
GTM-based Data Visualisation with InompleteDataYi Sun, Peter Ti�no, and Ian NabneyNeural Computing Researh Group, Aston University,Aston Triangle, Birmingham B4 7ETUnited Kingdomfsuny,tinop,nabneyitg�aston.a.ukhttp://www.nrg.aston.a.uk/Abstrat. We analyse how the Generative Topographi Mapping (GTM)an be modi�ed to ope with missing values in the training data. Ourapproah is based on an Expetation-Maximisation (EM) method whihestimates the parameters of the mixture omponents and at the sametime deals with the missing values. We inorporate this algorithm into ahierarhial GTM. We verify the method on a toy data set (using a singleGTM) and a realisti data set (using a hierarhial GTM). The resultsshow our algorithm an help to onstrut informative visualisation plots,even when some of the training points are orrupted with missing values.1 IntrodutionData visualisation, whih plays a key role in developing good models for largequantities of data, is an important aid in dimension redution, gives informationabout loal deviations in performane and provides a useful hek for objetivequantitative measures. However, in many appliations the input data is inom-plete. Therefore it is important to know how to use the available data and howto reonstrut the missing values. For example, in the pharmaeutial �eld, si-entists use omputer modelling to examine and analyse the moleular strutureof ompounds and high throughput sreening to assess their interation withbiologial targets. Many ompounds are not sreened against a omplete set oftargets, yet we do not want to exlude all suh ompounds from data analysissine that risks missing potential drugs.The hierarhial generative topographi mapping (GTM) model is an intera-tive data visualisation tehnique, whih enables the user to onstrut arbitrarilydetailed projetion plots. The basi building blok is the GTM [1℄ . The problemonsidered here is to train the GTM model with inomplete data and reonstrutthe missing values. This way the data, inluding the missing omponents, anbe shown in a visualisation plot that is as \faithful" as possible. For hierarhi-al GTM, the inomplete data an be displayed at all levels of the hierarhy ofvisualisation plots.Our algorithm an be desribed briey as follows. A joint density model ofthe data is learned in an unsupervised way from the inomplete training data



2 Yi Sun et al.set by using an EM algorithm. For visualisation purposes, the missing data is�lled in by omputing the posterior mean. In [2℄, the GTM was trained onlywith omplete data, and an additional ondition was added to reonstrut themissing data. In ontrast, our algorithm is more generi.Sine our algorithm is based on Gaussian mixture models (GMM) and theEM algorithm, in setion 2 we briey introdue the EM algorithm for GMMs.The GTM with inomplete data algorithm is detailed in setion 3. Setion 4gives a basi introdution to hierarhial GTM. We illustrate the algorithm insetion 5 with a toy data and a high dimensional data set from ow diagnostisof an oil pipeline. Setion 6 disusses the result.2 The EM Algorithm for Gaussian Mixture ModelsThe EM algorithm is espeially relevant sine it is a general method for param-eter estimation in mixture models that is based on the idea of �lling in missingdata. This setion introdues briey the algorithm for �nding the maximumlikelihood parameters of a Gaussian mixture model [3℄.We onsider a mixture densityP (tn) = KXj=1 P (tnjj; �j)P (j); (1)whih is generating the (i.i.d.) data T = ftngNn=1. In this ase eah omponent ofthe mixture is denoted by j and parametrised by �j , and P (j) is the prior prob-ability for the mixture omponent j. Then the log likelihood of the parametersgiven the data set is L(�) = NXn=1 log KXj=1 P (tnjj; �j)P (j): (2)The binary indiator variables znj are introdued to speify whih omponentof the mixture generated the data point. znj = 1 if and only if tn is generatedby omponent j, otherwise znj = 0. Then equation (2) an be re-written as theomplete data log likelihood funtion:L(�) = NXn=1 KXj=1 znj log[P (tnjznj ; �)P (znj ; �)℄: (3)Sine znj is not known, the expetation E[znj jtn; �j ℄ of znj given the urrentparameter values �j is omputed. This is the probability that the Gaussian jgenerated the data point tn and is denoted by rnj . This is the E-step of the EMalgorithm:rnj = j�j j�1=2expf� 12 (tn � �j)T��1j (tn � �j)gP (j)PKk=1 j�kj�1=2expf� 12 (tn � �k)T��1k (tn � �k)gP (k) : (4)



GTM-based Data Visualisation with Inomplete Data 3The means �j and ovariane matries �j of the jth omponent Gaussian areupdated in the M-step using the data set weighted by the rnj :�t+1j = PNn=1 rnjtnPNn=1 rnj (5)�t+1j = PNn=1 rnj(tn � �t+1j )(tn � �t+1j )TPNn=1 rnj (6)The equations above are for full ovariane matries, but there are similar equa-tions for other ovariane strutures.3 Generative Topographi Mapping and Inomplete Data3.1 The Generative Topographi MappingThe generative topographi mapping (GTM) [1℄ is a nonlinear latent variablemodel that uses latent (or hidden) variables to model a probability distributionin the data spae. It is a onstrained mixture of Gaussians whose parametersare optimised using the expetation-maximisation (EM) algorithm.For the GTM, t denotes the data in a D-dimensional Eulidean spae and xdenotes the latent variables in an L-dimensional latent spae. Considering a non-linear transformation from the latent spae to the data spae using a radial basisfuntion network(see e.g. [4℄), the latent data is mapped to data spae by a radialbasis funtion y =W�(x) with weightsW and a basis funtion matrix �. Thegoal of the latent variable model is to �nd a representation for the distributionp(t) in terms of a number K of latent points xj(j = 1; 2; :::K) and orrespondingGaussian distributions entred on y(xj;W) [1℄. The data density is de�ned byP (tjW; �) = 1K KXj=1 P (tjxj;W; �) (7)and P (tjxj;W; �) = � �2��D=2 exp�� �2 ky(xj;W)� tk2� (8)where W and the inverse variane � an be �tted by maximum likelihood withthe EM algorithm.The latent spae representation of the point tn, i.e. the projetion of tn, istaken to be the mean PKj=1 rnj xj of the posterior distribution on the latentspae.3.2 Inorporating missing values into the EM algorithm for theGTM modelTo handle missing values in the data set, we write data points tn as (ton; tmn ),where eah data vetor an have di�erent patterns of missing omponents;m and



4 Yi Sun et al.o denote subvetors and submatries of the parameters mathing the missing andobserved omponents of the data. The EM algorithm treats both the indiatorvariables znj and the missing inputs tmn as hidden variables. For the GTM, asthe ovariane matrix is onstrained to be isotropi, �j = ��1I, the ovarianeof missing and observed values �moj is equal to 0. The expeted value in theE-step is taken with respet to both sets of hidden variables. If we knew thevalues of the indiator variables znj , we would write the negative log likelihoodfuntion asL(W; �) = NXn=1 KXj=1 znjnD2 ln(2�)� D2 ln� + �2 h k ton � yoj k2 +k tmn � ymj k2 io (9)After taking the expetation, the suÆient statistis for the parameters in-lude three unknown terms, znj , znjtmn and znjtmn tmn . So we must alulate theexpetations for these three terms. Following [5℄, we introdue:t̂mnj = E(tmn jznj = 1; ton; �j) = (ymj )old (10)whih is the least-squares regression between tmn and ton predited by Gaussianj, and `old' denotes the value omputed in the last M-step.The expetation of znj is E[znj jton; �j ℄ = rnj (equation (4)) measured onlyon the observed dimensions of tn. For the GTM, we alulate:E[znjtmn jton; �j ℄ = E[znj jton; �j ℄E[tmn jznj = 1; ton; �j ℄ = rnj t̂mnj= rnj(ymj )old (11)In the M-step, the missing values are expressed using the posterior means:E[tmn jton; �j ℄ = KXj=1 rnjE[tmn jznj = 1; toi ; �j ℄ (12)and the weights are then updated to Wnew as used way for GTM [1℄. Thevariane is updated by:��1 = 1ND NXn=1 KXj=1 rnj �kton � yojk2 +E[znjktmn � ymj k2℄� (13)whereE[znjktmn � ymj k2℄ = E[ktmn � ymj k2jznj = 1℄= (��1)old + (t̂mnj)T (t̂mnj)� 2(t̂mnj)Tymj + (ymj )Tymj (14)and ymj = (Wnew�(xj))m.



GTM-based Data Visualisation with Inomplete Data 54 Hierarhial GTM4.1 An introdution to hierarhial GTMFor a omplex data set, a single two-dimensional visualisation plot may not besuÆient sine it is diÆult to apture all of the interesting aspets in the dataset. Therefore a hierarhial visualisation system is desirable.Given a training data set T = ft1; t2; :::; tNg, the probability, assigned tothis set by a hierarhy of GTMs organised in hierarhial tree T , is alulatedby onsidering the hierarhial GTM T as a mixture of GTMs [6℄, with mix-ture omponents being the leaves M. The parameters of the hierarhy (weightsW, inverse variane � and parent-onditional mixture oeÆients) are �tted bymaximum likelihood using the EM algorithm. Mixture oeÆients for the mix-ture omponentsM are alulated reursively by multiplying parent-onditionalmixture oeÆients down the path from the root to M.Given a data point tn and a submodel M in the hierarhy T , we have threetypes of hidden variables: 1) Responsibility of Parent(M), the parent of M, forgenerating tn. 2) Parent-onditional responsibility for tn, given that Parent(M)generated tn, and 3) Responsibility of latent spae entres xj ofM for generatingtn. To avoid numerial problems arising frommultipliation of small probabilitiesand to speed up the training proess, the GTMs on deeper levels are trained onlyon data points for whih the parent model has responsibility greater than somepre-set threshold �. In our experiments � = 10�3.4.2 Parameter initialisationHaving trained GTMs down to level ` of the hierarhial tree T , we hoose aparent model N at level ` and, based on its visualisation plot, we selet \regionsof interest" for hild GTMs M at level ` + 1. More preisely, the visualisationplot of the parent GTM N shows low-dimensional representations in the latentspae of data spae points from the training set.The regions of interest are seleted as follows: The user �rst selets points i,i = 1; 2; :::; A, in the latent spae that orrespond to \entres" of the subregionsthe user is interested in. The points i are then transformed via the map yNde�ned by the parent GTM N to the data spaeyN (i) =WN �N (i) (15)The regions of interest are given by the Voronoi ompartments [7℄ in the dataspae orresponding to the points yN (i), i = 1; 2; :::; A:Vi = �t 2 <Dj d (t;yN (i)) = minj d (t;yN (j))� ; (16)where d(�; �) is the Eulidean distane in the data spae <D. All points in Vi arealloated to the \entre" yN (i).



6 Yi Sun et al.We initialise the parameters WM of hild GTMs M, so that eah GTMinitially approximates prinipal omponent analysis (PCA) of the orrespondingVoronoi ompartment. For GTM M orresponding to a ompartment Vi, we�rst evaluate the ovariane matrix of training points in Vi and obtain the �rstL prinipal eigenvetors. Next, we determine WM by minimising the errorE = 12 KMXj=1 kWM �M(xMj ) � U xMj k2; (17)where the olumns of U are the �rst L prinipal eigenvetors of the data ovari-ane matrix (see [1℄).Following [1℄, parameter �M is initialised to be the larger of the L+1 eigen-value from PCA, that represents the variane of the data away from the PCAplane , or the square of half of the grid spaing of the PCA-projeted latent datapoints in data spae.5 ExperimentIn our experiments, GTM models were trained in two ways: (A1) the algorithmde�ned in setion 3:2 and (A2) standard EM applied to a dataset with themissing values replaed by the unonditional mean.5.1 The toy data200 training data points were generated randomly in the interval [0; 2�℄ as t1. Thevariable t2 was then omputed by the funtion t2 = t1+1:25 sin(2t1). A spherialGaussian noise with standard deviation 0.1 was added to t2 oordinates. Thenwe deleted 30% of the values in t2 randomly. Figure 1 shows the result usingA1 and A2. After training, the negative log likelihood is 1.62 and 2.66 per datarespetively.5.2 Oil dataThis example arises from the problem of determining the fration of oil in a multi-phase pipeline arrying a mixture of oil, water and gas. The data set onsistsof 1000 12-dimensional points. Points in the data set are lassi�ed into threedi�erent multi-phase ow on�gurations: homogeneous, annular and laminar [8℄.Figure 2 shows the visualisation results. A hierarhy of GTMs up to level 3was trained on the data set. For every level, 15 � 15 = 225 latent data pointswere seleted in the 2-dimensional latent spae and the number of Gaussian basisfuntions is 4�4 = 16. The �nal visualisation plot for the omplete (unorrupted)data an be seen in �gure 2(a). For the top level, after 10 training iterations, thenegative log likelihood is �3:93 per data point.
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(a)Using the EM based algorithm (b)Using unonditional mean methodFig. 1. The toy problem: the omplete data points are plotted as irles while theentres of the Gaussian mixture are plotted as plus signs. The entres are joined by aline aording to their ordering in the (one-dimensional) latent spae (K = 60). Thestars represent the missing values. The diss surrounding eah plus sign represent twostandard deviations' width of the noise model.We randomly deleted 30% of values in the data set. The maximum numberof orrupted oordinates per data point is 6. Again we ompare the negativelog likelihood of A1 and A2. Here we just measured the values of negative loglikelihood for the top level GTM, sine the likelihood for lower level modelsdepends on where the \regions of interest" are seleted. For the inomplete dataset, after 10 training yles, using the EM algorithm, the negative log likelihood is�3:39 per data point, while using unonditional mean �lling in the missing data,the negative log likelihood is �1:31. Using our EM based algorithm for dealingwith missing values an indeed be bene�ial as it an be seen by omparingthe top level (root) visualisation plots and the seond visualisation plots on theseond level of the hierarhy. These seond-level plots show better separation oflasses and math better to the models trained on the omplete data set.6 ConlusionsIn this paper, we have shown how inomplete data an be inluded in the hier-arhial GTM training. The algorithm for dealing with missing values based onthe EM algorithm and Gaussian mixture models is a viable approah for datavisualisation. It is preferable to the simple strategy of just �lling-in the missingvalues with unonditional means.
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(b) ()Fig. 2. Data visualisation for oil data by using hierarhial GTM. Plot (a) shows theresult of training on the omplete data set. Plot (b) shows the result of using theEM algorithm learning from inomplete data, while plot () shows the same data setvisualised using the unonditional mean to �ll in the missing data.


