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SUMMARY 

Rainbow trout eggs Salmo gairdneri, Richardson, were incubated under a 
range of different environmental conditions. Recovery of bacteria from egg surfaces 
revealed that increased water temperature, slow water flow rates and high egg density 
all significantly increased egg surface bacterial populations. Live eggs were mainly 
colonized by Cytophaga sp., Pseudomonas fluorescens and Aeromonas hydrophila. 
In contrast, dead eggs supported considerable numbers of fluorescent Pseudomonas 
sp. 

Analysis of potential nutrient sources for bacteria colonizing live egg surfaces 
revealed that small amounts of amino acids, phosphate and potassium may be lost by 
incubating eggs. Subsequently these nutrients were shown to be capable of supporting 
limited bacterial growth and·reproduction. Dead eggs "leaked" increased amounts of the 
above nutrients which in turn supported higher bacterial numbers . In addition, 
biochemical analysis of eggs revealed amino acids and fatty acids that might be utilized 
by bacteria colonizing dead egg surfaces. 

Assessment of adhesion properties of bacteria frequently recovered from egg 
surfaces revealed high cell surface hydrophobicity as an important factor in successful 
egg colonization. 

Analysis of egg mortalities from groups of rainbow trout and brown trout (S. 
trutta L.) eggs maintained under two different incubation systems revealed that 
potentially a close correlation existed between egg surface bacterial numbers and 
mortalities in the eggs during incubation. Inoculation of newly-fertilized eggs with 
bacteria demonstrated that groups of eggs supporting high numbers of P. fluorescens 
suf~ered significantly higher mortalities during the early part of their incubation. 

Exposure of incubating eggs to oxolinic acid, chlortetracycline and 
chloramphenicol demonstrated that numbers of bacteria on egg surfaces could be 
significantly reduced. However, as no corresponding increase in egg hatching success 
was revealed, the treatment of incubating eggs with antibiotics or antimicrobial 
compounds can not be recommended. 

In commercial hatcheries bacteria are only likely to be responsible for egg 
deaths during incubation when environmental conditions are unfavourable. High water 
temperatures, slow water flow rates and high egg density all lead to increased bacterial 
numbers on egg surfaces, reduced water circulation and low le•rels of dissolved 
oxygen. Under such circumstances sufficient amounts of dissolved oxygen may not be 
available to support developing embryo's. 

Key words: 
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Since 1983 the United Kingdom has certified each year the importation of in 

excess of 50 million eyed rainbow trout eggs (Salmo gairdneri ) Richardson, rising to 

approximately 61.5 million in 1987 (Bromage & Cumaranatunga 1988). Annual 

importation of potentially ever increasing numbers of eyed eggs into the U.K. is 

undesirable on grounds of cost, genetic strategy, and in addition leaves the industry 

vulnerable to the introduction of non-endemic diseases such as viral haemorrhagic 

septicaemia (V.H.S.) and infectious haemopoietic necrosis (I.H.N.), both of which are 

established as being transmitted in association with salmonid eggs (Vestergard­

Jorgensen 1970; Wolf 1976). Precise reports of total egg numbers incubated in the 

U.K. per annum are currently not collated, however, a relatively accurate estimate may 

still be derived using material drawn from a number of sources. In the region of 18,000 

tonnes of half pound fish were produced in 1988 (Gordon 1989) which equates with a 

current annual production of around 80 million individual fish. In addition to 

successfully reared adults many alevins, fry and eggs are lost during the rearing 

process. Bromage & Cumaranatunga (1988), using data from commercial trials, 

estimate that for a given batch of good quality eggs the following percentage survivals 

would be expected at each of five successive stages of development : fertilization 90%, 

eyeing 80%, hatching 75%, swim up 60% and after 4 months 35%. 

In the south of the U.K farmed rainbow trout may reach half pound size in 

around 9 months and take just over a year in the north. Unfortunately no estimate exists 

in the scientific literature of mortalities expected between 4 months and one year. If, 

however, a relatively conservative estimate of 5% mortality is· assumed then it is 

possible to further speculate that only 30% of eggs survive to adult half pound fish. 

This in turn suggests that to produce 80 million individual fish around 215 million eyed 

eggs were probably required in 1987 by the U.K. trout industry. However, of these 

eyed eggs 61.5 million were imported and thus the home industry probably produced 

approximately 153.5 million eyed eggs. Furthermore, again utilizing the percentage 
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survival figures outlined by Bromage & Cumaranatunga (1988) it can be calculated that 

the U.K. industry in total probably produced over 191.9 million green eggs. Thus, it is 

likely that total losses of the U.K.!s own eggs from stripping to hatching could amount 

to 48 million eggs (assuming 25% losses of an original191.9 million stripped eggs). 

By following a similar exercise it can be calculated that about 3.1 million imported eyed 

eggs are also lost before hatching (assuming 5% mortalities from eyeing to hatching 

amongst 61.5 million imported eyed eggs). Therefore, overall in 1987 the U.K. 

industry might potentially have lost over 51 million eggs during incubation (48 million 

home produced eggs + 3.1 million imported eggs). 

Even assuming some inaccuracy within these figures, a reasonable indication 

is outlined above of the considerable egg losses occurring within the U.K. fish farming 

industry. A reduction in such losses through a general improvement in fish husbandry 

techniques and, in particular, a decrease in egg mortality within U.K. hatcheries, would 

in turn reduce importation costs and lower the risk of introducing non-endemic 

diseases. Although, causes of egg death during incubation are not fully understood and 

are likely to be many and varied, two main areas can be identified as potentially 

important in influencing numbers of successfully hatched fry. One area of direct 

concern is the quality of husbandry practices observed in the hatchery and in particular 

the provision of optimum incubation conditions for developing embryos (to be 

described in full later). The other area encompasses other factors that might influence 

the initial quality of eggs produced by broodstock and in turn these can be further sub­

divided into three main sections (to be described below); 

1) Broodstock age. Individual fish generally produce eggs of uniform size 

(Bagenal1969a; Zonova 1973; Larsson & Pickova 1978), which will be determined 

in part, by the genetic make up of the parent. However, the age (and therefore size) of 

the fish are also important, for older and larger females tend to produce larger (but 

fewer) eggs when compared to younger, smaller females (Gall 1974 ; Bromage & 

Cumaranatunga 1988). Larger eggs contain more water than smaller eggs but, in 
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addition also contain a relatively larger yolk, which was once considered to provide fry 

with a nutritional advantage over those from smaller eggs. A higher percentage survival 

of fry from large eggs has been clearly demonstrated under conditions of deliberate fry 

starvation (Blaxter & Hempel 1963 ; Bagenal 1969b). Therefore, larger egg size would 

be expected to be an advantage in feral stocks if suitable nutrient sources were scarce. 

However, under commercial farming conditions scarcity of food is unlikely to occur 

and thus fry from smaller eggs are unlikely to suffer any disadvantage (Reagan & 

Conley 1977 ; Bromage & Cumaranatunga 1988). 

2) Broodstock diet and egg composition. Studies on the biochemistry of the 

egg have shown great variation in chemical composition between both eggs of 

individual fish of the same strain and between eggs from fish of different strains. 

Chemical components of the egg have to support fry for the first 50 days of their lives 

(from fertilization to first feed at 10 °C). Therefore, it has been argued that by altering 

broodstock diets, to proportionally change the chemical components of the egg, egg 

quality, itself, would be altered. The largest component of salmonid eggs by dry weight 

is protein. Philips, Hammer Edmonds & Hosking (1964) studied protein levels in 

brown trout eggs and reported that "the best quality eggs" came from fish fed low 

protein diets. In contrast, Satia, Donaldson, Smith & Nightingale (1974) found that 

eggs containing a high percentage of protein were more likely to survive to the yolk sac 

absorption stage. Smith, Osbourne, Piper & Dwyer (1979) studied three types of 

protein diet, high, inte~ediate and low, over a three year period and found no 

significant difference in quality of eggs produced. However, Takeuchi, Watanabe, 

Ogino, Satio, Nishimura & Nose (1981) in agreement- with Philips et al (1964), 

demonstrated that fish fed low protein but high energy diets did indeed produce better 

quality eggs. However, further work by Roley (1983) using four levels of protein diet ; 

27%, 37%, 47%, and 56%, all with the same calorific value, again found no overall 

significant difference in egg quality between groups fed the above four diets. Thus, it 

would seem that a balanced feed containing adequate (but not excessive) levels of 

protein will promote egg and fry survival. 
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The second largest component of eggs by dry weight is fat. Eggs frequently 

vary in the proportion of fat they contain but a mean figure of 19% is not unusual, of 

which 70% - 80% will be used as an energy source during stages of egg development 

(Hayes 1949). Surprisingly, commercial diets generally contain a relatively low lipid 

level of between 6% to 14% by dry weight (Hilton & Slinger 1981). Most fat in eggs 

(and protein) can be found in the yolk, which until first feeding is the main nutrient 

supply for developing embryos. Fat and protein occur in the yolk as phosvitin and 

lipovitellin, both of which are components of vitellogenin. In turn, vitellogenin is 

manufactured in the liver and after secretion into the blood stream is taken _up by 

maturing oocytes. Potentially, low levels of vitellogenin might be responsible for poor 

quality eggs, although as yet, no direct correlation has been demonstrated (Bromage & 

Cumaranatunga 1988). 

Hirao, Yamada & Kikuchi (1954) and Takeuchi et al (1981) have clearly 

demonstrated the importance of trace elements in broodstock diet Broodstock fed a diet 

without trace elements (not unexpectedly) produced eggs of an inferior quality (Hirao et 

al 1954; Takeuchi et al 1981). One group of trace elements once thought to be 

directly linked to egg quality is the carotenoids. They are respqnsible for giving a pink 

colouration to flesh and a deep orange colour to eggs (often regarded as an indication of 

good egg quality). Rainbow trout are unable to synthesize carotenoids and they are thus 

deliberately added to commercially produced feed. Developmentally the role of 

carotenoids is not fully understood but, they are a source of provitamin A. Originally it 

was considered that they may act as a chemotaxic attractant for rainbow trout sperm, in 

turn increasing levels of fertilization. However, Quantz ( 1980) increased dietary levels 

of carotenoids but, subsequently found no proportionally significant increase in sperm 

chemotaxis or in egg fertilization rate. Further work has since confirmed that increases 

in dietary carotenoids do not in turn lead to increased fertilization rates (Torrissen 1984 

; Tveranger 1986). 

3) Time of egg stripping. Eggs of rainbow trout are ovulated into the coelomic 

cavity where they are held (under farmed conditions) until they are "manually" stripped 
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Once in the cavity the eggs undergo a progressive reduction in viability, termed 

"overripening" (Sakai, Nomura, Takashima & Oto 1975; Hirose, Ishida & Sakai 1977 

; Lam, Nagahama, Chan & Hoar 1978; Craik & Harvey 1984; Springate, Bromage, 

Elliott, & Hudson 1984). Egg overripeness is a problem of great importance amongst 

farmed salmonid fish (Lam et al 1978) and is accompanied by physical changes to the 

egg, involving the aggregation and fusion of oil droplets and migration of the cortical 

alveoli to the animal pole (Nomura, Sakai & Takashima 1974). Nomura et al (1974) 

divided overripening into four separate stages ; stage 1 describes normal eggs up to 6 

days after ovulation ; stage 2 begins at about 10 days after ovulation, when eggs begin 

to show early signs of overripeness, although up to 100% fertilization and a high 

percentage to eyeing is still possible ; stage 3 begins at about the 30th day after 

ovulation and eggs show all the classic signs of overripeness (as described) and stage 

4, starting at the 35th day after ovulation includes eggs showing extreme signs of 

overripeness including an irregular shape and a reduction in material content. Both 

stage 3 and 4 eggs are of such poor quality that fertilized eggs will not reach the eyed 

stage. Egg overripening can be overcome by increased frequency of manual stripping 

and Sakai et al (1975) recommended that broodstock should be checked every 7 days 

when held at a temperature of 10 °C. Increased water temperatures greatly accelerate 

overripening and more frequent stripping is therefore essential (Escaffre & Billard 

1979). 

The second general area affecting numbers of successfully hatched fry is that 

of hatchery management, which is further sub-divided below into two main sections ; 

1) fertilization and 2) hatchery environmental conditions. In addition, a third section is 

included outlining the potential role bacteria may play in causing "premature" egg 

mortality during incubation. This is the subject which is investigated in depth during 

this present study. 
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1) Fertilization. Successful egg fertilization is essential to maximize the 

number of fry produced from the total number of eggs incubated. Fertilization rates will 

of course be dependant on egg quality (as described) but, also on the quality of milt, a 

factor often given less emphasis than deserved. Milt quality is frequently related to 

sperm motility and is assessed microscopically under a magnification of about 50X. 

Good quality milt will contain spermatozoa that are vigorously active and that are 

swimming, more or less, in straight lines. Milt of lesser quality will contain 

spermatozoa which are swimming generally in tight circles (as opposed to straight 

lines) but, if used immediately,will still allow high fertilization rates to be achieved. In 

contrast, milt containing little spenriatozoa movement will be of poor quality in turn 

leading to low fertilization rates and thus should be discarded. Obviously, assessment 

of sperm motility is subjective but, even so does seem to be indicative of, as yet, other 

unidentified properties of spermatozoa that are important in egg fertilization (Moccia & 

Munkittrick 1987). Careful fertilization of eggs with good quality milt can lead to 

fertilization rates as high as 90% under commercial conditions (Bromage & 

Cumaranatunga 1988). However, significantly lower fertilization rates will occur (even 

with good quality eggs and milt) if certain hatchery practises are not scrupulously 

enforced. For example, if water is allowed to come into contact with newly stripped 

eggs before fertilization it will pass through the egg micropyle into the perivitelline 

fluid in turn, causing the micropyle to move slowly towards one side and to decrease in 

size. Spermatozoa can only enter the egg through the micropyle and therefore, 

prospects of egg fertilization become progressively poorer as the micropyle opening 

gets smaller (Leitritz & Lewis 1976). Similarly, if water is allowed to come into contact 

with milt, spermatozoa motility will cease after only about one minute, ensuring 

subsequently poor fertilization rates. 

Generally, salmonids produce a relatively high amount of milt, approximately 

5 X 1012 spermatozoa I Kg body weight (Billard 1983a, b). Munkittrick & Moccia 

(1987) calculated that milt from one male could potentially fertilize the eggs from 3000 

females and thus commercially there has been a tendency to limit the stockholding of 
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males. Consequently, if the males initially selected to fenilize eggs prove to have poor 

sperm quality, it is thus possible that there may only be a few remaining males that 

posse/milt of sufficient quality. Subsequent fenilization rates may therefore be poor 

and in addition genetic diversity can be compromised. Thus, greater care must be taken 

to ensure that high quality milt is available from a reasonably wide range of males 

(ideally a ratio of milt from one male to three females) over the entire egg stripping 

period. At present, until cryopreservation techniques are more widely available, 

fertilization of "out of season" eggs may also necessitate photoperiodic manipulation of 

males in order to ensure availability of high quality milt 

2) Hatchery environmental'condirions. Provision of optimum egg incubation 

conditions is of great importance in order to limit egg mortaliti.es to the lowest possible 

level. The first basic essential for successful salmonid egg incubation is water flow 

rate. In addition, water quality, including pH, dissolved oxygen and suspended solids 

are all imponant factors to consider (Leitritz & Lewis 1976). Ideally, hatchery water 

should be neutral or slightly alkaline (pH 7-8) and, acid conditions (pH 6 or below) 

should be avoided (Stevenson 1980). Dissolved oxygen levels should be between 5-9 

ppm (Leitritz & Lewis 1976). A fall in dissolved oxygen levels (for example, due to 

increased water temperature) to 3 ppm could potentially be insufficient to support large 

numbers of developing embryos. Salmonid embryos can withstand large fluctuations in 

amounts of suspended solids but, at high concentrations such solids may "coat" eggs in 

turn impairing sufficient availability of oxygen to embryos. 

Two common methods of egg incubation are currently being used. The frrst, 

"venical upwelling incubation" is less frequently used in the U.K., but has the 

advantages of taking up limited floor space and the potential for incubating vast 

numbers of eggs. However, a major disadvantage of this method includes limited 

access to eggs during "sensitive stages" of incubation and thus checks on fungal 

parasites and egg monalities cannot be made. In addition, development of air pockets 

can lead to physical disturbances of eggs and also poor distribution of water through 

the eggs. The second method of egg incubation, "horizontal trays in hatchery troughs" 
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is, probably, the most frequently utilized method of egg incubation in U.K. hatcheries. 

Horizontal trays provide for access to eggs at all times and therefore allow regular 

monitoring of egg progress throughout incubation to be made (Springate & Bromage 

1985). 

After fertilization, water hardening and "laying down", eggs remain fairly 

resilient for a period of up to 48. hours at 10 °C but, after this time, are sensitive until 

eyeing. An extremely critical period of egg sensitivity is known to occur between the 

?th day and the 9th day of incubation (at 10 °C), after which time the egg blastopore is 

closed (Leitritz & Lewis 1976). Physical disturbance of eggs before eyeing, for 

example, by flow rates that are too turbulent, air pockets (especially vertical incubators) 

or physical knocks to hatchery troughs can result in high numbers of egg mortalities. 

Eggs must also be protected from exposure to light, failure to do so can result in death 

in only a few minutes if direct exposure to sunlight is allowed to occur. Presence of 

dead eggs in trays frequently results in colonization by aquatic moulds such as those of 

the Saprolegniaceae, which can subsequently cause the death of nearby "healthy" living 

eggs (Smith, Armstrong, Springate & Barker 1985). To minimize the effects of such 

moulds, malachite green treatment should be administered daily (ideally at a 

concentration of 2 ppm for one hour) and pockets of dead eggs should be carefully 

removed (Stevenson 1980). 

3) Bacteria. Whether bacteria can directly influence cultured fish egg losses is 

uncertain. However, historically the possibility that bacteria could be responsible for 

cultured egg losses began with a series of studies on marine fish. Dannevig (1919) 

demonstrated that during incubation, cod eggs (Gadus cal/arias) became overgrown 

with an organism resembling Leptothrix, and speculated that such an organism might in 

turn be responsible for lowering egg hatching rates. Spencer (1952) in a study of 

marine algae used a series of antibiotics to reduce contaminating populations of 

bacteria. His success in lowering bacterial numbers in samples of sea water led to a 

study by Oppenheimer (1955) relating bacteria in sea water to the hatching success of 

some marine fish eggs. Oppenheimer (1955) incubated batches of eggs from the Pacific 
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sardine (Sardinops caerulea ), the Norwegian codfish (G. callarias) and a turbot (sic, 

Pleuronichthys sp. probably ritteri) in normal sea water and treated sea water 

containing various antibiotic solutions. By monitoring bacterial numbers in incubation 

waters and by recording egg hatching success, the author demonstrated a close 

relationship between bacterial numbers and egg death. 

Studies on the effects of bacteria on stream incubated salmonid eggs began 

when Hunter (1959) reported that salmonid eggs could be recovered still undergoing 

decay up to two years after their original deposition into spawning beds. Similarly, 

McNeil, Wells & Brickell (1964) showed that pink salmon eggs (One orynchus 

gorbuscha ) were still decaying 18 months after their original deposition in the 

spawning beds of a small southeastern Alaska stream. These authors discussed the 

possibility that decaying eggs (and adult carcasses) could in turn lead to a localized high 

biological oxygen demand in spawning beds and perhaps insufficient oxygen levels to 

support incubating eggs. Bell (1966) however, considered that in addition to lowering 

oxygen levels decaying eggs might also act as a source of microbial infection of healthy 

eggs. The above author therefore incubated newly fertilized pink salmon eggs in 

permeable plastic tubes placed into a salmon redd of the Big Qualicum River, Canada. 

Bacterial populations of egg surfaces were monitored throughout incubation and 

predominant bacteria were found to be Pseudomonas sp. and Flavobacterium sp. A 

more detailed study by Bell, Hoskins & Hodgkiss (1971) conducted at the same site 

showed that the state of salmonid eggs could markedly influence the composition of 

bacterial populations on the egg surfaces. Cytophaga sp. predominated in floras of 

living eggs, whilst fluorescent Pseudomonas sp. formed the bulk of populations 

associated with dead eggs. These same authors considered it unlikely that enzymes or 

toxins produced by bacteria on live egg surfaces could be the cause of the mortalities in 

the incubating eggs. 

Trust (1972) investigated the bacterial populations at the egg surface of coho 

salmon eggs (0. kisutch ), chum salmon eggs (0. keta) and rainbow trout eggs (Salmo 

gairdneri) placed in vertically stacked incubation trays of a commercial hatchery and 
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showed Cytophaga sp., Pseudomonas sp. and Aeromonas hydrophila were the 

predominant bacteria on the egg surfaces. Under conditions of poor water circulation 

Trust (1972) suggested that large bacterial populations on the egg surfaces might reduce 

available oxygen to a level insufficient for egg survival. 

Investigations of bacteria located inside salmonid eggs have also been carried 

out. However, many of these studies have not been concerned with the deaths of 

incubating eggs but, with the transmission of specific bacterial pathogens within eggs. 
us 

Parisot & Wood (1960) described the presence of an acid fast bacill in the yolk of 

diseased chinook salmon (0. tshawytscha ). Furthermore, the authors considered that 

the egg yolk might be the primary site of infection for the above bacterium, which 

might in turn be responsible for the disease "fish mycobacteriosis". Lund (1967) in a 

study of furunculosis caused by the bacterium Aeromonas salmonicida, described a 

positive isolation of the bacterium from the interior of fertilized eggs derived from 

naturally infected mature fish. In addition, the bacterium has also been isolated from 

both the ovary an~ testis of diseased mature fish suffering from furunculosis (Lund 

1967 ; McDermot & Berst 1968). However, McCarthy (1980) did not recover A. 

salmonicida from the interior of experimentally infected salmonid eggs and thus 

considered that "vertical" transmission (transmission via eggs) of A. salmonicida "is 

not a significant route of transmission for furunculosis". 

In contrast, bacterial kidney disease (B.K.D.) of salmonid fish caused by a 

small Gram +ve bacterium (Renibacterium salmoninarum) may be spread by vertical 

transmission. Bullock & Stuckey (1978) disinfected egg surfaces contaminated by R. 

salmoninarum with iodophor disinfectants. However, despite determined disinfection, 

some R. sa/moninarum cells still appeared to remain active. Evelyn, Prosperi-Porta & 

Ketcheson (1981) examined eggs from a naturally B.K.D. infected salmon (0. kisutch) 

which had a high coelomic fluid count of R. salmoninarum. Eggs were removed, 

disinfected with iodophors and subsequently checked microbiologically for any active 

remaining cells. Eggs whose surfaces had been successfully sterilized were aseptically 

cut open and their contents removed for further bacteriological examination. 104 eggs 
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were surface sterilized and 6 eggs (5.8%) were subsequently found to contain viable 

cells of R. salmoninarum. A further study by Evelyn, Ketcheson & Prosperi-Porta 

(1984) estimated that the pathogen might exist in approximately 11.6% to 15.1% of the 

total eggs of each infected fish. 

Other significant reports of bacteria inside salmonid eggs include a Gram +ve 

Lactobacillus sp. discovered by Cone (1982). Cone studied 14 diseased rainbow trout 

at a Newfoundland hatchery after post stripping mortalities were running unacceptably 

high (1-5 fish I day). Mixed infections of A. hydrophila, P. fluorescens and a 

Lactobacillus sp. were found in the diseased trout. Histological sections cut through 35 

eggs from 5 of the above fish revealed contamination by Lactobacillus sp. in 33 eggs. 

As no bacteria were discovered in developing oocytes the authors concluded that 

passive contamination of eggs had probably occurred through the micropyle after eggs 

had been shed into the coelomic cavity. However, although contaminated eggs were of 

a normal size, these eggs had remained in the coelomic cavity since frrst stripping (a 

period of up to 5 months) and were thus extremely overripe. The nature of these eggs 

therefore compromises the more widespread value of this report. 

Recently, a study by Sauter, Williams, Meyer, Celnik, Banks & Leith (1987) 

has revealed a wide range of bacteria inside eggs of healthy chinook salmon (0. 

tshawytscha ). The authors also considered whether the presence of specific bacteria 

within eggs could subsequently influence "early life stage death" of incubating eggs and 

fry. However, although no definite conclusions could be drawn, the following bacterial 

genera were implicated ; Vibrio, Listeria, Corynebacterium and Staphylococcus. 

All the aforementioned examples show that there is potentially a variety of 

associations between salmonid eggs and bacteria. The overall purpose of the present 

study is to examine a number of these associations under carefully controlled 

conditions. The following investigations therefore begin with a detailed characterization 

of the egg surface micro flora of rainbow trout eggs incubated under conditions relevant 

to most U.K. hatchery facilities. During initial investigations, rainbow trout eggs were 
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examined microbiologically at stripping, and during incubation at two different 

densities under a horizontal flow of water. Eggs were also subjected to a wide range of 

varying environmental conditions including water temperature and water flow rate. 

Throughout incubation the effects of these parameters on the developing micro flora of 

the eggs was regularly monitored, leading to the prospect of a general understanding of 

the "typical" bacterial numbers and genera that might be found colonizing incubating 

salmonid eggs within the U.K. Subsequently, an analysis of factors influencing the 

success of selected bacterial species on egg surfaces was undertaken, concentrating on 

identifying potential nutrient sources for bacteria colonizing egg surfaces. In addition, 

properties of bacterial adherence that .might be important for egg colonization were also 

considered. 

The possible relationships between "premature mortalities" of incubating eggs 

and their associated bacterial flora was also investigated. Rainbow trout egg mortalities 

were compared with those of brown tr<;>ut eggs in conjunction with an assessment of 

bacteria both from inside eggs and located on egg surfaces. Consequently, bacterial 

genera implicated as potentially important in influencing egg mortalities were inoculated 

onto surfaces of newly-fertilized rainbow trout eggs and the subsequent effect on egg 

hatching success rate closely monitored. Finally, the "normal" bacterial flora of 

incubating eggs was reduced by prophylactic treatment to determine whether a 

corresponding increase in egg hatching success rates could be obtained. 
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CHAPTER1WO 

THE SURFACE BAcrERIAL FLORA OF INCUBATING 

RAINBOW TROUT EGGS UNDER VARYING 

ENVIRONMENTAL CONDmONS 
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INTRODUCTION 

Artificial rearing of rainbow trout has now been practised for at least half a 

century and a great deal of advice and information has been published on general 

aspects of fish farming leading to improvements in both efficiency and productivity. 

However, the area of hatchery management has often been overlooked and is poorly 

covered in the literature, with few notable exceptions (Leitritz & Lewis 1976; Springate 

& Bromage 1985). Frequently, fundamental decisions in hatchery management 

concerning, for example ; egg density and water flow rate, will be decided on a basis of 

"past experience" or "rule of thumb", leading to differences between farms in the 

environmental conditions provided for egg incubation. A poor environment could 

potentially be the cause of many "premature" egg losses and thus, proper "scientific" 

control of hatchery environmental conditions could prove to be an important factor in 

maximizing the production of healthy fry. 

Bell (1966) completed the first detailed study of egg surface bacteria on 

stream incubated pink salmon (One .orynchus gorbuscha) eggs and found that 

compared to glass beads, eggs supported a bacterial flora of different character 

comprising mainly of Pseudomonas sp. and Flavobacterium sp. A further study of 

greater depth (Bell, Hoskins & Hodgkiss 1971) conducted at the same site showed that 

the state of salmonid eggs could markedly influence composition of egg surface 

bacterial populations. Cytophaga sp. predominated in floras of living eggs while 

fluorescent Pseudomonads formed the bulk of populations associated with dead eggs. 

This present study investigates the effects of a variety of carefully controlled 

environmental conditions on the egg surface microflora of rainbow trout eggs incubated 

under a horizontal flow of water as commonly occurs in most U.K. hatchery facilities. 

In the final choice of environmental parameters for investigation particular attention was 

focused on those environmental factors most likely to prevail in commercial enterprises 
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where pressures of numbers and time might not allow adequate monitoring and 

sufficient control of the hatchery environment. 

Dissolved oxygen level is important in the successful incubation of salmonid 

eggs. In turn dissolved oxygen is influenced by a variety of factors which commercial 

fish farms often fail to control or monitor due to pressures of numbers or inadequate 

procedures and facilities. Although, certain enterprises expend considerable energy in 

their efforts to ensure that eggs are evenly distributed, it is not uncommon to observe 

accumulation of eggs often many layers deep. Close packing of eggs or reduced water 

flow rates, due to inadequate water supply, may reduce oxygen availability to a level 

that is insufficient to support egg ma·turation. Slow flow rates may also be insufficient 

for removal of toxic waste products associated with egg metabolism (ammonia and 

carbon dioxide) which if allowed to accumulate would impair egg development. In 

contrast fast water flow rates will allow greater volumes of water to pass over eggs 

increasing their oxygen availability and removing waste products. In addition, fast 

water flow rates are often accompanied by surface disturbance ("bubbling I frothing") 

which in turn, generates further aeration and subsequently increased levels of available 

oxygen for incubating eggs. 

Another factor influencing availability of dissolved oxygen is water 

temperature- viewed simply, as water temperature increases levels of dissolved gasses 

(including oxygen) decrease. Most commercial hatcheries in the U.K. incubate eggs 

under water taken directly from a spring or borehole, usually at a constant temperature 

around 8 °C- 10 °C. However, other hatcheries rely on diverted rivers and streams 

where water temperature will be influenced by prevailing ambient temperatures. Under 

certain circumstances, such as the rearing of early, late or "out of season eggs" as 

produced by photoperiodic manipulation of broodstock'(Bromage, Elliott, Springate & 

Whitehead 1984 ; Duston & Bromage 1987) water at temperatures above 10 oc may be 

common place with correspondingly reduced oxygen availability for developing 

embryos. 
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Although, flow rate, water temperature and egg density all have the potential 

to markedly affect oxygen tension and thereby egg maturation these same parameters 

may also influence bacterial populations. Fast water flow rates could potentially inhibit 

initial bacterial colonization, for (depending on the flow rate) water passing over eggs 

might prevent bacteria from remaining in contact with egg surfaces. In contrast, slow 

flow rates might permit bacteria to remain in contact with eggs thus facilitating 

colonization. High water temperature (15 °C) could potentially increase bacterial growth 

rate encouraging proliferation of numbers and further colonization of egg surfaces. 

Increased egg density might also encourage enhanced bacterial colonization of egg 

surfaces by allowing bacteria to move readily from one adjacent egg to another. In 

contrast, changes in levels of dissolved oxygen with flow rate, temperature and egg 

density may affect salmonid egg survival but, would be unlikely to greatly influence 

bacterial numbers. Although, egg surface bacteria such as Cytophaga sp. are 

facultatively anaerobic, Pseudomonas sp. are strictly aerobic but will withstand large 

fluctuations in oxygen availability (Palleroni 1984) and individual cells could certainly 

tolerate lower oxygen levels than developing salmonid embryos. 

Thus, flow rate, water temperature and egg density, all with the potential to 

markedly affect levels of dissolved oxygen, were selected as parameters to be 

manipulated during the following study, and their subsequent effects on the developing 

egg surface bacterial flora of both live and dead eggs recorded. In addition, oxygen 

levels in incubation troughs were directly monitored throughout the incubation period. 

Various standard techniques exist for the enumeration of bacterial cells and for 

the quantification of bacterial biomass. Generally, these techniques can be divided into 

three separate groups ; 1) direct - for example, counting stained bacterial cells 

(epifluorescence I immunofluorescence), 2) indirect- for example, plate counts, most 

probable number determinations and 3) chemical methods - for example, 

lipopolysaccharide (L.P.S.), muramic acid, and adenosine triphosphate (A.T.P.) 

measurements (Costerton & Geesey 1979 ; Fry 1988). All the above have well 

documented advantages and disadvantages (Buck 1979) and are intended to suit slightly 
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differing purposes. In this study a method was required to estimate total numbers of 

bacteria present on incubating egg surfaces and in addition to provide colonies for 

subsequent identification. Direct counting is, probably, tf.1e most accurate method of 

obtaining estimates of total bacterial numbers. Bacteria on some surfaces (for example, 

leaves of aquatic plants) can be counted directly by phase contrast or bright field 

microscopy. Un(ortunately, salmonid eggs do not lend themselves well to this 

technique as both their round shape and large diameter hinders precise microscope 

focusing. Ultimately, it was decided that to obtain both an estimation of bacterial 

number, and colonies for subsequent identification, it would be necessary to use plate 

count techniques. Limitations and· problems with this technique have been well 

discussed (Buck 1979), even so, it's usefulness in aquatic biology under certain 

circumstances is still acknowledged in many recent publications (Baxa, Kawai & 

Kusuda 1987 ; Sako 1988 ; Hirsch & Rades-Rohkohl 1988 ; Austin & Al-Zahrani 

1988). However, in order to use plate count techniques effectively, bacteria first had to 

be dislodged from egg surfaces. A variety of methods were assayed to remove bacteria 

from egg surfaces. Initially, eggs were macerated and the ensuing homogenate, diluted 

and plated out. However, no diff~rentiation could then be made between bacteria that 

were adhered to egg surfaces and any that might have been located inside the egg. 

Furthermore, homogenization also released large amounts of oils and other materials 

that subsequently interfered with plating techniques. Thus, it was eventually decided to 

remove bacteria from egg surfaces using a method adapted from Evelyn, Ketcheson & 

Prosperi-Porta (1984) (to be described later). Further analysis of this chosen technique 

suggested that over 80% of all bacteria could be removed from egg surfaces. 

A schematic outline of the experimental protocol followed during the trial is 

summarized in Figure 2 : 1. 
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FIGURE 2:1 Flow diagram of experimental protocol. 
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P.B.G. agar and Cytophaga agar, incubated for 10 days at 20 °C. 
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MATERIALS AND METHODS 

Experimental design 

Incubation systems. Two identical egg incubation systems were constructed 

in parallel, maintained at 10 °C ± 1 °C and 15 °C ± 1 °C respectively. Each system 

comprised of a trough containing two aluminium trays (to support eggs) with a separate 

water inlet for each tray. One water inlet supplied 1500 1 of water I day (slow flow rate) 

and the second supplied 5800 1 I day- (fast flow rate) (Figure 2 : 2). Water passed over 

eggs and was directed through a gravel filter bed (as a biological filter) before being 

pumped and recycled over eggs. A small volume of fresh "make up" water 

(approximately 5% per day) was added to allow for spillage and evaporation (Figure 2: 

3). 

Collection of eggs and milt 

Stripping and egg incubation. Eggs were obtained from 15 ripe rainbow trout 

from a single commercial fish fann. Eggs of each fish were stripped into individual 

sterile containers. The first eggs from each fish were discarded to avoid contamination 

from the surrounding water or ventrolateral surfaces of the female. Milt also collected in 

sterile containers was obtained from 4 sex-reversed females (i.e. fish with female 

genotype, masculinized by treatment with male steroids added to feed). Both milt and 

eggs were immediately put on ice and returned to the laboratory. Samples of eggs, 

coelomic fluid and milt from each container were removed for bacteriological 

examination. The remaining eggs were pooled and fertilized. After 5 minutes excess 

milt was washed off and eggs allowed to water harden for 45 minutes. Eggs were 

divided into two equal groups. One group of eggs was "shocked" by siphoning from a 

40 



FIGURE 2 2.Diagram of incubation systems 
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FIGURE 2:3 Pumped recirculatory incubation system 
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height of 2 m into a sterile beaker. Live eggs and shocked (dead) eggs were 

subsequently placed into individual aluminium trays at either high or low stocking 

densities. Low density eggs were defined as a single monolayer of non touching eggs, 

whereas high density eggs comprised of at least a bilayer of touching eggs. 

Eggs were treated three times a day with malachite green oxalate (Difco, 

~urrey) at a working concentration of 2 ppm. Typically, eggs are only treated once a 

day with such a concentration of malachite green. However, as dead eggs were 

deliberately incubated (at high temperature and high density) a far stricter prophylactic 

regime was considered necessary to control levels of Saprolegnia sp. 

Bacteriological examination 

Coelomic fluid and milt. Aliquots of coelomic fluid and milt were serially 

diluted and inoculated in 0.02 ml amounts (drop inoculation method) onto : -

1) Cytophaga agar (Anacker & Ordall959) for enhanced recovery of Cytophaga sp. 

2) Peptone beef extract glycogen agar (P.B.G. - McCoy & Filcher 1974) for 

enhanced recovery of Aeromonas sp. and 

3) Tryptone soya agar (T.S.A., Oxoid, Basingstoke) to recover as many bacteria as 

possible (Appendix 2: 1). 

Plates were incubated at 20 °C for up to 10 days and enumeration performed only from 

drops where total separation of colonies occurred. 

Eggs. Eggs were sampled at the green stage (unfertilized) and during 

incubation after 7 days, 14 days, 21 days and 28 days after fertilization. It was not 

possible to sample live eggs incubated at 15 oc for 28 days as hatching had already 

occurred by this stage. For each sampling time I treatment three separate lots of 10 eggs 

were removed at random from appropriate sections. Samples were rinsed in 4 changes 
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of sterile water and added to 5 ml of sterile diluent, before shaking vigorously on a 

vortex stirrer for two minutes, as previously described. Three replicates, a total of 30 

eggs were taken at each sampling. The number of viable cells transferred to the 3 

different media was determined by plate count. Dividing by 10 gave the average count 

per egg and by taking into account the dilution factor, the volume of diluent and the egg 

surface area, the number of cfu's I mm2 egg surface could be estimated. 

Dissolved oxygen. Oxygen levels were measured using an oxygen I 

temperature meter (pHOX Systems Ltd Shefford, Bedfordshire). Measurements were 

taken daily at a standard point behind each egg incubation tray, ensuring a comparison 

between the two water temperatures and the two water flow rates (Figure 2: 2). At each 

sampling time the oxygen probe was left to equilibrate for a period of 10 minutes before 

readings were taken. 

Identification of bacteria. Bacteria were isolated by a variety of techniques, 

procedures and schemes outlined by Krieg and Holt (1984), Cowan (1974), the tables 

of Allen, Austin & Colwell (1983) and Stanier, Palleroni & Doudoroff (1966). Some 

Gram negative bacteria, especially A. hydrophila, were more easily identified using 

API 20E and 20NE identification strips (API laboratory products, Basingstoke). 

However, it was not possible to use the identification strips more frequently as many of 

the bacteria isolated would not tolerate the relatively high incubation temperatures (37 

°C and 30 °C) recommended by the manufacturers of A.P.I. strips. 

Statistical analysis. Numbers of colony forming units (cfu's) per mm2 egg 

surface were compared at each sampling time (for live and dead eggs separately) using 

3 way analysis of variance (Ridgman 1975; Snedecor & Cochran 1980). Differences 

between levels of dissolved oxygen were analysed using a "t" test. 
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RESULTS 

Coelomic fluid, milt and eggs. Bacteria were isolated from the coelomic fluid 

of 7 fish during this trial. Genera recovered included ; Pseudomonas, Aeromonas, 

Staphylococcus, Corynebacterium and Flavobacterium. A similar range of bacterial 

genera were recovered from all milt samples but at higher concentrations. Removal of 

the testis and subsequent handling by farm staff (Woodroffe & Shaw 1974), a process 

necessary with sex-reversed fish, may have contributed to the greater bacterial loading 

of milt compared to coelomic.fluid. Few bacteria were adhered to green (unfertilized) 

egg surfaces, although Staphylococcus epidermis was isolated in low numbers. 

Incubating egg surfaces. Mean cfu's recovered from live egg surfaces are 

summarized by Figures 2 : 4 to 2 : 7. These figures show that although numbers of 

cfu's recovered vary markedly with incubation regimes, bacterial populations, 

especially those of an abundant nature, increase with time before undergoing a decline. 

Notable exceptions appear to be populations associated with slow flow I high density I 

10 °C and slow flow I high density I 15 °C, which respectively either increase gradually 

or decline gradually with time. 

Mean cfu's recovered from live egg surfaces after 7 days incubation are 

summarized in Figure 2 : 4, from which it can be seen that increased incubation 

temperature (15 °C compared to 10 °C) in turn gives rise to a very significant increase in 

numbers of egg surface bacteria (P < 0.01). Water flow rate and egg density are also 

revealed as significant factors in influencing egg surface bacterial numbers (P < 0.01) 

and (P < 0.05) respectively (Appendix 2 : 2). Within each specific incubation 

temperature (10 °C or 15 °C), fewest bacteria were recovered from eggs placed under a 

fast flow rate and at low density. In contrast, greatest numbers of bacteria were 

supported by egg surfaces incubated under slow flow rates and at high density. After 

14 days incubation (Figure 2: 5) flow rate is now seen as the most important factor 

affecting egg surface bacterial populations (P < 0.05). In contrast to the 7 day results 
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FIGURE 2:4 Mean colony forming units recovered from 
live egg surfaces after 7 days incubation 
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FIGURE 2:5 Mean colony forming units recovered from 
live egg surfaces after 14 days incubation 
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FIGURE 2:6 Mean colony forming units recovered from 
live egg surfaces after 21 days incubation 
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FIGURE 2:7 Mean colony forming units recovered from 
live egg surfaces after 28 days incubation 
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FIGURE 2:8 Mean colony forming units recovered from 
dead egg surfaces after 7 days incubation 
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FIGURE 2:9 Mean colony forming units recovered from 
dead egg surfaces after 14 days incubation 
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FIGURE 2:10 Mean colony forming units recovered from 
dead egg surfaces after 21 days incubation 
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FIGURE 2:11 Mean colony forming units recovered from 
dead egg surfaces after 28 days incubation 
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above, egg density and water temperature (alone) are no longer of significance (P > 

0.05) (Appendix 2 : 3). After 21 days incubation (Figure 2 : 6) flow rate remains a 

significant factor (P < 0.05), but water temperature is not significant (P > 0.05), due 

mainly to the recovery of prodigious number of cfu's from eggs incubated under slow 

flow I high density I 10 °C. In addition, egg density was not a significant factor in 

influencing numbers of live egg surface bacteria after 21 days incubation (Appendix 2: 

4). After 28 days incubation it was no longer possible to sample live eggs incubated at 

15 °C as hatching had already occurred. However, within the egg groups incubated at 

10 oc (Figure 2 : 7), it can be seen that flow ratean~gg density 

are very significant factors (P < 0.01) in influencing egg surface bacterial numbers 

(Appendix 2 : 5). 

Mean cfu's recovered from dead egg surfaces are summarized in Figures 2: 8 

to 2 : 11. These figures show that dead eggs in comparison to live eggs supported far 

higher numbers of bacteria (one or two orders of magnitude higher). In contrast to live 

eggs, the numbers of bacteria on dead eggs tended to reach a "plateau" after 14 days 

incubation and did not greatly increase even after 28 days incubation. On live egg 

surfaces statistical analysis revealed that bacterial numbers were influenced by water 
overall 

flow rate. In contrast on dead egg surfaces water flow rate was of less significance in 

influencing bacterial numbers. 

Mean cfu's recovered from dead egg surfaces after 7 days incubation are 

summarized in Figure 2 : 8, from which it can be seen that in common with live eggs 

water temperature was a significant factor (P < 0.05) in influencing numbers of egg 

surface bacterial populations. Similarly, egg density also proved to be a factor of 

significance (P < 0.05) but, in contrast to live eggs, flow rate was found to be 

unimportant (P > 0.05) (Appendix 2: 6). Furthermore, at both temperatures (10 °C and 

15 °C), eggs incubated under a fast flow and at high density supported greater numbers 

of bacteria than those under a slow flow rate and at low density. After 14 days 

incubation (Figure 2 : 9) no factors significantly influenced dead egg surface bacterial 

numbers (Appendix 2: 7). After 21 days and 28 days overall "trends" of factors 
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FIGURE 2:12 Combined percentage species of bacteria present on 
live egg surfaces under fast + slow flow rate I 
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dead egg surfaces under fast + slow flow rate I 
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TABLE 2 : 1 Daily dissolved oxygen figures (parts per million) 

10 oc 15 oc 
Days Fast Flow Slow Flow Fast Flow Slow Flow 

1 8.86 8.06 7.22 7.05 

2 9.05 7.88 7.61 7.03 

3 9.05 8.26 - 6.93 7.30 

4 9.00 8.02 7.17 7.00 

5 8.99 8.01 7.06 6.64 

6 9.24 7.53 5.66 6.10 

7 7.75 7.05 6.60 4.27 

8 8.01 7.32 6.10 5.75 

9 8.37 7.15 6.04 4.01 

10 8.76 7.89 6.75 5.89 

11 8.82 7.95 6.45 6.00 

12 8.42 7.35 5.84 6.55 

13 8.04 6.68 5.96 5.97 

14 8.12 6.83 5.02 5.17 

15 8.12 7.34 6.19 5.69 

16 7.74 6.35 5.32 5.22 

17 7.91 7.04 6.00 5.45 

18 8.04 7.63 6.06 5.56 

19 8.13 6.02 6.10 5.78 

20 8.38 7.49 6.14 6.38 

21 8.00 6.64 6.00 5.49 

22 8.32 7.34 5.80 4.32 

23 8.02 6.56 Commencement of hatching 

24 7.67 6.82 

25 8.45 7.58 

26 8.92 8.20 

27 8.56 8.14 

28 8.67 8.19 

29 Commencement of hatching 

------------------------------------------------------------------------------------------------------------
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influencing egg surface bacterial numbers are hard to differentiate. After 21 days 

incubation (Figure 2 : 10), flow rate remains of little significance, but in contrast, to 

results obtained after 14 days incubation (above), water temperature and egg density 

were found to be significant and (P < 0.05 and P < 0.05) respectively (Appendix 2 : 8). 

Finally, after 28 days incubation (Figure 2 : 11) water temperature, flow rate and egg 

density were found to be significant factors (P < 0.05) (Appendix 2 : 9). 

An analysis of bacterial species dominating live and dead egg surfaces is 

summarized in Figures 2 : 12 and 2 : 13. from Figure 2 : 12 it can be seen that 

Cytophaga sp. (Appendix 2 : 10) tended to predominate on live egg surfaces 

throughout incubation. In addition, Pseudomonas fluorescens (Appendix 2 : 11) was 

also frequently isolated and on occasions exceeded numbers of Cytophaga sp. Other 

bacteria isolated included Aeromonas hydrophila (Appendix 2 : 12) and Pseudomonas 

sp. (Appendix 2 : 13). Environmental parameters, in particular egg density and water 

flow rate, did not seem to markedly affect species of bacteria isolated, although 

Cytophaga sp. may have occurred in slightly higher numbers (compared to P. 

fluorescens) on surfaces of eggs at high density. At higher water temperatures (15 °C) 

P. jluorescens was seen to frequently rival the numbers of Cytophaga sp. isolated 

from live egg surfaces. In comparison, dead eggs were almost exclusively dominated 

by P. fluorescens and other Pseudomonas sp. and environmental parameters 

(temperature, flow rate, egg density) were of little importance in influencing bacterial 

genera isolated from dead egg surfaces. 

Dissolved oxygen. Oxygen levels recorded throughout the trial are 

summarized in Table 2: 1, from which it can be seen that marked differences occurred 

in dissolved oxygen levels between the four sample positions. Higher levels of 

dissolved oxygen were recorded at water temperatures of 10 °C compared to 15 °C. In 

addition, fast water flow rates contained highly significantly greater levels of dissolved 

oxygen compared to water at slower flow rates at 10 °C (P < 0.001}, and significantly 

greater levels at 15 °C (P < 0.05). 
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DISCUSSION 

Coelomic fluid obtained with eggs from 7 out of 15 fish utilized during this 

trial was found to contain bacteria in the range of 101 to 102 cfu's I ml. Few other 

reports exist in the scientific literature concerning the bacterial content of coelomic fluid 

taken from healthy fish, although Sauter, Williams, Meyer, Celnik, Banks & Leith 

(1987) isolated Aeromonas hydrophila and Corynebacterium sp. from 5 out of 30 

samples of coelomic fluid taken from healthy chinook salmon, (Oncorhynchus 

tshawytscha) Walbaum. In contrast, Evelyn, Prosperi-Porta & Ketcheson (1981) 

reported that the coelomic fluid of a diseased coho salmon (0. kisutch) suffering from 

bacterial kidney disease (B.K.D.) contained up to 8.0 X 109 cells I ml of Renibacterium 

salmoninarum. Thus, although under half of the fish in this trial revealed signs of low 

bacterial contamination in their coelomic fluid, the remainder were sterile and it would 

seem that under normal healthy conditions bacteria are suppressed. Cone (1982) 

reported the existence of macrophages in the coelomic fluid of rainbow trout, which 

may in turn be responsible for maintaining the sterility of coelomic fluid, or at least 

limiting numbers of contaminating bacteria. Even so, results obtained suggest that 

potentially eggs may be exposed to bacteria from an early stage of development, even 

within the coelomic cavity and correspondingly a few green (unfertilized) eggs were 

found to possess bacterial cells (Staphylococcus epidermis) adhering to their surfaces. 

However, as few eggs were contaminated and in such low numbers, it is possible that 

their presence may only have been the consequence of contamination through contact 

with the urogenital papilla at stripping or possibly from handling of broodstock by farm 

staff (Woodroffe & Shaw 1974). Presence of bacteria within milt also suggests that 

bacterial contamination of eggs could occur at fertilization. However, at the time of egg 

"laying down", although egg surfaces may not be completely sterile, few bacteria 

would have been present. During incubation considerable numbers of bacteria were 

found to accumulate around surfaces of all egg groups. Initially, a few bacteria might 
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have been added to the recirculatory incubation system along with fertilized eggs but, it 

is more likely that most bacteria subsequently found contaminating egg surfaces were 

already present in the hatchery water. Indeed Cytophaga sp. were not isolated from 

coelomic fluid, green eggs or milt but, were frequently found on the surfaces of 

incubating live eggs, indicative of their presence in the hatchery water prior to the 

addition of eggs. 

Initial bacterial colonization of egg surfaces could have occurred through 

·chemotaxis. In particular dead salmonid eggs have been shown to 1 ose amino acids, 

phosphate and potassium (Smith, Armstrong, Springate & Barker 1985), all agents 

which have the potential to attract microbes. However, in practice under relatively fast 

flow rates the effectiveness of such a response may be diminished. In addition, 

bacterial motility may also be important for early egg colonization, for both P. 

fluorescens and A. hydrophila are motile, in contrast though, Cytophaga sp. only 

exhibits "gliding motility" (Strohl & Tait 1978) yet was still successful in colonizing 

live egg surfaces. Initial egg colonization was therefore probably fortuitous, the result 

of bacteria being swept onto egg surfaces by the flow of water. Once in contact with 

egg surfaces, bacteria may go through a two stage adhesion process (to be fully 

described in Chapter 4). In brief, on first contact with a surface bacteria will pass 

through an instantaneous "reversible" adherence phase, which is dependant on non­

specific electrical forces (Marshall, Stout & Mitchell 1971). Generally, all cells carry a 

net negative electrical charge and tend to repel each other by the electrostatic force. 

However, electrodynamic or Van der Waals forces between cells are attractive and tend 

to operate over a greater range than the repulsive electrostatic forces, allowing cells to 

remain in close contact (Bell 1978). Bacteria remain in contact near a surface under 

weak attraction for a period of a few hours and then enter a second adherence phase of­

"irreversible adherence", achieved by the production of fine extracellular polymer 

fibrils, glycocalyx fibres, pili or spinae allowing firmer anchorage to the chosen 

substrate (Marshal! 1976). Once established on the surface, aquatic bacteria frequently 

produce large amounts of exopolysaccharide, termed the glycocalyx (Costerton, Irvin 
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& Cheng 1981), within which bacterial replication can occur to form an adherent 

microcolony (Costerton, Geesey & Cheng 1978). Subsequently, cell division within 

the microcolonies and additional bacteria from the water lead to the production of a 

"biofilm" overlaying the surface (Costerton, Cheng, Geesey, Ladd, Curtis-Nickel, 

Dasgupta & Marrie 1987). 

In the present trial water flow rates were found to markedly influence 

numbers of live egg surface colonizing bacteria during the early part of incubation. 

Flow rate may be an important factor in influencing initial "reversible" bacterial 

adherence to egg surfaces, for the physical movement of water flowing over eggs may 

be sufficient to dislodge bacteria held in place solely by a weak electrical attraction. 

Indeed, under slower flow rates bacteria were recovered from egg surfaces in markedly 

higher numbers than from eggs maintained under fast flow rates, indicative of more 

suitable surface conditions for bacterial colonization, growth and proliferation. 

Bacteria were also recovered in greater numbers from surfaces of eggs 

maintained at high density levels compared to low density levels. Poor water circulation 

(and thus reduced water flow rates) amongst "egg piles" may facilitate "initial 

reversible" bacterial adherence (for reasons described above). In addition, under 

conditions of high egg density, bacteria washed from one egg surface are likely to be 

carried by the flow of water onto another nearby egg surface. Thus "chance" bacterial 

spread from one egg to the next is likely to be encouraged when egg density is high, 

compared to when egg density is low and adjacent egg surfaces are further apart. 

Frequently, the water supply for salmonid hatcheries is taken from a spring or 

borehole, guaranteeing both constant temperatures (8 oc- 10 °C) and an absence of fish 

pathogens (Stevenson 1980). However, such waters contain few dissolved nutrients 

and in turn only support limited microbial populations (Fletcher 1979), and thus, in 

most natural waters bacteria are thought to exist under starving conditions (Jannasch 

1969). Willoughby, McGrory & Pickering (1983) demonstrated that in hatchery waters 

sufficient nutrients exist to support limited microbial growth however, attachment and 

colonization of egg surfaces by bacteria provides them with a micro-environment of 
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comparative nutrient abundance compared to the surrounding water. Incubating egg 

surfaces provide an interface to which both organic and inorganic nutrients will be 

attracted by non-specific electrical forces, similar to those responsible for the initial 

attraction of bacteria (Costerton et a/ 1981) in turn potentially encouraging greater 

bacterial growth and proliferation. Furthermore, the development of a "biofilm" (as 

described) also leads to enriched recovery of nutrients by "nutrient trapping", whereby 

nutrients become bound to the biofilm matrix and are broken down for use by the 

component organisms (Costerton et al 1987). 

Potentially, bacterial adherence to organic (rather than inert) surfaces will also 

allow additional nutrients to be obtained by utilization of waste products produced by 

those surfaces, and also from actual digestion of the substrate (Costerton et a/ 1987). 

However, rainbow trout embryos are extremely efficient at using nutrients available to 

them and only relatively small quantities of carbon dioxide and ammonia are excreted 

(Hayes 1949 ; Smith 1947, 1957). Thus, it is unlikely that bacteria on live egg surfaces 

would greatly benefit from the utilization of waste products derived from developing 

embryos. Furthermore, it is also unlikely that bacteria on live egg surfaces would 

obtain nutrients from egg digestion, for trout embryos are protected by a tough 

ichthulokeratin outer membrane (Young & Smith 1956 ; Bell, Hoskins & Bagshaw 

1969), notoriously resistant to enzymatic degradation. In contrast dead egg surfaces 

support far higher numbers of bacteria than live eggs under identical conditions of 

incubation, in turn suggesting a far greater availability of nutrients. Increased nutrient 

availability could be due to the loss of nutrients through the egg shell (Smith et al 

1985) or colonization by moulds such as Saprolegnia sp., degrading the egg, and 

allowing bacterial access to further nutrients. Water temperature is probably also 

responsible for increased nutrient availability. As trout embryos are poikilothermic 

incubation of live eggs at 15 °C compared to 10 °C will increase respiration rates, 

leading to increased levels of waste by-products over a given period and potentially 

higher bacterial numbers. Additionally, trout eggs are less well suited to higher 

incubation temperatures, under such conditions stressed eggs may lo se more nutrient 
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material leading to still further bacterial proliferation. On dead egg surfaces nutrient 

availability is potentially less of a critical factor as fewer bacteria were isolated from 

dead eggs maintained at 10 °C compared to 15 °C. Although temperature may influence 

rates of nutrient loss from dead eggs the greater numbers of bacteria associated with the 

higher temperature is probably the consequence of increased bacterial growth rates, in 

turn a function of increased velocity in cell growth (Jawetz, Melnick & Adelberg 1984). 

Higher water temperatures would also have further encouraged the growth of moulds 

such as Saprolegnia sp. and thus caused increased dead egg degradation and the 

availability of further nutrients for bacteria (as discussed). 

In this trial, bacteria on dead egg surfaces reached a maximum approaching 

400,000 cells I mm2, on eggs with a mean surface area of 61.9 mm2. Theoretically, 8 

X 107 bacterial cells (measuring 1.5 J.l.m X 0.5 J.tm) would be needed to cover the entire 

egg surface. In reality, the highest recorded count of 400,000 cells { mm2 reQresents a 

covering of only 30% of the egg surface. However, as egg surface bacterial numbers 

were calculated using plate count techniques, it is likely that in reality a greater 

percentage of the egg surface was covered. Even so, although plate count techniques 

represent only a minimum estimate of the total microflora, such techniques clearly 

demonstrate significant differences in egg surface bacterial numbers between all egg 

groups throughout incubation. 

Trust (1972) likened the accumulation of bacteria around egg surfaces to the 

rhizosphere (a region of increased bacterial activity) found in the soil close to 

leguminous plant roots (Starkey 1929a; 1929b). Certain similarities do exist, both the 

rhizosphere and the egg surface are colonized by specific bacterial populations (live egg 

surfaces mainly Cytophaga sp. and P.fluorescens; dead egg surfaces, P.fluorescens 

and Pseudomonas sp.). However, major differences also occur for the rhizosphere has 

been shown to extend many mm's away from the root, to be colonized by a wide range 

of bacteria and fungi and to involve many root exudates including, carbohydrates, 

amino acids, nucleotides, flavonones and enzymes (Starkey 1958; Parkinson 1967). In 

contrast in an aquatic environment any gradient of nutrients extending from eggs would 
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be restricted and readily diluted by currents, colonization is by a limited range of 

bacteria (mainly Cytophaga sp., P. fluorescens, A. hydrophila and Pseudomonas 

sp.) and unlike plant root exudates, eggs may only release small amounts of ammonia 

and carbon dioxide (Hayes 1949; Smith 1947; 1957). Thus, the microbial population 

of the rhizosphere is stimulated by nutrients exuded from the root, whereas bacterial 

growth on live egg surfaces is mainly stimulated by increased nutrient concentration in 

turn accumulated by passive adsorption to surfaces. 

Full oxygen saturation of water at 10 °C is 11.10 ppm and at 15 °C is 9.96 

ppm (Stevenson 1980). Oxygen levels recorded during this trial revealed that after 

passing over eggs, oxygen levels were always below these potential maximum figures. 

As could be expected oxygen levels were always greater at 10 °C and within each 

temperature (10 oc and 15 °C) water at faster flow rates (compared to slow flow rates) 

also carried significantly more oxygen. At 15 °C and under a slow water flow rate 

oxygen levels fell on one occasion to only 4.01 ppm, even so, sufficient oxygen should 

still have been available for developing embryos, although at high egg density it is 

possible that poor water circulation could have led to critically low levels. Trust (1972) 

calculated that if all the bacteria on an egg surface were Pseudomonads (dry weight of 

10-11 g I cell, Brock 1966) then the oxygen demand by bacteria alone on an egg 

surface could be as much as 15 ~1 I hour. In comparison, incubating salmon eggs 

require an estimated 0.2 ~~ per egg per hour after fertilization rising to 3.4 ~I per egg 

per hour at hatching (Blaxter 1969). Thus, when saturated levels of oxygen are low 

(higher water temperatures, slow flow rates and high egg density) it is possible that 

bacterial consumption of oxygen could cause local areas of oxygen shortage in turn 

causing potential mortality amongst incubating salmonid eggs. 
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SUMMARY 

Bacteria were frequently recovered from samples of both coelomic fluid and 

milt. In contrast, few bacterial cells were isolated from surfaces of newly stripped eggs. 

However, during egg incubation considerable numbers of bacteria were found to 

accumulate around egg surfaces. Furthermore, slow water flow rates, increased egg 

density and higher water temperatures were all revealed as factors significantly 

influencing egg surface bacterial populations. Potentially, large numbers of egg surface 

bacteria coupled with reduced water circulation might in turn lead to insufficient 

amounts of dissolved oxygen to support further egg development. 
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INTRODUCTION 

In common with all living organisms bacteria require certain nutrients for 

growth. These must provide the elements necessary for increase in cell mass, enzyme 

activity and transp~rt systems. In addition, nutrients must also provide the organism 

with a utilizable energy source. All organisms require a carbon source in order to 

synthesize a wide range of organic compounds that "make-up" the protoplasm. 

Furthermore, all organisms require a nitrogen source, as many cell constituents 

(principally the proteins) contain nitrogen. A number of other minerals are also reo,.uired 

for growth, for example ; sulphur (like nitrogen) is important in protein structure, 

phosphorus (assimilated as free inorganic phosphate) is an essential component of 

adenosine triphosphate (A.T.P.), nucleic acids and many coenzymes. Magnesium 

(Mg2+) and potassium (K+) are essential for ribosome structure and function. In 

addition, many other minerals are also frequently essential for cell growth ; calcium 

(Ca2+), iron (Fe2+), manganese (Mn2+), molybdenum (Mo2+), cobalt (Co2+), copper 

(Cu2+) and zinc (Zn2+). 

The most suitable water supply for salmonid hatcheries is considered to be 

from a spring or borehole, guaranteeing constant temperatures (8 °C- 10 °C) and an 

absence of fish pathogens (Stevenson 1980). Both spring and borehole water (ground 

waters) collect in permeable rocks which lie below the natural water table, a 

consequence of water percolating through the overlying soil (termed vadose water). 

Many dissolved nutrients in such water are filtered out during the process of percolation 

and thus ground water can only support a limited microbial population (Fletcher 1979). 

Furthermore, bacteria in such waters are considered to exist under conditions of 

starvation, with growth limited primarily by low concentrations of a suitable carbon 

source (Jannasch 1969). Even so, sufficient nutrients may exist to support continuous 

bacterial growth at extremely low rates or alternatively, bacteria may exist in resting or 

dormant stages (Stevenson 1978). However, typically most bacteria in natural aquatic 
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environments do not occur "freely suspended" but attached to surfaces. Surfaces in 

turn provide an interface to which any nutrients present in water (both organic and 

inorganic) will be attracted by non specific elecoical forces (Marshal!, Stout & Mitchell 

1971). Zobell & Anderson (1936) flrst demonstrated that microbial growth on surfaces 

was probably the result of increased nutrient concentration. Funhermore, bacteria 

attached to organic substrates may potentially derive nuoients from the substrate, either 

directly through enzymatic digestion or from utilization of waste products (e.g. 

ammonia and carbon dioxide) produced by the substrate. 

Bacteria frequently associated with surfaces of live, stream incubated 

salmonid eggs include P.fluorescens and Cytophaga sp. (Bell, Hoskins & Hodgkiss 

1971 ). In addition, live salmonid eggs incubated under hatchery conditions ttre also 

colonized by these same bacterial groups (Trust 1972, Chapter 2). It is likely therefore 

that P. f/uorescens and Cytophaga sp. possess properties (or fitness traits) that 

conoibute to their presence on egg surfaces. Such properties are likely to include an 

ability to adhere to egg surfaces (investigated in Chapter 4) and an ability to efficiently 

utilize any nuoients that might be available within the immediate egg environment. In 

the present oial an investigation was carried out into the relationship between potential 

nuoient availability on egg surfaces and and the dominant egg surface bacterial flora. 

Three bacterial groups were selected for investigation. Two groups, P.fluorescens and 

Cytophaga sp. were both frequently recovered from live egg surfaces in Chapter 2. 

The third bacterial group, Serratia sp. was selected as a direct comparison to the above 

two groups, for despite its common occurrence in many natural environments (Grimont 

& Grimont 1978), it was rarely recovered from live egg surfaces. Growth rates of all 

three groups were first determined under conditions of nuoient abundance in a synthetic 

medium. Subsequently, the ability of bacteria to grow in a medium derived from 

nutrients "leaked" from live and dead salmonid eggs was also investigated. A 

biochemical analysis of the nutrients leaked from eggs was undertaken to reveal 

possible nuoients that bacteria colonizing egg surfaces might utilize to support growth 

and reproduction. In addition, a biochemical analysis of structural salrnonid egg amino 
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acids and fatty acids was performed to indicate potential carbon and nitrogen sources 

for bacteria colonizing (in particular) dead egg surfaces. Furthermore, the ability of all 

three bacterial groups to smvive for prolonged periods under conditions of starvation 

was also examined. A schematic outline of investigative procedures is summarized in 

Figure 3: 1. 
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FIGURE 3 : 1 Flow diagram of experimental protocol. 
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MATERIALS AND METHODS 

Growth Studies 

Measurement of bacterial cell concentration. Bacterial cell concentration was 

determined by measuring optical density (O.D.) of the test bacterial suspension. At low 

cell concentrations a linear relationship exists between O.D. and cell concentration, 

summarized by the Beer-Lamben law ; 

where loo = incident light 

I = emergent light 

o.n.·a loo 

I 

At higher cell concentrations the scattering of secondary light invalidates this 

relationship (Meynell & Meynell 1970). Kenward (1975) established that the Beer 

Lambert law is obeyed up to an O.D. of 0.3. However, above this value O.D. 

measurements are lower than expected. Linearity can be restored though by diluting the 

suspension to an absorbence of less than 0.3 (but above 0.03). A wave length scan of 

cell free supernatants of stationary phase cultures revealed that absorption by medium 

constituents and bacterial cell metabolic products was negligible at 470 nm for P. 

fluorescens, 425 nm for Cytophaga sp. and 400 nm for Serratia sp. These 

wavelengths were selected for measurements of O.D. for each respective bacterial 

suspension. 

Media. Increase in bacterial cell concentration was measured for each group 

under varying conditions of nutrient availability. Initially, growth curves were 

constructed by culturing bacteria in nutritionally rich environment composed of a simple 

chemically defined medium (C.D.M., Cruickshank, Duguid, Marmron & Swain 1975) 

(Appendix 2: 1). In addition bacteria were also cultured in two further media intended 

to resemble more closely the potential nutrients that might be available on egg surfaces. 
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The ftrst comprised of nutrients that might be leaked from live eggs. Batches of 10 

fenilized rainbow trout eggs were placed in 20 ml of sterile fish unit water maintained at 

10 °C on an orbital shaker (40 rpm) for up to 48 hours. Eggs were removed from the 

water, the resulting medium pooled, ftlter sterilized and dispensed in 25 ml volumes 

into sterile 100 ml flasks. (This medium is hereafter referred to as live egg medium). 

The second medium comprised of nutrients leaked from dead eggs and was obtained in 

a similar manner to live egg medium. (This medium is hereafter referred to as dead egg 

medium). In addition, bacterial groups were also incubated in 25 ml volumes of sterile 

ftsh unit water with no added nutrients as a control. 

Growth measurements. Growth of bacteria was measured by determining 

changes in 0.0. with time. Inocula were prepared from stationary phase cells grown in 

25 ml of C.D.M. Bacteria were harvested by centrifugation at 5000 x g for 10 minutes 

at room temperature, washed twice in double distilled water and inoculated into the 

appropriate sterile media (e.g . C.D.M. I live egg medium I dead egg medium) at a 

concentration of 2 X 106 cells I ml. Bacteria were incubated at 10 °C (and 25 oc for 

C.D.M. growth curves). Samples for O.D. measurement were removed at appropriate 

intervals and diluted when necessary. In addition bacterial cell concentration was 

determined by viable counts for each bacterial group in sterile fish unit water for a 

period of 29 days. 

Potential nutrients from eggs 

Analysis of nutrients leaked from eggs. Nutrient loss from live and dead eggs 

was determined by placing groups of 10 eggs in 20 ml of sterile fish unit water on an 

orbital shaker (40 rpm) for up to 50 hours. At suitable intervals five replicate groups of 

eggs were discarded and the filtrate analysed for : 

1) amino acids - by a colourimetric method based on the reaction with ninhydrin 

(Yemm & Cocking 1955), 
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2) phosphate - by a colourimetric method based on the reaction with ferrous sulphate 

molybdate (Taussky & Shorr 1952) and 

3) potassium - by flame photometry. 

Analysis of structural and free egg amino acids. Structural amino acids were 

analysed by hydrolysing individual eggs in 2 ml of 6 M HCl in sealed, evacuated tubes 

at 110 °C for 24 hours. The resulting hydrolysate was almost neutralized with 5.3 ml of 

2 M NaOH and diluted with 25 ml of distilled water. After centrifugation aliquots (200 

Jll) of hydrolysate were "loaded" onto a Locarte amino acid analyser (Locarte, London) 

and separated using a single column sodium citrate buffer system. Identification and 

quantification of unknown amino adds were made by comparison to known standards 

(Appendix 3 : 1). 

Free amino acids were analysed by homogenization of 10 rainbow trout eggs in 5 ml of 

water in a ground glass macerator. After filtering, aliquots of 200 Jll were directly 

loaded onto the amino acid analyser. 

Analysis offatry acids. Egg fatty acids were analysed by conversion to their 

methyl esters and separated by Gas Liquid Chromatography (G.L.C.) in a similar 

manner to that outlined by Hammonds & Smith (1986). Eggs were individually 

extracted in 3 ml of hot isopropanol (80 °C) for 15 minutes to inactivate lipolytic 

enzymes. Samples were then disrupted separately in a ground glass homogenizer in 3 

ml of isopropanol, homogenates were transferred to centrifuge tubes and the 

homogenizer rinsed with two further 3 ml isopropanol aliquots. Each extract (9 ml) was 

centrifuged at 1000 x g for 5 minutes and the resulting supernatants decanted through 

dried pre-weighed filter paper into appropriate 150 ml round bottom evaporating flasks. 

Individual remaining pellets were further twice extracted with 5 ml of isopropanol : 

chloroform (1 : 1, vI v) and finally 2 ml chloroform. After each extraction the 

supematant was again decanted into an appropriate evaporating flask to give a final 

volume of 21 ml of extract in each flask. Extracts were subsequently reduced in volume 

to approximately 1 ml in vacuo (40 °C) and then taken up in 2 ml of chloroform. 

Individual extracts were transferred into conical centrifuge tubes and washed three 

68 



times with 1 ml 0.88 M KCL (Folch wash), the upper aqueous layer being discarded 

after each wash. Each extract was then transferred to a 5 ml pear-shaped flask, further 

reduced in volume (in vacuo 40 °C), further transferred to small vials and reduced to 

dryness at ambient temperature under a stream of nitrogen before temporary storage (-

20 °C in the dark). Dried extracts were methylated in the manner outlined by Morrison 

& Smith (1964) by addition to each vial of 1 ml 25% boron trifluoride (14% in 

methanol), 20% benzene 55% methanol cv I v). Vials were carefully sealed and 

imme~ed in boiling water for 45 minutes. Fatty acid methyl esters were recovered by 

addition of 1 ml distilled water followed by 2 ml pentane. After separation the upper 

layers were recovered and placed in fresh vials, dried in a stream of nitrogen and stored 

in the dark at -20 °C prior to G.L.C. analysis. For G.L.C. analysis 250 J..Ll of pentane 

was added to each vial and subsequently 5 J..Ll aliquots of each extract were injected onto 

chromatograph columns. Fatty acid methyl esters were separated on a 1.8 M column of 

10% DEGS (diethyleneglycol succinate) on chromasorb 101 using a Pye series 304 

chromatograph equipped with dual flame ionising detector and computing integrator. 

Nitrogen (40 ml I minute) was employed as a carrier gas with a column temperature of 

190 °C. Methyl esters from samples were identified by comparison of retention times 

with those of known standards (Ward, Candy & Smith 1982) (Appendix 3: 2). 

Statistical analysis. Amounts of amino acids, phosphate and potassium 

"leaked" from live and dead eggs was compared by 2 way split -plot analysis of 

variance. Differences between means were compared by calculating the standard errors 

and 95% confidence limits appropriate to the split-plot design (Ridgman 1975 ; 

Snedecor & Cochran 1980). 
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RESULTS 

Growth Studies. Increases in cell concentration of all three bacterial groups in 

C.D.M. at 10 °C and 25 °C are summarized in Figures 3: 2 to 3 : 4. From these graphs 

it can be seen that Cytophaga sp. exhibited a slower growth rate compared to the other 

two genera. However, not surprisingly all three grew markedly faster at 25 °C 

compared to 10 °C. Increase in cell concentration for P.fluorescens is summarized in 

Figure 3: 2 (Appendix 3 : 3). From this graph it can be demonstrated that a doubling 

time of approximately 7 hours was achieved by P.fluorescens at 10 °C and 2.5 hours 

at 25 °C in turn leading to growth rates of 0.14 generations per hour (10 °C) and 0.4 

generations per hour (25 °C). Increase in cell concentration for Serratia sp. in C.D.M. 

is summarized in Figure 3 : 3. From this graph it can be shown that a similar growth 

rate toP. f(uorescens was obtained. Serratia sp. achieved a doubling time of 

approximately 6 hours at 10 °C and 3 hours at 25 °C, in turn leading to growth rates of 

0.17 generations per hour and 0.4 generations per hour respectively (Appendix 3 : 4). 

Increase in cell concentration for Cytophaga sp. in C.D.M. is summarized in Figure 3: 

4, which demonstrates a slower doubling time of 11.9 hours at 10 °C and 8.5 hours at 

25 °C, leading in turn to growth rates of 0.08 generations per hour (10 °C) and 0.12 

generations per hour (25 °C) (Appendix 3 : 5). 

Increases in cell concentration for all three bacterial groups in live egg 

medium, dead egg medium and sterile fish unit water are summarized in Figures 3 : 5 a­

c. In general, dead egg medium supponed increased cell concentrations compared to 

live egg medium which i.n turn supported greater cell concentrations than sterile fish 

unit water. Growth of P.fluorescens in all3 media at 10 °C is summarized in Figure 3 

: Sa. From this graph it can be seen that initially both live and dead egg media supponed 

bacterial growth. However, neither media could provide sufficient nutrients for 

sustained growth although dead egg medium supponed greater bacterial growth than 

live egg medium. In sterile fish unit water numbers of P.fluorescens did not increase 
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FIGURE 3:2 Increase in cell concentration in chemically 

defined medium 
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FIGURE 3:4 Increase in cell concentration in chemically 

defined medium 
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FIGURE 3:5 (a) Increase in cell concentration in medium made 
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as measured by O.D. (Appendix 3 : 6). Growth of Serratia sp. in live egg medium, 

dead egg medium and sterile fish unit water is summarized in Figure 3 : 5b. From this 

graph it can be seen that both live and dead egg media supported increased numbers of 

bacterial cells. In common with P.fluorescens sterile fish unit water did not provide an 

adequate environment for increased numbers of Serratia sp. (Appendix 3: 7). Growth 

of Cytophaga sp. in live egg medium, dead egg medium and sterile fish unit water is 

summarized in Figure 3 : Se. From this graph it can be seen that in contrast to P. 

fluorescens and Serratia sp. live egg medium did not support growth of Cytophaga 

sp. However, Cytophaga sp. did increase in cell concentration when maintained in 

dead egg medium. In common with P.fluorescens and Serratia sp., sterile fish unit 

water did not mediate increased cell concentrations of Cyrophaga sp. (Appendix 3 : 8). 

Bacterial growth in sterile fish unit water was also monitored by viable count 

techniques over a 29 day period at 10 °C. Results obtained for all3 bacterial groups are 

summarized in Figure 3: 6 (a-c). From this figure it can be seen that viable colonies of 

all 3 bacterial groups can be recovered on agar over the complete 29 day period. 

Funhermore, in contrast to results measuring cell concentration by optical density both 

P. fluor.escens and Cytophaga sp. demonstrated an increase in numbers of recovered 

colony forming units (cfu's) compared to the original inoculum, before a general 

reduction in numbers was obtained towards the end of the sampling period (Appendix 

3: 9). 

Potential nutrients from eggs. The levels of amino acids leaked from live and 

dead eggs are summarized in Figure 3 : 7. Statistical analysis by two way split-plot 

analysis of variance revealed that the loss of amino acids between these groups was 

highly significantly different (P < 0.001). A highly significant effect of time was also 

seen (P < 0.001) and a highly significant interaction between time and state of egg was 

found ( P < 0.001) (Appendix 3 : 10). Levels of phosphate leaked between live and 

dead eggs are summarized in Figure 3 : 8 and were found to be highly significantly 

different (P < 0.001). A highly significant increase in amounts of phosphate leaked 

from both live and dead eggs with time was also revealed (P < 0.001). In addition, a 
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FIGURE 3:6 (a) Recovery of cells maintained in sterile fish 
unit water over a 29 day period 
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FIGURE 3:6 (c) Recovery of cells maintained in sterile fish 
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FIGURE 3:7 Amino acids "leaked" from live and dead eggs 
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FIGURE 3:8 Phosphate "leaked" from live and dead eggs 
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FIGURE 3:9 Potassium "leaked" from live and dead eggs 
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TABLE 3 : 1 Free and structural amino acids of rainbow trout eggs 

-------------------------------------------------------------------------------------------------------

Amino acid Free Structual 

--------------------------------------·----------------------------------------------------------------

L-Aspartate 39.6 

L-Threonine 15.3 

L-Serine 30.0 

L-Glutamine 25.5 

L-Proline 9.6 

Glycine 8.9 

L-Alanine 10.6 

L-Cystine trace 

L-V aline 5.2 

L-Methionine 5.1 

L-Isoleucine 6.0 

L-Leucine 6. 1 

L-Tyrosine 4.7 

L-Phenylalanine 4.8 

L-Histidine 6.3 

L-Lysine 5.4 

L-Arginine 48.1 

Average of three samples 

Free amino acids (n mol I mg dry weight per 10 eggs) 

Structual amino acids (n mol I mg dry weight per egg) 

80 

29.9 

27.3 

39.8 
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38.6 

24.1 

43.5 

8.6 

26.6 

10.6 
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FIGURE 3 : 10 Fatty acid analysis of trout eggs 
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highly significant interaction between time and state of egg was also shown to have 

occurred (P < 0.001) (Appendix 3 : 11 ). Levels of potassium leaked from live and dead 

eggs are summarized in Figure 3 : 9. From this graph it can be seen that a highly 

significant difference (P < 0.001) exists between the amounts of potassium leaked from 

live and from dead eggs. A highly significant effect of rime was seen (P < 0.001) and a 

highly significant interaction between time and state of egg was found (P < 0.001) 

(Appendix 3 : 12). 

Analyses of free and structural amino acids from rainbow trout eggs are 

summarized in Table 3 : 1. From this table it can be seen that arginine, aspartate, serine 

and glutamine comprised the bulk of free amino acids. In comparison, the most 

abundant structural amino acids were alanine, arginine, glutamine and serine (Appendix 

3 : 13). 

Analyses of structural fatty acids in rainbow trout eggs are summarized in 

Figure 3 : 10. From this graph it can be seen that the fatty acids recovered in the highest 

amounts were oleic acid (18: 1) 31.6 %, an unknown (probably, 22: 6) 19.2% and 

palmitic acid (16 : 0) 16.8% (Appendix 3 : 14). 
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DISCUSSION 

In natural aquatic environments bacteria are considered to exist under 

conditions of starvation (Jannasch 1969). Thus, initially it might seem "artificial" to 

measure bacterial·growth rates in chemically defmed medium and conditions of nutrient 

abundance. However, such conditions of nutrient excess may still provide a realistic 

comparison of growth rate between groups. Growth rate measurements were mainly 

taken at a temperature of 10 °C to reflect the the prevailing water temperature in most 

U.K. hatcheries. At 10 °C, P. fluorescens and Serratia sp. exhibited similar growth 

rates, but Cytophaga sp. was markedly slower. Differential growth rates are often 

considered to be responsible for displacement of one organism by another (Alexander 

1971). Even so, few well defined examples of such a simple type of interaction exist 

although, Jannasch (1968) demonstrated that slow growth rates of Enterobacteriaceae 

are the main cause for their displacement from sea-water by other microorganisms. In 

this trial Cytophaga sp. proved to have the slowest growth rate of all three groups in 

C.D.M. but, even so, is frequently found dominating live egg surfaces (Bell, Hoskins 

& Hodgkiss 1971 ; Trust 1972). Thus, fast growth rate alone would not seem to be the 

only significant factor responsible for successful live egg colonization. 

A potentially more appropriate nutri~nt environment for present bacterial 

growth studies was obtained by gently rocking live and dead eggs on a shaker in sterile 

fish unit water. Analysis of the water surrounding eggs at appropriate intervals revealed 

that amino acids, phosphates and potassium were leaked from eggs. In turn, certain 

bacteria when added to nutrient material derived from living eggs increased in cell 

concentration compared to those inoculated into sterile fish unit water alone. Thus, 

nutrients are lost from live eggs in sufficient quantity and variety to support bacterial 

growth albeit limited. In addition to nutrients leaked from live eggs, bacteria colonizing 

live egg surfaces might also utilize waste products excreted by developing embryos as 

although salmonid embryos are extremely efficient at using nutrients available to them 
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small quantities of ammonia and carbon dioxide are excreted (Hayes 1949 ; Smith 
_.. 

1947, 1957). However, bacteria colonizing live egg surfaces probably obtain the bulk 

of their nutrients from the surrounding hatchery water. Frequently bacteria on surfaces 

in natural aquatic systems form adherent microcolonies and subsequently a "biofilm" 

(Costerton, Cheng, Geesey, Ladd, Curtis-Nickel, Dasgupta & Marrie 1987). Such 

biofilms greatly assist the process of nutrient trapping, and thus their establishment on 

live egg surfaces may prove to be more important in successful bacterial colonization of 

living egg surfaces than growth rates alone. 

The yolk of salmonid eggs is composed of salts and vitellogenin and is 

contained in the yolk sac membrane. Damage to this membrane allows salt to pass from 

the yolk and out of the egg, leaving the larger globulin molecule behind. Vitellogenin is 

a protein that is soluble in salt solutions but when salt leaves the egg it precipitates out 

as a white solid. Precipitated vitellogenin therefore gives dead eggs their characteristic 

white I opaque appearance (Stevenson 1980). Biochemical analysis of sterile fish unit 

water containing dead eggs revealed that significantly higher levels of amino acids, 

phosphate and potassium were lost compared to live eggs. Thus, bacteria colonizing 

dead egg surfaces would potentially have access to increased levels of nutrients 

compared to those colonizing living eggs. The markedly greater bacterial cell 

concentration supported by nutrients released from dead eggs indicates that the the 

increased nutrient loss from dead eggs is likely to support greater bacterial colonization. 

Furthermore, it is also likely that bacteria colonizing dead egg surfaces obtain nutrients 

from the substrate (i.e. the egg) itself. Dead eggs are frequently colonized by 

considerably greater numbers of bacteria than live eggs (Bell et al 1971, Chapter 2), 

and as a consequence, a general physical softening of the egg shell is often observed. 

Biochemical analysis of egg structural amino acids and fatty acids revealed many 

possible sources of carbon and nitrogen that in turn could potentially support bacterial 

growth and proliferation. Structural amino acids present in relative abundance were 

alanine, arginine, glutamine and serine, closely agreeing with previous work by 

Suyama & Suzuki (1978). In agreement with Atchinson (1975) and Nakagawa & 
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Tsuchiya (1976) analysis of egg fatty acids demonstrated oleic acid (18 : 1), an 

unknown polyunsaturated fatty acid (probably, 22: 6) and palmitic acid (16: 0) to be 

the most abundant. 

The predominant bacterial flora of dead eggs tends to be fluorescent 

Pseudomonads and not Cytophaga sp. (Bell et al 1971, Trust 1972 and Chapter 2). 

The relative abundance of P. fluorescens on dead egg surfaces could be due to a 

variety of factors, including perhaps tolerance of a wide range of fatty acids which can 

potentially be toxic to some bacteria (Atlas & Bartha 1981). Furthermore, P. 

fluorescens is known to produce a wide range of extracellular lipases (Sugiura & Isobe 

1975 ; Macrae 1983) and in addition can utilize alanine and serine as sole carbon 

sources (Palleroni 1984). Thus, on dead egg surfaces P. fluorescens may readily 

derive sufficient nutrients to support rapid growth and proliferation, which in turn 

coupled with its' markedly greater potential growth rate compared to Cytophaga sp., 

would further promote its' establishment at the expense of Cytophaga sp. Moreover, 

P. fluorescens has clearly demonstrated the ability to inhibit other competing 

microorganisms (Cornick, Chudyk & McDermot 1969; Dubois-Darnaudpeys 1977; 

Gurusiddaiah, Weller, Sarkar & Cook 1986; Hatai & Willoughby 1988) and thus may 

inhibit establishment of Cytophaga sp. under conditions of greater nutrient availability. 

The Serratia sp. used during this trial was initially isolated from a live egg 

surface during a previous trial (Chapter 2). However, Serratia sp. are rarely recovered 

from egg surfaces despite their frequent presence in many natural ecosystems (Grimont 

& Grimont 1978). In this trial Serratia sp. demonstrated an equal ability to utilize 

nutrients from live and dead egg media and a growth rate equal to that of P. 

fluorescens. In addition, Serratia sp. (as well as P.fluorescens and Cytophaga sp.) 

were recoverable on agar after 29 days in sterile fish unit water. Thus, Serratia sp. 

certainly possess the ability to exist under limited nutrient conditions for the complete 

period of egg incubation at 10 °C and to utilize any nutrients that might become 

available from incubating eggs. Thus, the failure of Serratia sp. to colonize egg 

surfaces is unlikely to be due to either physiological unsuitability or an inability to use 

85 



available nutrients but, may be due to other factors, perhaps the initial ability to adhere 

to egg surfaces. 

SUMMARY 

Bacterial populations on live egg surfaces are probably largely supported by 

nutrients derived from the surrounding hatchery water. In addition, low amounts of 

potassium, phosphate and amino acids might be obtained, "leaked" from live eggs. In 

contrast, bacteria on dead egg surfaces have access to significantly greater amounts of 

the same (above) nutrients. Furthermore, biochemical analysis of eggs reveals both 

amino acids and fatty acids that might additionally be utilized by bacteria colonizing 

dead egg surfaces. 

Under conditions of limited nutrient availability, such as occur around 

surfaces of live eggs, Cytophaga sp. is frequently found to predominate. However, on 

dead egg surfaces, fluorescent Pseudomonas sp. comprise the bulk of the population, 

a possible consequence of greater nutrient availability, faster growth rate, tolerance of 

toxic fatty acids and an ability to inhibit other competing microorganisms. 
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CHAPTER FOUR 

ADHESION PROPERTIES OF BACTERIA 

COLONIZING lNCUBA TING SALMONID EGG 

SURFACES 
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INTRODUCTION 

Spring or borehole water is frequently used to supply salmonid hatcheries. 

These waters typically contain few nutrients and thus in turn support few bacteria 

(Fletcher 1979). Indeed, in such waters bacteria are considered to exist under 

conditions of starvation (Jannasch 1969). However, once diverted into a hatchery any 

remaining nutrients in the water will tend to accumulate on available surfaces (Zobell & 

Anderson 1936), including hatchery troughs, trays and incubating eggs, in turn 

supporting bacterial growth and reproduction (Chapter 3). Initially, both bacteria and 

nutrients will be attracted to surfaces by similar mechanisms as explained by Dezjaguin 

& Landav and Verivey & Oberbeck (the D.L.V.O. theory) (Rutter & Vincent 1980). 

Their concept states that interaction energy (VT) of two smooth particles is determined 

solely by the sum of V an de Waals attractive energy (V A) and repulsive electrostatic 

energy (VR) : VT = V A + VR. When a particle approaches a surface it experiences a 

weak Van de Waals attraction induced by the fluctuation of dipoles within the molecules 

of the two approaching surfaces. Attraction between the surfaces increases as the 

distance between them decreases. However, as both particle and surface are negatively 

charged there will also be a repulsion, the magnitude of which is dependant on surface 

potentials, ionic strength and the dielectric constant of the surrounding medium. 

Attractive Van de Waals forces tend to operate over a greater range than repulsive 

electrostatic forces thus allowing surfaces to remain in contact. Bacteria in contact with 

a surface proceed through this phase of adherence termed "reversible" adherence to a 

furtller phase of "irreversible" adherence (to be described later). One important factor in 

determining both phases of adhesion is the hydrophobic nature of the cell surface 

(Pethica 1980 ; Klotz, Drutz & Zajic 1985), directly influencing the "stickiness" of the 

cell. Bacteria in low nutrient environments (such as hatchery water) exhibit a range of 

different characteristics including increased cell surface hydrophobicity (Kjelleberg & 
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Hermansson 1984). A variety of techniques exist to measure bacterial cell surface 

hydrophobicity including, contact angle measurements of dried cell layers, hydrophobic 

interaction chromatography, partitioning of bacteria in aqueous polymer two phase 

systems and adherence to hydrocarbons. No single test can adequately describe cell 

surface hydrophobicity (Rosenberg, Gutnick & Rosenberg 1980) and thus frequently a 

series of tests is selected. In this study, an examination was made of the adherence 

properties of two bacterial genera frequently recovered from surfaces of live incubating 

salmonid eggs, Pseudomonas fluorescens and Cytophaga sp. In addition, a third 

bacterial group (Serratia sp.) rarely isolated from live egg surfaces was also used for 

comparison. The cell surface hydrophobicity of all three organisms was studied by the 

following series of selected techniques ; 

1) Bacterial Adherence To Hydrocarbons (B.A.T.H.). Rosenberg et a/ 

(1980) demonstrated that bacterial hydrophobicity could be indirectly measured through 

relative cell surface affinity for liquid hydrocarbons. The above authors added three 

hydrocarbons, octane, xylene and hexadecane at three different volumes to turbid 

aqueous suspensions of test bacteria. After a brief period of mixing, suspensions were 

left to settle and the original turbid solution was found to separate into a clear bottom 

layer and a "creamy" upper layer (Figure 4 : la). Microscopic examination of the upper 

layer revealed an oil-in-water emulsion consisting of droplets of the respective 

hydrocarbon covered with adhering bacterial cells. Initially, during this forthcoming 

trial, adherence to all three hydrocarbons (octane, xylene and hexadecane) was 

examined. However, microscopic examination of bacteria adhered to xylene suggested 

the possibility that some cells had suffered damage and thus further tests with this 

particular hydrocarbon ceased. In contrast cells adhered to both octane and hexadecane 

revealed no indication of such damage. Further trials demonstrated that most cells 

adhered slightly better to hexadecane than octane and thus hexadecane was finally 

selected for the forthcoming trials. 

2) Hydrophobic Interaction Chromatography (H.I.C.). H.I.C. is a technique 

used to assay the degree of hydrophobicity of bacterial cells by comparing the 
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FIGURE 4:l(a) Bacterial Adherence to Hydrocarbon (B.A.T.H.) 

Before mixing After mixing 

Hydrocarbon layer 
. __. 

Aqueous suspension 
Clear bottom layer of bacteria 

1 2 
1 Hydrocarbon added to aqueous suspension of bacteria 

2 After mixing and allowing to stand, adherant bacterial cells 
rise with the hydrocarbon to form a creamy upper layer and a 
clear aqueous phase 
from Rosenberg, Gutnick & Rosenberg (1980) 

FIGURE 4:l(b) Hydrophobic Interaction Chromatography (H.!. C.) 

Gel bed--~• .. 

Glass wool 

Bacteria added to column 

Eluted bacteria 
with successive 
washings 

Bacteria of known Optical Density (0.0.) added to column and eluted with 3 successive 
washings. O.D. of eluate recorded and results expressed as percent of bacteria adhering 
to column. 
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FIGURE 4: l(c) Scoring for measuring the surface hydrophobicity of microbial lawns by 
the Direction of Spreading (D.O.S.) method 
from Sar & Rosenberg (1987) 

AGAR BACIERIA GLASS BACIERIA POLYSTYRENE BACIERIA SCORE 

10 
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4 
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2 
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A small drop of water is placed at the interface between a bacterial lawn and agar, 
a bacterial lawn and a glass cover slip and a bacterial lawn and a polystyrene cover 
slip. The direction of spread of the drop determines the score ; the most 

hydrophobic is 10 and the least is 1. For example a score of? is achieved when 
the bacteria are more hydrophobic than agar and glass (drop spreading away from 
bacteria) and less hydrophobic than polystyrene. A score of9 is achieved when 
bacteria have the same hydrophobicity as polystyrene. 
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FIGURE 4:1(d) In Situ Detachment From Eggs 

._-+----~terile water 

Eggs inoculated 
with bacteria 

Magnetic stirrer 

Mter inoculation with bacteria, eggs placed in well circulated sterile water. 
Numbers of bacteria removed from surfaces recorded every 2 hours. 
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adsorption to hydrophobic groups on uncharged bed material (Figure 4: lb) (Smyth, 

Jonsson, Olsson, Soderlind, Rosengren, Hjerten & Wadstrom 1978 ; Xiu, 

Magnusson, Stendahl & Edebo 1983). In the following trial the ability of bacterial 

groups to adhere to two sepharose derivatives, octyl and phenyl sepharose was tested. 

3) Salting-out Aggregation Test (S.A.T.) Salting out is a simple technique to 

measure the hydrophobicity of bacterial cell surfaces based on precipitation by salts 

(e.g. (NH4)2S04). and was flrst demonstrated by Lindahl, Faris, Wadstrom & Hjerten 

(1981) in characterizing surface protein antigens of different strains of enterotoxigenic 

Escherichia coli. The greater the cell surface hydrophobicity the lower the 

corresponding salt concentration required to cause cell aggregation. 

4) Colonial Hydrophobicity (Direction of Spreading - D.O.S.). D.O.S. is a 

technique to measure the surface hydrophobicity of bacterial colonies rather than 

individual cells. The technique .consists of placing a single drop of water at the interface 

between bacterial lawns and other "test" surfaces and subsequently recording the 

direction to which the water drop spreads (Figure 4: le). Sar & Rosenberg (1987) flrst 

introduced the technique to analyse the hydrophobicity of bacterial colonies isolated 

from flsh mucus against three surfaces ; agar, glass cover slip and a polystyrene 

coverslip. In contrast to the above work, during the forthcoming trial the 

hydrophobicity of bacterial groups was tested against four surfaces ; agar, glass 

coverslip, polystyrene (bacteriological) and polystyrene (tissue culture). 

5) "In situ" Detachment From Eggs. A flnal unique trial was devised to 

directly compare the ability of the three bacterial groups to adhere to egg surfaces. Egg 

surfaces were inoculated with test bacteria and exposed to a fast flow of water. All 

bacterial cells removed from egg surfaces were carefully monitored over a 24 hour 

period (Figure 4: ld). 

A schematic outline of all tests employed during this study is summarized in 

Figure 4: 2. 
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FIGURE 4 : 2Flow diagram of experimental protocol. 
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MATERIALS AND METHODS 

Bacterial AdhertJnce To Hydrocarbons (B.A.T.H.). Cell surface 

hydrophobicity was determined by a method based on that ofRosenberg et a/ (1980). 

Bacterial cells were harvested at early logarithmic and early stationary phases of 

growth, washed and resuspended in phosphate-urea-magnesium buffer (P.U.M. 

buffer) pH 7.1, containing 22.2 g K2 HP04. 3H20, 7.26 g KH2P04, 1.8 g urea, 0.2 

g Mg S04.1H20 and distilled water to 1000 ml. Cells were adjusted to an absorbence 

of (optical density- O.D.) 0.3. 1.2 ml of each bacterial suspension was then placed in 

acid washed glass tubes (12 X 75 mm) and three volumes of hexadecane; 0.05 ml, 0.1 

ml and 0.2 m.l were added to separate tubes containing the bacteria. After preincubation 

at 25 °C for 15 minutes the two phases were uniformly mixed on a vonex stirrer for 2 

minutes and allowed to stand for 15 minutes to allow the hydrocarbon phase to 

completely "rise". After separation had occurred the aqueous phase was carefully 

removed with a pasteur pipette and transferred to a 1 ml cuvette and the O.D. 

determined. 

Hydrophobic Interaction Chromatography (H.I.C.). H.I.C. was carried out 

according to the method of Smyth et al (1978) and Xiu et a/ (1983). Cultures were 

grown in 100 ml volumes of Tryptone Soya Broth (T.S.B., Oxoid, Basingstoke) in 1 

litre flasks (120 rpm at 25 °C) corresponding to about 2 X 108 colony forming units 

(cfu's) I ml. Cells were harvested, washed twice and resuspended in 1M (NR4h S04 

(pH 6.8) at a final concentration of 1 X 109 cfu's I ml, buffered with 10 mM 

NaiHP04.2H20 to reduce the tendency of cells to aggregate. Hydrophobic derivatives 

of sepharose (octyl and phenyl) (Pharmacia, Milton Keynes) were washed with 

distilled water to remove fine particles and ethanol was added to the gel suspension as a 

preservative. Pasteur pipettes (internal diameter 5 mm; length 85 mm) were plugged 

with glass wool, filled with gel to a height of 40 mm by gravity feed and washed with 
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10 ml of buffered 1 M CNI-4h so4. Bacterial suspensions 100 ~1 of 1 X 109 cells I ml 

were added to columns and allowed to drain into gel beds. Gel beds were washed with 

5 m1 of buffered 1 M (NI-4)2 S04 (flow rate 1 - 2 ml I minute), the eluate collected and 

the O.D. measured. A further 5 ml of 0.5 M (NfL+h S04 were added to columns and 

the O.D. of the resulting eluate measured. Finally, 5 ml of 95% ethanol was added to 

the columns and again the O.D. of the eluate measured. As a control a similar test was 

run on a sepharose column to test for non-specific adsorption to the column. In 

addition, 100 ~I of the inoculum was added to 5 ml of the eluting medium and after 

mixing the O.D. recorded. The difference between this measurement and that of the 

eluate from the sepharose column gave the value of non-specific adsorption to the 

sepharose column. Relative surface hydrophobicity of the cell suspension was 

expressed as the percentage of cells remaining on the column after each of the three 

washings. 

Salting-out Aggregation Test (S.A.T.) Bacterial cell surface hydrophobicity 

as measured by "salting out" was performed according to the method of Lindahl et al 

(1981). Cells were grown in 100 ml volumes ofT.S.B. media in 1 1 flasks to stationary 

growth phase (120 rpm at 25 °C). Cells were harvested, washed twice and resuspended 

in 2 mM Na2HP04.2H20 (pH 6.8) at a concentration of 1 x 109 cells I ml. A solution 

of 4 M (Nl-4)2 S04 dissolved in 2 mM Na2HP04.2H20 (pH 6.8) was further serially 

diluted with 2 mM Na2HP04.2H20 (pH adjusted with Nit+ OH). The serial dilution of 

CNH.th S04 was constructed ranging from 4.0 to 0.5 M differing by 0.5 M per dilution 

and in addition, a second serial dilution ranging from 0.5 M to 0.05 M differing by 

0.05 M was also constructed. The pH of each dilution was corrected to pH 6.8 using 

NfL+OH as required. Bacterial suspensions (25 J..ll of 1 X 109 cells I ml) were mixed 

with an equal volume of salt solution on ground glass cavity slides. The bacterial and 

salt solution mixture was gently rocked for 2 minutes at room temperature and the result 

recorded. A positive result was achieved when most bacteria aggregated (white 

aggregates of approximately 0.1 mm diameter) surrounded by a clear medium. In 
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contrast a reaction with relatively few or no aggregates was recorded as negative. All 

readings were compared to a positive control - the highest molarity of salt plus bacteria 

and a negative control - bacterial suspensions mixed with 2 mM Na2HP04.2H20 

without addition of salt. 

Colonial Hydrophobicity. (Direction of Spreading). Cells were cultured in 25 

ml volumes of T.S.B. in 100 m1 flasks and stationary phase cells were heavily streaked 

onto half of an agar plate (diameter 90 mm- ttyptone soya agar, T.S.A., Oxoid). Onto 

the other half of the agar the following surfaces were placed ; sterile glass coverslip, 

polystyrene (bacteriological) and polystyrene (tissue culture). Cells were left to grow 

for 48 hours at 25 °C. A small drop of water (0.01 ml) was placed at the interface 

between the bacterial lawn and each of the above three surfaces, and between the 

bacterial lawn and the agar. The direction to which the drop of water spread was 

recorded. 

In situ Detachment From Eggs. Bacteria were cultured in 100 ml volumes of 

T.S.B. in 1litre flasks to stationary phase, washed and resuspended in 100 ml volumes 

of sterile water taken from the Aston Fish Culture Unit at a final concentration of 1 x 

106 cells I ml. Rainbow trout eggs, after stripping were sub-divided into groups of 100 

' 
eggs. Each group of eggs was added to the above bacterial suspensions (P. 

fluorescens, Cytophaga sp. and Serratia sp.) and water hardened for 1 hour at 5 °C. 

50 eggs were carefully removed (5 batches of 10 eggs), added to 5 ml of diluent 

(peptone, 0.1% I saline, 0.85% - Chapter 2) and shaken on a vortex stirrer for 2 

minutes, allowing the number of cells adhering to each egg to be estimated. The 

remaining 50 eggs in each group were carefully transferred to 500 ml of sterile water, 

maintained at 5 °C, and placed in a vortex strong enough to ensure slight egg 

movement. The number of bacteria released from egg surfaces into the surrounding 

water was recorded immediately and thereafter, every 2 hours for a 24 hour period. 
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Results were expressed as the percentage of bacteria released from egg surfaces into the 

surrounding water. 

Statistical analysis. The numbers of cells adhering to hexadecane 

(B.A.T.H.) and to phenyl and octyl sepharose (H.I.C.) were compared by 2 way 

analysis of variance. The numbers of cells removed from egg surfaces (in situ ) were 

analysed by 2 way spilt-plot analysis of variance. The differences between means were 

compared by calculating the standard errors and 95% confidence limits appropriate to 

the split-plot design (Ridgman 1975; Snedecor & Cochran 1980). 
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RESULTS 

Bacterial Adherence To Hydrocarbons. Adherence of the three bacterial 

groups to n-hexadecane is summarized in Figure 4: 3 (a-c). Overall, all three bacterial 

groups demonstrated relatively high cell surface hydrophobicity by B.A.T.H. 

techniques. However, stationary phase cells adhered markedly better to hexadecane 

than log growth phase cells. Figure 4 : 3 (a) compares the affinity of early log growth 

P. f/ucrescens cells to early stationary phase cells after the addition of 3 different 

volumes of the test hydrocarbon. Stationary phase cells adhered in significantly greater 

amounts (P < 0.05) to the hydrocarbon at all 3 volumes compared to log phase cells. 

However, as volume of added hydrocarbon increased, from 0.05 ml to 0.2 ml, a 

corresponding increase in numbers of adhered cells (both growth stages) was also 

recorded (Appendix 4: 1). Figure 4: 3 (b) compares the affinity of early log growth 

phase cells of Cytophaga sp. to early stationary phase cells at 3 different volumes of 

added hydrocarbon. Again, early stationary phase cells adhered in significantly greater 

amounts (P < 0.05) to the test hydrocarbon compared to early log growth cells but, the 

difference in adherence between the two phase of cell growth was less marked 

compared to the P.flucrescens cells (above). Indeed, in comparison to P.f/uorescens 

cells, those of Cytophaga sp. adhered slightly less well to the test hydrocarbon at all 3 

volumes and at both stages of cell growth (Appendix 4: 2). Figure 4: 3 (c) compares 

the affinity of early log growth phase cells of Serratia sp. to early stationary phase cells 

at 3 different volumes of added test hydrocarbon. Stationary phase cells adhered in very 

significantly greater amounts compared to log growth phase cells (P < 0.01). Overall, a 

significant increase in numbers of adhering cells occurred with addition of increased 

volumes of hydrocarbon. (P < 0.05), due possibly to the unique hydrophobicity 

characteristics exhibited mainly by stationary phase cells. Furthermore, overall, 
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FIGURE 4:3 (a) Bacterial adherance to hexadecane 
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FIGURE 4:3 (b) Bacterial adherance to hexadecane 
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FIGURE 4:3 (c) Bacterial adherance to hexadecane 
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FIGURE 4 : 4 (a) Hydrophobic Interaction Chromatography 
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FIGURE 4 : 4 (b) Hydrophobic Interaction Chromatography 
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stationary phase cells of Serratia sp. adhered in far greater numbers to the test 

hydrocibon than cells of either P. fluorescens or Cytophaga sp. (Appendix 4: 3). 

Hydrophobic Interaction Chromatography. Adherence of bacterial groups to 

phenyl and octyl sepharose are summarized in Figure 4: 4 (a-b). All3 bacterial groups 

adhered strongly to both gels in the presence of (Nlf4)2 S04, although phenyl 

sepharose appeared to have a slightly higher adsorptive capacity than octyl sepharose. 

Statistical analysis revealed highly significant differences in numbers of each bacterial 

species adhering to both gels (P < 0.001 and P < 0.001). In addition, a highly 

significant difference in numbers of adhering cells for both gels was revealed after each 

elution step (P < 0.001 and P < 0.001). However, overall relatively few bacterial cells 

were removed from columns during the first two elution steps and even after addition 

of 95% ethanol, the majority of cells still remained adhering to columns. Addition of P. 

fluorescens to both phenyl and octyl sepharose resulted in adherence of bacteria as 

tight bands at the top of gel beds. Wash eluates contained very few bacterial cells and 

over 90% of cells remained attached to columns even after addition of ethanol. Addition 

of Serratia sp. to columns resulted in adherence throughout the columns. Wash eluates 

contained few bacteria and most cells adsorbed tightly to both gels. Relatively similar 

numbers of Serratia sp. adsorbed to gels as P. fluorescens, although slightly more 

Serratia sp. were removed by ethanol from octyl sepharose than from phenyl 

sepharose. In contrast, Cytophaga sp. did not adhere as tightly to columns as the other 

two bacterial groups. Addition of Cytophaga sp. to gels resulted in cells moving down 

the column and wash eluates (especially 1 M (Nfi4)z S04) contained markedly more 

cells than were obtained from P.fluorescens or Serratia sp. After elution with ethanol 

more Cytophaga sp. cells remained attached to phenyl rather than octyl sepharose but, 

even so, despite addition of ethanol over 80 % of cells still remained attached to both 

columns (Appendix 4 : 4 to 4 : 5). In comparison, during control experiments in which 

bacteria were passed through uncharged sepharose columns most of the bacteria (65% 

to 70%) were removed after the frrst two elution steps. 
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Salting-out Aggregation Test. A summary of the results obtained to measure 

cell surface hydrophobicity by "salting out" is shown in Table 4 : 1. All three bacterial 

groups demonstrated high cell surface hydrophobicity, for only low concentrations of 

salt ((Nf4h S04) were required to mediate cell aggregation. Serratia sp. and P. 

fluorescens revealed similar cell surface hydrophobicity by this technique with a 

concentration of 0.15 M to 0.2 M (Nl-4)2 S04 required to cause cell aggregation. In 

contrast to other earlier trials (B.A.T.H. and H.!. C.) Cytophaga sp. proved to have the 

most hydrophobic cell surface with only 0.05 M to 0.1 M (NR4)2 S04 required to 

mediate cell aggregation. 

Direction Of Spreading. Bacterial lawns were compared to four surfaces of 

increasing hydrophobicity valu<?s ; polystyrene (tissue culture), 2% agar, glass and 

polystyrene (bacteriological). All 3 bacterial groups exhibited high colonial 

hydrophobicity. P. fluorescens was more hydrophobic than polystyrene (tissue 

culture), 2% agar and glass but, less hydrophobic than polystyrene (bacteriological) 

and thus was allocated a score of 7 points (scale 1 to 10). Serratia sp. proved to be 

slightly more hydrophobic than P. fluorescens and was allocated a score of 8. 

Cytophaga sp. proved to possess the highest colonial hydrophobicity, equal to that of 

polystyrene (bacteriological), and was thus awarded a score of 9 points. 

In situ Detachment From Eggs. Statistical analysis of this trial revealed 

overall a significant difference between numbers of cells washed off eggs between 

bacterial groups (P < 0.05). A highly significant increase in numbers of cells removed 

from egg surfaces with time was demonstrated (P < 0.001) and a highly significant 

interaction between bacterial species and time was also revealed (P < 0.001). During 

this trial, eggs inoculated with bacteria were carefully placed into the 500 ml volumes of 

sterile water. However, despite such care many bacteria were detached from egg 

surfaces as soon as they entered the water, possibly due to surface tension effects 
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Table 4 : 1 Salt Aggregaiion Test- ooncentntion of (NH4)z S04 required to precipitate bacterial suspensions 

Sah P.jlu.oresctfiS Serralia sp. Cytophoga sp. 
concentntion 

4M 1) + + + 
2) + + + 
3) + + + 

3.5M 1) + + + 
2) + + + 
3) + + + 

3M 1) + + + 
2) + + + 
3) + + + 

2.5M 1) + + + 
2) + + + 
3) + + + 

2M 1) + + + 
2) + + + 
3) + + + 

l.SM 1) + + + 
2) + + + 
3) + + + 

lM 1) + + + 
2) + + + 
3) + + + 

O.SM 1) + + + 2) + + + 
3) + + + 

0.4SM 1) + + + 2) + + + 3) + + + 

0.4M 1) + + 
2) + 

+ + + 3) + + + 

0.3SM 1) + + + 2) + + + 
3) + + + 

0.3M 1) + + + 
2) + + + 
3) + + + 

0.2.SM 1) + + + 
2) + + + 
3) + + + 

0.2M 1) + + + 
2) + + 
3) + + 

0.1SM 1) + 
2) + 
3) + 

0.1M 1) + 
2) + 
3) 

O.OSM 1) 
2) 
3) 

+ =precipitated, - =not precipitated 
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FIGURE 4:5 In Situ Detachment From Eggs -
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(Figure 4: 5). An estimated 13.8% of total P.fluorescens cells originally attached to 

egg surfaces were immediately recovered from the surrounding water. Similarly, 

21.7% of total Cytophaga sp. cells and 23.5% of Serratia sp. cells were immediately 

recovered from the surrounding water. During the trial little marked difference in 

numbers of bacteria detached from egg surfaces was recorded until after 16 hours. 

Generally, from 16 hours until the end of the trial (24 hours) P. fluorescens cells 

(compared to Cytophaga sp. and Serratia sp.) were recovered in increasing numbers 

from the surrounding water. Indeed by 24 hours an estimated 91.7% of P.jluorescens 

cells originally attached to eggs had been "dislodged" from egg surfaces. In contrast, 

48.3% of Cytophaga sp. cells were removed by 24 hours and only 31.4% of all 

Serratia sp. cells had been removed by the end of the trial (Appendix 4 : 6). 
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DISCUSSION 

Successful bacterial colonization of live incubating salmon id egg surfaces is 

potentially dependant on initial ability to adhere to eggs. The frequent recovery of 

Cytophaga sp. and P. fluorescens from the surfaces of live eggs (Bell, Hodgk.iss & 

Hoskins 1971 ; Trust 1972) indicates that these two groups possess such abilities. In 

contrast, Serratia sp. are only rarely recovered from egg surfaces, despite their 

common occurrence in many natural environments; soil, water, plant surfaces and even 

as opportunistic human pathogens (Grimont & Grimont 1978). It is therefore possible 

that Serratia sp. do not possess the initial ability to adhere to egg surfaces. However, a 

range of tests to determine adherence properties of all three (above) bacterial groups 

revealed little significant difference in cell surface hydrophobicity between them. 

Indeed, adherence to hexadecane by B.A.T.H. techniques revealed Serratia sp. to be 

the most hydrophobic followed by P.fluorescens and Cytophaga sp. Similar results 

have also been reponed by Rosenberg et al (1980) and Kjelleberg, Lagercrantz & 

Larsson (1980) who have clearly shown the high cell surface hydrophobicity of 

Serratia sp. using B.A.T.H. techniques. 

During B.A.T.H. trials, removal of cells from the aqueous phase depends on 

their ability to adhere to the hydrocarbon phase. Thus, the surface area created during 

the mixing of the two liquid phases is of great importance and directly dependant on 

size and number of hexadecane droplets present in the aqueous phase (Van Loosdrecht, 

Lyklema, Norde, Schraa & Zehnder 1987). Addition of increased volumes of 

hexadecane should therefore in turn increase the number of adhering bacterial cells, 

which was subsequently shown by all three bacterial groups in the present trials. 

Culture age was also found to influence results obtained, as early stationary 

phase cells invariably exhibited higher levels of cell surface hydrophobicity compared 

to early log growth phase cells, a phenomenon demonstrated during studies by other 

authors (Rosenberg et al 1980; Rosenberg, Perry, Bayer, Gutnick, Rosenberg & Ofek 

107 



1981). Such a close correlation between increasing cell age and increasing cell surface 

hydrophobicity might be a significant factor in the process of bacterial dispersal. Older 

cells (and therefore more hydrophobic) within colonies may produce daughter cells of a 

relatively lower hydrophobic nature, which in turn may not effectively adhere to the 

colony but pass "freely-suspended" into water. In this state bacterial cells could be 

dispersed to new environments where, with increasing cell age and therefore 

hydrophobicity, colonization of new surfaces would be promoted. 

Measurements of cell surface hydrophobicity by H.I.C. also revealed that all 

three bacterial groups were highly hydr0phobic, agreeing with Olsson & Westergren 

(1982) that a close correlation between B.A.T.H. and H.I.C. results can be obtained. 

H.I.C. revealed that Serratia sp. and P. f/uorescens had the highest hydrophobicity, 

followed by Cytophaga sp. Pretreatment of gel columns and first elution with 1 M 

(NH4)2 S04 decreases the charge on the gel surface, suppressing electrostatic 

interactions, and in turn encouraging adhesion by accentuating hydrophobicity (Smyth 

et al 1978). Decreasing salt concentrations, as in the second elution with 0.5 M (NH4)2 

S04, increases gel surface charge and cells expressing weak hydrophobicity are eluted. 

In this trial few cells (including Cytophaga sp.) were eluted with 0.5 M (NH4h S04, 

a reflection of high cell surface hydrophobicity of all 3 groups. Great emphasis should 

not be placed on the slightly poorer performance of Cytophaga sp. compared to P. 

fluorescens and Serratia sp. for this might simply be a consequence of limited cell 

damage as Griffin (1981) considered Gram -ve bacteria to be extremely sensitive to 

reduced osmotic potentials as generated in this trial by high salt concentrations. 

A close relationship exists between H.!. C. and S.A.T. techniques (Lindahl et 

al 1981) and which was further emphasized in this trial by the common use of (NH4h 

S04 in both trials. In H.I.C. techniques, the lower the salt concentration needed to 

elute the bacteria, the more hydrophobic the cell surface. Similarly during "salting out" 

the lower the concentration of salt needed to cause aggregation the more hydrophobic 

the cells. All three bacterial groups required low concentrations of salt to cause 

aggregation and were thus highly hydrophobic. Little difference in cell surface 
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hydrophobicity existed between Serratia sp and P. fluorescens but, in contrast to 

H.I.C., Cytophaga sp. were considered to be most hydrophobic by S.A.T. However, 

the improved performance of Cytophaga sp. in this trial should not be over stressed for 

complete agreement between H.I.C. and "salting out" cannot be expected (Lindahl et al 

1981) and may simply be due to experimental variation, procedures carried out on 

different occasions and use of different batches of bacteria. 

Measurement of colonial hydrophobicity by D.O.S. can only ever produce 

semi-quantitative data which may be subject to severe variation between individuals 

undertaking the technique. However, careful control of experimental conditions can 

reveal sufficient correlation between replicates to maintain confidence in the chosen test 

Previous trials (B.A.T.H., H.I.C. and S.A.T.) all revealed information on surface 

hydrophobicity of individual suspended cells, which though may not necessarily 

indicate the hydrophobicity of the colony surface from which these cells originated (Sar 

& Rosenberg 1987). Furthermore, all previous techniques have necessitated a number 

of washings and resuspensions of cells, removing at best partially any coatings that 

might have been produced by cells in turn potentially altering their true hydrophobic 

nature. However, in common with suspended cells, bacterial colonies exhibited m~ked 

hydrophobicity, ranging from a score of 7 (Serratia sp.) to the most hydrophobic, 9 

(Cytophaga sp.). The high score obtained by Cytophaga sp. during this trial could be 

due to spatial differentiation of cells within the colony, deliberately placing the most 

hydrophobic cells near the colony edge or, might be a result of certain characteristics 

(such as slime) suffering less damage during the performance of this technique. 

Desorption of bacteria from egg surfaces was designed to assess adherence in 

situ by placing eggs exposed to bacteria under a fast flow of water, and recording the 

relative numbers of bacteria "washed off' over a 24 hour period. Initially, eggs were 

exposed to bacteria for a period of 1 hour at 5 °C, potentially sufficient rime for most 

bacterial cells to adhere "reversibly11 to egg surfaces. However, the removal of many 

bacterial cells from eggs at the start of the trial (possibly by surface tension effects) 

demonstrates that bacteria are only weakly held in contact with surfaces during the 
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phase of "reversible" adherence. Throughout the trial fluctuations in bacterial numbers 

were recorded for all 3 groups, possibly due to the effect of inherent error involved in 

plate count techniques (Buck 1979), or possibly the result of a continual cycle of 

bacterial attachment and desorption from both egg and glass surfaces, a consequence of 

the relatively weak attraction of cells to surfaces during "reversible" adherence (as 

described). All equipment and water used during the trial were maintained at 5 octo 

preclude the possibility that increased bacterial growth alone could be responsible for 

the higher numbers of bacteria recovered from the surrounding water. However, it is 

possible that marked increases in numbers of P. fluorescens recovered towards the 

end of the trial may be complicated by effects of additional growth, and not simply a 

result of cells being washed off egg surfaces. However, such a large increase in 

numbers of recovered bacteria towards the end of the trial was not shown with either 

Serratia sp. or Cytophaga sp. (despite similar growth rates between P. fluorescens 

and Serratia sp., Chapter 3). 

Bacterial cell surface hydrophobicity is not only important in encouraging 

initial colonization of surfaces by "reversible" adherence but, is also important during 

the second stage of adherence- "irreversible" adhere.1ce. Indeed during "irreversible" 

adherence, properties of cell surface hydrophobicity can be altered by cells to further 

facilitate adherence to the selected substrate (Marshall1976). Bacterial adhereace can be 

further sub-divided into two sections ; 1) specific adhesion and 2) non-specific 

adhesion. Specific adhesion is frequently mediated by surface structures such as 

simple proteins (lectins) which often provide a link between bacterial cells and the 

substrate by binding to specific sugar moieties. Lectins are extremely selective, tending 

to bind to particular sugar molecules or groups of molecules (Sharon 1977). However, 

in natural aquatic environments bacterial adherence is more likely to be achieved by the 

production of a range of cell surface components that together contribute to increased 

cell surface hydrophobicity. Such examples include the production of fimbriae (or 

surface fibrils) (Stenstrom & Kjelleberg 1985), glycocalyx fibres, pili or spinae, all 

providing firmer anchorage to the substrate (Marshall l976; Costerton, lrvin & Cheng 
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1981). In some instances (e.g. Aeromonas salmonicida) Trust, Kay & Ishiguro (1983) 

considered that cell hydrophobicity is due to a single "adhesin" factor which dominates 

the outer cell surface. In common, the cell surface hydrophobicity of Serratia sp. may 

also be due to a single factor. Rosenberg et a/ (1980) and Kjelleberg et a/ (1980) 

reported a positive correlation between increased pigmentation of Serratia sp. cells and 

increased cell surface hydrophobicity. Pigmentation in Serratia sp. is a function of 

pyrrol containing pigments (termed prodigiosins) which are localized on the cell surface 

and thus may in turn also provide increased cell surface hydrophobicity. 

Once established on surfaces, bacteria produce a mass of tangled fibres, 

composed of polysaccharide (termed the glycocalyx), which in turn surrounds the 

bacterial cell wall (Costerton, Geesey & Cheng 1978). Within the glycocalyx bacterial 

replication can occur to form an adherent tnicrocolony (Costerton et al 1981) and it is 

likely that the predominant bacterial populations in aquatic ecosystems are composed of 

such glycocalyx enclosed microcolonies (Costerton & Geesey 1979 ; Geesey, 

Richardson, Yeoman, Irvin & Costerton 1977). Subsequent cell division within 

microcolonies and additional bacteria from surrounding water leads to the production of 

a "biofilm" overlaying the surface, increasing both nutrient availability and firmer 

adherence (Costerton, Cheng, Geesey, Ladd, Curtis-Nickel, Dasgupta & Marrie 1987). 

Overall, all three bacterial groups during this study exhibited high levels of 

cell surface hydrophobicity. However, it must be remembered that the four standard 

adherence tests all involve the use of in vitro techniques but, bacteria propagated in 

vitro are known to loose several of their original characteristics, including their 

glycocalyx (Costerton et al 1981 ). Therefore, data obtained with cultured laboratory 

strains may only offer a poor prediction of bacterial behaviour under natural conditions 

(01sson & Westergren 1982). Thus, a unique in vivo test involving direct attachment 

to egg surfaces was constructed to offer a slightly more realistic measurement of 

adherence properties to live egg surfaces. After initial losses, despite a strong water 

flow rate to remove cells from egg surfaces all 3 bacterial groups adhered strongly to 

eggs for the majority of the sampling period. Therefore, P.jlULJrescens, Cytophaga sp 
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and Serratia sp. all revealed high cell surface hydrophobicity in vitro, and in vivo with 

an ability to fumly adhere to egg surfaces. However as stated above, under natural 

conditions, few Serratia sp. cells are actually recovered from incubating egg surfaces, 

despite their undoubted presence in the environment. Thus, although Serratia sp. have a 

hydrophobic nature and a proven ability to adhere to salmonid eggs, successful 

colonization of egg surfaces would seem to involve other crucial factors, possibly 

including resistance to physical I chemical factors, or specific nutritional requirements. 

Therefore, although the ability to adhere to eggs may not necessarily result in 

successful colonization, it must certainly be a prerequisite of great importance. 

SUMMARY 

Investigations into adherence properties of Pseudomonas fluorescens and 

Cytophaga sp.( both frequently isolated from incubating egg surfaces) and Serratia sp. 

(rarely recovered from incubating egg surfaces) indicates that all three bacterial genera 

possess high cell surface hydrophobicity. It is likely that such a property is 

advantageous for both initial colonization and subsequent domination of egg surfaces. 

However, as a range of varying tests revealed little difference in adherence properties 

between all three bacterial genera, it must be assumed that a combination of other 

factors are responsible for "inhibiting" the establishment of Serratia sp. on incubating 

salmonid egg surfaces. 
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CHAPTER FIVE 

TilE BACTERIAL FLORA OF RAINBOW AND 

BROWN TROUT EGGS RELATED TO INCUBATING 

EGG MORTALITY 
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INTRODUCTION 

Incubation of rainbow trout eggs often meets with varying degrees of 

success. Many diverse factors are probably responsible for such varying success 

ranging from sperm motility (Moccia & Munkittrick 1987 ; Munkittrick & Moccia 

1987) to time of egg stripping (Springate, Bromage, Elliott & Hudson 1984). Water 

quality is also of equal importance for, flow rate, dissolved oxygen, pH and water 

temperature will all effect egg hatching success. In addition, quality of husbandry 

practice will not only influence the bacterial population of the incubating water and of 

egg surfaces (Chapter 2) but, will also directly mediate egg survival. Excessive 

illumination of eggs (Leitritz & Lewis 1976), physical disturbance of eggs before 

eyeing resulting in damage to developing embryo's (Smimov 1975 ; Laird & Wilson 

1979) and failure to prevent fungal colonization through malachite green treatment 

(Cline & Post 1972) will all result in egg loss. Besides environmental conditions and 

husbandry practices - factors which are under the control of the farmer, it is likely that 

some further losses will be due to failures in egg physiology whether this be genetic or 

embryological. Furthermore, tradition amongst aquaculturists suggests that eggs of 

other salmonids are better suited to commercial hatchery environments and often have 

higher hatching success rates than rainbow trout eggs. Little direct evidence for this 

notion exists in the scientific literature (Bromage & Cumaranatunga 1988) but, through 

disparate studies associated in the main with egg quality and nutrition, the substance of 

such a notion becomes visible. For example, from 10 separate batches of rainbow trout 

eggs, Hirao, Yamada & Kikuchi (1954) obtained eyeing figures ranging from 37.5% 

~o 94.0 % with a mean of 72.8 %. In comparison, survival to eyeing for other 

salmonids is often greater; chinook salmon 56% (Johnson 1984) and 76% (Erdahl, 

Erdahl & Graham 1984); pink salmon 96% (Wertheimer 1984); Atlantic salmon 77% 

and 85% (Crim & Glebe 1984); and brown troul~~rdahl et al 1984). 
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It is now clear from previous studies (Chapter 2) and from the scientific 

literature that large numbers of bacteria accumulate around surfaces of incubating 

salmonid eggs (Bell 1966 ; Bell, Hoskins & Hodgkiss 1971 ; Trust 1972 ; Y oshimizu, 

Kimura & Sakai 1980). However, little is understood about the effects these bacteria 

might have on egg development and, inturn, premature egg mortality. Bell et al (1971) 

considered it unlikely that bacteria on egg surfaces would be able to produce enzymes 

or toxins that would be capable of penetrating the egg, for the salmonid embryo is 

protected by a tough outer shell composed of icthulokeratin (Young & Smith 1956; 

Bell, Hoskins & Bagshaw 1969). Trust (1972) also considered it unlikely that bacterial 

produced enzymes or toxins could be responsible for egg death but, on the other hand, · 

considered it possible that under certain circumstances (such as high egg density, 

coupled with poor water circulation) dissolved oxygen might be reduced to detrimental 

levels by large numbers of egg surface bacteria (Chapter 2). 

Few reports exist in the literature of bacteria present inside salmon id eggs. 

Cone (1982) discovered an unidentified Lactobacillus sp. within 33 of 35 eggs taken 

from diseased rainbow trout suffering from a mixed bacterial infection and in addition 

Renibacterium salmoninarum (responsible for Bacterial Kidney Disease B.K.D.) is 

also considered to exist inside eggs (Evelyn, Ketcheson & Prosperi-Porta 1984). 

However, neither of the two (above) bacteria have ever been implicated in premature 

mortality of incubating salmonid eggs. Recently, work on chinook salmon ( 0. 

tshawytscha) Walbaum, by Sauter, Williams, Meyer, Celnik, Banks & Leith (1987) 

has revealed a wide range of bacteria within eggs including both Gram positive and 

negative organisms. In addition, Sauter et al (1987) considered whether specific 

bacteria within eggs could influence "early life stage death" of eggs and fry and 

although, no definite conclusions could be drawn the following bacterial genera were 

implicated ; Vibrio, Listeria, Corynebacterium and Staphylococcus. 

In this present trial it was decided to investigate the external and internal 

bacterial flora of incubating salmonid eggs. Both brown trout (Salmo trutta L.) and 

rainbow trout eggs were incubated under identical conditions placed under a flow-
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through system of water (to be described in full later). Sterile glass beads were also 

incubated to allow the bacterial flora of an inert surface to be compared to that of 

incubating salmonid eggs. Further rainbow trout eggs were also incubated under a 

separate pumped recirculatory system. Daily egg mortalities were carefully recorded to 

investigate any possible correlation between bacterial presence and egg death. A 

schematic outline of procedures followed during the trial is summarized in Figure 5 : 1. 
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FIGURE 5:1 Flow diagram of experimental protocol. 
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MATERIALS AND METHODS 

Experimental DesifiD 

Incubation systems. Two separate incubation systems were used during this 

trial. One system comprised of a single trough containing two aluminium trays (to 

support eggs) each divided into 6 sections. Water at 10 °C ± 1 °C passed over eggs at a 

flow rate of 3600 1 I day and then went to drain (Figure 5 : 2). (This incubation system 

is hereafter referred to as source 1). The second incubation system comprised of a 

single trough containing one aluminium tray (to support eggs). Water at 10 °C ± 1 °C 

after passing over eggs at the same (above) flow rate, was directed through a gravel 

filter bed (as a biological filter) before being pumped and recycled. A small volume of 

fresh "make-up" water (approximately 5% per day) was added to allow for evaporation 

and spillage (see Figure 2 : 3). (This incubation system is hereafter referred to as source 

2). 

Collection of Eggs and Milt 

Stripping and egg incubation. Eggs were obtained from io ripe rainbow trout 

and 5 ripe brown trout from a single commercial fish farm. Eggs of each fish were 

stripped into individual sterile containers. The first eggs from each fish were discarded 

to avoid any contamination from the surrounding water or ventrolateral surface of the 

female. Milt, also collected in sterile containers, was obtained from 3 sex-reversed 

females for rainbow trout and 2 normal males for brown trout. Milt and eggs were 

immediately put on ice and returned to the laboratory. Eggs, coelomic fluid and milt 
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FIGURE 5 : 2 Flow-through incubation system 
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from each container were removed for bacteriological examination. The remaining eggs 

for each species were pooled and fertilized. After 5 minutes excess milt was washed off 

and the eg$s water hardened for 45 minutes. Eggs from each species were assigned 

randomly tp two sections of each aluminium tray (source 1). The final two sections of 

each tray contained sterile glass beads with a similar diameter to that of eggs. Each 

section was filled with enough eggs or glass beads to form a monolayer. Rainbow trout 

eggs were also laid down at the same density in the pumped recirculatory system 

(source 2). 

Egg fertilization rates were determined after 7 days at 10 °C by placing 100 

eggs for each species into clearing solution (acetic acid: methanol: water, 1 : 1: 1 vI 

v) (Springate & Bromage 1984). Fertilized eggs could be clearly distinguished by the 

presence of a developing neural tube. At eyeing, eggs were "shocked" by siphoning 

from a height of 1m into a sterile beaker and any unfertilized eggs re~oved. Eyed eggs 

were replaced into their relevant sections in the incubators. Eggs were treated with 

malachite green oxalate (Difco, Surrey) twice a day at a concentration of 2 ppm. 

· Bacteriological Examination 

Coelomic fluid and milt. Aliquots of coelomic fluid from each fish were 

serially diluted and inoculated in 0.02 m1 amounts (drop inoculation method) onto 

Tryptone soya agar (T.S.A., Oxoid, Basingstoke), peptone beef extract glycogen agar 

(P.B.G., McCoy & Pilcher 1974) and low nutrient Cytophaga agar (Anacker & Ordal 

1959). Plates were incubated at 20°C for up to 10 days and enumeration performed 

only from drops where total separation of colonies occurred. 

Eggs. Eggs were sampled at the green stage (unfertilized) and during 

incubation after 7 days, 14 days, 21 days and 28 days. Due to the slower development 

of brown trout eggs a further sample at 35 days was possible. 
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External sampling. For, each sampling time I treatment 4 separate batches of 

10 eggs (or glass beads) were removed at random from appropriate sections. 

Subsequently, samples were rinsed in 4 changes of sterile water to remove any detritus 

or loosely adhered bacteria and added to 5 ml of sterile diluent (peptone- 0.1 %, saline-

0.85%) before shaking vigorously for 2 minutes on a vortex stirrer, in a manner 

adapted from Evelyn et a/ (1984). Aliquots of diluent were serially diluted and 

inoculated in 0.02 ml amounts (drop inoculation method) onto Cytophaga agar, 

P.B.G. and T.S.A. The number of viable cells transferred to ~ach of the 3 different 

media was determined by plate count. Dividing by 10 gave the average count per egg 

and by taking into account dilution factor, volume of diluent and egg surface area, the 

number of viable colony forming units (cfu's) per mm2 was estimated (as described in 

Chapter2). 

Internal sampling. At each sampling time 25 eggs randomly chosen for each 

species were removed and surface sterilized by placing in iodophor disinfectant 

(Buffodine- Evans Vanodine International Ltd, Preston) for 15 minutes at an available 

iodine concentration of 200 ppm. Such a process constitutes a longer treatment time and 

twice the manufacturers recommended concentration of iodine, as egg surface sterility 

was considered more important in an experimental context than any damage that might 

have occurred to the embryo. However, an even greater concentration of iodine (and 

thus guaranteeing surface sterility) could not be employed as there is evidence to 

suggest that substances of low molecular weight (such as iodine) may pass across the 

chorion into the perivitelline space (Hayes 1949; Potts & Rudy 1969; Rudy & Potts 

1969) potentially influencing numbers of bacteria isolated. After treatment eggs were 

removed and rinsed in four changes of sterile water to remove any traces of 

disinfectant. Eggs were placed individually into small sterile tubes (LP3- Luckharns, 

Burgess Hill) containing 1ml of tryptone soya broth (T.S.B.) and incubated at 20 °C 

for 10 days. Surface sterilization was only considered to have been successful when the 

surrounding media was still clear and no growth occurred after a further 10 days when 

samples of the media were dropped onto the three agars. Surface sterilized eggs were 
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lanced in the tube (still containing sterile T.S.B. media) with a lml syringe and needle 

(0.5 x 16 mm) and the egg contents removed. Drops were inoculated directly onto agar 

media and into further tryptone soya broth. 

Identification of bacteria. Bacteria were isolated by a variety of techniques, 

procedures and schemes outlined by Krieg and Holt (1984), Cowan (1974), the tables 

of Alien, Austin & Colwell (1983) and Stanier, Palleroni & Doudoroff (1966). Some 

Gram -ve bacteria, especially Aeromonas hydrophila, were more easily identified using 

API 20E and 20NE identification strips (API laboratory products -Basingstoke). 

Statistical analysis. Numbers of colony forming units per mm2 for each 

species of egg were compared using a two way split-plot analysis of variance (Ridgman 

1975; Snedecor & Cochran 1980). Differences between means were compared by 

calculating the standard errors and 95% confidence limits appropriate to the split-plot 

design (Snedecor & Cochran 1980). Numbers of hatched eggs against eggs that failed 

to hatch were compared using a chi square (X 2) test. Effect of bacterial presence on egg 

surfaces was analysed by multiple regression chosen to compare numbers of surface 

bacteria with egg deaths by relating mortality to time (age) and bacterial numbers. 
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RESULTS 

Egg development 

Hatching Success. Data obtained for eyeing and hatching during this trial is 

summarized in Table 5 : 1. From this table it can be seen that exceptionally high 

estimated fertilization rates were obtained; 1336 and 2689 eggs (100%) for rainbow 

trout and 883 eggs (96%) for brown trout, in turn, leading to high hatching rates of 

1268 and 2467 eggs (94.9% and 91.7%) for rainbow trout and 882 (95.9%) for brown 

trout. It can also be seen from the table that "estimated fertilized egg losses" (calculated 

by subtracting numbers of "estimated unfertilized eggs" from the total number of eggs 

that failed to hatch) ranged from 68 to 222 (5.1 % to 8.3%) for rainbow trout eggs and 

only 1 (0.1%) for brown trout eggs. Analysis of overall hatching success between egg 

groups revealed no significant difference between brown trout eggs and rainbow trout 

eggs incubated under the same flow-through system (source 1). However, a highly 

significant difference was found between rainbow trout eggs (source 1) and rainbow 

trout eggs (source 2) (X2 = 13.38, P < 0.001). Similarly, a highly significant difference 

in hatching success was found between brown trout eggs (source 1) and rainbow trout 

eggs (source 2) (X2 = 17.45, P < 0.001) (Appendix 5: 1). 

Daily mortalities of eggs are recorded in Figure 5 : 3, from which it can be 

seen that the pattern of egg mortality between brown trout eggs and rainbow trout eggs 

(source 1), both incubated under the same flow-through system, is similar. Both egg 

species (although more exaggerated in brown trout eggs), show periods of stability, 

followed by periods of additional egg mortality throughout incubation, leading to a 

levelling off in mortality prior to hatching. In contrast, rainbow trout eggs (source 2) 

exhibit a virtual constant and accumulative egg mortality with no indication of mortality 

levelling off until the very last days of incubation. Analysis of egg mortality data at 7 

day intervals throughout incubation reveals significant differences in "rate" of egg death 
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TABLE S : 1 Eyeing and hatching rates for rainbow trout and brown trout eggs. 

EGG SURVIVAL: Rainbow trout 

(Source 1) 

Total number of eggs 1336 

Estimated fertilized eggs 1336 

Actual eyed eggs 1274 

Actual hatched eggs 1268 

EGG LOSS: 

Deaths to eyeing 52 

Deaths at shocking 10 

Deaths from eyeing to hatching 6 

Eggs that failed to hatch 68 

UNEXPLAINED LOSSES : 

Estimated unfertilized eggs 0 

Estimated fertilized egg losses 68 

Estimated fertilized egg losses (%) (5.1) 

Figures in brackets = percentages. 

Brown trout Rainbow trout 

(Source 1) (Source 2) 

-----------------·----·-·--
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between rainbow trout eggs (source 1) and brown trout eggs (source 1) between 7-14 

days and 14-21 days incubation (X2 = 6.76, P < 0.05 and X2 = 8.55, P < 0.05). After 

21-28 days incubation a very significant difference was seen in egg mortality between 

these two above groups (X2 = 10.94, P < 0.01). Rainbow trout eggs (source 1) and 

(source 2) suffered a similar "rate" of egg death for the first half of incubation (1-14 

days) but, from 14-21 days rainbow trout eggs (source 2) exhibited significantly 

greater egg mortalities (X2 = 6.1, P < 0.05) and, over the last part of incubation (21-28 

days) suffered highly significantly greater mortalities (X2 = 12.49, P < 0.01) than 

rainbow trout eggs under the flow-through system. Throughout the whole of 

incubation (compared at 7 day intervals) rainbow trout eggs (source 2) suffered 

significantly greater mortalities than brown trout eggs; 1-7 days (X2 = S.Ol, P < O.OS), 

7-14 days (X2 = 13.S3, P < 0.001), 14-21 days (X2 = 23.95, P < 0.001) and 21-28 

days (X2 = 36.71, P < 0.001) (Appendix 5: 2). 

Bacteriological examination 

Coelomic fluid. Bacteria were isolated from coelomic fluid of 6 rainbow trout 

and 2 brown trout (Table 5: 2). Genera isolated included Pseudomonas, Aeromonas, 

Staphylococcus, Corynebacterium and Flavobacterium. 

Milt. Bacteria were found in milt of all 5 samples. Rainbow trout milt 

contained higher numbers and a greater range of bacterial species (Table 5 : 3), 

probably, due to the removal of the testis and subsequent handling by farm staff 

(Woodroffe & Shaw 1974), a process necessary with sex-reversed fish. Species 

isolated were similar to those in coelomic fluid but were present in slightly higher 

numbers. 

External sampling. Few bacteria were found attached to surfaces of green 

(unfertilized) eggs. However, bacteria isolated included Staphylococcus epidermis, 

Pseudomonas sp. and Bacillus sp. During incubation large numbers of bacteria 

accumulated around egg surfaces (Figure 5: 4). From this graph it can be seen that 
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Table 5 : 2. Bacteria present in the coelomic fluid of five brown and ten rainbow trout. 

Rainbow trout Brown trout 
(Fish) Bacteria Range (Fish) Bacteria Range 

cfu's/ml 

(1) 

(2) 
(3) 

(4) 

(5) 

(6) 
(7) 
(8) 

(9) 

(10) 

cfu's/ml 

Aeromonas hydrophila 101 
Pseudomonas fluorescens 101 

(1) 

(2) 
Pseudomonas maltophila 101 (3) 
P.fluorescens 101 
A. hydrophila 102 (4) 
P. fluorescens ·101 
Pseudomonas sp. 101 (5) 
A. hydrophila 101 
P .jluorescens 101 

Staphylococcus 
epidermis 

Corynebacterium sp. 
Pseudomonas sp. 
A. hydrophila 
Flavobacterium sp. 

102 
101 
1Q1 

101 
1Q1 
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TableS : 3. Bacteria present in the milt of two brown and three rainbow trout. 

Rainbow trout Brown trout 
(Fish) Range (Fish) Range 

Bacteria cfu's/ml Bacteria cfu's/ml 
-----------------·----------------------------------------------------------------------------

. (1) S. epidermis 102 (1) A. hydrophila 102 
P .jluorescens 101 Pseudomonas sp. 101 
A. hydrophila 101 
Pseudomonas sp. 1Q2 . 

(2) A. hydrophila 102 (2) Pseudomonas sp. 101 
Flavobacteriwn sp. 101 A. hydrophila 101 
Pseudomonas sp. 102 
S. epidermis 102 

(3) A hydrophila 101 
S. epidermis 102 
Flavobacterium sp. 101 

--------·-------·---------·------·------·-------·--------------·---------·---------------------------
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FIGURE 5:4 Estimated colony forming units for all 

bacteria per sq mm egg surface 

500 

B 

400 

300 

V> 
:::> 
u. + Glass beads 0 
u. + Brown eggs 0 
a: ... Rainbow eggs 1 w 
m .... Rainbow eggs 2 ::::E 
:::> z 

200 

100 

o+---~'=r=~~:,~~=--r------~ 
0 1 0 20 30 40 

TIME (Days) 

A= 95% confidence limits for differences within a treatment and B = 95% 

confidence limits between 2 treatments at the same or different times. 

129 



glass beads supported the least numbers of bacteria. Rainbow trout eggs (source 1) and 

brown trout eggs (source 1) were colonized by equal numbers of bacteria up until 14 

days of incubation but, from 14-28 days, rainbow trout eggs supponed slightly more 

bacteria. Rainbow trout eggs (source 2) were colonized with equal numbers of surface 

bacteria as the other egg groups (source 1) until 14 days of incubation. However, after 

14 days numbers of bacteria on rainbow trout eggs (source 2) proliferated greatly and a 

marked difference was seen between this group of eggs under the recycled water 

system and groups under the flow-through system. Analysis of cfu's recovered for all 

4 groups (by 2 way split-plot analysis of variance) revealed overall a highly significant 

difference in numbers of egg surface bacteria (P < 0.001). A highly significant effect of 

time was seen (P < 0.001) and a highly significant interaction between time and 

numbers was found (P < 0.001) (Appendix 5: 3). 

Examination of species of bact~ria found on egg surfaces revealed a similar 

pattern of colonization on all egg group surfaces under the flow-through system. 

Generally, both rainbow and brown trout egg surfaces (source 1) were dominated by 

Pseudomonas fluorescens, followed by Aeromonas hydrophi/a and low numbers of 

"other" bacteria (frequently, Cytophaga sp. and Pseudomonas sp.) (Figures 5: 5a and 

5 : 5b). Surfaces of glass beads revealed a similar pattern of colonization to the above. 

However, proportionally "other" bacteria were represented in higher numbers including 

the following genera; Cytophaga sp., Flavobacterium sp., Pseudomonas sp. and 

Achromobacter (Figure 5 : 5c). In contrast, rainbow trout eggs (source 2) were 

dominated by Cytophaga sp. (only present in low numbers on surfaces under the flow­

through system), and P. fluorescens was also frequently isolated. In addition, A. 

hydrophila and "other" bacteria, comprising mainly of Pseudomonas sp. were 

recovered (Figure 5 : 5d). 

Internal sampling. Few individual eggs were considered to contain bacteria. 

Over the entire sampling period of 7-28 days, a total of 300 eggs were examined (75 

eggs at each sampling time). Only 10 eggs were found to contain bacteria; 
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FIGURE 5:5(d) Estimated colony forming units per 

sq mm egg surface (rainbow trout eggs - source 2) 
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Pseudomonas sp. were isolated from 8 eggs and A. hydrophila from two. Cytophaga 

sp. common place on surfaces of eggs (source 2) were not found within. 

Egg death. As so few eggs were colonized internally by bacteria it was 

decided to disregard any effect they might have on incubating egg death. However, the 

effect of bacterial presence on egg surfaces and their survival was analysed by multiple 

regression which demonstrated a correlation between bacterial numbers and egg deaths 

(r = 0.74) (Appendix 5 : 4). 
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DISCUSSION 

During the course of this trial eggs were only taken from a total of 15 fish in 

order that great care could be taken with stripping, fertilization and with the provision 

of optimum incubation conditions. Exceptionally high fertilization rates of 100% for 

rainbow trout eggs provide sufficient evidence that this was achieved. Similarly, brown 

trout egg fertility, estimated at 96% , although slightly lower than that of rainbow trout 

eggs, was still extremely high. Under the flow-through system of incubation provided, 

direct comparison of the performance of rainbow trout eggs and brown trout eggs is 

completely valid. At flrst sight, (due to the fertilization flgures above), it would seem 

that rainbow trout eggs performed better than brown trout eggs, contradicting the 

traditional views that suggest rainbow trout eggs perform less well than those of other 

salmonids (as previously described). However, closer examination indicates that this is 

not truly the case because, as a consequence of the 100% fertilization, all the rainbow 

trout eggs should potentially go on to hatch but, 5.1% failed to do so even under the 

optimum incubation conditions provided. On the other hand, of the estimated 96% of 

brown trout eggs fertilized only 0.1% failed to hatch. 

Numbers of egg surface bacteria were estimated by plate counts and although, 

only a conservative technique (as fully discussed in Chapter 2), differences in numbers 

of bacteria per mm2 were found between groups of eggs and glass beads. Under the 

flow-through system (source 1) glass beads supported the least surface bacteria, 

although after 35 days as many as 23 cfu's per mm2 were estimated to be present 

drawn from a wide range of bacterial genera. Their presence on glass beads (as an inert 

surface) is not unexpected as nutrients sufficient for limited microbial growth are 

known to exist in hatchery waters (Willoughby, McGrory & Pickering 1983), and will 

tend to accumulate around solid surfaces (Zobell & Anderson 1936) in turn supporting 

microbial growth and reproduction. In comparison, brown trout eggs were colonized 

by higher numbers of bacteria pex: mm2 than glass beads, while maintained under 
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identical conditions. Salmonid embryo's are extremely efficient at using nutrients 

available to them and only relatively small quantities of carbon dioxide and ammonia are 

excreted (Hayes 1949 ; Smith 1947 ; 1957). Therefore, although higher numbers of 

bacteria are associated with surfaces of brown trout eggs (compared to glass beads), 

this may not be solely a consequence of nutrient release from eggs. Other factors, in 

particular the interaction of egg surface properties and bacterial processes of adhesion 

must also be of potential importance in governin·g bacterial loading of living and inert 

surfaces. Under the same incubation system rainbow trout eggs supported higher 

numbers of bacteria than brown trout eggs after 14 days of incubation. Whether 

rainbow trout eggs have slightly different egg surface properties facilitating bacterial 

adhesion or whether rainbow trout embryo's excrete increased amounts of waste 

products, thereby supporting higher numbers of bacteria (compared to brown trout 

eggs) remains doubtful. Increased levels of bacteria on rainbow trout egg surfaces in 

this trial, may be a consequence of a far simpler process, for although availability of 

nutrients from normally developing eggs may be considered limiting, the possibility 

still exists that over protracted periods of incubation more nutrients for potential 

bacterial growth will become available. In particular, the presence of any dead eggs in 

trays, possibly due to individual poor egg quality, or poor local environmental 

conditions, may give rise to more freely available nutrients due to rupturing of the 

vitelline membrane (Post, Power & Kloppel 1974) leading in turn to considerable 

nutrient loss. Smith, Armstrong, Springate & Barker (1985) demonstrated that shocked 

rainbow trout eggs release considerable quantities of metabolites including potassium, 

phosphate and amino acids all of which favour bacterial growth and reproduction. 

Thus, increased numbers of dead eggs amongst rainbow trout egg groups (compared to 

brown trout egg groups) may have led to higher levels of nutrients available locally and 

in turn supported higher numbers of bacteria. This argument may equally well explain 

the higher numbers of bacteria found en rainbow trout egg surfaces under the recycled 

water incubation system (source 2), even though physical conditions (for example, 

water temperature, flow rates, egg density), were identical to those employed in the 
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flow-through system. However, such a marked increase in bacterial numbers (3 times 

that of eggs from source 1) is unlikely to be solely due to increased numbers of dead 

eggs. Rainbow trout eggs in both incubation systems came from a common genetic 

pool and therefore, physical characteristics of eggs and their surface properties can be 

assumed to be identical. However, continual recycling of water may in turn ensure that 

any nutrients already present in the water, or any leaked from eggs, are not lost to drain 

but are continually available to bacteria on egg surfaces over the whole incubation 

period thereby encouraging further bacterial growth. 

Generally, bacterial numbers increased with progressive incubation periods, 

irrespective of the substrate, but species diversity was seen to decline. A similar pattern 

of bacterial activity was described by Shewan (1961) and Shewan & Hobbs (1967), 

although specifically in relation to the spoilage of stored fish. The observed loss of 

diversity, in particular that associated with continued increase in Pseudomonads, may 

be a consequence of either inhibition of other competing microbial organisms by P. 

fluorescens (Cornick, Chudyk & McDermot 1969 ; Dubois-Darnaudpeys 1977 ; 

Gurusiddaiah, Weller, Sarkar & Cook 1986; Hatai & Willoughby 1988) or, a possible 

variety of environmental factors interacting to enhance the success of a limited group of 

bacteria. The actual species of bacteria present on rainbow trout and brown trout egg 

surfaces differed very little, with P. fluorescens and A. hydrophila dominating 

surfaces of both egg species. In contrast, Cytophaga sp. were isolated far less 

frequently from surfaces of eggs maintained under a flow-through system, however 

surfaces of rainbow trout eggs kept under recycling conditions were colonized by 

considerable numbers of Cytophaga sp. as also observed in earlier work (Chapter 2) 

and by Bell, Hoskins & Hodgkiss (1971) and Trust (1972) albeit under different 

incubation conditions. As all rainbow trout eggs came from a common genetic pool it is 

therefore likely, that some aspect of water quality, possibly involving the quality of 

filtration was responsible for favouring the growth of Cytophaga sp. at the expense of 

P. fluorescens and A. hydrophila. Alternatively, constraints on numbers of P. 

fluorescens could have resulted in less inhibition of Cytophaga sp. and in turn their 
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subsequent proliferation. Horsley (1973) demonstrated that the bacterial flora of fish 

tends to reflect that of their environment, and differences in egg surface microflora in 

this trial would seem to suggest that this might apply equally as well to incubating 

salmonid eggs. 

In this trial, brown trout eggs supported the least number of surface bacteria 

and experienced the fewest deaths. Rainbow trout eggs (source 1) demonstrated higher 

numbers of surface bacteria and in turn more deaths but, rainbow trout eggs (source 2) 

supported the highest number of swface bacteria and also experienced the most deaths. 

Thus, analysis of data by multiple regression found a marked correlation between egg 

surface bacteria and egg death (r = 0.74). Between all3 egg groups numbers of swface 

bacteria remained constant up until 14 days of incubation. During this period (1-14 

days of incubation) the majority of total egg deaths, within each egg group was seen to 

occur; rainbow trout eggs (source 1) 76% ; brown trout eggs (source 1) 82% and 

rainbow trout eggs (source 2) 57%. Therefore, although, from 14-28 days differences 

in bacterial numbers (and species) became more marked between all groups, 

proportionally fewer egg deaths actually occurred. Thus, if a relationship between 

bacteria and egg mortality does exist, it is not likely to be simply due to the presence or 

absence of one particular species of bacteria at a given concentration. Furthermore, it 

could be argued that higher numbers of egg surface bacteria are a consequence of 

original poor egg quality (and the availability of increased nutrients) and not a cause of 

it. However, whatever the causes of egg mortality, they are unlikely to be so simplistic 

as a considerable variety of other factors (as already outlined), in addition to the 

presence of large numbers of bacteria may also be of influence. A better understanding 

of the relationship between "commensal" bacteria and egg mortality might possibly be 

achieved by manipulation of both numbers and species of the potential egg bacterial 

flora and close observation of subsequent egg death. 
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SUMMARY 

Analyses of bacterial numbers attached to surfaces of rainbow trout eggs, 

brown trout eggs and glass beads incubated under identical conditions revealed 

significant differences between groups. Generally, glass· beads supported the least 

number of bacteria, brown trout eggs supported considerably more bacteria and 

rainbow trout eggs supported the greatest number of bacteria. However, glass beads 

were colonized by a more diverse range of bacteria than either rainbow trout or brown 

trout eggs. In addition, replicate batches of rainbow trout eggs incubated under a 

different system were colonized by far greater numbers of bacteria and dominated by 

bacteria from a different genera. Thus, in this study the egg surface bacterial flora is 

influenced by water quality I treatment, potentially a consequence of the varying 

filtration systems employed between the two incubation systems. Overall, analysis of 

egg mortalities between groups revealed a strong correlation between egg surface 

bacterial numbers and deaths of the incubating eggs. 
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CHAPTER SIX 

EXPOSURE OF NEWLY-FERTILIZED EGGS TO fllGH 

CONCENTRATIONS OF BACfERIA RELATED TO 

SUBSEQUENT INCUBATING EGG MORTALITY 
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INTRODUCTION 

In 1987 the United Kingdom certified the importation of 61.5 million eyed 

rainbow trout (Salmo gairdneri) eggs (Bromage & Cumaranatunga 1988) in order to 

meet the industry's expected demand for healthy adult fish. Importation of such vast 

numbers of eggs is undesirable on grounds of cost, genetic strategy and furthermore 

leaves the industry vulnerable to imported diseases. However, it is possible that 

approximately 48 million home produced rainbow trout eggs are "lost" during the 

incubation process (Chapter 1). A small reduction in the amount of eggs lost could in 

turn lead to a significant reduction in eyed egg imports. However, the causes of egg 

death during incubation are not fully understood and are likely to be many and varied. 

The period of time from egg ovulation to actual stripping is known to have a profound 

effect on egg survival rates during subsequent incubation (Sakai, Nomura, Takashima 

& Oto 1975; Hirose, Ishida & Sakai 1977 ; Lam, Nagahema, Chan & Hoar 1978; 

Craik & Harvey 1984; Springate, Bromage, Elliott & Hudson 1984) and provision of 

suitable environmental conditions is fundamental (Leitritz & Lewis 1976). The role of 

aquatic moulds of the Saprolegniaceae is also well documented (Smith, Armstrong, 

Springate & Barker 1985) and daily treatment with malachite green is fully accepted 

within the U.K. (Cline & Post 1972). However, the possible role of other micro­

organisms such as bacteria on egg development is less clear. 

Oppenheimer (1955) first suggested that bacteria might be responsible for 

mortality of pelagic fish eggs. Further studies on incubating eggs from a wide range of 

fish have also implicated a relationship between bacteria and incubating egg death 

(Hunter 1959 ; McNeil, Wells & Brickell 1964 ; Bell, Hoskins & Hodgkiss 1971 ; 

Trust 1972; Yoshimizu, Kimura & Sakai 1980) (as fully described in Chapter 1). Bell 

(1966), Bell et al (1971), Trust (1972) and Yoshimizu et a/ (1980) have all 

characterized the large and varied bacterial community that occurs in association with 

surfaces of incubating salmon id eggs under a wide variety of environmental conditions. 
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However, only Trust ( 1972) considered it possible for egg surface bacteria to be 

responsible for salmonid egg death, and then only under certain circumstances, for 

example, high numbers of egg surface bacteria coupled with poor water circulation, 

leading in turn to insufficient levels of available oxygen for continued egg survival. 

Previous studies (Chapters 2 and 5) have also confirmed a specific bacterial community 

on incubating egg surfaces comprising mainly Cytophaga sp., Pseudomonas 

fluorescens and Aeromonas hydrophila, largely influenced by the prevailing 

environmental conditions. Statistical analysis (Chapter 5) suggested a close link 

between egg surface bacteria and egg death, although a straight forward "cause and 

effect" relationship was still thought unlikely to exist under optimum incubation 

conditions. It was therefore considered that a greater understanding of the above 

relationship might be achieved by careful manipulation of bacterial floras associated 

with egg surfaces. 

In the following trial newly fertilized rainbow trout eggs were exposed to high 

concentrations of P. fluorescens and Cytophaga sp. during 45 minutes of water 

hardening. Both P. fluorescens and Cytophaga sp. were selected as they are 

frequently found on live incubating salmonid egg surfaces (Chapters 2 and 5). After 

exposure to selected bacteria, eggs were laid down under optimum incubation 

conditions and due to the large number of selected bacterial cells adhering to eggs it was 

considered likely that colonization by.other bacterial species would at least be initially 

hindered. Thus, early egg mortalities within groups of eggs exposed to bacteria at 

water hardening might be directly related to the dominant (inoculated) egg surface 

bacterial flora. Replicate groups of eggs were also exposed to autoclaved suspensions 

of both P. fluorescens and Cytophaga sp. as water hardening of eggs in water of 

inferior quality might disrupt the hardening process in turn reducing egg viability, 

which could subsequently be interpreted as an effect of bacterial activity on eggs. Egg 

surface bacterial populations were monitored throughout incubation and all egg 

mortalities carefully recorded. In addition, exposure of eggs to bacteria at water 

hardening (when eggs are actively taking up water) might also result in internal egg 
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contamination via the micropyle. Therefore, throughout incubation internal egg contents 

were also investigated for bacterial contamination. A schematic outline of procedures 

and practices followed during this study is summarized in Figure 6 : 1. 

144 



FIGURE 6:1 Flow diagram of experimental protocol. 
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MATERIALS AND METHODS 

Experimental design 

Incubation system. One, single incubation system comprising of two separate 

(parallel) troughs was used during this trial. Each trough contained two sectioned 

aluminium trays to support eggs. Water at 10 °C ± 1 °C after passing over eggs at a 

flow rate of 3600 1 I day, was redirected through a gravel filter bed (as a biological 

fllter), before being recycled. A small volume of fresh "make-up" water (approximately 

5% I day) was added to allow for evaporation and spillage (Figure 6 : 2). 

Collection of Eggs and milt 

Stripping. Eggs were obtained from 15 ripe rainbow trout from a single 

commercial fish farm. Eggs of each fish were stripped into individual sterile containers. 

The ftrst eggs from each fish were discarded to avoid any contamination from the 

surrounding water or ventrolateral surface of the female. Milt, also collected in sterile 

containers, was obtained from 3 sex-reversed females. Milt and eggs were immediately 

put on ice and returned to the laboratory. Eggs, coelomic fluid and milt from each 

container were removed for bacteriological examination. 

Preparation of inocula 

Bacteria. P. fluorescens and Cytophaga sp. were initially isolated from 

rainbow trout eggs (Chapter 2), subcultured, checked for purity and after extensive 

tests identified (Appendix 2 : 10 - 2 : 11). 25 ml flasks of defined sterile medium 

(Appendix 2: 1) were inoculated with each of the two bacterial species and placed on a 
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FIGURE 6 : 2 Pumped recirculatory incubation system 
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continuous orbital shaker at 100 rpm and incubated at a temperature of 10 °C. 

Stationary phase cells of P.fluorescens were harvested after 48 hours and Cytophaga 

sp. after 72 hours. Cells were spun twice at 10, 000 rpm for 20 minutes and rinsed 

twice in sterile water derived from the Aston University Fish Culture Unit, before being 

filtered and finally resuspended in 500 ml volumes of sterile fish unit water. 

Suspensions were initially checked for optical density (L.K.B., Cambridge) and from a 

previously obtained standard curve of optical density against colony forming units 

(cfu's) I ml, a suspension of approximately 106 cells I ml was obtained. A more 

accurate adjustment to the final concentration employed was obtained by direct count 

using a haemocytometer. Two 500 ml volumes of 1 ()6 cells I ml were obtained for both 

species of bacteria. One of each was held at 10 °C whilst the others were sterilized by 

autoclaving (20 minutes, 115.5 °C, 0.72 Kg I cm2) and then swiftly returned to 10 °C. 

Inoculation of eggs 

Water hardening. Eggs were pooled in a sterile container and fertilized. After 

5 minutes excess milt was washed off with sterile fish unit water and eggs divided into 

5 approximately equal volumes and placed into 5 separate sterile containers. 500 m1 of 

sterile fish unit water was added to one batch of eggs. To the remaining 4 batches, one 

of the following 500 ml suspensions was added; 106 cells I ml P.fluorescens, 106 cells 

I ml autoclaved P. fluorescens, 106 cells I ml Cytophaga sp. and 106 cells I ml 

autoclaved Cytophaga sp. Eggs were left to water harden for 45 minutes at 10 °C 

before being rinsed in 4 changes of sterile water to remove excess volumes of bacterial 

suspensions and any unattached bacteria from egg surfaces. 
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Egg incubation 

Laying down of eggs. Replicate batches of eggs from bacterial treatments 

were supported on the aluminium trays in incubation troughs. Eggs from each batch 

were assigned randomly to each individual section. 

Egg fertilization rates were determined after 7 days at 10 °C by placing 100 

eggs for each species into clearing solution (acetic acid: methanol: water, 1 : 1: 1 vI 

v) as outlined by Springate & Bromage (1984). Fertilized eggs· could be clearly 

distinguished by the presence of a developing neural tube. At eyeing, eggs were 

"shocked" by siphoning from a height of 1m into a sterile beaker and any unfertilized 

eggs removed. Eyed eggs were replaced into their relevant sections in the incubators. 

Eggs were treated with malachite green oxalate (Difco, Surrey) twice a day at a 

concentration of 2 ppm. 

Bacteriological Examination 

Coelomic fluid and milt. Aliquots of coelomic fluid from each fish were 

serially diluted and inoculated in 0.02 ml amounts (drop inoculation method) onto 

Tryptone soya agar (T.S.A., Oxoid, Basingstoke), peptone beef extract glycogen agar 

(P.B.G., McCoy & Pitcher 1974) and low nutrient Cytophaga agar (Anacker & Ordal 

1959). Plates were incubated at 20 °C for up to 10 days and enumeration performed 

only from drops where total separation of colonies occurred. 

Eggs. Eggs were sampled at the green stage (unfertilized), immediately after 

water hardening and during incubation after 12 hours, 7 days, 14 days, 21 days and 28 

days. 
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External sampling. For, each sampling time I treatment three separate batches 

of 10 eggs from each of the 5 groups were removed at random from appropriate 

sections. Subsequently; samples were rinsed in 4 changes of sterile water to remove 

any detritus or loosely adhered bacteria and added to 5 ml of sterile diluent (peptone -

0.1 %, saline- 0.85%) before shaking vigorously for 2 minutes on a vortex stirrer, in a 

manner adapted from Evelyn, Ketcheson & Prosperi-Porta (1984). Aliquots of diluent 

were serially diluted and inoculated in 0.02 ml amounts (drop inoculation method) onto 

Cytophaga agar, P.B.G. and T.S.A. The number of viable cells transferred to each of 

the 3 different media was determined by plate count Dividing by 10 gave the average 

count per egg and by taking into account dilution factor, volume of diluent and egg 

surface area, the number of viable colony forming units (cfu's) per mm2 was estimated 

(as described in Chapter 2). 

Internal sampling. At each sampling time 15 eggs randomly chosen for each 

species were removed and surface sterilized by placing in iodophor disinfectant 

(Buffodine- Evans Vanodine International Ltd, Preston) for 15 minutes at an available 

iodine concentration of200 ppm (as described in Chapter 5). Such a process constitutes 

a longer treatment time and twice the manufacturers recommended concentration of 

iodine, as egg surface sterility was considered more important in an experimental 

context than any damage that might have occurred to the embryo. However, an even 

greater concentration of iodine (and thus guaranteeing surface sterility) could not be 

employed as there is evidence to suggest that substances of low molecular weight (such 

as iodine) may pass across the chorion into the perivitelline space (Hayes 1949; Pons 

& Rudy 1969 ; Rudy & Potts 1969) potentially influencing numbers of bacteria 

isolated. After treatment eggs were removed and rinsed in four changes of sterile water 

to remove any traces of disinfectant. Eggs were placed individually into small sterile 

tubes (LP3- Luckhams, Burgess Hill) containing lml of tryptone soya broth (T.S.B.) 

and incubated at 20 °C for 10 days. Surface sterilization was only considered to have 

been successful when the surrounding media was still clear and no growth occurred 

after a further 10 days when samples of the media were dropped onto the three agars. 
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Surface sterilized eggs were lanced in the tube (still containing sterile T.S.B. media) 

with a 1ml syringe and needle (0.5 x 16 mm) and the egg contents removed. Drops 

were inoculated directly onto agar media and into further tryptone soya broth. 

Identification of bacteria. Bacteria isolated from green eggs and towards the 

end of incubation were identified by a variety of techniques, procedures and schemes 

outlined by Krieg and Holt (1984), Cowan (1974), the tables of Alien, Austin & 

Colwell (1983) and Stanier, Palleroni & Doudoroff (1966). Some Gram negative 

bacteria, especially Aeromonas hydrophila, were more easily identified using API 20E 

and 20NE identification strips (API laboratory products -Basingstoke). However, for 

the majority of sampling times P. f/uorescens and Cytophaga sp. were the most 

frequently isolated organisms greatly facilitating identification processes. 

Statistical analysis. Numbers of colony forming units per mm2 for each 

species of egg were compared using a two way split-plot analysis of variance (Ridgman 

1975; Snedecor & Cochran 1980). Differences between means were compared by 

calculating the standard errors and 95% confidence limits appropriate to the split-plot 

design (Snedecor & Cochran 1980). Numbers of hatched eggs against eggs that failed 

to hatch were compared using a chi square (X2) test Effect of bacterial presence on egg 

surfaces was analysed by multiple regression chosen to compare numbers of surface 

bacteria with egg deaths by relating mortality to time (age) and bacterial numbers. 
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RESULTS 

Egg development 

Hatching Success. Figures obtained for egg performance are summarized by 

Table 6 : 1. From this table it can be estimated that overall a 96% fertilization rate of 

eggs was obtained leading to hatching rates ranging from 74.8% to 87% (Table 6: 1) 

with a mean of 80.1 %. Utilizing figures outlined in Table 6: 1 the percentage eyeing of 

control, autoclaved P. fluorescens and autoclaved Cytophaga sp. can be calculated 

(83%, 91.1% and 87.5%) leading in turn to hatching percentages of 77.8%, 87% and 

83.1% respectively as noted in Table 6 : 1. In comparison, by following the same 

exercise slightly lower percentage survivals were obtained for eggs originally exposed 

to live P. fluorescens and live Cytophaga sp. ; eyeing, 79.2% and 77.1% leading to 

7 4.8% and 77.1% hatching (Table 6 : 1). It can also be seen from Table 6 : 1 that 

estimated fertilized egg losses were 21.2% and 18.9% for egg groups treated with live 

P.fluorescens and live Cytophaga sp. respectively. Fertilized egg losses for control 

eggs were 18.2%, and for egg groups treated with autoclaved bacteria losses were 

9.0% (autoclaved P.jluorescens) and 12.9% (autoclaved Cytophaga sp.). Statistical 

analysis, taking into account total numbers of eggs incubated for each group over the 

whole incubation period, reveals overall a highly significant difference in successfully 

hatched eggs compared to eggs that failed to hatch between all groups (X2 = 70.98, P < 

0.001) (Appendix 6 : 1). However, this comparison is made between all 5 groups, 

including not only control eggs but, also those exposed to autoclaved bacteria, which 

performed equally as well, if not better, than the control group. If the two groups 

exposed to autoclaved bacteria are removed from the analysis and control eggs are 

compared to frrst, live P. fluorescens exposed eggs (X2 = 2.82, P > 0.05) and 

secondly, live Cytophaga sp. treated eggs (X2 = 0.14, P > 0.05), then no overall 

significant difference exists. 
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TABLE 6 : 1 Eyeing and hatching rates for all egg groups. 

EGG SURVN AL: Control P.jluorescens Cytophaga 
(autoclaved) (autoclaved) 

Total· number of eggs 1091 1216 870 

Estimated fertilized eggs 1047 1167 835 · 

Actual eyed eggs 906 1108 761 

Actual hatched eggs 849 1058 723 

Actual % hatched eggs (77.8) (87.0) (83.1) 

EGG LOSS: 

Deaths to eyeing 132 59 68 

Deaths at shocking 53 49 41 

Deaths eyeing to hatching 57 50 38 

Eggs that failed to hatch 242 158 147 

UNEXPLAINED LOSSES : 

Estimated Wlfertilized eggs 44 49 35 

Estimated fertilized losses 198 109 112 

Estimated fertilized losses (18.2) (9.0) (12.9) 

---------------
Figures in brackets = percentages. 
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Daily egg mortalities are recorded in Figure 6 : 3 from which it can be seen 

that eggs exposed to live P. jluorescens suffer the greatest egg mortality, and in 

comparison to all other egg groups suffers an exceedingly high mortality rate over the 

first 5 days of incubation. Indeed statistical analysis of numbers of live eggs and dead 

eggs for each group, compared not over the whole incubation period (as above) but. at 

7 day intervals (Figure 6 : 4) reveals a highly significant difference in "rate" of egg 

death between control eggs and eggs exposed to live P. fluorescens, over the first 

seven days of incubation (X2 = 49.13, P < 0.001). In comparison, a significant 

difference between control eggs and eggs treated with live Cytophaga sp. is not seen at 

this time (1-7) days but, is found between 14-21 days (X2 = 7.08, P < 0.05) (Appendix 

6: 2). 

Bacteriological Examination 

Coelomic fluid. Bacteria were isolated from 10 out of the 15 samples of 

coelomic fluid. Total numbers of recovered colony forming units (cfu's) ranged from 

10 to 100 cells I ml. Bacteria most frequently isolated were ; Pseudomonas sp., 

Aeromonas hydrophila, Corynebacterium and Staphylococcus epidermis. 

Milt. Bacteria were isolated from all samples of milt and were estimated to be 

in the range of 100 to 1000 cells I ml. However, removal of testis may have allowed 

some contamination to have occurred (as previously described, Chapter 5). Bacteria 

isolated were similar in genera and species to those isolated from coelomic fluid. 

External Egg sampling. Few bacteria were found attached to surfaces of green 

(unfertilized) eggs, and for purposes of this study can be considered as virtually 

"sterile". Mter water hardening, control eggs and those treated with autoclaved bacteria 

predictably showed no real increase in numbers of surface adhered bacteria. However, 

those ~eria exposed to live bacteria had high numbers adhering to their surfaces; 

estimated mean figures approaching 10,000 cfu's I mm2 (Cytophaga sp.) and 20,000 

cfu's 1 mm2 (P.jluorescens ).After gentle rinsing, eggs were laid down for incubation 
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and total numbers of cfu's I mm2 of egg surface are summarized in Table 6 : 2 for all 

sampling times, from green eggs to 28 days. From this table it can be seen that during 

the flrst 12 hours of incubation many bacteria were "washed off" egg groups treated 

with live bacteria and in contrast increases in number of surface bacteria were 

subsequently seen on control eggs and those originally exposed to autoclaved bacteria. 

Analysis of cfu's recovered for all egg groups (by two way split-plot analysis of 

variance) revealed overall (from 12 hours to 28 days) a highly significant difference in 

numbers of surface bacteria between groups (P < 0.001 ). A highly significant effect of 

time was seen (P < 0.001) but, no significant interaction between time and numbers 

was found (P > 0.05) (Appendix 6: 3). 

Although, groups of eggs were kept physically apart in incubation trays, it 

was inevitable that live bacteria from hatchery water or washed off treated eggs would 

eventually colonize eggs from other groups. Control eggs (Figure 6 : 5) were colonized 

at virtually the same rate by both P.fluorescens and Cytophaga sp. All other bacterial 

species were excluded from these egg surfaces (at least in numbers high enough to 

recover) until the last sampling at 28 days of incubation. Eggs treated with autoclaved 

bacteria (Figures 6 : 6 and 6 : 7) were colonized in a similar manner to the control eggs 

by both P. fluorescens and Cytophaga sp. although surprisingly Cytophaga sp. 

occurred in far greater concentrations than P.fluorescens (about 1.5 times greater) on 

egg surfaces originally treated with autoclaved Cytophaga sp. However, both these 

two groups of eggs differed from the control group in that "other" bacterial species 

appeared far earlier on during incubation leading to concentrations of "other" bacteria as 

much as double that found on control eggs. Eggs· originally treated with live bacteria 

. exhibited a different pattern of colonization to the above three groups. P. fluorescens 

treated eggs (Figure 6 : 8) began incubation with large numbers of bacteria on their 

surfaces and partial domination by this organism (P.fluorescens) was seen throughout 

incubation. However, complete domination of surfaces did not occur since after 14 

days Cytophaga sp. were recovered and after 21 days "other" bacteria were also 

isolated. Similarly live Cytophaga sp. treated eggs (Figure 6 : 9) started incubation 
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TABLE 6 : 2 Estimated total colony forming units for all bacteria per sq mm egg 

surface for all egg groups. 

Control P.jluorescens Cytophaga sp. P.jluorescens Cytophaga sp. 

(autoclaved) (autoclaved) (Live) (Live) 

Green 0.2 0.2 0.2 0.2 0.2 

Eggs 

After 0.2 0.2 0 19160 9792 

Hardening 

12 hours 1.0 4.9 1.0 30.6 48.8 

7Days 4.5 9.0 6.2 28.6 109.9 

14 Days 89.2 32.8 24.1 106.5 216.7 

21 Days 406.4 706.2 600.3 .1315.8 528 

28 Days 478.8 597.6 680.7 1075.1 485.1 

---------------------------------------------------------------------------·---------------------------------
Mean figures obtained from 3 replicates on 3 different media. 95% confidence limits, 

from 12 hours to 28 days ; differences within a treatment 366.1 and for differences 

between two treatments at the same or different times 489.4. 
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FIGURE 6:6 Estimated colony forming units per sq 
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with considerable numbers of bacteria adhered to their surfaces and throughout 

incubation were dominated by this particular organism. However, in comparison to the 

above results (Figure 6 : 8) P. fluorescens quickly colonized these egg surfaces and 

were recorded present after only 12 hours. Once again "other" species of bacteria were 

not found until 21 days of incubation. 

Internal Egg Sampling. During the course of the experiment a total of 7 5 eggs 

(15 from each group) were investigated at each of 7 sampling times. Few eggs were 

found to contain bacteria, although Pseudomonas sp. were isolated from 4 eggs and 

Aeromonas hydrophila from 2. 

Egg death. As so few eggs were colonized internally by bacteria it was 

decided to disregard any effect internal contamination might have on incubating egg 

death. Effect of bacterial presence on egg surfaces was analysed by multiple regression 

which demonstrated a slight correlation between bacterial numbers and egg deaths (r = 

0.52) (Appendix 6 : 4). 
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DISCUSSION 

Exposure of newly fertilized eggs to high concentrations of bacteria at water 

hardening resulted in many bacteria adhering to egg surfaces but not subsequent total 

domination of egg surfaces by anyone bacterial species. After gentle rinsing 20,000 

cfu's I mm2 of P.fluorescens remained attached to egg surfaces and similarly 10,000 

cfu's I mm2 of Cytophaga sp. were still adhered to their respective egg surfaces. Within 

the first 12 hours of incubation approximately 99.8% of P. fluorescens cells were 

"washed off' into recirculating hatchery water, even so many cells still remained 

attached to egg surfaces. Attachment at such an early stage of incubation of so many 

cells, in turn permitted continued domination of egg surfaces by P. fluorescens, 

although eventually, Cytophaga sp. became established, followed by "other" bacterial 

species. In a similar vein, eggs originally exposed to live Cytophaga sp. during water 

hardening "lost" 99.6% of their bacteria after 12 hours incubation. On this occasion, 

despite an already established population of Cytophaga sp. on these egg surfaces, 

colonization by P. fluorescens occurred at an early stage of incubation (possibly a 

reflection of the faster growth rate of P. fluorescens compared to Cytophaga sp. -

Chapter 3). Irrespective of which bacteria predominated both egg groups were 

eventually colonized by large numbers of "other" bacteria (comprising mainly of A. 

hydrophila and Pseudomonas sp.) and although often slow to establish, possibly due 

to their presence in lower numbers in the hatchery water, their combined numbers on 

egg surfaces by the end of incubation approached those of P. f/uorescens and 

Cytophaga sp. In contrast to the two egg groups discussed above, control egg surfaces 

were considered sterile at time of laying down but subsequently, immediate exposure to 

relatively high numbers of bacteria probably occurred (washed off from surfaces of egg 

groups above). Such control egg surfaces were colonized at about the same rate by P. 

fluorescens and Cytophaga sp., which may be indicative of their ability to compete 

successfully in each others presence during initial establishment on "sterile" surfaces. 
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A major aim of this investigation was to ascertain more fully whether egg 

mortality could be connected with bacterial loading. Initially a difference in egg surface 

bacterial flora was achieved between egg groups and analysis by x2 revealed that those 

eggs originally exposed to live P.fluorescens experienced a far greater mortality rate. 

Trout eggs are well known to be at their most fragile during the early part of incubation 

(Post, Power & Kloppel1974; Leitritz & Lewis 1976) and therefore environmental 

conditions were designed to minimize losses which can occur through knocking, 

excess light and low oxygen levels. Irrespective of such care greatest losses 

experienced during this investigation tended to be amongst young eggs especially 

within the group exposed to live P.fluorescens, possibly indicating that at this early, 

sensitive stage of incubation the presence of large numbers of bacteria is potentially 

damaging to hatchery enterprises. The actual mechanisms or processes by which 

bacteria could effect egg incubation remains unclear. However, as already stated 

(Chapter 2) Trust (1972) considered it possible that surface bacteria, possibly reaching 

a theoretical maximum of 108 bacterial cells I mm2 could lead to oxygen deprivation and 

subsequent death of developing embryo's. However, during this trial great care was 

taken over such factors as egg density and water flow rate and it is unlikely that poor, 

local environmental conditions (and hence low levels of available oxygen) were 

responsible for egg deaths. Bell, Hoskins & Hodgkiss (1971) considered it unlikely· 

that e~g surface bacteria could produce sufficient enzymes or toxins to penetrate the 

extremely tough egg outer membrane (Young & Smith 1956 ; Bell, Hoskins & 

Bagshaw 1969). Although, there is no evidence to contradict their argument, it is well 

worth noting that the three most frequently occurring bacteria on egg surfaces, 

Cytophaga sp., Pseudomonas sp. and A. hydrophi/a , are all well known 

opportunistic pathogens and secondary invaders of diseased or injured fish. Cytophaga 

sp. have been implicated in bacterial gill disease of salmonid fish (Borg 1960; 

Anderson & Conroy 1969). P. fluorescens is an organism commonly isolated from 

many fresh water environments (Allen, Austin & Colwell 1983) and has also been 

implicated as a secondary invader of damaged fish tissues and even on occasions as a 
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primary invader (Roberts & Home 1978). A. hydrophila like A. salmonicida (the 

cause of furunculosis) possesses adhesins allowing it to attach 'closely to selected 

eukaryotic cells (Trust, Canotice & Atkinson 1980) and is known to produce an 

extended range of enzymes and exotoxins (Wadstrom, Lungh & Waetlend 1976). 

Therefore, although salmonid embryo s enjoy the protection of a tough outer membrane 

the presence of all three bacterial groups on egg surfaces can not be dismissed as of 

little consequence, for even if eggs are not damaged during incubation, successfully 

emerging fry will immediately come into contact with high numbers of potential 

secondary and primary invaders. 

In this trial few bacteria were isolated from bacterial contents, in contrast to 

Sauter, Williams, Meyer, Celnik, Banks & Leith (1987), who found a large range of 

bacteria within salmon eggs (0. tshawytscha ) Walbaum, however this may possibly 

be a reflection on the large size of salmon eggs compared to rainbow trout eggs 

(allowing easier access for bacteria) or their particular experimental method of 

"enrichment" recovery. Results outlined earlier indicate that ovulated eggs are exposed 

to bacteria from an early stage, even within the coelomic cavity. Whether eggs are 

exposed to bacteria before ovulation is unclear but, it seems unlikely that most bacterial 

species could manage to enter eggs before they are shed into the coelomic cavity. One 

possible exception may be Renibacterium salmoninarum (responsible for Bacterial 

Kidney Disease- B.K.D.), a highly specialised bacterium able to live and reproduce 

intracellularily (Young & Chapman 1978 ; Bruno & Munro 1986). Other bacteria 

entering eggs probably do so once eggs have been shed into the coelomic cavity and 

gain access via the micropyle which for rainbow trout eggs is 3.3-4.3 ~m in diameter 

(Riehl 1980). In comparison P. jluorescens is only 0.8 ~m wide and Cytophaga sp. 

0.5 ~m wide (Palleroni 1984; Strohl & Tait 1978). However,in this study "naturally 

occurring" bacteria did not appear to be in coelomic fluid in sufficiently high 

concentrations to promote infection. In contrast, diseased broodstock suffering from 

B.K.D. infections are often seen to have a coelomic fluid that appears milky, due to 

considerable numbers of bacteria, often as many as 4.0 to 8.0 x 109 cells I ml as 
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revealed by plate count (Evelyn, Prosperi-Porta & Ketcheson 1981; Evelyn et al 

1984). Under such conditions a much greater possibility of bacterial entry into eggs 

(after their shedding into the coelomic cavity) must therefore exist. Samples of milt 

were also shown to have a bacterial content (albeit low) and it is possible that entry 

could also occur at fertilization but, perhaps a more likely stage for infection is during 

water hardening, when eggs themselves actively take up water and possibly any aquatic 

bacteria that may be present. Trust (1972) indicated that approximately 1.5 x 108 

bacterial cells would be needed to cover the entire surface of a rainbow trout egg (and 

therefore the micropyle). In this study 500 ml of 106 cells I ml were used to cover 

1000 eggs- a lower concentration than suggested by the above author but one high 

enough to create an extremely cloudy solution in which to harden eggs and one surely 

allowing sufficient opponunity for bacterial entry during the 45 minute process of water 

hardening. Entry via the micropyle would allow access to the perivitelline space but 

further progress into the yolk might be impaired by the vitelline membrane. However, 

potentially bacteria might cross the vitelline membrane either taken up by pinocytosis or 

during a temporary period of disruption to the membrane that occurs at water hardening 

(Potts & Rudy 1969). Most bacteria though would probably be confined to the 

perivitelline space and not gain access to the yolk. Once confined in this space bacteria 

would be denied any nutrients suitable for microbial growth that are often sufficiently 

abundant in hatchery waters (Willoughby, McGrory & Pickering 1983) and would 

presumably have to rely on waste products from developing embryos. However, trout 

embryos are very efficient at using nutrients available to them and only small quantities 

of carbon dioxide and ammonia are known to be excreted (Hayes 1949; Smith 1947; 

1957). Therefore, whether bacteria in the perivitelline space could obtain sufficient 

nutrients for growth or reproduction and inturn disrupt eggs remains unlikely. 

In this present study eggs were only taken from a total of 15 fish in order that 

great care could be taken with stripping, fertilization and with the provision of optimum 

incubation conditions. High levels of hatching and very low levels of monality were 

therefore obtained, regardless of all the factors that have potential to influence egg 

168 



survival (in addition to exposure to live bacteria in high concentrations during water 

hardening). However, under conunercial farm conditions it would be impossible to take 

such care due to pressures of time and sheer numbers of fish. Eggs that are obviously 

overripe will of course be noticed and discarded but inevitably eggs reflecting a wide 

range of quality will be pooled together, fertilized and incubated. Presently the only 

form of prophylactic treatment these eggs are likely to receive is the daily addition of 

malachite green at a concentration effective for reducing the levels of Saprolegnia sp. 

but totally ineffective at influencing bacterial populations. Furthermore, use of 

malachite green is often minimized since excessive levels may, in themselves, lead to 

reduced hatching rates. If bacteria can influence egg survival (as suggested in Chapter 5 

and during this trial), even if only under particular conditions such as poor egg or water 

quality, then some additional form of prophylactic treatment may be considered 

necessary in order to maximize the number of successfully hatched fry. Additionally 

great care should be exercised wherever possible to ensure a pure (low bacterial 

content) source of water for the purposes of both water hardening and subsequent egg 

incubation. 

SUMMARY 

Exposure of newly-fertilized salmonid eggs to high concentrations of viable 

bacteria resulted in considerable numbers of cells adhering to egg surfaces. However, 

during subsequent incubation many bacteria were removed from eggs, although treated 

egg surfaces were still colonized by far higher numbers of bacteria (either 

Pseudomonas fluorescens or Cytophaga sp.) than might otherwise have occurred 

during such early stages of incubation. A microbiological examination of egg contents 

revealed little· bacterial contamination within treated eggs. Thus, significantly greater 

mortalities amongst egg groups previously exposed to P.fluorescens, were considered 

due to the presence in high numbers of such bacterial cells on surfaces of young eggs 

during early "sensitive" stages of incubation. 
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CHAPTER SEVEN 

TREATMENT OF INCUBATING RAINBOW TROUT 

EGGS WITH ANTIBIOTICS AND ANTIMICROBIAL 

COMPOUNDS TO INCREASE EGG HATCHING 

SUCCESS 
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INTRODUCTION 

Use of antibiotics and antimicrobial compounds has been well established 

within the agricultural industry for many years (Yeoman 1982). Principally, they have 

been employed for the treatment of specific diseases against identified pathogens in a 

manner similar to that of human medicine. However, such compounds have also been 

added in low levels to animal feeds in order to increase feed efficiency and improve 

weight gain (Stokstad, Jukes, Pierce, Page & Franklin 1949; Stokstad & Jukes 1950). 

Low level addition of antibiotics in animal feed has undoubtedly resulted in a decline in 

sensitivity of some bacterial pathogens to particular antibiotics. Concern about such 

possibilities, which culminated in the Swann report (1969), have since been clearly 

proven (Levy, Fitzgerald, & Macone 197 6a ; Levy, Fitzgerald, & Macone 197 6b ; 

Richmond & Linton 1980). 

Bacterial resistance to antibiotics may develop within a population through 

several distinct mechanisms. Aforemost of which includes both selection of bacterial 

strains carrying plasmids, small extrachromosomal D.N.A. elements coding for 

resistance and plasmid transfer. Included amongst such plasmids are R factors, which 

carry genes bestowing antibiotic resistance. Examples of such plasmids are those which 

carry genes coding for~ lactamases, a group of enzymes which split~ lactam rings of 

penicillins and cephalosporins thereby rendering them inactive. In addition practices 

associated with antimicrobial therapy can often lead to the inadvertent selection of 

resistant bacterial strains. Frequently, this can occur when a pathogenic organism is 

originally tested for antibiotic susceptibility, whereby trials are often performed on 

relatively few colonies "picked" at random from a sub-culture plate. Other colonies on 

the plate may a4'eady posses natural resistance (for example plasmids) and will be 

overlooked. Thus, subsequent therapy with antimicrobial drugs may well prove to be 

both ineffective and lead to the selection of resistant strains of the pathogen (Sabath 

1982). 
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In the Aquaculture industry one of the earliest usages of chemicals was the 

addition of salt to control ectoparasites such as Costia. Leger (1909) further improved 

control of Costia with the use of formalin. In the early 1930's other disinfectants such 

as copper sulphate, potassium permanganate and malachite green were first utilized 

(Alderman 1988). Development of systemic antimicrobial agents in the late 1930's 

swiftly led to their use on fish farms: sulphonamides (Litchfield 1939; Wolf 1939), 

nitrofuran (Gutsell 1946), chloramphenicol (Smith 1950), oxytetracycline (Snieszko, 

Friddle & Griffin 1952) and 4-quinolones (Endo, Ogishima, Hayasaka, Kaneko & 

Oshima 1973a). However, only a few antimicrobial compounds have been officially 

licensed for fisheries use in Great Britain (Austin 1985a), although, a wide range of 

compounds are available (Snieszko 1978; Herwig 1979; Austin 1984; Austin 1985b) 

and in the past many have, probably, been used on fish farms (Austin & Austin 1987). 

In previous studies (Chapters 2,5 and 6) eggs were held in large incubation 

systems, similar in both design and scale to those found under commercial conditions. 

These included a flow-through system (Chapter 5), where water passed over eggs once 

and went to drain, and re-cycling systems (Chapters 2, 5 and 6), where water passed 

through a gravel fllter bed (as a biological filter) and was continually re-cycled over 

eggs, by pumping. Both these systems involved the use of many litres of water and 

even the re-cycling system (as well as the flow-through system) allowed excess water 

to go to drain. However, in this present study, where it was proposed to test antibiotics 

and antimicrobial compounds for their potential to reduce "commensal" bacteria on 

incubating salmonid egg surfaces, both at regular intervals and over a protracted period 

of time, such incubating systems (as described above) were considered to be 

inappropriate. In the context of previous comments (above) concerning indiscriminate 

use of antibiotics and antimicrobial compounds, any study which allowed large 

quantities of such compounds to drain into the environment along with bacteria that 

might have been exposed to them, would be hard to justify. Naturally, therefore, it was 

deemed necessary to design and construct a unique, small scale, totally enclosed, egg 

incubation system (to be described in detail later), whose design was dependant on 

172 



several diverse considerations. First, the equipment designed should allow eggs to 

develop normally throughout incubation leading to successfully hatched fry. Secondly, 

all water and antimicrobial compounds used in the system had to be kept isolated from 

the environment and drained after use into a suitable container for sterilization, in theory 

destroying any surviving bacteria that may have been exposed to test compounds. 

Thirdly, the equipment had to allow water (and compounds) to be removed and 

replaced during the course of incubation without excessive disturbance to delicate 

incubating embryo's. A consideration deemed necessary as it was envisaged that 

compounds would gradually decline in concentration and their efficacy be reduced with 

progressive incubation. Thus, it was proposed that all water and dissolved compounds 

would have to be removed at regular intervals (to be determined experimentally) and 

replaced with fresh sterile water and renewed concentrations of compound. During this 

period of water ch~ge it was particularly important that the equipment designed 

allowed some water to remain covering eggs, in order to reduce knocking and jolting of 

delicate embryos. Irrespective of equipment design it was realized that water flow over 

eggs would be temporarily disrupted however undesirable, choice of test compounds 

would therefore be governed in part by their stability and residual activity. These 

parameters were assessed by a number of independent preliminary trials which 

determined the potential of compounds to reduce egg surface bacteria and ensured that 

their efficacy did not over rapidly diminish once placed into the incubation system. 

Experimental procedures and protocols for both pretrial screening of compounds and 

for the subsequent main trials are schematically outlined in Figure 7 : 1. Finally, it must 

be stressed that the objective of the study was not to encourage indiscriminate use of 

antibiotics in hatchery systems, but to reduce egg surface bacterial numbers, in an 

attempt to increase eyeing and hatching rates of salmonid eggs under closely controlled 

laboratory conditions. 
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FIGURE 7: 1 Flow diagram of experimental protocol. 
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MATERIALS AND METHODS 

Selection of antimicrobial compounds 

Initial selection. A range of antimicrobial compounds and antibiotics were 

selected for their potential ability to inhibit the growth of Pseudomonas f/uorescens and 

Cytophaga sp. (both commonly found on incubating egg surfaces- Chapters 2, 5 and 

6). This initial selection of compounds was based on their reported effectiveness 

against specific fish pathogens in a commercial fish farm environment or in the field of 

human medicine. The compounds initially tested were ; oxolinic acid, furazolidone, 

oxytetracycline, chloramphenicol, chlortetracycline, erythromycin, gentamicin, 

carbenicillin, polymixin in conjunction with streptomycin, malachite green and iodine 

(iodophor disinfectant). Compounds were dissolved in water or 10% 0' I v) dimethyl 

sulphoxide (DMSO) to aid solubility where appropriate (Austin, Morgan & Alderman 

19~1). 

Test protocol for preliminary screening of compounds (minimum inhibitory 

concentration - M l.C.). The protocol for the testing of compounds was based on that 

of Austin et a/ (1981). Compounds, in a range of concentrations were incorporated 

into sterile, molten (40 °C) tryptone soya agar (T.S.A. - Oxoid, Basingstoke) and 

poured into 90 mm diameter sterile petri dishes. Plates were stored inverted over night 

at a temperature of 37 °C to allow removal of excess surface moisture. Subsequently, 

four evenly spaced 4 mm diameter plugs were removed from the agar using a "cork" 

borer. A plug of a young actively growing culture was placed into each of these holes 

and plates were incubated for 20 days at 10 °C. After this time the presence or absence 

of microbial growth around the plug was noted. Plugs were removed and placed into 

fresh tryptone soya agar plates (lacking antibiotic). Growth on this occasion would 
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indicate that earlier inhibitory activity in the presence of the antimicrobial compound 

was bacteriostatic rather than bacteriocidal. All concentrations used and the results 

obtained were recorded (Appendix 7:1). 

Four compounds, based on their ability to inhibit either P.fluorescens and I 

or Cytophaga sp.,were selected for further study ; oxolinic acid, chloramphenicol, 

chlortetracycline and oxytetracycline. The iodophor disinfectant was equally as effective 

as the above compounds but was not selected, solely due to it's tendency to "froth" 

which made it totally unsuitable for the small scale, aerated incubation systems used 

during this study. 

Test protocol for secondary screening of compounds. The decline in efficacy 

of compounds was tested microbiologically in a similar manner to that outlined by 

Evelyn, Ketcheson & Prosperi-Porta (1986). These authors were interested in the effect 

of erythromycin on Renibacterium salmoninarum (a Gram +ve organism, responsible 

for bacterial kidney disease) and, in so doing used a reference strain of Sarcinia lutea 

(also Gram +ve) as a "test" organism. In this study, compounds were selected to 

reduce levels of P.fluorescens and Cytophaga sp. (both Gram -ve) and thus, a Gram 

-ve test organism - a strain of Escherichia coli (W 3110), was chosen. This particular 

organism was selected for two main reasons ; first, it had already been used as a 

control organism for previous minimum inhibitory concentration trials (above) and 

secondly, it had exhibited a similar profile of antibiotic susceptibility to test compounds 

as shown by both P. jluorescens and Cytophaga sp. Test plates were prepared by first 

pouring 20 ml of assay medium (Oxoid: Antibiotic Assay Medium No. 1) into standard 

size petri-dishes. These were then topped with 6 ml of the same medium with 0.1 ml of 

a phosphate buffered saline suspension of the assay organism (1.0 0.0. at 460 nm; 

pH 7.0). Antibiotic assay was determined by regular sampling over 36 hours of 

circulatory water derived from the egg incubation systems containing antibiotic but no 

eggs. Dry, sterile blotting paper disks (6 mm diameter) (Oxoid) were briefly soaked in 

circulatory water, placed onto prepared media and incubated right side up at 25 °C for 5 
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days, after which time the diameter of growth inhibition was carefully measured. From 

a previously constructed standard curve for each compound, based on zones of 

inhibition with known amounts of compound (Appendix 7 : 2), a guide to the decline in 

concentration of each compound with the passage of time was obtained (Appendix 7 : 

3). From these calibration curves it was determined that oxytetracycline would have to 

be replaced at 12 hour intervals in order to maintain "active" levels just above the 

determined minimum inhibitory concentration value, leading in turn to greater egg 

disturbance than would be desirable (as previously discussed). 

Experimental design 

Construction of equipment. Each incubation system comprised of a reservoir 

of 3 litres of aerated water which was pumped (Gilson Minipuls 2 - Anachem\ 

Bedfordshire) at a flow rate of 22 ml I min over eggs which were placed into a 

modified, plastic cell culture tray (Sterilin Ltd, Feltham). Water, after passing over eggs 

subsequently drained from the rear of each tray (under gravity) back into the original 

reservoir below (Figure 7: 2). All water, incubation systems and equipment were kept 

at 10°C ± 1 oc in a chilled air cabinet (Verticold, Evesham). In total, four such identical 

systems were set up in the cabinet 

During each trial chosen, selected agents (Figure 7 : 3) were assigned at 

random to one system at minimum inhibitory concentration value and to a second 

system at twice minimum inhibitory concentration value. The remaining two systems 

were both used as controls to which sterile water alone was added. All systems had 

water and compounds (or water alone) replaced at intervals of 36 - 48 hours as 

determined from the previously described trial. 
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FIGUR E 7 : 2 Diagrammatic representation of egg incubation systems 
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FIGURE 7 : 3 Chemical structure of compounds 
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Collection of eggs and milt 

Stripping and egg incubation. Eggs were obtained for each trial from 5 fish 

from a single commercial fish farm. All eggs obtained were "out of season eggs" 

produced by placing broodstock under photoperiod control (Bromage & 

Cumaranatunga 1988), a process which ensured continued production of eggs over the 

entire period of this study. Eggs of each fish were stripped into individual sterile 

containers. The first eggs from each fish were discarded to avoid contamination from 

the surrounding water or ventrolateral surface of the female. Milt, also collected in 

sterile containers was obtained from a mixture of sex-reversed females and normal 

males. (Good quality milt is often hard to find in order to fertilize "out of season 

eggs"). Eggs, coelomic fluid and milt from each container were removed for 

bacteriological examination. The remaining eggs, on each occasion, were pooled and 

fertilized. After 5 minutes excess milt was washed off and eggs allowed to water 

harden for 45 minutes. Small batches of eggs (160 in each batch) were laid down in 

each of the 4 trays. This was considered the most suitable number of eggs for each tray 

to ensure adequate flow rate and egg separation. All egg mortalities were recorded 

daily. Fertilization rates were determined after 7 days at 10 °C by removing 20 eggs 

from each tray (80 in total) and placing them into clearing solution (acetic acid : 

methanol: water, 1:1:1 vI v) (Springate & Bromage 1984). Fertilized eggs could be 

clearly distinguished by the presence of a developing neural tube. At eyeing eggs were 

"shocked" by siphoning from a height of 1m into a sterile beaker and any unfertilized 

eggs removed. Eyed eggs were subsequently returned to their relevant sections in 

incubation trays. 

180 



Bacteriological examination 

Coelomic fluid. Aliquots of coelomic fluid from each fish were serially diluted 

and inoculated in 0.02 ml volumes (drop inoculation method) onto tryptone soya agar 

(T.S.A.- Oxoid, Basingstoke), peptone beef extract glycogen agar (McCoy & Pilcher 

1974) and low nutrient Cytophaga agar (Anacker & Ordal 1959). Plates were 

incubated at 20 °C for up to 10 days and enumeration performed only from drops where 

total separation of colonies occurred. 

Milt. Milt for each fish was treated as above. 

Eggs. Eggs were sampled at the green stage (unfertilized) and during 

incubation 7 days, 14 days, 21 days and 28 days after fertilization. 

External sampling. At each sampling time 10 eggs were removed at random 

from each tray and sampled individually. (Batch sampling of eggs as in previous 

chapters was not possible due to the smaller number of eggs incubated). Each egg was 

rinsed in 4 changes of sterile water to remove any detritus or loosely adhered bacteria 

and added to 0.5 rnl of sterile diluent (peptone 0.1% , saline 0.85%) and shaken 

vigorously for 2 minutes on a vortex stirrer, in a manner outlined in previous chapters 

(chapters 2, 5 and 6). The number of viable cells transferred to each of the 3 different 

media was determined by plate count. By taking into account the dilution factor, the 

volume of diluent and the egg surface area, the number of viable colony forming units 

(cfu's) per mm2 was estimated. 

Identification of bacteria. Bacteria were isolated by a variety of techniques, 

procedures and schemes outlined by Krieg and Holt (1984), Cowan (1974), the tables 

of Alien, Austin & Colwell (1983) and Stanier, Palleroni & Doudoroff (1966). Some 

Gram negative bacteria, especially Aeromonas hydrophi/a, were more easily identified 

using API 20E and 20NE identification strips (API laboratory products, Basingstoke). 

Statistical analysis. Three different compounds were chosen in this study to 

reduce egg surface bacteria of incubating eggs. They were each tested sequentially on 
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three different batches of eggs and thus, statistical analysis was used to compare 

differences between treated eggs and control eggs within a given trial. Numbers of 

cfu's per mm2 egg surface for treated and non-treated eggs were compared using a 2 

way split-plot analysis of variance (Ridgman 1975 ; Snedecor & Cochran 1980). 

Differences between means were compared by calculating the standard errors and 95% 

confidence limits appropriate to the split-plot design (Snedecor & Cochran 1980). 

Numbers of hatched and non-hatched eggs were compared using a chi square (X2) test. 

The effects of bacterial presence on egg surfaces were analysed by multiple regression, 

chosen to compare numbers of surface bacteria with egg deaths by relating mortality to 

time (age) and bacterial numbers. 
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RESULTS 

Oxolinic Acid 

Egg development 

Hatching success. Figures obtained for eyeing and hatching are summarized 

in Table 7 : 1. From this table it can be seen that estimated fertilization rates of 85% 

were obtained in turn leading to hatching rates ranging from 49% to 58%. Estimated 

fertilized egg losses (calculated by subtracting numbers of "estimated unfertilized eggs" 

from total number of "eggs that failed to hatch") ranged from 27% to 36%, and 

represents the actual number of eggs "lost" through premature egg mortality. Treated 

eggs (x2 M.!. C.) suffered the highest number of eggs lost in this category, mainly due 

to the high number (10) of eggs lost between eyeing and hatching, perhaps indicative 

that prolonged exposure to oxolinic acid at relatively high concentrations can be harmful 

to eyed salmonid eggs. Analysis by x2 revealed no overall significant difference in 

hatching success between the four groups (X2 = 1.69) (Appendix 7 : 4). Daily 

mortalities of eggs are recorded in Figure 7 : 4, from which it can be seen that the two 

control groups show slightly higher rates of mortality during the mid-point of 

incubation (7-21 days) than treated egg groups. Indeed, analysis of egg mortality data 

at 7 day intervals between all 4 groups reveals a significant difference on two occasions 

between control eggs and treated eggs. Control eggs (group 2) suffered significantly 

greater mortalities than treated eggs (x2 M.I.C.) between 14-21 days (X2 = 4.84, P < 

0.05) and the same control group (group 2) also showed significantly greater 

mortalities than treated eggs (xl M.I.C.) at 7-14 days (X2 = 4.14, P < 0.05) (Appendix 

7: 5). 
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TABLE 7 : 1 Eyeing and hatching rates for control eggs and eggs exposed to 

oxol inic acid 

EGG SURVIVAL: 

Total number of eggs 

Estimated fertilized eggs 

Actual eyed eggs 

Actual hatched eggs 

Control 

(group 1) 

100 

85 

58 

55 

Control 

(group 2) 

100 

85 

56 

54 

--------------------·-----
EGG LOSS: 

Deaths to eyeing 29 36 

Deaths at shocking 13 8 

Deaths from eyeing to hatching 3 2 

Eggs that failed to hatch 45 46 

UNEXPLAINED LOSSES : 

Estimated unfertilized eggs 15 15 

Estimated fertilized egg losses 30 31 

x1 M.I.C. x2 M.I.C. 

100 100 

85 85 

61 59 

58 49 

------·-------

24 21 

15 20 

3 10 

42 51 

-----------

15 15 

27 31 

----·------·-----·------------------·---·------------·---
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FIGURE 7:4 Accumulative total of dead eggs recorded 

daily, for control eggs and eggs treated with 

oxolinic acid 
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FIGURE 7:5 Estimated total colony forming units 

for all bacteria per sq mm egg surface for control 

eggs and eggs treated with oxolinic acid 
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Bacteriological examination 

Coelomic fluid Bacteria were isolated from the coelomic fluid of all 5 fish. 

Genera recovered included Pseudomonas, Aeromonas, Staphylococcus, 

Corynebacterium and yellow pigmented Gram negative rods of the Flavobacterium­

Flexibacter- Cytophaga group. 

Milt Bacteria, of similar genera to the above, :were found in all milt samples 

but present in greater numbers than in coelomic fluid. 

External sampling. Few bacteria were found attached to the surface of green 

(unfertilized) eggs. However, bacteria isolated included Staphylococcus epidermis, and 

Pseudomonas sp. During incubation large numbers of bacteria accumulated around egg 

surfaces and generally, untreated eggs supported higher numbers of bacteria than were 

isolated during earlier studies (chapters 5 and 6), a possible consequence of the slow 

flow rate, as discussed (chapter 2). Estimates of total cfu's isolated during the trial are 

summarized in Figure 7: 5. It can be seen from this figure that treated eggs (x1 M.I.C.) 

had the least egg surface bacteria when sampled at both 14 and 21 days and, in general 

supported far fewer bacteria than untreated groups. Treated eggs (x2 M.!. C.) had the 

least surface bacteria at 7 days and at 28 days, but during the mid-point of incubation 

(14-21 days) they supported bacteria in similar numbers to untreated eggs (group 1). 

Untreated eggs (group 2) mostly supported the highest numbers of bacteria throughout 

incubation. Analysis of numbers of cfu's recovered for all egg groups (by 2 way split­

plot analysis of variance) revealed overall a highly significant difference in numbers of 

egg surface bacteria between groups (P < 0.001). A highly significant effect of time 

was seen (P < 0.001) but, no significant interaction between time and numbers was 

found ( Appendix 7 : 6). It should also be added that although, bacterial numbers were 

significantly different between groups, they were all subject to great fluctuations over 
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the experimental period and exhibited none of the stability or gradual increase in 

numbers found during previous studies (Chapters 2, 5 and 6). Examination of species 

of bacteria found on egg surfaces revealed that both untreated groups exhibited a very 

similar pattern of colonization with greater numbers of Pseudomonas fluorescens 

recovered, followed closely by Cytophaga sp. (Figures 7 : 6a and 7 : 6b). In 

comparison, treated egg groups exhibited a greater variation, with Cytophaga sp. 

dominating (xl M.!. C.) throughout the incubation period and, at 21 days (x2 M.!. C.) 

(Figures 7 : 6c and 7 : 6d). In all4 egg groups relatively few "other" bacteria were 

recovered. Analysis by multiple regression of egg death demonstrates a correlation with 

bacterial numbers (r = 0.81). However, time (6.36) rather than bacterial numbers 

showed the greatest correlation with egg mortality (Appendix 7 : 7). 

Chlortetracycline 

Egg development 

Hatching Success. Eyeing and hatching rates achieved during this trial are 

summarized in Table 7 : 2, from which it can be seen that estimated fertilization rates of 

only 51% were obtained, leading in turn to hatching rates ranging from 19% to 41%. 

Estimated fertilized egg losses ranged from 10% to 32%, with untreated eggs (group 2) 

suffering the greatest egg losses in this category. Analysis by x2 revealed overall a 

highly significant difference in hatching success between all four groups (X2 = 14.97, 

P < 0.001). Daily mortalities of eggs are recorded in Figure 7: 7, from which it can be 

seen that untreated eggs (group 2) suffered far greater egg mortalities than all other 

groups. Indeed analysis of egg mortality data between untreated groups revealed a very 

significant difference (X2 = 9.71, P < 0.01). On the other hand, the remaining untreated 

group (group 1) and the two treated groups exhibited a relatively similar profile of egg 
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TABLE 7 : 2 Eyeing and hatching rates for control eggs and eggs exposed to 

chlonetracycline 

EGG SURVIVAL: 

Total number of eggs 

Estimated fertilized eggs 

Actual eyed eggs 

Actual hatched eggs 

EGG LOSS: 

Deaths to eyeing 

Deaths at shocking 

Deaths from eyeing to hatching 

Eggs that failed to hatch 

UNEXPLAINED LOSSES : 

Estimated unfertilized eggs 

Estimated fertilized egg losses 

Control 

(group 1) 

100 

51 

40 

39 

15 

45 

1 

61 

49 

12 

Control 

(group 2) 

100 

51 

41 

19 

33 

26 

22 

81 

49 

32 

Xl Ml.C. X2 M.I.C. 

100 

51 

45 

41 

8 

47 

4 

59 

49 

12 

-----------
100 

51 

40 

27 

-·--------

8 

52 

13 

73 

49 

24 

------------------------------------
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mortality (Appendix 7 : 8). Analysis of egg mortality data at 7 day intervals revealed 

that no significant difference occurred between untreated groups for the first 14 days of 

incubation. However, at 14-21 days there was a significant difference between them 

(X2 = 5.83, P < 0.05), followed by a highly significant difference at 21-28 days (X2 = 

19.21, P < 0.001). Furthermore, over equivalent sampling periods highly significant 

greater mortality occurred amongst untreated eggs (group 2) compared to 

chlortetracycline treated eggs (x1 M.I.C.) (X2 = 14.15, P < 0.001 and X2 = 28 .85, P 

< 0.001) respectively and (x2 M.I.C.) (X.2 = 13.91, P< 0.001 and x.2 = 19.46, P < 

0.001) respectively (Appendix 7: 9). 

Bacteriological Examination 

Coelomic fluid. Bacteria were again isolated in coelomic fluid from all fish. 

Genera isolated did not differ from the previous study (oxolinic acid) but, in contrast, 

higher numbers of bacteria were found. Poor fertility figures (discussed above), 

coupled with the high number of bacteria in the coelomic fluid might imply that eggs 

were past their optimum ripeness when stripped, a problem that tends to be 

compounded by higher water temperatures often associated with "out of season" egg 

production. 

Milt. A similar profile of bacterial genera and number to that of the previous 

trial ( oxolinic acid) were found in the milt. 

External sampling. Although, relatively few bacteria were found attached to 

green (unfertilized) egg surfaces, more bacteria than usual were isolated (compared to 

previous studies - Chapters 2, 5 and 6) , a possible consequence of egg overripeness as 

stated above. During incubation, large numbers of bacteria accumulated around egg 

surfaces, and estimated total numbers of cfu's recovered are summarized in Figure 7 : 

8. From this figure it can be seen (with the exception of untreated eggs, group 2, at 28 

days) that treated eggs supported far fewer bacteria than untreated eggs, throughout the 

entire incubation period. Analysis of numbers of cfu's recovered for all egg groups (by 
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2 way split-plot analysis of variance) revealed overall a highly significant difference in 

numbers of egg surface bacteria between groups (P < 0.00 1). A highly significant 

effect of time was seen (P < 0.001) and a highly significant interaction between time 

and numbers was found (P < 0.001) (Appendix 7 : 10). Examination of species of 

bacteria found on eggs revealed that both untreated groups differed greatly in their 

proflle of bacterial species isolated, in contrast to both the previous trial (oxolinic acid) 

and previous studies (Chapters 2, 5 and 6). Egg surfaces of both untreated groups were 

dominated by "other" bacteria (mainly Aeromonas hydrophila ) (Figures 7 : 9a and 7 : 9 

b). On treated eggs (xl M.I.C.) "other" bacteria also predominated throughout most of 

the incubation period (Figure 7 : 9c). However treated eggs (x2 M.I.C.) revealed a 

bacterial species profile more frequently observed during past studies (Chapters 2, 5 

and 6) with high numbers of Cytophaga sp. followed by P.fluorescens and "other" 

sp. (Figure 7 : 9d). Analysis by multiple regression of egg death demonstrated a weak 

correlation with bacterial numbers (r = 0.50). However, as in the previous trial 

(oxolinic acid), time (2.90) rather than bacterial numbers showed the greatest 

correlation with egg mortality (Appendix 7 : 11). It should also be added that the 

greatest factor in egg monality in this trial was, probably, poor egg quality leading in 

turn, to low fertilization rates and, subsequently, low hatching rates. However, 

untreated eggs (group 2) not only suffered the highest estimated "fertilized egg losses", 

but also, perhaps not coincidentally, supported the highest number of egg surface 

bacteria. 

Chloramphenicol 

Egg development 

Hatching success. Eyeing and hatching rates achieved are summarized in 

Table 7 : 3, from which it can be seen that estimated fertilization rates of 58% were 

obtained, in turn, leading to hatching rates ranging from 39% to 47%. 
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TABLE 7 : 3 Eyeing and-hatching rates for control eggs and eggs exposed to 

chloramphenicol 

EGG SURVIVAL: 

Total number of eggs 

Estimated fertilized eggs 

Actual eyed eggs 

Actual hatched eggs 

EGG LOSS: 

Deaths to eyeing 

Deaths at shocking 

Deaths from eyeing to hatching 

Eggs that failed to hatch 

UNEXPLAINED LOSSES : 

Estimated unfertilized eggs 

Estimated fertilized egg losses 

Control 

(group 1) 

100 

58 

48 

44 

23 

29 

4 

56 

42 

14 

-------------------------------
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Control 

(group 2) 

100 

58 

42 

39 

37 

21 

3 

61 

42 

19 

Xl MJ.C. X2 M.I.C. 

-----------------
100 

58 

52 

47 

28 

20 

5 

53 

42 

11 

100 

58 

41 

40 

------

39 

20 

1 

60 

42 

18 



FIGURE 7:10 Accumulative total of dead eggs recorded 

daily, for control eggs and eggs treated with 

chloramphenicol 
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for all bacteria per sq mm egg surface for control 

eggs and eggs treated with chloramphenicol 
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Estimated fenilized egg losses ranged from 11% to 19%. Untreated eggs 

(group 2) suffered the greatest egg losses in this category, although, in comparison to 

the previous two trials (oxolinic acid and chlortetracycline) less difference in fertilized 

egg losses was seen between the four groups, with no overall significant difference in 

hatching rates (X2 = 1.68) (Appendix 7 : 12). Daily egg mortalities are recorded in 

Figure 7: 10, revealing a similar pattern of egg mortality between all groups. However, 

untreated eggs (group 1) suffer the least mortalities, followed closely by treated eggs 

(x1 M.I.C.). Untreated eggs (group 2) and treated eggs (x2 M.I.C.) show little 

difference in egg mortality throughout the greater part of the whole incubation period. 

Analysed at 7 day intervals a very significant difference in mortality was found between 

untreated eggs (groups 1 and 2) during the early part of incubation at 7-14 days (X2 = 

9.44, P < 0.01) and, 14-21 days a significant difference was found (X2 = 4.67, P < 

0.05). In addition, very significant differences in egg mortality were found between 

untreated eggs (group 1) and treated eggs (x2 M.I.C.) at 7-14 days (X2 = 9.44, P < 

0.01) and also, a significant difference was found between these two above groups at 

14-21 days (X2 = 5.98, P < 0.05) (Appendix 7: 13). 

Bacteriological examination 

Coelomic fluid. In contrast to the two previous trials (oxolinic acid and 

chlortetracycline) bacteria were only isolated from the coelomic fluid of 4 out of the 5 

fish. Bacteria isolated included; P. f/uorescens, Pseudomonas sp., A. hydrophi/a, S. 

epidermis and Corynebacterium. 

Milt. Bacteria were isolated from all milt samples in similar numbers and 

genera to those found in the coelomic fluid (above). 

External sampling. Few bacteria were found attached to surfaces of green 

(unfertilized) eggs, indeed only S. epidermis was isolated. During incubation large 

numbers of bacteria accumulated around egg surfaces, and estimated total numbers of 
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cfu's recovered are summarized in Figure 7 : 11. Untreated eggs (group 2) were 

particularly heavily colonized by bacteria, although by 28 days there was little 

difference between the 4 groups. In a manner similar to the previous two trials (oxolinic 

acid and chlortetracycline) total egg surface bacterial numbers were seen to rise and fall. 

Analysis of numbers of cfu's recovered for all egg groups (by two way split-plot 

analysis of variance) revealed overall, a highly significant difference in numbers of egg 

surface bacteria between all groups (P < 0.001). A highly significant effect of time was 

seen (P < 0.001) and a significant interaction between time and numbers was found (P 

< 0.05) (Appendix 7 : 14). Examination of the species of bacteria found on egg groups 

revealed little difference between numbers of Cytophaga sp. and P.f/uarescens on 

surfaces of untreated eggs (group 1) throughout the incubation period (Figure 7 : 12a). 

In contrast, untreated eggs (group 2) exhibited slightly higher numbers of P. 

fluorescens compared to Cytophaga sp. (Figure 7 : 12b). Treated eggs (x1 M.I.C.) 

were colonized in similar numbers by both Cytophaga sp. and P.fluorescens (Figure 

7 : 12c), while treated eggs (x2 M.I.C.) exhibited greater numbers of P. fluorescens 

compared to Cytophaga sp. (Figure 7 : 12d). Analysis by multiple regression of egg 

death demonstrates a correlation with bacterial numbers (r = 0.79). However. time 

(5.80) rather than bacterial numbers had the greatest correlation to egg mortality 

(Appendix 7 : 15). 
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DISCUSSION 

Oxolinic acid, along with nalidixic acid and flumequine are 4-quinolone, 

synthetic, systemic, anti-bacterial agents. Their mode of action is thought to be by 

interference with the action of bacterial deoxyribose nucleic acid gyrase leading to the 

prevention of negative supercoiling of the bacterial chromosome. Oxolinic acid along 

with two other agents - piromodic acid and fu&ace were developed for fisheries use in 

Japan (Endo et al 1973a), and its efficacy against a wide range of fish pathogens has 

been fully investigated; Aeromonas salmonicida, A. liquefaciens, Vibrio anguillarum, 

Chrondococcus columnaris (Endo et al 1973a; Endo, Sakuma, Tanaka, Ogishima, 

Hara, Ohshima & Sato 1973b), A. salmonicida (Austin, Rayment & Alderman 1983) 

V.anguillarum (Austin, Johnson & Alderman 1982) and Yersinia ruckeri (Rodgers & 

Austin 1983). In addition, oxolinic acid has also proved useful in the field of human 

medicine (Madsen & Rhodes 1971) and veterinary practice (Ziv 1976). 

Oxolinic acid was successful in reducing the bacterial egg surface 

populations, mainly through lowering numbers of P.fluorescens. Oxolinic acid also 

proved successful in reducing numbers of "other" bacteria, a category mainly 

comprised of Aeromonas and Pseudomonas sp. Endo et a/ (1973a) and Jo (1978) 

have demonstrated the effectiveness of oxolinic acid against Aeromonas and 

Pseudomonas sp. respectively. Therefore reductions in numbers of "other" bacteria is 

probably at the expense of these two species. In contrast Cytophaga sp. were largely 

unaffected by oxolinic acid treatment and numbers remained similar to those found on 

control eggs. Inhibition of P. fluorescens and "other" bacteria could have allowed 

numbers of Cytophaga sp. to proliferate due to reduced competition. However, as 

numbers of Cytophaga sp. did not significantly increase, it is possible that presence of 

oxolinic acid reduced environmental quality in turn, restricting proliferation of 

Cytophaga sp. Furthermore, oxolinic acid is known to be effective against a wide 
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range of Gram -ve rods (Alderman 1988) and has been reported to be effective against 

Flexibacter sp., a group closely related to Cytophaga sp. (Austin & Austin 1987). 

Austin and Al-Zahrani (1988), found treatment with oxolinic acid caused 

increases in numbers of bacteria throughout the digestive tract of rainbow trout, a 

consequence of inhibiting sensitive organisms and in turn allowing the proliferation of 

resistant bacteria. Such an effect was not observed during this study and may be 

attributed to the limited range of bacterial genera found on egg surfaces (i.e. few Gram 

-ve bacteria and no Gram +ve bacteria) compared to the adult intestine. It is also likely 

that the numbers or species of bacteria found on egg surfaces by this study is lower 

than might be expected under natural or large scale commercial conditions. Cyclical 

draining and subsequent refilling of egg incubation systems with fresh sterile water 

may reduce the unattached "free-living" bacterial population, in turn reducing the 

exposure of eggs to potential colonizers. 

Despite lowering bacterial numbers on egg surfaces use of oxolinic acid 

appears of little value, as hatching success did not markedly increase, implying that the 

presence of bacteria (Pseudomonas sp. and "Other" bacteria) on eggs has little effect 

on egg mortality. Furthermore, it should also be noted that excessive use of.oxolinic 

acid may even be detrimental. Markedly greater numbers of eggs exposed to x2 M.!. C. 

failed to hatch after successful eyeing indicating that prolonged exposure to high 

concentrations of oxolinic acid may be toxic to developing embryos. Although, 

Alderman (1988) did not report toxicity amongst members of the 4-quinolones to fish at 

normal recommended therapeutic doses, high daily rates of oxolinic acid administration 

have been shown to cause liver and blood damage in yellowtail, Seriola quinqueradiata, 

(Miyazaki, Nakauchi & Kubota 1984). 

Three tetracyclines have been widely used in fisheries, chlortetracycline, 

oxytetracycline and doxycycline (Alderman 1988). All are octahydro-napthacenes and 

within the fish rearing industry are probably the most frequently used broad spectrum 

antibiotics. Although, of the tetracyclines, oxytetracycline has been preferred by the 
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aquaculture industry (Alderman 1988) its use in this study had to be curtailed in favour 

of chlortetracycline on account of the latter's greater stability under experimental 

conditions. Chlortetracycline flrst isolated in 1947 (Albert 1979), in common with other 

tetracyclines crosses the plasma membrane as a liposoluble magnesium complex, 

whereupon subsequent binding to the 30S ribosomal unit inhibits protein synthesis. 

Commercial fisheries initially utilized chlortetracycline in the middle fifties after 

Snieszko et a/ (1952) demonstrated by in vitro techniques the sensitivity of A . 

salmonicida to chlortetracycline. Subsequent widespread and indiscriminate use 

particularly as a feed additive (Stokstad et al 1949 ; Stokstad & Jukes 1950) has 

encouraged the development of resistant bacterial strains, even so use of 

chlortetracycline amongst aquaculturists has persisted into the middle seventies for the 

treatment of trout furunculosis (Glende, Wenzel & Roth 1974). 

Irrespective of it's misuse and long history chlortetracycline still retains a 

degree of effectiveness as eggs exposed to chlortetracycline supported fewer bacteria 

compared to those left untreated. Such a result may however be relatively unique as 

untreated eggs were dominated by "other" bacteria and not Cytophaga sp. or P. 

fluorescens as in previous trials. Furthermore, predominant within this "other" 

bacterial group is A. hydrophila, which like A. salmonicida is probably sensitive to 

chlortetracycline (Snieszko et al 1952), so accounting for the marked difference in 

bacterial numbers between treatments. In parallel egg mortalities between groups also 

differed markedly with those exposed to chlortetracycline appearing to show fewer 

mortalities. However, variations in egg hatching success amongst untreated groups- a 

possible consequence of their markedly dissimilar bacterial loading at eyeing precludes 

confident recommendation of chlortetracycline usage in egg husbandry. 

Chloramphenicol was originally isolated by Bartz 1948 and has since been 

successfully employed as a broad-spectrum antibiotic. Chloramphenicol is largely 

bacteriostatic and is thought to act on the 50S ribosomal unit inhibiting protein 

synthesis (Hollstein 1979). Smith (1950) demonstrated the efficacy of chloramphenicol 
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against two fish pathogens Pseudomonas hydrophila and Aeromonas liquefaciens, 

leading in turn to it's subsequent use as a treatment of fish diseases, especially within 

the European carp industry (Evelyn 1968). Chloramphenicol has also been extensively 

used in human medicine (Austin 1984) and still remains appropriate for the treatment of 

typhoid fever (Butler, Arnold, Linh & Pollack 1973). 

During the trial, numbers of egg surface bacteria varied significantly between 

groups of untreated eggs. Indeed, no significant difference occurred in overall bacterial 

numbers between one group of untreated eggs (group 1) and treated egg groups. 

Additionally, no individual species of bacteria was particularly inhibited by exposure to 

chloramphenicol and, overall, little' difference was seen in estimated fertilized egg 

losses between groups. Thus, no evidence was provided by the trial for the 

recommendation of chloramphenicol usage in egg husbandry. 

Large fluctuations in egg surface bacterial numbers were demonstrated during 

the course of all 3 antibiotic trials. Similar fluctuations in numbers of aquatic bacteria 

have been found to occur seasonally (Jones 1973 ; Allen, Austin & Colwel11983 ; 

Austin & Allen-Austin 1985 ; Iriberri, Unanue, Barcina & Egea 1987). In addition, 

Bell, Hoskins & Hodgkiss (1971) reported fluctuations in microbial numbers on 

surfaces of stream incubated salmon eggs, and Trust (1972) demonstrated a similar 

pattern of bacterial colonization on eggs maintained in a vertical upwelling incubator. In 

contrast, previous studies (Chapters 2, 5 and 6) have revealed that eggs placed under a 

carefully controlled horizontal flow of water tend to be colonized by a microbial 

population that increases in number with progressive incubation. Therefore, 

fluctuations in bacterial numbers during antibiotic trials (compared to previous trials) 

may be due to the unique experimental design and the regular refilling of systems, 

perhaps leading to the partial removal of unattached "free living" bacteria in turn 

reducing the regular exposure of eggs to potential colonizers. 

Overall hatching success rate between antibiotic trials ranged from 19% to 

58%. In comparison to previous trials (Chapters 2, 5 and 6) such egg hatching rates 
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would appear to be poor. Eggs for all 3 antibiotic trials were obtained by photoperiodic 

manipulation of broodstock (Bromage & Cumaranatunga 1988). Although there has 

been much debate on the quality of such "out of season" eggs, it is now generally 

accepted that under commercial farming conditions their performance is perfectly 

satisfactory. However, due to higher water temperatures often associated with "out of 

season", more frequent stripping of broodstock is required (Escaffre & Billard 1979). 

Low egg hatching rates obtained during these trials may therefore be due to egg 

overripeness and subsequent poor egg quality. 

In previous trials (Chapters 2, 5 and 6) great care was also taken to ensure 

that eggs were placed under optimum incubation conditions. However, during the 

antibiotic trials far more emphasis was placed on preventing antibiotics (and any 

resistant bacteria) from entering the natural environment. Thus, although adequate 

conditions for egg development were provided, slow water flow rate, low levels of 

oxygen and increased levels of egg disturbance, a consequence of the unique 

experimental design, may not have provided "optimum" conditions for salmonid egg 

sUIVival. Even so, if eggs are incubated under less than ideal environmental conditions, 

then any subsequent form of prophylactic treatment might be especially beneficial for 

egg sUIVival. However, results obtained during these trials do not support the premise 

that antimicrobial therapy will reduce fertilized egg losses, despite the potential to limit 

numbers of egg surface bacteria. 

Preparatory M.I.C. trials revealed that both P. fluorescens and Cytophaga 

sp. could tolerate high concentrations of a wide range of antibiotics and antimicrobial 

compounds. Thus, during subsequent trials (and with the introduction of organic matter 

-eggs) it was decided to use twice in vitro M.I.C. values. Even so, despite continual 

high levels of circulating compounds, many bacteria were still able to colonize egg 

surfaces. In natural environments most bacterial cells are surrounded by a 

"polysaccharide component" outside the cell wall, termed the glycocalyx (Costerton, 

Irvin & Cheng 1981), and in aquatic ecosystems it has been demonstrated that the 

majority of bacterial populations exist in glycocalyx enclosed microcolonies (Geesey, 
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Richardson, Yeomans, Irvin & Costerton 1977) (Chapters 4). The glycocalyx may act 

as a barrier, influencing access of molecules, ions and protons (Cheng, Ingram & 

Costerton 1970) to the bacterial cell wall and cytoplasmic membrane (Costerton et al 

1981), and therefore may also give some measure of protection against antimicrobial 

compounds (Govan & Fyfe 1978). Thus, addition of antimicrobial compounds to 

hatchery waters to reduce established populations of egg surface bacteria may only ever 

have a limited effect. However, results of all studies (Chapters 2, 5, 6 and 7) have 

shown that at the time of stripping eggs are colonized by few bacteria (mainly S. 

epidermis ), subsequently rarely isolated from incubating egg surfaces. Indeed, at time 

of laying down egg surfaces are virtually sterile and are only colonized by large 

numbers of bacteria (P. fluorescens and Cytophaga sp.) during incubation. Once 

colonized, egg surfaces support a large and prolific bacterial population and thus 

commercially it may prove more prudent to prevent initial bacterial colonization of 

surfaces rather than attempt to reduce numbers of already established populations. 

Water treatment methods, particularly those that avoid the use of long term pollutants, 

for example ozone disinfection (Conrad, Holt & Kreps 1975) or ultra violet (U.V.) 

light {Spanier 1978 ; Brown & Russo 1979 ; Kimura, Yoshimizu & Atoda 1980) might 

prove suitable for reducing numbers of circulating, "unattached" bacteria and thus 

inhibit initial colonization of egg surfaces. However, neither methods is ideal for all 

situations, as amount of suspended solids in the water, water flow rate and, of course, 

fmancial expense will all be important limiting factors. 

At present, little can be achieved on a commercial basis to actively reduce 

potentially detrimental populations of bacteria developing on incubating egg surfaces. 

However, manipulation of the hatchery environment could contribute to ensuring that 

the formation of such populations is not encouraged (Chapter 2). Water should be taken 

from a pure source such as a spring or borehole, with a reduced bacterial flora (Conrad 

et a/ 1975) and furthermore, should pass over eggs once, go to drain and not be 

continually re-cycled (as this process may encourage bacterial proliferation- Chapter 

5). Ideally water flow rate should be as fast as possible (but without physically 
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disturbing eggs) and the creation of aerosols (such as when water enters hatchery 

troughs) should be avoided, as they may be a potential source of bacterial entry into 

hatchery waters (frust 1972). 

SUMMARY 

Rainbow trout eggs placed in small, totally enclosed incubation systems were 

constantly exposed to antibiotics and antimicrobial compounds throughout incubation. 

Three compounds, oxolinic acid, chlortetracycline and chloramphenicol were tested 

separately at two different concentrations on batches of eggs. Regular treatment of eggs 

with both oxolinic acid and chlortetracycline resulted in a marked decrease in numbers 

of egg surface bacterial populations. However, no significant correlation could 

subsequently be drawn between decreased egg surface bacterial numbers and increased 

egg hatching success. Thus, although oxolinic acid and chlortetracycline reduced egg 

surface bacterial numbers, subsequent failure to increase egg hatching rates would in 

turn suggest, that in these trials, no correlation existed between bacteria on egg surfaces 

and the deaths of incubating eggs. 
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GENERAL DISCUSSION 

Present investigations have clearly shown that there is a close association 

between salmonid eggs and bacteria, beginning before eggs are stripped and continuing 

throughout incubation (to be discussed further below). Early bacterial associations with 

eggs held in the coelomic cavity of healthy, disease free broodstock would not appear 

to be detrimental to overall egg quality. Furthermore, subsequent bacterial 

contamination of good quality eggs incubated under carefully controlled conditions 

does not seem to be a significant cause of egg loss. From these present investigations it 

appears that bacteria are almost a constant, ubiquitous component of the salmonid egg 

environment. In turn, healthy salmonid eggs successfully meet this perpetual microbial 

challenge. Only when other unfavourable environmental conditions combine to cause 

"stress" amongst incubating eggs does the presence of bacteria appear to detrimentally 

influence development and hatching success of salmonid eggs. 

Using the scientific literature it is possible to speculate that bacterial 

associations with salmonid eggs might commence at a very early stage of egg 

development. For example, when Sauter, Williams, Meyer, Celnik, Banks & Leith 

(1987) examined the blood of 30 healthy female chinook salmon, Onchorynchus 

tshawytscha, they noted that bacteria were present in half the samples. Predominantly, 

Gram -ve bacteria in particular, Aeromonas hydrophila, were recovered from most of 

the samples, although occasionally Gram +ve bacteria such as Listeria sp. were also 

found. Whether such bacteria could contaminate significant numbers of developing 

eggs either internally or externally is unlikely but, the distinct possibility of limited 

contact must however exist. In contrast, in diseased fish infected with Renibacterium 

salmoninarum (responsible for bacterial kidney disease- B.K.D.) there is evidence to 

suggest that during early egg development significant contamination of eggs can take 

place. During the development of salmonid eggs, vitellogenin, a large protein chain 

(molecular weight 250 000- 600 000) is s~:reted by the liver and selectively taken up 
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by the oocytes (Yusko, Roth & Smith 1981), probably, by a process of 

micropinocytosis (Mommsen & Walsh 1988). R. salmoninarum is a highly specialized 

bacterium able to live and reproduce intracellularily (Young & Chapman 1978 ; Bruno 

& Munro 1986) and is of such a size that it may also be taken up by developing eggs 

during the process of vitellogenin incorporation by micropinocytosis (as described) 

(Evelyn, Ketcheson & Prosperi-Porta 1984). 

As the eggs develop, the ripe ovaries enlarge to a point where they may 

constitute 20% of the total weight of the fish (Frost & Brown 1967). Each egg may 

reach a size of about 0.5 cm and the surrounding follicular layer becomes stretched, 

thin and finally disappears. The ovaries are surrounded by a thin, transparent 

membrane which also becomes stretched, eventually breaking, allowing the eggs to lie 

loose in the body or coelomic cavity (Frost & Brown 1967). Under commercial 

conditions eggs will remain in the coelomic cavity until pressure is applied to the 

outside of the fish and eggs are manually "stripped" from the cavity. However, while 

eggs remain in the coelomic cavity they are bathed by fluid, termed coelomic or ascitic 

fluid. Observations suggest that the volume and constituency of this fluid varies greatly 

between fish. Generally the fluid can be described as "watery" and possibly comprises 

of surrounding water that has entered the cavity via the urino-genital pore. In addition, 

it seems likely that the coelomic fluid will also contain some constituents of the 

circulating fish plasma including erythrocytes and macrophages (Cone 1982). 

The intensive culture techniques employed to farm salmonids commercially 

often leads to high levels of excrement and undigested feed present in the surrounding 

water of tanks, ponds or raceways (Alien, Austin & Colwell 1983; Austin & Allen­

Austin 1985). Under such conditions, a suitable nutrient !ich "medium" is 

unintentionally provided for bacterial growth and reproduction in turn potentially 

leading to relatively high numbers of bacteria present in the surrounding water (Alien et 

al 1983; Austin & Allen-Austin 1985). Thus, it is not surprising that aquatic bacteria 

will enter the coelomic cavity via the urino-genital pore, along with water from the tank 

or pond. Cone (1982) recovered Lactobacillus sp. from the coelomic fluid of rainbow 
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(1987) 
trout and, in addition, Sauter et al isolated both A. hydrophila and Corynebacterium 

sp. from the coelomic fluid of 5 out of 30 chinook salmon. Furthermore, present 

studies revealed the presence of A. hydrophila, Pseudomonas fluorescens, 

Pseudomonas sp., Corynebacterium sp. and Staphylococcus epidermis, in samples of 

coelomic fluid taken from healthy rainbow trout. However, in many cases the coelomic 

fluid samples were considered bacteriologically sterile. Thus, it seems that under 

normal (disease free) conditions rainbow trout are able to limit bacterial infection of the 

coelomic cavity, possibly by the presence of macrophages in the coelomic fluid as 

reported by Cone (1982) and mentioned above. 

The presence of low numbers of bacteria in the coelomic fluid is probably not 

detrimental to egg quality. In order to enter eggs that are held in the coelomic cavity, 

bacteria would need to pass through the egg micropyle. The micropyle of rainbow trout 

eggs is approximately 3.3 - 4.3 J.lm in diameter (Riehl 1980) and is thus sufficiently 

large to allow bacteria to enter the egg (for example, P. fluorescens is only 0.8 J.lm 

wide - Palleroni 1984). However, in order to guarantee internal egg contamination 

bacteria would need to be present in the coelomic fluid in high concentrations. Trust 

(1972) calculated that approximately 1.5 x 108 bacterial cells would be needed to cover 

the entire surface (and thus the micropyle) of a single rainbow trout egg. It therefore 

seems unlikely that under conditions of good health, bacteria will be able to reach 

sufficient concentration in the coelomic fluid to internally contaminate a significant 

number of eggs. In contrast, diseased broodstock suffering from bacterial kidney 

disease infections are often observed to have a coelomic fluid that appears milky due to 

the presence of considerable numbers of bacteria, often as many as 4.0- 8.0 x 109 cells 

I ml as revealed by plate count (Evelyn, Prosperi-Porta & Ketcheson 1981; Evelyn et al 

1984). Under such conditions a much greater possibility of bacterial entry into eggs 

whilst held in the coelomic cavity must therefore exist. 

Generally, under commercial conditions, ripe eggs are manually stripped from 

broodstock into separate bowls or containers to allow a visual check of egg quality 

(Springate & Bromage 1985). During stripping eggs are vulnerable to surface bacterial 
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contamination from the urogenital pore, faecal contact and from the air. However, 

present studies have shown that the majority of newly-stripped eggs contain few 

bacteria on their surfaces, although S. epidermis, possibly from the hands of farm staff 

(Woodroffe & Shaw 1974) is sometimes isolated. 

During the present studies eggs were dry fertilized with milt taken from sex­

reversed female fish (i.e. fish with a female genotype but masculinized with male 

steroids). There are few reports in the scientific literature of the bacterial content of milt, 

although Sauter et al (1987) reported bacterial contamination in the milt of one out of 6 

normal male fish, species included ; Vibrio fluvialis, Pseudomonas putrefaciens, 

Pasturella multicida and A. hydrophila. In contrast, the present studies showed greater 

bacterial contamination of milt samples. However, in order to obtain milt from sex­

reversed females the selected fish must be sacrificed, cut open, the testis removed and 

then subsequently punctured to release the milt. This rather protracted process is prone 

to bacterial contamination from the hands of staff (Woodroffe & Shaw 1974) and from 

many other sources including, the air, dissecting instruments, containers and bench 

surfaces. Thus, it may not be surprising that during these present trials a greater 

number of bacteria, from a greater range of bacterial genera were found in the milt 

compared to coelomic fluid. Therefore, at fertilization when milt from sex-reversed fish 

is added to the eggs, further exposure to bacteria is likely to occur. 

The recommended sperm to egg ratio is 1 ml of sperm to 10 000 eggs 

(Springate & Bromage 1985). Of course milt and eggs need to come into contact and 

are thus immediately stirred (frequently with a less than sterile finger), left for one 

minute and then excess sperm is carefully rinsed off with slowly running water (Leitritz 

& Lewis 1976). Subsequently, eggs are left with a covering of water (about 2-3 times 

their own volume) for a period of about 40 minutes to fully water harden (Springate & 

Bromage 1985). The source from which water is taken for water hardening is 

extremely important As stated above, it is likely that the bacterial content of the water 

in broodstock ponds will be very high. Consequently. utilization of such water for egg 

hardening purposes will in turn introduce eggs to large numbers of bacteria for a period 
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of about 40 minutes. During water hardening eggs actively take-up water and it is 

feasible that if sufficient numbers of bacteria are present in the surrounding water they 

could be "sucked-up" into eggs during this process. Entry via the micropyle would 

allow access to the perivitelline space but, further progress into the yolk might be 

impaired by the vitelline membrane. However, it is possible for bacteria to cross the 

vitelline membrane, either by pinocytosis or during a temporary period of disruption to 

the membrane that is thought to occur at water hardening (Potts & Rudy 1969). Present 

studies have revealed, however, that even when eggs are hardened in the presence of 

considerable numbers of bacteria (at a concentration of 106 cells I ml), few eggs were 

subsequently internally contaminated by the bacteria utilized. However, under such 

conditions, although few eggs become internally contaminated, in contrast, many eggs 

will have considerable numbers of bacteria attached to their external surfaces. Prudence 

suggests therefore, that eggs should be hardened in water taken from the purest (lowest 

bacterial count) source available. 

Salmonid eggs are often incubated in water derived from a spring or borehole. 

Such waters guarantee constant temperatures (8 °C - 10 °C) and an absence of fish 

pathogens (Stevenson 1980). Both spring and borehole water (ground waters) collect 

in permeable rocks which lie below the natural water table, a consequence of water 

percolating through overlying soil (termed vadose water). Many dissolved nutrients in 

such water are flltered out during the process of percolation and thus ground water can 

only support a limited microbial population (Fletcher 1979). Even so, sufficient 

nutrients may exist to support continuous bacterial growth at extremely low rates or 

alternatively, bacteria may exist in resting or dormant stages (Stevenson 1978). Thus, 

hatchery waters will probably contain a limited bacterial population prior to the addition 

of salmonid eggs. 

After water hardening, when eggs are laid down for incubation, additional 

bacteria perhaps from the milt, coelomic fluid or attached to egg surfaces will also be 

added to hatchery water. These bacteria will join those already present in turn 
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increasing the chances of subsequent egg contamination throughout the forthcoming 

period of incubation. 

Most bacteria in natural aquatic environments do not occur "freely-suspended" 

but attach themselves to available surfaces (Marshal!, Stout & Mitchell 1971). The 

incubation of glass beads during one of the present trials highlights the fact that 

considerable numbers of bacteria will accumulate on inert surfaces. Nutrients which 

support limited microbial growth have been shown to exist in hatchery waters 

(Willoughby, McGrory & Pickering 1983). Any surfaces in the hatchery environment, 

for example trays, glass beads or eggs will in turn provide an interface to which 

nutrients present in the water (both ·organic and inorganic) will be attracted by non­

specific electrical forces (Marshall et al 1971). Indeed Zobell & Anderson (1936) first 

demonstrated that microbial growth on surfaces was probably the result of increased 

nutrient concentration. Thus, it is not surprising that during incubation bacteria tend to 

accumulate around the external surfaces of incubating salmonid eggs (Bell 1966; Bell, 

Hoskins & Hodgkiss 1971; Trust 1972; Yoshimizu, Kimura & Sakai 1980). 

Initial bacterial colonization of egg surfaces could occur through chemotaxis. 

In particular dead salmonid eggs have been shown to loose amino acids, phosphate and 

potassium (Smith, Armstrong, Springate & Barker 1985), all agents which have the 

potential to attract microbes. However, in practice under relatively fast flow rates the 

effectiveness of such a response may be diminished, and therefore it is likely that initial 

egg colonization is probably fortuitous - the result of bacteria being swept onto egg 

surfaces by the flow of water. As bacteria approach a surface they will experience weak 

Van de Waals attraction induced by the fluctuation of dipoles within the molecules of 

the two approaching surfaces. Attraction between the surfaces increases as the distance 

between them decreases. However, as both surfaces are negatively charged there will 

also be a repulsion, the magnitude of which is dependant on surface potentials, ionic 

strength, pH and the dielectric constant of the surrounding medium (Marshall 1980; 

Rutter & Vincent 1980). Attractive Van de Waals forces tend to operate over a greater 

range than repulsive electrostatic forces thus allowing surfaces to remain in contact. 
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Bacteria in contact with a surface proceed through this phase of adherence termed 

"reversible" adherence to a further phase of "irreversible" adherence, involving the 

production of a range of cell surface components including the production of fimbriae 

(or surface fibrils) (Stenstrom & Kjelleberg 1985), glycocalyx fibres, pili or spinae, all 

providing firmer anchorage to the chosen surface (Marshall1976; Costerton, Irvin & 

Cheng 1981). Once established on the surface aquatic bacteria frequently produce large 

amounts of exopolysaccharide (termed the glycocalyx) (Costerton et al 1981), within 

which bacterial replication can occur to form an adherent microcolony (Costerton, 

Geesey & Cheng 1978). Subsequent cell division within the microcolonies and 

additional bacteria from the surrounding water leads to the production of a "biofilm" 

overlaying the surface, increasing both nutrient availability and promoting firmer 

adherance (Costerton, Cheng, Geesey, Ladd, Curtis-Nickel, Dasgupta & Marrie 1987). 

One important factor in detennining both phases of adhesion (described 

above) is the hydrophobic nature of the cell surface (Pethica 1980; Klotz, Drutz & 

Zajic 1985), directly influencing the "stickiness" of the cell. Bacteria in low nutrient 

environments (such as hatchery water) exhibit a range of different characteristics 

including increased cell surface hydrophobicity .(Kjelleberg & Hennansson 1984). A 

variety of techniques exist to measure bacterial cell surface hydrophobicity and a series 

of tests were employed in the present study to investigate the cell surface properties of 

bacteria colonizing egg surfaces. All the selected adherence tests indicated that bacteria 

colonizing egg surfaces possess a highly hydrophobic cell surface. Such a property will 

be important for both initial egg colonization and the permanent establishment of 

colonies on egg surfaces, and in addition, of special value to bacteria in fast flowing 

environments (such as hatcheries) where bacteria might otherwise be "washed-off' 

selected surfaces. Furthermore, tests also showed that increasing cell surface 

hydrophobicity occurred with increasing cell age. Such a phenomenon might be 

significant in the process of bacterial dispersal, for old (and therefore more 

hydrophobic) cells within colonies might produce daughter cells of a relatively lower 

hydrophobic nature, which in turn might not effectively adhere to the colony but pass 
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"freely-suspended" into the water. In this state bacterial cells could be dispersed from 

established colonies on one egg, to new uncolonized eggs, where with increasing cell 

age and therefore hydrophobicity, the establishment of new colonies on fresh surfaces 

would be promoted. 

During incubation, as previously described, considerable populations of 

bacteria tend to accumulate around the surfaces of salmonid eggs. Such a phenomenon 

possibly indicates that a supply of nutrients is available to support both microbial 

growth and reproduction. Studies revealed that increased numbers of bacteria (per 

mm2) might be found on live egg surfaces compared to glass beads, in turn suggesting 

that further supplementary nutrients· (in addition to those obtained from the hatchery 

water) might be available for bacterial colonies on live salmonid egg surfaces. A 

biochemical analysis of salmonid eggs during the present investigation showed 

considerable amounts of the following structural amino acids ; alanine, arginine, 
' 

glutamine and serine, in agreement with earlier studies by Suyama & Suzuki (1978). In 

addition, analysis of the structural fatty acids of eggs demonstrated relatively high 

levels of oleic acid, palmitic acid and a polyunsaturated fatty acid, confirming earlier 

studies of Atchinson (1975) and Nakagawa & Tsuchiya (1976). Therefore, potentially 

salmonid eggs might provide an abundance of nutrients suitable to support microbial 

growth. However, the salmonid egg is protected by a tough ichthulokeratin outer 

membrane (Young & Smith 1956 ; Bell, Hoskins & Bagshaw 1969), which is 

seemingly impervious to microbial extracellular products such as enzymes (to be 

discussed further below) and thus these nutrients normally remain unavailable for 

microbial growth. However, a series of independent studies revealed that small 

amounts of amino acids, phosphate and potassium, nutrients with the potential to 

support microbial growth, are "lost" by incubating live eggs. In addition, bacteria 

colonizing live egg surfaces might also obtain some nutritional benefit from waste 

products produced by embryos, such as ammonia and carbon dioxide (Hayes 1949 ; 

Smith 1947, 1957). 
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In comparison, dead egg surfaces are colonized by significantly higher 

numbers of bacteria than live egg surfaces. As above, this would again suggest that 

possibly bacteria on dead egg surfaces have access to enhanced nutrient sources 

compared to those colonizing live egg surfaces. Observations of dead eggs suggest that 

a general softening of the egg shell slowly occurs. This may be a result of various 

chemical/ biological processes but, possibly may also be due to colonization by moulds 

such as Saprolegnia sp. Successful colonization by such moulds, weakening the egg 

shell, may in turn allow greater bacterial access to the above amino acids and fatty 

acids, supporting increased growth and proliferation. In addition, present studies have 

also demonstrated that shocked rainbow trout eggs loose significantly higher quantities 

of amino acids, phosphate and potassium compared to live eggs, thereby supporting 

further bacterial growth and reproduction. 

The state of the salmonid egg (i.e. alive or dead) has been clearly shown to 

influence the number of bacteria surrounding the egg surface. The present studies have 

also shown a variety of other factors that are likely to significantly influence the 

numbers of bacteria colonizing egg surfaces. For example, water flow rates were found 

to markedly influence numbers of bacteria on egg surfaces. Water flow rate may be an 

important factor in influencing initial "reversible" bacterial adherence to egg surfaces, 

for the physical movement of water flowing over eggs may be (dependant on rates) 

sufficient to dislodge bacteria held in place solely by a weak electrical attraction 

(Marshal! et al 1971). Indeed under slow flow rates bacteria were recovered from egg 

surfaces in markedly higher numbers than from eggs maintained under fast flow rates, 

possibly indicative of more suitable surface conditions for bacterial colonization, 

growth and proliferation. 

Bacteria were also recovered in greater numbers from surfaces of eggs 

maintained at high density levels compared to low density levels. Poor water circulation 

(and thus reduced water flow rates) amongst "egg piles" may facilitate "initial 

reversible" bacterial adherence (for reasons described above). In addition, under 

conditions of high egg density, bacteria washed from one egg surface are likely to be 
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carried by the flow of water onto another nearby egg surface. Thus "chance" bacterial 

spread from one egg to the next is likely to be encouraged when egg density is high, 

compared to when egg density is low and adjacent egg surfaces are further apart. 

Trout eggs incubated at 15 °C (compared to 10 °C) also supported markedly 

greater numbers of surface bacteria. Egg incubation at such high temperatures may lead 

to increased nutrient availability for colonizing bacteria. As trout embryos are 

poikilothermic, incubation of live eggs at 15 °C compared to 10 °C would increase 

respiration rates, leading to increased levels of waste by-products over a given period 

and potentially higher bacterial numbers. Additionally, trout eggs are possibly less well 

suited to higher incubation temperatures (Stevenson 1980), and under such conditions 

stressed eggs may loose more nutrient material leading to still further bacterial 

proliferation. Furthermore, although temperature may influence rates of nutrient loss 

from dead eggs, the greater numbers of bacteria associated with the higher temperature 

is probably also a consequence of increased bacterial growth rates, in turn a function of 

increased cell metabolism (Jawetz, Melnick & Adelberg 1984). 

Overall, most of the present investigations have shown that of the bacterial 

genera colonizing live eggs, Cytophaga sp. are the most abundant followed by A. 

hydrophila and Pseudomonas fluorescens, closely concurring with earlier work by 

Bell et al (1971), Trust (1972) and Yoshimizu et a/ (1980). Generally, as incubation 

progresses bacterial numbers increase with progressive incubation periods, but species 

diversity is seen to decline. A similar pattern of bacterial activity was described by 

Shewan (1961) and Shewan & Hobbs (1967), although specifically in relation to the 

spoilage of stored fish. In contrast, dead egg surfaces are almost exclusively dominated 

by P.fluorescens and Pseudomonas sp. Other bacterial genera such as Cytophaga sp. 

Flavobacterium sp and A. hydrophila were often recovered from dead egg surfaces 

but, proportionally in extremely low numbers. 

General external environmental factors such as egg density, water flow rate 

and water temperature were found to have little influence on the bacterial genera 

colonizing egg surfaces. However, replicate batches of rainbow trout eggs placed under 
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different incubation systems were indeed dominated by different bacterial genera. 

Rainbow trout eggs incubated under a system of recycling water were colonized mainly 

by Cytophaga sp. In contrast, rainbow trout eggs incubated under a flow-through 

system were dominated by by P.fluorescens and A. hydrophila and colonized by only 

a few Cytophaga sp. It is likely that in this particular trial some aspect of water quality, 

possibly involving the source of water was responsible for inhibiting or suppressing 

the growth of Cytophaga sp. compared to both P. fluorescens and A. hydro phi/a. 

Chemical analysis of water taken from both systems revealed much higher levels of 

chlorine present in the flow-through system compared to the recycling system. Even 

so, chlorine levels were sufficiently low enough not to affect detrimentally the 

development of salmonid embryos and in addition, subsequent in vitro studies with 

chlorine failed to reveal Cytophaga sp. as especially chlorine sensitive. Whatever, the 

ultimate cause for the suppression of Cytophaga sp., the differing results obtained 

serve to underline the great variation often experienced in studies of a microbial and I or 

ecological nature. 

The colonization of live and dead egg surfaces by Cytophaga sp and 

Pseudomonas sp. (respectively) in turn suggests that these bacterial genera possess 

special properties or fitness traits that contribute to their success. Such properties are 

likely to include an ability to adhere to egg surfaces (as previously discussed) and an 

ability to efficiently utilize any nutrients that might be available in the immediate 

environment of the incubating egg. The relative abundance of P.fluorescens on dead 

egg surfaces (compared to Cytophaga sp.) could be due to a variety of factors 

including perhaps tolerance of a wide range of fatty acids, which can be potentially 

toxic to some bacteria (Atlas & Bartha 1981). Furthermore, P.fluorescens is known to 

produce a wide range of extracellular lipases (Sugiura & Isobe 1975 ; Macrae 1983) 

and, in addition, can utilize alanine and serine (abundant in salmonid eggs) as sole 

carbon sources. Moreover, P. fluorescens has a significantly faster growth rate than 

Cytophaga sp. and a well documented ability to inhibit other competing microbial 

organisms (Comick, Chudyk & McDermot 1969 ; Dubois-Darnaudpeys 1977 ; 
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Gurusiddaiah, Weller, Sarkar & Cook 1986; Hatai & Willoughby 1988). In contrast, 

on live egg surfaces the limited availability of nutrients may restrict the growth and 

dominance of P.fluorescens allowing other bacterial genera (such as Cytophaga sp.), 

that might be better suited to thriving in low nutrient environments, to proliferate 

unhindered. 

The percentage of young fish that survive from eggs to maturity amongst wild 

populations under natural conditions is extremely small. Nikolsky (1969) estimated 

percentage survivals of only 0.1% for sturgeon, 0.006% - 0.022% for bream, 0.125% 

for Atlantic salmon and 0.13% - 0.58% for chum salmon. In contrast, in modem 

hatcheries, where close control of environmental conditions is exercised and predators 

are mainly absent, percentage survivals are considerably higher. However, for a variety 

of reasons 100% survivals are never achieved. Some losses may be the result of the 

intensive nature of commercial farming, lowering water quality and causing "stress" to 

developing eggs. Other losses may also potentially be attributed to higher pathogen 

levels and as such an area closely investigated in these present studies. 

Overall, the three most frequently isolated bacteria from live egg surfaces 

were Cytophaga sp., Pseudomonas sp. and A. hydrophila, all well known 

opportunistic pathogens and secondary invaders of diseased or injured fish. Cytophaga 

sp. have been implicated in bacterial gill disease of salmonid fish (Borg 1960 ; 

Anderson & Conroy 1969). P. jluorescens is an organism commonly isolated from 

many fresh water environments (Alien, Austin & Colwell 1983) and has also been 

implicated as a secondary invader of damaged fish tissues and even on occasions as a 

primary invader (Roberts & Home 1978 ; Richards & Roberts 1978). A. hydrophila 

like A. salmonicida (the cause of furunculosis) possesses adhesins allowing it to attach 

closely to selected eukaryotic cells (Trust, Canotice & Atkinson 1980). is associated 

with spawning mortality in salmonids (Richards & Roberts 1978) and is known to 

produce an extended range of enzymes and exotoxins (Wadstrom, Lungh & Waetlend 

197 6). Thus, colonization of live eggs by considerable numbers of the above bacterial 

genera would seem potentially detrimental to egg survival. However, (as stated above) 
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the salmonid embryo is protected by a tough ichthulokeratin radiate membrane (Young 

& Smith 1956) which is resistant to the action of most proteolytic enzymes (Kanoch & 

Yamamoto 1957; Bell et al 1969). Indeed, only "hatching enzyme" released by the 

mature embryo would seem able to digest this membrane (Bell et al 1969). Thus, in 

agreement with Bell et al (1971) it seems unlikely that under nonnal incubation 

conditions the typical (commensal) surface bacterial flora of salmonid eggs is 

responsible for incubating egg death by the secretion of extracellular products. Indeed, 

if the bacteria frequently isolated from incubating egg surfaces were capable of 

secreting products that were able to penetrate the egg shell, it is likely that during 

incubation sufficient opportunity would occur for bacteria· to spread throughout 

hatchery trays causing widespread egg mortality. During many trials, with healthy 

salmonid eggs, such a phenomenon was not observed. 

Occasionally, under experimental and commercial conditions batches of eggs 

with zero survivals are recorded. These so called "blanks" could be due to a variety of 

reasons, possibly including adverse microbial involvement. However, without a 

regular and "predictable" supply of such eggs a definite microbial association will 

remain unestablished. 

Under poor incubation conditions, for example raised water temperatures, 

slow water flow rates and high egg densities bacterial numbers on egg surfaces can 

significantly increase. In conjunction, present trials have shown that dissolved oxygen 

levels, needed to support developing embryos, could fall to critically low levels 

(Chapter 2). Trust (1972) calculated that if all the bacteria on an egg surface were 

Pseudomonas sp. (dry weight of 10-11 g I cell, Brock 1966) then the oxygen demand 

by bacteria alone on an egg surface could be as much as 15 J..Ll/ hour. In comparison, 

incubating salmon eggs require an estimated 0.2 J1l per egg per hour after fertilization 

rising to 3.4 J1l per egg per hour at hatching (Blaxter 1969). Thus, in agreement with 

Trust (1972), when levels of oxygen are low (higher water temperatures, slow flow 

rates and high egg density) it is possible that bacterial consumption of oxygen could 

cause local areas of oxygen deprivation in turn causing potential mortality amongst 
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incubating salmonid eggs. Indeed, insufficient levels of dissolved oxygen (for a variety 

of unrelated reasons) are thought to be the cause of many mortalities of natural stream­

spawned salmonid eggs (McNeil, Wells & Brickell1964; Servizi, Martens & Gordon 

1970). 

From a microbiological point of view significant reductions in numbers of 

eggs lost during incubation might simply be achieved by a combination of different 

approaches and a more "scientific" policy towards egg incubation. Good quality eggs, 

milt and great care at fertilization are prerequisites for successful egg incubation. After 

fertilization eggs should be hardened in water taken from the purest (low bacterial 

count) source of water available and carefully laid down in incubation trays to avoid 

accumulation of eggs in "piles". Appropriate egg density will depend on many factors 

including water flow rate, physical space available and total number of eggs. However, 

small eggs will have a larger surface area to volume ratio (Bromage & Cumaranatunga 

1988) than larger eggs and may in turn suffer from a proportionally higher bacterial 

loading. Therefore, commercially it may be prudent to allocate more space to smaller 

eggs than to larger ones. Increased egg density leads to both poor water circulation and 

high surface bacterial populations and thus should be avoided. Ideally water taken from 

a spring or borehole should pass over eggs at an appropriate temperature 

(approximately 10 °C) and at the fastest possible flow rate that does not cause excessive 

disturbance of eggs. Significantly higher water temperatures further increase bacterial 

growth and proliferation, and slow water flow rates are not only inefficient at removing 

potentially toxic waste products produced by salmonid embryos but, will also 

encourage bacterial colonization of egg surfaces. 

A variety of prophylactic treatments are available to reduce microbial 

contamination of eggs, including the regular application of malachite green to 

discourage the establishment of Saprolegnia sp. on incubating eggs (Cline & Post 

1972; Olah & Farkas 1978). Although, suppression of Saprolegnia activity may 

reduce the possibility of interaction between major microbial groups, in vitro studies 

have shown that malachite green alone is ineffectual at reducing numbers of bacteria 
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colonizing egg surfaces. Presence of such a compound is therefore unlikely to halt the 

proliferation of bacteria throughout incubation systems, particularly from such potential 

loci as moribund eggs. Additional removal of pockets of dead eggs from incubation 

trays, even though tedious and to be avoided if excessive disturbance is likely to occur 

to nearby healthy eggs, may therefore be necessary to prevent bacteria from increasing. 

These simple measures alone could lead to a marked decrease in numbers of salmortid 

eggs lost through microbial activity without recourse to further potentially more 

expensive and sophisticated prophylactic and husbandry measures. 

Present studies have, however, also closely considered the possible 

contribution that additional prophylactic treatment of incubating eggs might make to 

increased hatching levels, by reducing numbers of egg surface bacteria. In all other 

previous studies large, commercial scale incubation systems were employed to incubate 

large batches of eggs. All these systems involved the use of many litres of water and 

made provision for excess water to go to drain. However, in this particular study where 

it was proposed to test antibiotics and antimicrobial compounds for their potential to 

reduce "commensal" bacteria on incubating egg surfaces, both at regular intervals and 

over a protracted period of time, such incubation systems would have been 

inappropriate, allowing compounds and any bacteria exposed to them to drain 

unchecked into the environment. Naturally, therefore, it was deemed necessary to 

design and construct small scale egg incubation systems where all water and 

compounds could be kept isolated from the environment and carefully disposed of after 

sterilization. After preliminary trials evaluating the efficacy and suitability of 

compounds for use in the designed systems, three compounds were finally selected. 

The first, oxolinic acid, was specifi~ally designed for fisheries use in Japan (Endo 

Ogishima, Hagasaka, Kaneko & Oshina 1973a), and its efficacy against a wide range 

of fish pathogens has been fully documented ; Aeromonas salmonicida, A. 

liquefaciens, Vibrio anguil/arum, Chrondococcus columnaris (Endo et a/ 1973a; 

Endo, Sakuma, Tanaka, Ogishima, Hara, Ohshima & Sato 1973b), A. sa/monicida 

(Austin, Rayment & Alderman 1983) V.anguil/arum (Austin, Johnson & Alderman 
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1982) and Y. ruckeri (Rodgers & Austin 1983). The second compound, 

chlortetracycline, belongs to the group of antibiotics (tetracyclines) that are probably the 

most frequently used broad spectrum antibiotics in the fisheries industry (Alderman 

1988). Snieszko, Friddle & Griffin (1952) first demonstrated the sensitivity of A. 

salmonicida to chlortetracycline by in vitro techniques. Smith (1950) first 

demonstrated the efficacy of the fmal selected compound, chloramphenicol, against two 

fish pathogens, Pseudomonas hydrophila and Aeromonas liquefaciens, leading in turn 

to its subsequent use as a treatment of fish disease, especially within the European carp 

industry (Evelyn 1968). 

In previous trials, overall~ studies revealed that eggs incubated under a 

carefully controlled horizontal flow of water were colonized by a microbial population 

that generally increased in number as incubation progressed. However, during the 

course of all three antibiotic trials, large fluctuations in bacterial numbers were 

recorded. Similar fluctuations in numbers of aquatic bacteria have been found to occur 

seasonally (Jones 1973; Allen, Austin & Colwell1983; Austin & Allen-Austin 1985; 

Iriberri, Unanue, Barcina & Egea 1987). In addition, Bell et al (1971) reported 

fluctuations in microbial numbers on surfaces of stream incubated salmon eggs, and 

Trust (1972) demonstrated a similar pattern of bacterial colonization on eggs maintained 

in a vertical upwelling incubator. Fluctuations in bacterial numbers during antibiotic 

trials (compared to previous trials) may thus be due to the unique experimental 

equipment design and the regular refilling of systems, perhaps leading to the partial 

removal of unattached "free living" bacteria in turn reducing the regular exposure of 

eggs to potential colonizers. Certainly the results of the study underline once again the 

great inherent variation involved in microbial and I or ecological studies. 

During antibiotic trials the overall hatching success rates ranged between 19% 

to 58%. In comparison to all previpus trials such egg hatching rates would appear to be 

poor and possibly due to a variety of causes. Eggs for all 3 antibiotic trials were 

obtained by photoperiodic manipulation of broodstock (Bromage & Cumaranatunga 

1988). Although there has been much debate on the quality of such "out of season" 
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eggs, it is now generally accepted that under commercial fanning conditions their 

performance is perfectly satisfactory. However, due to higher water temperatures often 

associated with "out of season", more frequent stripping of broodstock is required 

(Escaffre & Billard 1979). If this is not carried out then overripening may occur, in 

turn, low egg hatching rates amongst the "photoperiod" eggs used in the above 

antibiotic trials may possibly be due to overripeness and subsequent poor egg quality. 

In addition, in previous trials great care was also taken to ensure that eggs 

were placed under optimum incubation conditions. However, during the antibiotic trials 

far more emphasis was placed on preventing antibiotics (and any resistant bacteria) 

from entering the natural environment. Thus, although adequate conditions for egg 

development were provided, slow water flow rate, low levels of oxygen and increased 

levels of egg disturbance, a consequence of the unique experimental design, may not 

have provided "optimum" conditions for salmonid egg survival. Even so, if eggs are 

incubated under less than ideal environmental conditions, then any subsequent form of 

prophylactic treatment might be especially beneficial for egg survival. However, 

although numbers of bacteria on egg surfaces were markedly lowered after treatment 

with two of the three selected compounds (oxolinic acid and chlortetracycline), a 

corresponding increase in egg hatching success rate was not shown. Thus, no evidence 

was provided by these trials to recommend routine usage of antibiotics I antimicrobial 

compounds in commercial egg husbandry. However, a recommendation is made for 

further studies for there is some evidence to suggest that larger batches of eggs, 

perhaps incubated under different systems, might indeed benefit from a reduced surface 

micro flora. 

The use of antibiotics I antimicrobial compounds though, may not be the most 

efficient method to reduce the numbers of bacteria on egg surfaces. For, in natural 

environments, most bacterial cells are surrounded by a "polysaccharide component" 

outside the cell wall, termed the glycocalyx (Costerton et al 1981), and in aquatic 

ecosystems it has been demonstrated that the majority of bacterial populations exist in 

glycocalyx enclosed microcolonies (Geesey, Richardson, Yeomans, Irvin & Costerton 
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1977). The glycocalyx may in turn act as a barrier, influencing access of molecules, 

ions and protons (Cheng, Ingram & Costerton 1970) to the bacterial cell wall and 

cytoplasmic membrane (Costerton et al 1981), and therefore may also give some 

measure of protection against antimicrobial compounds (Govan & Fyfe 1978). 

Present studies have shown that at time of egg incubation, although eggs will 

have been exposed to bacteria, few will have been significantly contaminated. Thus, 

commercially it may prove more prudent to prevent initial bacterial colonization of 

surfaces rather than attempt to reduce numbers of already established populations. 

Water treatment methods, particularly those that avoid the use of long term pollutants, 

for example ozone disinfection (Conrad, Holt & Kreps 1975) or ultra violet (U.V.) 

sterilization (Spanier 1978 ; Brown & Russo 1979 ; Kimura, Yoshimizu & Atoda 

1980) might prove suitable for reducing numbers of circulating, "unattached" bacteria, 

thus inhibiting initial egg colonization~ 

Further studies might also concentrate on whether a relationship can be 

established between bacterial presence and initial egg quality. Potentially, levels of 

bacteria in the coelomic fluid or on surfaces of young incubating eggs might, overall, 

be a reflection of general egg quality. For example, high numbers of bacteria within the 

coelomic fluid might indicate that eggs are overripe. If such a relationship could be 

determined, it could in turn become a worthwhile "predictive I diagnostic" tool for 

establishing egg quality and subsequently the prospective egg hatching success rates 

under the type of incubation conditions that could be provided. 

Continual improvements in initial quality of both eggs and milt, coupled with 

close and careful supervision of hatchery practices should in turn lead to significant 

reductions in incubating egg losses. Such reductions will reduce the need for ever 

increasin~ numbers of egg importations 'into U.K. hatcheries and subsequently will 

reduce the risk of introducing non endemic diseases. In addition, it should ultimately 

lead to self sufficiency in the U. K. industry and the potential, through exportation, to 

take advantage of other European markets. 
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APPENDIX 2: 1 Bacterial cell culture media. 

Cytophaga agar (Anacker & Ordal1959) 

Formula (per litre) 

Tryptone 

Yeast extract 

Sodium acetate 

Beef extract 

Agar 

(pH 7.3) 

Method 

0.5 g 

0.5 g 

0.2 g 

0.2 g 

9.0 g 

Suspend in 1 litre of distilled water. Sterilize by autoclaving at 115 °C, 20 mins (0.72 

Kg/ cm2). 
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APPENDIX 2 : !(continued) Bacterial cell culture media 

Peptone beef extract glycogen agar 

(McCoy & Pitcher 1974) 

Formula (per litre) 

Bacterio peptone 

Bacto beef extract 

Glycogen 

Sodium chloride 

Sodium lauryl sulphate 

Brom thymol blue 

Agar 

(pH 6.9- 7.1) 

Method 

10.0 g 

10.0 g 

4.0 g 

5.0 g 

0.1 g 

0.1 g 

15.0 g 

Suspend in llitre of distilled water. Sterilize by autoclaving at 115 °C, 20 mins (0.72 

Kg/cm2). 

After agar poured, gelled and dried, overlay with 2% non-nutrient agar in distilled 

water. 
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APPENDIX 2: 1(continued) Bacterial cell culture media. 

Tryptone soya agar 

(Oxoid) 

Formula (per litre) 

Tryptone 

Soya peptone 

Sodium chloride 

Agar 

(pH 7.3) 

Method 

15.0 g 

5.0 g 

5.0 g 

15.0 g 

Suspend in 1 litre of distilled water. Sterilize by autoclaving at 121 °C, 15 mins (0.72 

Kg/cm2). 
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APPENDIX 2: !(continued) Bacterial cell culture media 

Synthetic basal medium I chemically defined medium 

(Davis & Mingioli; Cruickshank et a/ 1975) 

Formula (per litre) 

Basal medium 

Glucose sterile 10% solution 

Dipotassium hydrogen phosphate KiHP04 

Potassium dihydrogen phosphate KH2P04 · 

Sodium citrate Na3 C6Hs07.2H20 

Magnesium sulphate MgS04.1H20 

Ammonium sulphate (NH4)2 S04 

Agar (if required) 

Formula (per litre) 

Trace element solution 

Ferrous sulphate FeS04.1H20 

Zinc sulphate ZnS04.1H20 

Magnesium sulphate MnS04.3H20 

Sulphuric acid H2S04, 0.1 N 

Method 

20ml 

7.0 g 

3.0 g 

0.5 g 

0.1 g 

1.0 g 

20.0 g 

0.5 g 

0.5 g 

0.5 g 

10.0 ml 

Add 5 m1 of trace element solution to llitre of basal medium. Sterilize by autoclaving at 

115 °C, 20 mins (0.72 Kg I cm2) without the glucose solution. Add sterile glucose 

solution while media still. molten and mix before pouring. 
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APPENDIX 2 : 2 

STATISTICAL NOTATION 

The following notation is used throughout ; 

Probability (P) 

p > 0.05 

p < 0.05 

p < 0.01 

p < 0.001 

* 
•• 
*** 
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Symbol and interpretation 

N.S. i.e. Not Significant 

Significant 

Very Significant 

Highly Significant 



APPENDIX 2 : 2 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

after 7 days incubation (Live eggs). 

Temperature: 

Flow rate: Fast flow Slow flow Fast flow Slow flow 

Egg density : Low High Low High Low High Low High 

------------------------------------------------------------------------------------------------------

1) 2.5 122.7 282.3 810.0 22.9 222.1 2120 2847.3 

2) 1.6 61.4 130.1 490.9 200.6 121.2 1809 2874.3 

3) 2.0 34.4 338.7 515.5 95.6 215.4 2141 4981 
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APPENDIX 2 : 2 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

after 7 days incubation (Live eggs). 

Statistical Analysis 

Table for analysis of variance using a 3 way analysis of variance in a randomized 

design. 

Variable 

(VAR) 

A 

B 

c 
AB 

AC 

BC 

Error 

Sums of Squares 

(SS) 

9199454.55 

13859816.1 

1575783.75 

7652927.34 

538291.367 

1146557.04 

3179466.72 

FRATIO(A)= 

FRATIO(B)= 

FRATIO(C)= 

F RATIO (AB) = 

F RATIO (AC) = 
F RATIO (BC) = 

Degrees of Freedom 

(OF) 

1 

1 

1 

1 

1 

1 

16 

46.2943272 

69.7466202 

7.92980151 

38.5117531 

2.70883851 

5.76980804 

A= Water temperature. B =Water flow rate. C =Egg density 

The above notation is used throughout. 
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Mean Square 

(MS) 

9199454.55 

13859816.1 

1575783.75 

7652927.34 

538291.367 

1146557.04 

198716.67 

** 
** 
* 
** 
N.S. 

N.S. 



APPENDIX 2: 3 Analysis of variance of mean cfu's I sq mm egg surface after 14 

days incubation (Live eggs). 

Temperature: 10 °C 

Flow rate: Fast flow Slow flow 

Egg density : Low High Low High 

1) 

2) 

3) 

23.9 110.5 220.9 417.3 

7.4 159.5 368.2 1847.1 

56 138.1 156.5 902.1 

Statistical analysis summary table 

FRATIO (A)= 

FRATIO (B)= 

FRATIO(C)= 

F RATIO (AB) = 

F RATIO (A C) = 

F RATIO (BC) = 
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Fast flow Slow flow 

Low High Low High 

242.3 175 3150 5115 

228.9 141.4 6301 1717 

80.8 215.4 807.8 605.9 

5.03765356 N.S. 

9.78313393 ... 

0.000238034 N.S. 

4.24650094 N.S. 

0.759878636 N.S. 

0.0011948947 N.S. 



APPENDIX 2: 4 Analysis of variance of mean cfu's I sq mm egg surface after 21 

days incubation (Live eggs). 

Temperature: l5°C 

Flow rate: Fast flow Slow flow Fast flow Slow flow 

Egg density : Low High Low High Low High Low High 

---,-------------------------------------------------------------------------·------------------------------
1) 72.4 98.2 270 8026.5 121.1 262.5 7876 5250 

2) 51.5 55.2 303.8 28719 218.5 323.1 5385 3635 

3) 40.5 159.6 349.8 13770 121.2 343.3 5654 4645 

Statistical analysis summary table 

FRATIO(A)= 0.934332706 N.S. 

FRATIO(B)= 19.2226945 * 
FRATIO(C)= 5.74145664 N.S. 

F RATIO (AB) = 1.1324077 N.S. 

F RATIO (AC) = 8.53702515 * 
F RATIO (BC)= 5.42983143 N.S. 

-------------------------------------------------------------------------------------------------------
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APPENDIX 2; 5 Analysis of variance of mean cfu's I sq mm egg surface after 28 

days incubation (Live eggs). 

Temperature ; 

Flow rate: 

Egg density : 

1) 

2) 

3) 

10°C 

Fast flow Slow flow 

Low High Low High 

52.3 209.9 2927.1 10554.8 

54.5 211.7 927.9 7486.5 

50.3 276.2 1523.8 7952.9 

15°C 

Fast flow Slow flow 

Low High Low High 

-------------------------------------------------------------------------------------J--------,---------

Statistical analysis summary table 

FRATIO(A)= 

FRATIO(B)= 

F RATIO (AB) = 

81.9435457 

39.3795719 

35.4566659 

** 
** 
** 

-------------------------------------------------------------------------------------------------------

241 



APPENDIX 2 : 6 Analysis of variance of mean cfu's I sq mm egg surface after 7 days 

incubation (Dead eggs). 

Temperature : 

Flow rate: Fast flow Slow flow 

Egg density : Low High Low High 

1) 

2) 

3) 

3774 8114 4510 75785 

2761 14973 3375 . 14666 

6075 15955 4234 28596 

Statistical analysis summary table 

FRATIO(A)= 

FRATIO(B)= 

FRATIO(C)= 

F RATIO (AB) = 

F RATIO (A C) = 

F RATIO (BC)= 

242 

Fast flow Slow flow 

Low High Low High 

48465 492730 60582 277329 

79429 91546 40388 235595 

40388 68659 57889 324114 

14.720682 * 
0.354 703517 N.S. 

9.27526712 * 
0.0050582004 N.S. 

5.8386157 N.S. 

0.412344371 N.S. 



APPENDIX 2 : 7 Analysis of variance of mean cfu's I sq mm egg surface after 14 days 

incubation (Dead eggs). 

Temperature: 

Flow rate: Fast flow Slow flow 

Egg density : Low High Low High 

1) 

2) 

3) 

13807 3682 9205 51546 

7364 5523 20619 34058 

4523 15096 25773 22091 

Statistical analysis summary table 

FRATIO(A)= 

FRATIO (B)= 

FRATIO(C)= 

F RATIO (AB) = 

F RATIO (AC) = 

F RATIO (BC) = 

15°C 

Fast flow Slow flow 

Low High Low High 

6866 269252 15145 282714 

103662 1063543 44426 60582 

23156 57351 42407 475229 

5.06263714 N.S. 

0.244231423 N.S. 

4.16540764 N.S. 

0.52232464 N.S. 

3.75840301 N.S. 

0.240652546 N.S. 

-------------------------------------------------------------------------------------------------------
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APPENDIX 2 : 8 Analysis of variance of mean cfu's I sq mm egg surface after 21 days 

incubation (Dead eggs). 

Temperature : 10°C 15°C 

Flow rate: Fast flow Slow flow Fast flow Slow flow 

Egg density : Low High Low High Low High Low High 

------------------------------------------------------------------------------------------------------

1) 4909 21171 24301 45655 52504 619278 108374 258481 

2) 7364 28929 9205 3866 31772 222133 88180 262520 

3) 3682 9205 47865 44183 40388 258481 271406 371567 

Statistical analysis summary table 

FRATIO(A)= 28.5851187 * 
FRATIO(B)= 0.291538544 N.S. 

FRATIO (C)= 11.1095641 * 
F RATIO (AB) = 0.008558716 N.S. 

F RATIO (A C) = 9.47452723 * 
F RATIO (BC) = 1.41580641 N.S. 
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APPENDIX 2 : 9 Analysis of variance of mean cfu's I sq mm egg surface after 28 days 

incubation (Dead eggs). 

Temperature : 

Flow rate : · Fast flow Slow flow 

Egg density : Low High Low High 

1) 

2) 

3) 

12067 65047 81922 50074 

8560 31910 69956 84489 

1227 83456 39580 63819 

Statistical analysis summary table 

FRATIO(A)= 

FRATIO (B)= 

FRATIO(C)= 

F RATIO (AB) = 

F RATIO (A C)= 

F RATIO (BC) = 

15°C 

Fast flow Slow flow 

Low High Low High 

73708 82391 102316 575525 

101777 70275 83468 210689 

42811 74717 58966 235595 

9.4162843 * 
7.63226731 * 
6.79636471 * 
3.01003791 N.S. 

2.89105991 N.S. 

2.8508882 N.S. 

-------------·----·-----------------------------·----------------------·---------·--·-----------------------

245 



APPENDIX 2: 10 Biochemical tests selected for identification of Cytophaga sp. 

Characteristic 

Gliding motility 

Fruiting bodies 

Spreading colony 

Colony pigments : 

+ 

+ 

2% tryptone I nutrient agar orange 

Anaerobic growth + 

Nitrate reduced to nitrite + 

Cellulose degredation 

Chitin degredation + I -

Starch hydrolysis + 

Casein hydrolysis + 

Gelatin hydrolysis +I -

Peptone utilization + 

Catalase production + 

H2S production 

Indole production 

Citrate utilization 

Methyl red test 

Glucose oxidation 

Galactose oxidation 

Sucrose oxidation 

Lactose oxidation 

Maltose oxidation 

Mannitol oxidation 

+ 

+ 

+ = positive result, - = negative result, +I - = weak positive result 

246 



APPENDIX 2 : 11 Biochemical tests selected for identification of Pseudomonas 

jluorescens 

First stage table 

Shape 

Motility 

Growth aerobically 

Growth anaerobically 

Catalase 

Oxidase 

Glucose acid 

Carbohydrates : 

fennentative 

oxidative 

Gram negative rod 

+ 

+ 

+ 

+ 

+ 

+ 

-------------------------------------------------------------------------------------------------------

+ = positive reaction, - = negative reaction 
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APPENDIX 2 : 11 (continued) Biochemical tests selected for identification of 

Pseudomonas fluorescens 

Second stage table 

Fluorescence in 

u.v light 

Growth at 5 °C 

Growth at 42 °C 

+ 

+ 

Growth on MacConkey agar + 

Growth in KCN + I -

Citrate utilization + 

Glucose 

Lactose 

Maltose 

" 

" 

" 

Mannitol " 

Sucrose tt 

Xylose " 

Starch hydrolysis 

Nitrate to Nitrite 

Gelatin hydrolysis 

Casein hydrolysis 

Urease 

Arginine dihydrolase 

Lysine decarboxylase 

Ornithine decarboxylase 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+=positive result,-= negative result,+ I-= weak positive result 
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APPENDIX 2 : 12 Identification of Aeromonas hydrophila and Pseudomonas 

fluorescens using API 20 NE identification strips (24 - 48 hrs at 30 °C). 

APITest Pseudomonas fluorescens 

Nitrate to nitrite 

Indole production 

Glucose (acidification) 

Arginine dihydrolase 

Urease production 

Hydrolysis ~ glucosidase 

Gelatin hydrolysis 

~ galactosidase 

Glucose assimilation 

Arabinose " " 

Mannose " " 

Mannitol " " 

N-acetyl-glucosamine 

Maltose assimilation 

Gluconate " " 
Caprate " " 

Adipate " " 

Malate .. " 

Citrate " " 

Phenyl-acetate " 

Cytochrome oxidase 

+ 

(+) 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Aeromonas hydrophila 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

-------------------------------------------------------------------------------------------------------

+=positive reaction, - = negative reaction, ( +) =most strains tested positive. 
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APPENDIX 2: 13 Biochemical tests selected for identification of Pseudomonas sp. 

-------------------------------------------------------------------------------------------------------

Shape 

Motility 

Growth aerobically 

Growth anaerobically 

Catalase 

Oxidase 

Glucose acid 

Carbohydrates : 

fennentative 

oxidative 

Gram negative rod 

+ 

+ 

+ 

+ 

+ 

+ 

+ = positive reaction, - = negative reaction 
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APPENDIX 3 : 1 Amino acid standards. Area of trace from 25 nmol of each amino 

acid. 

Amino acid Area of Trace 

L~ Aspartate 0.098 

L-Threonine 0.095 

L-Serine 0.103 

L-Glutamine 0.093 

L-Proline 0.024 

Glycine 0.084 

L-Alanine 0.094 

L-V aline 0.088 

~Methionine 0.087 

L-Isoleucine 0.103 

~Leucine 0.105 

L-Tyrosine 0.093 

L-Phenylalanine 0.096 

L-Histidine 0.091 

L-Lysine 0.100 

L-Arginine 0.080 

-------------,·----------------------------------'---~--------------------------------------------------
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APPENDIX 3:2 Fatty acids standard curve 

. 2.9 

2.7 

2.5 

w 
:=: 
I= 
z 
Q ~ C14 
!Z ..... c 16 
~ .... C 18 w ..... C20 a: 

8 2.3 _, 

2.1 

1.9 +---~------r-----,,----,r----, 
0 1 2 3 

DOUBLE BONDS 
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APPENDIX 3 : 3 Increase in cell concentration of P. fluorescens in C.D.M. 

(chemically defined medium - Appendix 2 : 1) at 10 °C by measurement of Optical 

Density. 

TIME (HOURS) 

replicates 0 6 12 18 24 36 48 60 72 

-------------------------------------------------------------------------------------------------------

1) 0.038 0.063 0.09 0.176 0.49 1.17 3.01 4.4 5.0 

2) 0.036 0.06 0.077 0.185 0.35 1.26 3.26 5.2 5.6 

3) 0.04 0.065 0.081 0.187 0.38 1.25 3.2 4.5 5.2 

4) 0.048 0.067 0.09 0.19 0.36 1.39 3.26 5.8 5.4 

5) 0.06 0.065 0.081 0.156 0.31 1.32 3.66 5.0 5.2 

mean 0.044 0.064 0.084 0.179 0.38 1.28 3.28 4.98 5.28 

± s.e. 0.004 0.002 0.003 0.006 0.003 0.004 0.106 0.254 0.102 _, ____________________ 
s.e. = Standard error 

253 



APPENDIX 3 : 3 (continued) Increase in cell concentration of P. fluorescens in 

C.D.M. at 25 °C by measurement of Optical Density. 

Tllv1E (HOURS) 

replicates 0 6 12 18 24 30 48 60 72 

1) 0.011 0.064 0.45 1.6 5.3 5.7 

2) 0.013 0.059 0.35 . 1.5 4.8 5.4 

3) 0.013 0.052 0.35 1.4 5.2 5.9 

4) 0.012 0.066 0.4 1.7 5.5 5.0 

5) 0.011 0.054 0.28 1.6 5.8 5.3 

mean 0.012 0.059 0.367 1.56 5.32 5.46 

± s.e. 0.0004 0.003 0.028 0.051 0.166 0.157 

-------------
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APPENDIX 3 : 4 Increase in cell concentration of Serratia sp. in C.D.M .. at 10 oc by 

measurement of Optical Density. 

------------------------------------------------------------,·------------------------------------------

TIME (HOURS) 

replicates 0 6 12 18 24 36 48 60 72 84 

-------------------------------------------------------------------------------------~~----------------

1) 0.034 0.049 0.062 0.102 0.215 0.696 1.15 2.50 4.71 5.08 

2) 0.04 0.053 0.068 0.11 0.235 0.714 1.44 2.75 4.93 5.15 

3) 0.038 0.044 0.06 0.09 0.198 0.7 1.38 2.64 4.54 4.96 

4) 0.036 0.047 0.059 0.095 0.206 0.699 1.3 2.58 4.5 4.9 

5) 0.036 0.05 0.063 0.106 0.214 0.721 1.51 2.71 4.8 5.2 

mean 0.037 0.049 0.062 0.101 0.214 0.706 1.36 2.64 4.7 5.06 

± s.e. 0.001 0.002 0.002 0.004 0.006 0.005 0.004 0.045 0.08 0.056 

-----------
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APPENDIX 3: 4 (continued) Increase in cell concentration of Serratia sp. in C.D.M. 

at 25 °C by measurement of Optical Density. 

TIME (HOURS) 

replicates 0 6 12 18 24 36 48 60 72 84 

-----------------------------·--·---------------------·--------------------------------------·------------
1) 0.025 0.043 0.25 0.53 1.3 4.8 5.1 

2) 0.031 0.046 0.34 0.53 1.36 5.1 5.2 

3) 0.028 0.04 0.29 0.48 1.25 4.7 4.9 

4) 0.029 0.039 0.31 0.59 1.2 4.4 5.0 

5) 0.03 0.044 0.33 0.65 1.4 5.5 5.6 

mean 0.029 0.042 0.304 0.556 1.30 4.9 5.2 

± s.e. 0.001 0.001 0.016 0.029 0.036 0.188 0.121 

------------------- --
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APPENDIX 3: 5 Increase in cell concentration of Cytophaga sp. in C.D.M. at 10 oc 
by measurement of Optical Density. 

TIME (HOURS) 

replicates 0 12 24 36 48 60 

1) 0.031 0.052 0.104 0.39 1.04 2.01 

2) 0.034 0.055 0.092 0.42 0.84 1.93 

3) 0.029 0.05 0.094 0.3 0.87 1.77 

4) 0.029 0.05 0.099 0.36 1.13 1.88 

5) 0.039 0.066 0.156 0.41 1.57 2.88 

mean 0.032 0.055 0.109 0.375 1.09 2.09 

± s.e. 0.002 0.003 0.012 0.38 0.13 0.2 

TIME (HOURS) 

replicates 72 84 96 120 132 

1) 2.89 3.9 4.8 5.6 5.8 

2) 2.75 4.7 4.9 6.3 6.5 

3) 2.62 2.9 3.3 5.4 5.4 

4) 2.85 3.3 3.8 5.7 5.9 

5) 3.32 4.3 4.3 6.0 6.0 

mean 2.89 3.82 4.22 5.8 5.92 

± s.e. 0.112 0.326 0.302 0.158 0.178 

------·------·------------
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APPENDIX 3: 5 Increase in cell concentration of Cytophaga sp. in C.D.M. at 25 °C 

- by measurement of Optical Density. 

-------------------------------------------------------------------------------------------------------

TIME (HOURS) 

replicates 0 12 24 36 48 60 

-------------------------------------------------------------------------------------------------------

1} 0.016 0.034 0.273 1.13 5.9 6.1 

2) 0.014 0.029 0.226 1.02 5.4 5.8 

3) 0.009 0.028 0.298 1.35 5.9 6.3 

4) 0.014 0.034 0.273 1.29 5.5 5.5 

5) 0.019 0.035 0.235 1.11 5.4 5.4 

mean 0.014 0.032 0.261 1.18 5.62 5.82 

± s.e. 0.002 0.002 0.013 0.061 0.116 0.171 

------
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APPENDIX 3: 6 Increase in cell concentration of P.fiuorescens in Live egg medium 

at 10 °C by measurement of Optical Density. 

-------------------------------------------------------------------------------------------------------

TIME (HOURS) 

replicates 0 6 12 18 24 36 48 60 72 

-------------------------------------------------------------------------------------------------------

1) 0.030 - 0.05 0.082 0.084 0.082 - 0.075 

2) 0.027 - 0.057 - 0.08 0.077 0.077 - 0.061 

3) 0.025 - 0.050 - 0.075 0.077 0.077 - 0.056 

4) 0.015 - 0.051 - 0.077 0.071 0.069 - 0.050 

5) 0.013 - 0.051 - 0.079 0.079 0.065 - 0.048 

mean 0.022 0.052 0.079 0.078 0.074 0.058 

± s.e. 0.003 0.001 0.001 0.002 0.003 0.005 

-----------------------------------------------
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APPENDIX 3: 6 (continued) Increase in cell concentration of P.fluorescens in Dead 

egg medium at 10 °C by measurement of Optical Density 

TIME (HOURS) 

replicates 0 6 12 18 24 36 48 60 72 

-------------------------------------------------------------------------------------------------------

1) 0.046 0.09 0.118 0.110 - 0.091 - 0.10 

2) 0.046 0.089 - 0.127 0.115 - 0.104 - 0.12 

3) 0.045 0.087 - 0.118 0.107 - 0.093 - 0.09 

4) 0.045 0.087 - 0.119 0.105 - 0.088 - 0.08 

5) 0.046 0.096 - 0.129 0.114 - 0.104 - 0.11 

mean 0.046 0.09 0.122 0.110 0.096 0.103 

± s.e. 0.0002 0.002 0.003 0.002 0.004 0.007 
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APPENDIX 3: 6 (continued) Increase in cell concentration of P.fluorescens in Sterile 

fish unit water at 10 °C by measurement of Optical Density. 

TIME (HOURS) 

replicates 0 6 12 18 24 36 48 60 72 

1) 0.053 - 0.048 - 0.038 - 0.040 - 0.038 

2) 0.052 - 0.044 - 0.034 - 0.039 - 0.041 

3) 0.053 - 0.052 - 0.031 - 0.033 - 0.036 

• 4) 0.050 - 0.044 - 0.03 0.037 - 0.032 

5) 0.046 - 0.053 - 0.031 - 0.031 - 0.029 

mean 0.051 0.048 0.033 0.036 0.035 

± s.e. 0.001 0.002 0.002 0.002 0.002 
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APPENDIX 3 : 7 Increase in cell concentration of Serratia sp. in Live egg medium at 

10 °C by measurement of Optical Density. 

-------------------------------------------------------------------------------------------------------

TIME (HOURS) 

replicates 0 6 24 60 72 120 168 

----------------------------------------------------------------------------------------------,---------

1) 0.020 0.021 0.024 0.030 0.040 0.083 0.061 

2) 0.026 0.026 0.028 0.036 0.038 0.070 0.040 

3) 0.028 0.030 0.030 0.040 0.046 0.090 0.042 

4) 0.029 0.029 0.029 0.041 0.040 0.065 0.024 

5) 0.024 0.024 0.028 0.039 0.044 0.085 0.030 

mean 0.025 0.026 0.028 0.037 0.042 0.079 0.039 

± s.e. 0.002 0.002 0.001 0.002 0.002 0.005 0.006 

-----
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APPENDIX 3: 7 (continued) Increase in cell concentration of Serratia sp. in Dead egg 

medium at 10 °C by measurement of Optical Density. 

TIME (HOURS) 

replicates 0 6 24 60 72 120 168 
__________ , ____________________________ , _________________________________________________________________ 

1) 0.037 0.039 0.045 0.079 0.14 0.165 0.16 

2) 0.04 0.041 0.053 0.1 0.130 0.150 0.151 

3) 0.038 0.037 0.05 0.091 0.094 0.145 0.13 

4) 0.038 0.037 0.051 0.084 0.11 0.135 0.132 

5) 0.040 0.040 0.051 0.095 0.155 0.175 0.150 

mean 0.039 0.039 0.05 0.09 0.126 0.154 0.145 

± s.e. 0.0006 0.0008 0.001 0.004 0.011 0.007 0.006 
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APPENDIX 3 : 7 (continued) Increase in cell concentration of Serratia sp. in Sterile 

fish unit water at 10 °C by measurement of Optical Density. 

-------,---~------------------·---------------------------------------------------------------------------

TIME (HOURS) 

replicates 0 6 24 60 72 120 168 

1) 0.034 0.032 0.03 0.024 - 0.018 0.017 

2) 0.028 0.028 0.029 0.027 - 0.020 0.018 

3) 0.029 0.026 0.027 0.024 - 0.012 0.013 

4) 0.031 0.031 0.03 0.026 - 0.017 0.020 

5) 0.029 0.028 0.029 0.026 - 0.020 0.017 

mean 0.030 0.029 0.029 0.025 0.017 0.017 

± s.e. 0.001 0.001 0.0006 0.0006 0.002 0.001 
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APPENDIX 3 : 8 Increase in cell concentration of Cyrophaga sp. in Live egg medium 

at 10 °C by measurement of Optical Density. 

replicates 0 12 

1) 0.033 0.026 

2) 0.032 0.029 

3) 0.029 0.03 

4) 0.032 0.024 

5) 0.032 0.036 

mean 0.032 0.029 

± s.e. 0.0006 0.002 

TIME (HOURS) 

24 36 48 

- 0.025 0.033 

- 0.021 0.021 

0.021 0.024 

- 0.024 0.029 

- 0.023 0.027 

0.023 0.027 

0.0008 0.002 
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60 72 84 96 

- 0.018 

- 0.016 

- 0.022 

- 0.010 

- 0.008 

0.015 

0.003 



APPENDIX 3 : 8 (continued) Increase in cell concentration of Cytophaga sp. in Dead 

egg medium at 10 °C by measurement of Optical Density. 

TIME (HOURS) 

replicates 0 12 24 36 48 60 72 84 96 

1) 0.015 0.026 0.041 - 0.077 0.096 - 0.075 

2) 0.019 0.020 0.035. 0.071 0.099 0.086 

3) 0.024 0.029 0.041 - 0.072 0.095 - 0.088 

4) 0.020 0.029 0.043 - 0.078 0.099 - 0.087 

5) 0.016 0.021 0.035 - 0.068 0.096 - 0.080 

mean 0.019 0.025 0.039 0.073 0.097 0.083 

± s.e. 0.002 0.002 0.002 0.002 0.0008 0.003 

----------
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APPENDIX 3 : 8 (continued) Increase in cell concentration of Cytophaga sp. in Sterile 

fish unit water at 10 °C by measurement of Optical Density. 

TIME (HOURS) 

replicates 0 12 24 36 48 60 72 84 96 

1) 0.030 0.029 - 0.018 - 0.019 - 0.017 

2) 0.027 0.030 - 0.020 - 0.020 - 0.009 

3) 0.034 0.028 - 0.016 - 0.017 - 0.025 

4) 0.038 0.025 - 0.019 - 0.012 - 0.020 

5) 0.034 0.035 - 0.024 - 0.020 - 0.018 

mean 0.033 0.029 0.019 0.018 0.018 

± s.e. 0.002 0.002 0.002 0.002 0.003 
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APPENDIX 3 : 9 Viable count of P. jluorescens in sterile fish unit water over a 29 day 

period. 

-------------------------------------------------------------------------------------------------------

DAYS 

inoculum 1 3 5 7 9 11 13 15 17 

1) 34000 48750 92500 63333 85000 14000 120000 56667 75000 92500 

2) 31500 25000 65000 75000 110000 190000 120000 57500 125000 66667 

3) 26000 50000 50000 67500 65000 110000 70000 66667 85000 50000 

mean 30500 41250 69167 68611 86666 146666 103333 60278 95000 69722 

s.e. 2363 8133 12444 3413 13017 23333 16667 3204 15275 12363 

----,----·--------------------------------------------------------
DAYS 

19 21 23 25 27 29 

------ ------------------
1) 75000 41250 57500 29750 20000 18333 

2) 50000 26250 29750 25000 20750 32500 

3) 30000 31429 40000 50000 16000 18500 

mean 51667 32976 42417 34916 18917 23111 

s.e. 13017 4399 8101 7665 1474 4695 

-------------
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APPENDIX 3 : 9 (continued) Viable count of Serratia sp. in sterile fish unit water over 

a 29 day period. 

-------------------------------------------------------------------------------------------------------

DAYS 

inoculwn 1 3 5 7 9 11 13 15 17 

--------------------------------------------------------------------------------------~----------------

1) 36667 41667 20000 28000 21500 16000 31667 20000 25000 17000 

2) 65000 32500 30000 13333 22000 7000 31667 27750 17500 18500 

3) 46667 27500 22500 14417 19583 12583 35000 24400 21250 33500 

mean 49445 33889 24167 18583 21028 11861 32778 24050 21250 23000 

s.e. 8296 4148 3004 4719 736 2623 1111 2244 2165 5268 

--------

DAYS 

19 21 23 25 27 29 

-------·---·----·------------·-----
1) 22500 15000 16000 17500 10750 13250 

2) 14444 22500 27500 8250 8250 10000 

3) 33500 20750 10500 45000 10000 25000 

mean 15815 19417 29500 11917 14667 11333 

s.e. 3531 2265 8431 2837 5216 983 

------ ----·---·---------·-
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APPENDIX 3 : 9 (continued) Viable count of Cytophaga sp. in sterile fish unit water 

over a 29 day period. 

DAYS 

inoculum 1 3 5 7 9 11 13 15 17 

1) 52500 75000 91667 27500 40000 20000 42500 49667 55000 18000 

2) 40000 55000 155000 50000 42500 15000 51667 27000 37500 16250 

3) 100000 116667 150000 73333 133333 17500 66667 32500 11144 . 26333 

mean 64167 82222 132222 50278 71944 17500 53611 36389 34548 20194 

s.e. 18276 18164 20329 13232 30702 1443 7044 6826 12746 3111 

-----------------------------------------------------------------

DAYS 

19 21 23 25 27 29 

--------·-----------·----------------
1) 22500 47500 30000 37500 30000 35000 

2) 15000 15000 40000 25000 20500 17500 

3) 37000 28333 35417 29292 26833 25278 

mean 24833 30278 35417 29292 26833 25278 

s.e. 6457 9432 2917 4106 3167 5145 
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APPENDIX 3 : 10 Levels of amino acids "leaked" from live and dead eggs (mg I L I g 

dry weight). 

Live Eggs 

·---·-------------------------------------------·------------------------------------------------------
Reps TIME (Hours) 

0 0.5 1 6 12 24 48 

_______ ..;_;. _____________________________________________________________ ·-------------------------·-·-----

1) 0 27 40.2 43.8 43.8 45.3 62.1 

2) 3 32.1 50.4 44.8 41.7 51.9 70.8 

3) 6 42.2 38.7 63.6 40.2 42.2 52.9 

4) 0 40.8 43.8 42.2 45.8 117.6 76.4 

5) 0 50.4 40.2 61.1 47.3 65.7 61.6 

----------·----------------------------------------------------------------------------------~----------

Dead Eggs 

Reps TIME (Hours) 

0 0.5 1 6 12 24 48 

1) 17 215 171.3 210.4 334.6 330.5 243.3 

2) 33 184.8 290.4 111.6 326.4 118.7 315.1 

3) 5 97.9 153.1 98.1 284.4 219.6 383.8 

4) 30 156 126.3 176.2 272.4 303.1 211.9 

5) 23 143 118.9 183.7 203.8 296.4 264.7 

-·---·---------------------------------------------------------------------------------------------------

271 



APPENDIX 3: 10 (continued) Analysis of levels of amino acids leaked between live 

and dead eggs by 2 way split-plot analysis of variance in a randomized design. 

Variable 

(VAR) 

Sums of Squares 

(SS) 

Degrees of Freedom 

(DF) 

Ma.F 

MP. Error 

MI.F 

AXB 

SP Error 

374169.669 

9419.01709 

189532.656 

86639.5286 

91339.7544 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

FRatio(A X B)= 

317.799334 

16.6002335 

7.58833033 

1 

8 

6 

6 

48 

Ma = major factor= State of egg (e.g. live eggs I dead eggs) 

Mi = minor factor= Time 

A X B = Interaction of the two factors. 
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Mean Square 

(MS) 

374169.669 

1177.37714 

31588.776 

14439.9214 

1902.91155 



APPENDIX 3 : 11 Levels of phosphate "leaked" from live and dead eggs (mg I L I g 

dry weight). 

Live Eggs 

-------------------------------------------------------------------------------------------------------

Reps TIME (Hours) 

0 0.5 1 6 12 24 48 

-------------------------------------------------------------------------------------------------------

1) 0 3.6 5.6 0 0.9 1.8 0 

2) 0 1.8 10.7 5.6 3.6 0 3.6 

3) 0 0.9 0 1.8 1.8 0 5.6 

4) 0.4 0 3.6 0 5.6 0 3.6 

S) 0.7 0 3.6 0.9 0 2.7 2 

-------------------------------------------------------------------------------------------------------

Dead Eggs 

Reps TIME (Hours) · 

0 0.5 1 6 12 24 48 

1) 16 92.6 78.4 116 92.6 69.7 98.2 

2) 21.4 69.7 92.6 142.5 71.3 81.9 128.3 

3) 8.6 62.6 96.2 92.6 105.4 87.5 116 

4) 20.7 87.5 82 146.1 71.3 73.3 89 

5) 29.6 84 103.3 116.1 76.9 87.5 92.6 

-------------------------------------------------------------------------------------------------------
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APPENDIX 3 : 11 (continued) Analysis of levels of phosphate leaked between live and 

dead eggs by 2 way split-plot analysis of variance in a randomized design. 

Variable 

(VAR) 

Sums of Squares 

(SS) 

Degrees of Freedom 

(DF) 

Ma.F 

MP. Error 

MI.F 

AXB 

SP Error 

114380.517 

218.498291 

16248.5518 

14774.0895 

5436.96179 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

4187.87775 

23.9082817 

21.7387431 

1 

8 

6 

6 

48 

Ma =major factor= State of egg (e.g. live eggs I dead eggs) 

Mi = minor factor= Time 

A X B = Interaction of the two factors. 

274 

*** 

*** 

*** 

Mean Square 

(MS) 

114380.517 

27.3122864 

2708.09196 

2462.34825 

113.270037 



APPENDIX 3: 12 Levels of potassium "leaked" from live and dead eggs (ppm I g dry 

weight). 

Live Eggs 

-·-----------------------------------------------------------------------------------------------------

Reps TIME (Hours) 

0 0.5 1 6 12 24 48 

------------·-------------------·--------------·-------------·---------·---·---------·-------------·---------
1) 0 0 0 0 0 2.4 0.8 

2) 0.5 0 0 0 0 0 2.4 

3) 0.3 0 0.4 0.8 0 4.8 1.3 

4) 0 0.8 0 1.4 0 0 0 

5) 0 1.6 0 0 0 11.1 0.8 

--------------------------------------------------·-----------------------------------~-----------------

Dead Eggs 

----·---------------------------------------------------------------------------------------------------

Reps TIME (Hours) 

0 0.5 1 6 12 24 48 

1) 0 50.8 55.6 65 47.6 34.9 46.1 

2) 0 49.2 63.5 81 36.5 36.5 58.8 

3) 1 50.8 74.1 47.6 31.8 36 55.6 

4) 1.6 47.6 66.2 81 31.8 36.5 42.9 

5) 0.8 42.9 65.1 55.6 31.8 34.9 41.3 
____________________________________________________ , ___________________________________ , _______________ 
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APPENDIX 3 : 12 (continued) Analysis of levels of potassium leaked between live and 

dead eggs by 2 way split· plot analysis of variance in a randomized design. 

Variable 

(VAR) 

Sums of Squares 

(SS) 

Degrees of Freedom 

(DF) 

Ma.F 

MP. Error 

MI.F 

AXB 

SP Error 

30996.1286 

224.122223 

7382.41541 

7503.63545 

1420.21774 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B)= 

1106.4009 

41.5846961 

42.2675212 

1 

8 

6 

6 

48 

Ma =major factor= State of egg (e.g. live eggs I dead eggs) 

Mi = minor factor =Time 

A X B = Interaction of the two factors. 
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Mean Square 

(MS) 

30996.1286 

28.0152779 

1230.40257 

1250.60591 

29.5878696 



APPENDIX 3: 13 Free egg amino acids. 

-----------------------------·---------------------------------·--------------------------------------
Amino acid Amount (n mols /10 eggs) 

1 2 3 mean 

-------------------------------------------------------------------------------------------------------

L-Aspartate 47.5 33.6 37.7 39.6 

L-Tiueonine 12.0 15.6 18.3 15.3 

L-Serine 34.6 30.1 25.2 30.0 

L-Glutamine 23.3 27.7 25.6 25.5 

L-Proline 8.6 8.9 11.5 9.6 

Glycine 7.6 10.1 9.0 8.9 

L-Alanine 12.1 7.7 12.1 10.6 

L-V aline 4.0 3.9 7.8 5.2 

L-Methionine 4.8 4.6 6.0 5.1 

L-Isoleucine 7.2 5.5 5.2 6.0 

L-Leucine 6.8 6.9 4.7 6.1 

L-Tyrosine 4.2 4.9 4.9 4.7 

L-Phenylalanine 5.3 4.8 4.2 4.8 

L-Histidine 6.4 5.5 7.0 6.3 

L-Lysine 4.6 4.7 7.0 5.4 

L-Arginine 53.4 47.8 42.0 48.1 

-------------------------------------------------------------------------------------------------------
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APPENDIX 3: 13 (continued) Structural egg amino acids. 

-------------------------------------------------------------------------------------------------------

Amino acid Amount (n mols I egg) 

1 2 3 mean 

----------~--------------------------------------------------------------------------------------------

L-Aspartate 36.6 27.4 25.6 29.9 

L-Threonine 27.7 29.8 24.4 27.3 

L-Serine 45.6 43.4 30.5 39.8 

L-Glutamine 46.3 39.1 38.7 41.4 

L-Proline 36.9 38.8 40.1 38.6 

Glycine 27.0 27.0 18.3 24.1 

L-Alanine 48.8 39.6 42.2 43.5 

L-Cystine 8.3 9.0 8.5 8.6 

L-V aline 17.9 31.4 30.6 26.6 

L-Methionine 10.6 9.4 11.9 10.6 

L-Isoleucine 34.6 22.6 24.9 27.4 

L-Leucine 28.8 33.9 40.9 34.5 

L-Tyrosine 9.9 12.9 15.1 12.6 

L-Phenylalanine 18.4 18.4 9.9 15.6 

L-Histidine 8.8 8.4 9.0 8.7 

L-Lysine 20.1 21.5 30.4 24.0 

L-Arginine 56.6 44.1 25.8 42.2 

----------------------------------------------------------,~------------,·---------------··--------------

278 



APPENDIX 3: 14 Structural egg fatty acids 

Fatty acid 

C14-0 

C16-0 

C16-1 

C18-0 

C18-1 

C18-2 

C20-1 

C20-3 

(C22-5) 

(C22-6) 

1 

1.6 

22.4 

7.9 

5.6 . 

28.3 

6.4 

2.4 

0.6 

3.5 

23.7 

Amount (percentage) 

2 

2.0 

11.2 

7.7 

5.0 

34.8 

5.3 

2.4 

1.0 

5.7 

14.7 

Figures in brackets unknowns but assumed to be C22-5 and C22-6 
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mean 

1.8 

16.8 

7.8 

5.3 . 

31.6 

5.9 

2.4 

0.8 

4.6 

19.2 



APPENDIX 4 : 1 Bacterial Adherence To Hydrocarbons. Transformed data. mean 

percentage absorbance figures from 4 separate studies. Each study composed of 6 

replicates (P.fluorescens ). 

Culture age : 

Volume of 

hexadecane (ml) 

Log phase Stationary phase 

0.2 0.1 0.05 0.2 0.1 0.05 

-----------------------------------------------------------------------------------------------

1) 71.8 73.6 76.7 40.0 68.5 55.6 

2) 63.3 57.6 63.9 47.9 43.6 32.5 

3) 49.2 61.8 69.6 26.7 36.2 58.2 

4) 53.1 58.0 55.6 29.5 31.8 39.4 

280 



APPENDIX 4 : 1 (continued) Bacterial Adherence To Hydrocarbons. Transfonned 

data, analysis of variance (P.jluorescens ). 

Variable 

(VAR) 

A 

B 

AXB 

Error 

Fratio (A)= 

F ratio (B)= 

Sums of Squares 

(SS) 

2486.77045 

324.013336 

31.6932983 

2277.93253 

19.6502168 

1.28016084 

F ratio (AXB) = 0.125218672 

Degrees of Freedom 

(DF) 

1 

2 

2 

18 

* 
N .S. 

N.S. 

A= major factor= Growth stage of cells (e.g. log I stationary) 

Mean Square 

(MS) 

2486.77045 

324.013336 

15.8466492 

126.551807 

B =minor factor= volume of added hydrocarbon (e.g. 0.2 I 0.1 I 0.05 ml) 

AXB = Interaction between the two. 
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APPENDIX 4: 2 Bacterial Adherence To Hydrocarbons. Transformed data, mean 

percentage absorbance figures from 4 separate studies. Each study composed of 6 

replicates (Cytophaga sp.). 

Culture age : 

Volume of 

hexadecane (ml) 

Log phase Stationary phase 

0.2 0.1 0.05 0.2 0.1 0.05 

---------------------------------------------------------,·-------------------------------------

1) 66.4 68.6" 73.2 46.4 47.6 56.4 

2) 57.9 63.2 66.0 62.7 60.3 63.8 

3) 62.6 65.9 75.0 63.3 56.8 61.2 

4) 64.9 68.1 70.1 43.5 66.0 49.4 
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APPENDIX 4 : 2 (continued) Bacterial Adhere.nce To Hydrocarbons. Transformed 

data, analysis of variance (Cytophaga sp.). 

Variable 

(VAR) 

A 

B 

AXB 

Error 

Fratio (A)= 

F ratio (B) = 

Sums of Squares 

(SS) 

645.84375 

142.589935 

27.0400391 

734.862488 

15.8195413 

1.74632593 

F ratio (AXB) = 0.331164477 

Degrees of Freedom 

(DF) 

1 

2 

·2 

18 

* 
N.S . 

N.S. 

A = major factor= Growth stage of cells (e.g. log I stationary) 

Mean Square 

(MS) 

645.84375 

71.2949677 

13.5200195 

40.8256938 

B = minor factor = volume of added hydrocarbon (e.g. 0.2 I 0.1 I 0.05 ml) 

AXB = Interaction between the two. 
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APPENDIX 4 : 3 Bacterial Adherence To Hydrocarbons. Transformed data, mean 

percentage absorbance figures from 4 separate studies. Each study composed of 6 

replicates (Serratia sp.). 

Culture age: 

Volume of 

hexadecane (ml) 

Log phase Stationary phase 

0.2 0.1 0.05 0.2 0.1 0.05 

-----------------------------------------------------------------------------------------------

1) 63.3 60.7 • 59.3 36.4 40.9 47.5 

2) 59.7 59.4 58.0 26.5 33.7 41.8 

3) 69.1 69.5 68.0 28.4 31.7 36.8 

4) 70.7 72.9 69.5 21.7 35.2 53.2 
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APPENDIX 4: 3 (continued) Bacterial Adherence To Hydrocarbons. Transformed 

data, analysis of variance (Serratia sp.). 

Variable 

(VAR) 

A 

B 

AXB 

Error 

F ratio (A)= 

F ratio (B)= 

Sums of Squares 

(SS) 

4996.82039 

212.505829 

350.840851 

623.372498 

144.284144 

3.06807321 

F ratio (AXB) = 5.06529831 

Degrees of Freedom 

(DF) 

1 

2 

2 

18 

** 
* 
* 

A= major factor= Growth stage of cells (e.g. log I stationary) 

Mean Square 

(MS) 

4996.82039 

106.252914 

175.420425 

34.6318054 

B =minor factor= volume of added hydrocarbon (e.g. 0.2 I 0.1 I 0.05 ml) 

AXB = Interaction between the two. 
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APPENDIX 4 : 4 Hydrophobic Interaction Chromatography. Percentage of cells 

adhering to column after addition of 1 M ammonium sulphate, 0.5 M ammonium 

sulphate and ethanol (6 replicates). Data transformed by arcsine. (Cetyl sepharose). 

P. jluorescens 

lM 0.5M Ethanol 

1) 86.6 86.3 73.9 

2) 87.9 86.6 75.7 

3) 87.3 85.9 76.0 

4) 87.8 ·86.4 77.4 

5) 86.8 85.2 75.6 

6) 86.9 85.3 74.0 

Cytophaga sp. 

lM 0.5M Ethanol 

1) 72.4 71.9 65.8 

2) 71.2 70.5 66.0 

3) 72.5 71.5 65.5 

4) 72.9 72.0 65.2 

5) . 73.5 72.8 67.0 

6) 73.8 72.9 68.3 

Serratia sp. 

lM 0.5M Ethanol 

1) 90.0 85.6 69.3 

2) 88.4 85.6 75.6 

3) 88.6 86.9 69.4 

4) 89.2 85.8 75.0 

5) 90.0 84.6 73.2 

6) 88.9 84.6 74.8 
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APPENDIX 4:4 (continued) Hydrophobic Interaction Chromatography. Transformed 

data, analysis of variance of cells adhering to octyl sepharose. 

Variable 

(VAR) 

A 

B 

AXB 

Error 

Fratio (A)= 

Fratio (B)= 

Sums of Squares 

(SS) 

1840.37109 

1367.60693 

159.010864 

73.4434814 

563.812455 

418.97736 

F ratio (AXB) = 24.3571272 

Degrees of Freedom 

(DF) 

2 

2 

4 

45 

*** 

*** 

*** 

Mean Square 

(MS) 

920.185547 

683.803467 

39.7527161 

1.63207737 

----------------------------------------------------------------------------------------,·--------------

A= major factor= Bacterial species (e.g. P. fluorescens I Cytophaga sp. I Serratia 

sp.) 

B =minor factor= Elutant (e.g. 1 M ammonium sulphate I 0.5 M ammonium sulphate I 

ethanol) 

AXB = Interaction between the two. 
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APPENDIX 4 : 5 Hydrophobic Interaction Chromatography. Percentage of cells 

adhering to column after addition of 1 M ammonium sulphate, 0.5 M ammonium 

sulphate and ethanol (6 replicates). Data transformed by arcsine. (Phenyl sepharose). 

P. jluorescens 

lM 0.5M Ethanol 

1) 86.6 85.7 74.9 

2) 87.0 85.9 74.8 

3) 86.6 85.5 76.7 

4) 87.4 86.4 75.6 

5) 86.9 86.0 75.4 

6) 86.7 85.6 74.7 

Cytophaga sp. 

lM 0.5M Ethanol 

1) 73.9 72.3 71.5 

2) 73.3 71.6 70.5 

3) 76.0 74.0 73.0 

4) 74.5 73.0 72.0 

5) 74.1 72.7 71.8 

6) 73.8 72.5 71.6 

Serratia sp. 

IM O.SM Ethanol 

1) 88.9 84.5 76.2 

2) 88.9 85.6 77.6 

3) 88.7 84.8 76.8 

4) 88.6 85.2 78.1 

5) 89.2 86.0 76.9 

6) 89.2 85.8 76.8 
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APPENDIX 4: 5 (continued) Hydrophobic Interaction Chromatography. Transformed 

data, analysis of variance of cells adhering to phenyl sepharose. 

Variable 

(VAR) 

A 

B 

AXB 

Error 

F ratio (A) = 

F ratio (B) = 

Sums of Squares 

(SS) 

1291.78784 

731.559937 

218.818848 

18.9683838 

1532.29852 

867.764948 

F ratio (AXB) = 129.779746 

Degrees of Freedom 

(DF) 

2 

2 

4 

45 

*** 

*** 

*** 

Mean Square 

(MS) 

645.893921 

365.779968 

54.7047119 

0.42151964 

A = major factor = Bacterial species (e.g. P. fluorescens I Cytophaga sp.l Serratia 

sp.) 

B = minor factor = Elutant (e.g. 1 M ammonium sulphate I 0.5 M ammonium sulphate I 

ethanol) 

AXB =Interaction between the two. 
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APPENDIX 4: 6 In situ Detachment From Eggs. Transformed data (3 replicates). 

(P.[luorescens) 

Hours: 0 2 4 6 8 10 12 14 16 18 

-------------------------------------------------------------------------------------------------------
. 1) 24.2 27.0 22.0 30.5 27.2 31.8 21.3 21.2 29.4 33.7 

2) 18.7 24.5 30.5 19.8 25.6 25.5 29.4 25.0 27.0 45.8 

3) 13.1 24.5 32.1 29.9 18.2 36.9 24.1 22.7 34.5 34.5 

Hours: 20 22 24 

-------------------------------------

1) 37.6 48.7 67.8 

2) 39.9 57.8 79.5 

3) 44.6 54.2 73.7 

APPENDIX 4: 6 In situ Detachment From Eggs (continued). Transformed data (3 

replicates). (Cytophaga sp.) 

Hours: 0 2 4 6 8 10 12 14 16 18 

---------------------------------------------------------------------------------------------------------

1) 29.4 29.4 26.1 29.4 23.3 30.6 27.8 32.6 36.0 32.5 

2) 27.2 27.8 33.1 32.2 30.2 32.6 31.0 30.0 36.5 58.4 

3) 26.1 30.2 34.6 32.1 22.4 25.6 34.6 28.3 34.6 37.9 
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APPENDIX 4: 6 In situ Detachment From Eggs (continued). Transformed data (3 

replicates). (Cytophaga sp.) 

Hours: 20 22 24 

--------------------------------------

1) 38.4 37.9 44.9 

2) 46.8 41.0 39.9 

3) 36.7 65.4 46.5 

APPENDIX 4 : 6 In situ Detachment From Eggs (continued). Transformed data (3 

replicates).(Serratia sp.) 

Hours: 0 2 4 6 8 10 12 14 16 18 

-------------------------,·---·-------------------------------------------·---------·----------------·---

1) 26.9 28.7 30.7 26.7 29.5 30.4 25.7 24.3 24.0 23.8 

2) 35.2 27.8 26.3 37.5 33.6 28.7 29.3 30.9 23.1 28.7 

3) 21.5 39.8 28.4 31.1 23.0 31.2 43.3 27.8 43.9 31.2 

Hours: 20 22 24 

-------------------------------------

1) 26.0 28.7 34.5 

2) 24.6 39.1 32.9 

3) 34.3 38.3 35.2 
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APPENDIX 4 : 6 In situ Detachment From Eggs (continued). Transformed data 

compared by 2 way split-plot analysis of variance. 

Variable 

(VAR) 

Ma.F 

MP. Error 

Sums of Squares 

(SS) 

346.803711 

312.79483 

Degrees of Freedom 

. . 

(DF) 

2 

6 

Mean Square 

(MS) 

173.401855 

52.1324717 

------------------------------------------------------------,·---------------------------------------

MI.F 

AXB 

SP Error 

6361.18808 

3962.13196 

2292.11838 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

3.32617752 

16.6514648 

5.18576876 

12 

24 

72 

* 
*** 

*** 

530.099007 

165.088832 

31.8349775 

Ma =major factor= Bacterial group (e.g. P.fluorescens I Cytophaga sp. I Serratia 

sp.) 

Mi = minor factor= Time 

A X B = Interaction of the two factors. 

292 



APPENDIX 5 : 1 Hatching success between egg groups 

(A= rainbow trout eggs, source 1, B =brown trout eggs, source 1 and C =rainbow 

trout eggs, source 2). 

Number of hatched eggs 

Number of unhatched eggs 

Rainbow trout Brown trout 

(Source 1) (Source 1) 

(A) (B) 

1268-

68 

882 

38 

Rainbow trout 

(Source2) . 

(C) 

2467 

222 

Statistical Analysis by X2 of hatching success between egg groups; 

Egg groups x2 .d...L. Significance 

(A,B,C) 

AvBvC 25.8764504 2 *** 

AvB 1.11989015 1 N.S. 

AvC 13.3815515 1 *** 

BvC 17.4507406 1 *** 
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APPENDIX 5 : 2 Number of egg deaths between groups at 7 day periods. 

Days Eggs Rainbow trout Brown trout Rainbow trout 

(Source 1) (Source 1) (Source2) 

1-7 Live 1336 920 2689 

Dead 36 12 70 

7-14 Live 1300 908 2619 

Dead 44 14 111 

14-21 Live 1292 906 2578 

Dead 52 16 155 

21-28 Live 1240 890 2423 

Dead 58 17 194 

----------------------------------------------------------------------------------------,·-------
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APPENDIX 5: 2 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. (A = rainbow trout eggs, source 1, B = brown trout eggs, source 1 and C 

= rainbow trout eggs, source 2). 

Days n:w x.2 iLL Significance 

1-7 AvBvC 5.49003508 2 * 

7-14 AvBvC 13.7525257 2 ** 

14-21 AvBvC 26.5721758 2 *** 

21-28 AvBvC 43.3845977 2 *** 

1-7 AvB 4.85863852 1 N.S. 

7-14 AvB 6.75617737 1 * 

14-21 AvB 8.55295164 1 * 

21-28 AvB 10.9351265 1 ** 

1-7 AvC 0.002758570 1 N.S. 

7-14 AvC 1.54405554 1 N.S. 

14-21 AvC 6.07279975 1 N.S. 

21-28 AvC 12.4922796 1 ** 

1-7 BvC 5.00784887 1 * 

7-14 BvC 13.5311855 1 ** 

14-21 BvC 23.9501532 1 *** 

21-28 BvC · 36.7085913 1 *** 
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APPENDIX 5 : 3 Analysis of variance of mean colony forming units (cfu's) I sq mm 

egg surface. 

Rainbow trout 

(Source I) 

Days: 7 14 21 28 

1) 

2) 

3) 

4) 

1.7 

0.9 

4 

3.7 

25.8 32.7 108.8 

18 62.4 102.1 

52.5 241 93.8 

42.8 133 140 

Glass beads 

(Source 1) 

Days: 7 14 21 28 

1) 2.4 2.2 1.2 3.9 

2) 2.4 1.3 3.6 5.2 

3) 0.8 7.6 2 26.2 

4) 2.1 8.6 1.3 5.1 

7 

0.3 

1.1 

1.4 

1.7 

Brown trout 

(Source 1) 

14 21 28 

16.8 61.6 33.2 

53.7 48.6 32.2 

31.9 103.3 93.6 

83.6 29.1 86.2 

Rainbow trout 

(Source 2) 

7 14 21 28 

4 39.8 201.2 419.9 

1.6 34.4 187 410.6 

2.6 29 320 503.9 

3.9 48.8 184.8 627.9 

__ , ___ ,_ , ___ ·---·-·---·----·-----
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APPENDIX 5: 3 (continued) Analysis of mean cfu's I sq mm egg surface by 2 way 

split-plot analysis of variance in a randomized design. 

Variable 

(VAR) 

Sums of Squares 

(SS) 

Degrees of Freedom 

(DF) 

Ma.F 

MP. Error 

MI.F 

AXB 

SP Error 

304100.117 

22372.091 

265752.981 

380772.481 

57767.5908 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

54.3713159 

55.2045831 

26.3658204 

3 

12 

3 

9 

36 

*** 

*** 

*** 

Mean Square 

(MS) 

101366.706 

1864.34159 

88584.3269 

42308.0532 

1604.6553 

Ma =major factor= Egg group (e.g. rainbow .trout, source 1 ; rainbow trout, source 2; 

brown trout, glass beads) 

Mi = minor factor =Time 

A X B = Interaction of the two factors. 
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APPENDIX 5 : 4 Correlation of egg surface bacterial numbers with egg mortality by 

multiple regression. 

Days 

Rainbow trout 

(Source 1) 

7 14 21 28 

Mean cfu's 

Egg Deaths 

2.6 

36 

34.8 117.3 111.2 

44 52 58 

Rainbow trout 

(Source 2) 

7 14 21 28 Days 

Mean cfu's 

Egg deaths 

3 

70 

38 223.2 490.6 

111 155 194 

Var. 

Reg 

Error 

ss. 
30289.3561 

10842.3362 

F ratio= 

Multiple R-SQ = 

Var. COEFF 

INTER. 58.8678777 

D.F. 

2 

10 

13.9680948 

0.736399462 

S.E. 

Brown trout 

(Source 1) 

7 14 21 28 

1.1 

12 

46.5 60.7 61.3 

14 16 17 

MS 

15144.678 

1084.23362 

t 

1 -2.1194188 

2 0.431383335 

1.19854209 

0.0083145362 

-1.76833072 

5.18830306 
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APPENDIX 6 : 1 Hatching success between egg groups 

(A =control eggs, B =eggs exposed to autoclaved P. fluorescens, C =eggs exposed 

·to autoclaved Cytophaga sp., D = eggs exposed to live P. fluorescens and E = eggs 

exposed to live Cytophaga sp.) 

A B c D E 

-------------------------------------------------------------------------------------------------------

Number of hatched eggs 

Number of unhatched eggs 

849 1058 723 907 769 

242 158 147 305 228 

--------------------------------------------~----------------------------------------------------------

Statistical Analysis by x2 of hatching success between egg groups; 

Egg groups x2 u Si!mificance 

AvBvCvDvE 70.9804664 4 *** 

AvB 33.8721873 1 *** 

AvC 8.5015566 1 ** 

AvD 2.82208936 1 N.S. 

AvE 0.14100691 1 N .S . 

BvC 6.1891293 1 * 

BvD 58.268837 1 *** 

CvE 90.3207929 1 *** 

DvE 1.57576477 1 N.S. 
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APPENDIX 6 : 2 Number of egg deaths between groups at 7 day periods. 

(A= control eggs, B =eggs exposed to autoclaved P. fluorescens, C =eggs exposed 

to autoclaved Cytophaga sp., D =eggs exposed to live P. fluorescens and E =eggs 

exposed to live Cytophaga sp.) 

Days Eggs A B c D E 

1-7 live 1029 1175 826 1035 947 

Dead 62 41 44 177 50 

7-14 Live 981 1163 815 1020 880 

Dead 110 53 55 192 117 

14-21 live 959 1157 802 1000 836 

Dead 132 59 68 212 161 

21-28 Live 903 1110 765 949 800 

Dead 188 106 105 263 197 

------------------------------------------------------------------------------~---------------
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APPENDIX 6: 2 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. (A= control eggs, B =eggs exposed to autoclaved P. fluorescens, C = 

eggs exposed to autoclaved Cytophaga sp., D = eggs exposed to live P. fluorescens 

and E = eggs exposed to live Cytophaga sp.) 

nm Irm x2 ll Si~ificance 

1-7 AvBvCvDvE 147.286801 4 *** 

7-14 AvBvCvDvE 107.155105 4 *** 

14-21 AvBvCvDvE 126.193104 4 *** 

21-28 AvBvCvDvE 99.2501343 4 *** 

1-7 AvB 7.20133616 1 ** 

7-14 AvB 28.6935151 1 *** 

14-21 AvB 39.7718303 1 *** 

21-28 AvB 37.4940979 1 *** 

1-7 AvC 0.370229991 1 N .S . 

7-14 AvC 8.88296777 1 ** 

14-21 AvC . 9.69411287 1 ** 

21-28 AvC 10.151979 1 ** 

1-7 AvD 49.130433 1 *** 

7-14 AvD 16.7137986 1 *** 

14-21 AvD 13.1416592 1 *** 

21-28 AvD 7.27756192 1 ** 

1-7 AvE 0.45767511 1 N.S. 

7-14 AvE 1.46849608 1 N.S. 

14-21 AvE 7.08127043 1 * 

21-28 AvE 2.21266815 1 N.S. 
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APPENDIX 6 : 3 Analysis of variance of mean colony forming units (cfu's) I sq mm 

egg surface. 

(A = control eggs, B =eggs exposed to autoclaved P. fluorescens, C = eggs exposed 

to autoclaved Cytophaga sp., D =eggs exposed to live P. fluorescens and E =eggs 

exposed to live Cyrophaga sp.) 

A B 

Time: (12) 7 14 21 28 (12) 7 14 21 28 

(hours) DAYS (hours) DAYS 

---------------------------------------------------------------------------------------------------

1) 1.1 3.2 124.7 307.9 306 1.2 3.8 30.3 495.6 565.7 

2) 1.1 3.8 85.6 273.2 246 10.9 4.6 41.5 699.8 807.4 

3) 0.8 6.4 38.2 629.8 783 1.4 21.6 24.4 960.6 390 

c D 

Time: (12) 7 14 21 28 (12) 7 14 21 28 

(hours) DAYS (hours) DAYS 

----------------------------------------------------------------------------------------------------

1) 0.5 6.7 27.7 306.7 730.3 27 24.5 74.8 14445 915.4 

2) 1.7 3.1 27.5 850.1 517.5 12.6 36 91.4 2426 1100.6 

3) 0.6 8.9 15.8 634.4 817.7 46.2 23.8 137.8 234.3 1192.5 
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APPENDIX 6: 3 (continued) Analysis of variance of mean cfu's I sq mm egg surface. 

(A= control eggs, B =eggs exposed to auroclaved P. fluorescens, C =eggs exposed 

to autoclaved Cytophaga sp., D =eggs exposed to live P. fluorescens and E =eggs 

exposed to live Cytophaga sp.) 

Time : (12) 7 

E 

14 

(hours) DAYS 

21 28 

___________________________________________ , __________ 

1) 49.2 105.1 356.3 977.8 472.5 

2) 59.4 31.9 156.5 509.1 612 

3) 37.8 187.9 142.3 203.3 302.4 

---·---·-·------
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APPENDIX 6 : 3 (continued) Analysis of mean cfu's I sq mm egg surlace by two split­

plot analysis of variance. 

Variable 

(VAR) 

Sums of Squares 

(SS) 

Degrees of Freedom 

(DF) 

Mean Square 

(MS) 

-------------------------------------------------------------------------------------------------------

Ma.F 

MP. Error 

MI.F 

AXB 

SP Error 

948950.66 

659080.965 

7556005.12 

1608221.86 

2835317.87 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

3.59952233 

26.6495873 

1.41802607 

4 

10 

4 

16 

40 

*** 
N.S. 

237237.665 

65908.0965 

1889001.28 

100513.866 

70882.9468 

Ma = major factor = Egg group (e.g. control eggs, eggs exposed to autoclaved P. 

fluorescens, eggs exposed to live P. fluorescens, eggs exposed to autoclaved 

Cytophaga sp. and eggs exposed to live Cytophaga sp.) 

Mi = minor factor= Time 

A X B = Interaction of the two factors. 
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APPENDIX 6: 4 Correlation of egg surface bacterial numbers with egg monality by 

multiple regression. (A= control eggs, B =eggs exposed to autoclaved P.fluorescens, 

C = eggs exposed to autoclaved Cytophaga sp., D = eggs exposed to live P. 

fluorescens and E =eggs exposed to live Cytophaga sp.) 

Days 

Mean cfu's 

Egg Deaths 

Days 

Mean cfu's 

Egg Deaths 

7 

4.5 

62 

7 

6.2 

44 

A 

14 21 28 

89.2 406.4 478.8 

110 

c 
14 

24.1 

55 

Days 

132 188 

21 28 

600.3 680.7 

68 105 

7 

E 

14 

7 

9 

41 

7 

28.6 

177 

21 

B 

14 21 28 

32.8 706.2 597.6 

53 

D 

14 

59 

21 

106 

28 

106.5 1316 1075.1 

192 212 263 

28 

Mean cfu's 109.9 216.7 528 485.1 

Egg Deaths 50 117 161 197 
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APPENDIX 6 : 4 Correlation of egg surface bacterial numbers with egg mortality by 

multiple regression. 

Var. 

Reg 

Error 

ss. 
64363.0493 

58696.3907 

Fratio = 

Multiple R-SQ = 

Var. COEFF 

INTER. 34.5846346 

1 3.50752364 

2 0.005363703 

D.F. 

2 

22 

12.0619604 

0.523024071 

S.E. 

1.67742518 

0.0045356976 
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32181.5246 

2668.01776 

t 

2.09101645 

1.18253851 



APPENDIX 7 : 1 Minimum inhibitory concentrations (M.I.C.) 

Oxolinic acid 

-------------------------------------------------------------------------------------------------------

P .jluorescens : mg I litre 80 

1) 

2) 

3) 

4) 

Cytophaga sp. 

1) 

2) 

3) 

4) 

+ = Bacterial growth 

-= No bacterial growth 

40 20 

+ 

+ 

307 

10 

+ 

+ 

+ 

5 

+ 

+ 

+ 

2.5 

+ 

+ 

+ 

+ 

+ 

+ 

1.25 0.63 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 



APPENDIX 7 : 1 (continued) Minimum inhibitory concentrations (M.I.C.) 

Furazolidone 

-------------------------------------------------------------------------------------------------------

P .jluorescens : mg I litre 80 40 20 10 5 2.5 1.25 0.63 

1) + + + + + + + + 

2) + + + + + + + + 

3) + + + + + + + + 

4) + + + + + + + + 

Cytophaga sp. 

1) + + + + 

2) + + + + 

3) + + + 

4) + + + + 

-----·---·---·-------------

+ = Bacterial growth 

-= No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.!. C.) 

Oxytetracycline 

-------------------------------------------------------------------------------------------------------

P .fluorescens : mg /litre 24 12 6 3 1.5 0.75 0.38 0.2 

1) + + + + + 

2) + + + + + + + 

3) + + + + + + 

4) + + + + + + + 

Cytophaga sp. 

1) + + + + + + 

2) + + + + + + + 

3) + + + + + + 

4) + + + + + + + + 

-------·-·------------

+ = Bacterial growth 

-= No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.!. C.) 

Chloramphenicol 

-------------------------------------------------------------------------------------------------------

P .fluorescens : mg /litre 32 16 8 4 2 1 0.5 0.25 

1) + + + + + + + 

2) + + + + + + + 

3) + + + + + + 

4) + + + + + + + 

Cytophaga sp. 

1} + + + + + + + 

2) + + + + + + + 

3) + + + + + + 

4) + + + + + + ___ , ______________________________ 

+ = Bacterial growth 

-= No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.!. C.) 

Chlortetracycline 

-------------------------------------------------------------------------------------------------------

P .fluorescens : mg /litre 16 8 4 2 1 0.5 0.25 0.13 

1) + + + + + 

2) + + + + + 

3) + + + + + 

4) + + + + 

Cytophaga sp. 

1) + + + + + + 

2) + + + + + + 

3) + + + + + + 

4) + + + + + + 

--------------------------------------------

+ = Bacterial growth 

-= No bacterial growth 
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APPENDIX 7 : 1 (continued) Minimum inhibitory concentrations (M.!. C.) 

Erythromycin 

-------------------------------------------------------------------------------------------------------

P fluorescens : mg I litre 

1) 

2) 

3) 

4) 

Cytophaga sp. 

1) 

2) 

3) 

4) 

+ = Bacterial growth 

- = No bacterial grow 

12 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

6 3 1.5 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 
___ , _________ 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.I.C.) 

Gentamicin 

-------------------------------------------------------------------------------------~-----------------

P .fluorescens : mg I litre 32 16 8 4 2 1 0.5 0.25 

1) + + + + + + 

2) + + + + + + 

3) + + + + + 

4) + + + + + + 

Cytophaga sp. 

1) + + + + + + + 

2) + ;. + + + ;. ;. 

3) + ;. + ;. + ;. + 

4) + ;. + + + + + 

·-----·-·--------------·-----:-·-·---·-·---·-------·---------·-----

+ = Bacterial growth 

· = No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.I.C.) 

Carbenicillin 

--------------·----------------------------------------------------------------------------------------

P fluorescens : mg I litre 320 160 80 40 20 10 s 2.5 

1) + + + + + 

2) + + + + + 

3) + + + + + 

4) + + + + + 

Cytophaga sp. 

1) + + + + + + + 

2) + + + + + + + 

3) + + + + + + + 

4) + + + + + + + 

----------·----------·-----·-------

+ = Bacterial growth 

-= No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.I.C.) · 

Polymyxin CP) and Streptomycin CS) 

--------------------------------------------------------------------------------------------------------

P .fluorescens : mg I litre 160 80 40 20 10 5 2.5 1.25 (P) 

128 64 32 16 8 4 2 1 (S) 

1) + + + + + + + + 

2) + + + + + + + 

3) + + + + + + 

4) + + + + + + + 

Cytophaga sp. 

1) + + + + + + + 

2) + + + + + + + + 

3) + + + + + + + 

4) + + + + + + + + 

----------------------------------------------------

+ = Bacterial growth 

• = No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (MJ.C.) 

Malachite Green 

----------------------------------------------------------------------------------------,---------------

P .fluorescens : ppm 100 50 25 12.5 6.3 3.2 1.6 0.8 

1) + + + + + + + + 

2) + + + + + + + + 

3) + + + + + + + + 

4) + + + + + + + + 

Cytophaga sp. 

1) + + + + 

2) + + + + 

3) + + + + 

4) + + + + + 

---
__________ , ________________________________________________ 

+ = Bacterial growth 

-=No bacterial growth 
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APPENDIX 7: 1 (continued) Minimum inhibitory concentrations (M.I.C.) 

Buffodyne (Iodine disinfectant) 

-------------------------------------------------------------------------------------------------------

P .fluorescens : mg /litre 500 250 125 63 31 16 8 4 

1) + + + + + 

2) + + + + + 

3) + + + + + 

4) + + + + + 

Cytophaga sp. 

1) 

2) + + 

3) + 

4) + + + 

-------·--·---·----------·---·------------------

+ = Bacterial growth 

-= No bacterial growth 

317 



APPENDIX 7: 2 Standard curve chlortetracycline 
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APPENDIX 7: 2 (continued) Standard curve oxolinic acid 
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APPENDIX 7 : 2 (continued) Standard curve chloramphenicol 
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APPENDIX 7 : 2 (continued) Standard curve oxytetracycline 
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APPENDIX 7 : 3 Deterioration of chlortetracycline in 

incubation systems (starting concentration : 16 mg/L) 
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Appendix 7: 3 (continued) Deterioration of oxolinic acid in 

incubation systems (starting concentration : 80 mg/L) 
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APPENDIX 7 : 3 {continued) Deterioration of chloramphenicol in 

incubation systems (starting concentration : 64 mg/L) 
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APPENDIX 7 : 3 (continued) Deterioration of oxytetracycline in 

incubation systems (starting concentration : 24 mg/L) 
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APPENDIX 7 : 4 Hatching success between egg groups treated with oxolinic acid. 

(Egg groups assigned randomly to trays) 

Number of hatched eggs 

Number of unhatched eggs 

Tray 1 

(Control) 

55 

45 

Tray2 

(Control) 

54 

46 

Tray3 

(Jt2 M.I.C.) 

49 

51 

Tray4 

(xl M.I.C.) 

58 

42 

Statistical Analysis by x2 of hatching success between egg trays ; 

Irm x2 Q.J.. Significance 

lv2v3v4 1.69082126 3 N .S. 

lv2 0.00201633 1 N.S. 

lv3 0.72ll53846 1 N.S . 

lv4 0.183094294 1 N.S. 

2v3 0.500450406 1 N.S. 

2v4 0.324675325 1 N .S. 

3v4 1.62797709 1 N.S. 
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APPENDIX 7 : 5 Number of egg deaths between groups at 7 day periods. 

Days Eggs Tray 1 Tray2 Tray3 Tray4 

(Control) (Control) (x2MJ.C.) (xl MJ.C.) 

-----------------------------------
1-7 Live 100 100 100 100 

Dead 6 7 4 8 

7-14 Live 94 93 96 92 

Dead 23 29 17 14 

14-21 Live 77 71 83 86 

Dead 29 36 21 24 

21-28 Live 71 64 79 76 

Dead 31 38 31 27 

-----------------------------------------,·------------------------------------------------------------
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APPENDIX 7 : 5 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. 

Qm ~ x2 d.L Siwificance 

1-7 1v2v3v4 1.32609597 3 N.S. 

7-14 1v2v3v4 5.25609045 3 * 
14-21 1v2v3v4 6.19941352 3 * 
21-28 1v2v3v4 3.37016919 3 N.S. 

1-7 1v2 0.07229833 1 N.S. 

7-14 lv2 0.593312447 1 N.S. 

14-21 1v2 0.992416437 1 N.S. 

21-28 lv2 1.07310789 1 N.S. 

1-7 1v3 0.380986937 1 N .S. 

7-14 1v3 0.851745031 1 N.S . 

14-21 lv3 1.48608718 1 N.S. 

21-28 1v3 0.124957813 1 N.S. 

1-7 1v4 0.267046022 1 N.S. 

7-14 1v4 1.67216236 ·1 N.S. 

14-21 1v4 0.894863435 1 N.S. 

21-28 1v4 0.441062544 1 N.S. 

1-7 2v3 0.775684596 1 N.S. 

7-14 2v3 2.83753487 1 N.S. 

14-21 2v3 4.8407579 1 * 
21-28 2v3 1.98451064 1 N.S. 
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APPENDIX 7 : 5 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. 

llm Il:m . x2 dL Si~ificanct( 

1-7 2v4 0.006201685 1 N.S. 

7-14 2v4 4.13552229 1 * 
14-21 2v4 3.7923712 1 N.S. 

21-28 2v4 2.8853005 1 N.S. 

1-7 3v4 1.25830959 1 N.S. 

7-14 3v4 0.151839801 1 N.S. 

14-21 3v4 0.008509703 1 N.S. 

21-28 3v4 0.103991951 1 N .S. 
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APPENDIX 7 : 6 Analysis of variance of mean colony forming units (cfu's) I sq mm 

egg surface with oxolinic acid treatment. 

TRAY 1 (control) TRAY 2 (control) 

Days: 7 14 21 28 7 14 21 28 

-----------------------------------------------------------------------------------------

1) 154.7 21.6 918.8 62.2 649.4 39.2 1264.2 29.9 

2) 114.6 22.5 569.9 180.6 92.3 828.9 89.1 14.7 

3) 6.9 56.9 264.5 54.6 155.4 179.0 275.6 552.6 

4) 244.4 124.4 63.9 107.1 131.8 8.1 1367.8 302.2 

5) 449.0 103.6 393.8 112.0 49.5 12.1 699.4 32.8 

6) 76.0 65.6 431.8 255.6 25.0 3.5 388.6 241.8 

7) 621.7 136.4 435.2 310.9 162.8 7.8 38.0 877.3 

8) 621.7 146.8 225.0 101.2 168.7 95.0 6.9 569.9 

9) 93.8 147.8 580.3 183.5 267.7 281.3 42.1 33.7 

10) 282.7 435.2 50.1 5.2 55.3 18.4 835.9 95.6 

----------·-·-----·------------------
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APPENDIX 7 : 6 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

with oxolinic acid treatment. 

TRAY 3 (x2 M.I.C.) TRAY 4 (x1 M.I.C.) 

Days : 7 14 21 28 7 14 21 28 

-----------------------------------------------------------------------------------------

1) 4.6 26.3 10.4 17.3 25.9 39.2 253.3 4.6 

2) 24.2 287.8 5.2 27.6 42.1 106.4 205.9 14.7 

3) 4.3 22.8 635.5 38.7 81.2 19.0 170.7 22.1 

4) 46.1 4.6 129.9 47.8 8.6 196.9 112.5 23.5 

5) 3.5 25.3 849.7 39.7 74.3 3.5 37.3 269.4 

6) 34.5 19.9 6.9 24.2 113.4 7.8 126.7 6.9 

7) 3.5 167.8 3.5 6.9 54.6 56.7 414.5 587.2 

8) 79.4 322.5 1533.6 70.8 62.8 26.5 716.7 345.4 

9) 4.6 153.7 62.8 86.4 362.7 29.9 230.3 442.1 

10) 8.6 241.8 96.7 56.4 129.0 36.3 393.8 8.1 

-----------·---·---·----·--·-----·---------------·-
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APPENDIX 7 : 6 (continued) Analysis of mean cfu's I sq mm egg surface with 

oxolinic acid treatment by two way split-plot analysis of variance in a randomized 

design. 

Variable 

(VAR) 

Ma. F 

MP. Error 

Sums of Squares 

(SS) 

564558.426 

1782792.89 

Degrees of Freedom 

(DF) 

3 

36 

Mean Square 

(MS) 

188186.142 

49522.0248 

-------------,------------------------------·----------------··-----·----------------------------------
MI.F 

AXB 

SP Error 

1721138.37 

397974.246 

7032340.94 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

3.80004943 

8.81086137 

0.679104013 

3 

9 

108 

Ma =major factor= Tray 1 I Tray 2 I Tray 3 I Tray 4 

Mi = minor factor =Time 

A X B = Interaction of the two factors. 
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573712.788 
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APPENDIX 7 : 7 Correlation of egg surface bacterial numbers with egg mortality by 

multiple regression (oxolinic acid). 

TRAY 1 (control) 

Days 7 14 21 28 

Mean cfu's 

Egg Deaths 

271.5 139.0 378.0 140.6 

6 23 29 31 

TRAY 3 (x2 M.I.C.) 

Days 

Mean cfu's 

7 14 21 28 

29.1 149.9 388.0 46.5 

Egg deaths 

Var. 

Reg 

Error 

4 17 

ss. 
1480.10942 

349.828081 

F ratio= 

Multiple R-SQ = 

Var. COEFF 

INTER. -1.63855157 

21 31 

D.F. 

2 

13 

27.5012549 

0.808830585 

S.E. 

'fRAY 2 (control) 

7 14 21 28 

163.4 199.9 520.4 289.2 

7 29 36 38 

TRAY 4 (x1 M.I.C.) 

7 14 21 28 

93.0 65.8 251.1 195.5 

8 14 24 

MS 

740.05471 

26.9098523 

t 

27 

1 1.09841218 

2 0.00191714868 

0.17269386 

0.00102578098 

6.36045881 

1.86896493 
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APPENDIX 7 : 8 Hatching success between groups treated with chlortetracycline. 

(Egg groups assigned randomly to trays) 

Number of hatched eggs 

Number of unhatched eggs 

Tray 1 

(xl M.I.C) 

41 

59 

Tray2 

(Control) 

39 

61 

Tray3 

(Control) 

19 

81 

Statistical Analysis by x2 of hatching success between egg trays; 

Irm x2 u 
1v2v3v4 14.9692967 3 

1v2 0.008333333 1 

1v3 11.5238095 1 

1v4 4.36720143 1 

2v3 9.71345313 1 

2v4 3.25644505 1 

3v4 1.8068876 1 
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Tray4 

(x2MJ.C.) 

27 

73 

Significance 

*** 
N.S. 

*** 
N.S. 

** 
N.S. 

N.S. 



APPENDIX 7 : 9 Number of egg deaths between groups at 7 day periods. 

Days Eggs 

1-7 Live 

Dead 

7-14 Live 

Dead 

14-21 Live 

Dead 

21-28 Live 

Dead 

Tray 1 

(xl M.I.C.) 

100 

1 

99 

6 

94 

8 

92 

11 

Tray2 

(Control) 

100 

2 

98 

10 

90 

15 

85 

16 

Tray3 

(Control) 

100 

3 

97 

13 

87 

33 

67 

51 

Tray4 

(x2 Ml.C.) 

100 

0 

100 

7 

93 

8 

92 

18 

-----------------------------------------------------------------------------------------------------
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APPENDIX 7 : 9 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. 

llm Irm x2 dL Si~jficance 

1-7 1v2v3v4 3.28472588 3 N.S. 

7-14 1v2v3v4 3.24770569 3 N .S. 

14-21 1v2v3v4 16.5924104 3 *** 

21-28 1v2v3v4 42.6054494 3 *** 

1-7 1v2 0.328415194 1 N.S. 

7-14 1v2 0.963013657 1 N.S. 

14-21 1v2 2.17436975 1 N.S. 

21-28 1v2 1.18326797 1 N.S. 

1-7 1v3 0.980486398 1 N.S. 

7-14 1v3 2.48442012 1 N.S. 

14-21 1v3 14.1481733 1 *** 

21-28 1v3 28.8520851 1 *** 

1-7 1v4 0.995049505 1 N.S. 

7-14 1v4 0.006308589 1 N.S. 

14-21 1v4 0.004214954 1 N.S. 

21-28 1v4 1.46118635 1 N.S. 

1-7 2v3 0.195126595 1 N.S. 

7-14 2v3 0.378115754 1 N.S. 

14-21 2v3 5.8267441 1 * 

21-28 2v3 19.2112884 1 *** 
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APPENDIX 7 : 9 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. 

I2m Irw xz ~ Significance 

1-7 2v4 1.98039216 1 N.S. 

7-14 2v4 0.54497441 1 N.S. 

14-21 2v4 2.10273802 1 N.S. 

21-28 2v4 0.00106162 1 N.S. 

1-7 3v4 2.95631068 1 N.S. 

7-14 3v4 1.80455552 1 N.S. 

14-21 3v4 13.9132558 1 ......... 

21-28 3v4 19.4566786 1 ......... 
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APPENDIX 7 : 10 Analysis of variance of mean cfu's I sq mm egg surface with 

chlortetracycline treatment. 

TRAY 1 (xl M.I.C.) TRAY 2 (control) 

Days: 7 14 21 28 7 14 21 28 

-----------------------------------------------------------------------------------------

1) 68.3 165.2 44.9 80.8 . 416.7 395.1 71.8 251.4 

2) 46.2 22.8 35.9 30.5 832.1 11943.3 95.8 1436.8 

3) 89.8 359.2 143.7 45.5 471.5 395.1 35.9 2514.4 

4) 66.0 134.7 1587.6 89.8 928.8 7902.3 1534.3 7686.8 

5) 55.7 24.0 59.9 179.6 188.6 835.1 287.4 10919.5 

6) 33.7 18.0 35.9 71.8 628.6 1423.3 1029.7 3376.4 

7) 86.7 35.9 251.4 179.6 672.2 942.9 478.9 5567.5 

8) 52.4 160.0 215.5 274.8 287.4 4489.9 5603.5 1885.8 

9) 89.8 35.9 44.9 583.7 1221.3 8171.7 6537.4 7423.4 

10) 73.2 35.9 53.9 395.1 330.5 1885.8 413.1 6824.7 

-----·---·---·---------·--------·-·----·---
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APPENDIX 7 : 10 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

with chlortetracycline treatment. 

TRAY 3 (Control) TRAY 4 (x2 M.I.C.) 

Days: 7 14 21 28 7 14 21 28 

-----------------------------------------------------------------------------------------

1) 933.9 2873.6 1293.1 116.7 35.9 35.9 461.8 158.1 

2) 1113.5 9069.7 30531.6 263.4 21.6 62.9 256.6 35.9 

3) 632.2 201.2 2753.8 161.6 51.7 143.7 1185.4 273.0 

4) 449.0 1234.7 8117.8 206.5 21.6 251.4 461.0 215.5 

5) 790.2 2563.8 19827.6 826.2 58.4 71.8 143.7 53.9 

6) 951.9 2604.2 660.9 89.8 68.3 229.8 251.4 53.9 

7) 763.3 871.1 359.2 1041.7 106.6 80.8 116.7 71.8 

8) 416.7 9788.1 22629.3 409.5 44.3 143.7 467.0 2514.4 

9) 763.3 525.3 484.9 1796.0 18.9 71.8 188.6 1257.2 

10) 467.0 1153.9 933.9 688.5 57.9 53.9 222.7 898.0 

-----------·---·-·--------
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APPENDIX 7 : 10 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

with chlortetracycline treatment. 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

6.78598372 

4.09661673 

5.17107138 

Ma =Major factor= Tray 1/ Tray 2/ Tray 3 I Tray 4 

Mi = Minor factor= Time 

A X B = Interaction of the two factors 
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APPENDIX 7 : 11 Correlation of egg surface bacterial numbers with egg mortality by 

multiple regression (chlortetracycline). 

TRAY 1 (xl M.I.C.) 

Days 

Mean cfu's 

7 14 21 28 

66.2 132.6 338.1 218.2 

Egg Deaths 1 6 8 

TRAY 3 (Control) 

7 14 21 

11 

28 .Days 

Mean cfu's 

Egg deaths 

762.1 2444.9 7118.5 645.7 

Var. 

Reg 

Error 

3 13 

ss. 
1271.35305 

1290.39695 

Fratio = 

Multiple R-SQ = 

Var. COEFF 

INTER. -6.5642601 

33 51 

D.F. 

2 

13 

6.40407192 

0.496283031 

S.E. 

TRAY 2 (Control) 

7 14 21 28 

627.0 3198.9 2187.1 4915.7 

2 10 15 16 

TRAY 4 (x2 M.I.C.) 

7 14 21 28 

51.5 135.0 432.3 524.6 

0 7 8 

MS 

635.676527 

99.2613036 

t 

18 

1 . 0.954730926 

2 0.0016651778 

0.329655712 

0.00130625909 

2.89614556 

1.27476845 
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APPENDIX 7: 12 Hatching success between groups treated with chloramphenicol. 

(Egg groups assigned randomly to trays) 

Number of hatched eggs 

Number of unhatched eggs 

Tray 1 

(Control) 

44 

56 

Tray2 

(xl M.I.C.) 

47 

53 

Tray3 

(x2 MJ.C.) 

40 

60 

Tray4 

(Control) 

39 

61 

Statistical Analysis by X2 of hatching success between egg trays; 

Irm x2 d.f. Significance 

1v2v3v4 1.67774936 3 N.S. 

1v2 0.181469906 1 N.S. 

1v3 0.328407225 1 N.S. 

1v4 0.514880033 1 N.S. 

2v3 0.99684671 1 N.S. 

2v4 1.30558956 1 N.S. 

3v4 0.000292269 1 N.S. 
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APPENDIX 7 : 13 Statistical analysis of egg mortality between groups at 7 day 

periods. 

Days Eggs 

1-7 Live 

Dead 

7-14 Live 

Dead 

14-21 Live 

Dead 

21-28 Live 

Dead 

Tray 1 

(Control) 

100 

8 

87 

13 

77 

23 

73 

27 

Tray2 

(xl M.I.C.) 

100 

5 

77 

23 

72 

28 

67 

33 

Tray3 

(x2 MJ.C.) 

100 

8 

69 

31 

61 

39 

60 

40 

Tray4 

(Control) 

100 

14 

69 

31 

63 

37 

60 

40 

-----------------------------------------------------------------------------------------------------
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APPENDIX 7 : 13 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. 

J2an Ilm x2 ti Si~roificance 

1-7 1v2v3v4 4.41281776 3 * 
7-14 1v2v3v4 11.8394378 3 ** 
14-21 1v2v3v4 7.87978426 3 ** 
21-28 lv2v3v4 5.18681319 3 * 
1-7 lv2 0.65018315 1 N.S. 

7-14 lv2 3.38753388 "1 N.S. 

14-21 1v2 0.65798131 1 N.S. 

21-28 1v2 0.85714286 1 N.S. 

1-7 1v3 0 1 N.S. 

7-14 1v3 9.44055944 1 ** 
14-21 1v3 5.98410472 1 * 
21-28 1 v 3 3.79306475 1 N.S. 

1-7 1v4 1.47527911 1 N.S. 

7-14 1v4 9.44055944 1 ** 
14-21 1v4 4.66666667 1 * 
21-28 1v4 3.79306475 1 N.S. 

1-7 2v3 0.65018315 1 N.S. 

7-14 2v3 1.62354135 1 N.S. 

14-21 2v3 2.71574459 1 N.S. 

21-28 2v3 1.05705965 1 N.S. 
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APPENDIX 7 : 13 (continued) Statistical analysis of egg mortality between groups at 7 

day periods. 

Dm ~ x2 d.L Si~ificance 

1-7 2v4 3.89988128 1 N.S. 

7-14 2v4 1.62354135 1 N.S. 

14-21 2v4 1.84615385 1 N.S. 

21-28 2v4 1.05705965 1 N.S. 

1-7 3v4 1.47527911 1 N.S. 

7-14 3v4 0 1 N.S. 

14-21 3v4 0.00848896 1 N.S. 

21-28 3v4 0 1 N.S. 
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APPENDIX 7 : 14 Analysis of variance of mean colony forming units (cfu's) I sq mm 

egg surface with chloramphenicol treatment. 

TRAY 1 (control) TRAY 2 (xl M.I.C.) 

Days: 7 14 21 28 7 14 21 28 

-----------------------------------------------------------------------------------------

1) 690.4 643.9 21613.8 7114.5 18.0 474.3 1368.9 2782.8 

2) 10.8 818.2 6844.3 144.1 94.9 2101.4 746.2 2003.8 

3) 257.0 215.2 7654.9 351.2 41.1 281.0 11347.3 344.8 

4) 57.6 606.4 243.2 126.1 85.3 56.2 7204.6 3782.4 

S) 59.4 126.1 492.3 405.3 3.6 842.9 4412.8 553.9 

6) 159.2 25.2 3152.0 743.0 100.9 20.4 15219.7 1260.8 

7) 27.9 474.3 4502.9 10 17.7 69.2 702.5 1038.7 842.0 

8) 154.2 677.2 770.9 3692.4 351.2 87.7 7925.1 3692.4 

9) 162.1 72.7 2161.4 1232.0 8.4 1193.9 9276.0 1891.2 

10) 54.0 612.4 3890.5 655.6 132.4 1621.0 3140.0 438.3 

--------- - ----------------,----·----------------
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APPENDIX 7: 14 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

with chloramphenicol treatment. 

TRAY 3 (x2 M.I.C.) TRAY 4 (Control) 

Days: 7 14 21 28 7 14 21 28 

--------------------------------,---------------------------------------------------------

1) 92.2 2281.5 8105.2 792.5 2161.4 15850.2 6364.1 1013.2 

2) 54.0 7805.0 13238.5 522.3. 747.5 4773.1 58837.7 690.4 

3) 87.2 1298.3 21523.8 36.0 2761.8 16390.5 126.1 840.5 

4) 324.2 257.1 819.5 3332.1 1278.8 9366.0 55235.4 894.6 

5) 662.8 804.5 7953.2 252.2 1203.2 4593.0 135.1 670.9 

6) 864.6 6484.2 5853.8 1044.7 749.3 11167.2 7204.6 591.8 

7) 47.6 1260.8 1955.5 726.5 408.3 4923.2 7624.9 880.0 

8) 907.8 1531.0 14679.4 1697.6 774.5 11257.2 28818.5 360.2 

9) 137.5 2440.6 8195.3 427.8 1561.0 1711.1 2983.9 589.9 

10) 75.7 1999.3 13058.4 387.3 621.4 12848.2 33321.3 588.4 

------------- ----
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APPENDIX 7 : 14 (continued) Analysis of variance of mean cfu's I sq mm egg surface 

with chloramphenicol treatment. 

F Ratio (Ma. F) = 

F Ratio (Mi. F) = 

F Ratio (A X B) = 

Ma = Major factor = 4 trays 

Mi = Minor factor =Time 

6.32048264 

19.8276343 

2.65680599 

A X B = Interaction of the two factors 

344 

** 
*** 
* 



APPENDIX 7: 15 Correlation of egg surface bacterial numbers with egg mortality by 

multiple regression (chloramphenicol). 

Days 

Mean cfu's 

Egg Deaths 

Days 

Mean cfu's 

Egg deaths 

Var. 

Reg 

Error 

TRAY 1 (Control) 

7 14 21 28 

191.9 456.8 5014.6 1481.0 

8 13 23 27 

TRAY 3 (x2 M.I.C.) 

7 14 21 28 

316.8 2918.8 7953.2 941.0 

8 31 39 40 

ss. D.F. 

1722.58591 2 

467.414088 

Fratio = 

Multiple R-SQ = 

13 

23.9547945 

0.78656891 

Var. 

INTER. 

COEFF 

2.1339133 

S.E. 

TRAY 2 (x1 M.I.C.) 

7 14 21 28 

98.9 773.5 5152.7 1590.3 

5 23 28 33 

TRAY 4 (Control} 

7 14 21 28 

1148.5 9309.1 16963.5 716.5 

14 31 37 40 

MS 

861.292956 

35.9549298 

t 

1 

2 

1.13118433 

0.00008927 55 

0.195166066 

0.00003431342 

5.79600929 

2.60176757 
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