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Abstract: We have proposed a novel robust inversion-basecboontroller that searches
for the optimal control law by sampling from the estimatedu&san distribution of
the inverse plant model. However, for problems involving tirediction of continuous
variables, a Gaussian model approximation provides onlgrg kmited description of
the properties of the inverse model. This is usually the dasgroblems in which
the mapping to be learned is multi-valued or involves hytteiransfer characteristics.
This often arises in the solution of inverse plant modelsorider to obtain a complete
description of the inverse model, a more general multicamepo distributions must be
modeled. In this paper we test whether our proposed samglipgpach can be used when
considering an arbitrary conditional probability distrilons. These arbitrary distributions
will be modeled by a mixture density network. Importance ghing provides a structured
and principled approach to constrain the complexity of tharsh space for the ideal
control law. The effectiveness of the importance sampliognfan arbitrary conditional
probability distribution will be demonstrated using a slmpingle input single output
static nonlinear system with hysteretic characteristiagé inverse plant model.
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1. INTRODUCTION Other computational approaches, namely forward and
inverse modelling, and feedback error learning have

Standard inverse controllers based on a least squar@een suggested in (Sutton and Werbos, 1990; White
approach lead to extremely poor performance whenand Sofge, 1992) for acquiring the inverse dynamics
applied to inverse problems in which the mapping model of multi-valued functions. However the out-
to be learned is multi-valued or involves hysteretic put from the above mentioned approaches has been
transfer characteristics (Nabney, 2002). This is due an estimation for the control value only. Although a
to the fact that when a least square approach is ap-mixture density network models the conditional prob-
plied to an inverse problem, it will then approximate ability distribution, it uses only a single control value
the conditional average of the target data. However,when used as a controller in the control loop. This
the average of several solutions is not necessarily avalue is the mean value of one of the kernel functions
correct solution. In (Nabney, 2002; Evans and Corn- corresponding to the most probable branch. Recently
ford, 2000) a new class of network models obtained growing interest in robust control by accounting for
by combining a conventional neural network with a model and system uncertainty has produced new re-
mixture density model, has been used to model thesults. For example, in (Ayala Bottt al, 2000) a sys-
conditional probability distribution for problems in tematic procedure that accounts for the structured un-
which the mapping to be learned is multi-valued.



certainty when a neural network model is integrated in
an approximate feedback linearisation control scheme
has been developed. A different way for accounting
for the uncertainty around the predicted output of the ¢
inverse controller has been presented in (Herzallaky:
and Lowe, 2008; Herzallah and Lowe, 20@2. The
controller is designed to predict both the control law
and the uncertainty around that control law, which
leads to the assumption that the inverse controller can
be approximated by a Gaussian function. A sampling
approach is used to search for a better value of the
control signal than the mean in this region where the
optimal solution is expected to lie. The stability for bility density functiong(u(t—d)|s(t)) for the inverse

the updating rule of the control law has been proved mapping. The distribution of the outputs(t — d), is

in (Herzallah and Lowe, 20@3. However the Gaus-  described by a parametric model whose parameters
sian assumption is not always possible, as for exampleare determined by the output of a neural network,
problems where the inverse mapping can be multi- which takess(t) as inputs. The general conditional
valued. This paper will go beyond the Gaussian de- distribution function is given by

scription of the distribution of the inverse controller. o

The main idea is to use the mixture density network to _ _ ) ) _

model the multicomponent distributions of the inverse (u(t=d)ls()) = ;a](s(t»% (u(t=d)ls()) (1)
model of the plant. The idea of the mixture density o o

network is not new (Nabney, 2002; Evans and Corn- Wherea;(s(#)) represents the mixing coefficients, and
ford, 2000), but it has not been exploited in a con- ¢an be regarded as prior probabilities (vyhu_:h dgpend
trol context before. The work presented here differs ONs(%)), ¢, (u(t — d)|s(t)) are the kernel distributions
from (Nabney, 2002) in that we consider the multi- of Fhe mixture model (whose parameters are also con-
component distribution to search for the optimal con- ditioned ons(t)), and M is the number of kernels in
trol law, rather than taking a single estimate value cor- the mixture model. Various choices are available for
responding to the most probable value. In (Herzallah the kernel functions, but in this paper the choice will
and Lowe, 2008; Herzallah and Lowe, 20G#} only be restricted to spherical Gaussians of the form

the Gaussian distribution is considered. We extend

— P(uct-d)is(t)

Fig. 1. The structure of a Mixture Density Network.

this work by considering more general distributions, ¢; (u(t — d)|s(t)) = 2)
which create a general framework for searching for 1 | u(t —d) — p;(s(t)) |2
the optimal control law from an arbitrary probability =<7 =57 €XP <— 2 )
distribution. (2m)2o5(s(t) 205 (s(2))

wherec is the dimensionality of the target dai& —
d), uj(s(t)) represents the centre of theh kernel,
2. MIXTURE DENSITY NETWORK with componentg;;. A spherical Gaussian assump-

tion can be relaxed in a very straightforward way, by
In standard inverse control the challenge is to build using full covariance matrices for each Gaussian ker-
a neural network that will take past values of the nel. However this complication is not necessary, be-
input, v and outputy of the plantz(t) = [y(t — cause in principle a Gaussian Mixture Model (GMM)
1), .yt —n),u(t —d —1),...,u(t —n)] and the  with sufficiently many kernels of the type given by
desired output valug.(¢) as an input, and outputs the (2) can approximate any given density function ar-
control signalsu(t — d) (assumingl relative degree,  bitrarily accurately providing that the mixing coeffi-
andn is the known plant order), which will move the cients and the Gaussian parameters are correctly cho-
plant output to the desired value. In this work the basic sen (Nabney, 2002). It follows then that for any given
goal is to model the statistical properties of the control value ofs(¢), the mixture model (1) provides a gen-
signalsu(t — d), expressed in terms of the conditional eral formalism for modelling the conditional density
distribution functionp(u(t — d)|s(t)). Heres(t) = functionp(u(t — d)|s(t)). To achieve this the param-
[2(t),yr(t)] is the input vector to the neural inverse eters of the mixture model, namely the mixing coeffi-
model. For dynamical systems it is reasonable to as-cientsa;(s(t)), the meang:;(s(t)) and the variance
sume that the output of the systeft) is functionf of o3(s(t)) are taken to be general continuous functions
its inputu(t — d) and the delayed vectaxt). Further-  of s(¢). These functions are modelled by the outputs
more in the case of a one-to-one mapping, and only inof a feed-forward neural network that takeg@) as
this case, the inverse of the function denotedfby input. This combination of a GMM whose parame-
can be solved by minimisation of a sum of squares ters dependent on the output of a feed forward neural
error function. For multi-valued functions, Mixture network that takes(¢) as an input is refered to as an
Density Networks (MDNs) (Nabney, 2002) provide a MDN and is represented schematically in figure 1. The
general framework for modelling conditional proba- neural network element of the (MDN) is implemented



with a standard radial basis function netwofkR F’) _ _ _

of thin plate spline basis functions. The output vector E ;mp(un(t 4)Jen () ;p(sn(t)) ®)
from the RBF', Z, holds the parameters that define M

the Gaussian mixture model. F@f components in ~— 1n{ i (5o () s (wn (t — d)lson (¢ }
the mixture model (1) the network will haye + 2) x ; ; 3 (5n(£))5(un Van(0)
M outputs, namely}/ outputs denoted by* which
determines the mixing coefficients;, M outputs de-
noted byz? which determine the kernel width;,
and M x ¢ outputs denoted byfk which determine
the componentg;; of the kernel centreg;. This is
compared with the usualoutputs for aR B F' network
used with a sum-of squares error function. The outputs
of the M D N undergo some transformations to satisfy
the constraints of the mixture model. The constraints
are such that

where we have dropped the last (constant) term and
used (1). In order to minimise the error function, the
derivatives of the errof with respect to the weights

in the neural networks must be calculated. Providing
that the derivatives can be computed with respect to
the outputs of the network, the errors at the network
inputs may be calculated using the back-propagation
procedure (Nabney, 2002). By first defining the poste-
rior probability of thejth kernel, using Bayes theorem

@;jd;
M mi(s(t),u(t —d)) = 9
daj(s(t) =1, 0<ai(s(t) <1 (3) (0 utt =) YL, udy ©

the analysis of the error derivatives with respect to the
The first constraint ensures that the distribution is N€tWork outputs is simplified. The computation of the
correctly normalised, so thatp(u(t — d)|s(t)) du(t — error can further be simplified by considering the error
d) = 1. These constraints can be satisfied by choosingderivative with respect to each training patternThe

a;(s(t)) to be related to the network’s outputs by a total error,E, is _d(_afined as a summ]\?tion of the error,
'softmax’ function E,,, for each training pattert? = ", E", where

exp(zjc-’)
T M
>i=1 exp(zf)
The variances of the k_e_rnel represent §cgle parameters. . .. ¢ the derivatives ofs"
and always take positive values, so it is convenient

to represent them in terms of the exponentials of the
corresponding outputs of thieB F' network,z7

M
a5 (5(1) @ B = a6t~ Dlsal0)}

(10)
are considered with
respect to the outputs of the networks and their respec-
tive labels for the mixing coefficients$, variance
parameters;7 and centres or position parametej‘,g,.

o2 = exp(z7) (5) The derivatives are as follows.
J J

The centreg; of the Gaussians represent a location OE" — s — s (11)

in the target space and can take any value within 9z 7

that space. Therefore they are taken directly from the OF™ 7 (| un(t = d) — a5 ||

corresponding outputs of theBF' network,z*, 5.7 = —7]{ —— — C} (12)
2] o5

ik = 2}, 6 E" h—ug(t —d
Kk Z]k ( ) gz,u =m; { Hjk Zg( ) } (13)

Jk J

In order to optimise the parameters inMAD N, an
error function is required that provides an indication of For full derivation see (Nabney, 2002). Once the net-
how well the model represents the underlying gener-work has been trained it can predict the conditional
ating function of the training data. The error function density function of the target data for any given value
of the mixture density network is motivated from the of the input vector. This conditional density represents
principle of maximum likelihood (Nabney, 2002). The a complete description of the generator of the data.
likelihood of the training data sefs(t), u(t — d)}, More specific quantities can be calculated from this
can be written as density function which may be of interest in different
applications. An example of these quantities is the
_ mean, corresponding to the conditional average of the
L= l;lp(u"(t D)lsn(#)p(sn(t) (7) target data. This corresponds to the mean computed by
a standard network trained by least squares. However,
where here the assumption has been made that eacim control applications where unique solutions cannot
data point has been drawn independently from the be found, and where the distribution of the target data
same distribution, and so the likelihood is a product will consist of different numbers of distinct branches,
of probabilities. Generally one wishes to maximise the this is a not valid solution. In such cases one may
likelihood function, which is equivalent to minimising be interested in finding an output value correspond-
the negative logarithm of the likelihood function. The ing to the most probable branch. Since each compo-
negative log likelihood can be regarded as an errornent of the mixture model is normaliseflp; (u(t —
function,E d)|s(t))du(t — d) = 1, the most probable branch is



given by arg max{a;(s(t))} The required value of
J

u(t — d) is then given by the corresponding cenjre

J:rnm(y'yrerf

3. INCORPORATING UNCERTAINTY FOR THE
MIXTURE DENSITY NETWORK

Since the proposed sampling algorithm for the Gaus-
sian function has been covered in (Herzallah and Fig. 2. The architecture of the proposed optimisation

Lowe, 200d; Herzallah and Lowe, 20@2, we sum- method.

marise here the main steps to apply the same algorithm the value that minimises the following cost

considering sampling from a more general distribu- function.

tion. The architecture of this algorithm is shown in ‘

figure 2. ’ J) = MipB{G(1) ~ 3, (1)) (16)

(1) An accurate model of the process needs to be whereU is a vector containing the sampled
constructed based on the pre-collected input- values from the control signal distribution,
output data, and to be trained off line. In the E is the expected value of the cost function
general case, it is assumed to be described by the over the random noise variable Because
following neural network model: we are using a neural network to model

the system, and because the neural network
g(t) = Ny(2(t),u(t —d)) (14) predicts the mean value for the output of the

model averaged over the noise on the data,

(2) The conditional distribution of the inverse model the above function can be optimised directly.

of the plant should also be constructed. It is
assumed to be described by a mixture density For details of the stability analysis see (Herzallah and
network given by equation (1). Lowe, 2002).

(3) For the non-sampling case, in the mixture den-
sity network the value of the control signal is

assumed to be given by the cenfg of the 4. SIMULATION STUDY
most probable branch, where the most probable _
branch is given by 4.1 Introduction
arg m?X{aj(S(t))} (15)  Forinverse problems, the mapping can often be multi-

valued and a unique solution cannot be found. If
(4) for the sampling approach the following steps the Gaussian distribution approximates the inverse
need to be carried out at each instant of time,  model, it will approximate the conditional average

(@) The desired output is calculated from the of the target data, and this will frequently lead to
reference model output, which should be extremely poor performance. Here we will overcome
chosen to have the same relative degree asthis problem by appropriate use of a Mixture Density

that of the plant. Network instead. In order to illustrate the application

(b) Calculate the componenys;. of the kernel  of the M DN with the proposed control approach

centresu;, and the kernel widtlr; of each  we consider a simple example of single input single
kernel function, based on the desired output output given by the following equation

value.

(c) The admissible values of the control signal
for the mixture density network, are then as- wheree is a random variable with uniform distribution
sumed to be sampled from a mixture density in the interval(—0.1,0.1), y is the output variable,
network. Since we are using Gaussian ker- andu is the input variable. This example has been
nel functions the samples can be generatedused in (Nabney, 2002; Evans and Cornford, 2000) to
from each kernel function randomly using demonstrate the use of the Mixture Density Network.
the retrieved componenis;;, of the kernel ~ This equation represents a static system, since no de-
centresu;, and the kernel widtly; of each  lay exists between the input and the output variable.
kernel function. The number of samples The plant has been considered to be given by equation
from each component is determined ran- (17). In order to identify the plant, an input-output
domly with more samples generated from model described by = f(u) was chosen, wherg¢
the component with larger prior. is a thin plate spline radial basis function network.

(d) Based on the effect of each sample on the Figure 3 shows a data set 800 points generated by
output of the model, the most likely con- sampling equation (17). Also shown is the mapping
trol value is taken, which is assumed to be represented by a thin plate spline radial basis function

y =u+ 0.3sin(27u) + € (17)
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Fig. 3. The forward model of the functiop = Fig. 4. The inverse model of the function= u +
u + 0.3sin(27u) + €. The circles represent the 0.3sin(27u) + €. The circles represent the same
samples generated from that function. The solid data as in 3. The solid curve shows the result of
curve shows the result of training a thin plate training a thin plate spline radial basis function
spline radial basis function withbasis functions with 15 basis functions using a sum of square
using a sum of square error function. error function.

1.4

network after training using this data. The optimal
structure for the neural network found by applying
the cross validation method consistedsathin plate

spline basis functions. It was trained using the scaled ol .
conjugate gradient method. It can be seen that the net- oaf f T
work which is approximating the conditional average ozt 4
of the target data, gives an excellent representation of o}
the underlying generator of the data. 02 %5 35 S5 %5 T 120
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Fig. 5. The control result from using the classical

4.2 Standard Inverse Control inverse controller.

3 kernel functions . Thé/ DN was trained using the
We consider acquiring the inverse mapping of the scaled conjugate gradient optimisation method. Once
same problem and using the same training data as intrained thel/ DN predicts the conditional probability
the forward model by training a thin plate spline radial density of the target data (regarded as the input to
basis function network using least squares. Similarly the plantu in the inverse model) for each value of
an input-output model described by= f~!(y) was the input to the network (regarded as the output to
chosen to find the inverse model of the plant. The the planty in the inverse model). Having obtained a
network tries to approximate the conditional average good representation for the conditional density of the
of the target data, but this corresponds to a very target data, we can in principle calculate any desired
poor representation of the process as can be seestatistics from that distribution. In our control prob-
from figure 4. The network in this case had thin lem, since the conditional mean of the target data is
plate spline basis functions and was trained using thea very poor result, we are interested in the evaluation
scaled conjugate gradient optimisation method. This of the centre of the most probable kernel according to
network has been connected in series with the plant toequation (15), which gives the result shown in figure
generate the control signal required to cause the plant. Again this network has been connected in series
to follow the desired output. The desired output has with the plant to generate the control signal required
been considered to be giveny= r + 0.3 sin(27r), to cause the plant to follow the same desired output
where the input has been chosen in such a way to as before. The result is shown in figure 7, where it
generate data that have not been used in the trainingcan be seen that using the most probable value of the
stage. The result is shown in figure 5, where it can kernel functions has improved the performance of the
be seen that there is a large error between the desiredontroller significantly.
output and the plant output.

4.4 Proposed Control Approach
4.3 Mixture Density Network

The final experiment that we have performed, is to
In this section we apply ah/ DN to the same inverse sample from the control signal distribution (from the
problem, using the same data set as before. The appromixture density distribution). In the new proposed
priate number of kernel functions and the complexity control approach the best control signal was found and
of the neural network has been decided by applying forwarded to the plant, following the procedure pre-
the cross validation method. It was found that the sented earlier. Again the control signal was obtained
best structure for thédZ/ DN consists of7 thin plate from a small number of samples, typically samples
spline basis functions with outputs correspondingto  in this case. The overall performance of the plant un-
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kernel as a function of from the Mixture Den-
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tion. Simulation experiments demonstrated the suc-
cessful application of the importance sampling strat-
egy from an arbitrary probability function to improve
the controller performance for a class of nonlinear
single input single output static systems in which the
inverse mapping is multi-valued. The example given
in this paper demonstrates a whole class of density-
estimating neural networks (the Mixture Density Net-
work) and also points out a fruitful direction for con-

. -

0.2 == Reference ouper] trol research: that of sampling control signals from
U estimated distribution functions which can incorpo-
° 20 e Time = oo 20 rate even more information on the full distribution

such as higher order moments beyond just the first
Fig. 7. The control result from using most probable o, representing the control law and the uncertainty
value of the Mixture Density Network as a con-  around the control law. This more general approach is
trol law. not constrained by assumptions of invertibility and it
shows the ability to deal with multi-valued processes
as well.
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