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Abstract: We have proposed a novel robust inversion-based neurocontroller that searches
for the optimal control law by sampling from the estimated Gaussian distribution of
the inverse plant model. However, for problems involving the prediction of continuous
variables, a Gaussian model approximation provides only a very limited description of
the properties of the inverse model. This is usually the casefor problems in which
the mapping to be learned is multi-valued or involves hysteritic transfer characteristics.
This often arises in the solution of inverse plant models. Inorder to obtain a complete
description of the inverse model, a more general multicomponent distributions must be
modeled. In this paper we test whether our proposed samplingapproach can be used when
considering an arbitrary conditional probability distributions. These arbitrary distributions
will be modeled by a mixture density network. Importance sampling provides a structured
and principled approach to constrain the complexity of the search space for the ideal
control law. The effectiveness of the importance sampling from an arbitrary conditional
probability distribution will be demonstrated using a simple single input single output
static nonlinear system with hysteretic characteristics in the inverse plant model.
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1. INTRODUCTION

Standard inverse controllers based on a least square
approach lead to extremely poor performance when
applied to inverse problems in which the mapping
to be learned is multi-valued or involves hysteretic
transfer characteristics (Nabney, 2002). This is due
to the fact that when a least square approach is ap-
plied to an inverse problem, it will then approximate
the conditional average of the target data. However,
the average of several solutions is not necessarily a
correct solution. In (Nabney, 2002; Evans and Corn-
ford, 2000) a new class of network models obtained
by combining a conventional neural network with a
mixture density model, has been used to model the
conditional probability distribution for problems in
which the mapping to be learned is multi-valued.

Other computational approaches, namely forward and
inverse modelling, and feedback error learning have
been suggested in (Sutton and Werbos, 1990; White
and Sofge, 1992) for acquiring the inverse dynamics
model of multi-valued functions. However the out-
put from the above mentioned approaches has been
an estimation for the control value only. Although a
mixture density network models the conditional prob-
ability distribution, it uses only a single control value
when used as a controller in the control loop. This
value is the mean value of one of the kernel functions
corresponding to the most probable branch. Recently
growing interest in robust control by accounting for
model and system uncertainty has produced new re-
sults. For example, in (Ayala Bottoet al., 2000) a sys-
tematic procedure that accounts for the structured un-



certainty when a neural network model is integrated in
an approximate feedback linearisation control scheme
has been developed. A different way for accounting
for the uncertainty around the predicted output of the
inverse controller has been presented in (Herzallah
and Lowe, 2002b; Herzallah and Lowe, 2002a). The
controller is designed to predict both the control law
and the uncertainty around that control law, which
leads to the assumption that the inverse controller can
be approximated by a Gaussian function. A sampling
approach is used to search for a better value of the
control signal than the mean in this region where the
optimal solution is expected to lie. The stability for
the updating rule of the control law has been proved
in (Herzallah and Lowe, 2002a). However the Gaus-
sian assumption is not always possible, as for example
problems where the inverse mapping can be multi-
valued. This paper will go beyond the Gaussian de-
scription of the distribution of the inverse controller.
The main idea is to use the mixture density network to
model the multicomponent distributions of the inverse
model of the plant. The idea of the mixture density
network is not new (Nabney, 2002; Evans and Corn-
ford, 2000), but it has not been exploited in a con-
trol context before. The work presented here differs
from (Nabney, 2002) in that we consider the multi-
component distribution to search for the optimal con-
trol law, rather than taking a single estimate value cor-
responding to the most probable value. In (Herzallah
and Lowe, 2002b; Herzallah and Lowe, 2002a) only
the Gaussian distribution is considered. We extend
this work by considering more general distributions,
which create a general framework for searching for
the optimal control law from an arbitrary probability
distribution.

2. MIXTURE DENSITY NETWORK

In standard inverse control the challenge is to build
a neural network that will take past values of the
input, u and output,y of the plantx(t) = [y(t �1); ::::; y(t � n); u(t � d � 1); ::::; u(t � n)℄ and the
desired output valueyr(t) as an input, and outputs the
control signalsu(t � d) (assumingd relative degree,
andn is the known plant order), which will move the
plant output to the desired value. In this work the basic
goal is to model the statistical properties of the control
signals,u(t�d), expressed in terms of the conditional
distribution functionp(u(t � d)js(t)). Here s(t) =[x(t); yr(t)℄ is the input vector to the neural inverse
model. For dynamical systems it is reasonable to as-
sume that the output of the systemy(t) is functionf of
its inputu(t�d) and the delayed vectorx(t). Further-
more in the case of a one-to-one mapping, and only in
this case, the inverse of the function denoted byf�1
can be solved by minimisation of a sum of squares
error function. For multi-valued functions, Mixture
Density Networks (MDNs) (Nabney, 2002) provide a
general framework for modelling conditional proba-
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Fig. 1. The structure of a Mixture Density Network.

bility density functionsp(u(t�d)js(t)) for the inverse
mapping. The distribution of the outputs,u(t � d), is
described by a parametric model whose parameters
are determined by the output of a neural network,
which takess(t) as inputs. The general conditional
distribution function is given byp(u(t�d)js(t)) = MXj=1 �j(s(t))�j (u(t�d)js(t)) (1)

where�j(s(t)) represents the mixing coefficients, and
can be regarded as prior probabilities (which depend
ons(t)), �j(u(t� d)js(t)) are the kernel distributions
of the mixture model (whose parameters are also con-
ditioned ons(t)), andM is the number of kernels in
the mixture model. Various choices are available for
the kernel functions, but in this paper the choice will
be restricted to spherical Gaussians of the form�j(u(t� d)js(t)) = (2)1(2�)
=2�
j (s(t)) exp��k u(t� d)� �j(s(t)) k22�2j (s(t)) �
where
 is the dimensionality of the target datau(t �d), �j(s(t)) represents the centre of thejth kernel,
with components�jk. A spherical Gaussian assump-
tion can be relaxed in a very straightforward way, by
using full covariance matrices for each Gaussian ker-
nel. However this complication is not necessary, be-
cause in principle a Gaussian Mixture Model (GMM)
with sufficiently many kernels of the type given by
(2) can approximate any given density function ar-
bitrarily accurately providing that the mixing coeffi-
cients and the Gaussian parameters are correctly cho-
sen (Nabney, 2002). It follows then that for any given
value ofs(t), the mixture model (1) provides a gen-
eral formalism for modelling the conditional density
functionp(u(t � d)js(t)). To achieve this the param-
eters of the mixture model, namely the mixing coeffi-
cients�j(s(t)), the means�j(s(t)) and the variance�2j (s(t)) are taken to be general continuous functions
of s(t). These functions are modelled by the outputs
of a feed-forward neural network that takess(t) as
input. This combination of a GMM whose parame-
ters dependent on the output of a feed forward neural
network that takess(t) as an input is refered to as an
MDN and is represented schematically in figure 1. The
neural network element of the (MDN) is implemented



with a standard radial basis function network (RBF )
of thin plate spline basis functions. The output vector
from theRBF , Z, holds the parameters that define
the Gaussian mixture model. ForM components in
the mixture model (1) the network will have(
+2)�M outputs, namelyM outputs denoted byz�j which
determines the mixing coefficients�j , M outputs de-
noted byz�j which determine the kernel width�j ,
andM � 
 outputs denoted byz�jk which determine
the components�jk of the kernel centres�j . This is
compared with the usual
 outputs for aRBF network
used with a sum-of squares error function. The outputs
of theMDN undergo some transformations to satisfy
the constraints of the mixture model. The constraints
are such thatMXj=1 �j(s(t)) = 1; 0 � �j(s(t)) � 1 (3)

The first constraint ensures that the distribution is
correctly normalised, so that

R p(u(t�d)js(t))du(t�d) = 1. These constraints can be satisfied by choosing�j(s(t)) to be related to the network’s outputs by a
’softmax’ function�j(s(t)) = exp(z�j )PMl=1 exp(z�l ) (4)

The variances of the kernel represent scale parameters
and always take positive values, so it is convenient
to represent them in terms of the exponentials of the
corresponding outputs of theRBF network,z�j�2j = exp(z�j ) (5)

The centres�j of the Gaussians represent a location
in the target space and can take any value within
that space. Therefore they are taken directly from the
corresponding outputs of theRBF network,z�jk�jk = z�jk (6)

In order to optimise the parameters in aMDN , an
error function is required that provides an indication of
how well the model represents the underlying gener-
ating function of the training data. The error function
of the mixture density network is motivated from the
principle of maximum likelihood (Nabney, 2002). The
likelihood of the training data set,fs(t); u(t� d)g,
can be written asL=Yn p(un(t� d)jsn(t))p(sn(t)) (7)

where here the assumption has been made that each
data point has been drawn independently from the
same distribution, and so the likelihood is a product
of probabilities. Generally one wishes to maximise the
likelihood function, which is equivalent to minimising
the negative logarithm of the likelihood function. The
negative log likelihood can be regarded as an error
function,E

E =�Xn ln p(un(t� d)jsn(t)) �Xn p(sn(t)) (8)��Xn ln� MXj=1 �j(sn(t))�j(un(t� d)jsn(t))�
where we have dropped the last (constant) term and
used (1). In order to minimise the error function, the
derivatives of the errorE with respect to the weights
in the neural networks must be calculated. Providing
that the derivatives can be computed with respect to
the outputs of the network, the errors at the network
inputs may be calculated using the back-propagation
procedure (Nabney, 2002). By first defining the poste-
rior probability of thejth kernel, using Bayes theorem�j(s(t); u(t� d)) = �j�jPMl=1 �l�l (9)

the analysis of the error derivatives with respect to the
network outputs is simplified. The computation of the
error can further be simplified by considering the error
derivative with respect to each training pattern,n. The
total error,E, is defined as a summation of the error,En, for each training pattern.E =PNn=1En, whereEn = � ln� MXj=1 �j(sn(t))�j(un(t� d)jsn(t))�

(10)
Each of the derivatives ofEn are considered with
respect to the outputs of the networks and their respec-
tive labels for the mixing coefficients,z�j , variance
parameters,z�j and centres or position parametersz�jk.
The derivatives are as follows.�En�z�j = �j � �j (11)�En�z�j =��j2 �k un(t� d)� �j k2�2j � 
� (12)�En�z�jk = �j��jk � uk(t� d)�2j �

(13)

For full derivation see (Nabney, 2002). Once the net-
work has been trained it can predict the conditional
density function of the target data for any given value
of the input vector. This conditional density represents
a complete description of the generator of the data.
More specific quantities can be calculated from this
density function which may be of interest in different
applications. An example of these quantities is the
mean, corresponding to the conditional average of the
target data. This corresponds to the mean computed by
a standard network trained by least squares. However,
in control applications where unique solutions cannot
be found, and where the distribution of the target data
will consist of different numbers of distinct branches,
this is a not valid solution. In such cases one may
be interested in finding an output value correspond-
ing to the most probable branch. Since each compo-
nent of the mixture model is normalised,

R �j(u(t �d)js(t))du(t � d) = 1, the most probable branch is



given by arg maxj f�j(s(t))g The required value ofu(t� d) is then given by the corresponding centre�j .
3. INCORPORATING UNCERTAINTY FOR THE

MIXTURE DENSITY NETWORK

Since the proposed sampling algorithm for the Gaus-
sian function has been covered in (Herzallah and
Lowe, 2002b; Herzallah and Lowe, 2002a), we sum-
marise here the main steps to apply the same algorithm
considering sampling from a more general distribu-
tion. The architecture of this algorithm is shown in
figure 2.

(1) An accurate model of the process needs to be
constructed based on the pre-collected input-
output data, and to be trained off line. In the
general case, it is assumed to be described by the
following neural network model:ŷ(t) = Nf (x(t); u(t� d)) (14)

(2) The conditional distribution of the inverse model
of the plant should also be constructed. It is
assumed to be described by a mixture density
network given by equation (1).

(3) For the non-sampling case, in the mixture den-
sity network the value of the control signal is
assumed to be given by the centre�j of the
most probable branch, where the most probable
branch is given byarg maxj f�j(s(t))g (15)

(4) for the sampling approach the following steps
need to be carried out at each instant of time,t:
(a) The desired output is calculated from the

reference model output, which should be
chosen to have the same relative degree as
that of the plant.

(b) Calculate the components�jk of the kernel
centres�j , and the kernel width�j of each
kernel function, based on the desired output
value.

(c) The admissible values of the control signal
for the mixture density network, are then as-
sumed to be sampled from a mixture density
network. Since we are using Gaussian ker-
nel functions the samples can be generated
from each kernel function randomly using
the retrieved components�jk of the kernel
centres�j , and the kernel width�j of each
kernel function. The number of samples
from each component is determined ran-
domly with more samples generated from
the component with larger prior.

(d) Based on the effect of each sample on the
output of the model, the most likely con-
trol value is taken, which is assumed to be
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Fig. 2. The architecture of the proposed optimisation
method.

the value that minimises the following cost
function.J(t) = Minu2U E�v [(ŷ(t)� yr(t))2℄ (16)

whereU is a vector containing the sampled
values from the control signal distribution,E is the expected value of the cost function
over the random noise variable�v. Because
we are using a neural network to model
the system, and because the neural network
predicts the mean value for the output of the
model averaged over the noise on the data,
the above function can be optimised directly.

For details of the stability analysis see (Herzallah and
Lowe, 2002a).

4. SIMULATION STUDY

4.1 Introduction

For inverse problems, the mapping can often be multi-
valued and a unique solution cannot be found. If
the Gaussian distribution approximates the inverse
model, it will approximate the conditional average
of the target data, and this will frequently lead to
extremely poor performance. Here we will overcome
this problem by appropriate use of a Mixture Density
Network instead. In order to illustrate the application
of the MDN with the proposed control approach
we consider a simple example of single input single
output given by the following equationy = u+ 0:3 sin(2�u) + � (17)

where� is a random variable with uniform distribution
in the interval(�0:1; 0:1), y is the output variable,
and u is the input variable. This example has been
used in (Nabney, 2002; Evans and Cornford, 2000) to
demonstrate the use of the Mixture Density Network.
This equation represents a static system, since no de-
lay exists between the input and the output variable.
The plant has been considered to be given by equation
(17). In order to identify the plant, an input-output
model described bŷy = f(u) was chosen, wheref
is a thin plate spline radial basis function network.
Figure 3 shows a data set of300 points generated by
sampling equation (17). Also shown is the mapping
represented by a thin plate spline radial basis function
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Fig. 3. The forward model of the functiony =u + 0:3 sin(2�u) + �. The circles represent the
samples generated from that function. The solid
curve shows the result of training a thin plate
spline radial basis function with5 basis functions
using a sum of square error function.

network after training using this data. The optimal
structure for the neural network found by applying
the cross validation method consisted of5 thin plate
spline basis functions. It was trained using the scaled
conjugate gradient method. It can be seen that the net-
work which is approximating the conditional average
of the target data, gives an excellent representation of
the underlying generator of the data.

4.2 Standard Inverse Control

We consider acquiring the inverse mapping of the
same problem and using the same training data as in
the forward model by training a thin plate spline radial
basis function network using least squares. Similarly
an input-output model described byû = f�1(y) was
chosen to find the inverse model of the plant. The
network tries to approximate the conditional average
of the target data, but this corresponds to a very
poor representation of the process as can be seen
from figure 4. The network in this case had15 thin
plate spline basis functions and was trained using the
scaled conjugate gradient optimisation method. This
network has been connected in series with the plant to
generate the control signal required to cause the plant
to follow the desired output. The desired output has
been considered to be given byyr = r+0:3 sin(2�r),
where the inputr has been chosen in such a way to
generate data that have not been used in the training
stage. The result is shown in figure 5, where it can
be seen that there is a large error between the desired
output and the plant output.

4.3 Mixture Density Network

In this section we apply anMDN to the same inverse
problem, using the same data set as before. The appro-
priate number of kernel functions and the complexity
of the neural network has been decided by applying
the cross validation method. It was found that the
best structure for theMDN consists of7 thin plate
spline basis functions with9 outputs corresponding to
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Fig. 4. The inverse model of the functiony = u +0:3 sin(2�u) + �. The circles represent the same
data as in 3. The solid curve shows the result of
training a thin plate spline radial basis function
with 15 basis functions using a sum of square
error function.
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Fig. 5. The control result from using the classical
inverse controller.3 kernel functions . TheMDN was trained using the

scaled conjugate gradient optimisation method. Once
trained theMDN predicts the conditional probability
density of the target data (regarded as the input to
the plantu in the inverse model) for each value of
the input to the network (regarded as the output to
the planty in the inverse model). Having obtained a
good representation for the conditional density of the
target data, we can in principle calculate any desired
statistics from that distribution. In our control prob-
lem, since the conditional mean of the target data is
a very poor result, we are interested in the evaluation
of the centre of the most probable kernel according to
equation (15), which gives the result shown in figure
6. Again this network has been connected in series
with the plant to generate the control signal required
to cause the plant to follow the same desired output
as before. The result is shown in figure 7, where it
can be seen that using the most probable value of the
kernel functions has improved the performance of the
controller significantly.

4.4 Proposed Control Approach

The final experiment that we have performed, is to
sample from the control signal distribution (from the
mixture density distribution). In the new proposed
control approach the best control signal was found and
forwarded to the plant, following the procedure pre-
sented earlier. Again the control signal was obtained
from a small number of samples, typically20 samples
in this case. The overall performance of the plant un-
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Fig. 6. Plot of the central value of the most probable
kernel as a function ofy from the Mixture Den-
sity Network.
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Fig. 7. The control result from using most probable
value of the Mixture Density Network as a con-
trol law.
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Fig. 8. The control result from applying the proposed
sampling approach from the mixture density net-
work.

der the proposed control approach is shown in figure 8.
It can be seen from this figure that the proposed sam-
pling approach performs even better than finding the
most probable centre value of the kernel function. The
error from the absolute difference between the plant
output and the desired output of the most probable
value of the kernel function in the mixture density net-
work, and the proposed sampling approach is shown in
figure 9. From this figure one can see that the sampling
approach has reduced the error significantly.

5. CONCLUSIONS

General inverse control can be considered to be a good
control strategy if the model of the plant happens to be
invertible and accurate. The main contribution of this
paper is that it extends the importance sampling ap-
proach from a Gaussian function by considering sam-
pling from an arbitrary probability distribution func-
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tion. Simulation experiments demonstrated the suc-
cessful application of the importance sampling strat-
egy from an arbitrary probability function to improve
the controller performance for a class of nonlinear
single input single output static systems in which the
inverse mapping is multi-valued. The example given
in this paper demonstrates a whole class of density-
estimating neural networks (the Mixture Density Net-
work) and also points out a fruitful direction for con-
trol research: that of sampling control signals from
estimated distribution functions which can incorpo-
rate even more information on the full distribution
such as higher order moments beyond just the first
two, representing the control law and the uncertainty
around the control law. This more general approach is
not constrained by assumptions of invertibility and it
shows the ability to deal with multi-valued processes
as well.
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