parameters: An analysis of general-
ization and regularization in nonlinear learning systems. In J.I5. Moody,
§.J. Hanson, and R.P. Lippmann, editors, Advances in Neural Informa-
tion Processing Systems /, pages 847-854. Morgan Kaufman, San Mateo,
CA, 1992.

[108] D.P. Morgan and C L. Scofield. Neural Networks and Speech Processing.
Kluwer Academic Publishers, 1991.

[109] D. Moss, M.T. Furse, J.F. Wright, and P.D. Armitage. The prediction of
the macroinvertebrate fauna of unpolluted running water sites in Great
Britain using environmental data. Freshwater Biology, 17:41-52, 1987.

[110] N. Murata, S. Yoshizawa, and S. Amari. A criterion for determining the
number of parameters in an artificial neural network model. In T'. Koho-
nen, K. Mikisarra, O. Simila, and J. Kangas, editors, Artificial Neural
Networks, pages 9-14. North Holland, Amsterdam, 1991.

[111] P.M. Murphy. The temporal variability in biotic indices. Environmental
Pollution, 17:227-236, 1978.

(112] National Rivers Authority. The quality of rivers, canals and estuaries in
England and Wales. Report of the 1990 Survey. National Rivers Author-
ity, Water Quality Series No. 4, 1991.




References

[113]

[114]

[117]

[118)

[119)

National Rivers Authority. Proposals for Statutory Water Quality Ob-
jectives. National Rivers Authority. Water Quality Series No. 5, 1991.

National Water Council. River water quality—the next stage. Review of
discharge consent conditions, 1978.

Natural Environment Research Council. Biological Monitoring. NERG.,
London, 1977.

R.M. Neal. Bayesian training of backpropagation networks by the hybrid
Monte Carlo method. Technical Report Technical Report CRG-TR-92-1,
Department of Computer Science, University of Toronto, 1992.

R.M. Neal. Bayesian Learning for Neural Networks. PhD thesis, De-
partment of Computer Science, University of Toronto, 1994.

E. Neapolitan. Probabilistic reasoning in experl systems. John Wiley,
London, 1990.

R.H. Norris and A. Georges. Analysis and interpretation of benthic
macroinvertebrate surveys. In D.M. Rosenberg and V.H. Resh, editors,
Freshwater Biomonitoring and Benthic Macroinvertebrates, pages 234-

986. Chapman & Hall, London, 1993.

S J. Nowlan. Soft Compelilive Adaplation: Newral Nelwork Learning
Algorithms based on Fitling Syatistical Miztures. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1991.

§.J. Nowlan and G.E. Hinton. Evaluation of adaptive mixtures of com-
peting experts. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky,
editors, Advances in Neural Information Processing Systems 3. Morgan
Kaufman, San Mateo, CA, 1991.

W. Olthuis. Chemical sensing in freshwater - problems and opportunities.
In W.J. Walley and S. Judd, editors, fwer Water Qualilty Moniloring
and Control, pages 209-218. Aston University, 1993.

R. Pantle and H. Buck. Die biologische Uberwachung der Gewasser und
die Darstellung der Ergebnisse. Gas und Wasserfach, 96:604, 1955.

Y-H. Pao. Adaplive Paltern Recognition and Neural Nelworks. Addison
Wesley, New York, 1989.

D B. Parker. Learning-logic. Technical Report TR-47, Center for
Computational Research 1n Fconomics and Management Science, Mas-
sachusetts Institute of Technology, 1985.

249




References

126)

[130]

[131]

133]

[134]

135]

[136]

[137]

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Mateo, California, 1988.

(. Personne and N. De Pauw. Systems of biological indicators for water
quality assessment. In O. Ravera, editor, Biological Aspects of Freshwaler
Pollution. Pergamon Press, 1979.

L.C.V. Pinder and LS. Farr. Biological surveillance of water quality
(2). Temporal and spatial variation in the macroinvertebrate fauna in
the river forme - A Dorset chalk stream. Archiv Fur Hydrobiologte,

109(3):321-331, 1987.
L.C.V. Pinder, M. Ladel, T. Gledhill, J.A.B. Bass, and A.M. Matthews.

Biological surveillance of water quality (1). A comparison of macroinver-
tebrate surveillance methods in relation to assessment of water quality
in a chalk stream. Archiv Fur Hydrobiologie, 109(2):207-226, 1987.

D.C. Plaut, S.J. Nowlan, and G.E. Hinton. Experiments on learning by
back-propagation. Technical Report CMU-CS-86-126, Carnegie-Mellon
University, Pittsburgh, PA, 1986.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, Cambridge, 2 edition,

1992.

C.F. Rabeni, S.P. Davies, and K.IE. Gibbs. Benthic invertebrate response
to pollution abatement: Structural changes and functional implications.

Water Quality Bulletin, 21:489-497, 1985.

K.H. Reckhow. Bayesian inference in non-replicated ecological studies.

Ecology, 71(6):2053-2059, 1990.

S J. Renals. Radial basis function network for speech pattern classifica-
tion. Flectronics Letters, 25(7):437-439, 1989.

S.J. Renals. Speech and Neural Networks Dynamics. PhD thesis, Uni-
versity of Edinburgh, 1990.

T.B. Reynoldson, R.C. Bailey, K.I&. Day, and R.H. Norris. Biological
guidelines for freshwater sediment based on BEnthic Assessment of
SedimenT (the BEAST) using a multivariate approach for predicting
biological state. Australian Journal of Ecology, 20:198-219, 1995.

T.B. Reynoldson and K.E. Day. A study plan for the development of

biological sediment guidelines. National Water Research Institute un-
published report, Burlington, Canada, 1991.

250




References

[138]

[139]

[140]

[141]

[142)

[143)

[144]

[145]

[146)

[147]

[148]

T.B. Reynoldson and J.L. Metcalfe-Smith. An overview of the assess-
ment of aquatic ecosystem health using benthic invertebrates. Journal
of Aquatic Ecosystem Health, 1:295-308, 1992.

T.B. Reynoldson and M.A. Zarull. The biological assessment of con-
taminated sediments - the Detroit River example.  Hydrobiologia,

188/189:463-476, 1989.

T.B. Reynoldson and M.A. Zarull. An approach to the development of
biological sediment criteria. In 5.J. Woodley, G. Irancis, and J. Kay,
editors, Ecological Integrity and the Management of Ecosystems, pages
177-200. St Lucie Press, F1., 1993.

B.D. Ripley. Statistical aspects of neural networks. In O.E. Barndorfl-
Nielsen, D.R. Cox, J.L. Jensen, and W.S. Kendall, editors, Networks and
Chaos - Statistical and Probabilistic Aspects. Chapman & Hall, London,
1993.

B.D. Ripley. Neural networks and related methods for classification (with
discussion). Journal of the Royal Statistical Sociely, Series B, 56(3):409-
456, 1994.

S.J. Roberts and L. Tarassenko. A probabilistic resource allocating net-
work for novelty detection. Neural Computation, 6:270-284, 1993.

G. Rogova. Combining the results of several neural network classifiers.
Neural Networks, 7:777-781, 1994.

R.J. Rohwer, M. Wynne-Jones, and I. Wysotzki. Neural networks. In
D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors, Machine Learn-
ing, Neural and Statistical Classificalion, pages 84-106. Lllis Horwood,
1994.

C. Rose. The Dirty Man of FEurope: the Greal British Pollulion Scandal.
Simon & Schuster, London, 1990.

F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65:386-405,

1958.
B.M. Ruck, W.J. Walley, and H.A. Hawkes. Biological classification of

river water quality using neural networks. In G. Rzevski, Pastor J., and
R.A. Adey, editors, Applications of Artificial Intelligence in Engineering
VI, Vol. 2 Applications and Techniques. Elsevier, 1993.

251

el



References

[149] B.M. Ruck, W.J. Walley, T.B. Reynoldson, and K.I&. Day. A neural net-
work predictor of benthic community structure in the Canadian waters of
the Laurentian Great Lakes. In L.C. Wrobel and C.A. Brebbia, editors,
Proceedings of the Second International Conference on Water Pollution
(Modelling, Measuring and Prediction). Computational Mechanics Pub-
lications, 1993.

[150] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal rep-
resentations for error propagation. In D.E. Rumelhart, J.L. McClelland,
and G.E. Hinton, editors, Parallel Distributed Processing: Iszploralions
in the Microstructure of Cognition. Volume 1: IFoundations, pages 318

362. MIT Press, Cambridge, MA, 1986.

[151] D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, editors.
Parallel Distributed Processing: [Fxplorations in the Microstrcuture of
Cognition. Volume 1: Foundations. MIT Press, Cambridge, MA, 1986.

[152] J.W. Sammon Jr. A nonlinear mapping for data structure analysis. IEEE
Transactions on Computers, C18(5):401-409, 1969.

[153] SAS Institute Inc. User’s Guide, Version 6, Fourlh Lidition. SAS Insti-
tute Inc., Cary, NC, 1990.

[154] W. Schaafsma. Selecting variables in discriminant analysis for improving
classical procedures. In P.R. Krishnaiah and L. Kanal, editors, Handbook
of Statistics, volume 2, pages 857-881. North-Holland, Amsterdam, 1982.

[155] C.I. Shannon and W. Weaver. The Mathematical Theory of Communi-
cation. University of Illinois Press, Urbana, 1949.

[156] E.H. Simpson. Measurement of diversity. Nature, 163:688, 1949.

[157] V. Sladecek. Systems of water quality from the biological point of view.
Arch. Hydrobiol. Beih., 7:1-218, 1973.

[158] T. Sorenson. A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application
to analyses of the vegetation on Danish commons. Bio. Skr. (K. danske.

vidensk. Selsk. N.S.), 5:1-34, 1948.

[159] D.J. Spiegelhalter and R.G. Cowell. Learning in probabilistic expert
systems. In J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.I".M. Smith,
editors, Bayesian Statistics /, pages 447-466. Clarendon Press, Oxford,
1992.



References

[160] D.J. Spiegelhalter, A.P. Dawid, and S.L. Lauritzen. Bayesian analysis in
expert systems. Statistical Science, 8:219-247, 1993.

[161] L.E. Sucar, D.F. Gillies, and D.A. Gillies. Objective probabilities in
expert systems. Artificial Intelligence, 61:187-208, 1993.

[162] H.H. Thodberg. Ace of Bayes: Application of neural networks with
pruning. Technical Report Technical Report No. 1132k, Danish Meat
Research Institute, 1993.

[163] S.B. Thrun and 23 co authors. The MONI’s problems: A performance
comparison of different learning algorithms. Technical Report CMU-C5-
91-197, Department of Computer Science, Carnegie-Mellon University,

1991.

[164] H.H. Tolkamps. Biological assessment of water quality in running water
using macroinvertebrates a case study for Limburg, The Netherlands.
Wat. Sci. Tech., 17:867-878, 1985.

[165] D. van Camp, T. Plate, and G.E. Hinton. The Xerion Neural Network
Simulator. Department of Computer Science, University of Toronto. Pro-
gram available by anonymous ftp {from ftp.cs.toronto.edu, 1993.

[166] V.N. Vapnik and A. Ya Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
and its Application, 2(10):264-280, 1971.

(167] W.J. Walley. Artificial intelligence in river water monitoring and control.
In W.J. Walley and S. Judd, editors, River Waler Qualily Monitoring
and Control, pages 179-194. Aston University, 1993.

[168] W.J. Walley. New approaches to the interpretation of water quality
data based on techniques from the field of artificial intelligence. In Pro-
ceedings of the Workshop on Monitoring Tailor-made. Beekbergen, The
Netherlands, 1994.

[169] W.J. Walley, M. Boyd, and H.A. Hawkes. An expert system for the bio-
logical monitoring of river pollution. In Procecdings of the Fourth Inter-
national Conference on Compuler Techniques in environmental Studies.
Elsevier, Portsmouth, England, 1992.

[170] W.J. Walley, H.A. Hawkes, and M. Boyd. Application of Bayesian infer-
ence to river water quality surveillance. In D.IE. Grierson, G. Rzevski,
and R.A. Adey, editors, Applications of Artificial Intelligence in [ngi-
neering VII. Elsevier, 1992.



References

[171]

[174]

[175)

[176]

[177)

H.G. Washington. Diversity, biotic and similarity indices a review with
special relevance to aquatic ecosystems. Water Research, 18(6):653-694,

1984.

P.D. Wasserman. Neural Computing: Theory and Practice. Chapman &
Hall, Routledge, 1990.

A.S. Weigend and N.A. Gershenfeld, editors. T%me Series Prediction:
Forecasting the Fulure and Understanding the Past. Addison-Wesley,
Reading, 1994.

P. Werbos. Beyond regression: New tools for prediction and analysis in
the behavioural sciences. PhD thesis, Harvard University, 1975.

J.L. Whilm and T.C. Dorris. Biological parameters for water quality
criteria. Bioscience, 18:477-481, 1968.

I.T. Whitehurst. The Gammarus:Asellus ratio as an index of organic

pollution. Water Research, 25:333-339, 1991.

S.J. Wishart, J.P. Lumbers, and .M. Griffiths. Expert systems for the
interpretation of river water quality data. Journal of the Institute of
Water and Environmental Management, 4:. 194-202, April 1990.

D.H. Wolpert. Stacked generalisation. Neural Networks, 5:241-259, 1992.

F.S. Woodiwiss. The biological system of stream classification used by
the Trent River Board. Chemistry and Industry, 11:443-447, 1964.

J.F. Wright, P.D. Armitage, and M.T. Furse. Prediction of invertebrate
communities using stream measurements. Regulated Rivers Research and
Management, 4:147-155, 1989.

J.I°. Wright, D. Moss, P.D. Armitage, and M.T. Furse. A preliminary
classification of running-water sites in Great Britain based on macroin-
vertebrate species and the prediction of community type using environ-
mental data. Freshwater Biology, 14:221-256, 1984.

[\l
[
SN



Appendix Al:

Planariidae
Planaria torva
Polycelis
Polycelis felina
Polycelis nigra
Polycelis tenuis
Dugesia
Dugesia lugubris
Dugesia polychroa
Dugesia ligrina
Dendrocoelidae
Dendrocoelum lacteum
Theodozus fluviatilis
Viviparus
Valvata
Hydrobiidae
Potamopyrgus jenkinsi
Bithynia
Physidae
Physa fontinalis
Lymnaeidae
Lymnaea auricularia
Lymnaea glabra
Lymnaea palusiris
Lymnaea peregra
Lymnaea stagnalis
Lymnaea truncatula
Planorbidae
Armiger crisla
Planorbarius corneus
Ancylidae
Ancylus fluviatiles
Acrolozus lacustris
Unionidae
Unio
Anodonta
Anodonta cygnea
Sphaeriidae
Sphaerium

Ot

Taxa Recorded in the Severn-Trent Databasef

Pisidium
OLIGOCHAETA
Lumbriculidae
Tubificidae
Lumbricidae
Piscicola geomelra
Glossiphoniidae
Theromyzon lessulalum
Hemiclepsis marginata
Glossiphonia complanata
Glossiphonia heteroclita
Helobdella stagnalis
Hirudinidae
Haemopis sanguisuga
Erpobdellidae
Erpobdella octoculata
Erpobdella testacea
Trochela
HYDRACARINA
CLADOCERA
OSTRACODA
CoPEPODA
Austropotamobius
Asellidae
Asellus aqualicus
Asellus meridianus
Corophium curvispinum
Crangonyz pseudogracilis
Gammarus
Gammarus pulex
Gammarus tigrinus
Baetidae
Baeltis rhodant
Centroplilum luleolum
Cloeon
Cloeon dipterum
Heptageniidae
Rhithrogena semicolorata
Heplagenia
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Ecdyonurus

Ecdyonurus venosus
Leptophlebiidae

Paraleptophlebia

Paraleptophlebia submarginata

Habrophlebia fusca
Ephemeridae

Ephemera danica

Ephemera vulgata
Ephemerellidae

Ephemerella ignita
Caenidae

Caenis

Caenis luctuosa

Caenis rivulorum
Taeniopterygidae

Taeniopieryz nebulosa

Brachyptera risi
Nemouridae

Protonemura

Protonemura meyeri

Amphinemura

Nemurella pictetr

Nemoura
Leuctridae

Leuctra geniculata
Capniidae
Perlodidae

Isoperla grammatica
Perlidae

Dinocras cephalotes
Chloroperlidae

Chloroperla torrentium

Platycnemais pennipes
Coenagriidae
Calopterygidae

Calopteryz splendens

Calopteryz virgo
Libellulidae
Mesovelidae
Hydrometridae
Veliidae
Gerridae

Nepu cinerea
Notonectidae

[\~

Corixidae
Haliplidae

Brychius elevalus

Haliplus

Hygrobia hermanni
Dytiscidae
Gyrinidae
Hydrophilidae

Hydraena
Scirtidae
Elmidae

[slmis aenea

Esolus parallelepipedus

Limnius volckmari

Oulimnius
Curculionidae
Sialidae

Sialis fuliginosa

Sialis lularia
Rhyacophilidae

Rhyacophila dorsalis

Glossosoma

Agapetus
Hydroptilidae

Hydroptila
Philopotamidae
Psychomyiidae

Tinodes

Tinodes waenert
Polycentropidae

Polycentropus flavomaculalus

Hydropsychidae

Hydropsyche angustipennis
Hydropsyche contubernalis

Hydropsyche instabilis

Hydropsyche pellucidula

Hydropsyche siltala
Phryganeidae

Phryganea grandis

Brachycentrus subnubilus
Lepidostomatidae

Lepidostoma hirtum
Limnephilidae

Drusus annulatus

Feclisopteryz guttulala
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Micropterna
Potamophylaz
Glyphotaelius pellucidus
Limnephilus
Limnephilus exiricalus
Limnephilus fuscicornis
Goeridae
Beraeidae
Beraeodes minutus
Sericostomatidae
Sericostoma personatum
Odontocerum albicorne
Molannidae
Leptoceridae
Athripsodes
Athripsodes commutalus
Leptocerus
Mystacides
Tipulidae
Pedicia rivosa
Dicranota
Psychodidae
Pericoma
Ptychopteridae
Dixidae
Chaoboridae
Culicidae
Ceratopogonidae
Simuliidae
Chironomidae
Chironomus riparius
Stratiomyidae
Atheriz ibis
Tabanidae
Empididae
Syrphidae
Limnophora riparia

+This list details all the taxa that were
identified in the Severn-Trent database
(Section 4.3). Note that it is not tax-
onomically rigorous.




Appendix A2:
Taxa Recorded in the National NRA Database

Acroloxidae
Bithyniidae
Ceratopogonidae
Crangonyctidae
Dugesiidae
Chaoboridae
Ecnomidae
Empididae
Enchytraeidae
Glossosomatidae
Hebridae
HYDRACARINA
Hydraenidae
OLIGOCHAETA
Chironomidae
Valvatidae
Hydrobiidae
Lymnaeidae
Physidae
Planorbidae
Sphaeriidae
Glossiphoniidae
Hirudinidae
Erpobdellidae
Asellidae
Baetidae
Sialidae
Piscicolidae
Mesoveliidae
Hydrometridae
Gerridae
Nepidae
Naucoridae
Notonectidae
Pleidae
Corixidae
Haliplidae
Hygrobiidae
Dytiscidae
Gyrinidae
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Hydrophilidae
Clambidae
Scirtidae
Dryopidae
Elmidae
Chrysomelidae
Curculionidae
Hydropsychidae
Tipulidae
Simuliidae
Planariidae
Dendrocoelidae
Neritidae
Viviparidae
Ancylidae
Hydroptilidae
Unionidae
Corophiidae
Gammaridae
Platycnemididae
Coenagriidae
Caenidae
Nemouridae
Rhyacophilidae
Polycentropidae
Limnephilidae
Astacidae
Lestidae
Calopterygidae
Gomphidae
Cordulegasteridae
Aeshnidae
Corduliidae
Libellulidae
Psychomyiidae
Philopotamidae
Lumbriculidae
Muscidae
Naididae
Noteridae
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OSTRACODA
Psychodidae
Ptychopteridae
Rhagionidae
Syrphidae
Stratiomyidae
Tubificidae
Tabanidae
Veliidae
Siphlonuridae
Heptageniidae
Leptophlebiidae
Ephemerellidae
Potamanthidae
Ephemeridae
Taeniopterygidae
Leuctridae
Capniidae
Perlodidae
Perlidae
Chloroperlidae
Aphelocheiridae
Phryganeidae
Molannidae
Beraeidae
Odontoceridae
Leptoceridae
Goeridae
Lepidostomatidae
Brachycentridae
Sericostomatidae
Lumbricidae
Daphniidae

LEPIDOPTERA
Thaumaleidae
Culicidae
Spongillidae
Dixidae
Sisyridae
Osmylidae
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Appendix A3:
Great Lakes Sediment Guidelines Project Species List

(GASTROPODA S. striatum

Bithyniidae S. unknown
Bithynia tentaculatax Musculim partinium
Hydrobiidae M. securisx
Amnicola limosa M. {ransversum
A. walkert Unionidae

Marslonia decepta
Probythinella lacuslris

Elliptio camplanata
Lampris radiata

Hydrobiidae immalures Dreissenidae
Lymnaeidae Dreissena polymorphax

Fossaria obrussia DiPTERA
Physidae Chironomidae

Physella integra Chironomusk

P. spp.x Cladopelmax
Planorbidae Clanotanytarsus

Armager crista

Gyraulus circumsirialus

G. deflectus

Helisoma anceps

Promenetus exacuous
Valvatidae

Valvata lewisi

V. piscinalisk

V. sincera

V. tricarinatax
Viviparidae

Campeloma decisum
Unknown spp.x

PELYCEPODA

Sphaeridae

Pisidium casertanums«
COMPTESSUTN,
ferrugineum
henslowanums
nitidums*
venlricosum

T IIITT

unknownx
Sphaerium nitidum
S. simile
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Cryptochironomusx
Cryptolendipes*
Dicrotendipesk
Demacryplochironomusk
IEndochironomus
Glypotendipesx
Harnischia
Mucropsectrax
Microtendipes+
Nilothauma
Pagastiella
Parachironomus
Paracladoplema
Paralauterborniella
Paratendipes
Polypediums«
Pseudochironomus
Stictochironomus#
Tanylarsus*
Tribelos
Stempellina
Zavreliella
Unknown Chironominae
Corynoneura
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Cricotopus
Epoicricotopus
Heterotrissocladius
Nanocladius
Parakiefferiella
Psectrocladiusx

Unknown orthocladinae

Ablabesmyia
Clinotanypus
Coelotanypusx
Larsia
Macropelopia
Procladiusx
Tanypus
Monodiamesia
Ceratopogonidae
Bezzia spp.
Ceratopogon spp.
Culicoides spp.
Mallochohelea spp.
Probezzia spp.
Serronmyia spp.
Chaoboridae
Chaoborus spp.*
Empididae
ISPHEMEROPTERA
Ephemeridae
Hezagenia limbata
Caenidae
Caenis spp.*
COLEMBOLA
TRICHOPTERA
Polycentropidae
Polycentropus spp.
Cernatina spp.
Phylocentropus spp.
Helicopsychidae
Helicopsyche spp.
Leptoceridae
Leptocerus americanus
Mystacides spp.
Nectopsyche spp.
Oecetis spp.
Setodes spp.
Molannidae
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Molanna spp.
Hydroptilidae
Agraylea spp.

POLYCHAETA

Sabellidae

Manayunkia speciosax

OLIGOCHARTA

Lumbriclidae
Leclipidrilus lacusiris
Lumbriculus variegatus
Stylodrilus herringlanuss
Enchytreidaex
Naididae
Arcteonais lomondix
Chaetogaster diaphanus
Nais barbata
N. elinguis
N. pseudobtusa
N. simplex
N. variabiliax
Piguetiella michiganensis
Pristina leidyi
Pristinella acuminata
Ophidonais serpentina
Specaria josinaex
Stylaria lacustrisx
Uncinais uncinala
Vejdovskyella intermediax
Tubificidae
Immatures with hair chaelaex
Immatures withoul hair chaetaex
Aulodrilus americana
A. limnobius
A. piguetix
A. plurisetar
Branchiura sowerbyi
Llyodrilus templetoni
Limnodrilus claparedianus
L. cerviz
L. hoffmeisterix
L. profundicola
Potamothriz bedoli
P. moldaviensis*
P. vejdovskyix
Quadradrilus mulliselosusx
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Spirosperma feroxx
Tasserkidrilus superiorensis
Tubifex tubifexs
HIRUDINEA
Glossiphoniidae
Alboglassiphonia heteroclita
Gloiobdella elongata
Helobdella stagnalis
Piscicolidae
Myzobdella lugubris
PLATYHELMINTHES*
Isoropa
Asellidae
Caecidotea communis
C. intermediusk
C. spp.*
AMPHIPODA
Gammaridae
Gammarus lacustris
Haustoriidae
Diporeia hoyix
Taliridae
Hyalella azteca
COELENTERATA
Hydridae
Hydra americanax
PORIFERA*
TARDIGRADA
Milnesiidae
Milnesium tardigradum

Taxon denoted by * were used in the
ordination of the community structure
(see Section 7.3.3).
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