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SUMMARY

Recent developments 1in aerostatic thrust bearings
have included;' (a) the porous aerostatic thrust bearing
containing a porous pad and (b) the inherently compensated
compliant surface aerostatic thrust bearing containing a
thin elastomer layer. Both these developments have been
reported to improve the bearing load capacity compared to
conventional aerostatic thrust bearings with rigid
surfaces. This development is carried one stage further in
a porous and compliant aerostatic thrust bearing
incorporating both a porous pad and an opposing compliant
surface. The thin elastomer layer forming the compliant
surface is bonded to a rigid backing and is of a soft
rubber-~like material. Such a bearing is studied
experimentally and theoretically under steady state
operating conditions.

A mathematical model is presented to predict the
bearing performance. In this model 1s a simplified solution
to the elasticity equations for deflections of the
compliant surface. Account is also taken of deflections in
the porous pad due to the pressure difference across its
thickness. The lubrication equations for flow in the porous
pad and bearing clearance are solved by numerical finite
difference methods. An iteration procedure is used to
couple deflections of the compliant surface and porous pad
with solutions to the lubrication equations.

Comparisons between experimental results and
theoretically predicted bearing performance are in good
agreement. However these results show that the porous and
compliant aerostatic thrust bearing performance is lower
than that of a porous aerostatic thrust bearing with a
rigid surface in place of the compliant surface. This
discovery is accounted to the recess formed in the bearing
clearance by deflections of the compliant surface and its
effect on flow through the porous pad,

Key library index words to the thesis are; BEARINGS -
AEROSTATIC - GAS LUBRICATION - THRUST - PERFORMANCE
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An & Bp

App & Bp

Any & Bp;

NOTATION
constants of integration.
constants in the elementary solutions to the
elastomer layer deflections for the region
0<r<or,.
constants in the elementary solutions to the
elastomer layer deflections for the region
Tn < r < rce '

cross sectional area of porous pad in a plane
perpendicular to the z - direction.

constants of integration

radius of piston plunger~and compression
cylinder in bulk modulus tester.
constant 1in polynomial series.

cross sectional area of a capillary bore
aligned parallel to the z - axis.

constant.

flexural constant for the porous pad in
bending (= kperp + Db.vb}.

non - dimensional flexural constant for the
porous pad in bending [: By, ]

3
pa .hb
constants of integration.

outside diameter of compression cylinder in
bulk modulus tester.

empirical constant.
constants of integratioh.

constant [ = b, .Dy.p, -h} ]

2
e (ps-pl).rb —

constant [ = by .Dp.p; «b} ]

it

i (p,-p,).rﬁ -

a constant in the elementary solutions for
deflections of the elastomer layer. For a
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uniform pressure profile acting on the
compliant surface C, = 0 and for a

_ oo ,
parabolic pressure profile C, = 2.v. .pp.t¢

G +rh

Jo (Kp) «(kA.sinhAp+ Ayedpn .cOshAy)

a constant (= Pg).

a function |= P: -1
2 L
Au'fEn - A /8 -1

bearing'approach as defined in section 3.6.

coefficlent matrix containing constants c,, ¢

2
and C,e

constant in equation for a straight line
fitted to experimental points using the least
squares method.

constants.

flexural constant for porous pad in bending
- [ Ebchba
12.(1-vg)

non - dimensional flexural constant for the
porous pad in bending [: Dy ]

P, 'h;
constants.
diameter of the shear specimen.
diameter of the bulk modulus specimen.
Young's modulus of elasticity.

Young's modulus of the porous pad material.

Young's modulus of the elastomer layer
material.

equivalent Young's modulus of the elastomer
layer.
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a function [: An ]
. k.(AyAp + Kn.tanhidp)

Young's modulus of the parent material in its
solid non - porous form.

Young's modulus of the piston plunger material
in the bulk modulus tester.

constants in elementary solutions to
deflections of the elastomer layer.

matrix containing terms with f,(R), f,(R), f,
(R) and F(R).

a function of R.

shear force acting on porous pad bond at
I‘ - ) &f . ' '
b

a function |= a + da |-
R R

shear force per unit circumference at
radius r. :

[e e R

a function of.
a function of hd'
first differential of f(hd).

matrix containing terms with f,(R), f,(R) and
£, (R).
3

a function of R.

a function of R.

a function of R.

shear modulus of elasticity.

apparent shear modulus of shear speclimen.
'shear modulus of elastomer layer material.
consténts} “ | |

porous pad thickness.
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actual or derived bearing clearance at r = Ly
height of bulk modulus specimen.

compressed height of bulk modulus specimen
when its diameter has expanded to fill the
cavity of the bulk modulus tester.

measured bearing clearance at r = Ty »

local bearing clearance at radius r.

uniform bearing clearance.

maximum node number i in the r - direction.

zero order modified Bessel function of the
first kind.

first order modified Bessel function of the
first kind.

node number 1 to I in the r - direction.
maximum node number j in the 2z - direction.
zero order Bessel function of the first kind.
first order Bessel function of the first kind.
node number 1 to J in the z - direction.

bulk modulus of elasticity.

non - dimensional ratio affecting the bearing
clearance geometry [: rg]

O

viscous permeability ratio for the porous pad

non - dimensional bearing static stiffness

[: 3.A?.C-.(CZ+ 6.®r)lkx = aW ]

(3.¢’+ 6.0p) amr?o(p, - Dy) (A" )
(note that for a porous aerostatic thrust
bearing hy & Aq replaces c & A¢ respectively
in the expression for K ).
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zero order modified Bessel function of the
second kind.

first order modified Bessel function of the
second kind.

stiffness in bending of the porous pad bond at
e = I .
b

number of co - ordinate points x, y through
which least squares line 1is fitted.

roots of the equation J, (kn) = O.

stiffness in shear of the porous pad bond at
r = r .
b

bearing static'stiffness. ?6r the porous and
compliant aerostatic thrust bearing this is =
dw/dc and for a porous aerostatic thrust
bearing this is = dw/dhd.

damping factor for dynamic relaxation.

number of parabolas in elementary solutions

used to approximate the actual pressure
profile on the compliant surface of the

elastomer layer.
number of terms in polynomial series.

load.

piston plunger length of the bulk modulus
tester.

non - dimensional bearing mass flow rate
[: 2.m-qaagas -T.hb T

R-f‘;-(p: - p:)-mz_

non - dimensional magnitude constant for the
porous pad in bending |= pa.hb.(Bb + S.Db)]

128.Dp+(Bp + Dp)
elastic influence matrix.

bearing mass flow rate.
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Pa

Pp

Pc

Pf

Pm

Pmem

Pn

Prn

N,

gradient of a straight line fitted to
experimental points using the least squares
method.

radial bending moments in the porous pad.

non - dimensional shape constant for the
porous pad in bending |= 8 .Dy

&oBb + 20.Db
integers 1i.e. 1,2,3 etc.

non - dimensional pressure [: p ]
P,

non - dimensional pressure of flow within the
porous pad at node i, Jj.

—

non - dimensional supply pressure [: ps]
Pa

pressure.

ambient pressure.

resulting pressure difference across the
porous pad thickness at radius r.

pressure profile acting on the compliant
surface in a direction parallel to the z -
axis for elementary solutions to the elastomer
layer deflections.

bearing film pressures at radius r.
feed hole pressure.

measured pressure at the flowmeter in supply
line to the bearing.

pressure in chamber behind membrane.

magnitude of the pressure profile p. at r = 0
for each elementary solution to the elastomer
layer deflections.

magnitude of the pressure profile p. at r = r,
in elementary solutions to the elastomer layer
deflections. For the uniform pressure profile

case, pPrn = Ppn and for the parabolic pressure

profile case, p,n = 0.
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Rgas

Sh

supply pressure to the porous pad.

volumetric flow rate.

. volumetric flow rate at ambient pressure p, .

volumetric flow rate through the porous pad at
a mean pressure of (pg + pyl/2.

- volumetric flow rate through a capillary

aligned parallel to the z - axis.

non - dimensional radial co - ordinate [ = r
r
non - dimensional radial extent of the
elastomer layer | = r¢
Ty

gas constant.

radial co - ordinate.

porous pad radius.

elastoper layer radius.
radius of central feed hole.

radius of pressure profile for each elementary
solution to the elastomer layer deflections.

bearing outside radius.
capillary bore radius.

porous pad aspect ratio| = hy

Tb

non - dimensional thickness of the elastomer
layer | = t,

Th

non - dimensional shear modulus of the

" elastomer layer'|= G

Pa

pneumatic clearance accounting for roughness
of the bearing surfaces.
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gas temperature.

measured temperature at the flowmeter for flow
in supply line to the bearing.

time.
elastomer layer thickness.
thickness of shear modulus specimen.

deflections of the porous pad in the
z - direction.

non - dimensional deflections of the porous
pad in. the z - direction [: ub.hg.pa ]

rh«(Ps = P3)

0.

ﬁb at r

0.7071

up at r

deflections of the elastomer layer at the
compliant surface in the z - direction.

displacements within the elastomer layer in
the r - direction.

displacements of the compliant surface in the
r - direction for elementary solutions to the
elastomer layer deflection.
the value of upp at r = rp.

displacements within the elastomer layer in
the z - direction.

displacements of the compliant surface in the
z - direction for elementary solutions to the
elastomer layer deflections.

velocity of gas flow in the r - direction.
velocity of gas flow in the z - direction.

non - dimensional bearing load capacity

[: W ]
2
nof‘bo(ps - pa)

bearing load capacity.

arbitrary values.
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>t

<

Vrz
Ap
Ar
At

Az

horizontal graphical co - ordinate.

the mean value of graphical points x.

vertical graphical co - ordinate.

the mean value of graphical points y.

non -Idimensional a&ial co - ordinate
= Z

[hb:I

axial co - ordinate.

/A,

= .@@b

shear strain in thé r - z plane.
pressure difference.

grid spacing in the r - direction.
time increment. | |

grid spacing in the z - direction.
deflection.

shear deflection of the porous pad bond
P:r'bo

normal strain in the E - direction.
normal strain in the z - direction.
normal strain in the 6- direction.
volumetric strain.

absolute viscosity of the gas.

linear damper.

at

relaxation constant in numérical solution to

the lubrication equations.

angular co - ordinate about the z - axis.

second radial node number.
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Pb

Po

Pr

bearing number based on approach "c"

- 12omzlrg

bearing number based on clearance "hq"
-= 12-@2.?%

hp +hy.(h] + 6.0r) |

bearing number based on clearance "hy"
_= 12.@2.P; T

hy +hy. (hy + 6.0p)

bearing number based on clearance "h "
-= 120@2.?; ]

N hbthroth? + 6-0r)

? knoSb.V&:-

Polsson's ratio.

Poisson's ratio for the porous pad material.

Poisson's ratio for the elastomer layer
material.

Poisson's ratio of the material used for the
compression cylinder of the bulk modulus
tester.

arbitrary variable used to introduce the
Roscoe technique.

- 3.1415927
gas density.

density of a porous material similar to that
used for the porous pad.

density of the solid parent material.

relative fractional density of a porous
material similar to that used for the porous

pad' = Ph
' Po

normal stress in the r - direction.
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normal stress in the r - direction at r = r,
in elementary solutions to deflections of the
elastomer layer.

normal stress in the z - direction.

normal stress in the 6- direction.

mean stress [ = o, + gz + g
]

shear stress in the r - z plane.

viscous permeability.

viscous permeability in the r - direction.

viscous permeability in the 2z - direction.

effective permeability for combined viscous
and inertia flow.

inertia permeability.

inertia permeability in the r - direction.
inertia permeability in the z - direction.
stress function.

=932 + 1.9 + 9°

97 r dr 8#

Subscripts
ambient.
porous pad.
elastomer layer or bearing approach.
actual or derived.
extent.
bearing film.
feed hole.

shear modulus specimen.
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h bearing clearance.

i at node 1i.

J at node Jj.

k bulk modulus specimen.
1 least squares.

m measured.

mem membrane,

n integer ( = 1,2,3, etc).
o) shear or shear modulus.
0s outside.

p parent material.

r radial direction.

s supply.

t bulk modulus tester.

u uniform.

v viscous.

vol volume.

X static.

z axial direction.

1 at node it .
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CHAPTER 1
INTRODUCTION TO THE INVESTIGATION

1.1 DEFINITION OF AN EXTERNALLY PRESSURIZED POROUS AND

COMPLIANT AEROSTATIC THRUST BEARING

An externally pressurized aerostatic thrust bearing is
one in which air from an external source such as a
compressor, is supplied to form a thin pressurized film of
air between two surfaces., This enables it to support a load
with negligible frictional resistance to relative motion
between the two bearing surfaces. Unlike hydrodynamic
bearings which will only operate while there is relative
motion between the bearing surfaces, hydrostatic and
aerostatic bearings will operate while these are
stationary. This 1is a considerable advantage when
supporting static or slow moving loads.
In porous aerostatic thrust bearings (figure 1.1) air

is supplied through a porous material which acts as a
restricter to flow through the bearing. A unifsrm air film
is created between two rigid flat surfaces¥®. As with
capillary and orifice compensation in aerostatic thrust
bearings the porous pad reduces the flow rate of air
through the bearing, particularly under lightly loaded

= An exception to this is a bearing with an elastic
porous pad. The film clearance geometry is modified by

deflections of the porous pad under the pressure drop
across it.

Y



p»d  smouod

24} s» smpos Swos 3o AIMyJms

junipdwed ¢ buysmaq  ysmauy
IMwysesap Jvoiydwor puo smosog qyy dJnbiy

sd hd.;sm

g+ 4
N L N

1 ]
77 7 7 7 7 7 7 7777

pvd smosod puokaq buipvayxa
270y uca:méou ..mc?_dnﬁ Pty FTEY
21393503y uca_-miou pye  sMosoy oL’y v.:.r_.._

_..:2_ sMoloy sd .ﬁﬂmmﬁw 2omgams
snsaap /”:/ Py ordwe)
NN R e

- _
\\\\4\\?\\ﬂ\\\

rc_v_udj
_u_mu..- 0} papveq mc..Judo 3@&
.—Uhdm LUC..DH.@.C—'V viyy

. bulapaq 3smayy
anvysosav snosod papvo  qy) 2nbyy

yoos

13Vt snosgy ansaqru

77 77 7 77 7777

q

prol

buivaq  Jsmuyy
211959530 smased %oy JINd v ainbyy

yvas
sd Ayddng amsaypu
3

LD .
‘e o
L se e .
pe e Lty e

[ e .

o 2fe Wt St

\\*\\\\\\\\\\
uqaw..sw n_ou. _u_m..& ﬂ
prol

-44-



conditions. This enables the supply source to remain
pressurized under various operating conditions.

The porous and compliant aerostatic thrust bearing
however has-in addition one or more compliant surfaces
which deflect under the pressures created in the film
clearance. The porous and compliant aerostatic thrust
bearing configurations investigated in this research
project are illustrated in figure 1.2. The compliant
surface is formed by a thin elastic layer opposing a full
face porous pad. This elastic layer is made from a soft
rubber like material which is bonded to a rigid flat
surface. Its radius is greater than or equal to the bearing
radius, in this case the radius of the porous pad.
Typically this rubbpr like material is incompressible in
nature which considerably affects its deflection behaviour

to applied film pressures.

1.2 POTENTIAL ADVANTAGES OF USING A POROUS AND COMPLIANT

AEROSTATIC THRUST BEARING

Aerostatic thrust bearings are commonly used in
industry to support loads (which may be stationary or slow
moving) with minimal frictional resistance against motion.

In aerostatic thrust bearings the load capacity 1is
equal to thé summation of film pressures acting over the
area of the bearing clearance in a parallel direction to

the applied load. The resulting load capacity therefore not
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only depends on the magnitude of these film pressures but
also on the shape of film pressure profile with radius.
Ideally for maximum load capacity the film pressure profile
should approach a uniform distribution over the whole
bearing radius (figure 1.3).

However conventional aerostatic thrust bearings with a
central feed hole have relatively low load carrying
capacities. This is due to the non - uniform shape of the
actual film pressure profile formed in the bearing
clearance (figure 1.3). Attempts to improve the load
capacity by extending the region of uniform film pressures
in the supply port (figure 1.4) have resulted in a form of
instability known as pneumatic hammer (30). This problem is
overcome in the porous aerostatid thrust bearing due to the
damping characteristics of the porous pad which help to
reduce the likelihood of pneumatic hammer (40). In addition
the supply air is distributed more evenly in the film
clearance giving rise to a more uniform film pressure
profile (figure 1.5) than that for a conventional
aerostatic thrust bearing (figure 1.3) and an increase in
the load capacity (30).

Conventional aerostatic thrust bearings are also
susceptible to roughness of bearing surfaces and blockage
by contamination of supply (30). The bearing performance
can also be affected by errors of bearing geometry such as
flatness and parallélism between the bearing surfaces.

The presence of foreign particles in the bearing
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clearance will distrupt bearing operation and increase its
frictional resistance. In capillary compensated aerostatic
thrust bearings the small capillary is easily blocked by
contamination of supply in the form of ?ine 0il droplets
and other particles. Some of fhese problems are reduced in
porous aerostatic thrust bearings becauée the porous pad
acts as a filter to the supply. The porous pad itself may
become blocked after many hours of service, but this can
easily be remedied by reversing the flow through porous pad
and hence unblocking it.

| However due to the nature of porosity in the bearing
surface formed by the porous pad, this surface is
considerably rougher than normally accepted in aerostatic
thrust bearings, even after grinding. Figure 1.6 shows that
this 1imits the minimum film clearance attainable and hence
reduces the potential load capacity of the bearing. This
problem could be overcome if the opposing bearing surface
to the porous pad is of a compliant nature such as a thin
elastomer layer (figure 1.7). The elastomer layer complies
to local roughness peaks to allow the effective film
clearance to be reduced further. In a similar fashion,
contamination by fine particles in the bearing clearance
can be accomodated by local deflections of the compliant
surface (figure 1.8). Due to the compliant nature of this
elastomer layer a greater tolerance of Hearing geometry is
also acceptable. This allows the bearing to be used in

lower precision applications.
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The use of compliant surfaces in centrally fed thrust
bearings (figure 1.9) has resulted in improved load
carrying capacities (58 to 62) due to another phenomena.
Deflections of the compliant surface under the action of
film pressures modify the film clearance geometry to
produce a shallow recess in central regions of the bearing
clearance (figure 1.9). This recess also gives rise to a
more uniform film pressure profile which in turn increases
the bearing load capacity.for a given port pressure,
Similarly therefore in addition to the advantages already
mentioned, further increases in load capacity are expected
for a porous and compliant aerostatic thrust bearing
compared to the more conventional porous aerostatic thrust

bearing.

1.3 PRINCIPLE OF STEADY OPERATION OF A POROUS AND COMPLIANT

AEROSTATIC THRUST BEARING

Consider the porous and compliant aerostatic circular
thrust bearing shown in figure 1.10. Air from the external
source is supplied at constant pressure p; to the chamber
below the porous pad. Flow therefore enters the lower
surface of the porous pad at a uniform supply pressure P -
2-dimensional flow takes place within the porous pad in a
predominantly axial direction but also in a radial
direction, until it reaches the bearing clearance. These

flows within the porous pad undergo a pressure drop whose

-51=-
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gradient is dependant on the flow velocity. This pressure
drop arises due to the restriction effect of fine capillary
paths within the porous pad.

On entering the bearing clearance the flow is
predominently radial towards the bearing exit. The film
pressures generated in the bearing clearance have a =-ve
gradient in the radial direction, which 1s caused by the
skin friction between this flow and the bearing surfaces.
These film pressures will act upon the compliant surface
and cause it to deflect. Since the film pressures are
greatest in the central regions of the bearing clearance a
shallow recess will form here to modify the bearing
clearance geometry from its originally uniform state
(figure 1.11(a)). In the regions of the shallow recess
where bearing clearénces are greatest, the film pressure
gradients are reduced resulting in a more uniform film
pressure profile. If the elastomer layer is incompressible
in nature its deflection profile will be similar to that
shown in figure 1.11(b), with bulging occurring near the
bearing exit. This deepens the recess formed and further
flattens the film pressure profile.

However depending on the stiffness of the porous pad,
it may also deflect significantly in bending, due to the
pressure difference across its thickness. This will also
affect the bearing clearance geometry (figure.1.11(c)) and
tend to reduce the shallow recess formed by deflections of

the compliant surface. The resulting film pressure profile
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will therefore depend not only on deflections of the
compliant surface but also on deflections of the porous
pad, the latter tending to make the film pressure profile
less uniform (25).

The summation of these film pressures acting on the
compliant surface area in an axial direction will equal the
load carried by the bearing. The flow rate through the
bearing will depend on the porous pad restriction (i.e.
permeability and thickness) and the bearing clearance-

geometry.
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CHAPTER 2

THE PROBLEM DEFINED

2.1 INTRODUCTION

In chapter 1, a porous and compliant aerostatic thrust
bearing was presented. As far as the author is aware there
is no published work on this new type of bearing, apart
from a report by Barwell (1) that a similar bearing was
developed by the National Engineering Laboratory (U.K.) for
an industrial application. No further details about the
bearing and its performance are given however. The problem
is therefore alrea?y partially defined, i.e. it will be the
purpose of this research project to investigate
theoretically and experimentally the performance of this
bearing and to compare results with those of a more
conventional aerostatic thrust bearing.

The porous and compliant aerostatic thrust bearing
may be considered a direct descendant of the following two
types of externally pressurized bearings:

(a) The porous thrust bearing.
(b) The compliant thrust bearing.

A literature review will therefore be carried out on
these two types of bearing. Relevant published work
relating to journal bearings of a porous or compliant

nature will also be included. Since there is substantial



e

published work on these bearings, only a proportion of this
work will be reviewed which the author considers is of
interest and importance to this research project.

This review of the literature will reveal 6ther gaps
in the knowledge and enable further areas of 1n;estigation
to be outlined. It will also be helpful in assessing
whether various analyses used by other researchers will be
useful in the mathematical modelling of the new porous and

compliant aerostatic thrust bearing.
2.2 LITERATURE SURVEY
2.2.1 NATURE OF FLOW IN THE POROUS PAD

One of the first papers published on porous aerostatic
thrust bearings was by Sheinberg and Shuster (2). They
considered that flow within a porous media could be
simplified to that taking place through a series of
parallel and uniformly spaced capillary tubes. In this
simplified model flow takes place in one direction only,
i.e. in an axial direction parallel to the thickness of the
porous pad. Flow in each capillary is governed by the

equation;

w.(r,)%  3p
qz-“--———--. - - 2.1
8.n 9z

A permeability coefficient ® is introduced to
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characterise the permeability of the porous media. This
accounts for the size, length and spacing of capillaries in

this model of the porous pad. Equaticn 2.1 becomes; - -

$.a ap
q. = - —l - 2.2
z n oz

Equation 2.2 is similar to Darcy's law, which has been
used by many researchers of porous aerostatic bearings.
This states that the pressure gradient is directly
proportional to velocity of flow at any point in the porous
media. Unlike the capillary model used by Sheinberg and
Shuster (2), Darcy's law may be applied to multi -
directional flow within the porous media. Its more general

form 1is;

ap n

- eEe—— gy — v 2‘3

ar,z .r.z

Equation 2.3 suggests a constant permeability
coefficient ® for all types of flow within the porous
media. However Robinson and Sterry (3) observed that this
coefficient is a function of both bearing film pressures
and Reynolds number Mori et al (4) presents graphs of
permeability coefficient as a function of supply pressure
for several porous pads. These graphs all show reductions
in permeability with increasing supply pressure, but no
explanations for this phenomena are given.

A review of mathematical models for various types of
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flow within a porous media is given by German (5). Darcy's
law is described as governing flow at low pressures and
flow velocities where viscous energy losses are dominant, At
higher flow velocities inertial energy lésses become more
significant and Darcy's-law becomes less accurate.
Forchheimer (6) proposed a correction term to Darcy's law
which takes into account inertia losses in the porous

media. Equation 2.3 with inertia term becomes;

op n p . .
- ;—— = ;—- n“z + ;—- “%Z 2.
rsz r,z r,z

where ¢ is the inertia permeability coefficient.

The exclusion of inertia losses in Darcy's law
therefore explains'the apparent reduction in permeability
coefficient ® at higher supply pressures and hence higher
flow velocities, as experienced by Mori et al (4),

Gréenberg and Weger (7) investigated the effects of
pressure and temperature on viscous and inertia
permeability coefficients. While the inertia permeability
coefficient was unaffected by temperatures and supply
pressures in the range 15 to 60°C and 0 to 140 bars (0 to
2000 psi) respectively, the viscous permeability
coefficient remained constant with respect to pressure but
decreased with increasing temperature. For example the
viscous permeability of the sintered bronze sample,
decreased at an average rate of 2.62% per °C. This suggests

therefore that 1t is important to monitor the temperature
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while carrying out permeabilty tests on the porous
material.

Morgan (8) describes in detail a technique for the
accurate measurement of viscous and inertia permeability
coefficients. This involves sealing a porous pad arbund its
circumference and measuring the flowrate and uniform
pressure drop across its thickness. Equation 2.4 is re -

written in the form;

Ap.A, QP 2.5

1
——l 4~
qb‘“‘hb ] Az.n.¢

By plotting éﬂliﬁ. against 9, P the resulting straight
9 7 b

Az 1

line has a slope of é.and a Y axis intercept of Values

"
of ® and ¢ are thefefore obtained from this plot using
least squares method to fit a straight line to the
experimental points. Note that a single value of @ and ¢
has been assumed for both r and z directions. In practice
it would be difficult to determine separate values of @ and
¢ for both r and z directions, and as far as the author is
aware this has not been successfully attempted by other
researchers.

Taylor and Lewis (9) introduce the concept of two
distinct types of flows within the porous media. As in pipe
flows there is a viscous (laminar) flow region and an
inertia (turbulent) flow region with a transition region

between them. The viscous flow region is governed by

Darcy's law (equation 2.3). For the inertia flow region,
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inertia losses are dominant and the first term in equation

2.4 1s omitted , i1.e.;

ap )
P - ] vr’z 2.6
or,z ¢r.z ' .

In the transition flow region both viscous and inertia

losses are significant and equation 2.4 applies. Hence in a

form similar to equation 2.5, for the viscous flow region;

Ap.Az 1 2'7

qb.n.hb ¢
similarly for the transition flow region;

Ap.Az 1 P 2.8

-

qb'ﬂ'hb o Az'n.’

and for the inertia flow region;

dp'nz . qb'p * 2.9

qb'hb Az"
Equation 2.7 can be re-written in logarithmic form;

1031;59 = 10g,, ﬂ-hb * 1°Elo(qb) 2.10

Az.i
Taylor and Lewis were able to confirm the existence of the
viscous flow region by plotting log,, Ap against 1og,°qb for
uniform axial flow through the porous pad. The results gave

a straight line of unity gradient as suggested by equation
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2.10 (see figure 2.1). A value of @® can be obtained from
this plot by fitting equation 2.10 to the experimental ’
points using the least squares method. In a second plot
similar to that used by Morgan ia) régions of viscous and
transitional flow are cleably shown figure 2.2,

Based on analytic solutions, McCrea and Donaldson (10)
present a criteria which indicates whether inertia effects
in the porous material are significant or negligible. Their
criteria i1s as follows;

for viscous dominated flow

2:p.2.4%
3 K1 2.11
2 -
d.n ‘hb'ﬂgas'T
for inertia dominated flow
2.ps’.o’
>> 1 2.12
2
‘¢.n .hb-Rgaa.T

and for flows in which viscous and inertia losses are

significant
2 2
2.p5.0

¢-n’-hb-38aa.'r

=1 2.13

This criteria nﬁﬁ only depends on supply pr:essure.ps but
also on the ratio qia . However no account is taken of the
exlistence of distinct flow regions as put forward by Taylor
and Lewls (9). Instead they assume one region of flow in

which viscous or inertial or both, losses are significant.
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This therefore is a major conflict of opinion between these
researchers which needs further investigation.

The effects of surface machining on the flow in a
porous media is investigated (11), (12). The existence of a
thin highly restrictive layer 1s described which is créated
by pore blockage during surface grinding or machining of
the porous material. This layer reduces the permeability of
the porous pad by a significant amount by acting as a
restricter to flow through it. Polome and Gorez (12)
describe flow within the porous media as taking place in
two regions. The first is within the homogenious porous
matrix accounting for the majority of the porous media.
Here the flow is 2 - dimensional and governed by Darcy's
law. The second reg%on is represented by a thin layer of
parallel restricters along the machined surface of the
porous media. The flow passes normal to this layer and the
pressure drop 1is proportional to flow velocity squared.

Others (7),(9) have also reported on the effects of
surface machining on permeability of the porous media.
Greenburg and Weger (7) overcome this problem by removing
the thin restricting layer by electo(eleétrolyticl -
polishing and it is reported that this method is superior
to conventional acid etching methodé similar to that used
by Taylor and Lewis (9). The author however has been
unsuccessful in obtaining further references by Greenburg
and Weger (7) describing this electrolytic polishing

technique in more detail.
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The method in which the bearing surface of the porous
pad 1s prepared may need further investigation. This.
depends on whether the acid etching method is -suitable as
reported (9).

The review of literature in this section relating to
the nature of flow in the porous pad has revealed two
conflicting aspects;

(a) The existance or not of three distinct regions of flow,
i.e. viscous, transitional and inertia flow regions
(9), as opposed to one in which viscous or inertia or
both, losses may be dominant 1in one region (10).

(b) The method in which the pores of a porous media may be
unblocked after machining and whether any restricting
effect at the surface still remains.

These aspects will contribute to the formation of an .

outline for the areas of investigation in section 2.3,

2.2.2 GAS LUBRICATED POROUS BEARINGS

(2),(3) and (13) are amoung the first published works
on gas lubricated porous bearings. Montgomery and Sterry
(13) carried out experimental work on porous Jjournal
bearings to show that a Jjournal of 9.5 cm diameter could be
rotated at speeds up to 252000 revs/min. Robinson and
Sterry (3) obtained analytical solutions for an infinitely

long journal bearing assuming axial flow in the porous
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restrictor bushing. They verified their theoretical
predictions experimentally. These researchers point out
that the use of porous materials eliminates the necessity
to precision machine fine holes in conventional orifice
restrictor bearings.

Various circular porous thrust bearing configurations
are analysed by Sheinberg and Shuster (2). Thelr particular
interest concerns an electrically driven spindle of an
internal grinding head with speeds up to 96000 revs/min.
Compared to conventional centrally fed orifice bearings it
is reported that the use of porous bearings have
considerably increased bearing load capacity and resistance
.to vibration. An important practical consideration isl
mentioned relating to the deflection of the porous pad
under the pressure difference across its thickness., It is
recommended that this should be minimised by using pads of
sufficient rigidity otherwise the load carrying capacity
will be reduced owing to distortion of the bearing
clearance geometry from its original uniform state.

At low flqwrates Darcy's Law is applied by Sneck and
Yen (14) to obtain analytical solutions for a full-width
porous Jjournal bearing of finite iquth. For higher
flowrates a modified form of Darcy's Law is used similar to
that for inertia flow (equ.2.6). Both solutions are
obtained for the non-rotating bearing:case. Sneck and Ewell
(15) verified the analytical solutions (14) in an

experimental investigation. Good general_correlation of

-65-



theoretical and experimental results was achieved provided
account is taken of the bearing surface roughnesses in the
determination of bearing clearance. The amount added to
measured elearance is that measured using a standard
surface roughness indicator. An average peak to valley
roughness_value was taken.

Sneck and Yen (16) ex;end their analysis to take into
account rotation of journal bearing shaft. They concluded
from the analysis that the load capacity 1s not
significantly affected by shaft rotation, but that the flow
rate increases with increasing shaft eccentricity.

Mori et al (4) approached the solution of flow within
a porous thrust bearing of the type shown in figure 2.3, by
dividing the porous media into two restricting thicknesses.
In this way both radial and axial flows in the porous media
could be accounted for. The author considers that this
analytical approach is only applicable to this type of
bearing. This is because flow across the first porous media
thickness and in region 1, is predominantly axial. Mainly
radial flow then takes place in the second restricting
thickness parallel to the bearing clearance and throughout
regions 1 and 2. These restricting thicknesses are
determined by matching the theoretical and experimental
results. However the restricting thickness values obtained
were found to be dependant on bearing load capacity.
Average values for a particular bearing configuration

therefore resulted in a significant error at low and high

«6 6w



R!gmn 2 Reﬁmn | Rea:on 2

SuPp!y
% W st rtstr'utinaj
_‘ pad &hickness
&

Porous /*‘ "'..“'... "'"*' = .‘""r '*.:':__-“
pad r\
\ \\\\\\ 2nd restricti ng
Unsealed pnd thi cKaess
pad
circum lecence
Fiaure 2.3 Ciccular porous aerostatic tl\ru.st btarmq

of Mori et al (4

' Riqid upper bearimj surface

//////////L//,
..~ R0, Ty '1. ..F.e;_ Porous PAJ

¥ »U+ “u‘..‘x }'} ”\\\
Suppl
/ L PP ,' Ps J
Mani fold 't ‘ \ .
Diameter of central
;'::;f.-{ tzt:: the supply hole infet
Porous Pa.d

Figurc 24 Porous arrostatic Weust bcaring with ialet manitold

-67-




bearing load capacities. During their experimental
-programme bearing vibration (pneumatic hammer) was noted
with increasing bearing clearances and supply pressures,
only if the bearing was disturbed. However no visration
occurred during the experiments provideﬁ the bearing
remained undisturbed.

Later Mori et al (17) presented an improved analytical
solution by treating flow in the bearing clearance as a
boundary value for three dimensional flow in the porous
media. Both incompressible and compressible flows are
considered. Several different types of porous bearing are
treated including a circular thrust bearing and a journal
bearing. The concept of restricting thicknesses however is
still applied.

A form of porous and compliant journal bearing is
investigated analytically by Barlow and Wildmann (18).
Their bearing consists of a perfectly flexible féil or
membrane (in which only tensile stresses are considered)
moving over a porous journal restricter. Results show that
this type of bearing has improved load carrying capacity
compared to a foil bearing with discrete inlet restrictors.
However no results are presented to show how the compliant
properties of the foll affect the bearing performance.

Gargulio and Gilmour (19) have carried out a
comprehensive study of aerostatic porous thrust Héarings.
Reynolds equation for flow in the bearing clearance is used

as a boundary condition for flow in the porous pad.
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Equations are-solved using finite difference methods on a
digital computer. This enables solutions to unusual or
mixed boundary conditions, such as may occur if an inlet
manifold is used (figure 2.4). This type of bearing 1is
analysed along with the full faced type (figure 1.1a). The
supply area may be reduced by reducing the central hole
diameter in the manifold. Design curves are presented
showing the effect of supply area (as a percentage of that
for a full faced bearing) on the bearing performance.
Results indicate that the load capacity reduces with supply
area. However since the flow rate also reduces at twice the
rate at which load capacity reduces, this can be an
advantage in some a?plications where size 1im1tatioﬁs are
not a problem but the flowrate must be minimized. Other
design curves show that while the effects of anisotropic
permeability on load capacity are small, the flow rate
increases significantly with the permeability ratio QP¢Z .
Porous pads which are highly permeable in the radial
compared to axial directions are therefore a disadvantage.
An additional advantage of using a manifold is that
it can support the porous pad to reduce deflections in
bending, caused by the pressure difference acroés it. This
can change the bearing clearance geometry and affect the
bearing performance (see Taylor and Lewis (25)).
Comparisons between theoretical and experimental

results (19) show good correlation for load capacity at low
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bearing numbers. Errors 1ncfease at higher bearing numbers
and the general results for flow rate were less promising.
The reasons for this are partly attributed to neglecting
roughness of the bearing surfaces in the determination of
bearing clearance. Also Garguilo and Gilmour (19) do not
take into account the slip flow which takes place at the
porous media - bearing clearance boundary. This phenomenon
was first studied analytically and shown to be of
significance by Ishzawa and Hori (20). They considered the
flow which takes place in a radial direction within the
porous pad and adjacent to the bearing clearance. Therefore
by continuity, slip flow takes place in the bearing
clearance at the porous wall (figure 2.5). Slip flow is an
important consideration as it affects the resultant flow
patterns within the bearing clearance and the porous pad.

Later Beavers et al (21), (22) confirmed the
condition of slip flow experimentally for the flow in a
channel having a porous wall. An empirical equation is used
to predict the slip flow velocity, but the author considers
that this is only applicable .to the conditions of their
channel experiments. In other words the condition of
continuity used by Ishzawa and Hori (20) has more general
application.

Jones et al (23), takes into account the slip flow

condition of Ishzawa and Hori (20) in obtaining an exact
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analytical solution to the circular porous thrust bearing
supplied with a compressible gas. A modified Reynolds
equation is obtained which is used as a boundary con@ition
to flow in the porous media., In a series of internal
reports written by Jones et al (see Taylor (24)) a
comparison of theoretical results is made with Garguilo énd
Gilmour (19). While close similarities existed for bearing
load capacity, descrepancies arose between bearing
flowrates. Also Garguilo and Gilmour obtained a reasonable
correlation of theoretical and experimental results for
bearing load capacity at low bearing numbers, but Jones et
al however could not achieve any respectable correlation of
results at any bearing number. Jones et al accounted for this
to inertial flow t;king place within the porous pad,
invalidating their assumption of viscous flow. An attempt
to obtain a solution using Forchheimer's equation (equation
2.4 in section 2.2.1 ) for flow in the porous media proved
unsuccessful.

These discrepancies between Garguilo and Gilmour (19)
and Jones et al (23) prompted Taylor and Lewis (9) and
Taylor (24) to investigate possible causes and reasons for
this. They put forward a number of important considerations
which are listed as follows:-

(a) Roughness of the bearing surfaces particularly the
porous pad.

(b) Shear deflections of the adhesive bond which supports
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the porous pad in its holder. This affects the measured

value of the bearing clearance.
(c) Deflection in bending of the porous pad due to the

pressure drop across 1ts thickness.
(d) Pore blockage of the porous pad surface as a result of

surface machining operations (see section 2.2.1).
(e) Nature of the flow within the porous pad i.e. viscous,

transitional or inertial flow (see section 2.2.1).

These all have an effect on the bearing performance
and it is shown (9), (24) that provided these
considerations are taken into account it 1s possible to
achieve a close correlation between theoretical and
experimental results for the theoretical solution of Jones
et al (23).

It has already been mentioned that Sneck and Ewell

(15) have considered surface roughness in their
investigation of porous Jjournal bearings. However their
method used to measure this does not necessarily give a
true pneumatic clearance accounting for the additional flow
taking place in the roughness regions 6? the bearing
surfaces. This is because they use an average peak to
valley roughness reading for this pneumatic clearance.
Taylor and Lewis (9) however show that it is possible to
derive the bearing clearance hy (see figure 2.6) using the
modified Reynolds equation applied at the bearing clearance

exit, 1.e.;
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The bearing No.Ad and hence hy can be obtained from
equation 2.14, if the film pressure gradient at the bearing
clearance exit and the bearing flowrate are measured. If
the measured bearing clearance h,, is also known a pneumatic
clearance s accounting for surface roughness, is obtained

thus:

Values of s, obtained were shown to be constant for each
bearing configuration irrespective of its operating
conditions, i.e. bearing clearance and supply pressure.

Sﬁear deflections of the adhesive bond between the
porous pad and its holder were measured and calibrated by
Taylor and Lewis (9) while the porous pad was subject to a
uniform pressure difference acrogs its thickness (i.e. with
the porous pad exhausting freely to atmosphere while
pressurized). During actual bearing experiments the supply
pressure minus the mean film pressure on the porous pad was
calculated. This value and the calibration figures were
then used to obtain the shear deflection of the porous pad
bond. Hence the measured bearing clearance was corrected by
subtracting this shear deflection.

In a similar way Taylor and Lewis (25) determined the
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rigidity in bending of a porous pad by measuring its
deflection while subject to a uniform pressure difference
across its thickness and presented bearing -solutions which
take into account this deflection. They assume the porous
pad is rigidly clamped around its circumference and apply
thin plate bending theory. Because the bearing clearance is -
no - longer uniform it was necessary to solve the
governing differential lubrication equations using
numerical finite difference methods. A technique developed
by Roscoe (26) was applied to discretise these equations
and ensure stability in arriving at a final solution. Since
deflections of the porous pad affect the resulting film
clearance geometry and hence the film pressures, an
iteration procedure is used. Initially a uniform bearing
clearance is assumeh for which the solution by Jones et al
(23) can be used to obtain the first estimate of film
pressures. Having obtained the film pressures, deflections
of the porous pad were determined giving rise to a new
bearing clearance geometry. New,more accurate,film
pressures are obtained for this non - uniform clearance
geometry, using the finite difference method. Hence this
iteration was continued by determining new deflections of
the porous pad from the last estimate of film pressures.
Then new film pressures are determined from the last
estimate of porous pad deflections and bearing clearance
geometry. This iteration was repeated until the resulting

changes in film pressures were negligible. A final solution
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to the lubrication equations and deflections of the porous
pad was thus achieved.

Taylor and Lewis (25) present design curves showing
that the bearing load capacity reduces and flowrate
increases with reducing porous pad rigidity. This is
because the resulting film clearance geometry and
corresponding film pressure profile become less uniform
with increasing deflections of the porous pad. Taylor and
Lewis point out that an optimum pad thickness exists for
which the load capacity of the bearing is greatest. This is
because although the throttling effect on supply pressure
to film clearance reduces with pad thickness giving an
increase in load capacity, the deflection of the porous pad
increases due to 1t§ reduced rigidity and eventually this
causes a reduction in load capacity. Previously Garguilo
and Gilmour (19) had shown increases in load capacity with
reducing porous pad thicknesses down to zero. This 1is
because the porous pad rigidity was ignored.

The author considers that the assumption of a rigidly
subported porous pad by Taylor and Lewis (25) has not been
backed up with sufficient experimental evidence showing:
typical deflection profiles of the porous pad. Indeed the
adhesive bond between the porous pad and its holder
provides an elastic support. The rigidity of the porous pad
may therefore have been underestimated because its
deflection is assumed to correspond with that of a rigidly

c¢lamped plate in bending. Also bearing performance results
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are presented using the minimum bearing clearance h, at r
= 0 for determination of bearing number. It is not made
clear how this is measured during experiments as its value
is affected by deflections of the porous pad. Since tﬁe
bearing clearance at bearing exit can be obtained by direct
measurement during experiments the author considers this
value should be used for bearing number. In the
presentation of bearing performance results this could
produce a different set of results for bearing performance
from which different conclusions could be drawn.,.

Murti (27) presents a simplified analysis of a porous
gas circular thrust bearing by assuming flow in the porous
pad to be predominantly axial. The simple closed form
solution obtained is said to require miﬁimal computing time
compared to numerical finite difference methods. However
there is probably little difference to the computing time
required for the more complete solution of Jones et al (23)
which the author has found to be relatively short on modern
desktop mini computers. Results compare well with those of
Garguilo and Gilmour (19) for thinner porous pads at low
bearing numbers. Performance curves showing thé affects of
supply pressure are presented and the affects of each
bearing parameter on the bearing performance are discusged
as a useful quide to designers. However because thin porous
pads may suffer relatively large deflections in bending due
to their low rigidity, the usefulness of Murti's solution

is considered to be limited.
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Later Murti (28) extends his analysis to include the
slip flow condition of Beavers and Joseph (21) which 1s
applicable to the assumption of axial flow in the porous’
pad. A éomparison of results for non - slip aﬁd slip flow
conditions show that slip flow becomes increasingly
significant at higher bearing numbers. Verma (29) has also
considered the slip flow condition of Beavers and Joseph
(22) in porous circular thrust bearings and obtained
similar analytical results to Murti (28).

All papers that have been quoted so far in this
section have been for porous bearings in which the porous
restrictor extends over the whole bearing clearance.
Kilmister (30) reports that some experiments with bearings
containing a porous insert similar to that shown in figure
1.1b of section 1.1, have been carried out at Southampton
University (U.K.). However inserts selected for optimum
bearing performance were prone to self induced pnuematic
instability.

Contradictory to this,Donaldson and Patterson (31,32)
have carried out successful experiments with porous
ceramic inserts in a landed circular thrust bearing (figure
2.7). They are able to operate the bearing without
pneumatic instability though this 1is partly aécounted to
" the design of their apparatus in which beéring loads are

applied through an air piston which is sealed with rubber
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'0' rings. Hence the bearing 1is externally damped by the
'O0' rings and pneumatic instabilities are .partly
suppressed. However not all types of bearing loads are
externally damped in this way and in some bearing
applications the load may be appliéd in the form of dead
weights. This could also affect the bearing stability (40)
by increasing the bearing mass subjJect to vibration during
pneumatic hammer.

Experiments (31,32) are carried out at high supply
pressures up to 3.1 MN/m (450 PSI). At such pressures it is
necessary to positively secure the inserts in the bearing.
This is achieved by threading the porous inserts (see
figure 2.7) and sealing them with epoxy resin. No account
was taken of the be;ring surface roughness, though provided
that the bearing'surfaces are precision ground the bearing
clearance could be measured accurately across the landed
regions where both surfaces are non - porous and therefore
1nherent1y smoother.

A theory is presented by McGrea and Donaldson (10) for
this type of bearing. Account 1is taken of inertia effects
of flow in the porous pad and slip flow at the porous wall
- bearing clearance boundary. The assumption used by Murti
(27),(28) that flow in the porous insert is predominantly
axial 1is applied. The author considers that this assumption
is more justifiable in landed porous bearings because the
radial film pressure gradients are small over the regions

of the porous insert (see figure 2.8) and therefore radial
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flows in the porous media are less significant. This
assumption simplifies the solution to the lubrication
equations particularly when inertia effects are included in
the analysis. Also the circumférence of the porous insert
is assumed to be a flat unthreaded surface and theref&re a
slight discrepancy arises in the theoretical model (10)
since the actual insert used in experiments (31,32) was
threaded (see figure 2.7). Taylor (24) mentions that to
achieve a closer correlation between theoretical and
experimental results it is important that the circumference
of the porous pad is a flat surface free of grooves or
threading as assumed in the theoretical model.

A criterion is presented (10) (see section 2.2.1) for
viscous and inertia dominated flows in the porous insert.
It is shown that with increasing supply pressures and for a
porous ceramic material, inertia losses are significant.
Also the inclusion of slip flow in the analysis yields the
term hy(hj+6®0,) in place of h, in Reynolds equation. Both
McGrea and Donaldson (10), and Taylor (24) show that the
affect of slip flow (on the bearing performance) for
typical bearing permeabilities and clearances is
negligible. However Taylor points out that conditions may
arise (i.e. for a highly permeable porous pad or at low
bearing clearances) where slip flow becomes significant and
must therefore be included in the theoretical analysis.

Rectangular externally pressurized porous thrust

bearings have been studied by several researchers (33 to
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36). Majumdar and Schmidt (33) predict from their analysis
that the load capacity for such bearings is greater
comparedvﬁo a similar bearing of circular confighration
and, of equal bearing area. Rao (34) later demonstrated the
opposite'to this in his solution which includes the slip
flow condition of Beavers and Joseph (21). Rac claims that
his result is more accurate since a better performance is
to be expected from the more optimum circular porous thrust
bearing configuration. In certain applications however size
constraints may dictate a rectangular bearing as more
suitable.

Rao (35) also obtained solutions for a bearing with
offset loading which causes tilting of the upper bearing
surface. It is shown that this significantly reduces
bearing performance, causing a reduction in load capacity
and an increase in the flow rate. This therefore
demonstrates the importance of maintaining parallelism
between the bearing surfaces for optimum bearing
performance.

Naaum and Lewis (36) present a numerical finite
difference solution for 3 - dimensional viscous and inertia
flows within the porous media. Previous attempts by Jones
et al (see reference 24) and Taylor (24) proved
unsucceséfull due to the non - linearity arising in the
governing differential equation for flow in the porous

media. Naaum and Lewis overcame this problem by re -
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arranging Forcheimer's equation (see equation 2.4 of

section 2.2.1) to produce an effective permeability which
representé the combined effect of boﬁh viscous and inertia
flows (equation 2.16). This enaﬁles an expression similar
to Darcy's Law (equation 2.17) to be used for flow in the

porous media.

' 2
(o - 2.16
“ef 3 .
t)xt}'tz
ap ( ( ' \ )
and - - n._ 0 v 2.17
3X,¥,2 o iy,z) ¥r¥Z '
where in equatidhs 2.16 and 2.17 x,y and z refer to a 3 -
dimensional co - ordinate system (36).
Use of this effective permeability (¢ef{) therefore

XY 2

enables the usual numerical procedures employed for viscous

flow, to be used. However since (®.ff ) depends on local

X,Y,2
pressure gradientggﬁ_ several iterations from the first
estimate of viscousygaow throughout the porous media are
required to obtain the final solution. This therefore
greatly increases the computing time required for a
solution. It was concluded (36) from the theoretical
results that the beabing load capacity 1is a'haximum while

the bearing is operating in the viscous flow region, the

load capacity reducing with increasing inertia flow.

ey
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Most research on porous thrust bearings has
concentrated on air or gas as the externally supplied
lubricant. Howarth (37) investigates such a bearing
supplied with oil as an alternative lubricant. Because o0il
has a much higher viscosity than air or gas, porous pads
with greater permeability are used, allowing the bearing to
operate at higher bearing clearances for a given bearing
number. This enables Howarth to use unmachined porous pads
of acceptable flatness to avoid the problems associated
with pore blockage during surface grinding. Even with
unground porous pads it was possible to achieve
dimensionless load capacities W up to 0.6. However it is
questionable whether porous thrust bearings are more
advantageous than conventional ported thrust bearings with
a central feed hole when o0il lubrication is used. This 1is
because hydraulic instability is not a problem with these
latter bearings and higher load capacities can be achieved
by extending the port region (see figure 1.4 of section
1.2) .

Kilmister (30) reports on the problems of permeability
distribution in sintered metals. This is caused by the non
- uniform compacting pressures occurring during'sintering.
Capone et al (38) uses an instrument similar to that shown
in figure 2.9 for measuring local permeability and
considerable variation was found in typical sintered bushes
as supplied by the manufacturer.

This technigue could be applied to check the
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permeability distribution in porous pads. The probe would
be positioned across the porous pad thickness as if to -
measure axial permeability. However the local permeability
measurement obtained would reflect the combined effecﬁ of
both radial and axial permeabilities. This is because the
measuring probe (see figure 2.9) would allow the nitrogen
supply to escape in both these directions within the porous
pad. A misinterpretation of the resulting permeability in
the predominantly axial direction would therefore occur
particularly with thick porous pads. The author considers
that a more accurate alternative would be to immerse the
upper surface of the porous pad in a bath of water while
its lower surface 1s pressurized with air or gas (see’
figure 2.10). The rising air or gas bubbles from the upper
surface of the porous pad would give a visual indication of
the axial permeability distribution across the surface of
the porous pad. This technique is actually used by the
author (refer to section 4.3.1). |

Because of the pneumatic instability experienced under
certain operating conditions in gas lubricated porous
thrust bearings, several researchers (39 to 44) have been
prompted to investigate this occurance in more detail.’
Gorez (39) presents a series of stability conditions in his
mathematical treatment of bearing stability which assumes
that the bearing film pressure profile under static

conditions is unaffected by unstable disturbances of the
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bearing clearance. These conditions indicate that the

bearing becomes increasingly more stable with reducing

porous pad porosity and thickness.

A fuller explanation of the causes of pneumatic
instability in gas - lubricated porous thrust bearings is
given by Dah - Chen Sun (40) (later minor corrections were
made to this paper in (41)). One dimensional axial flow in
a thin porous pad is assumed and only small disturbances of
the bearing clearance are considered so that a linear
stablility theory may be applied. The governing differential
equations for flow in the bearing clearance and porous
media include a time dependant term to account for dynamic
characteristics of the bearing. A first order perturbation
method is used to obtain solutions to these equations. From
the analytical results, the following conclusions are
drawn:

(1) The lubricant's compressibility is the main cause of
pneumatic instability. Instability will not occur if
incompressible lubricants such as oll are used.

(2) The stable or unstable operating regions of the bearing
dependon three main factors; (a) the compressibility
of the lubricant, (b) the vicous damping properties of
lubricant in the bearing clearance and (c) the floating
mass of the bearing.

In some cases the load carried by the bearing is not

necessarily in the form of a dead weight; for example the
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thrust force from blades in a turbine or the cutting forces
on a machine tool. Dah - Chen Sun therefore separates the
floating mass of the bearing from the load it carries since
only the former effects the bearing stability.

Figure 2.11 shows a typical stability curve obtained
(40), showing regions of stable and unstable operation for
a gas lubricated porous thrust bearing. A particular
bearing may become unstable at certain bearing clearances
as the supply pressure is increased. At a constant supply
pressure and for a given floating mass, two stable regions
of bearing operation can exist, one at low bearing
clearances (high load capacities) and the other at large
clearances (low load capacities). At low bearing clearances
the viscous damping properties of the flow in the bearing
clearance increase and this maintains bearing stability. At
high bearing clearances the film pressures and hence
compressibility of the lubricant reduce and this also
results in bearing stability.

Dah - Chen Sun (40) also shows that the bearing size,
mass and permeabiliéy affect the regions of stable bearing
operation. The stable regions tend to reduce with
increasing bearing floating mass. In some bearing
applications the bearing load may be applied in the form of
force rather than a dead weight. It is therefore advisable
in such cases to minimise the bearing floating mass. This
is probably another reason why Donaldson and Patterson

(31,32) were able to operate their porous aerostatic thrust
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bearing at high supply pressures without pneumatic
instability occurring Instead of the usual dead weight
loading methods used by many researchers of porous thrust
bearings, they applied loads .using an air piston. The
resulting floating mass of the bearing was therefore
minimized.

For two gas lubricated porous thrust bearings of
1den£ical radius and floating mass Dah - Chen Sun (40)
showed that the one with the lesser restriction to flow
through the porous pad will have the smaller region of
stable operation. This is because the film pressures and
hence compressibility of the bearing film are increased.
For increased stabllity this implies a thick porous pad
(and/or reduced permeability), however if the two bearings
have equal restriction as defined by the ratio ®;/hy, the
one with the thinnest porous pad will have the larger
region of stable operation.

Although Dah - Chen Sun (40) does not discuss the
effects of porous pad porosity on bearing stability, the
author has deduced from his conclusions that stability
reduces with increasing porosity. This is therefore in
agreement with Gorez (39).

Gorez and Szwarcman (42) consider the effects of
'surface loading'on bearing stability in thrust bearings
having one or more'porous 1nsert3.'$urrace loading'is the
blocking of pores at the surface of the porous insert

caused during grinding or machining operations (see also
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section 2.2.1). Their theoretical solutions take into
account the presence of a highly restrictive layer at the
porous insert surface which reduces its overall

- permeability in the axial direction. It is pointed out tﬁat
if the porous insert is supplied with pressurized air
during grinding, the resulting permeability may be
controlled by monitoring the gas flow through it (see
figure 2.12). This also results in a flattening of the
porous insert which bows under the pressure drop across it.
Though this may improve bearing performance the author
considers- that the resulting bearing geometry may be
unpredictable under the varying conditions of load, supply
pressure and bearing clearance. Also the grinding of the
porous insert in this way will increase pore blockage in
the central regions of its surface where the maximum
material removal occurs (see figure 2.12). This will cause
a non - uniform permeability distribution across the
surface of the porous insert aﬂd could therefore
considerably affect the bearing performance. However Gorez
and Szwarcman show from theoretical results that for
bearings of similar static performance, the one with a
porous insert having a loaded surface is more stable than
the one with a homogeneous porous insert. This is accounted
to the elimination of the capacitance effect corresponding
to the volume of pores in the porous media, i.e. the'thiﬁ
restgictive layer stops the pressure disturbances taking

place in the bearing clearance, being transmitted to the"
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porous media.

Taylor and Lewis (43) and Taylor (24),(44) extend
their work to include the dynamic characteristics of a full
face porous aerostatic circular thrust bearing. They relate
their'bearing to a simple viscbus damped spring - mass
system and therefore assume that the beaﬁing behaves
linearly for small disturbances of the bearing clearance.
In this way the dynamic forces produced by the béaring are
separated into stiffness and damping forces. The bearing
designer is therefore able to determine natural frequencies
for a given bearing mass and check these against applied
vibrational forces such as may occur in machine tools,for
example. The mathematical solufions employed are similar to
those used for the steady state conditions (24),(25) in
that the' Roscoe Technique (26) is used to discretise the
governing differential equations for flow in the bearing
clearance and the porous media. However in addition these
equations both contain a time dependant term which accounts
for small c&clic variations in préséure throughout the
bearing. Numerical éolutions to the governing differential
equations are obtained using the Alternating Direction
Implicit technique devised by Peaceman and Rachford (45),
in conjunction with a form of over.- relaxation to improve
the convergence rate. Even with this method of solution
however the computational time required was reported to be
large and therefore theoretical results are limited to only

one bearirg configuration. However theoretical results (44)
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did show that it is possible for the bearing to exhibit a
negative damping force in which self induced vibration
would occur as in pneumatic hammer.

Experiments are carried out (24), (43) on a porous
aerostatic thrust bearing using a constant forcg vibrator
and a sweep frequency test to obtéin'typical resonance
frequency curves for the damped spﬁing - mass system
representing the bearing. It was confirmed that provided
the amplitude of vibration is small in re}ation to the film
clearance then the bearing behaved linearly with constant
spring stiffness and damping coefficient. Predicted
theoretical values of damping force were found to agree
with experimental values while the dynamic stiffness was
underestimated. The reasons for this were not known.

The review of literature covered in this section has
revealed the followihg gaps in the knowledge; |
(a) The treatment of an elastic porous pad by Taylor and

Lewis (25) assumes a rigidly supported porous pad in
bending. Many cases arise however where the.porous pad
is elasti&ally supported especially if the porous pad
is bonded into its holder using an adhesive. This
therefore needs to be taken into account in the
theoretical aﬁd experimental.analysis of pofous
aerostatic thrust bearings having an elastic porous
pad.

(b) Although several papers on the theoretical aspects of
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pneumatic inétability in porous gas lubricated thrust

bearings have been presented, there have been limited

experimental investigatioqs to support them. Therefore

many of these theories remain to be verified

experimentally.

These gaps in the knowledge will contribute to a
formation of an outline for the areas of investigation as

-

part of this research project in section 2.3.
2.2.3 ELASTIC PROPERTIES OF THE POROUS MATERIAL

In section 2.2.2 a paper by Taylor and Lewis (25)
concerning a porous aerostatic thrust bearing with an
elastic porous pad was revieweﬁ. A rigidly supported pad
was assumed in their mathematical treatment and only the
flexural constant Dy (also known as the modulus of
rigidity) was required. This was determined directly from
deflection measureﬁents of the porous pad while subject to
a uniform pressure dirfergnce P¢ - P across the pad
~thickness. However it was argued in section 2.2.2 that the
porous pad may be elastically supported around 1its
circumference by an adhesive bond. In such cases it is
shown from the theoretical analysis of porous pad
deflections in section 3.5 that a further flexurall
constant By is required. This ;onstant is a function of the
adhesive bond stiffness ky in bending gnd Polsson's ratio

v, for the porous pad material. It is described in section
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4.3.6 how both flexural constants D, and By can be
obtained from deflection measurements of the porous pad
after assembly in its holder and when subject to a unifornm
pressure difference pg; - p, across its thickness. However
it is not possible to obtain a value of the stiffness k,
from the flexural constant By, unless Polsson's ratioyy
for the porous pad material is known.

The Young's Modulus Ep for the porous material could
be determined from standard compression tests (46) on
smaller test specimens., A value of vy can then be obtained
from the following -equation (47) assuming that the porous

material is homogenous and isotropic:

Epeby’

D. =
b - 2
?2.(1 vy )
E .h?*\Y%
i.e. vy = 1 - b.b 2.18
12.Db

However even for porous materials of the same manufacturers
specification their properties could vary considerably.
Kilmister (30) has reported on the inconsistent
permeability to flow through porous pads of the same
manufacturer’s grading. Similar descrepancies could occur in
the elastic properties between the test specimen and the
porous pad. This is especially since the specimen would be
of a different size to the porous pad and uncontrollable
variations may occur between them during compacting of the

powder and sintering. Because of this difficulty the
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following literature survey is therefore carried out. This
survey may reveal other methods of predicting elastic
properties of the porous material, i.e. from porosity
measuremenﬁs for example.

Squire (48) was among the first researchers to study
the elastic properties of porous sintered materials. Using
iron powder compacts it was concluded that their density or
porosity was the major inflhencing factor on the resulting
elastic modulus of the sintéred material. Several attempts
have since been made by other researchers to make
predictions of elastic modulus from relative density p, or
porosity (1 - p.). McAdam (46) used experimental results
from various sintered steel and iron based alloys to bbiéin

the following empirical equation.
- 3.0 | 2019
Ey Ep.(pr.) |
Conclusions drawn are similar to those by Squire (48) in
that Young's modulus depends mainly on the proportion of
voids in the sintered material, i.e. the relative density
pr rather than the material composition.

Spriggs (49) also fitted an empirical equation to

experimental data for sintered Aluminium Oxide:

- *Des(1 = p.)
Eb Ep.e A r 2.20
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However the resulting value of the empirical constant b,
was found to vary significantly with the fabrication
technique used.

Note that both equations 2.19 and 2.20 require Young’s
modulus Ep for the original parent material in its solid
form. This is widely available from many literature
sources.

Several theoretical predictions (50 to 53) have been
made by assuming the porous medium is a homogeneous.
isotropic matrix whose porosity is in the form of randomly
spaced spherical holes. Expressions obtained indicate
reductions of shear and bulk modulus with reducing porous
medium density. However Leheup and Moon (54) found that
these expressions over - estimated values obtained
experimentally from powder forged (hot rolled powder) and
sintered samples of iron and iron - graphite. This is
partly accounted by the fact that real porous materials do
not have spherical pores. Experimental values of Poisson's
ratio are obtained for_both powder forged and sintered
specimens. For the sintered specimen an increase in
Poisson's ratio to 0.287 occurs at a relative densityp, of
0.877 (Poisson's ratio for a relative density of 1 was
0.283). Unfortunately other results for specimens of a
lower density are not presented and it is therefore
impossible to predict a yalue of Poisson's ratioy, for
typical porous pads used in gas bearings. Note that the

manufacturers (Schumacher filters Ltd.) specify a porosity
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of between 30 and 50% (p. = 0.7 to 0.5) for sintered
stainless steel pads of the type used in porous thrust
bearing applications.

Wang (55) usés a more elaborate mathematical model by
assuming that thé porous material consists of an array of
solid spherical particles. The space between these closely
packed spheres represents the materlal porosity. The
proportion of this space and hence the porosity depends on
the flattened area of contact between adjacent spheres (see
figure 2.13). The solution is therefore capable of treating
the transition of pore structure from interconnect to
isolated (see figure 2.13). Theoretical results predict a
zero Young's modulus at a relative density p, of 0.5236.
This i1s the density at which the spherical particles become
isolated from each other.

A comparison between the experimental results and
empirical equation of McAdam (46) and the theoretical
results of Wang (55) are shown in figure 2.14. The
experimental results are for an iron - copper - carbon
alloy, i.e alloy steel. It is clear that the émpirical
equation (equation 2.19) accurately predicts within
experimental scatter, the relativé elastic modulué %%pdown
to fractional porosities (1 - p. ) of 0.6. The theoretical
model of Wang however becomes less accurate with increasing
fractional porosity (1 - pr ). And the predicted zero
modulus at a fractional porosity (1 - p,) of 0.4764 (=

0.5236 for fractional density p,) gives rise to a large
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error for highly porous materials.

This completes the literature survey in this section

which the author considers is of relevance. The following

conclusions can therefore be drawn:

(a)

(b)

(c)

The elastic property Ey of a porous sintered material
can be predicted approximately f;om measurements of
relative densityp, .

For sintered steel or iron compounds the following
empirical equation gives accurate values of Youngs

modulus;

= 3.8
Eb Ep.(pr)

Because insufficient information has been presented for
Poisson's ratio in the literature reviewed, a value of
vy can only be obtained from values of Dp and Ep in
equation 2.18. The flexural. constant Dy is directly
obtainable from deflection measurements of the porous
pad in bending while a value of Ep, can be determined

using equation 2.19.

2.2.4 COMPLIANT BEARINGS

Dowson and Taylor (56) were amoung the first

researchers to investigate an externally pressurized oil

lubricated thrust bearing in which one of the bearing
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surfaces is compliznt (see figure 1.9). Thin elastomer
layers of Nitrile and Polyurethane rubber were bonded to
the rigid surface of a circular thruster. The lubricant was
supplied through a central feed hole in the opposing rigid
bearing surface. In their mathematical treatment the
elastomer layer 1s considered to be thin compared to 1its
radius and restrained from any movement in the radial
direction parallel to its bonded face. Also the elastomer
material behaves linear - elastically for small
deflections. A simple equation is thus obtained for-

compressive deflections of the elastomer layer;

p.t 2.v 2
c
Wy = 1 - — 2.21
Ec 1= Vs
- pdﬁ
c E. I 2.22
c

where in equation 2.22 E! 1s an equivalent elastic modulus

defined as;

1 1 2:.v.* :

S P - 2.23
) . =

Ec Ec 1= v,

Equations 2.21 and 2.22 are known as the simple column
model by Castelli et at (59). By coupling this equation to
Reynolds equation for flow in the bearing clearance, Dowson
and Taylor obtained closed form solutions for the film
pressure profile and bearing load capacity. Resu1ts show an

improvement in bearing performance compared to a
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conventional rigid bearing without a compliant surface.

Comparisons between theoretical and experimental
results were made by assuming a value of the equivalent
elastic modulué E¢ in equation 2.22 to give close agreement
between experimental and theoretical results at the largest
bearing clearance attained during experiments. An
approximate value of Polsson's ratio was then estimated
from equation 2.23 using a value of Youngs modulus Ec
obtained from low strain rate compression tests on
specimens of elastomer. Values of Polsson's ratioy
between 0.434 and 0.459 were obtained in this way.

Much research has been carried out at Columbia
University U.S.A.; (57to 63) and (68 to 70) on the
theoretical and experimental study of compliant bearings.
This study was initiallized after the discovery that a
plastic Jjournal bearing could be operated at very low oil
feed rates whiie still maintaining a lubricating film.

Elrod (57) obtained exact and approximate solutions
for deflections of an infinite elastomer layer, bonded to a
rigid base material. Sine and Cosine functions were assumed
for displacements in the radial and axial digections
respectively, to obtain elementary solutions.

In a gas lubricated compliant circular thrust bearing
with a central feed hole, Pirvics and Castelli (58) show
further increases in load capacity at a constant recess
pressure due to the gas compressibility. They conclude that

the lubricating gas acts as a secondary elastomer,
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enhancing the effects of the compliant surface in the
bearing film clearance.

A comprehensive experimental and theorectical
investigation was carried out by Castelli et al (59) using
-oil lubrication. The bearing configuration considered was
similar to that of Dowson and Taylor (56). An exact
solution to the classical elasticity equations (see section
3.4) for a linear - elastic material is obtained using
Bessel functions. In order to simplify this 'solution by
reducing the number of required boundary tonditions, the
elastomer 1s assumed to have an infinite extent in the
radial direction. The final solution involves an integral
which is determined numerically. For comparison with
experimental results the clearance between the undeflected
compliant surface and the lower rigid beafing surface is
used in presenting load and flowrate graphs. This
represents the liftoff of the rigid backing to which the
elastomer layer is bonded and was later called the bearing
approach ¢ by Benjamin et al (61, 62).

Only a qualitative comparison of ekperimental and
theoretical results (59) was made as an accurate value of
Poisson's ratio was not known for the elastomer materials
used. However it was suggested that Poisson's ratio has a
value very close to 0.5 for typical soft rubber - like
materials which are incompressible in nature. It was
concluded that while the compliant surface in thrust

bearings improves the load carrying capacity, this is
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achieved with a loss in the overall stiffness of the
bearing due to the soft elastomer layer. A comparison of
theoretical results was also made using the simple column
model of.Dowson and Taylor (56) and this is shown to give
accurate predictions for Poisson's r#tiovc up to 0.45. As
v approaches 0.5 however equation 2.21 predicts deflections
approaching zero for the compliant surface. Since Castelli
et al (59) have shown this not to be true and that .
compliant layer deflections can occur when py. = 0.5 then
this is therefore a serious limitation of the simple column
model used by Dowson and Taylor.

Although in the. experimental apparatus used by
Castelli et al (59) it was not possible to _measure
deflections of the compliant surface, their theoretical
results showed the unusual nature in which incompressible
materials (p, = 0.5) can behave. Due to the compression of
the elastomer layer in the central regions of the bearing
clearance where film pressures are greatest, material is
displaced radially outwards from this region. A bulging of
the compliant surface therefore occurs at the bearing
clearance exit (see figure 1.9 of section 1.2) where the
film pressures reduce to ambient. This phenomena is said to
improve bearing performance by reducing the rate of
escaping flow from the bearing clearancelexit and also
enhancing the recess formed by deflections of the compliant
surface which helps generate more uniform film pressures.

Solutions and results obtained by Castelli et al (59)
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assume an 1nfinité elasto;ef lafer.'bﬁfioﬁsly this is
impractical and in a design guide by Castelli and Rightmire
(60) it is suggested that this case will be satisfied when
the elastomer extends 3 to 5 times its thickness beyond the
bearing clearance exit. Also solutions were founa to be
dependént onlthé term 1/(1 - 2v.). This term becomes
increasingly more sensitive to values of Poisson's ratiouw,
approaching 0.5 (see figure 2.15). Rightmire (63) was
therefore prompted to accurately determine by experiment,
values of v, for'typical elastomer materials used in
compliant bearings (refer also to section 2.2.5). Values
obtained for soft rubbers were in the range 0.49881 to
0.49991. Others (64 to 66) ﬁave also obiaiﬁedHSimilav
values for natural rubbers filled with carbon black.

In an attempt to find solutions for the compliant
thrust bearing with an elastomerllaQér of'rinite radial
extent (see figure 2.16) Benjamin (61) investigated three
different solution_methods to the elasticity problem. The
first was by use of eigenfunctions in solving the classical
elasticity equations (see séctién 3.4), but this proved.to
be too complex in the finite elastomer case. The second
approach employed the Raleigh Ritz method to minimize the
strain energy in obtaining a solution to the elasticity
equations. However as ﬁoiss&ﬁ;s-fatio‘apbroached“o.s an
infinitely reducing géid mesh size was required to obtain
an accurate solution giving rise to an excessive computing: .

time. It is stated that this would also 6ccur-with thef
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numerical methods requiring a grid mesh for their final
solution, such as finite difference methods for example.
The third approach which proved successful employs an
integration method using Gréen's function approach to
obtain an elementary solution to elastic field equations;
The boundary conditions were then satisfied using the
principle of superposition (85). This third method was
particularly suitable for values of Poiséon's ratio
approaching 0.5. The final solution to the bearing using
Reynolds equation was then achieved using the Newton -
Raphson iteration technique.

A comparison of this solution with experimental
results was made by Benjamin et al (62). The bearing is
shown in Figure 2.16. Note the port sleeve ‘used to stop the
elastomer layer blocking the feed hole when compressed by,
the film pressures. A good correlation was achieved for
load against recess pressure. However a small descrepancy
arising at small bearing clearances was accounted to
neglecting the viscous frictional heating of the lubricant
in the bearing film clearance and the :supply. This causes
thermal distortion of the compliant surface, changes in
mechanical properties of the elastomer material and a
reduction in the lubricant viscosity. Results obtained for
load against bearing approach were less promising, possibly
due to inaccurate measurements of the bearing approach and
also roughness of the bearing surfaces, particularly the

compliant surface, which were ignored. These results
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however clearly show that the bearing with a finite
elastomer layer can operate at -ve approaches c. This
occurs wheﬁ compression of the elastomer layer 1s greater
than the béaring liftoff.

The design guide presented by Castelli and Rightmire
(60) gives information on several compliant thrust bearing
configurations including a flexible membrane bearing
similar to that studied by Levy and Coogan (67) and shown
in figure 2.17. This bearing is ideal for operating over
rough undulating surfaces such as floors, made possible by
the flexibility of the rubber membrane.

Other research carried out at Columbia University
includes work on compliant journal bearings (68 , 69) in
which the compliant surface is subjected to a cyclic
loading. The visco - elastic properties of the elastomer
material must therefore be taken into consideration and the
resulting deflections of the compliant surf%ce are not only
dependant on shaft angular position but also its rotational
speed. A compliant surface in a long squeeze film journal
bearing is studied theoretically by Buckholz (70). A
solution is obtained using Navier equations for linear
elasticity and results are presented for the special case
of an incompressible elastomer and lubricant.

Lowe (71, 72) carried out an experimental analysis of
compliant aerostatic circulaf thrust bearings with a

central feed hole to verify the theoretical predictions of
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Pirvics and Castelli (58). Inherent compensation was used
to reduce the likelihood of pneumatic instability
"especially since a shallow recess will be formed in the

' bearing clearance by def;ections of the compliant surface.
-To improve the accuracy of experimental results Lowe (72)
took into account variations of the elastomer layer
thickness due to changes in ambient temperature. This is
because the rubber thickness was used to determine the
initial zero setting of the capacitance probes used to
measure the bearing approach c. Lowe achieved a good
correlation of experimental results with the theory of (58)
for the thinner elastomer layer cases.

Although in general Lowe found increases in load
capacity for the compliant bearing compared to a
conventional thrust bearing with rigid surfaces and a
central feed hole, this was not always the case., For
example often at medlum bearing clearances a reduction in
load capacity was noted. However this is possibly due to
increases in bearing clearance caused by deflections of the
compliant surface for a given bearing approach c. At low
bearing clearances the recovery in load capacity is
attributed to the static stiffness of the compliant bearing
remaining virtually constant. This therefore is a
-significant advantage of the compliant surface bearing
since the static stiffness of the rigid bearing reduces to
zero at small bearing clearances. Another reason overlooked

by Lowe for the increases in load capacity at low bearing
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clearances is the bulging of the elastomer layer near the
bearing clearance exit. As described by Castelli et al (59)
this enhances the recess formed by deflections of the
compliant surface to produce more uniform film pressures.

Lowe also found that an optimum elastomer layer
thickness existed for which the load capacities from the
compliant bearing are a maximum at a given bearing
approach., This thickness depended on the hardness of the
elastomer layer material and the supply preséure, i.e. the
optimum thickness reduced with increasing supply pressure
and reducing elastomer hardness. The reasons for this are
not given but this is possibly due to deflections of the
compliant surface giving rise to an increase in the mean
bearing clearance for a given bearing approach. A potential
recovery in load capacity would be expected at léwer
bearing approaches.

The experimental results obtained by Lowe also show an
increase in flow rate for the compliant bearing at a given
approach compared to the conventional rigid bearing. It is
therefore important to operate the bearing at low bearing
clearances to minimise flowrate and take advantage of the
higher load capacities.

At certain operating conditions Lowe found the
compliant bearing to be unstable and suffer from pneumatic
hammer. Stability plots are presented which show that
stable regions of bearing operation exist at lower supply

pressures and for thinner or harder elastomer layers. Also
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in general the bearing stability improved with increases in
load capacity.

Gupta (73) considers the incipient liftoff in a
preloéded plane compliant thrust bearing of finite width
and iﬁfinite length with a central feed hole. This has
important significance in self - caging compliant surface
gyroscopic bearings for example. Here when the supply is
cut off the gyro will cage in its current position because
of an initial interference fit between the compliant
surface and the gyro casing. The compliant layer is assumed
to be of infinite extent in both width and length. The
bearing is pre - loaded before the supply pressure is
applied and the rigid bearing surface indents into the soft
elastomer layer. It is postulated by Gupta that liftoff
occurs when the lubricating film‘wnich propagates from the
central feed hole, reaches the bearing exit. Just before
liftoff occurs the flowrate is zero, due to the seal
maintained by the compliant surface and also the film
pressure profile is uniform. This reasoning seems
acceptable for compliant bearings with elastomer layers of
infinite extent and particularly for elastomers that are
incompressible in nature, since a bulging of the compliant
surface will take place at the bearing clearance exit
forming a seal here. However for a bearing with a finite
elastomer layer of equal width or radius to the bearing
clearance, the case for inciplent liftoff may be different.

This 1s because Rybricki et al (74) for example has shown
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that deflections of the finite elastomer layer are greater
towards the bearing clearance exit when subject to a
uniform pressure profile (see figure 2.18). It is possible
that the lubricating film will propagate instantly from the
central feed hole the moment a threshold supply pressure is
reached. At liftoff therefore the bearing film pressure
profile is unlikely to be uniform and the criteria for
incipient liftoff will be different.

Also for a compliant thrust bearing supplied-through a
full faced porous pad (see figure 1.12a of section 1.1),
liftoff would be complete when there are no areas of the
compliant surface in contact with the porous surface. And
since lubricant is supplied to the full bearing face it is
possible with these bearings that flow through the bearing
takes place long before 1iftoff is complete.

Gupta however shows that the supply pressure required
for bearing liftoff is a function of the properties and
dimensions of the elastomer layer and the indentation due
to the pre - load on ‘the bearing. For a given indentation
the liftoff pressure increases with the stiffness of the
compliant layer and as Poisson's ratio v, approaches 0.5..

In all the research work reviewed so far on compliant
bearings the surface roughness of the bearing surfaces has
been ignored. This consideration is particularly important
withregard to the compliant surface since although its
surface roughness may be significantly greater than that of

the rigid surface it had the potential capability of
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complying to local roughness peaks and hence moderating the
effects of roughness on bearing performance (see fig 1.7).

As far as the author is aware Lau and Harman (75) are
the only researchers to take into account surface roughness_
in their theoretical study of a compliant hydrostétic /
hydrodynamic thrust bearing. However the compliant surface
is assumed to be perfectly smooth and roughness of the
rigid mating surface has a random Gaussian distribution
(76) typical of many machined surfaces. In the analysis the
effect of local variations in the film pressure due to
surface roughness are ignored. It is assumed that these
have negligible effect on the bulk film pressures.
Therefore the effect of compliance on local surface
roughness could not be studied. This means that the results
presented by Lau and Harman show the effect of the
additional pneumatic clearance on the measured bearing
clearance, arising from roughness of the bearing surfaces.
Results show that the bearing performance reduces with
increasing surface roughness as would be expected since the
effective bearing clearance is increased by the roughness
troughs. However since deflections of the compliant surface
give rise to larger bearing clearances over most of the
bearing face the relative roughness in these regions 1is
reduced, improving the bearing performance. .

Stanojevic (77) obtained two general field equations
for an axisymmetric elastic material applicable to any

value of Polisson's ratio from 0 to 0.5. A numerical finite
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difference solution was attempted but a solution coupling
both the field equations could not be achieved at the
boundaries of the elastomer layer. -

In experimental work (77) on aerostatic compliant
thrust bearings with a central feed hole, capacitance’
probes are used to measure the displacement of the
.compliant surface which was coated with an electrically
conducting paint. Stanojevic reports problems in measuring
the bearing clearance in this way due to thermal distortion
of the compliant surface affecting its flatness. Lowe (72)
had partly overcome this problem by measuring the changes
in elastomer layer thickness in a temperature controlled
room. These problems however can be reduced if instead
displacements of the rigid backing plate to the elastomer
layer are measured. This is described in more detail in
section 4.5.3.

Comparisons are made by Sténojevic (77) in the
performance'between bearings with bondéd and unbonded
elastomer layers. In general, results show that the bearing
performance improves with the bonded elastomér_layers‘
compared to the unbonded cases even'thohgh deflections of
the latter were greater. Reasons for this are that the
bonded elastomer layers produce a deeper recess especially
those that are incompressible in nature where buléing can
occur at the beariﬁg exit.

However the bearing performance resulting from the
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unbonded case depended on the friction between the
elastomer layer and its rigid backing. If this interface
was lubricated the resulting stiffness of the elastomer
layer to film pressures is reduced. This is because the
elastomer material was allowed to flow unconstrained in the
radial direction. The greater the friction against radial
movement for the unbonded elastomer layers the greater the
improvement in bearing performance.

An important recommendation made by Stanojevic 'is that
research work should be carried out on the effects of a
compensating element in compliant bearings. As far as the
authur is aware no such work has been carried out to date.
One form of compensation is a porous pad and therefore the
work carried out in this research project on porous and
compliant aerostatic thrust bearings, may have some
significance to other forms of compensation such as
capillary compensation.

Many researchers of-compliant thrust bearings have
used capacitance probes to measure bearing clearance. By
incorporating several probes in the opposing rigid bearing
surface to the elastomer layer an approximate measurement
of the bearing clearance profile can be obtained. However
some researchers have used different methods. Smith et al
(78) for example uses a fibre optic probe. This was
traversed above the bearing to obtain a more accurate
measurement of the bearing clearance profile. Similarly

Field and Nau (79) use optical interferometry to measure
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the bearing clearance profile in a small hydrodynamically
lubricated rubber pad sliding over a flat sheet of glass.
Results show the characteristic entrapment of o0il in the
recess formed by deflections of the compliant rubber pad.
In both methods a light source (i1.e. a laser) is shone
through a transparent material which forms one of the
bearing surfaces. A measurement i1s taken using the light
reflected from the two: bearing surfaces. It is therefore
important that both surfaces reflect-the light source with
approximately equal intensity. This condition may not be
achieved in bearings with a porous surface for example
since light may be scattered in several directions as a
result of its porosity. |

Compliant squeeze films subject to an oscillating
vertical movement have been investigated by Hori- et al (80)
and Ikeuchi et al (81). Hori et al showed that at low
frequencies the visco — elastic effects of the elastomer
material could be ignored. Experimental bearing clearance
profiles were taken during oscillations of the upper
bearing portion using moire fringe topography. These
results show that on the downward stroke the compliant
layer deflects in a concave shape to trap escabing
lubricant from the squeeze film. On the upward stroke
deflections of the compliant surface take on a convex shape
allowing the lubricant to flow freely back into the squeeze
film. This is a further 1nter§sting example. of the way in

which compliant surfaces can improve bearing performance
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even in squeeze films. Ikeuchi et al (81) obtained
solutions for the elastomer layer which are similar to
those by Castelli et al (59). Consideration 1s also given
to a squeeze film bearing with a flexible thin plate in
place of the elastomer layer.

A non oscillating compliant squeeze film bearing
subject to a c&nstant-load is theoretically studied by
Rybricki et al (74). A finite element solution is used for
deflections of the elastomer layer but it is not shown
whether this solution is suitable for the case when
Poisson's ratio v, = 0.5. However it is shown that for v
0.48, deflections of the compliant surface are greater.
towards its outer edge when subject to a uniform pressure.-
over its whole face (see figure 2.18). This illustrates the
unusual nature in which incompressible materials such as .
rubber, which are constrained from lateral movement along
one side, can behave under applied loading.

A gas lubricated externally pressurized compliant
thrust bearing in which the compliant surface is formed by
a thin flexible metallic plate and the lubricant is
supplied through a central feed hole, i1s investigated by
Hayashi (82). This bearing.is similar to one of the squeeze
film bearings studied by Ikeuchi (81). Significant
improvements in static stiffness and load capacity compared
to a conventional bearing with rigid surfaces was reported.
However the compliance of this.type of bearing to

misalignment between the bearing surfaces and surface
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roughness, etc. is less compared with a compliant bearing
with an elastomer layer.

This completes the review of literature in this
section. It has become apparent from this review that while
the column model of Dowson and Tayior (56) for deflections
of the compliant surface is attractive in its simplicity
and therefore easily applied to complex bearing problems,
its main drawback is that it is unsuitable for soft
incompressible elastomer materials where Poisson's ratio v,
approaches 0.5.

The solution offered by Castelli et al (59) can be
applied where p. = 0.5, but is limited to the elastomer
layer of infinite radial extent only. The Green's function
approach by Benjamin et al (61, 62) could be applied to
both elastomer layers of finite and infinite radial extent.
But its complexity is a limiting factor in the application
of this theory to other bearing problems. Also these
solutions do not allow simpification to the.column model .
when Poisson's ratio is less than 0.45.

A new solution for deflections of the compliant
surface is therefore proposed in section 3.4.4 which is
shown to be an extention of the simple column model to
enable solutions for v, 1n the range 0 to 0.5 and is
suitable for elastomer layers of any radial extent, i.e.
finite or infinite.

The review of literature has also revealed that no

published work has been presented on compliant aerostatic
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thrust bearings with some form of compensation. This gap in
the knowledge will be partially filled by the work in this
research project on porous and compliant aerostatic thrust
bearings, if the poréus pad 'is considered aé a form of
compensation. -

These suggestions and gaps in the knowledge on
compliant thrust bearings will contribute to a formation of
an outline for areas of investigation in section 2.3, as

part of this research.
2.2.5 ELASTOMER MATERIAL PROPERTIES"

Of the published work reviewed in section 2.2.4 most
researchers of compliant bearings have assumed that the
elastomer layer is a homogeneous, isotropic and perfectly
linear - elastic material. A homogeneous and isotropic
material is one in which the physical properties -of the
smallest element within the material are the same as those
of the bulk material and these properties are equal in all
directions. Typical soft elastomers such as rubber satisfy
this condition with the exception of rubbers with a high
proportion of filler. Often a filler material such as
carbon black is used to increase the stiffness of the
elastomer, For small proportions of the filler up to 20%,
the rubber may still be considered homogeneous (83). As
increasing amounts of filler are used however the rubber

will become less homogeneous and take on a matrix”
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structure. -

A perfectly linear - elastic material is one in which,
when loaded, the strain is directly proportional to the
applied‘stress and when unloaded 1t returns to its
original undeformed state. Typical rubbers (83) have a
stress strain curve similar to that shown in figuge 2.19.
The assumption of linear elasticity can only be satisfied
therefore if small regions of this curve are linearized,
i.e. for strains up to 10% the stress can be approximated
by a straight line (see figure 2.19).

During the initial loading and unloading cycles with
rubber, a structural breakdown occurs (83) resulting in a
permanent deformation when unloaded and a reduction in the
rubber stiffness with each Eycle. This invalidates the
assumption of a perfectly elastic material. However most of
the structural breakdown takes place in the 1st cyclic
loading of the rubber and by the 10th cycle the rubber is
sufficiently stable to assumé perfect elasticity. It is
important therefore tha£ the properties of the rubber are
measured after it has reached this stable condition, i.e.
after loading and unloading at léast ten times.

Many researchers of compliant bearings have realised
the importance of Poisson's ratio vy, in their theoretical
elasticity analysis. This 1is because for typical soft
elastomer layers which are bonded to a rigid flat surface,

as v, approaches 0.5, the resuiting layer stiffness becomes
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very sensitive to small cﬁanges in:k . For example in a
study of the compression of constrained cylinders by Moghe
and Neff (84), theoretical results show that the stiffness
of a cylinder or disc, bonded béiwéen two flat_faces is
dependant on both Poisson's ratiorv and the r;tio of disc
thickness to diameter. For a thickness to diameter ratio of
1/10, a 20% increase in stiffness occurs for a change in
Poisson's ratio from 0.4988 to 0.5 (0.24%). Similar results
would be expected for the uniform compression of an
elastomer layer, bonded to one flat surface whose thickness
represents half that of_the constrained cylinder.

This sensitivity of the elastomer layer stiffness to
Poisson's ratio prompted Rightmire (63) .and Holownia (64,
65) to establish experimental techniques for accurately
measuring its value for soft elastomers. The apparatus used
by Rightmire is shown in figure 2.20. A specimen of disc
shape is placed in the pressure chamber and changes in
specimen volume are measured, at different hydrostatic
pressures, from the level of liquid (mercury) in the
transparent plexiglass tube. To obtain a value of Poisson's
ratio for the specimen it was also necessary to measure its
shear modulus G. This was achieved using the shear tester
shown in figure 2.21. The accuracy of obtaining Poisson's
ratio in this way was shown to improve as its value
approached a maximum of 0.5.

Holownia (64, 65) devised a differeqt technigue to

obtain Poisson's ratio v by compressing a rubber specimen
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in a cylinder using a plunger (see figure 2.22). Values of
bulk modulus K and Young's Modulus E were obtained from
this apparatus for rubbers with different carbon black
filler contents. The value of v ﬁas derived from E and K
(see section 4.4.2). -

Stanojevic and Lewis (66) carried out a comparative
study of the two test methods by Rightmire and Holownia and
found that both methods gave reproducible results for bulk
modulus K, to within 3%. However the cylinder and plunger
method used by Holownia was prefered due to its practical
ease of operation compared with Rightmires method.

Whilst it is possible to determine a value of v from
any two combinations of material elastic constants E, G and
K, it was shown (66) by error analysis (refer also to
section 4.4.2) that if values of E and G are used large
errors in p could occur. However for combinations E and K
and also G and K, small errors would occur in v ,
particularly as its value approached 0.5. For example (66)
a 10% and 20% error in E and K respectively would produce
an error of 0.3% in v if this value were 0.495.

Although Stanojevic and Lewis acknowledge the way in
which Holownia measures Young's modulus E and estimate an
accuracy of 10% using this method, the shear modulus test
of Rightmire was ignored. Rightmire estimated an accuracy
of 3% for measuring shear modulus G and this would further
improve the resulting accuracy in the value of Poisson's

ratio v obtained from using the combination G and K instead
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of E and K. It would therefore seem appropriate to compare

the values of Poisson's ratio v obtained from both E and K

and G and K measurements and this is done in section 5.3.3.

From this short review of literature on elastomer
material properties the following can be summarized;

(2a) The elastomer is a homogeneous and isotropic material
provided its filler content does not exceed
approximately 20%.

(b) Perfect linear - elasticity may be assumed for small
strains up to approximately 10% and provided the"
elastomer is cycle loaded 10 times before testing or
use.

{c) Due to the high accuracy required for Poisson's ratio
it will be necessary to measure this directly from
samples of rubber used for the bearing elastomer layer.
The method of Holownia (64, 65) will be used to measure
bulk modulus K and Young's modulus E, due to its
practical simplicity. However measurements of shear
modulus G will also be carried out using-the shear
tester by Rightmire (63). A comparison of v derived
from E'and K and G and K will be made.

This completes the literature review as part of this
research project. The areas of investigation will now be

defined.
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2.3 OUTLINE FOR THE AREAS OF INVESTIGATION

1

From section 2.2 the gaps in the knowledge and

conflicts of opinion in the literature reviewed, in

addition to proposals made, can be summarized as follows:

(a)

(b)

(c)

(d)

(e)

A porous and compliant aerostatic thrust bearing;
experimental and theoretical analysis to compare the
performance of this new bearing with those of its
predecessors the porous aerostatic thrust bearing and
the compliant aerostatic thrust bearing.

The existence or not of three distinct regions of flow
in the porous pad as suggested by Taylor and‘Lewis (9)
and the criteria of McGrea and Donaldson (10) for. only
one region of flow.

The pore blockage due to surface machining operations
to the porous pad; will this effect the flow through
porous pad as suggested by Polome and Gorez (12)7 Is
the chemical etching technique used by Taylor and Lewis
(9) sufficient to remove this pore blockage or will
other methods such as electro - polishing (7), give
better results.

Consideration to the elastic support for deflections

in bending of the porous pad,

Experimental analysis of porous aerostatic thrust
bearing stability. This could be extended to the porous
and compliant aerostatic thrust bearing proposed in

this research project.
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(f)

(g)

(h)

A new mathematical model for the deflections of the
elastomer layer which extends the simple column model
of Dowson and Taylor (56). This model should be
suitable for elastomer layers of finite or infinite
radial extent and for Poisson's ratio in the range 0 to
0.5. Also it must be suitable for application in more
complex bearing problems such as the porous and
compliant aerostatic thrust bearing proposed in this
research project.

The effect of a compensating element on compliant
thrust bearing performance. In this respect the porous
pad could be considered as a form of compensation.

A comparison of the accuracy in determining Poisson's
ratio using either shear or Young's modulus with bulk
modulus for the elastomer layer.

It will be the objective of this research project to

attempt a fulfilment of all aspects listed in this section.
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CHAPTER 3

THEORETICAL ANALYSIS

3.1 - INTRODUCTION

In this chapter a mathematical model and the solution
of this model for the porous and compliant circular
aerostatic thrust bearing described in chapter 1, will be
presented. This will enable the bearing performance to be
predicted.

The model may be sub - divided into two groups of
equations as follows:

(a) The lubrication equations; these govern the
compressible flow within the porous pad and the bearing
film clearance. Consideration must be given to a non -
uniform bearing clearance caused by defections of the
compliant surface and the porous pad.

(b) The elasticity equations; these equations will predict
(i) deflections of the compliant surface due to film
pressures and (1i) deflections of the porous pad due to
the pressure drop across its thickness.

The lubrication equations and methods of solution by
Jones et al (23) and Taylor (24) for a porous aerostatic
thrust bearing will be used. It was shown by Taylor and
Lewis (9) that the analytic solution of Jones et al (23)

gave accurate predictions for the performance of a porous
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aerostatic thrust bearing with rigid bearing-surfaces and a
uniform bearing clearance. Though this solution cannot be
applied to the non - uniform bearing clearance cases, it
will be useful for a theoretical comparison between the
porous and compliant aerostatic thrust bearing of this
research project and the porous aerostatic thrust bearing
with a uniform bearing clearance. It can also be used to
obtain a first estimate of the pressures in the bearing
clearance, for a numerical solution to the lubrication
equations by Taylor (24). This numerical solution is
suitable for non - uniform bearing clearances (25) and may
therefore be used in the mathematical modelling of the
porous and compliant aerostatic thrust bearing. Taylor (24)
showed that this numerical solution gave accurate results
when compared to the analytic solution of Jones et al (23)
for a porous aerostatic thrust bearing with a uniform
bearing clearance, hence verifying the numerical solution.
Both these solutions by Jones et al (23) and Taylor (24)
will be described in more detail in section 3.3.

With regard to the elasticity equations for deflections
of the compliant surface a description of various solutions
by other researchers is given in section 3.4.3. This then
forms a background t6 the authors own solution presented in
sections 3.4.4 and 3.4.5. Also,as mentioned in sections
2.2.2 and 2.2.3, although Taylor and Lewis (25) obtained
equations for the deflections in bending of the porous pad
due to the pressure drop across its thickness, these were

\
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for a pad supported rigidly around its circumference.
Therefore a new solution is presented in section 3.5
allowing for the elastic support of the porous pad which
the author considers is a more accurate model for
deflections of the porous pad.

To predict the pérformance of the bearing the
solutions obtained from the lubrication equations and the
elasticity equations must be coupled together. An iterative
technique is used to match film pressures and the bearing
clearance geometry with deflections of the compliant
surface and the porous pad. This technique 1s described in

section 3.6.

3.2 THE LUBRICATION EQUATIONS

The bearing configuration and the co - ordinate system

used for analysis in this section are shown in figure 3.1,

3.2.1 ASSUMPTIONS FOR FLOW IN THE POROUS PAD
These are as follows:
(1) The flow in the porous pad is viscous dominated and

governed by Darcy's law;

ap n
el M I P | 3.)
2
ar,z ‘r,z

(1i) While the viscous permeabilities @, and ¢, in
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(111}

(iv)

(v)

(vi)

equation 3.1 may not be equal they are constant for
each porous pad.
The lubricant 1s compressible and obeys the perfect

gas equation of state;

Rgaa

The flow is isothermal, i.e. T = constant in equation
3.2 and 1isoviscous, i{i.e. 7 = constant in equation
3.1,

No swirl of flow takes place in the 0 direction and
the flow is axisymmetric about the axis r = 0.

The bearing 1s operating in a stable and steady state

condition.

3.2.2 GENERAL DIFFERENTIAL EQUATION FOR FLOW IN THE POROUS

PAD

The continuity equation for compressible flow is:

1 3(p.v_.r) 3(p.v.)
- — r b # = 0 3'3
r ar 9z

From Darcy's law, equation 3.1:

¢ 9p
Vi = = =,-- 3.4
n ar
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and

¢zap

n 9z

Substituting equations 3.4 and 3.5 into equation 3.3 and

using equation 3.2 gives;

19 p ®_o9p 3 p d_ 3p
- o-ro_or e — .__Z_._ = 0 3.6
r ar Rgas'T n er 9z Rgas'T n 9z

The constants Rgag vy Ty 7, ®, and ¢, can be taken out of
the differential brackets. Also since 2pd(p)=9(p?) equation

3.6 may be written:

o, 3 a(p?) 9 a(p?)

i == | v + ’z'“ =0 3.7
r_aJr ©oar }4 3z

Equation 3.7 is the general differential equation for
steady flow in the porous pad. It applies in the region r =

0 tor, and z = 0 to hy.
3.2.3 ASSUMPTIONS FOR FLOW IN THE BEARING CLEARANCE
These additional assumptions to those already

mentioned in section 3.2.1 are as follows:

(vii) The flow is viscous, inertia effects are neglected.
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(viii) Only pressure and velocity gradients in the radial
direction are considered. The pressure across the

bearing clearance is assumed constant.

(ix) By continuity,the velocity of flow across the porous
pad - bearing clearance interface is constant.
(x) The bearing film pressures are equal to the

pressures within the porous pad at the porous pad -
bearing clearance interface.

(x1) The velocity of flow at the compliant surface is
zero.

Assumption (ix) is similar to that used by Ishizawa
and Hori (20) to account for the slip flow that takes place
along the porous pad - bearing clearance interface (see
figure 2.5 of section 2.2.2) and the injection of flow into

/

the bearing clearance from the porous pad.

3.2.4 MODIFIED REYNOLDS EQUATION FOR FLOW IN THE BEARING

FILM CLEARANCE

For flow within the bearing clearance consideration
must be given to the injection of flow from the porous pad
and the slip flow taking place at the porous pad - bearing
clearance interface. The injection of flow from the porous

pad is given by Darcy's law:

$_3dp
e 3.8
n dz

-135-



and similarly for the slip flow:

¢ 3p
v - - -._
r n ar 3-9

From the assumptions in section 3.2.1 and 3.2.3, and
using equations 3.8 and 3.9, Jones et al (23) obtained a
modified Reynolds equation., For a non - uniform bearing
clearance hy = f(r), this equation may be written as

follows (25);

12 a(p?) a(p?) .46
- Fe o(h 2 6.. )-h = 12.% ,—m -
r or or & AR Z az %

=y,

Equation 3.10 applies in the region r = 0 to rp and z

3.2.5 BOUNDARY CONDITIONS FOR FLOW IN THE POROUS PAD

While it may be possible to analyse the flow in both
the porous pad and the bearing clearance and match the
solutions at the porous pad - bearing clearance interface a
simpler method adopted by both Jones et al (23) and Taylor
(24) 1s to use the modified Reynolds equation (equation
3.10) as a boundary condition to flow in the porous pad.
Equation 3.7 which governs flow in the porous pad is a

second - order differential equation which requires four
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boundary conditions. These are as follows:

(1) The supply pressure to the porous pad is constant and

therefore at z = 0, r = 0O tonr,, P = Pg.

(1ii) Since the flow is axisymmetric about the bearing akis

then at r = 0, 2 = 0 to hp; gg=0. _
r
(111) The porous pad is sealed around its circumference so
that v, = 0 there. Therefore at r = ry, z = 0
to hy, from equation 3.4,9p=0.
(iv) Along the boundary r = 0 ;o 'y, 2 = hp the modified
Reynolds equation (equation 3.10) applies.
In addition to the above boundary conditions, equation

3.10 for flow in the bearing clearance also has a further

two boundary conditions:

(v) The film pressure is equal to the ambient pressure at
bearing clearance exit. Therefore p; = p, at r = Gy 2
= hp to hy + heo

(vi) For axisymmetric flow in the bearing clearance g£=0-at

ar
r =0, 2= hy to hy + he.

3.2.6 NON - DIMENSIONAL DEFINITIONS FOR THE LUBRICATION

EQUATIONS
The following non - dimensional definitions were used
by Jones et al (23) and Taylor (24) for a porous aerostatic

bearing with a rigid uniform bearing clearance:

Radial position R = r/ry 3.11
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! Axial position Z = z/hp 3.12
: Non - dimensional pressure P = p/p, 3.13
-Permeability ratio Ky = &/¢, 3.14
Bearing aspect ratio Sp= hp/ry ' 3.15
Bearing number Ay= 12.ﬁg.¢z 3.16

hy .hy(hd + 6.0.)
Because the bearing clearance hy is no longer uniform
due to deflections of the compliant surface and the porous
pad, it is necessary to introduce a local bearing number as
follows:

! Local bearing number Ay = 12,105 . 02 3.17

hy .he (b} + 6.0r)
where h, is the local bearing clearance at radial position
r.

Equations 3.7 and 3.10 in non- dimensional form become:

S, 2.K 2 a(P?) 32 (P2)
DY R. + -0
R 3R R rYAS
for 0 SRS1,0s82Z2s51 3.18
19 (n a(r)) (a(P*) )
RAR \ A, 3R YA Za1
for 0 SRS1 ,2 =1 3.19

The boundary conditions (i) to (v) of section 3.2.5,
in non - dimensional form become;

(1) P:P;atZ:O,R=0t01 3.20
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(i1) 9P =0 at R = 1, Z = 0 to 1 | 3.21
dR

(i11) 9P = 0 at R = 1, Z = 0 to 1 3.22
aR

(iv) Equation 3.19 applies a£ Z =1, R=0¢to 1 3.23

(v) P=1atR=1,2=1 3.24
Note that boundary condition (vi) of section 3.2.5 in

non - dimensional form is similar to boundary condition

3.21.

3.3 - SOLUTIONS TO THE LUBRICATION EQUATIONS

3.3.1 ANALYTIC SOLUTION BY JONES ET AL (23) FOR A UNIFORM

BEARING CLEARANCE

For a uniform bearing clearance, the bearing number as
defined by equation 3.16 can be used and since this is a

constant,equation 3.19 can be written as follows:

13 3_(1_1) a_(v_z) - -
R*3R ( R-S3R Ay ( iz |, 3.25

Using the separation of variables method Jones et al
(23) showed that a solution to equation 3.18 can be

expressed using Bessel functions in the form:

P* = (A,J,(BR) + A,K.(BR)).(é,coan(AZ) + B,cosh(AZ)) 3.26
where g8 = 1/8b
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To satisfy boundary condition 3.21 this equation reduces

to:

P? = J4(8R).(Cycosh(AZ) + C,3inh(AZ)) 3.27

By using boundary conditions 3.20 and 3.22 the following

expression was obtained:

P? p; + C,2 + Z an. sinh(,\nZ)J.(knR) 3.28
n=2

where kn (n = 1,2,etc.) are the roots of the equation

Ji(k ) = 0 " 3.29

xn - kn.Sb.i KV 3.30

Equation 3.28 is differentiated with respect to Z and
the value of the derivative obtained at 2Z = 1. The result

is substituted into equation 3.25 which is subsequently

integrated twice with respect to R to obtain an expression
for P . The constants of integration are evaluated from
boundary conQ}tion§‘3.21 and 3.24 and the following
solution was obtained for thé pressure squared in the

porous pad at Z = 1:
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Au-Czl(B=-1) Jo(kn)
n

n=2

Equations 3.28 and 3.31 are equated at Z = 1 to obtain

expressions for constants C, and Cp, 1i.e;

Au.cz
C = | 5.30
i Jolk ). (k *stan(h )+ A .Aj.cosh(Ap))

P2 -1
c: - .8 . ) 3.33
A
u
2 - e -
Ay 222%1 8 1
n=2
‘n
where E = 3.34

n 2 : 2
kn .(Au.ln + kn .tanh(ln))

Equation 3.31 gives the bearing film pressures at Z =
1. Details of a programme to evaluate this equation are

given in appendix 1.

3.3.2 THE NUMERICAL FINITE DIFFERENCE SOLUTION OF TAYLOR

(24)

Taylor (24) presented a second solution to the
lubrication equations by finite difference methods using
the Roscoe technique (26). Later Taylor and Lewis (25)

showed in their study of porous pad deflections on bearing
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performance that this solution 1s applicable to the non -
uniform bearing clearance case.

The Roscoe technique is a method of discretising
differential equations for a finite difference solution,
which when applied to equations of a similar form to 3.18
and 3.19, ensure a valid and stable solution.

For a differential equation of the form:

9%k oF 9%t
Dlo-_. + Dzn—- + D‘n— - 0 3'35
oR2. oR VAL

the Roscoe technique gives the following discretised

equation:

Dz -D,Ar/D ~D.Ar/D
3 ALTPOIR I TOR LA b w g, o (o8 2NNy
Pl e B 1-1,3
Dy
' (Az)='(51'1*}- 281,39 * Bg,3-) = 0 3.36

Let the porous pad be discretised as shown in.figure
3.2, The first term in equation 3.18 may be expanded as

follows:

3. aex) \ o 32(p2) |, 3(P?)
. 3R" ( T ) RS3RT * 3R 3437

Substituting this expansion back into equation 3.18 gives:

32 (P2) S, 2.K 3(P2)  32(P2)
S.2.K . + L + -0 3.38
b V. 3Re R :9R 922
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Equation 3.38 is of a similar form to equation 3.35

where:

D, = S.2.K_ , D, = S, 2.K_, Dy=1 and g = P?

Therefore the discretised form of equation 3.18 is:

S 2,K
b~ v . SJ4L1=1) ~1/(1-1)
(br)’.(1+1).(1-e-?/(1-?)).(P1+1'J " ZJ.(1+G . J*Py 2 1.J'e ‘ )
(Py?,,q™ 2.P;2 _4)
+ —ndl Wi “! =0 3.39
(Az)?

Similarly equation 3.19 in discretised form becomes:

Fl
(F -ﬁl"/ﬂ.) -(F oﬁf‘/ﬂ)
.(P. 2 . 1 2 . 1
Ar.(,-e-(Fl.é‘r,a)) ( 1"’1 J (1+e )+P1-1'J e )
P2.-P.2, _ .
I o e 7 ) 346
-AZ J=J
where Fy = % * ﬁ% | -
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@ == 3.42

da dh dh
therefore; — = hb. 3.h?2 ="+ 6.8 —" 3.43
dR '

and 3.48

a
R Ar.br.(l - ?)

Values of h, and dh,/dr are taken at each node i for i

= 1to.I, j=J. The boundary conditions 3.20 to 3.24
become:

(1) Pis,j =P at J=1,1=1¢tol 3.45
(11) Pit,j - Phnj =0at i1i=1, J=1¢toJd 3.46
(111) Pyyj =~ P, =0at 1 =1I,3=1¢toyJ 3.47
(iv) Equation 3.40 applies at_Jﬁf Jdy, 1 = 1to I, 3.48
(v) P=1at j=J,1=T1 | 3.49

An iterative procedure for a numerical solution using
equations 3.39 to 3.49 1is described by Taylor (24). This
solution gives the bearing film pressures at each node i, j
= J.

In a comparison of results with the analytic solution
of Jones et al (23) (section 3.3.1), Taylor (24) showed
that the numerical solution gave an accuracy of 2.515% for
the film pressures. The numerical equations 3.39 to 3.49,
therefore give a valid solution to the lubrication
equations. These equations will be used in a solution to
the porous and compliant aerostatic thrust bearing where

the bearing clearance is non - uniform i.e. h, = f(r).
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3.4 THE ELASTICITY EQUATIONS FOR DEFLECTIONS OF THE

COMPLIANT SURFACE

The eléétomer léyer configuration and ¢co - ordinate

system for ahalysis are shown in figure 3.3.

3.4.1 GENERAL ASSUMPTIONS

The general assumptions for analysis of the elastomer
layer are as follows: |

(1) The elastomer layer 1s circular and of uniform
thickness in the undeformed_sta}e.

(ii) The elastomer material is 1aotr0pic,‘homogeneous and
behaves linear - elastically for small strains in the
order of 10%.

(111) Deflections and stresses applied at the compliant
surface will be axisymmetric. . o

(iv) The elastomer layer‘will beIEtatically loaded.

(v) Body forces such és gravity will be ignored. These
are insignificant compared to the bearing film
pressufes. |

(vi) A perfect bond exists between the elastomer layer
and its rigid backing. Therefpre displacements u, and

uz; at z = 0 will be zero.
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3.4.2 GENERAL ELASTICITY EQUATIONS FOR AN AXIALLY -

+ SYMMETRICAL STRESS DISTRIBUTION IN AN ELASTIC BODY

The equilibrium equations in polar co - ordinates,

ignoring inertia and body forces are (85):

¥, YTz, "% _,
ar 9z r
3.50
ot d0 T
r'z+__z+r‘z_0
ar 9z r

For a linearly - elastic isotropic homogeneous

material the stress - strain relationships are:

1

.= (o

® g
c

g “c(°r + cz))

3.51
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The strains are related to displacements of the

elastic body by the following equations:

3.52

It 1is sometimes convenient to use a stress functionV¥

in order to obtain a solution which satisfies equations

3.50. The stresses o, ,0;, , 0y and 7rz; may be expressed in

terms of ¥ by the following equations (85):

9 %y
g, m == ( V. V2Y - —— 3
9z or?
3 1 9y
g = V. V3P = =
9z r ar

9 oty
. -_(m-\,;.m-_)

Z oz 3z2

3 - %y "
T == (1 = y),V2Y = =
P2 ap ‘ 9z?
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Equations 3.53 satisfy the equilibrium equations 3.50
provided the stress function ¥ satisfies the so called
compatability equation. This equation in terms of stresses

using equations 3.51, 3.52 and 3.53 is (85):

V2.Viy = 0 3.54
32 13 92

where V2 « - t my— 4 - 3.55
oz? r or or?

In a solution using the stress function ¥, equation
3.54 must be satisfied. The stress function ¥ must also

satisfy the boundary conditions at the surface of the

elastic body.

3.4.3 VARIOUS SOLUTIONS TO THE ELASTICITY EQUATIONS

There are several different methods by which the
elasticity equations in section 3.4.2 can be solved. These
are described as follows:

(1) THE SIMPLE COLUMN MODEL: Dowson and Taylor (56) assumed
that strains in the r and @ directions are zero. Using

equations 3.51 and for axial strain e€;= uyc/. the following

equation was obtained for deflections of the compliant
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surface due to a pressure p:

p.t 2.v. 2
L 1 - e 3-56

The deflection of the elastomer layer using equation
3.56 is analogous to the compression of a bed of
unconnected springs, each one depressing according to the

pressure applied to it. The elastic modulus of each spring
is given by:

1 1 2.v 2
R c 3.57
E* E \° 1-wv

Cc C

and its deflection is:

3.58

As already mentioned in section 2.2.4 this solution is
unsuitable when Poisson's ratio v, of the elastomer is
equal to 0.5, since equation 3.56 predicts zero deflection
for this case. However this solution is attractive in 1its
simplicity and Castelli et al (59) showed that reasonable

accuracy could be obtained for Poisson's ratio v, 1in the

range 0 to 0.45.
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(1i) ANALYTIC SOLUTIONS: In these solutions an attempt is
made to define the stress function%¥. Along each boundary
of the elastic body at least two conditons must be
specified. In the case of a circular elastomer layer, this
may be a deflection or stress in thé r and z directions.
Therefore a total of six boundary conditions must be
satisfied by the stress function¥ . This would lead to a
very complex and unmanageable equation defining ¥ (61). fo
évoid this problem Castelli et al (59) assume an elastomer
layer of infinite radial extent. This reduces the number of

required boundary conditions to four. The following stress

function was proposed:

Y = [(G,+ G;z).sinh(nz) + (G,+ G.z).cosh(nz)] Jo(nr) 3.59

which satisfies equation 3.54. The constants G, ,G,,G45 and G,

were determined from the following boundary conditions:

(a) From assumption (vi) in section 3.4.1, both defections
ur and u; are zero at z = 0, the interface between the
elastomer layer and its Pigid backing.

(b) Shear stresses from the lubricating bearing film acting
along the compliant surface are negligible, hence 7., =
0 at z = t..

(c) Pressure stress along the compliant surface assumes the
form of a Bessel function, l.e. p = Jy(nr) at z = t..

The resulting solution gave the deflection of the
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compliant surface due to a pressureldistribution in the
form of a Bessel function Jo(nr). This is known as the
elementary solution and to obtain a solution to the actual
film pressure profile, the elementary solutions are
supérimposed one on top of the other until their summation
closely approximates the film pressures. The resulting
deflection of the compliant surface was then equated to the
summation of deflections from each elementary solution. The
final solution involved an integral which was solved
numerically.

(11i) NUMERICAL FINITE DIFFERENCE AND FINITE ELEMENT
SOLUTIONS: In these solutions the elastic body is
discretized into a grid pattern. Otter et al (86) describes
a finite difference solution to the elasticity equations
using dynamic relaxation. The equilibrum equations 3.50,

including a time dependant term become:

aur arrz 9. ~ 9 . aur . k;-Ur 1
ar 9z r ot At
h 3.60

where k, is a damping factor for convergence in the

numerical solution.

It is important to note however that although dynamic
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relaxation is used, the object was to obtain solutions to a
static stress and displacement problem. Initial estimates
of stress or displacement within the elastic body are
dynamically damped to converge on the final solution.
Holownia (87) showed that this method of solution is
satisfactory for Poisson's ratio very close to 0.5 but the
computing time required increased rapidly as » approached
0.5. Holownia does not give the computing times or the
number of iterations required to converge on the final
solution. However in a solution by Otter et al (86) for a
concrete structure having a value of v = 0.2, 39 iterations
were required to achieve an accuracy of less than 0.1%.
This is a large number of iterations compared to that
required for a finite difference solution to the
lubrication equations in section 3.3.2 (these have required
only 3 to 8 iterations to achieve an accuracy of-0.1% in
P). And since -the number of iterations increases asv
approaches 0.5, use of this dynamic relaxation method for
deflections of the compliant surface in a coupled solution
with the lubrication equations would require considerable
computing time.

A finite element programme known as Texgép and
suitable for rubber like materials is reported by Collins
et al (88). While the Raleigh Ritz method is often used in
finite element solutions, Benjamin (61) had found this
method to be unsuitable for typical rubber like materials

where v approaches 0.5. In the Texgap programme the
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elasticity equations are said to be reformulated so that
the case v = 0.5 can be treated. Unfortunately further
references relating to this Texgap programme have been
unobtainable. However it is mentioned that the main
disadvanﬁage of a finite element solution for rubber, is
the large computing times and memory allocation required
for the mathematical manipulation and storage of the matrix
equatiohs.

It can be concluded therefore that a numerical finite
difference or finite element solution for the elastomer
layer in a coupled numerical solution to the lubrication
equations as described in section 3.3.2 would be
impractible because of the large computational times
required. .

(iv) GREEN'S FUNCTION APPROACH: This method was applied by
Benjamin et al (61, 62) for the solution to a compliant
thrust bearing with a central feed hole. The elastomer
layer was of finite radial extent. The Green's function
approach involves an elemental solution to the equilibrium
equations 3.50 which contain unknown coefficients. These
coefficients are determined by superimposing the elemental
solutions such that they satisfy the boundary conditions at
a fixed number of points along the boundary surface. An
elemental solution was obtained such that the singularity
occurring at yc = 0.5 1s removed. Deflections of the
compliant surface are related to the film pressures by the

matrix equation;
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I

u(r)y = &M (p), 3.61
i1=1 7

where (p), are the film pressures acting at any node
along the compliant surface which results in a deflection
uc(r); at node 1 also on the compliant surface. The
determination of the matrix M%l involves solving the
elemental solutions such that they satisfy the boundary
conditions one of which are the film pressures.

Compared to other numerical methods such as finite
difference and finite element solutions, the Green's

function approach is more efficient in terms of computer

processing time. However in a similar way to finite element

solutions it still requires the storage and mathematical

manipulation of large matrix equations.

From this description of various solution methods to
the elasticity equations in section 3.4.2 the following

conclusions can be drawn:
(i) The simple column model of Dowson and Taylor (56) does

not give sufficiently accurate results for Polsson's ratio

in the range 0.45 to 0.5.

(1ii) Of the more complex solutions the analytic solution of
Castelli et al (59) requires the least computational time
and memory allocation compared with the other numerical
solutions. It 1s therefore ideally suited to a cpupled

solution involving the lubrication and elasticity equations
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especially since the presence of a porous pad in a porous
and compliant aerostatic thrust bearing makes the overall
solution much more complex. However the main limitation of
this solution is that only elastomer layérs of infinite
radial extent can be considered.

A simplified analytic solution to the elasticity
equations in section 3.4.2 is therefore bPOposed and
presented in section 3.4.4. This'solution is suitable for
any value of Poisson's ratio ». in the range 0 to 0.5 and
is suitable for elastomer layers of any radial extent
beyond the bearing radius r,. The necessary comﬁuting time
will be minized since this solution does not involve a
numerical process. Hence this will enable a solution to the

porous and compliant aerostatic thrust bearing proposed in

this research project.

3.4.4 SIMPLIFIED SOLUTION FOR DEFLECTIONS OF THE ELASTOMER

LAYER

In obtaining this simplified solution thé'following
additional assumptions to those in section 3.4.1 are made:
(1) Shear stresses at the compliant surface due to flow
in the bearing film are negligible compared to the
film pressure stresses (59).

(11)" For a thin elastomer layer (i.e. tc/rp <= 0.25) only
the first of‘tﬁe equilibrium equations 3.50 for

stresses in a radial direction will be satisfied. The
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second of these equations 3.50 for the equilibrum of
stresses in z - direction will be ignored.
(111) Also for a thin elastomer layer the axial stresso,
as a function of z is constant through the thickness
- of the elastomer layer and equal to the pressure
g acting on the compliant surface at radius r.
(iv) Radial deflections of the elastomer layer have a

parabolic form defined by the following equation:

(z - tc)’ :
Up = Upp | 1 - ¢ 2 3.62

c
Equation 3.62 satisfies assumption (vi) in section
3.4.1 that u, = 0 at z = 0.
(v) In the third of equations 3.52 .for shear strain V.,
deflection gradients ?rl;z are ignored compared to %%r
The reasoning behind assumptions (1ii), (1iii), (1iv) and
(v) are explained as follows. Consider a thin elastomer
layer constrained against radial movement by a bond to a
rigid surface. Typlcally its stiffness 1s at least an order
of magnitude greater than the stiffness of an unbonded
elastomer layer free to expand in a radial direction (84).
It can be concluded therefore that this difference 1is
attributed mainly to the forces or stresses acting in a
radial direction, particularly for the bonded elastomer
layer which is constrained in this direction. These forces

or stresses are represented by the first of the equilibrium
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equations 3.50. This then leads to assumption (ii).

Because the elastomer layer is thin compared to its
radius it is reasonable to assume that the pressure acting
on the compliant surface at a radial position r will be in
equilibrium with an equal and opposite pressure-acting from
the rigid backing to the elastomer layer. This reasoning
can be extended to the axial stress o; at any position 2
through the thickness of the elastomer layer, i.e. the
axial stress o, must be in equilibrium with the pressure
acting on the compliant surface. This therefore leads to
assumption (i1ii) that the stress oz through the thickness
of the elastomer layer is a constant and equal to the
pressure acting on the compliant surface.

In the compression of a constrained cylindrical disc
bonded between two parallel rigid plates, Gent and Lindley
(89) made the following assumption. If horizontal planes
perpendicular to the z - axis, remain undeformed duriné
compression of the thin cylindrical disc, then the
resulting radial deflection profile across its thickness
will take up a parabolic form. The compression of an
elastomer layer is similar to that of the constrained
cylindrical disc where the thickness of the elastomer
layer represents half the thickness of the cylindrical
disc. Because axial deflections of the COmﬁliant surface
are- small compared to its thickness and'no'shear‘stresses

act here (assumption (1)) this leads to assumption (iv).
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For a thin bonded elastomer layer which is
incompressible in nature, axial deflections at the
compliant surface can cause considerable radial bulging and
hence shear straining in the radial direction. This is
because the volume displaced at the compliant surface
virtually equals the volume displaced in a radial
direction. The bulk shear strain V,; is therefore mainly
attributed to shear deflections in the radial direction.

These are represented by the strains 2ur . This leads to
4

o

f assumption (v).

In appendix 2 it is shown that these assumptions lead

to the following differential equation for up,;

%u 1 3u 1 v_ dp
o G kc! ve Ju - e _¢c 3.63
or? r ar r? 2.Gc’ar :

Using modified Bessel functions (90) the particular

integral to equation 3.63 1s;

W ™= An.I,(kc.r) + Bn.K,(kcfr} 3.6#

Complimentary functions c.f. may be obtained for the

following pressure profiles on the compliant surface:
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(a) for Pe = Pp i.e. a constant

c.f. =0
L oye 3.65
(b) for P, = Py ( 1 - ( —-‘) ) i.e. a parabola
"n
2.“ op ot 3.1"
e.r, - ——L L 3.66
2
Gc.rn
The complete solution to equation 3.63 may be
expressed as:
u, - An.I:(kc.r) + Bn.K,(kc.r) + Cn.r 3.67
where Cn = 0 for a uniform pressure profile 3.68
and Cn = 2.vc.pn.tc’ for a parabolic pressure profile 3.69
a
Gc?rn

(Note that it is only coincidental that one of the

special cases for which a c.f. to equation 3.63 is for a
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parabolic pressure profile on the compliant surface. This
should not be confused with assumption (iv) in this section
relating to parabolic radial deflections within the
elastomer layer.)

The constants Ap and B in equation 3.67 can be
determined from the following boundary conditions:

- - .70
U.n 0 at r =0 3

9. = 0 at r = L 3.71

However in the more general case where the pressure on
the compliant surface has a radial extent r, <= rc,
equation 3.67 is applied to two regions of the compliant

surface. These are 0 <= r <=z r, and rp < r <= r. (see

figure 3.4).

hence for 0 <= r <= rn;

u. - Anl.I,(kc.r) + Bn].K,(kc:r) + Cn.r 3.72

and for r, < r <=z r¢;

U ™ Anz'I‘(kc?r) + an.K,(kcfr) \ 3.7?
It will be noted in equation 3.73 that the third term

of equation 3.67 has been obmitted. This 1s because in the

region r, < r <= r., p = 0 and hence C, = 0 by equation

3.68.

The constants A,, » Apnys By and Bphp; are determined such
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that the boundary conditions 3.70 and 3.71 are satisfied
and continuity in the values of o and u,, 1is obtained at
r = rn. Equations for these constants are given in appendix
2.

The axial deflection u,, of the compliant surface can
be related to radial displacements urp usiﬁg equations
3.51 and 3.52. It is shown in appendix 2 that this gives
the following expressioﬁs for uzhzlﬂ U

for the region 0 <= r <= r,,

(1 - 2'vc)fpc'tc 2 t .v

-t (k (A, .I.(k;.r) = B +Kelk.r))

u,_ = - .
zZn LKW
2.G,.(1 = v,) 3 (? vc)
+ 2.Cn) _ 3.74
for the region L < r <= re,
2 t_.v '
- = c c - - L] 075
u, == (kg (A To(kyor) = B Kelk,.r)) 3
3 (1 - vc)

Equations 3.74 and 3.75 represent an elementary
soclution for deflections of the compliant surface in the
special cases of a uniform or parabolic pressurelprofile of
radial extent 0 <= r, <= r.. Figures 3.5 and 3.6 show
typical deflection profiles obtained ‘'using these equations.

The deflection profile shown in figure 3.53 for a unifornm

pressure profile r, = r. is similar to that illustrated by
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Rybricki et al (74). Note that the deflection of the
compliant surface 1s greater at the edges than in the
centre. This is an example of the unusual way 1in which
incompressible materials can deform.

A comparison of results with those of Castelli et al
(59) is also shown in figure 3.7. The deflection profiles
are for uniform pressures applied over an area of radius
rn/ros In general the deflection curves obtained by
equations 3.74 and 3.75 compare well with those of (59)
except in regions close to rn/rg¢ This is because a
discontinuity occurs here which is caused by assumptions
(1i1) and (v) in this section. Comparison between figure 3.6
a and b show that this discontinuity islreduced for the
elementary solution to a parabolic pressure profile and
hence the corresponding deflectibﬁ profile is more accurate
for this case.

It is interesting to note that equation 3.74 reduces

to the simple column model of Dowson and Taylor (56) when i

approaches zero.

(1 - 2.V )op .t
1.e. I.lzn 2 = - e ¢ 20 as v_-+ 0
2.Gc.(} - vc)

and since for a linear - elastic, isotropic and homogeneous

material (47), E. = 2.Gc+.(1 + v:) then;

2.v 1 p..t
u_ =~ ( 1 - = ) = 3.76
zn (1 =v)/ E

c
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Equation 3.76 is similar to equation 3.56 for the
simplified column model. |

"The first term on the R.H.S. of equation 3.74
therefore represents ﬁeflections of the compliant surface
due to the bulk compressibility of the elastomer layer
since in the column model by Dowson and Taylor (56) the
strains € and €y are assumed zero. This term 1s zero when
the elastomer layer material is incompressible, i.e. p. =
0.5. When this occurs deflections of the elastomer layer
can only take place by radial shearing, i.e. the 'volume
displaced by the elastomer layer in a radial direction is
equal to the volume displaced by deflections of the
compliant surface. This is represented by the second term
on the R.H.S. of equation 3.74 and also the term on the
R.H.S. of equation 3.75. In equation 3.75 radial shearing
accounts for the total deflection of the compliant surface
when r > r,, since the pressure acting on the compliant
surface here 1s zero. Equations 3.74 and 3.75 can therefore
be considered as extensions of the restrained column model
by Dowson and Taylor (56) to take into account strains €

and eg due to radial shearing of the elastomer layer.

3.4.5 APPLICATION OF THE SIMPLIFIED SOLUTION TO THE ACTUAL

FILM PRESSURE PROFILE

The elementary solutions obtained in section 3.4.4 are

-165-



for the special cases of a uniform or parabolic pressure
profile on the compliant surface. However the actual
bearing film pressure prbfile which acts on the compliant
surface does not nedéssarilly take on either form. This
problem can be overcome by.applying the prinbiplé of
superposition'tSS). In the context of the present analysis
this can be described as follows; suppose the elementary
solution for the parabolic pressure profile case is
selected from section 3.4.4. As already mentioned (section
3.4.4) the discontinuity in the deflection profile at r =
is a minimum (see figure 3.6) for this solution. The
actual film pressure profile can be approximated by a
series of parabolic'profiles of different radius and
magnitude (figuré 3.8 shows a simple example). Let this

series be defined by the equation:
r
= - - 5 ¢ 0 s -3 ol .17
Py z pn(‘.l - or r . 3

In equation 3.77, r, represents the radial extent of
each parabolic bressufe profile "n" and p, its magnitude a
r = 0. For each parabolic pressure profile the
corresponding deflection of the compliant surface can be
determined usiﬁg equations 3.74 and 3.75. Applying the
principle of superposition the resuliing deflection of the
compliant surface due to the actual film pressures pf 1is

equal to the summation of deflection profiles obtained for
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each parabolic pressure profile in equation 3.77. Hence the

deflection of the compliant surface due to the actual film

pressures 1is given by;

u, - Z"zn 3.78

where values of u;, are obtained from equations 3.74 and
FeT5 corresponding to the parabolas "n" in equation 3.77.

It is important to note that in using the principle of
superposition (85) the relationship between applied loading
and corresponding deflections of the elastomer layer must
be linear. This condition is satisfied by assumption (ii)
made in section 3.4.1, 1.e. the elastomer layer is linear -
elastic for small strains 1n the order of 10%.

In approximating the actual film pressure profile
using equation 3.77, the following procedure is used:
(i) Divide the compliant surface into I primary nodes over
the region 0 <z r; <= rp starting with 1 = 1 at r,_, =0
and finishing with 1 = I at r,_y = r,. These nodes should
match the nodes used for the finite difference solution to
the lubrication equations described in section 3.3.2.
However to improve accuracy particularly in regions near
the bearing clearance exit where film pressure gradients
are greatest, further secondary nodes may be selected
inbetween the primary nodes. Equation 3.77 may be re -

written in the form;
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r 2
i
(pp), = p 1= == 3.79
r’i :E:: 11( ) (x' ) )
where rn = ri when 1 =1I=-n+1 3.80

(1i1) Fit the first parabola of radius rh., = r, in equation
3.79 such that it intercepts the actual film pressure

profile (pg), at the (I-1)th node position (see figure

3.8), 1.e.:

(Pe)yoymy
Pret * 3.8

) 2
i al-1

Fne
(11i) For the second and subsequent parabolas in equation
3.79 subtract the summation of parabolas already fitted to
the-film pressure profile, from the value of (pf) at i =
I - n. Then fit a parabola of radius rn = Pi_7-p4, Such
that it intercepts the remainder of (pf)i at { = I-n. In

mathematical form this may be written;

n=1 r :
: - | l=i=n
Epr)i'l-" ] mgzl’”"|II ( 1 ( “nem ) )]

3.82
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where rn = rij-y_p4, and pnom = PicT-m+1 *
(iv) The procedure in (iii) is repeated until (I-1)th
parabolas have been fitted.

If this procedure is followed then the summation of
parabolic pressui'e profiles as defined by equation 3.79
will equal the actual film pressure profile at the selected
node points i. Between the node points however the actual
film pressure profile is only approximated (see figure
3.8). The accuracy of equation 3.79 and the resulting
defiections of the compliant surface, therefore will
improve as more nodes I are used.

In appendix 3 equations 3.74 and 3.75 together with
the procedure described in this section, are tested in a
compliant thrust bearing configuration similar to those
studied by Castelli et al (59) and Benjamin et al (62). A
close correlation of analytical results for the bearing
performance with those of (59) and (62) is achieved. This
therefore verifies the accuracy of equations 3.74 and 3.75

when applied to a typical thrust bearing problem involving

a compliant surface.

3.5 THE ELASTICITY EQUATIONS FOR DEFLECTIONS OF THE POROUS

PAD

Taylor and Lewis (25) obtained solutions for the

deflection of the porous pad assuming it is a thin linear

elastic plate in bending. The plate was rigidly clamped
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around its circumference and subject to a non - uniform
pressure loading from the supply pressure p, and the
bearing film pressures p; (see figure 3.9a). In practice
the adhesive bond supporting the porous pad around its
circumference may flex in bending and then the porous pad
is no longer rigidly clamped (figure 3.9b). For small
strains and assuming the stiffness of the bond in bending
is linear - elastic then the radial bending moment created

by it and acting on the porous pad circumference, is given

by;

dub

—_ at r = ry 3.83
dr

mr = kb .

The differential equation for deflection of a thin

circular plate in bending (47) 1is;

du 1 d%u 1 du F
b
b + "-. b - h.— - —: 3.8,4
dar? r dr? r dr Db

This equation can be expressed in a form which allows

solution by successive integration;
d 14d du F .
— de | — (r.-—-—q ) - —r: 3.85
dr | rdr dr Db

Fr the shearing force per unit circumferential length, can
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be expressed in terms of a pressure loading pp (47);

!
]
T -

r
J. pbfr.dr’ - 3.86
0

Substituting for F in equation 3.85 gives;
d 1 -dub 1
r.=— o ( re— - e J- pb.P.dl'" 3.87
dr | r dr D

At any radial position r the pressure loading Pp on

the porous pad is;

Let this be expressed by a polynomial series which

approximates the actual pressure loading Pp 1.e.3

Ky

Py = E an.rn 3.89

n=0,2

(Note that in equation 3.89, only even values of n are

taken because py; and hence p, are symmetrical about the

axis r = 0 (assumption (v) section 3.2.1)).
Substituting for py in equation 3.87 and after

successive integration , the deflection of the porous pad

is given by;
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Ks an.rn+u b,r?
E ( ) * + by.1n(r) + b, 3.90
5 b8 (n+2)2.(n+4)?2 y '

O ) -

In equation 3.90, deflections up are +ve in the
direction of pressure loading p, defined by equations 3.88
and 3.89. By equation 3.88, p, is +ve when pg > P¢ and this
is 1likely to be the case since a pressure drop occurs
across the porous pad thickness. Therefore deflections of
the porous pad will be +ve in the direction of the supply
pressure pg . The constants b, ,b, and b, can be obtained

using the following boundary conditions:

(1) at r = 0, u, is not equal to infinity and hence
b2 - 0.
(11) at r = ry the radial bending moment m, between the

porous pad and its adhesive bond must be in
equilibrium.

(11i) also at r = r, the deflection of the porous pad due
to bending only is zero.
It is shown in appendix 4 that these boundary

conditions lead to the following expressions for constants

b andb3 .

3 n+2
. [ % Z"' ( nTp )
(Bb * Db) Db (n+2)’.(n+ll)

n=0,2 _
‘ Ky 1 n+2 -’
. [ (n+3).a_.r
+ ( ot )] 3.91

ne0.2 (n+2)2,(n+4)
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Ky - n+l
1 3 a.r b,.r 2
by = - — jz :( n" b ) I - 3,92
2
Db n=0,2 (n+2)2.(n+4) y .
3.93

where Bb = kb.rb + Dbfvb

The rigidity properties of the porous pad can
therefore be specified by flexural constants Db'and Bb' Db
represents the rigidity of the porous pad only while Bb
represents the combined rigidity of both the porous pad and
its adhesive bond. It is shown in section 4.3.6 that both
these constants can be determined from deflection

measurements of the porous pad after it has been bonded

into its holder and
loading. However it

Dp and Bp were very

subjected to a uniform pressure
was found that the resulting values of

sensitive to small errors in the

measurement of porous pad deflection. New constants are
therefore introduced (see section 4.3.6) which overcome

this problem. These constants in non - dimensional form

are; ’
p..h*.(B, + 5,D)

Magnitude constant; M = a,hb b - 3.94(a)
GH.Db.(Bb + Db)
9.Db+Bb

Shape constant; N 3.94(b)

b 4.B, + 20.D,

These constants will therefore be used to represent
the rigidity properties of the porous pad in bending.

Equations 3.94 may be re - written so that they are
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explicit in Dy and By as follows;

p..h?
noo- a. b 3.95(a)

b e
?28'Mb'(3 2.Nb)

20.N_ =9

B, = ~ Dy ( 3.95(b)
YN~ 1
b

Equations 3.95 are used to obtain values of Dy and By .

in equation 3.90 to 3.92 from values of the constants Mp

3.6 SOLUTION TO THE COUPLED LUBRICATION AND ELASTICITY

EQUATIONS

An iterative method similar to that used by Taylor and
Lewis (25) and Hayashi (82) is used to obtain a solution
for the porous and compliant aerostatic thrust bearing.
This solution must satisfy both the lubrication equations
(section 3.2) and the elasticity equations (sections 3.4
and 3.5).

It is convenient here to define a bearing approach
"c"., This was first used in the study of compliant thrust
bearings with a central feed hole by Benjamin et al (61,
62). The bearing approach ¢ for a porous and compliant

aerostatic thrust bearing is equal to the displacement of
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the rigid backing to the elastomer layer relative to the
porous pad bearing surface. Its value is zero when the
elastomer layer in an undeformed state 1s resting on and in
full contact with the porous pad also in an undeformed
state (see figure 3;103). From this datum position and
when the porous and compliant aerostatic thrust bearing is
operating under conditions of supply pressure Ps and load
w, the bearing approach ¢ will be +ve if the rigid backing
to the elastomer layer moves away from the porous pad (see
figure 3.10b) and -ve if the opposite occurs (see figure
3.10¢c). The value of ¢ therefore depends on both the
bearing clearance and compression of the elastomer layer.
Note that in a porous aerostatic thrust bearing with rigid
bearing surfaces or an elastic porous pad, approach ¢ is
equal to the bearing clearance hy. This is because the
rigid backing to the elastomer layer now becomes the
bearing surface opposing the porous pad.

The iteration procedure is shown in figure 3.11. For
the lubrication equations the porous pad is divided into I
and J nodes in the r and z directions respectively.
Initially a uniform bearing clearance equal to ¢ is assumed
with no deflections of the compliant surface or the porous
pad.

The first estimate of film pressures at each node i
for a constant supply pressure ps, can therefore be
obtained using the analytic solution of Jones et al (23)

(see section 3.3.1) for a porous aerostatic thrust bearing
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with a uniform bearing clearance.

This first estimate of the film pressures is used to
determine initial deflections of the compliant surface and
the porous pad in the porous and cqmpliant aerostatic
thrust bearing.

As described in section 3.4.5, deflections of the
compliant surface are obtained from a summation of
elementary solutions (given by equations 3.74 and 3.75)
approximating the film pressure profile. The elastomer
layer is therefore divided into I primary nodes in the r
direction, these corresponding with the nodes already used
for the porous pad. In éddition,a further four secondary
nodes are used between the primary nodes 1 = I and { = I-2.
This will improve the accuracy in determination of
compliant-léyer deflections in the region adjacent to the
bearing clearance exit where the film pressure gradients
are greatest.

Due to the discontinuity occuring at radius rp in
each elementary solution (refer to section 3.4.5!, when’
these are summated the resulting deflection profile for the
compliant surface will have a small vertical step at each
node 1 (see figure 3.12). This jaggedness is removed by
averaging the deflection at thesé nodes to obtain a smooth

profile. The deflection of the compliant surface at the

primary nodes is given by;
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I+4

(Uc)i - E (un)l 3096

n=1,2

"For deflections of the porous pad a 4th order
polfnomial equation (i.e. equation 3.89) is fitted to the
film pressure profile and deflections at each node i are
obtained using equation 3.90 where r = Ar(i-1).rb.

If deflections of the compliant surface and the porous
pad are added to the bearing approach c, the new bearing

film clearance geometry becomes;,

(h)y =c-~ (ub)1 - (uc)1 3.97

However this gives rise to a new value of bearing clearance
hg at r = rp which often caused instability during the
iteration procedure. The reason for this is attributed to
the sensitivity of ‘bearing film pressures to small changes
in the bearing clearance. This problem is overcome by
adding the compliant surface deflection u. at r = ry to the

bearing approach ¢ i.e.;

c -=c, *'uc 3.98

The new value of ¢ is substituted back into equation 3.97

and the bearing clearance determined at each node 1.
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For the new bearing clearance geometry a more accurate
estimate of film pressures can be made. This 1s achieved
using the finite difference solution to the lubrication
equations, suitable for a non - uniform bearing clearance
as presented in section 3.3.2. For this solution the old
pressures P” at each node i1, J within the porous pad are
used as initial estimates in equations 3.39 and 3.40., These
can be determined from the analytic solution of Jones et al
(23) (see section 3.3.1) but computing time can be saved if

values are estimated by linearly interpolating between the

film pressures Pf and the supply pressure P, 1l.e.;

P, = (P, = (P)).(3 = 1)
P, =~ =
IOJ J _1

3.99

Also it is necessary to determine the gradient of the
bearing clearance geometry at each node 1 for i = 1 to I ~

1 in equation 3.43. From equation 3.97;

=) (2),-(2)
« /1 = | = |, 3.100

d = (u '
where (..:2) - (Ug)01™ ¢ °)1_?' - 3.101
a /1 2.Ar.rb .

and differentiating equation 3.90 gives;
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k n+3
du 1 2 a.r b,.r
‘ dr /1§

Dy meg2 | (R*2)2.(ned) 2

(Note that the value of G%y)' at node 1 = I is not required
since P” at 1 =1, J=4Jd 1; equal to 1 (see section
3.3.2)).

Having obtained a new, more accurate estimate of film
pressures the solution now continues in an iteration cycle
as follows. For these film pressures, new deflections of
the compliant surface and porous pad are determined to give
a more accurate estimate of bearing clearance geometry.
This bearing clearance geometry is then used to detprmine
new film pressures using the finite difference solution to
the lubrication equations. For equations 3.39 and 3.40
initial estimates of pressures Pii within the porous pad
are taken from the previous iteration. This iteration cycle
is repeated until the change in film pressures at any node
i, J = J is less than 0.1%. A final solution is then
achieved.

To obtain a set of results to enable bearing
performance curves to be plotted the bearing clearance hy
at r = rp is reduced in small decrements. The decrement is
such that the bearing number Ay (see section 3.7) is
increased at a constant rate of 1, i.e. 1,2,3,4, etc,
Because hqy 1s proportional to (1/Ay ﬂé the decrement

reduces as hy approaches zero. This insures that stable

-181-



solutions are obtained down to small bearing clearances. As
shown in figure 3.11 each iteration cycle to a new bearing
clearance now starts by estimating a bearing clearance
geometry using deflection profiles of the cémpliant surface
and porous pad from the final solution to the previous
bearing clearance. This helps reduce the number of

iterations required to achieve a solution at each new

bearing clearance.

!

Also film pressures are determined using the finite
difference solution to the lubrication equations only. At
the start of each iterationcycle to a new bearing clearance
the porous pad pressures P;; are carried over from the
solution to the previous bearing clearance and used as
initial estimates in equations 3.39 and 3.40.

As the bearing clearance reduced it was also found
necessary to use a linear damper similar to that of
Castellil et al (59) to maintain stability in the iterative
solution. This reduces the change in bearing clearance
geometry occuring after each iteration cycle to a solution
at a given bearing clearance. New estimates of the bearing

clearance h, from equation 3.97 using this linear damper

become:
(hr)new - "“(hr)current* ? - "‘) (h )old 3.103
also from equation 3.100;
d
.EE dhr dhr
=m| — + (1 =-n)e| — 3.104
dr new dr current N dr old’

-182~



In the analysis of compliant thrust bearings with a
central feed hole, Castelli et al (59) found that their
solution was stable for 7, = 1, at large bearing
clearances. As the bearing clearance was reduced however
the convergence rate also reduced and when this became very
slow the value of n, was halved. This procedure was
repeated as the bearing clearance was reduced and the
convergence rate once again became slow. In obtaining
solutions to the authors porous and compliant aerostatic
thrust bearing the same procedure has been adopted and
found to work satisfactory. The convergence rate was
considered to be slow when the 20th iteration was reached
without converging on a final solution. At this point the
value of 7, was automatically halved from its current
value.

A programme of the solution has been written in BASIC
for the HP9845 desktop mini computer. A copy of this
programme is given in appendix 7. This programme is divided
into the following subprogrammes;

(a) Solution to the lubrication equations by Jones et al
(23).

(b) Solution to the lubrication equations by the finite
difference method of Taylor (24).

(c) Elasticity equations for deflections of the compliant
surface.,

(d) Elasticity equations for deflections of the porous pad.
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The computational sequence to a solution as shown by
the flow chart in figure 3.11 is controlled by a main
programme. This main programme calls each subprogramme when
required and passes on relevant information to the |
subprogramme. After the subprogramme has finished,its
results are passed back to the main programme and the

computational sequence is continued until a final solution

is achieved.

3.7 THE PRESENTATION OF BEARING PERFORMANCE CURVES
3.7.1 NON - DIMENSIONAL BEARING PERFORMANCE PARAMETERS

In section 3.2.6 a local bearing number A, (equation
3.17) was introduced. However because the bearing clearance
h, is non - uniform, Ay 1s unsuitable for the presentation
of bearing performance results. For this purpose it is
possible to define two bearing numbers A, and Ay , based on

bearing approach ¢ and bearing clearance hqy respectively,

as follows:

12.r. 2.9
..ﬁ - b ‘ 3-105

c
c(c? + 6"r)'hb

2
I2.rb "z

R : .
hd(hd‘+ 6.0r).nb
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(Note bearing number A, has the same sign as c¢ which can be
+ve or -ve (see section 3.6)).

While A, is more useful for the bearing designer,Ad
indicates the actual bearing clearance. Both bearing
numbers will therefore be used in the presentation of
bearing performance curves.

The bearing performance as a function of bearing
number can be represented by its load capacity, flow rate
and static stiffness. Bearing load capacity w is determined
from the summation of film pressures x area which act
parallel to the bearing axis at r = 0. For an axisymmetric

film pressure profile;

r

b
W= 2.x, -r (Pr - pa).l".d-l" 30107
0 ' :

In non - dimensional form this can be written;

W= - B 3.108

The non - dimensional load capacity W represents the
ratio of actual bearing load to the maximum possible from
the supply pressure ps. It is therefore the load carrying
efficiency of the bearing. .

The mass flow rate m through the bearing can be

obtained from the summation of flow velocities passing
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normal to the feed face of the porous pad i.e.;
b
ms= 2.1. 5 (p.vz)Z-o .r‘.dl‘ 30109
0

on substitution of equations 3.1 and 3.2 into 3.109 for v,

and p gives;

‘o’z rb 3(])2)
i 5 — | .r.ar 3.110
n' gas.T 0 az Z-O

In non - dimensional form;

2.“-“.“ lTlh
M = gas___ b 3.111

2 1 - 2
Tarb -(pa Pa )-‘z

Similarly the non - dimensional mass flow rate
represents the ratio of actual mass flow through Bearing to
the maximum possible through the porous pad at supply
pressure pg.

In porous aerostatic thrust bearings with rigid
bearing surfaces the bearing static stiffness kx has been
defined (19,23,24) as the differential of load over bearing

clearance i.e.;

ow
k o S 3.112

X
oh,
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However in a porous and compliant aerostatic thrust bearing
the compression of the elastomer layer also effects the
resulting bearing stiffness. This can be taken into
consideration by‘replacing hy in equation 3.112 with

bearing approach c, i.e.;

ow

k, = = = 3.113
oc

In their study of porous aerostatic thrust bearings
with rigid bearing surfaces both Jones et al (23) and
Taylor (24) use an expression similar to the following, for

non - dimensional static stiffness Kyg;

kK_.h .(h 2+ 6.9 )
K, = 2 — 3.114
'lr.r'bz.(pa g2 Pa)-(3.hu + G.QP)

Similarly this expression could be used to define the non -
dimensional static stiffness for a porous and compliant

aerostatic thrust bearing by replacing hy with ¢, i.e.;

K_.c.(c? + 6.9 )
K, - X L 3.115
w.rb’.(pa - pa).(?,.c2 + 6'°r)

However the bearing approach ¢ can have a +ve or -ve
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value as described in section 3.6. By equation 3.115, this
would result in Kx having the opposite sign to kg when ¢ 1is
-ve. Also Kx = 0 when ¢ = 0 regardless of the value of ky.
It is therefore necessary to introduce a new definition of
non - dimensional static stiffness for the porous and
compliant aerostatic thrust bearing as follows:

Let
dw

X y m———— 3.116
e

dW dw de

—_— - = _ 3.117
dw de d(Acys)

From equation 3.113 substituting kx for -dw/dc in equation

K = —|— k
-l . .
X dw (d(n Ay X 118
c
W
By definition W= X
: rb .(pS - pa)
dw 1
therefore ’ -_—- 3.119
2 -
dw . %1y .(pa pa)
12.9 .rb’
similarly Ay = z
2
hb.c(c + G.OP)
-
i 12.¢_.r 2 .
therefore Acl/l - ( __zJ_) (c® + 6,9 .c)I/'
hb r
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and

IR 12002 \"4 4 - ,
—E— - ( z b ) . -t(c‘ + Gooroc)-‘/'.(B'cz + G'Qr)

hy 3

Y
de 3.A7%.c(c? + 6.9.)
1.e. =— , = =S W 3.120
'&3 2 6 '
dA, (3.0% + .@r)

Substituting equations 3.119 and 3.120 into 3.118 gives an

expression for Kx as follows:

) 3.A’/,a0(cz + 6.’ ).k ! .
K = g r_x 3.121
X (3.e? + 6.0 ).mr tu(pg = P) -

The meaning of Kx is best interpreted from equation
_
3.116. Its value is equal to the slope dW/d(Acﬁ) at a
-\
bearing number A. . The value of Ac ° increases with ¢ and

has the same hathematical sign, i.e. when;

C = +ve Ac3 = +Ve
-4

C = =Ve Ac = =Vve
-,

cC = 0 Ac 3 - 0

Since for a constant supply pressure pg;, non -
dimensional load capacity W in equation 3.116 is
proportional to dimensional load capacity w in equation
3.113, then graphical plotq of Ky versus.d:ﬁ will show
similar trends to those for kx versus c. Note that when c?

>> 6.0, equation 3.121 reduces to;
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12,0 .2\ K
K = (__Z..E_) X 3,122
X
n .

and from the definition of A.;

s 12,4 .r,* S
A /’ - ____z x - 3.123
¢ hy 3

1 A A e e

. e

Therefore when c?>> 6.0, the graphical plot of Ky versuszﬁh
will have a similar shape to that of kyx versus c.

It is possible to use the non - dimensional static
stiffness Ky given by equation 3.116 in the presentation of
results for a porous aerostatic thrust bearing with rigid
bearing surfaces or an elastic porous pad. For this purpose
Azbbis replaced with A;h in equatlion 3.116 and the bearing
clearance hy 1s used instead of approach ¢ in equation

3.113.
3.7.2 NON - DIMENSIONAL BEARING CONSTANTS

The performance (i.e. W, M and Kx) of a porous and
compliant aerostatic thrust bearing will not only depend on
the bearing numbers A or A4 but also on tﬁe following
non - dimensional constants. From section 3.2.6;

Non - dimensional supply pressure, P¢ = Pgs/P, 3.124
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Viscous permeability ratio, Ky O /O, 3.125

Bearing aspect ratio, Sp = hy/ry, 3.126
In addition to these constants,consideration must be
given to the bearing clearance geometry. This can be

expressed as a function of the rollowing:

hr = f(c or hd' uc(r). ub(r). rb) 3.127

(Note that either ¢ or hy can be used in equation 3.127,

since both relate directly or indirectly to the bearing

clearance)

Equation 3.127 in non - dimensional form can be written;

h e h u(r) ul(r)

- d c

r'f — or — , , =2 3.128
) T Tp Ty Ty

The bearing clearance geometry can therefore be
expressed by the ratios c¢/ry or hy/ry, uclr)/rp and up(r)/ry
. Let each ratio in turn be considered as follows. By re -
writing equations 3.105 and 3.106 the ratios c/rp and hd/rb
appear in the expressions for bearing number A, and Ag

respectively, i.e.;

A = - 3.129
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A, = 3.130

Substituting for Ky and Sp (equations 3.125 and 3.126) in

equations 3.122 and 3.123, gives;

12
A = 3.131
e e \? rb’ e
KV'Sb' — ). it + 60 ( -
rb °r Pb
12
Ad B 3.132
h. \*fnn® h
K |S L] A L] -_b + 6' _d
v.'d - ) r
b r b

For a given value of A, or A4 in equations 3.131 and
3.132 respectively, the ratios c¢/r, and hy/r, which
represent the bearing clearance geometry will depend on the
values of Ky, Sp and the ratio r /o, . While the non -
dimensional parameters K, and Sy have already been defined
the ratio r§‘/¢r has not. Thereforé let this non -
dimensional ratio be defined as follows:

Non - dimensional ratilo, Kj = rg / O s 133
The ratio Ky, must therefore be included in the list of noh
- dimensional constants since its value will effect the
bearing clearance geometry.

The ratio uc(r)/rb in equation 3.128 represents the
effect of compliant layer deflections on the bearing

clearance geometry. For a porous and compliant aerostatic
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thrust bearing operating at a constant bearing number A¢
or Ay , the deflections of the compliant surface are a

function of the following:

uc(r) = f(Gc. tcs rbl rcs pB' \’c) 3.13%4

Equation 3.134 in non - dimensional form can be written;

u (r) [ G t r
L . g - # — ’ - ’ Vc) 3+135
b Ps Tp Tp

(Note that »¢ in equations 3.134 and 3.135 is already non -
dimensional)

The non - dimensional group Ge¢/pg in equation 3.128
can be replaced with Gc/p; , since pg/pa has already been

defined as the non - dimensional supply pressure Pg, i1.e.;

G p G
-2. —sr - -—c 3'136
Ps Pa Pa
Equation 3.135 becomes; .
u (r) G t r
s w _E,ﬁ,_",\,c) 3.137
G Pa "o T -

The non - dimensional groups G¢c/Pas t¢/Tcy /3 and vg
in equation 3.137 represent the deflections uc/rp of the

compliant surface in equation 3.128. Let these groups be

-193-



defined as non - dimensional constants for the elastomer

layer;
Non - dimensional shear modulus, S, = G¢/p, 3.138
Non - dimensional radial extent, R, = rc¢/rj 3.139
Non - dimensional thiékness, S¢ = te/ry 3.140
Poisson's ratio, ¢ _ 3.141

Similarly for deflections of the porous pad in
bending, the non - dimensional constants My and N were
introduced in section 3.5 by equations 3.94 (a) and (b).
These represent deflections up/rp of the porous pad in
equation 3.128.

The non - dimensional constants for a porous and
compliant aerostatic thrust bearing can now be summarized

as follows:

Non - dimensional supply pressure, P; = p,/p;

Porous pad aspect ratio, Sp = hp/rp

Viscous permeability ratio, K, = o /0,

Non - dimensional shear modulus, So = Ge¢/pa

Elastomer layer radial extent, R = r¢/rp

Non - dimensional elastomer layer thickness, S. = t¢/rp

Poisson's ratio, ¢

pa thbatBb + 50Db)

Magnitude constant for porous pad, Mp

Shape constant for porous pad, Ny 9.Dp + Bp

4.Bp + 20.Dp

Non - dimensional constant, Kp = '§/<Dr
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CHAPTER 4

EXPERIMENTATION

4.1 INTRODUCTION

The main objectives of experimentation in the context
of aerostatic bearings, are as follows:

(a) To measure bearing performance and correlate
experimental results with theoretical predictions.

(b) To show this correlation holds true under various
bearing operating conditions and for various bearing
constants.

(c) Account for any discrepancies between experimental and
theoretical results.

(d) Discover new phenomena not already known or accounted
for.

In this chapter, details of experiments to determine
the performance of the porous and compliant aerostatic
thrust bearing presented in chapter 1 will be described.
This includes a description of the apparatus, methods of
measurement and instrumentation, preparation and
calibration of the porous pads and elastomer layers, etc.
Various practical considerations will also be discussed
which will improve the correlation between experimental and
theoretical results.

The results of this experimentation along with a
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comparison with theoretical predictions, are presented and

discussed in chapter 5.

4.2 THE MAIN EXPERIMENTAL RIG

4.2.1 DESIGN CONSIDERATIONS

The following criteria were considered during the
design of the experimental rig:
(1) Measurements to be made during bearing tests:

(a) Supply pressure pg.

(b) Bearing load w.

(c) Mass flow through bearing m.

(d) Bearing approach c.

(e) Bearing film pressures pjs.

(f) Temperature of flow through bearing T.
In addition a means of measuring or deriving the bearing
clearance hyg.
(11) The porous pads are to be measured and calibrated for:

(a) Thickness hp and radius rp.

(b) Permeability @ .

({c) Shear deflection of porous pad adhesive support.

(d) Rigidity constants My and Np(see section 4.3.6).
(1i1i) The elastomer layers are to be measured for:

(a) Thickness t¢ and radius r..

(b) Elastic modulus E., shear modulus G, and bulk

modulus K.,
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(iv) Both the elastomer layer and the porous pad must be
removable from the experimental rig to allow interchanges
with other elastomer layers and porous pads of different
dimensions and properties.

(v) The spacing between the upper and lower sections of the
bearing will not only depend on the bearing clearance but
also on the thickness and deflections of the elastomer
layer. The experimental rig design must therefore allow for
a variation in this spacing. Consideration should also be
given to the radius r. of the elastomer layer. This may
extend beyond the radius of the porous pad Ty o

(vi) During bearing operation, parallelism between the
bearing surfaces must be maintained.

(vii) The load applied to the bearing must be steady and of
sufficient magnitude for the higher load capacities
expected from the new porous and compliant aerostatic
thrust bearing.

(viii) It is logical to make comparisons between the
performance of the new bearing and that of a more
conventional porous aerostatic thrust bearing with porous
pads of identical configuration and properties. The
experimentallrig should therefore be designed to allow
operation with a rigid flat surface in place of the

elastomer layer.

-197-



4.2.2 PRACTICAL REQUIREMENTS

Important practical aspects of the experimental rig in
the design stages were cénsidered as follows:
(a) The Measurement of ﬁearing Film Pressures; these can be
measured using either static pressure tappings or pressure
transducers. Either device would be embedded at various
known radial positions within one of the bearing surfaces.

The advantage of using pressure transducers is that
they respond rapidly to changes in the film pressure.
Pressure tappings on the other hand are small in diameter
but are slow to respond to changes in the film pressure
especially since these will tend to choke at low bearing
clearances. Although this may not be considered important
in the steady state operation of the bearing, it will
affect the time delay before film pressure readings can be
taken after adjustments ﬁo bearing operating conditions.

The location of either pressure measuring device
presents a problem. It would be difficult to mount a device
in the elastomer layer since this is a soft material which
compresses under the action of bearing loads. An
alternat;ve would be to embed each device in the rigid
backing to the elastomer layer. Measurement of bearing film
pressures could be achieved by drilling holes through the
elastomer layer to each device (see figure 4.1a). However
compression of the elastomer layer may result in blocking

of these holes and its exact radial position for film
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pressure measurement will be altered by radial shear
deflections of the elastomer layer.

For these reasons it i1s therefore necessary to mount
the pressure measuring device 1n the porous pad surface.
Which ever device is used it will be necessary to pass a
connection through the wall of the supply chamber so that
recordings of the film pressure can be made (see figure
4.1b). This connection must be sealed to stop flow escaping
from the supply chamber otherwise a false measurement of
flow rate through the bearing will be made. It is easy to
form a seal for connections to a pressure tapping (see
figure 4.2a). However in tests on an electrical connection
to a capacitance probe (see figure 4.2b) air escaped
through the centre of the electrical wire itself. A similar
problem is likely to occur with pressure transducers as
well, since the electrical connection 1s of similar design.
For this reason it was decided to use pressure tappings in
the porous pad.

To minimize the effect of the presence of pressure
tappings on the flow within the porous pad these should be
small in diameter relative to the porous pad radius r,. For
each pressure tapping a hole must be drilled through the
porous pad and to avoid drill breakage particularly in a
porous stainless steel pad, this hole should be at least
2mm diameter. Into these holes a pressure tapping of 1.5mm
diameter will be inserted (see section 4.3.3 for further

details of this), and the clearance sealed with a high
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viscosity epoxy resin (to minimize seepage of the uncured
epoxy into the porous pad). There are several pressure
tappings to be mounted in each porous pad and therefore
these pads should be at least 100mm diameter so that the
obstruction to flow from the pressure tappings is minimal,
This also ensures greater positional accuracy of the
pressure tapping relative to the porous pad (for positions
of the pressure tappings in the porous pad see section
4.3.3).

(b) Loading the Bearing; the available laboratory supply is
approximately 8.3 bars (120 psi) from a 37 Kilowatt
compressor connected to a series of large reservoir
cylinders.

In experiments by Taylor (24) on a porous aerostatic
thrust bearing with rigid bearing surfaces, non =
dimensional load capacities (W) up to 0.3 were achieved
before bearing touch down occurred. Higher load capacities
than this are expected for the new porous and compliant
aerostatic thrust bearing as described in section 1.2.
Therefore for an estimated load capacity of 0.6 and for a
porous pad of 100mm diameter, the maximum that the bearing
must be loaded to is as follows:

by definition; W = w

n-r‘t.(ps - pa)

therefore; w 0e6.7.(0¢05)2 .8+3x10°

"n

3911 N

- = 400 Kgf (880 1bf)
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It would be impractical to apply this load using dead
weights only. Alternative methods of loading are as
follows:

(1) Mechanical leverage using dead weights.
(ii) Hydraulic or pneumatic rams.
(ii1) A compressed spring (59).

In the application of bearing loads, consideration
must be given to the stable or unstable operating regions
of the bearing. It is important to determine these regions
as part of the bearing experiments. It is known (40), (71),
(72) that the floating mass of the bearing can affect its
stable or unstable operation. For this reason the method of
loading (i) 1is selected in the design of the main rig.

(c) Bearing Clearance Measurement; Stanojevic (77) used
capacitance probes to measure the bearing clearance
profile, in experiments on a compliant aerostatic thrust
bearing with a central feed hole (inherently compensated).
These capacitance probes were mounted in the lower rigid
bearing surface. In order that a capacitance reading could
be obtained it was necessary to spray the compliant surface
with a metallic conducting paint. However during bearing
tests the capacitance .probes often shorted out when they
came in contact with the compliant surface and it was
necessary to stop the bearing test to clean paint from
them. As a result of this the apparatus was disrupted and
continuation of the bearing test produced unreliable

results. The measurement of bearing clearance in this way
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was therefore abandoned by Stanojevic.

If capacitance probes are used to measure the bearing
clearance geometry in a porous and compliant aerostatic
thrust beafing, in addition to these problems there would
be difficﬁlty in sealing the connection to capacitance
probes mounted in the porous pad as already mentioned in
part (a) of this section.

Because of these problems the direct measurement of
bearing clearance geometry was obmitted from the
experiments. However it 1s possible to derive the bearing
clearance at the bearing exit (r = ry), from measurements
of the film pressure gradient and the mass flow rate
through bearing. This method is described in more detail in

section 4.5.2.
4,2.3 MAIN RIG DESIGN

The main experimental rig is shown diagrammatically in
figure 4.3 and photographically in plates 1 and 2. It is
manufactured mainly from mild steel stock and designed to
accommodate porous padsup to 101.6 mm (4") diameter and
25.4 mm (1") thickness and elastomer layers of 203 mm (8")
diameter and 19,05 mm (3/4") thickness. Dead weights up to
91kg (2001b) at the end of a pivot arm having a mechanical
leverage of 4.4 are used to load the bearing up to 400kg
(8801b). The pivot arm is supported at the pivot point by a

shaft mounted in two ball bearing races. This therefore
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minimizes the friction at the pivot point and allows the
pivot arm and upper bearing surface to float freely in the
vertical plane.

Initially the rigid backing to which the elastomer
layer is bonded (see plate 3), was securely fixed to the
pivot arm by allen screws as shown in figure 4.4(a).
However later thils arrangement was modified and replaced
with a steel ball as shown in figure 4.4(b). This allows
the bearing surfaces to self align parallel with each other
during bearing tests. The lower half of the bearing
containing the porous pad, is supported on two differential
screws and an off - centre ball pivot (refer back to figure
4.,3). The conical surfaces locating this ball are hardened
by a treatment known as tuffriding. The differential screws
which were originally intended for the fine parallelism
adjustment of the bearing surfaces (these are now self -
aligning) are now used for levelling the porous pad surface
prior to bearing tests (see section 4.5.4). However details
of the screw are shown in figure 4.5. The inner thread has
a pitch of 20 threads per inch while the outer thread has a
pitch of 1.25mm. This produces a theoretical linear
ad justment of 0.02mm per 360°degree turn of the outer
thread. As shown in figure 4.6 the differential screws are
non - linear in practice, due to manufacturing thread
- errors but dispite this the screws operate satisfactory for
levelling of the porous pad surface.

To accommodate for different elastomer layer
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thicknesses, spacers and shims are used under the off -
centre ball pivot (see figure 4.7). When spacers and shims
are added or removed a corresponding adjustment to the
differential screws 1s made by rotating the inner thread of
the screw only. To achieve this it is‘necessary to unscrew
the 4 allen bolts which secure the bottom of the inner
screw to the rig base plate(see figure 4.5).

Figures 4.8 and 4.9 show detalls of the porous pad
supply chamber and connections to pressure tappings in the
porous pad (the mounting and sealing of pressure tappings
in the porous pad 1is described in section 4.3.3).
Photographs of the porous pad supply chamber are shown in
plates 4 and 5. Originally the porous pad supply chamber
was designed as shown in figure 4.8(a) and machined from
aluminium (including the porous pad holder) to avoid
corrosion particularly from acid attack during treatment of
the porous pad surfaces (see section 4.3.4). However during
deflection measurements of the porous pad (see section
4,3.6) the porous pad holder was found to defleét
considerably under hydrostatic pressures within the supply
chamber compared to the porous pad. Both the supply chamber
and the porous pad holder were therefore modified as shown
in figure 4.8(b) and machined in mild steel., After these
modifications the deflection of the porous pad holder when
the supply chamber is pressurized are negligible compared
to deflections of the porous pad. The corrosion of the mild

Steel was reduced by wiping the outside of the supply
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chamber with a partially oil soaked cloth.

For the measurement of film pressures it was initially
intended to insért ten pressure tappings in each porous pad
as shown in figure 4.10(a) and this was done on one of the
porous pads (i.e. porous pad number 3, see chapter 5).
However in attempts to assemble the porous pad on the
supply chamber with all ten tappings connected (see section
4,3.3) some of the flexible tubes to each tapping crinkled
and became blocked, even though this tube is only 1.7 mm
outside diameter and quite flexible. It was only possible
to connect four pressure tappings at a time and therefore
subsequent porous pads were only fitted with four tappings
as shown in figure 4.10(b). Three of these pressure
tappings are placed at a radius of 45mm so as to measure
the average pressure gradient at the bearing exit r = Pp e
This was considered necessary for the accurate derivation
of bearing clearance hy (see section 4.5.2). However to
obtain experimental film pressure profiles for comparison
with theoretical predictions a series of experiments were
carried out using porous pad 3. With this pad a maximum of
four of the ten pressure tappings were connected at a time,
the others being plugged using Enot fittings. By repeating
the same experiment three times, film pressure readings
from all ten tappings could be_taken and a film pressure
profile obtained.

Although the bearing clearance itself could not be

directly measured, it is possible to measure displacements
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of the rigid backing to the elastomer layer using three
micro - comparators (one of which is shown in figure 4.3 )
equally spaced around the vertical axis of the bearing.
Each micro - eomparator glves an electrical output
corresponding to displacements of the gauge tip wﬁich is
measured using a Ferranti minicom meter. This meter has
four ranges of measurement; 0 to 15, 0 to 30, 0 to 150 andl
0 to 300 micrometers. From the micro- comparator measurements
it i1s possible to obtain the bearing approach ¢ (see
section 4.,5.3). It is also possible from the three micro -
comparator readings, to check for parallelism of the
bearing surfaces.

A schematic layout of the air supply system and
associated instrumentation for the measurement of flowrate,
supply pressure, etc. is shown in figure 4.11. Alir is
supplied via a series of large reservoir cylinders fed from
a single stage compressor driven by a 37 kilowatt electric
motor. Under no-flow conditions the supply pressure reached
approximately 10.3 bars (150 psi). However this supply
pressure typically reduced to 8.3 bars (120 psi) when air
was used for the bearing.

The supply from the reservoir is filtered using an oil
and water filter foliowed by a fine particle filter in
series. A pressure regulator is used to control the
pressure to tﬁe bearing supply chamber. Downstream of the
pressure regulator is a rotameter flowmeter for the

measurement of bearing flowrate. This flowmeter by Fisher
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Controls Ltd has interchangeable tubes and floats for a
wide range of flowrate measurements in the range 0.04 to 50
litres/minute at 15°%C temperature and 1.013 bars pressure
for air. It is important_to locate the flowmeter downstream
of the pressure regulator so as to minimize the correction
necessary to the flow meter readings accounting for the
pressure and density of flow. These corrections are given
by manufacturers calibration charts supplied with the
flowmeter.

From the flowmeter the supply line is connected to the
bearing supply chamber via 4 ports. This ensures an even
distribution of air supply to the porous pad. Both the
supply chamber pressure p, and the supply line pressure at
the flowmeters p, are measured using a standard test
pressure gauge with a scale 0 to 160 psi (0 to 11 bars).
This test gauge was calibrated using a dead weight pressure
tester and found to have a constant error of +1 psi (0.069
bars).

For the measurement of film pressures via connections
to pressure tappings in the porous pad, a pressure
transducer (0 to 6.9 bars (0 to 100 psi)) is used.
Initially the mercury U tube manometer with a scale length
of 1400mm was intended for this purpose but it often took
several minutes before the mercury column settled down to
allow a film pressure reéding to be taken. This is
attributed to the small bore diameter of the pressure

tappings in the porous pad and the large volume of air
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required to displace the mercury in the U tube. The
pressure transducer is supplied with 12 volts from a
stabjilized power supply. Transducer pressure readings in
volts are méasured using a digital volt meter and
calibrated before each bearing test against the U tube
mercury manometer. The plumbing in the main rig supply
shown in figure 4.11 allows this to be carried out in
isolation from the supply chamber and the pressure
tappings. As shown in a typical calibration (figure 4.12)
the transducer gave a very linear output over the range 0
to 1.87 bars (0 to 27 psi) which covers the range of film
pressures taken during the bearing tests.

Each connection to a pressure tapping in the porous
pad is isolated by an on - off valve. These valves are
connected to a manifold to which the pressure transducer is
also connected. This enables the pressure at each preséure
tapping in the porous pad to be measured separately one at
a time.

In chapter 3 the assumption was made that flow through
the bearing is isothermal. It 1s therefore necessary to
check that the supply temperature T; of air to the bearing
is equal, to within 1° or so of the ambient temperature T,
. To measure T; a thermocouple is mounted through the wall
of the bearing supply chamber. A second thermocouple is
also mounted in the supply line near to the riowmeter. This
enables a correction to be made for temperature on the

flowmeter reading using manufacturers calibration charts.
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The readings from both thermocouples are measured using a
digital voltmeter. A calibration sheet 1is supplied with
each thermocouple.

Before bearing tests were carried out a thorough check
was made for any air leaks_in the system particularly those
downstream of the flowmeters and at connections to pressure
gauges, etc. This was achieved by pressurizing the systemn,
care being taken not to blow out the porous pad from its
holder (see section 4.3.1), and using soapy water to detect
the leaks. Note that it 1s important to check the epoxy
seal around the circumference of the porous pad. A method

of achleving this is described in section 4.3.1.
4.3 POROUS PADS
4.3.1 MOUNTING AND SEALING

Initially as suggested by Taylor and Lewis (9, 24) the
porous pads were sealed around their clrcumference using an
epoxy putty such as Devcon plastic aluminium F containing
80% aluminium and 20% epoxy plastic. After hardening the
excess putty was removed by machining and the porous pad
mounted in their holders using epoxy resin. However when
these porous pads were assembled on the bearing supply
chamber and pressurised with air, this often resulted in
cracking of the putty seal at relatively low supply

pressures of approximatly 1.38 bars (20 psi) for a 20mm
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thickness pad. This problem was not reported (9, 24)
probably because smaller diameter porous pads with higher
aspect ratio's Sp were used.

This epoxy putty was used (9, 24) to stop the epoxy
resin from being absorbed by the porous pad. If tﬁis
occurred the flow characteristics of the porous pad could be
affected along the boundary r = Phy Z = 0 to hy ,i.e. the
porous pad circumference (see figure 3.1). However for all
current bearing tests low porosity porous pads are being
used. Therefore the author considered it acceptable to use
a low viscosity epoxy resin such as slow setting (12 hr)
araldite to both seal and mount the porous pads in thelir
holders (see figure 4.8). This was achieved in one
operation and produced a more flexible bond between the
porous pad and its holder. In addition the porous pad
holders were tapered along their bore to give further
support to the porous pads (see figure 4.8). As a result of
these measures the porous pads could be pressurized to
withstand a pressure difference of 0.138 bars (2 psi) per
mm thickness of the porous pad, i.e. 2.76 bars (40 psi) for
a 20mm thickness pad.

This epoxy bond between the porous pad and its holder
was checked for leaks by attaching a perspex cylinder
(originally constructed for electro - polishing of the
porous pads, see section 4.3.4) over the porous pad as
shown in figure 4.13, such that they can be immersed in

water. By pressurizing the porous pad to between 0.138 and

-221-



Water

R|§.|¢\5 o bubbles
trom porous pad

Percpe x
cylindec

Sur ‘: ace

1Bp suckace ok

Steel rein-—
porous pad

forcing
Fiag Fixing bolts
Rubbecr
ring

washer <D <

I
Porous pad Snpply
chamber (prtsmriscd)

Fnsurt 4.3 Checking the seal of the porous
pu.d epoxy bond and visoal insp-

ection of porous pad permeability

distribution
Rty -
A - --w‘ ,‘-.'l'.‘
T e
31
i = o 8 ~7
#?‘ I ~ E e
T + - -
i 451
resg=——nt 1 =1
L1 : | Ea
S A I ISR | +
e PN 1
Pl S £s 11 1
I STy
L | 1 1
+—+ = . —=
. ! ! .
] i i =5 : -
4
: o 4 L BE R .“'
1 B =tv - —{- 1=
4 il | 1 l.".‘ : 4 |
3k ' el A b= e
= - Ll n
 p— ! 05 < " - o 2%
F . ] - - T —— —ige
i ;% — - e | T
" —— P R
——{ = = ~+H= ;
. r - L * T
) I L L = - 1 'lf“ -
L4 Y bl 1 i » bt -
Y o . s
; T
B ” i T
5 N X3
o e . B e ;
2.l A L1 ‘ ri A B 0 St e la
3 AT T2 s . i = ¥ i
T = - b -
T b= C¥s a2
=35 " - = > g -l

Figure 4.\4 Typical flataess protiles tuken across two diameters at
right angles to euch other for a stuinless steel
ad altec suckace grinding (pad grade; 150 | supplier;

B.S.A. Sintered Products Ltd))

-222-

rous



0.345 bars (2 and 5 psi) while it is assembled on the
supply chamber a stream of small air bubbles will rise from
the porous pad surface through the water. Leaks in the
epoxy bond will be indicated by large air bubbles rising
from the porous pad circumference, i.e. the époxv bond.
Also a visual inspection of the permeability distribution
across the porous pad can be made. This is indicated by the

distribution of air bubbles rising from the porous pad

surface.
4,3.2 SELECTION OF SUITABLE GRADE AND MATERIAL

The first batch of sintered porous pads were supplied
by BSA Sintered Products Ltd in both bronze and stainless
steel. These were 101.6 mm (4 inches) in diameter with
thicknesses of 12.7 mm (1/2 inch) and 25.4 mm (1 inch).
Manufactures grading for the bronze pads were 250 and 450
and these roughly corresponded to grades 150 and 250
respectively for the stainless steel pads.

Problems were encountered during surface grinding of
the bronze pads which resulted in the removal of sintered
particles from this surface, causing pitting. Fine grinding
depths and feed rates were tried with several different
grade grinding wheels but pitting still persisted. These
pads were therefore unsuitable for bearing experiments and
discarded.

The stainless steel pads were however ground
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successfully to a flatness of 7 micrometers (see figure
4.14) and initially acid etched as described in section
4.,3.4 (note that the porous pads were later electro =~
polished, see section 4.3.4).

However during preliﬁinary bearing tests using the
stainless steel porous pads it was impossible to stop
pneumatic hammer occurring(bearing instability). Several
elastomer layers of various thicknesses and hardnesses were
tried at different bearing supply pressures ps and bearing
loads w with no success. The cause of this was later
accounted to the high permeability of the porous pads (40),
(41) which gives rise to instability in the porous
aerostatic thrust bearing. In the porous and compliant
aerostatic thrust bearing this condition is made worse by
the recess formed in the bearing clearance by deflections
of the compliant surface.

A new batch of stainless steel porous pads was
therefore ordered from Schumacher Filters Ltd (BSA Sintered
Products ceased to exist from March 1983). These pads were
supplied in the lowest gradings of permeability offered by
the manufacturer i.e. SIKA R1,3 and 5. The pads were of 100
mm diameter and in thicknesses of 10,15 and 20 mm. With the
new porous pads it was now possible to operate the bearing
without pneumatic hammer depending on the supply pressure ps

(refer to chapter 5). This confirmed that the selection of
a low permeability porous pad is important for the stable

operation of a porous and compliant aerostatic thrust
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bearing.

4.3.3 PRESSURE TAPPINGS

Having selected suitable porous pads these were fitted
with pressure tappings at the locations shown in figure
4.,10. As described in section 4.2.3 all the porous pads
except one were fitted with four pressure tappings at the
locations shown in figure 4.10(b). Only one porous pad was
fitted with ten pressure tappings as shown in figure
4.10(a). For this porous pad (of grade SIKA R3 and
thickness 20mm) a test was carried out to find the effect
of the presence of pressure tappings on the flow through
the porous pad. Before inserting the pressure tappings
therefore the characteristics of flow through the porous
pad were measured in its as supplied condition 1i.e. un -
ground and un - etched (see section 4.3.5 for measurement
of porous pad permeability). The pressure tappings were
then inserted into the porous pad and connections fitted
using the following procedure:

(a) Drill 2mm holes at each pressure tapping location
through the porous pad thickness.

(b) Each pressure tapping is cut from 1.65mm outside
diameter stainless steel tube to a length of 35mm greater
than the thickness of the porous pad.

(c) These tubes are epoxied into the drilled 2mm holes

using slow setting (12 hr) araldite similar to that used to
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mount the porous pads in their holders (see section 4.3;1).
While the epoxy was setting the porous pad was raised on
two parallel strips above a flat surfaﬁe so that the tubes
are 0.5mm below the surface of the porous pad (see figure
4.15). The 0.5mm clearance allows for grinding of the
porous pad surface such that the tip of the tubes are not
blocked by burring.

(d) After the epoxy has cured a short length (60 mm) of
flexible tubing, 0.5 mm internal diameter and 0.6 mm wall
thickness (available from Portex Ltd.) was inserted over
the exposed ends of the pressure tapping tubes (see figure
4.,9)., To improve the seal at this Joint it was necessary to
epoxy a short sleeve from 3/16" (4.763 mm) nylon tube, over
the join (see figure 4.9). For this purpose a low viscosity
laminating resin was used (available from S.P. Epoxy Resins
Ltd.).

(e) For the Enot connection at the other end of the
flexible tube (enabling connection through the supply
chamber wall, see figure 4.9) a second nylon sleeve of
approximately 25 mm length and suitable for 3/16" (4,763

mm) Enot fittings is epoxied. This nylon sleeve is fitted
with an olive and Enot.

After all epoxy Jjoints had cured the flexible tube
connections to each pressure tapping were checked for
leakage. This was achieved by connecting the flexible tube
using Enot fittings to the main air supply and pressurizing

to 8.3 bars (120 psi). The other end of the pressure
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tapping was blocked using a finger and the leaks are
checked using soapy water. All the flexible tube
connections tested in this way were found to be
satisfactory.

Duriﬁg assembly of the porous pad on the bearing
supply chamber the pressure tappings are connected to the
bottom of the supply chamber using the Enot attached to the
flexible tube. (see figure 4.8). To enable this the bottom
of the supply chamber is removed from the supply chamber so
that the pressure tappings are connected prior to assembly.

Having inserted the pressure tappings in the porous
pad a second measurement of flow through the porous pad was

'

made. A comparison of the flow through the porous pad
before and after inserting the pressure tappings is shown
in figure 4.16. It can be seen that a reduction in the
porous pad permeability occurs due to the presence of the
pressure tappings. But this reduction is only 4% and
therefore the pressure tappings are considered to have
negligible effect on the flow through the porous pad.

However for all porous pads their permeability is measured

after insertion of the pressure tappings.

4.,3.4 BEARING SURFACE PREPARATION
After surface grinding the porous pads Taylor and

Lewis (9),(24) used an acid etching technique to re - open

the blocked pores in the porous pad surface caused by
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machining forces during grinding. Initially the same
technique was used and is described as follows;

During acid etching the porous pad is assembled on the
supply chamber (this 1is removed from the main rig) and
pressurized to 0.69 bars-(10 psi) from the same supply as
for the main rig. A dilute Nitric acid is spread over the
porous pad surface using cotton wool and a pair of tongs.
When the pores in the porous pad surface begin to re -~ open
the excess acid is carried away by air passing up through
the pressurized porous pad. This stops further corro;ion
taking place within the porous pad. As a safety precaution
protective rubber gloves were worn and the acid etching was
carried out in a vented fume cuboard for approximately 20
minutes. After etching, tﬁe porous pads were removed from
the supply chamber to be soaked in water for 1 hr.
Subsequent drying of the porous pads was accelerated by re
- assembling them on the supply chamber and pressurizing to
0.69 bars (10 psi) so that dry air passed through the pad
for approximately 2 hours.

The permeability properties of the porous pad were
measured (see section 4.3.5) and presented on a graphical
plot of log, (p; - p,) against log,, 9p as shown in figure
4.,17. Also shown in this plot is the measured permeability
of the same porous pad before grinding and acid etching but
with pressure tappings inserted. The viscous dominated flow
line would be represented by a 45° line to the horizontal

axls plotted through the results as i1s the case for the
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porous pad before grinding and etching. It can be seen from
figure 4.17 that after grinding and acid etching the flow
through the porous pad no longer has a viscous dominated
flow region and the permeability of the pad is less than
that before surface grinding and acid etching. This
indicates that there is still pore blockage in the porous
pad surface.

After consultation with Mr M. Izzard a postgraduate
research student in the Metallurgy department at the
University of Aston in Birmingham, a Vilella reagent
containing 5mls of hydrochloric acid, 1 gm of picric acid
and 100 mls of methyl alcohol was used in place of the
dilute Nitric acid. However even after 48 hours of acid
etching using this reagent the permeability results as
shown in figure 4.17 were still unsatisfactory.

Problems of this nature were not encountered by Taylor
and Lewis (9, 24) possibly because the steel pads used were
less resistant to acid etching. However 1t appears that the
stainless steel pads currently used (see section 4.3.2) are
highly resistant to corrosion during acid etching. While it
is possible to account for the pore blockage in the
theoretical model for flow through the porous pad as Polome
and Gorez (12) have done (see section 2.2.1) this would add
further complication to the theoretical analysis presented
in Chapter 3.

In an attempt to remedy the problem, lapping of the

porous pads was tried. By lapping the ground surface of the
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porous pad the thin layer of blocked pores is removed by
light abrasion forces. This prevents further pore blockage.
However while there was some improvement in the
permeability of the porous pad after several hours of
lapping as shown in figure 4.17 (this being done by hand on
a lapping block), the flow through the porous pad was still
not in the viscous dominated flow region even at very low
pressures p; - p, across the porous pad. And in any case
the resulting flatness and roughness of the porous pad
surface depended on the skill of the lapper (see flatness
measurements in figure 4.18).

An alternative method to acid etching and lapping is
electro -~ polishing. Greenberg and Weger (7) report that
this technique is far superior to conventional acid
etching, although further details are not given.

While it is possible to use stronger and more
corrosive acid etching solutions, this often causes
localized attack on the etching surface. Electro -
polishing on the other hand, not only gives much higher
corrosion rates but also acts uniformly over the surface
being treated.

To implement electro - polishing of the porous pads
again Mr M. Izzard was consulted. Although it is unusual to
polish large samples such as the porous pad, he saw no
reason why this could not be achieved.

The electro - polishing technique comprises an anode

and cathode immersed in an acid solution while e;ectrically

-232-



connected to a D.C. supply. The anode (D.C. supply +ve)
forms the surface to be electro -~ polished while the
cathode (D.C. supply =-ve) becomes plated with irons from
the anode.

Just as with acid etching it is necessary to stop the
acid seeping into the porous pad during polishing.
Therefore the porous pad was assembled on the bearing
supply chamber (this being removed from the main rig) and
pressurized between 0.345 and 0.69 bars (5 and 10 psi) from
a connected gas cylinder of Nitrogen (see figure 4,19). An
electrical contact with the underside of the porous pad is
made through its holder (see figure 4.20). Thls avoids any
blinding from the anode of the upper porous pad surface to
be polished.

Phosphoric acid at 60°C 1is used as a solution. This is
contained above the porous pad by a flanged perspex
cylinder (see plate 6) which is bolted to the porous pad
holder and sealed using a rubber washer cut from sheet
rubber. The acid is heated using an electrical coil heater.
During heating the acid is stirred to give an even
temperature distribution, the temperature being measured
using a mercury glass thermometer.

The cathode in the shape of a disc was cut
approximately 100mm diameter from O0.5mm thick stainless
steel sheet. A tag was soldered to its centre so that it
could be lowered by its electrical lead into the acid bath

to a height of approximately 25mm above the porous pad. By
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Plate 6 perspex cylinder used in electro - polishing
of the porous pads.

\



ensuring the cathode 1is parallel to the porous pad surface
a constant distance is maintained between these two
surfaces giving a uniform corrosion action,

When the Phosphoric acid reached 60°C the D.C. supply
was switched on and the power increased to give a current
of 3300 amps per m? of anode surface area. For a 100mm
diameter porous pad this equals approximately 26 amps.
After 3 mins the current was switched off and the acid
drained from the perspex cylinder via a drain tap fitted to
the porous pad holder (see figure 4.20).

From the first sample it was immediately obvious by
visual inspection that the electro - polishing had re -
exposed the original pore structure of the porous pad. In
effect the thin blocked layer caused by surface grinding
had been removed. Figure 4.17 shows that there is minimal
difference in the permeability characteristics after

electro - polishing compared to those of the original

unground porous pad.
4.3.5 PERMEABILITY CALIBRATION

The permeability of the porous pads can be determined
from measurements of the pressure drop across its thickness
at different flow rates qp. These measurements are made by
assembling the porous pad on the supply chamber and
connecting to the main rig supply so that the porous pad

can be pressurized at a regulated supply pressure ps. The
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upper surface of the porous pad is allowed to exhaust
freely to the atmosphere and as a result the pressure drop
4p across its thickness is uniform and equal to Pg = Pa-
_For each regulated value of p; a flowmeter reading 1is taken
from the rotameters together with the pressure of metered
‘flow Pm and its temperature Ty,. From these readings and
using the manufacturers calibrations charts for the
rotameter the mean volumetric flow rate qp through the
porous pad can be obtained.

Values of absolute viscosity n for air flow through
the porous pad are read from tables (91) for dry air at low
pressure and at a temperature (Tg+T;)/2 (i.e. the mean
temperature of flow across the porous pad). The value of g
thus obtained is accurate over a wide range of pressures
especially above atmospheric pressure (91).

From these measurements of pressure drop p; - p,
versus flow rate qp, Taylor and Lewis (9) showed that the
viscous dominated flow region of the porous pad could be
accurately shown on a plot of log,, (4p) against log,, qp+ As
already mentioned in the literature survey (section 2.2.1)
Darcy's law in the form of equation 2.10 gives a straight
line of unity gradient (i.e. 456 to the horizontal axis) on
this plot. An example of such a plot is shown for
convenience in figure 4.21,

_ Using least squares method a straight line of unity
gradient can be fitted to the measured experimental points.

According to the least squares principle (92) this line
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must pass through the centroid of these points which 1lie
within the viscous flow region. In section 2.2.1 equation
2.7 for the viscous flow region was re - written in the

formg;

Log,o (Ap) = Log,e(q,) * Logn(n.hb) 4.1
Az.@

This equation is of the general form for a straight line,

i.e.:
y = m.x + ¢ 4.2
where y = Log,,(Ap)
X = Log,.(qb)
Mt !

cl -y = mlax ' 1'03
1 kl

where y = ~— (), 4.4
S n=1
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k
and X = = E (x)n 4.5
K
1l n=1

Having obtained a value of ¢; the viscous permeability of

the porous pad is therefore given by:

M =C
‘- (-—29) x 10 * 4.6

A
z

The viscous flow region ends when the measured points
depart from the straight line as shown in figure 4.21.
According to Taylor and Lewis (9) this represents the
beginning of the transition flow region in which both
viscous and inertial flows are significant. This region of

flow is represented by equation 2.8 in section 2.2.1, i.e.;

Ap.Az 1 QP

- = 4

4.7

qb.n.hb ’ Azonl’

Both the transition and viscous flow regions can be
represented on a plot of Ap Ay against.ﬂLf (9). An example
9p7 P Azn
of this plot 1is shown in figure 4.22. This plot is known as
the modified Morgan plot after Morgan (8) who only
recognised a transition flow region.

In the modified Morgan plot the viscous flow region is

represented by a horizontal line whose intercept with the
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vertical axis equals 1/® . For measured points in the
transition flow region (i.e. those points which do not 1lie
on the viscous flow line in the logw Ap against logy, qy
plot) a least squares line of gradienﬁ 1/¢ and intercept
1/® is fitted. |

Although Taylor and Lewis (9) do not show an inertia
flow region on this modified Morgan plot, this would be
represented by a line fitted to measured points in the
inertia flow region, which intercepts the origin and has a
gradient of 1/¢. An arbitrary inertia flow 1line is shown
dotted in figure 4.22 to illustrate this.

Using these graphs of the type shown in figures 4.21
and 4.22 it 1s therefore possible to determine the
permeability characteristics of the porous pad in any of
the three types of flow regions, i.e. viscous, transitional
and inertial. Permeability calibrations for several porous

pads used in the bearing tests are presented and discussed

in chapter 5.
4.3.6 DEFLECTIONS AND RIGIDITY OF THE POROUS PAD IN BENDING

To obtain the rigidity properties of the porous pad it
i1s necessary to measure its deflection while subject to a
known pressure loading pp. For this test it is convenient
to pressurize the porous pad with a aﬁpply pressure pg and
measure corresponding deflections of the porous pad as

shown in figure 4.23. These measurements are made with the
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porous pad assembled on the bearing supply chamber which in
turn is connected to the main rig supply. Prior to |
recording deflections, the micro - comparator is calibrated
and adjusted using slip gauges (see section 4.5.4) then
positioned on the porous pad surface and set to zero. The
porous pad is then pressurized to a maximum pressure
difference p; - p in bars, equal to 0.138 times the porous
pad thickness in mm. This 1s to avoid blowing the pads
"out" from their holders (see section 4.3.1).

At this pressure the deflection of the porous pad was
recorded froﬁ the micro - comparator instrumentation. To
obtain a deflection profile of the porous pad this
procedure was repeated for several different radial
positions on the porous pad surface, i.,e. r = 0, 10, 20,
30, 40 and 50 mm. Readings were also taken across four
radii at 90° to each other to obtain an average.

While it is possible to take further deflection
measurements at lower pressure differences p; - p;, 1t was
found that these were too small to give accurate deflection
profiles of the porous pad. However to check the linearity
of porous pad deflections versus pressure difference p; - Pa
y deflection measurements were recorded at several lower
pressure differences p; - p; for the r = 0 position only.

Results are presented in non - dimensional form in a
plot similar to that shown in figures 4.24 and 4.25. Note
that the shear deflection of the porous pad bond at r = ry

must be subtracted from deflection measurements of the
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porous pad at r = 0, 10, 20, etc in order to obtain its
deflection due to bending only. Note that these shear
deflections of the porous pad bond are calibrated
separately (see section 4.5.2). Using the elasticity theory
presented in section 3.5 for deflections of the porous pad
in bending it is possible to fit a curve to the
experimental points in figure 4.24 using least squares

methods. In equation 3.88;

- - - ".8
Py, = Pg = P, constant

Therefore in equation 3.89;

- - 4,
a, = Py = P, 9
and k' = 0 11.10
Equation 3.90 reduces to
“-p).r*  Dby.rt
R T U 311
> p - 64 4 ‘

b

Equation 4.11 gives the deflection profile for the porous
pad in bending subject to a uniform pressure loading Ps = Pa
« Equation 4.11 may be expressed in the following non -

dimensional form:
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- 1 R* b,.R?
Uy = = —*—*bl) 4.12

b
Db 64 y
blos lp -h 3
where b~ - b a b 1".13
- 2
(D8 Pa).rb
b'.B +p..h 1
and by = b_a_b b1y
- 2
(ps pa).rb
Consider the following general equation:
F(R) = c;.f;(a) * ca-rQ(R) + c’-{'(R) 11.15

Using least squares methods (92) the constants ¢, , ¢; and ¢,

may be obtained from the matrix equation:

TUL(R)? If,. (R).£,(R) I, (R).E,(R)] [ey [££,(R).F(R)]

If,(R).f,(R) I(f,(R))? I, (R).f3(R) [ x| ey | = | Zf,(R).F(R)| 4,16

If, (R).£,(R) -If,(R).£,(R) E(f,(RND?* | |e, | [If4(R).F(R)]

Where ) signifies the summated values corresponding to the

data points in figure 4.24 to which the least squares curve

is to be fitted.

Comparing equations 4.15 and 4.12, in the matrix equation

4.16 :=-
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F(R) = Eb 4,17
f,(R) = R* 4,18
f,(R) = R? 4,19
1
c, = - 4.21
GH.DD
b,
Ca = =~ 4,22
H.Db
by
Db

Values of F(R), fi (R) and f,(R) are obtained from the

experimental points in figure 4.24. Expressing equation

4,16 as follows:

[£)1x[el=[F] 4,24

the constants ¢, , ¢, and 05 are obtained by inverting the

matrix (f] and re - arranging equation 4.24, i.e.:

[el=Ce1 %[F] 4,25

A solution to equation 4.25 was achieved using the

HP9845 desktop mini computer which can invert and multiply
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matrix arrays. Values of Dy, b, and by can be determined
from the constants ¢, , ¢; and c¢; using equations 4.21 to
4.23. The least squares curve 1s thus plotted by
substituting value of BL, b, and bs back into equation

4.12.
By fitting equation 4.12 to the experimental points in

this way a value orlﬁb is directly obtained and from its

definition;

- : l'l'2
Db Db’pafhb ¢

In section 3.5 a second constant By 1is required for
equation 3.91. Substituting for a, and k, from equations

4.9 and 4,10, equation 3.91 becomes;

- 2 =a 2
by - 2 ( EE.(pS P )Ty . 3.(py = P,)ery 427
(B, + D)\ D 16 16

Re - arranging equation 4.27 and using equations 4.13 and

4,26 it can be shown that;

( 8.b, *+ 3)
B, = =D, | —————— 4,28 .
b Y\ 8.b, ¢+ 1

Having obtained the flexural constants Dy and B, for a

porous pad it is possible to determine deflections for any
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pressure loading pp using the equations in section 3.5.
However during the course of experimentation large
variations in the values of D, and B, were obtained from
two separate deflection measurements on one poroué pad.
Despite this the deflection profiles from each méasurement
matched to within 10% of the maximum deflection at r = 0.
The reasons for this can be shown in the following error

analysis.

In equation 4.12, by can be eliminated since up = 0 at

R =1, i.e. substituting this condition into equation 4,12
gives;
: 1 b
b' - - i - uoag
64 4
and substituting for bs in equation 4,12 gives;
- 1 [RY b, 1 |
u = :‘ — ¢ '_Q(R’ - 1) -
b Db TR 6l 4.30

Errors in the measurement of porous pad deflections
can be divided into errors of magnitude (as shown in figure
4.,26(a)) and errors of shape (figure 4.26(b)). The errors
of magnitude can be represented by the deflection of the

porous pad at R = 0. In equation 4.30 let Up = up, at R =

0, hences
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- 1 [ b, 1
u m - wana = + — u.31
® b \us el

§.32

Substituting for b, in equation 4.31 using equation 4.32

glves;

1 5.%}* B,

Yp, e -

4.33

The shape of the deflection profile as defined by
equation 4.30 depends on the value of b, only. From
equation 4.31;

_ 1 b, 1)
Do o o | ) g S 4,34

b -
U, y 64

Substituting for BL in equation 4.30 using equation 4,34
gives;
= (R* + 16.b,.(R? = 1) - 1)

u_ = - u. 4,35
8 B (16.b, + 1)

For a deflection profile of constant magnitude up, the

space between two curves of different shape is given by
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" du
su, =~ —2 . ab
ab, '

Using equation 4.35;

L 16.R2.(1 ~ R?).Ab,
dl.l = =\ . . u.36
b B\ (6.p, + 1)2

This spacing is a maximum when;

a( Aﬁb)

ittt -o

3R

Differentiating equation 4.36 with respect to R and
equating to zero gives R = 0.7071. The spacing between two
deflection profiles of equal magnitude U, but different
shape as defined by b, 1in equation 4.35 is a maximum at R =

0.7071.
Let the deflection of the porous pad at this point be

Uy, » In equation 4.30;

- 1 (32.b, + 3)
N | wo e u037

b2 .
Db ?56

Substituting for b, from equation 4.32 gilves;
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- (9.D, + B,)
h, - —— b 4.38
256.D, . (D, + By)

Equations 4.33 and 4.38 may be written explicit in Dy and By

as follows:

Eb - — ~ 4.39
'_IZB.(ubl - 2.ub2)
. 20.u__ -~ 9.u
B, = - B2 el — 4,40
:128.(ubl - H.ubz).(ubl ~ 2.ub2)

The total differential of D, and B, can be expressed as;

., 8D,
ﬂD = OAU + .A'u "‘-"1
b a; b B; b2 ;
+]] b2
. 9B, . 2B .
and AB, = = Au__ + .Au 4,42
b aa . b a; . b2
b b2

In terms of the ratios Aﬁb/ﬁL, Aﬁblﬁb. Aﬁblfﬁb, and

. Alp,/0p, equations 4.41 and 4.42 can be written;

aD. u_ 3D, Au u_ 3D, .Au
b . bll b. b1 P -Pa' _b : -bz 443
bt b Db aubz ubz g

[
[= 3 |
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— . . + = . 4.4y

Differentiating equations 4.39 and 4.40 with respect to Uy

and ﬁm and using the same equations to replace ﬁg and ﬁg

-

equations 4.43 and 4.44 becomes

. S [ | P 2, | - bz_ b2 4,45
Db U, 2‘ubz U, Uy, ~ 2.ubz ub2
and

— - - - 2 -
AB i (9.ub| = 22.ub'ub2_f h&.ubz).ub du, |

B, (B, = 6.0, .0y, * 8.5 ).(20.5 = 9.5, ) 1§

- - - -l . - -
. (-16.ubl +"256.ublfub2 - !Go.um):ub2 - aubg ik

(Tp, = 6.0y, -y, *+ 8uup,)e(20.0y, = 90y ) Ty,
Errors in Bg and §b are dependant not only on
measurement errors of Up, and Up, but also on the value of
up, compared to Eb,. Consider a typical deflection profile
i,e. figure 4.24, From this deflection profile U, = 5.8x10
and Up, = 3.3x10° . Substituting these values into

equations 4,45 and 4.46 gives;

. AD . Au Au
—2 = 7.5x=2t = 8.5x—22 ' 4,47
Db ubl ubQ
AB Au “Au
—2 - 30,3202 - 4y, 5.2 4. 48
Bb u u

bi b2
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If the error in the fitted deflection profile cﬁrve is
confined to a band of $10% as shown in figure 4.27 then
typical values of Aup, /Up, and Aly, /Uy, are £0.1. The

maximum errors in equations 4.47 and 4.48 are therefore;

(=

—2 . 7.5«(t0.1) - 8.5x(50.1)
D
b
=1 1,6
=t 160%
A-b
and ~— = 30,32x(%0.1) = U4.5x(30.1)
B
b
- 1' 7-"82
= L 748,2%

It can be seen that for relatively small errors in up,
and Up, the corresponding errors in 5b and EB are quite
large. In this respect therefore both Dy and By are
unsuitable constants to specify the porous pad rigidity as
their values are unreliable when obtained from the
measurement of porous pad deflections. For this reason two
new alternative constants are introduced as follows;

The magnitude constant; My = ﬁbl 4,49

and from equation 4.35;

__ [ (8.b, + 0.75) ) .
= U 050
ub2 by (16'p" + 1)

therefore let the shape constant Ny be defined by the

equation;
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8.by + 0.75
N = 4.51

D 46.b, + 1

Both constants Mp and N, define the magnitude (up, )
and shape (up; /Uy, ) respectively, of the porous pad
deflections in bending for the special case of a porous pad
subject to a uniform pressure loading Ppb = Ps = Pas
Repeating the error analysis for My and Ny the following

equations are obtained;

9 P
AM, = Tb . Au, .
* Ju
bi
AM.  u_ - aM Au
b __b . _b . -bl 4.52
M My o, U,

using equation 4.49 to substitute for Uy, /Mp and M, /a0y,

in equation 4.52 gives;

AM. - Au
. ..:QL 4,53
My U

Similarly for Ny;

N aN
R - (R i - I
ANb aE fAub‘+ - ‘Auba
bi b2

-256-



Using equation 4.50 and 4.51, substitute for Uy, /Np, dNp/

dup, , Up,/Np and ONp/dup; in equation 4.54, 1.e.;

b -b'l bl' u.ss

Substituting *0.1 errors of measurement for Au,, /U, and

Alip, /Uy, in equations 4.53 and 4.55;

A
-‘..-'tOtl

Mo

. t 108
ANb
and — (tO.‘lJ = (:0.1)

No

= : 0'2

T 20%

Hence the corresponding errors in M, and N, are of the
same order of magnitude as the measurement errors in i,
and Up, from deflections of the porous pad. Values of My
and N, can be obtained from the least squares curve fitted
to the deflection measurements of the porous pad, i.e.
equation 4.12. For completeness both M, and N, can be
expressed in terms of Dp, and Bp as follows; in equation

4.33 replacing D, and By with D and Bp respectively:
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3
p,-hy .(S.Db + Bb)

t -
Gh.Db.(Db + Bb)

P2 (5:D. + B.)
hence by definition M, = ab Db .56
Gll.Db.(Db + Bb)

Substituting for b, in equation 4.51 using equation 4,32

and replacing Eb and ﬁb with 55 and Bp respectively;

9.D, + B
Nb - ) b 4.57
20.Db + h.Bb

Hence both constants Mp and N, may be used to specify
the rigidity properties of the porous pad in bending for
any pressure loading pp g8iven by equation 3.88 in section
3.5. These constants are non - dimensional and depend only
on the material properties of the porous pad and stiffness

of the porous pad bond. This 1s because by definition;

3
Eb'hb

!20(1 - \Jba)

Db -

D E
and D - b T ™ R n-58

b - 2
Pachy  12:84:(1 = w?)

Hence in equation 4.12 Eb is independant of the porous
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pad thickness hp and radius r,. Since the constant Mp and
Np are related to up by up, and Up, in equations 4.49 to
4.51, then these constants are also independant of h, and
Ty .

The results of deflection profile measurements and
corresponding values of M, and N, for several porous pads

used in the bearing tests are presented and discussed in

chapter 5.
44 THE ELASTOMER LAYER

4.4.,1 MOULDING AND PREPARATION

A natural rubber compound was selected for the
elastomer layer material. This could be moulded at the
University of Aston in Birmingham using equipment in the
Rubber Technology Department. Thus both the elastomer
layers and test specimens for the measurement of shear and
bulk modulus (see section 4.4.,3) could be moulded frbm the
same compounds and under controlled conditions to ensure
consistency between the two. The hardness and corresponding
elastic properties of the elastomer layer could be varied
by the carbon black filler content in the rubber compound.

Trial and error tests of several rubber compounds with
differing amounts of carbon black were carried out using a
Monsanto Rheometer. This instrument cures small rubber

samples of the compound and records the state of cure
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versus time on a chart similar to that shown in figure
4.28. The compounds in table 4.1 were selected to give a
reasonable range in elastomer properties as indicated by
the separation in curveé for each compound in figure 4.28.

These compounds were prepared on a ﬁanbury mixing
machine followed by milling so that the uncured rubber is
rolled out into a thin sheet of approximately 5 to 10 mm
thickness.

Typical moulds for the elastomer layer are shown in
plate 7. The moulds are designed so that excess rubber can
escape through the grooves at the top and bottom of the
mould. For the elastomer layer, three moulds of diameters
105, 133 and 175 mm were used. Different size plugs are
inserted into the mould as shown in figure 4.29 so that
elastomer layer thicknesses of 6, 10, and 16.5 mm could be
moulded.

Because it is important that the moulded properties of
the elastomer layers and the test specimens are the same,
both are moulded from the same Banbury mix and at 160°C for
50 minutes. All moulds are pre « heated prior to filling
with uncured rubber. Curing of the rubber takes place in a
heated, thermo - statically controlled press at 27 tons
loading.

To check for consistancy in the elastic properties
between the elastomer léyers and the test specimens after
moulding, their hardness was measured and the results are

shown in'Table 4.2,
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COMPOUND \ 3 d
Natural rubber (S.M.R.10) 1000 g 1000 g 1000 g
Zinc oxide SOq Soq Soq
Stearic acid 304 30q 30g
C.8.5. 6g 6q bq
1.P.P.D. lbg lOg IOQ
Sulphur iy 2Sq 254
H.A.F. carbon black Ogq 200 9 400+,
Key: C.8.S. Cvelo = hexyl = beazthiazyl - sylphenamide
Y I.P.P0. J— ispropygl - N' - phtnyi - Py P
H.AF. high abrasion furnace
Table ¢. 1 tlastomer ancr natural rubber Compou.nd:.

I.R.H.O. value
C d Bulk Shear Uastomer
ompest modwlug wodulus luyers
specimen Specimen (average
and
range )

\ 42 1 437 £ ),

2 St S2 Sy r 5

3 67 o4 A% B

Key: T.R.H.0. Imternational rubber hacdaess

Table ¢.2 Hardness readinas for elastomer hycrs

and test specimens of the sume natural
rubber compound

-261-



Plate 7 Typical elastomer layer mould.



The close correlation of hardness readings in table
4.2 1s a good indication that the properties of the
elastomer layers will be accurately measured from the test
speclmens for the same compound.

Prior to bearing tests the elastomer layers were
bonded to their rigid backings (see figure 4.3) using a
slow setting (12 hr) epoxy resin. To improve adhesion the
bonded surface of the elastomer layer was roughened with an
emery cloth before applying the resin.

Once the epoxy resin is set the elastomer layers are
ground flat to the desired thickness on a surface grinding
machine. Chalk dust was used to lubricate the rubber during
grinding as recommended by Lowe (71, T2). A typical
flatness profile of the compliant surface after grinding is
shown in figure 4.30. The flatness measurements were taken
using a micro - comparator mounted on a vernier height
gauge with the the elastomer layer and its rigid backing
resting on a flat marble inspection table as shown in
figure 4.31. A slip gauge is used to spread the contact
pressure of the micro - comparator gauge head on the
compliant surface. The micro - comparator was traversed to
several locations on the compliant 3urface_and a height
measurement recorded. The difference in height readings
betwéen measurement locations gives the flatness of the
compliant surface.

To determine the thickness of the elastomer layer

additional readings are taken from its rigid backing so
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that by subtracting the average height of the rigid backing

from the average height of the elastomer layer its average

thickness is obtained.
4.,4.,2 ACCURATE DETERMINATION OF POISSON'S RATIO

In section 3.4.4 a simplified solution for deflection
of the elastomer layer was presented. For this solution it
is necessary to determine Polsson's ratlo y for the
elastomer layer. It is important that an accurate value of
this is obtained due to the sensitivity of bearing
performance (see chapter 5) to values of y. approaching
0.5, which is typical for soft elastomer materials (63).

While it is possible to measure shear modulus G,
Young's modulus E. and bulk modulus K. for the elastomer
layer material (see section 4.4.3) a value of y 1is
normally deduced from either two of these values G., E. and
Kce This is achieved using any one of the following

equations applicable to a perfectly elastic, homogenious

and isotropic material (63, 66):

\Pc = ""'"g'" - 1 J"-59
2.6,
1 E

vy = 4.60
2 IK '

C

1 G,

v o= — (K >> G) 4.61

¢ 5 2.K, g €
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The most obvious equation to select 1s 4.59 since
values of E. and G¢ are the most easlly obtailnable of the
three. However Stanojevic (77) showed that this can lead to
large errors in the value of v. obtained. Consider the
following error analysis (77);

The total differential of v. can be expressed as;

av av
Ao -—c.AEc » —°.AG°
aEc 3Gc

1.6. e T B Y e + e e !‘.62

Using equation 4.59, equation 4.62 can be writteng

E G
‘29.("0”)“0-("0”)50 4.63
Ve Ve Ra Ve Gy

Typical values of v for soft elastomers are in the range

(63);

v, = 0.49881 to 0.49991

Substituting an average figure of 0.49936 for v, 1in

equation 4.63 gives;
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Av AE AG
—< . 3,003x=2 ~ 3.003x—

G

Supposing that the errors in the measurement of E. and G,

are both *10%, then;

—< . 3,003x(:0.1) = 3.003x(¥0.1)

n
I+
o
o
"

The corresponding error iny 1is relatively large,
However if a similar error analysis 1s carried out on

eqaution 4.60 for E. and K. .the following is obtained (66);

Av 1 . AE 1 AK
- -..(.__._1 ) -— ( it 1) . 4.64
Vg 2‘uc . EC 2‘“0 KO

Again substituting values for v. , AE./E. and AK./K. as

before except that the error in the measured value of K. is

estimated at (66) *20%;

bvc
— = ¥ 0,00038

v
c

= ¥ 0.038%
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The corresponding error in v, 1is relatively small and this

error reduces as yc approaches 0.5.

It can also be shown for G, and K¢ in equation 4.61

that;

+

Av 1 AG 1 AK

o] c .

—_-—(—.——-1)—_ ___?)_E u.65
vc 2.uc Gc

Equations 4.65 is similar to equation 4.64 and thereforé

the error iny. will also be small at 0.08%. It can be
concluded therefore that accurate values of v are only

obtainable using equations 4.60 and 4.61 for E. and K. or G
and K. respectively and that a value of K must be

measured.
4.4,3 THE MEASUREMENT OF ELASTOMER PROPERTIES

Theoretically it 1s only necessary to obtain elther of
the following groups;
(1) Shear modulus G, and bulk modulus K.
(11) Young's modulus E. and bulk modulus K. .
from which it is possible to derive an accurate value of
Poisson's ratioy. (see section 4.4.2).
However to obtain an average value of v from G, and K.
y» and E. and K. all three elastomer layer properties E¢, G¢,
and K¢ will be measured. The method and experimental

apparatus used to measure these properties is described as
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follows:

(a) The Bulk Modulus Tester; Stanojevic and Lewis (66)
carried out a comparative study of two test methods for the
measurement of bulk modulus K . Thé first method by
Rightmire (63) involves subjecting an elastomer sample of
disc shape to a hydrostatic pressure and measuring the
corresponding changes in the sample volume. For the second
method by Holownia (64, 65) a cylindrical sample is placed
in a cavity formed by a piston and cylinder. The piston
compresses the sample which 1s restrained from lateral
expansion by the walls of the cylinder. It was concluded
(66) that the second method is preferable due to its
practical ease of operation and improved accuracy over the
first method. The second method was therefore adopted to
measure K . A diagram of the tester is shown in figure
4.32. Cylindrical samples of approximately 24.6 mm
diameter and 50 mm length are moulded in each of the rubber
compounds given in table 4.1 (see section 4.4.1 for
moulding details). After moulding each specimen is
accurately measured for diameter and length using a
micrometer.

The specimen is then placed at the bottom of the
compression cylinder whose bore is approximately 4% larger
than the diameter of the specimen. Both ends of the
specimen are lubricated with silicon grease to ensure free
lateral expansion during its compression to fill the

cavity. The diameter of the piston which compresses the
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specimen is 0.025 mm less ¢than the bore diameter of the
compression cylinder. This small clearance stops the soft
elastomer sample from extruding past the piston during
compression.

During initial locading of the piston using 2 kg
welghts the sample undergoes axial compression before it
compresses against the sides of the compression cylinder.
Therefore by taking deflection readings using the dial
gauge shown in figure 4.32 it is possible to determine the
Young's modulus E of the specimen for small loads on the
piston. Before any deflection readings are taken however
the piston must be allowed to settle on top of the specimen
to allow trapped air to escape from the cylinder cavity.
Also as mentioned in section 2.2.5 the specimen must be
cycle loaded and unloaded at least ten times before readings
are taken, to allow for the stress softening that occurs
with rubber during the initial load cycles. Care is taken
to zero the dial gauge before loads are applied to the
piston. Deflection readings are taken during loading and
unloading of the piston.

For bulk modulus readings the tester is placed in a
Denison compression machine. The piston is pre - loaded to
1 kN to ensure that the specimen expands to completely fill
the cavity of the bulk modulus tester. Readings of load
against deflection are recorded during loading to 30kN and
subsequent unloading only after cycle loading the specimen

ten times prior to this.
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A typical load agaist deflection graph for axial and
bulk compression of the specimen is shown in figure4.33. To
obtain the slope of these graphs for the determination of E

and K a straight line is fitted to the experimental
points using least squares methods. Note that the slope of
the bulk compression line is much greater than that of the
axial compression line. This demonstrates the
imcompressible nature of natural rubber.

Values of E and K are determined using equations in
appendix 5 . Results for the three rubber compouhds are
presented and discussed in chapter 5.

(b) The Shear Modulus Tester; apparatus for the measurement
of shear modulus 1is shown in figure 4.34. For eéch rubber
compound in table 4,1 a disc shaped specimen of
approximately 50mm diameter and 20mm thickness was moulded
(see section 4.4.1 for moulding details}.'The flat faces of
the specimen were then ground parallel to each other and
then accurately measured for diameter and thickness using a
micrometer. Each specimen is then bonded between two shear
plates as shown in figure 4.34. Loctite 495 was convenient
for this purpose as it 1s fast setting. Each shear plate
must be degreased brior to bonding in an ultrasonic bath of
11,1 - trichloroethane.

During shear tests the specimen and shear plates are
supported in a vertical position by an angle plate resting
on a table top. A welght carrier is attached to, one of the

Shear plates such that the shear loading passes through the
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centre of the specimen so that parallel shearing takes
place.

Two dial gauges are used with the tester, one to
measure shear deflections and the other to check
parallelism between the shear plates during 16ad1ng and
unloading of the carrier. The specimen is cycle loaded 10
times prior to taking readings during loading and
unloading. |

After each test the specimens were removed from the
shear plates simply by placing in an oven at 160°¢C. Typical
graphs of load against deflection are shown in figure 4,35,
A least squares line is fitted to the experimental point to
obtain their slopes for the determination of G wusing
equations in appendix 5. Results for the three rubber

compounds are presented and discussed in chapter 5.

4.5 THE MEASUREMENT OF BEARING PERFORMANCE

CHARACTERISTICS
4.5.1 INTRODUCTION

In section 3.7.1 the bearing performance parameters
Acy Ady Wy, M and Kx in non - dimensional form were
presented. These parameters will be presented in graphical
fdrm in chapter 5 to represent the performance-
characteristics of a porous and compliant aerostatic thrust

bearing. Therefore during experiments measurements of
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bearing approach ¢, bearing clearance hd and mass flow rate
m will be recorded (or derived in the case of hq, see
section 4.5.2) for each bearing load w. During each
experiment the supply pressure p; will be kept constant.

Each set of bearing performance curves (i.e. W v Ac s M
vV Ac ,etc) 1is defined by the non - dimensional constants b,
Ky, Sp, etc presented in section 3.7.2. With the exception
of P these constants depend on the bearing configuration
and properties of the porous pad and the elastomer layer
i.e. by, ro,®, Gc,etc. It is normal practice to show the
effect of each of the non - dimensional constant on the
bearing performance; To achieve this one constant at a time
is adjusted in a series of bearing tests while the others
remain at their nominal values, At least three performance
curves are then presented graphically in one plot to show
the effect of that constant on the bearing performance.

Apart from the measurement of bearing performance,
measurements of film pressures will also be made. These are
required for the derivation of bearing clearance hy (see
section 4.5.2) and also for a comparison of experimental
and theoretical film pressure profiles.

To compare the performance of the porous and compliant
aerostatic thrust bearing with that of a more conventional
bearing type, experimental results will also be measured
for a porous aerostatic thrust bearing. For this purpose
the elastomer layer is removed from its rigid backing on

the main experimental rig (refer to figure 4.3). This
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backing is then ground flat and used as the upper bearing
surface. The experimental measurements and presentation of
results for a porous aerostatic thrust bearing are similar
to those for the porous and compliant aerostatic thrust
bearing except of course there 1s no elastomer layer and
the bearing approach c¢c is equal to the bearing clearance
hy.

The comparison of performance between these two
bearing types will be presented graphically in chapter 5
for bearings having identical pofous pad configuration and

properties.

4.5.2 BEARING CLEARANCE hy

Taylor and Lewis (9) showed that 1t 1s possible to
derive a bearing clearance for a porous aerostatic thrust
bearing from measurements of pressure gradient at the
bearing film exit r = r, and the flow rate through the
porous pad. Though their case was for a bearing with a
uniform clearénce it is shown in appendix 6 that the
following equation in non - dimensional form also applies

for the non - uniform bearing clearance case, i.e.:

2 . a(P?)
Ry == : 4,66

where from the definition of Ad
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12.9_.r 2
hy.(hy? + 6.0 ) = =——F—Bm 4,67

d*''d
hb'Ad

Equations 4,66 and 4.67 can therefore be applied to the
porous and compliant aerostatic thrust bearing case. A
value of hy in equhﬁion 4.67 can be obtained using the

Newton iteration method (92),i.e.;

£(h.)
d’old
(hd)neu- (hd)old ‘;T?;—;__ 4,68
d’old
where from equation 4.67
12-.@2.3‘1)2
- 3 -
r(nd) (hd)old + 6.(hd)°1d -0 - 4,69
‘.A
\ b*"d
and
] - ‘2
r (hd) 3-(hd)Old + 6'°r | 4.70

Taylor and Lewis (9) went on to show that the
difference in the derived bearing clearance hy and the
measured bearing clearance hmy for a porous aerostalc thrust
bearing was a constant accounting for the pneumatic
clearance sy due to roughness of the bearing surfaces,

i-e-:

h,=h +s 4,71
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In the current research project it has not been
possible to measure the bearing clearance hp in the porous
and compliant aerostatic thrust bearing for reasons
described in section 4.2.2(c). It is therefore impossible
to determine a valué of sp accounting for the roughness of
both the soft compliant surface and the porous pad surface
using equation 4.71. Other methods of surface roughness
measurement such as the Talysurf or Talyline instruments
are unsuitable since the soft compliant surface would
deflect under the pressure from the stylus measuring tip.
In any case during bearing operation the elastomer layer
may comply with local roughness peaks on the porous pad
surface (see figure 1.7 of section 1.2) to reduce the
apparent value of sj particularly at small bearing
clearances.

For these reasond the derived bearing clearance hy
will be used in the'presentation of experimental results
for the bearing performance. However to confirm the
accuracy of using a derived value hy for the bearing
clearance a test was carried out. For this test the main
rig was operated as a porous aerostatic thrust bearing (as
described in section 4.5.1) for which equation 4.71 applies
and a value of hq can be measured. For this test, porous
pad number 3 (see chapter 5, section 5.2.1 for the porous
pad identification) was used whose permeability o=
2.122x10 ° mm’ , thickness hp = 19.4mm and radius ry =

50.95mm. During this test measurements were taken of
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bearing liftoff, flowmeter readings and film pressures at
different supply pressures pg.

Values of bearing liftoff are measured using the micro
- comparators and readings must be corrected to take
account of deflections in shear of the porous pad bond.
These are calibrated before .the test by'measuping the
porous pad deflections at r = rp for different supply
pressures p; using the micro - comparators in a similar way
to the measurement of porous pad deflections described in
section 4.3.6. An average of three shear deflection
readings equally spaced around the circumference of ‘the
porous pad is taken. A graph is plotted of shear deflection

dp against shear force Fp as shown 1n figure 4.36 where;

- I 2 - .
Fb T.ry .(p5 pa). _ _ 4,72

A least squares line is fitted to the experimental points
and the inverse of the slope of this line glves the

stiffness ko in shear of the porous pad bond, i.e.;

]
oy

4.73

ko_-

(=]
o

The measured bearing clearance hm is therefore;
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4.74

v.r,2.(p, ~p.) - W

h_ = bearing liftoff - b 8.2

m K
]

The gradient of the measured film pressure profile squared

at r = rp 1s determined first by fitting the following

polynomial equation using least squares to the film

pressure profile;

8

P2 = 5 aﬁRn 4,75

n=0,2

Only even values of n are used in equation 4.75 since the
film pressure profile is symmetrical about the bearing axis
r = 0 (assumption (v) in section 3.2.1).

Differentiating equation 4.75 and at R = 13

a(P?) Z
———en - n.an u.76
aR R-1 n-z;u

After calculating the mass flow rate m from the
flowmeter readings the dimensionless mass flow rate M is
determined at each supply pressure pg . Substituting
appropriate values in equation 4.66 to 4.70 the derived
bearing clearance hy is obtained for each supply pressure Ps
« A plot of hy versus h, as shown in figure 4.37 produces a
straight line of unity gradient giving a constant value of

Sh = 9.467 micrometers by equation 4.71. The method for
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deriving bearing clearance hq 1s therefore verified and
this will be used in the presentation of bearing

performance results for the porous and complliant aerostatic

thrust bearing.

4.5.3 BEARING APPROACH c

The bearing approach ¢ was defined in section 3.6 as
the displacement of the rigid backing to the elastomer
layer relative to the porous pad bearing surface. Because
the porous pad deflects in bending the reference for this
displacement must be measured from r = ry on the porous pad
surface.,

Bearing liftoff is measured using the micro -
comparators positioned as shown in figure 4.3. By equally
spacing the three micro - comparators around the bear;ng
axis an average value is obtained, accounting for small
errors of alignment between the bearing surfaces.

To obtain values of ¢ from the measured bearing
liftoff it is necessary to;

(1) 2ero the micro - comparatores when the elastomer layer
is resting on the porous pad and there are no loads on
the bearing.

(ii) Account for shear deflections of the porous pad bond
and subtract these from the measured bearing liftoff.
The micro - comparators can be zeroed while the upper

section of the main rig, i.e. the pivot arm (see figure
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4.3) i1s raised so that the only load resulting in
compression of the elastomer layer and shear deflection of
the porous pad bond are due to the weight (4.18 kg, 9.2
lbs) of the rigid backing plate to the elastomer layer.
This weight was accounted for by making an adjuétment to
the micro - comparator readings. This adjustment is
obtained by measuring the deflections of the elastomer
layer and porous pad bond for small additional loads up to
10 kg (22 1bs) placed on the rigid backing to the elastomer
layer. From graphs of load against deflection similar to
that shown in figure 4.38 a least squares line is fitted
and its intercept with the horizontal x - axis gives the
ad justment necessary to the micro - comparators i.e.s
Micro - comparator adjustment = =(mjx4,18) 477

Therefore instead of zeroing the micro - comparators
they are initially set to read the value given by equation
4,77. In this way the micro - comparators will measure the-
bearing liftoff from the true reference ¢ = 0 when there
are no loads on the bearing.

During bearing tests it 1s necessary to place loads on
the bearing carefully to avoid upsetting the micro -
comparators. The bearing liftoff readings are corrected for
shear deflections of the porous pad bond using an equation

similar to 4.74 1.e.3

r.r.2.(p. - p.) =W
b__ s 2 ) 5,78

¢ = bearing liftoff - (
L
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where ko is obtained from calibrations of the porous pad
bond in shear deflection as described in section 4.5.2.

The measurement of bearing approach c as described in
this section avolids some of the problems experienced by
Lowe (72) relating to the temperature sensitivity of the
elastomer layer thickness., Lowe used this thickness to
determine the reference at which c¢c = 0 and_it was therefore
necessary to measure changes 1in its value with temperatufe
Ty e

However while the reference ¢ =I0 is currently
determined in a different way to Lowe, the micro -
comparator readings will be up - set by changesbin
temperatures T, and Tg due to thermal expansion or
contraction of the elastomer layer thickness taking place
during a bearing.test. Therefore during all bearing tests
these temperatures were‘monitored continuously and on the
rare occasion that either temperature changed by ﬁore than
0.25‘% then the bearing test was discontinued and repeated
when temperatures stabllized again. Also the micro -
comparators are re - set at the beginnihg of eacﬁ‘bearing

-

test.
4.5.4 BEARING TEST PROCEDURE
After the preparation of the porousipads and compliant

layers (see sections 4.3 and 4.4) one of each 1s selected

for a particular bearing test (see chapter 5) and assembled
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on the main rig. During assembly of the porous pad the
pressure tappings must be connected to the bottom of the
supply chamber as described in section 4.3.3. Note that the
weight carrier attached to the pivot arm (see figure 4.3)
can be removed and the pivot arm propped up in a vertical
position. This allows easier access to the lowér section of
the main rig, i.e. the porous pad and the supply chamber,

Depending on the thickness of the elastomer layer,
shims and washers are placed under the off - centre ball
pivot (see figure 4.3 and 4.7) suéh that the pivot arm is
horizontal when applying loads through the bearing. This 1is
checked using a spirit level. Note that the angle of the
pivot arm to the horizontal may change as the bearing is
loaded due to compression of the elastomer layer. However
this was measured during bearing tests using an
inclinometer and this angle never exceeded 3°., The
resulting cosine error between the vertical load direction
and the bearing axis is therefore negligible.

The porous pad surface is also set horizontal in two
planes at right angles to each other by resting the spirit
level on the porous pad surface and adjusting the
differential screws on the main fig (figure 4.3).

Both the micro - comparators and the pressure
transducer for the measurement oflbearing liftoff and film
pressures respectively are calibrated before eaéh bearing
test. When these are first switched on, 1/2 hour is allowed

for their assocliated electronic instrumentation to warm up.
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The micro - comparators were calibrated and adjusted to
give the correct scale readings, by using slip gauges on a
suitable smooth surface, i.e. the porous pad (see figure
4.39). A typical calibration chaft for the pressure
transducer against readings from the U - tﬁbe hefcury
manometer was shown in section a.z.é, i.e. figure 4f12.;

The elastomer layer 1s positioned centrally on the
porous pad and the micro - comparators are positioned for
measuring bearing liftoff as shown in figure 4.3. Their
scale readings are then adjusted so as to measure from the
true reference ¢ = 0 as described in section 4.5.3. Making
sure that the steel ball is located centrally on the rigid
backing to the elastomer layer, (see figures 4.3 and
4,4(b)) the pivot arm is lowered into the horizontal
position.

The porous péd is pressurizéd to a pressure p; and the
parallelism between bearing surfaces is checked by the
readings of bearing liftoff from each micro - comparator.
These were usually to within 5 micrometers of each other
but if this is not the case adjustments are made to the
centralization of- the steel ball on the rigid backing to
the elastomer layer. For each bearing load the following
measurements are takens
(1) Bearing liftoff readings from the three micro -

comparators.
(11) Flowmeter readings which include the float reading on

the tube scale, and also pressure pm and temperature
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Tm of the metered flow.
(1i1) Film pressure readings from the pressure transducer.
These measurements are repeated for each increment of
bearing load. This bearing load 1s'ca1culated from the
welghts on the carrier and the levérage ratio of the pivot

arm, i.e.;
bearing load = 4.4xweights on load carrier+22.3kg 4.79

The additional 22.3 kg in equation 4.79 is the weight
of the upper section of the rig (i.e. pivot arm, load
carrier and rigid backing to the elastomer layer) acting on
the bearing through its vertical axis. The weight of the
pivot arm and load carrier at the bearing axis were
measured using spring scales positioned as shown in figure
4,40, The scales were supported by a beam with hook on a
small fork 1lift.

During bearing tests the ambient pressure p, and
temperature T, were recorded together with the supply
temperature Tg of air in supply chamber to the porous pad.

Each bearing test is repeated three times to average
random experimental errors by rotating the elastomer layer
through 120° about the vertical bearing axis.

A bearing test terminated when touchdown of the
bearing surfaces occured or when pneumatic hammer made it
impossible to take any further readings. Touchdown of the

bearing surfaces was indicated when the elastomer layer and
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its rigid backing could not be rotated freely.
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CHAPTER 5
DISCUSSION OF RESULTS

5«1 INTRODUCTION

In this chapter the experimental results for a porous
and compliant aerostatic thrust bearing are presented in
graphical form and compared with theoretical predictions. A
series of theoretical curves will also be included to show
how the bearing performance varies with each of the non -
dimensional constants P, Sp, Sp, €tc.

Comparisons between the performance of a porous and
compliant aerostatic thrust bearing and a more conventional
porous aerostatic thrust bearing will also be made. With
the aid of film presaufe profiles and bearing clearance
geometries (the latter from theoretical predictions only)
the difference in performance charactefistics between the
two bearings will be discussed and conclusions drawn on the
performance of a porous and compliant aerostatic thrust
bearing.

In addition,results from calibration tests for
permeability and rigidity of the porous pads and the
elastic properties of the elastomer layer are presented and

discussed.

A summary of conclusions will be made in chapter 6.
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5.2 RESULTS FROM CALIBRATION TESTS ON THE POROUS PADS

5.2.1 POROUS PAD IDENTIFICATION

The porous pads selected for bearing tests (see
section 4.3.2) are listed in table 5.1 and numbered 1 to 5.

Note all porous pads are of stainless steel.

5.2.2 POROUS PAD PERMEABILITY

Porous pad permeability results are pfesented
graphically in figures 5.1 to 5.6 as described in section
4.3.5. It can be seen from the plots of pressure drop
against mean volumetric flow rate (figures 5.1 to 5.5) that
viscous flow dominates for all five porous pads ﬁp to the
maximum safe pressure specified in section 4.3.1, with the
exception of porous pad number 3. For this pad there is a
slight upwards departure in results from the viscous
dominated flow line at p; - p; = 2 bars (see figure 5.3).

These results therefore verify the findings of Taylor
and Lewis (9) that a region of viscous dominated flow
exists in a porous material for which Darcy's law (equation
3.1 of section 3.2.1) applies. The author would like to
make the point however of the importance in preparation of’
the porous pad bearing surface as described in section

4.3.4. That is the flow through the porous pad is not
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Porou s Manu fack-| Porous Porows
pad urers ¥ | pad - pad,
number [spec. thickness® | radius”
(grading) (mm) (mm)
| SIKA Rl q.9 So-9\
2 " RI IS.S S0.97
3 " R1 9.4 S0.95S
4 " R3 .2 So.43
S . RS 4.5 . So. 89

Key: + Schumacher Filters Ltd.

# ALter surface pr:par«tion (see section
4.3 %)

Table s.1 Porous pad idtnti%ication

Porous Viscous maqnituale Shape
pad perm. constant | eonstant
Nnumber ) My, . | Ny,
(mm?)
xlo* X o7
| 3.641 - 6957138 0-S64\
2 298¢ | 6129 6.5427
3 2.122 5.935 0.5647
4 S. 3¢\ 2.75\ 0.553¢
5 G.18¢ q9.127 0. 5321

Table 5.2 Porows pa.d ProParties
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affected by the blocking of pores at this surface due to
grinding.

The departure in results from the viscous dominated
flow line for porous pad number 3 suggests that thére is
more than one region of flow through the porous pad, i1.e. a
transition flow region as suggested by Téylor and Lewis
(9). However there are insufficient experimental points to
represent this region on a modified Morgan plot as shown in
figure 5.6. (see also section 4.3.5 and figure 4,22).
Further results at greater pressure differences across the
porous pad could not be obtained without risking damage to
the porous pad bond (see section 4.3.1). The existence of a
transition flow region cannot therefore be confirmed and
without further substantiating evidence it would be unwise
to draw conclusions in favour of Taylor and Lewils té) or
McGrea and Donaldson (10) relating to the nature of flow
through the porous pad when inertia losses are significant
(see section 2.2.1).

From the results in figures 5.1 to 5.5, the viscous
permeability of each porous pad is obtained as described in
section 4.3.5. An example calculation for porous pad number
1 is as follows. The plotted points in figure 5.1 are
listed in table 5.3 together with their log,, values. With
reference to section 4.3.5 the viscous permeability @ is
given by the equation 4.6 1.e.; '

¢ = ( ELEQ ) x 1O-c1 5.1

A
z
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9 | 9% [L99u9s | Ps= Pa | Ps= Pa |log AP
(litces/ |(mmy (bars) [(N/mm)

min) Sec)

x10”3

1:4S9 %22 4386 0.133° |0.003% [-1.%16
1:S98 | 2630 | 4.420 | 0.14S |0.014S | —1.7X9
1.bbL7 27-9% 4.444 | 0.15¢2 |0.81S% | =l.tol
1-a4¢)\ 32-3S ¢.S1o0 { O-\87 |0.0I87 | =1.72¢
2198 | 2663 %-S6¢ | 0.204 {00209 | =1-6%0
2399 | 139.9¢ 4%.602 | 0:2¢0 |0:02%0 | =l:b2A
2655 | 44-25 | 4.b%b | 0.292 |0:0292| ~1-S65
3-02 G0-33 4.702 0-302 |0-0302 | -1 -S20
3 40¢ | S6-23 4€-79S¢ | 0.2b 0:03tb | ~1-So0
3-S S¢.33 g6 0-350 | 0:0350 | =1.4Sh
2467 €1-7¢% ¢.762 0.3%2 06-03%2 | =1- ¥
3767 | €2:79 ¢$79% | 0-417 0.-0417 | =1-3¢Qo
%036 61- 17 4.831 0-%41 0-04¢l |-1-3S6
%.141 | 69-49% 4242 | 0.493 | 0.0483 |~1-.316
%.207 | %12 4.%¢b | 0-S22 | 0.0522 |-1.282
S-498 | M. 1 S-000 | 0-S47 | 0-0541 | -1-262
676l Wa-7 S:082 | 0:bi | 0-0blq |~1-20%
23S | 139 S-14b | 0701 0:071 |=11S%
2R72 | 1479 Sa70 0-17b |0.07176 |=1I-tl0
Q.85 i1sa:-2 G-202 | 0-¢36 | 0.0%3C [~1.01%¢
10-33 7122 S22 | 0:%4S 0.084S |~1.04¢
10.96 | 1829 5.262] 0:9SS | 0:045S | =1.020
.99 \94.S S:300 | 1-004 | 0:1004 |=-0.9461
12-52 | 2093 | S:322 | 1.096 | 0-1046 |-0-4(02

Summation ZLOQ‘.QI. = |16-568

and

Table

£.3
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Using equations 4.2 to 4.5, the value of ¢ in equation 5.1

is as follows:
_ 1 K
A E Log,, (ap)
k1
n=1

From table 5.3 > log,A4p = =-33.168 and the number of

experimental points kl = 24. Hencey

33.168
y= - —— =~ 1,382
24 :

similarly

_ 116.568
i.e, X w ———— w 4 857
24

Hence for a least squares line fit;

Q
[
[ ]
<i

1.382 - 4,857

6.239

The experimental values in table 5.3 were taken at a mean
temperature (T, +T,)/2 of 22.5°C. Using (91) for dry air at
low pressure, the absolute viscosity g =1.BZQSX16" Nsec/mm
« From table 5.1 for porous pad 1, rp, = 50.95mm and hp =

9.5mm. Therefore;
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A =qx.r 2 = 7.(50.95)2
z b

= 8142 mm?

Substituting values of p,hp, Az, and ¢ into equation 5.1

gilves;
1.8245x10"! x 9,5 x 10¢2%?

8142

’ - 3,691 x 10-' mz

The viscous permeability @ for porous pad number 1 is
therefore 3.691x158 mm?. Values of @ for the other porous
pads are obtained in a similar fashion and presented in

table 5.2.
5.2.3 POROUS PAD RIGIDITY IN BENDING

Deflection profiles of the-porous pad when'subJect to
a uniform pressure difference p; - p, across its thickness,
are presented graphically in figures 5.7 to 5.11 as
described in section 4.3.6. The shape of the best fit
curves to the experimental points 1in these graphs,
indicate that the porous pads are not rigidly supported

around their circumference as assumed by Taylor and Lewis

(25) otherwise the slope g%b would be zero at R = 1. In
fact the value of this slope increases with radius R for
all five porous pads. This shows that the porous pad bond

is considerably more flexible than the rigidity of the
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porous pad in bending.

The importance of considering the flexibility of the
porous pad bond for the analysils presented in section 3.5
is therefore justified.

Figures 5.12 and 5.13 show the variation in
deflections of the porous pad (due to bending only) at its
centre r = 0 for different supply pressures P - Pa. The
analysis for deflections of the porous pad in section 3.5
is based on thin plate theory (47) for a linear - elastic
material. Alstraight line has therefore been drawn through
the experimental points in figures 5.12 and 5.13 which
represents linear - elastic deflections of the porous pad.
The apparent large scatter in experimentél points (%1 um)
about this line can be aftributed to the small magnitude of
the deflections of the porous pad in comparison to the
resolving accuracy of the micro - domparators used to
measure these deflections (see section k.3}6). Note that
the minimum scale reading for the micro - coﬁbarator is 0.5
um. However this straight line and the assumption of linear
~-.elasticity provides a reasonable first approximation to
the experimental readings and therefore the analysis
presented in section 3.5 will predict deflections of the
porous pad to within *1 um.

Similarly the scatter in experimental points about the
best fit deflection curves in figures 5.7 to 5.11 can be
attributed partly to the accuracy of ﬁicfo - comparator

readings and also due to non - axisymmetric deflections of
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the porous pad. This indicates that there are variations in
the structural properties within the porous pads caused
during sintering. However it is also possible that the
flexibility of the porous pad bond varies with
circumference. Indeed during inspection of one porous pad
after it had accidently been blown out from its holder} it
was discovered that the adhesive epoxy bond had only
partially bridged the gap between the porous pad and its
holder in parts of the circumference. This is a typical
problem when two surfaces are bonded in this way and a
solution would be to inject the adhesive into the gap under
pressure, through access holes in the porous pad holder,
i.e. in a similar method to cavity wall foam insulation in
houses. To apply the adhesive-in this way would require
special application equipmeﬁt and the author did not pursue
this any further due to shortage of time.

Values of the magnitude constant M, and shapebconstant
N, obtained for each porous pad as described in section
4.,3.5 are presented in table 5.2. An example calculatlon
for porous pad number 3 is as follows; table 5.4 gives
values of the experimental points in figure 5.9 for
deflections of porous pad 3. A least squares curve 1is
fitted to these points by solving equation 4.25 (section
4,3.6). With reference to equations 4.16 to 4.20, 4.24 and
using the calculated values in tables 5.4, then for matrix

[1s

L(fy(R))2 = L(R*)? = IR*
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4 »« 1,1608
= 4,6432

If,(R).f,(R) = IR*.R? = IR*
- 4 x 1,2813

= 5.1252

If,(R).fy(R) = IR*.1 = ZR*
= )4 x 1.527"

- 6-1096

If,(R).f,(R) = IR® = 5.1252

£f,(R)? = IR?,R? = IR*

= 6.1096

If,(R).f,(R) = IR?,1 = IR?
= J-l x 2.1575

- 8.63
;r,(R),r,(R) = IR* = 6.1096
Ify(R).f,(R) = IR? = 8,63

If,(R)? = L1 = 4 x 6
' - 24

As described in section 4.3.6 the summation sign),
refers to the summation of values corresponding to the 24

experimental points in figure 5.9. The matrix [f] is
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therefore;

4.6432 5.1252 6.1096
[f]l] = |5.1252 6.,1096 8.63
6.1096 8.63 2y

The inverse of [f] as obtained using a HP9845 ‘desktop

computer is

4,2550 ~4.1446 0.4073
[£]"! = |-4.1446 2.370? -0.5164
0.4073 -0.5164 0.1237

For matrix [F] ;

If,(R).F(R) = IR*.u.
= (0x22.1 + 1.4758x10"?x25.8 +
0.02385x19.5 + 0.1204x17.24 +

0.3817x10.6 + 1x0)x10=7

6.6249x10~7

similarly
If,(R).F(R) = :R*Tﬁb
= (0x22.1 + 0.03842x25.8 + 0.1544x19.5
+ 0.3469x17.24 + 0.6178x10.6 + 1x0)x 1077,
- 1§.5313x1o:’
and

£f,(R).F(R) = z1fib

= 95,24x10,~7
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therefore

6.6249
(F] = | 16.5313 x 1077
95 '2”

The matrix equation 4.25 in section 4.3.6 can now be solved

ioeo;
e, 4.2550 ~-4.1446  0.4073 6.6249
€y | = |- 4.1446  4.3701 =-0.5164 | x 16.5313 | x 1077
Cy _ 0.4073 =-0.5164 0.1237 95.24

Again using the HP9845 computer to multiply matrices

[£] x [F] s

¢, -1.5354
¢, - -4.3987 x 1077
Cy 5.943%
hence; e, = =1.5354 x 10°7
c, = -4,3987 x 107

0
-
L}

5.9434 x 1077

Values of Dy, b, and by are obtained using equations 4.21

to 4,23 of section 4.3.6 as follows;

1 1

D= -
6".0, 6"-(-1.535]‘310-")
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= =1.0177x10°%

b|| - u-c: .Eb

- Hx(—u.3987x10'f)x(“1.0177:10')
- 0.1791

b! = C,K Bb
= 5.9434x1077 x (-1.0177!?051

- 00060”9

The magnitude constant Mp is defined by equation 4.49 of

section 4.3.6 as;

=4

vb " “bs

from equation 4.31;

bt

=
|
i
Ull"‘
_—
+
O'\I-‘
=
N —

therefore

(~1.0177x10%) 64

1 (0.1791 1
- - - + cxpear
Mb y

= 5.935 x 10°7

Similarly the shape constant N, 1s defined by equation 4.51
of section 4.3.63

8.b, + 0.75

N =
b 16.b, + 1
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8!0. 1791 + 0!75

16x0.1791 + 1
= 0.5647

These values of My and N, correspond with those given
in table 5.2 for porous pad number 3. Similarly values for
porous pads 1, 2, 4 and 5 are also listed in table 5.2. As
described in section 4.3.6 the magnitude constant M
represents the magnitude of deflections of the porous pad
while the shape constant Np relates to the shape of the
deflection profile. It would be useful to compare values of
N, obtained against those for the two special cases of a
rigidly and simply supported porous pad. First consider a
rigidly supported porous pad. From equation 4.12 of section

4.,3.63

srate sl 5.2
aR D 16 g

S TR RY b..n)
b

If the porous pad 1s supported rigidly around its

circumference r = ry then 9Up =0 at R = 1. Substituting
dR
this condition into equation 5.2 gives;

1
Dy == *

8

Equation 4.51 of section 4.3.6 for N, 1is;

B.b‘ + 0.75 !
Nb - 503
16.b, + 1

Substituting for b, in equation 5.3 then for a rigidly

supported porous pad:
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Nb-0.25

Similarly for a simply supported porous pad there
resistance to deflections in bending at r = ry

would be no
is zero around

and therefore the radial bending moment m,

the circumference of the pad. The value of m, at any radius

r is given by equation A4.5 of appendix 4, 1.e.;

d?u v, du
@, = Dy = ) ' 5.4
dn? r dr

Substituting the condition m, = 0 at r = ry,,» equation 5.4

becomes;
d?u v, du |
——-tz + -.E.--b-) - 0 i 5.5
dr? r dr

This equation may be written in non - dimensional form as

follows:
d*ib dﬁb :
—— vb.— - 0 5.6
2 .
dR dR Re1

du 1 /1 b.
.—b) .':—(—+-) 5-7
dR Rei Db 16 2
also
d‘ﬁb 1 3.R? b,
- e . o—
dR? Db 16 2
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25 b,
(d.._..ub) -1_.(2.-1-——) 5.8
dR? R=1 D 16 2

Substituting equations 5.7 and 5.8 into equation 5.6 gives

the following expression for b, :

1(3+wv)
b.. = - = - 5'9

8 (1 "'\J'b)

The value of b, and hence N, in equations 5.9 and 5.3
respectively depends on Poisson's ratlo py for the porous
pad material, As part of the literature survey in section
2.2.3 1t was described how a value of v, could be obtained
from values of Dy ,Ep and p. using equations 2.18 and 2.19.
However as shown in section 4.3.6 it is probable that large
errors will occur in the value of D obtalned from measured
deflection profiles of the porous pad. It would therefore
be erroneous to predict a value of vy, using Dp. It was
concluded in section 2.2.3 that there 1s insufficient
literature available on v, for porous sintered materials
and its value could be anywhere 1in the range 0 to 0.5 or
possibly greater than 0.5. However substituting p, = 0 in

equation 5.9 gives;
b, = - 3/8
and using equation 5.3
fOl" “b " 0 g Nb - 0.’15

Similarly for py, = 0.5, Np = 0.432
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Hence in any case the variation of Ny with vy, 1is
comparatively small (4%). For a simply supported porous pad
therefore Np is in the range 0.432 to 0.45.

Tﬁe two special cases considered for a rigid and
simply supported porous pad represents two extremes in
which the stiffness of the porous pad bond kp is infinite
and zero in value respectively. However for all five porous
pads the value of Ny iﬂ table 5.2 1s greater than 0.45 for
the simply supported case. This discrepancy can be
attributed to the accuracy in measurements of porous pad
deflection as discussed earlier in this section. However
there is also the possibility that the deflection behaviour
of a porous material is different from that of a
conventional non - porous solid material on which the
analysis in section 3.5 is based. This discrepancy
shouldimn adversely affect the accuracy in which
deflections of the porous pad are predicted using the
equations presented in section 3.5, provided values of My
and Np in table 5.2 for each porous pad are used. Because
the values of N, are significantly greater than 0.45 this
indicates that the stiffness of the porous pad bond is
small in comparison with the rigidity of the pad itself (as
already mentioned earlier in this section) i.e. the porous
pads are virtually simply supported around their

circumference.
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S.2.4 SHEAR STIFFNESS OF THE POROUS PAD BOND

Results for shear deflections of the porous pad bond
are shown in figure 5.14. Values of stiffness'ko are
determined as described in section 4.5.2 and ére required
for corrections to the measured bearing liftoff in
equations 4.74 and 4.78 of sections 4.5.2 and 4.,5.3
respectively.

The shear stiffness ko for each porous pad is equél to
the inverse of the slope of the best fit line passing
through experimental points in flgure 5.14. For example
the best fit line for porous pad number 1 has a slope of
0.01324 um/N. This gives a value of kg = 1/ 0.01324, 1i.e.
75.53 N/um.

Comparing values of ko with porous pad thickness hyp
(given in table 5.1) the stiffness of the bond increases
with pad thickness. This is to be expected siﬁce the area

of bond subject to shearing (i.e. 2.n.m, .hp) increases with

hb.
5.3 ELASTOMER LAYER PROPERTIES

53.1 ELASTOMER LAYER IDENTIFICATION

Each elastomer layer used in bearing tests is listed
in table 5.5 and identified by a letter "a" to "g". For

example elastomer layer "a" is moulded in compound 1 (see
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table 4.1 in section 4.4.1) and has a hardness value of
43.7. Its finished dimensions are 9.678mm thickness (t.)
and 66.5mm radius (r. ). For elastomer layers a,b and c a
single moulding was used which was successively ground to
thicknesses (te) of 9.678, 6.74 and 3.675mm respectively.
All elastomer layers are moulded in natural rubber

compounds.
5.3.2 ELASTIC MODULII E, G AND K

These are obtained from bulk modulus and shear modulus
specimens as described in section 4.4.3. Load against
deflection graphs from these specimens, for all three
compounds are shown in figures 5.15 to 5.19. From these
graphs and using the equations presented in appendix 5,
values of E, G and K for each compound are obtaiﬁed and
listed in table 5.6. A sample calculation for compound 1 is
as follows: |
(a) Young's modulus E; the average slope of the two best

fit lines for compound 1 in figure 5.15 1isj

( L ) 1.914 + 1,938
§

2

= 18.894 N/mm

The measured dimensions of the bulk modulus specimen for
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compound 1 in table 5.6 are; helght hy = 49.9mm and

diameter dy = 24.5mm. Using equation A5.4 in appendix 5;

B.h L §x49.9
E = ~ | = —x18.894

-‘,.dk: é "(2’405):

E = 2N/mm?

This is the value of Young's modulus E for compound 1 in
table 5.6.
(b) Bulk modulus K; the average slope of the two best fit

‘lines for compound 1 in figure 5.16 1s:

(L ) 24,963 + 26.463

S 2

= 25,713 KN/mm

This value must be corrected to take into account a small
reduction in length of the piston plunger (see figure 4.32
of section 4.4.3) due to the applied load L. Equation A5.35

of appendix 5 gives the true slope as;

( L)
é§ / measured )

(I')
§ /true - ( 1,

R st -

w.a’.Et [ )meaaured

for the plunger 1y = 150mm, E; = 207.10 N/mm’ and 2a =

25.4mm., Therefore;
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L) 25.713x10?
( § /true 150

1' o
( 1.(12.7)2x207x10*

) x 25.713x10?

L
( - ) = 26,695 KN/mm?2
§ /true

Because the value of Poisson's ratio is very close to

0.5 equation A5.27 of appendix 5 1is used to obtain a value

of bulk modulus K i.e.;

h.d? [L
K = k: k -
how.a" \ &
For the plunger, a = 12.7mm and from table 5.6 hy = 49.9mm

and dgy = 24.5mm. Hence;

l-l9-9l(2“.5)2
K = x 26.695x10°

hox.(12.7)"

K = 2446  N/mm?

This is the value of bulk modulus K for compound 1 in
table 5.6. The error introduced by using equation A5.27
instead of equation A5.26 in appendix 5 is small since from

equation 4,60 of section 4.4.2;
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Substituting values of E and K for compound 1 gives'a value

for v ;
1 2
ve - -
2 6x2446
= 0,499864

Using equation A5.26 instead of equation A5.27 in appendix

5 the value of K obtained would have been;

K

hed? (1 +v) L
-12.w,a: " (v = v) ( s_ )
2446 (1 + 0,499864)
. (1 = 0,499864)

= 2445  N/mm?

The difference in values 2446 and 2445 N/mm’ for K is only

0.04%., This therefore Jjustifies the use of equation A5.27

in appendix 5 for K.
(¢c) Shear modulus G; the average slope of the best fit

shear force against deflection lines in figure 5.19 for

compound 1 are;

( L ) 5.763 + 5.779

§ 2

= 56,61 N/mm

From table 5.6 the dimensions of the shear specimen for

-321-



compound 1 are: tg = 19.05mm and dg = 49.94mm. Using

equation A5.39 of appendix 5 the apparent shear modulus Gg

4.t L
G = —E& ( -)
g 2
v.dg 8
lht19.05
- — x 56,61

wx(49.94)2

is:

= 0,5506 N/mm?

The true shear modulus is given by equation A5.40 of
appendix 5 1i.e.;

16x(19.05)2
G=0.5506x | 1+ | ——
36x(49.94)2

G=0.586 N/mm?

This is the value of shear modulus G shown in table 5.6 for
compound 1 and completes the sample calculation for E, K
and G. Other values obtained similarly for compounds 2 and
3 are shown in table 5.6.

In obtaining bulk modulus K using equation A5.27 of
appendix 5 the expansion of the compression cylinder in the
bulk modulus tester (figure 4.32, section 4.4.3) was
ignored. Holownia (64) took into account this expansion due
to the pressure exerted by the bulk modulus specimen on the
cylinder bore walls. This expansion was determined by

applying two - dimensional thick cylinder theory (47), even
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though the problem is three_- dimensional since the bulk
modulus specimen does not extend the whole length of the
compression cylinder. However the following equations were
obtained.

From equation 4.60 of section 4.4.2, Poisson's ratiov

is given by;

1 E
T 5.10(a)
2 6.

The correction necessary to this equation to take account

of the expansion of compression cylinder walls is given as

(64);
1 E €
vem= | —f1=-2-L 5.10(b)
2 6.K \ - €y

Where E and K are determined gssuming no expansion of the
compression cylinder walls. The ratio €/¢; in equation 5.10
is the ratio of radial strain to axial strain of the bulk
modulus specimen. The value of this ratio is given (64) by

the equation;

€ 1 (b? + a?) o
oLl g e - v, Z .- 5.11
€, Et (b2 = a?) €, 2.0 ;

Using equation A5.17 of appendix 5 and substituting forﬂg@z

in equation 5.11 gives;
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e 1 (b2 + a?) K-E
-2 o - 'Qt . 5-12
e, E (b2 - a?) 2.V

Consider the following example. From the sample
calculation for compound 1 in this section, E = 2 N/mmzand

K = 2446 N/mm- Using equation 5.10a these values of E and X

give; v = 0.499864. Therefore in equation 5.12;

K=-E 2446 - 2 -

2.v 2 x 0,499864

= 2444,7 N/mm?

The compression cylinder of the bulk modulus tester
used in experiments has an outside diameter of 150mm and is
made from mild steel. Therefore in equation 5.12; b = 75mm,
ve= 0.3 and Ep = 207x10°N/mm’ . Also the cylinder bore 2a =

25.4mm. Substituting these values into equation 5.12 and;

€, 1 5% = 12,7*
- x -'0-3 x 2“‘""‘:7
€, 207x10? 75% - 12.7*

= 0.009

Substituting 0.009 for €/e;in equation 5,.10b and since E =
2 N/mm2 and K = 2446 N/mm2 a new value for v is obtained

l.e.;
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1 2
V=== x (1 - 2x0,009)
2 6x2446

= 0,499866
The percentage change in Poisson's ratio from expansion of

the compression cylinder walls is therefore:

0.499866 - 0.499864
Av =

) x 2x100%
0.499866 + 0.499864

Av = 0.0004%

This is small compared to the 0.04% change that may
occur due to measurement errors in E and K as shown in
section 4.4.2. The effects of compression cylinder
expansion on the resulting value of Polsson's ratio v can
therefore be neglected.

A comparison of the results in table 5.6 for E and K
with those obtained by other researchers for natural rubber
filled with different carbon black contents, is shown in
figure 5,20, Note that there is a considerable variation in
the values of E obtained desplite only a maximum difference
of 8% for K. Though the author used a similar rubber
compound to Stanojevic and Lewis (66) there is almost a
three fold difference in the values of E obtained at H.A.F.
black contents of 20 and 15 p.p.r.h. respectively. The

accuracy of the authors results can be cross checked using
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the value of shear modulus G obtained from tests on the
shear specimens. This can be achieved through equation 4.59

of section 4.4.2 in the form;

E

voeo— =1

2.G
Substituting a value of v=0.5 into this equationg

E

_ﬂl

3.G

Using values of E and G for each compound in table 5.6
the ratio E/3G is within 1+0.15 (*15%). Therefore the
accuracy of the authors results for E in figure 5.20 1is
estimated at *15%. It 1s possible that the large variation
in E compared to the results of other researchers in figure
5.20 may be attributed to the moulding procedure used. For
example the author carried out all mouldings at 160°C for
50 mins while in (66) 140° and 1.5 hours was used
respectively. The author conclqdes therefore the importance
of moulding all specimens and elastomer layers at the same
temperature and for the same time period.

Figure 5.21 is a comparison of Polsson's ratlo values
v with other researchers for natural rubber with different
carbon black contents. The authors results are based on
values of E and K using equation 4.60 of section 4.4.2 in

the formg;
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,\)"""_" 5-13

Despite the large variation ih values of E shown in figdre
5.20 all values of v in figu;e 5.21 are within 0.05% of
each other. This demonstrates the high accuracy which v

is obtained from measured values of E and K.

A comparison of results with those of other reseachers
for v against E is shown in figure 5.22. A similar plot was
presented in (66) and a straight line was fitted through
the plotted points., This assumes a constant value of K in
equation 5.13 which is strictly incorrect as figure 5.20
shows. However the narrow band of results indicated by the
two broken lines in figure 5.22 demonstrate again the
accuracy in which values of Poisson's ratio v are obtained
not only from E and K but aléo-G-and K since Rightmire (63)

measures shear modulus G to obtain a value of v .

5.3.3 ELASTIC PROPERTIES Ec, Gc » Kc AND uc FOR THE

ELASTOMER LAYERS

Even though the specimens énd elastomer layers are of
the same rubber compound and are moulded under carefully
contrdlled conditions there 1s still a possibility that
slight variations in properties may occur between the
specimens and the elastomer layers. The only indication of

this is from hardness readings given in tables 5.5 and 5.6
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for the specimens and elastomer layers respectively. Using
the results in table 5.6 values of E, K and G have
therefore been plotted against hardness readings as shown
in figures 5.23 to 5.25. Using these graphs and equations

4.60 and 4.61 of section 4.4.2 in thelform;

1 E
Y e 5.14
2 6.K
and ve=-|1-- 5.15
2\ X

two curves are drawn for Poisson's ratiowr against rubber

hardness in figure 5.26. For example at a rubber hardness

™

value of 50 values of E = 2.967 N/mm?,K = 2593 N/mm’and G =
1.053 N/mm’ are obtained from figure 5.23, 5.24 and 5.25

respectively. Using equation 5.143 -
1 2.967

“---

2 6x2593

and from equation 5.15;

1 - 1.053\ .- *
ve=-|1-— o
2\ 2593

= 0.499797
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These values correspond with those obtainable from the two
curves in figure 5.26 for a rubber hardness value of 50.
The properties of E., K., G, and v, .given in table 5.5
for each elastomer layer are obtained using figures 5.23 to
5.26 and correspond with their hardness value shown in the
third column of this table. For ». an average value from
the broken curve in figﬁre 5.26 1s taken. Using this
procedure small differences in properties between the
specimens and elastomer layers as indicated by their

hardness values are accounted for.
5.4 BEARING PERFORMANCE RESULTS

5.4.1 PRESENTATION OF EXPERIMENTAL RESULTS
|

Experimental results for the performance of a porous
and compliant aerostatic thrust bearing are presented
graphically in figures 5.27 to 5.51 at the end of this
chapter. Included on these graphs are curves from_
theoretical predictions (see chapter 3).

The bearing perrormance?is represented by three |
different plots of load capacity W, flow rate M and bearing
number A;% against Azhﬁ y in non - dimensional form. As
described in section 3.7.1 the load capacity W represents
the ratio of actual load carried by the bearing to the

maximum possible from the supply pressure p; .- p;. Its

maximum value is therefore 1. Similarly flow rate M is the
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ratio of actual mass flowrate to the maximum possible
through the porous pad at' a supply pressure of p, - p,. It
also has a maximum value of 1. Since increasing the load
carrying capacity at minimum flowrate and supply pressure Ps
- p, 1s one of the main criteria for bearing selection
then the bearing performance can be said to improve as load
capacity W approaches 1 and flow rate M approacﬁes 0.

For conventional porous aerostatic thrust bearings
many researchers have used a form of bearing number based
on bearing clearance in the presentation of results for
load capacity W and flowrate M, and this bearing number 1is
plotted -on a horizontal 1oglo scale. However for a porous
and compliant aerostatic thrust bearing it is more
appropriate to use a bearing number which is based on the
bearing approach c. As defined in section 3.6, this
represents the displacement of the rigid backing to the
elastomer layer. For this reason therefore the bearing
number A 1is used 'in the presentation. of results for W and
M. Theoretically the value of ¢ inA,. can be +ve, zero or
-ve (see figure 5.63 of section 3.6). Therefore it is not

..1/3

possible to use a log,, scale for A, and instead A, - ‘has

‘ -l

been selected. Note that the sign of A,  (1.e. +ve or -ve)
-1

is the same as that for c i.e. when'Acais -ve, ¢ 1s also

'|/3

-ve. Also when ¢? >»> 60,, A; is directly proportional to

Ce
-‘

-V
The additional graph of Ay against A 3showsthe

variation of bearing number based on bearing clearance hy
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with bearing number based on bearing approach c. This graph
enables the bearing clearance hy to be determined for a -
bearing operating at approach c.

‘ During bearing tests results were recorded for several
dirferent bearing configurations and properties. For
example each elastomer layer may be identified by its
thickness t., radius r., shear modulus G, and Poisson's
ratio » . In practice G¢ and v, are not independant, i.e.
one cannot be varied without affecting the resulting value
of the other. Therefore both G. and v, are replaced with a
hardness value for the elastomer layer material.

Similarly the porous pads are identified by .their
thickness h,, radius Py permeability @ and rigidity
constants My and N, . The value of N has remained virtually
constant for all five porous pads in table 5.2 (this could
have been varied by increasing the stiffness of the porous
pad support. But the author did not pursue this due to time
1§m1tations) and since ® and Mp both depend on the
structure and porosity of the porous pad material these are
replaced with the manufacturers grading. In addition to the
bearing configuration and properties, the supply pressure Pq

- p, can also be varlied and this was carried out in two of
the bearing tests.

It is normal practice to present results so that the
effect of each property on the bearing performance is
shown. There are seven separate properties i.e; tey T

hardness value for the elastomer "layer, hy, ry,
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A

manufacturers grading for the -porous pads and supply
pressure ps - p;« A change in any one of these properties
will result in a corresponding change in one or moré'non -
dimensional constants listed at the enq of section 3.7.2
(i.e. Sy Kyy S¢y etc.). However because it has been
impossible to obtain porous pads larger than Simm radius at
suitable thicknesses of at least 9.5mm then r, has been
kept constant at approximately_SO.Qmm in the bearing tests.,
Smaller pads than this were not selected for the reasons
explained in section 4.2.2. A change in the remaining ‘six
properties will still result in a correSponding change to
all the non - dimensional constants in section 3.7.2.
During bearing tests, results are taken for at least
three different values of thesé six properties while the
others remain as constant as_practidally possible as shown
in table 5.7. Note that each bearing is identified by a
number followed by a letter, i.e. 3a for éxémple. The
number refers to the porous pads listed 1 to 5 in tables
5.1 and 5.2, and the letter to the elastomer layers listed
a to g iIn table 5.5. Bearing 3a therefore contains porous
pad number 3 and elastomer layer "a"., Where a bearing is
identified by a number only i.e. 3, this means that the
elastomer layer has been removed and replaced with a rigid
flat ground surface. Beﬁring 3 therefore contains porous
pad 3 only. In such cases the bearing becomes a porous
aerostatic thrust bearing with an elastic porous pad. As

explained in section 3.6 for these bearings the clearance hy
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is equal to the approach ¢ and therefore Ay = A. . Graphs
-V 1z
-4
of;ddsversus A for bearings 1 to 5 have therefore been

omitted.

In the presentation of experimental results graphs of
static stiffness Ky versus bearing numberidjéhave beén
omitted . This is because Ky 1s not a directly measurable
quantity and large errors can occur in obtaining a value of
';—(w_-_h for Kx from the W versus A:‘ graph. For similar reasons
b:Eh)Garguilo and Gilmour (19) and Taylor (24) also chose
not to present experimental graphs of static stiffness’
against bearing number for a porous aerostatic thrust

bearing.

5.4.2 COMPARISON OF EXPERIMENTAL RESULTS WITH  THEORETICAL

PREDICTIONS

In general experimental results for load capacity W
versus bearing number;&}acorrelate well with theoretical
predictions. During bearing tests loads were increased
until bearing touchdown or pneumatic instability occurred as
described in section 4.5.4. For some bearing tests the.

.
was limited due to

range of results for bearing numberAZ
the onset of pneumatic instability. Although one of the
areas of investigation outlined in section 2.3 was for an
experimental analysis of bearing instability there has been
insufficient time remaining for the author to carry this

out. However table 5.8 shows which bearing tests terminated

-337-



in either bearing touchdown or pneumatic instability.:

In figures 5.45 and 5.50 for bearings 1 and 5
respectively a significant departure in results from the
theoretical curve for load capacity W occurs at low values
of bearing number A¢3. As explained in section 5.4.1 these
bearings do not have an elastomer layer i.e. they are
porous aerostatic thruét bearings with an elastic porous
pad. This phenomena was also reported by Taylor and Lewis
(9) who accounted it to touchdown of the bearing surfaces.
Note that for these bearings the approach ¢ and clearance h,
are both equal. Also bearing touchdown occurs at a value ‘of
ﬁt’greater than zero. This is due to roughness and flatness
of the bearing surfaces and gives rise to a pneumatic
clearance s, as described in section 4.5.2. For a porous
and compliant aerostatic thrust bearing however the
elastomer layer still continues to compress even after
bearing touchdown. Because the elastomer layer 1is a
soft material there is no significant departure in
experimental results from the theoretical curve for load
capacity W versus bearing number ;';3 with these bearings as
shown in figures 5.27, 5.30, 5.33, 5.36, 5.42 and 5.47.

With the exception of results shown in figures 5.37
and 5.41, there is again a good correlation of experimeﬁtal
results with theoretical predictions for flow rate M versus

=1 . .
bearing number A, (see figures 5.28, 5.31, 5.34, 5.43,
5.46, 5,48 and 5.51)., However in figures 5,37 and 5.41

there is a departuré in experimental results from the
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theoretical curve for P = 4. This discrepancy increases
with bearing numberA;%. It is possible, that this may be
accounted to the onset of transitional flow for porous pad
3 (see section 5.22). In the transition flow region thé
actual flow rate for a given pressure gradient within the
porous pad will reduce due to the additional inertia
losses. Remembering that the non - dimensional mass flow
rate M is the ratio of actual flow to the maximum possible
through the porous pad at supply pressure ps. - p,, this
would result in a reduction in the experimental result for
M because this maximum flow is based on the assumption-of
viscous flow within the porous pad.

1
ﬁtsee figures 5.29, 5.32,

For graphs of A:;/S versus A:
5.35, 5.38, 5.44, 5.49) there 1s reasonable correlation of
experimental results with theoretical curves for values of
/i%down to approximately 1.2. After. this there 1s a .
departure in experimental results to the left of. the
theoretical curves.. This indicates bearing touchdown for za
porous and compliant aerostatic thrust bearing because the
value of A:j'ais approaching a constant value while A:lﬂ still
reduces due to compression of the elastomer layer. This
constant value ofzﬂﬁ is not zero because of the pneumatic
clearance caused by roughness of the bearing surfaces.

A comparison of experimental results with theoretical
predictions for the film pressure profile is shown in

figure 5.39. The scatter in experimental points indicates

non - symmetry of flow in the bearing film clearance (see
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figure 4.10 of section 4.2.3 for pressure tapping
positions). As described in section 4.3.1 and illustrated
in figure 4.13 it was possible to check the symmetry of
flow through the porous pad. This was achieved by*oﬁserving
the distribution of rising air bubbles through the ﬁater
contained above the porous pad while it was pressurized-
through the supply chamber. There was a noticeable non -~
symmetry of flow through all five selected porous pads even
before these were ground and electro - polished (see -
section 4.3.4). It appears therefore that the porosity
distribution in sintered porous materials is non - uniform.
A non- symmetrical flow through the porous pads and
hence flow in the bearing film can cause premature
touchdown of the bearing surfaces in a porous and compliant
aerostatic thrust bearing. This is due to the resulting non
- symmetrical deflections of the compliant surface in a
circumferential direction particulﬁrly at the bearing

clearance exit r = ry.

5.4.3 PRESENTATION OF THEORETICAL BEARING CHARACTERISTIC

CURVES.

Theoretical curves showing the effect of each non -
dimensional constant Ps, Sy, Ky, €tc on the performance of
a porous and compliant aerostatic thrust bearing are
presented in figures 5.52 to 5.99 at the end of this

chapter.-
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As described in section 5.4.1 for the presentation of
experimental results, the theoretical bearing performance
is represented by graphical plots of W, M andziraagainstil
. In addition a plot of static stiffness Kx versus.dzﬁis
included along with theoretical film and clearance geometry
profiles, similar to those shown in figures 5.54 and 5.56
respectively. The clearance geometries are the result of
deflections of both the elastomer layer and the porous pad
in bending. Figure 5.58 is a single plot showing -.separate
deflections of the elastomer layer and porous pad in
bending. The resulting clearance geometry from these

deflections is also indicated in this figure.

S5.4.4 DISCUSSION OF POROUS AND COMPLIANT AEROSTATIC THRUST

BEARING PERFORMANCE

Having presented results and shown that the
theoretical predictions correlate with experimental results
in section 5.4.2 it is now possible to draw conclusions on
the performance of a porous and compliant aerostatic thrust
bearing. For reasons described at the beginning of this
thesis in section 1.2 it was anticipated at the onset of
this research project that the performance of a porous
aerostatic thrust bearing would be improved if the solid’
rigid surface opposing the porous pad was compliant in the

form of an elastomer layer. However the results presented
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in sections 5.4.1 and 5.4.3 show that the reverse has
occurred.

As an example in figure 5.27 the theoretical load
capacity W decreases with increasing elastomer layer
thickness for a given bearing-number;ﬂ?. The experimental
results for bearings 3a and 3 also clearly show this trend.
Note that the results for bearing 3a discontinues at A:% =
0.63 due to -bearing touchdown as indicated in table 5.8
(see also table 5.7). With reference to the theoretical
curves in figure 5.52 this trend persists for bearing
numbersAjﬂ down to zero. (Note that S, is the non =~
dimensional elastomer.layer thickness).

This decrease in load capacity W is made worse by a
corresponding increase in the flow rate M with elastomer
layer thickness as shown in figure 5.28. Again experimental
results for bearing 3a and 3 clearly show the trend of
increasing flowrate with elastomer layer thickness. The
discrepancy between .experimental results and theorectical
predictions for bearing 3b 1is attributed to experimental
error, '

The reasons for this reduced performance with.
increasing elastomer layer thickness may be described with
reference to theoretical pressure profiles and bearing
clearance geometries in figures 5.56 t‘orA-c'/a: O.4. From
this figure it can be seen that the film pressure profile

becomes more uniform with increasing values of non -

dimensional elastomer layer thickness S and hence
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thickness t. (for r, = constant). This is to be expected
from the recess formed in the bearing clearance geometry
due to deflections.of the compliant surface. However as the
film pressure profiles becﬁme more uniform the pressure
gradient at R = 1 increasés. From equation 4.66 of section

4.5.2 the flow rate M is given by;

2 a(P?)
M - - ' 5'16

Ad-(Pa.z - 1) oR R=1

The result of an increase in film pressure gradient at
R = 1 is therefore an increase in flowrate M as shown in
figure 5.53. Note also that the bearing clearance hy at R =
1 decreases with increasing values of S as shown in the
bearing clearance geometries, figure 5.56. This is due“to
bulging of the elastomer layer near the bearing clearance
exit R = 1 and tends to reduce the flow rate M by a
corresponding increase inAg4 , equation 5.16. However
because the increase in %%2) is greater thanAy in
equation 5.16 the result is an increase in flow rate
M with S.. The increase in flow rate M causes a éreaﬁe;'
pressure drop across the porous pad for a given supply
pressure p; - p;. As a result the magnitude of the film
pressure profiles in figure 5.56 reduces with increasing
values of S¢. This causes a reduction in load capacity W as
shown in figure 5.52. The results are similar for film
pressure profiles and béaving clearance geometries in

. =
figure 5.57 ror.Ad3= 0.4, 1.e, constant bearing clearance
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hy.

From this reasoning the following conclusions can be
drawn. The performance of a porous and compliant aerostatic
thrust bearing is compromized by the restriction to flow
through the bearing caused by the porous pad. The result is
that the bearing performance reduces with increasing -
elastomer layer compliance. This in itself is a unique
discovery because previous researchers of compliant
aerostatic thrust bearings with a central feed hole (58,
71, 72, 77) have used inherent compensation and ignored the
effects of a restrictor, such as capillary compensation, on
the bearing performance.

Although only S, and t¢ have so far been used to
explain the effect of the compliant surface on porous and
compliant aerostatic thrust bearing performance this will
now be extended to other bearing properties and non -

dimensional constants in the following section (5.4.5).

5.4.5 THE EFFECT OF BEARING PROPERTIES AND NON -
DIMENSIONAL CONSTANTS ON THE PERFORMANCE OF A POROUS

AND COMPLIANT AEROSTATIC THRUST BEARING

In this section reference will be made to figures 5.27
to 5.99 for both experimental and theoretical results.
(a) The effect of S¢y Sosv» t¢ and rubber hardness.

These all have a similar effect on the bearing

performance which can be described as reductions in load
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capacity W and increases in flow rate M with increasing
elastomer layer compliance. An elastomer layer 1s said to
be more compliant when the recess formed by its deflection
increases. The elastomer layer compliance increases with
the non - dimensional thickness S and this results in-‘a
reduction in bearing performance as shown in figures 5.52
and 5.,53. However the static stiffness K, as shown in
figure 5.54 can increase with S, at lower values of Aﬁ?
This is due to the rapid recovery in load capacity W at
lower values of A:has shown in figure 5.52 particularly’
with increasing values of S¢.

[}
: ; =4 -
In figure 5.55 for graphs of Ay against Af’all curves

for Sc > 0 lie to the right of the A:"3= A-,; line. This is
because the approach c 1is sreate& than the bearing
clearance hy and is caused by bulging of the elastomer
layer near the bearing exit R = 1 as shown in figure 5.56.
Note that for S = 0 there 1s effectively no elastomer
layer and therefore A?ﬁ=i&: since ¢ = hy. As S, increases
in value up to 0.13 the bearing approach ¢ also increases
for a given clearance hyq, this being indicated by a
progressive move to the right of curves for S, in figure
5.55. This is due to an increase in the size of the bulge
occuring at R = 1 caused by increases in deflections of the
compliant surface (figure 5.56). However the opposite has
occurred for Sc in the range 0.13 to 0.2 i.e. there is a

move back to the left for these curves in figure 5.55 with

increasing S.. This is because larger deflections of the
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compliant surface are offset by a less pronounced bulging
at R = 1 resulting in a reduction in the bearing approach c
for a given clearance hy. Note that the relative size of
this bulge with respect to deflections of the compliant
surface in the regions R = 0 to 1 increases with decreasing
values -of S.. This was best illustrated in figure 3.7-of
section 3.4.4 for an elastomer layer of infinite radial
extent subject to a uniform pressure G, of radius r, . For
comparison S, = (t./rg).(ro/rp) and the value of S
decreases with increasing values of the ratio rp/ro (refer
to figure 3.7).

Similar reasoning for S. may be applied to non -
dimensional shear modulus So and Polisson's ratiov. . Note
however the elastomer layer compliance increases with -
reducing values of both So andv. . For S, the elastomer
layer stiffness i.e. shear modulus G¢ 1is proportional to S,
for p, = constant. As v, approaches 0.5 the elastomer layer
stiffness increases. This is because axial depression of
the compliant surface causes increasing radial
displacements within the elastomer layer which are
restrained by the bond between the elastomer layer and its
rigid backing. Bearing performance curves for S, and v are
shown in figures 5.59 to 5266. Film pressure profile and
bearing clearance geometries for different values p. are
shown in figure 5.67. Note how deflections of the compliant
surface decrease as vy, approaches 0.5 but bulging at R = 1

reduces the bearing clearance hy at this position. This
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helps reduce the mass flow rate M as shown in figure 5.64.
The results in figures 5.63 to 5.65 clearly show that
the bearing performance is sensitive topy as its value
approcaches 0.5. This can be recognized from the spacing
between curves for yo. = 0.49 and 0.5, which 1s greater than
the spacing between curves for v = 0.45 and 0.49. The
importance of accurate measurement of v. as described in
section 4.4.2 1s therefore verified. In performance curves
for S¢ = 0 and Sy = o it may have been noticed that
bearing touchdown at r = 0 is indicated and this occurs at

l

a value of-;ff greater than zero. For example in figure
5.52 bearing touchdown occurs at an approximate value of Aj%
= 0.15 when S, = 0. This arises due to deflections of the
porous pad in bending which reduce the bearing clearance at
r = 0 (see figure 5.56 for S, = 0). Premature bearing
touchdown therefore occurs when the porous pad makes:
contact with the opposite bearing surface. In both cases
when S, = 0 or §; = the compliant surface is rigid and
its deflections are zero. It should be noted however that
this bearing touchdown is a theoretically predicted value
and does not take into account roughness of the bearing
surfaces which will in practice cause bearing touchdown at
higher values of‘Kgﬂ

The experimental results for bearing performance in
figures 5.27 to 5.29 for different elastomer layer
thicknesses t. have a similar trend to.those for S.. This

is because the porous pad radius rp, is constant, tc 1is.
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directly proportional to S.. The elastomer layer compliance
therefore increases with values of t. .

Experimental results for rubber hardness (I.R.H.D.)
are shown in figures 5.30 to 5.32. In table 5.5 for
elastomer lhyer a, f, and g the shear modulus G. increases
with rubber -hardness while Poisson's ratioy reduces
slightly. Because of the small reduction in value of p,
which on its own would increase the compliance of the
elastomer layer, the overall result is a reduction in
compliance with increasing rubber hardness, due to the
increase in G, . The porous and compliant aerostatic bearing
performance therefore increases with rubber hardness, as.
shown in figures 5.30 and 5.31.

(b) The effect of elastomer layer radial extent R, and
radius r.

Because the porous pad radius Ty is kept constant
during bearing tests then the elastomer layer radius r. 1is
directly proportional to its non - dimensional radial
extent R.. Both therefore have a similar effect on the
bearing performance.

Rc relates to the radial extent of the elastomer layer
in relation to the porous pad. When R¢ = 1, r, = r, and
when R, = @ , e >> r,. These two values of R, represent
the lower and upper limits repectively for the elastomer
layer radius. The expression "finite elastomer layer" means
any elastomer layer whose radial extent is; 1 <= R < @ .

Similarly an infinite elastomer layer has a radial extent
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Re =,

Bearing performance results for various values of R,
are shown in figures 5.68 to 5.71. Film pressure profiles
and bearing clearance geometries are shown in figure 5.72.
With the exception of the curve for R. =@ , the bearing
performance of: load capacity and flow rate improve with
" increasing values of R.. For Re = o there is a slight-
reduction in load capacity W and a corresponding increase

-
in flow rate M at lower values of Acsin the region 0 to

0.5.

In figure 5.72 for X:’: 0.2 there is a reduction in
magnitude of compliant surface ‘deflections from R, = 1 to
1.05 giving rise to an increase in bearing performance fof
the same reasons as described in section 5.4.4 1.e. a
reduction in elastomer layer compliance. Note that very
little bulging of the elastomer layer occurs ‘at R = 1
giving rise to a large bearing clearance here. The reason
for this is because the rubber expands more freely in a
radial direction at r = ry due to the limited radial
extention of the elastomer layer beyond rn, . When the value
of R, reaches 1.2, significant bulging of the compliant
surface occurs at 'R = 1. This reduces the bearing clearance
here and results in improved bearing performance.

The difference in bearing performance between Re = 1.2
and R, = o 1s relatively small and the bearing can be
assumed to behave as though it has an elastomer layer of

infinite extent when R, 1is greater than 1.2.
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From the theoretical results shown in figures 5.68 to
5.70 and for values of R, = 1 and 1.05 the bearing number
A:qand hence the bearing approach ¢ can have a -ve value,
This occurs because deflections of the compliant'sﬁrface'
are greater than the bearing clearance and resulté in a low
bearing stiffness as shown in figure 5.70. Note of course
that in figure 5.71 the bearing number‘ir!based~on bearing
clearance hynever falls below zero.

Experimental results for various elastomer layer radii
r. are shown in figures 5.33 to 5.35. Results for bearing
3e with an elastomer layer radius of 52.5mm giving a value
of Re = 1.03, do not extend down to negativevalues of bearing
numbebiijg due to the onset of pneumatic 'instability a%zﬂ?
= 0.24. Table 5.8 shows that this has occurred in several
of the bearing tests. However 1t is not clear as to the
exact causes of pneumatic instability since for example in
bearing test 1 for bearing 3a which has an elastomer layer
thickness of 9.678mm (see table 5.7), pneumatic instability
does not occur, even though a large recess is formed in the
bearing film clearance due to the greater compliant surface
deflections. Note that pneumatic instability does however
occur in bearing test 2 for bearing 3b.which has an
elastomer layer thickness of 6.T4mm. It is possible
therefore th&t unstable vibrations of the bearing surfaces
are damped down by the elastomer layer. This damping may be

a function of the elastomer layer thickness and other

properties such as hardness.,
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(c) Non - dimensional ratio Kj

The effect of this constant on the bearing performance
is shown in figures 5.73 to 5.76. This parameter was
introduced in section 3.7.2 to account for changes in the
bearing clearance geometry while the bearing numbr—:r‘:‘i::l’3 is
constant. 'As the value of K, decreases at constant A:i the
bearing approach ¢ increases so that the relative magnitude
of deflections of the compliant surface and porous pad
reduce with respect to the bearing fillm clearance. Figure
5.77 shows film pressure profiles and bearing clearance
geometries for various values of K,. As the value of K
decreases the bearing clearance geometry approaches a value
of hy/c = 1 for a uniform bearing clearance. The effect of
reducing K, 1s to reduce the recess formed in the bearing
clearance by deflections of the compliant surface. This is
similar to a reduction in compliance of the elastomer layer
giving rise to an increase in the bearing performance i.e.
increasing load capacity W and reducing flow rate M. For
comparison a theoretical curve for a porous aerostatic
thrust bearing with a uniform bearing clearance is included
in figures 5.73 to 5.76. This represents the limit of
porous and compliant aerostatic thrust bearing performance
where K = 0. Note that the value of K, which equals the
ratio of'qf /®, decreases with increasing porous pad

permeability and increases with increasing porous pad

radius'rb.
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(d) Supply pressure P

Theoretical performance curves for non - dimensional
supply pressure are shown in figures 5.78 to 5.81.
Experimental results for bearing 3a (see table 5.,7) and
bearing 3 are shown in figures 5.36 to 5.38 and 5.40 to
5.41 respectively. It is interesting to note that for
bearing 3a which is a porous and compliant aerostatic
thrust bearing, there is an increase in load capacity W

=l
with supply pressure P, at higher values of‘Acain figure

5.36, while the reverse occurs at lower values OfJ{:{ Note
that for a porous aerostatic thrust bearing i.e. bearing 3
in figure 5.40 the load capacity W increases with Py over
the full range of A;'values._

It appears therefore that increases in the supply
pressure P causes 1ncreases in deflections of the
compliant surface resulting ?n a reduction in load capacity
W at lower bearing numbers i: +Since the bearing film
pressures increase with P, the elastomer layer can be said
to behave as though it is more compliant at higher bgaring

supply pressure P; . Note that the bearing film pressures
|

also increase with reducing bearing numberk& « Therefore
the effective compliance of the elastomer layer is lower at

higher values of/&@ . This is why the Hoad capacity W
increases with Py at higher values ofzﬂ?.

It is further interest;ng to note that in figure 5,37
for porous and compliant aerostatic thrust beav;ng 3a the

flow rate M increases with ;ncreasing supply pressure P, ,
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while for porous aerostatic thrust bearing 3 the
theoretically predicted flow rate M has remained constant
for changes in supply pressure P as shown in-figure 5.41.
(e) The effect of magnitude constant My, and shape constant
Np for the porous pad rigidity.

The magnitude constant Mp represents the magnitude of
non - dimensional deflections of the porous pad Up in’
bending. Its value 1s affected by the material properties
of the porous'pad and also the stiffness in bending of the
porous ‘pad bond. In practice therefore Mp, may change with
the shape constant N, since both relate to the stiffness of
the porous pad bond. However the:value of Mp is unaffected
by the porous pad thickness hp and radius r, as explained
in section 4.3.6."

Theoretical performance curves for various values of
Mp are shown in figures 5.82 to 5.85.-In complete
contradiction to the results presented by Taylor'and Lewls
(25) for a porous aerostatic thrust bearing with an elastic
porous pad, the performance of ‘a’porous and compliant -
aerostatic thrust bearing improves with reducing porous pad
rigidity. Increasing values of Mp represent a reduction in
the porous pad rigidity. Figures 5.82 and 5.83 show
increases in the load capacity W and decreases in the flow
rate M with increasing values of Mp. The reasons for this
are explained 'as follows; in section 5.4.4 it was described
how the recess in the bearing clearance was formed by

deflections of the compliant surface and this had the
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adverse effect on the bearing performance due to the
restricting effect of flow through the porous pad.
Deflections of the porous pad have the reverse effect to
deflections of the compliant surface in that the recess
formed in the bearing clearance is reduced (see figure
5.58). The result is a recovery in the bearing performance
of load capacity W and .flow rate M with increasing values:
of Mp, as shown in figures 5.82 and 5.83. Note that for My =
ESX10-7 the performance of a porous and compliant
aerostatic thrust bearing 1s better than that of a porous
aerostatic thrust bearing with a uniform bearing clearance
(refer to figures 5.82 and 5.83). This suggests that a
porous and compliant aerostatic thrust bearing with a
flexible i1.,e, plastic porous pad could result in improved
bearing performance.

Film pressure profile and-bearing clearance geometries
for various values of M, are shown in figures 5.86 and 5.87
for X;ﬁz constant, and d:ﬁz constant, respectively. In
figure 5.86 it is clearly shown that the recess formed by
deflections of the compliant surface is progressively
reduced with increasing values of My (note that when My =
0.0 the deflections of the porous pad are zero).

In figure 5.87 the larger bearing clearance at higher
values of Mp may be attributed to the increase-in film
pressures also shown in this figure.

.The shape constant Np represents the shape of the

resulting deflections of the-porous pad.  Theoretically the
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minimum value of N, 1s 0.25 for a rigidly clamped porous
pad (see section 5.2.3). For a simply supported porous pad
the value of Np depends on Poisson's ratio v, for the
porous pad material. As shown in section 5.2.3 when v, = 0,
Np = 0.45 and similarly when v, = 0.5, Ny = 0.432.

Bearing performance curves for various values of N,
are shown in figures 5.88 to 5.91. A curve is included for
Np = 0.6 which is slightly greater than the values for
porous pads 1 to 5 in table 5.2 (for an explanation why N
> 0.45 for these porous pads, see section 5.2.3). It can be
seen from figures 5.88 and 5.89 that the bearing
performance of -load capacity W and flow rate-M improves
with increasing values of Np. This suggests that a porous
pad with a flexible support is more advantageous than a
rigidly supported pad in the porous and compliant-
aerostatic thrust bearing. However because N, relates.only
to the shape of deflection profiles of the porous pad and-
not their magnitude at r = 0, the changes in behring
performance with Np are small in comparison with those that
may be brought about by a change in magnitude constant M,
as shown in figures 5.82 and 5.83,

(f) The effect of porous pad thickness hp and aspect ratio
. Sb- - [

Experimental results for various porous pad
thicknesses hp are shown in figures 5.42 to 5.44 for a
porous and compliant aerostatic thrust bearing and in

figures 5.45 and 5.46 for a porous aerostatic thrust
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bearidga Theoretical performance curves for various values
of Syare presented in figures 5.92 to 5.95 for a porous ‘and
compliant aerostatic thrust bearing.

For the experimental results the porous pad radius Ty
is kept constant and therefore its thickness hp 1s directly
proportional to S,. As the porous pad thickness hy and
hence Sy reduce, this has two effects. The first is a
reduction in the restriction to flow through the porous pad
which results in higher bearing film pressures for a given
supply pressure p; . The second is a ‘reduction in the porous
pad rigidity in bending which, depending on the pressure
difference across the porous pad, will increase 1its
deflection,

Consider the experimental results for the porous
aerostatic thrust bearing in figures 5.45 and 5.46 (note
that the porous pad is elastic and deflects in bending).
The bearing performance of load capacity W and flow rate M
improves with decreasing porous pad thickness h,. Taylor
and Lewis (25) describe that the bearing performance
continues to 'improve as the porous pad thickness hy
reduces, down to an optimum value. However from the spacing
of curves in figure 5.45 and 5.46, this does not appear to
be the case, 1.e. the spacing increases 'with reducing
porous pad thickness hy. It is possible that the reason for
this is that Taylor and Lewis (25) use the bearing
clearance at r = 0 to present their bearing performance

results while the author uses the bearing clearance hqy (= ¢
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in a porous aerostatic thrust bear}ng) at r ="ry. Therefore
for a given bearing numbe_r- A-dl’a (:A-? for a porous aerostatic
thrust bearing) the mean bearing clearance from r =0 to Tb
is reduced by deflections of the pdrous pad, instead of
increased as in (25). A comparison_of theoretically -
predicted results with (25) for the performance of a porous
aerostatic thrust bearing with an elastic porous pad was
not possible because values of supply pressure P; were not
included with the results. There is also an error in equation
(20) of reference (25) where e-'mdphushould be wr-'itten eB"AV“.
Both experimental and theoretical results in figures
5.42 to 5.44 and 5.92 to 5.95 respectively for a porous and
compliant aerostatic thrust bearing also show improvements
in bearing performance of load capacity W and flow rate M
with reducing porous pad thickness hy and aspect ratio S,.
As described in part (e) of this section, increasing
deflections of the porous pad in bending can result in a
recovery of bearing performance because these reduce the
recess formed in the bearing clearance by the compliant
surface deflections. The deflections of the porous’pad are
ﬁroportional to the pressure drop aﬁross its thickness. For
a given supply pressure P this pressure drop is
approximately proportional to the porous pad thickness hp .
However the porous pad rigidity in bending reduces in
proportion to 1/hjy , i.e. for a given value of the

constant M,, deflections of the porous pad u, are

3
‘proportional to 1/hy .
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The net overall effect 1s that deflections of the
porous pad increase in proportion to 1/h§ « From this
argument therefore the bearing performance will continue to
improve for reducing porous pad thicknesses down to zero.
However when deflections of the porous pad are greater than
the recess formed in the bearing clearance by deflections
of the compliant surface, premature bearing touchdown can
occur at r = 0 as shown in figures 5.92 to 5.95 for Sy =
0.2. Under these conditions the minimum bearing clearance
hqy at r = ry for which the bearing can operate is limited
and its potential performance reduced.

Deflections of the stainless steel porous pads 1 to §
used in bearing tests were comparatively small and were
never greater than 10 um (refer to section 5.2.3 and
figures 5,12 and 5.13). Also the theoretically predicted
deflections of the compliant surface for all bearing testal
never 'reduced below 30 um for the range of bearing numbers
A:%used in these tests. It 1s unlikely therefore that
bearing touchdown at r = 0 instead of r = ry, occurred in
any of the bearing tests. However if a less rigid material
such as porous plastic was used for the pad, then
improvements in the bearing performance could result
provided bearing touchdown at r = 0 does not occur before r
= r'ye In such cases, for optimum porous and compliant
aerostatic thrust bearing performance it will be necessary

to carefully select proberties and thicknessés of both the

elastomer layer and the porous blastic pad. Use of porous
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plastics in these bearings would make an interesting future
research project.
(f) The effect of porous pad permeability ratio Ky

Theoretical bearing performance curves for various
values of K, are shown in figures 5.96 to 5.99. The value
of Ky has only a small effect on the bearing locad capacity
as shown in figure 5.96. However as shown in figure 5.97
large variations in flow rate M occur with changes in the
value of K, . Since Ky, 1s equal to the ratio of porous pad
permeability &, in the radial direction to the permeability
®; in the axial direction, the proportion of radial flow
within the porous pad increases with increasing values of K,
« As shown in figure 5.97, for a constant bearing numbernjﬁ
y the mass flow rate M increases with K, and hence
increasing proportion of radial flow in the porous pad.

For the determination of K, 1t would be necessary to
measure both permeablilties & and ®, for the porous pad.
The measurement of porous pad permeablility as described in
section 4.3.5 gives a.value of ®; since the pgd is
pressurized across its thickness and flow through it 1is
predominantly axial. However it 1is more difficult to
produce pfedominantly radial flow with;n the porous pad for
the measurement of @, and no literature has been found
describing a method by which this can be done. Therefore
the measurement of ®, has not been attempted and only one
value of permeability @ 1s specified for each porous pad

in table 5.2, For comparison of theoretical predictions
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with experimental results it is assumed that @, =0,:= ¢,
i.e. Ky = 1.
(h) The effect of porous pad manufacturers grading

As described in section 5.4.1 both the porous pad
permeability ® and magnitude constant Mp depend on the
porosity and structure of the porous pad material, The
manufacturer’s (Schumacher filters Ltd. U.K.) grade their
porous pads according to their permeability properties so
that the resulting porosity of the porous material is not
necessarily consistant with this grading. Experimental
results shown in figures 5.47 to 5.51 are therefore
presented for different grade porous pads rather than
porosity. Of these results figures 5.47 to 5.49 are for a
porous and compliant aerostatic thrust bearing and figures
5.50 to 5.51 for a porous aerostatic thrust bearing with an
elastic porous pad.

In tables 5.1, and 5.2 it can be seen that for the pads
1, 4 and 5 permeability ® and magnitude constant Mp
increase with increasing manufacturer’s grading, i.e. SIKA R1
to R5. Note however for porous pads 1, 2 and 3 of similar
manufacturer’s grading (SIKA R1, see table 5.1) there is a
54% and 10% variation of ® and Mp respectively in table
5.2. Therefore.the manufacturers grading is only
approximately representative of the porous pad properties
of ® and M.

The experimental results for the porous and compliant

aerostatic thrust bearing in figures 5.47 to 5.49 show a
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small increase in load capaclity W and a reduction in flow
rate M with increasing porous pad grade. This may be
attributed to a reduction in the value of the non -
dimensional ratio Kj(relating to the bearing clearance
geometry) due to increasing porous pad permeability @ with
grading. Also the magnitude constant My increases with
porous pad grade. Both result in improved bearing
performance as described in parts (c) and (e) of this
section (see also figures 5.73 to 5.74 for K and figures
5.82 to 5.83 for Mp). Similar improvements in bearing
performance with porous pad grading occur for the porous
aerostatic thrust bearing as shown in figures 5.50 and
5.51.

Although bearing performance may improve with higher
grade porous pads there are two factors to consider. With
increasing porous pad permeability ® pneumatic instability
may occur particularly for a porous and compliant
aerostatic thrust bearing (see section 4.3.2 for the porous
pad selection). Also especially for a porous aerostatic
thrust bearing with an elastic porous pad, increases in the

magnitude function Mp may restrict the bearing performance

due to premature bearing touchdown at r = 0, this being
caused by large deflections of the porous pad,

Problems relating to bearing stability is the reason
why low grade porous pads were selected for bearing tests
as described in section 4.3.2.

This completes the discussion of results in this
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chapter. Conclusions from these results are made in chapter

6.
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