Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately

(openaccess@aston.ac.uk)

e o ——

THE DEVELOPMENT OF A MULTI~FUNCTION COMPUTER-ASSISTED
INSTRUCTION SYSTEM USING A HIERARCHICAL DATABASE

STRUCTURE AS THE LESSON COMPENDIUM.

by: MICHAEL JAMES LITTLE
Compowexr Limited

Submitted for the Degree of Doctor of
Philosophy in Computer Science of the
University of Aston in Birmingham

June 1982.

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CONTENTS

ACKNOWLEDGEMENTS

SUMMARY

PROQJECT OVERVIEW
Introduction
Compower

Teleprocessing Network and Terminals

History of Computer-Based Learning at Compower

The Conversational Monitoring System

Planned CBL System - proposed characteristics

COMPUTERS IN EDUCATION
Computers in Education

CAL - Principles and Structure
CML - Principles and Structure
CBL Systems - Case Studies

Conclusions

SCHOOL DATABASE STRUCTURE AND I/Q HANDLING
Introduction

Concepts of Database Structure

Logical Database Structure - general notes
SCHOOL Database Logical segments

Physical Database Structure - general notes

Implementation

TEXT COMPRESSION/EXPANSION TECHNIQUES
Introduction

Intended implementation
Investigations

Actual implementation

Page

ii

11
18
24
29

39

42
43
44

46

84
84

86

CHAPTER 5

CHAPTER 6

CHAPTER 7

.10

SCHOOL SYSTEM STRUCTURE AND CONTROL LOGIC

Introduction

SCHOOL system organisation
System Control Manager
Subsystems

Modules

Data Nuclei

SCHOOL Programming and Testing

System Habitats

AUTHOR CONTROL SUBSYSTEM

Introduction

Author Control Subsystem - Organisation
ACS Command Groups

ACS Commands

Course Creation Procedures

Course Monitoring Facilities

student Control Facilities

Courseware Maintenance

Subject Message Maintenance

Author Control Subsystem - Software

DATA INPUT SUBSYSTEM

Introduction

DIS - Relationship to other Subsystems
Course Authoring

Data Input Subsystem Structure

Page

117
122
124
125

126

132
132
133
134

137

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

10.

10.

10.

10.

11.

11.

11.

11.

11.

12.

12.

12.

DISPLAY FORMAT SUBSYSTEM

Introduction

Compaower Terminal Hardware

Display Format Subsystem Design Philosophy
DFS Device Optimisation

DFS Author Control

DFS Efficiency Considerations

Display Format Subsystem Structure

TUTORIAL LOGIC CONTROL SUBSYSTEM
Introduction

TLCS Functions

TLCS Organisation and Logic

Tutorial Logic Control Subsystem - Software

KEYBOARD RESPONSE EVALUATION SUBSYSTEM

Introduction

Keyboard Reponse Evaluation Subsystem - Structure

Module MONITOR

KRES Lexical Analysis Procedure

IMMEDIATE COMMAND EXECUTION SUBSYSTEM
Introduction

Invoking ICES

Immediate Command Execution and Control
Immediate Commands

ICES Software

SUPERVISOR CONTROL SUBSYSTEM
Introduction
Supervisor Control Subsystem - Organisation

SCS Command Groups

Page

183
183
184

185

209

210

235
237
239

242

245

245

250

253

CHAPTER 12

CHAPTER 13

CONCLUSIONS

(Cont'd)

12

12.

12,

13.

13.

13.

13.

14.

14.

14.

14.

14.

14.

GLOSSARY

.4

SCS Commands
SCHOOL System Utilities

Supervisor Control Subsystem - Software

THE SCHOOL SYSTEM IN OPERATION
Introduction

Current Hardware/Software Environment
SCHOOL System Status

SCHOOL System Performance

AND PROPOSED EXTENSIONS
Introduction

Original System Objectives
Achievement of Original Objectives
Specific Techniques Evolved
Planned Enhancements

Conclusion

REFERENCES

Page

257
261

261

262
262
263

264

273

273

277
279

291

292

296

—
. .
i S

w w w w W w [\ [\ N N \S] N
.
(O) BNV BEIAN w [\ = [0)] (O} > w \]

w w W
O O

3.10
3.11
3.12
3.13
3.14
3.15
3.16
4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11

FIGURES

Compower Computer Centres

Mainframe Networking

Hierarchy of Terminology

Principles and Structure of a Traditional CAL System
CAL Logical Subsystems

CAL/CML Interaction

PLATO III Hardware

PLATO IV Terminal

Logical and Physical Databases

Database Logical Segments

Typical Logical Segment Expansion

Database Control Segment

Database Subject Segment

Database Lesson Segment

Database Frame Segment

School Database - Schematic Data Structure
Multi-level file areas

Spanned Record Concept

Dynamic alteration of control block information
DBTU Control Area

DBTU chaining examples

Pointer Structure

Writing logical records

Reading logical records from the SCHOOL Database
Text Compression/Expansion

Dictionary Tree Structure

Typical Substitute Code Format

Common Word Removal Overview

CATCOMP 1/2 best results

Comparative results for average search length, as
obtained from other sources

Compression test parameters

Search sequence example

Revised search algorithm

Results from CATCOMP 4 (Common Words S5 characters long)

Results from CATCOMP 5 (Common words 6 characters long)

13
19
24
26
30
31
43
44
45
47
49

56
60

65
68
73
75
76
78
80
85
89
90
92
100
101

104
105
106
1G9
110

9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

FIGURES

School Software Structure

System Control Manager

Subsystem Structure

Example of Subsystem Inter-Relationship
'Subsystem Structure (Including Data Nucleus)
VM/370 Virtual Machine

SCHOOL in the VM/370 CMS Environment
Organisation of VSPC version of SCHOOL
ACS Organisation

ACS Commands

ALTER Command : alterable fields

Alteration Levels : prerequisite information

DELETE Option : associated information requirements

DIS relationship to other Subsystems
Course creation overview

SCHOOL DATABASE - Schematic Data Structure

Logical Record/Author Document cross reference

DIS structure

CREATOR outline logic

Data Creation Subcommands

DIS Format Modules

DFS Display Processing

Display Logic

FDB structure

Conversion modules

DFS/DIS relationship and component modules
Rescreen function

Tutorial component overview

TLCS Functional Breakdown

Tutorial Logic Control Subsystem organisation
Student Registration Logic

Tutorial text display sequence

Response Processing

Keyword relational operators

Special student facilities

Student special request logic

Glossary Request Processing

TLCS Modules

Page

114
116
120
121
124
127
128
130
132
135
143
145
150
155
157
158
159
174
176
177
181
188
189
199
202
204
207
209
210
212
214
219
223
224
227
228
232
234

+ 136

+ 144

+ 151

+ 178

+ 225

+ 229

10.1
10.1
11.1
11.2
11.3
11.4
12.1
12.2
13.1
13.2
13.3
13.4
14.1
14.2
14.3
14.4
14.5

FIGURES

KRES/DFS/ICES relationship

KRES functional components
Immediate Command Identification
Control command table

Control .command table processing logic
Immediate Commands

SCS organisation

SCS commands

Compower 3033 system

SCHOOL Software breakdown

SCHOOL session statistics

SCHOOL session costs

Multiple back screen facility

PF key assignments

Command abbreviations

Compower DEC/IBM Network

8100 Network

PHOTOGRAPHS

Plate 1 Colour Graphics within SCHOOL

Plate 2

237
239
246
248
249
250
254
257
202
263
266
270
280
281
282
288
289

287

+ 253

+ 260

+ 264

I would
people:

Mr.

ACKNOWLEDGEMENTS

like to proffer my very sincere thanks to the following

J. M. Doubleday (University of Aston Computer Centre)

for his invaluable help, guidance, supervision and
gentle pressure;

. E. Wille (formerly Head of Training, Compower Limited)

for lighting the fuse in the first place;

Compower Ltd. (computer subidiary of the National Coal Board)

Mrs.

for their sponsorship and the use of their incomparable
computing facilities;

M. Little (my wife)

for making me work on this project when I didn't really
want to.

Inevitably, in the cause of brevity, I am forced to omit a vast
number of people who have assisted me in a multitude of ways. To
all of them - thank you.

-11-—

Title: The development of a multi-function Computer-Assisted Instruction
system using a hierarchical database structure as the lesson
compendium.

By: Michael James Little

Submitted for the Degree of Doctor of Philosophy of the University
of Aston in Birmingham. 1982.

SUMMARY

Computer-Based Learning systems of one sort or another have been in existence
for almost 20 years, but they have yet to achieve real credibility within
Commerce, Industry or Education. A variety of reasons could be postulated
for this, typically: -

- cost

- complexity

- inefficiency
- inflexibility

- tedium

Obviously different systems deserve different levels and types of criticism,
but it still remains true that Computer-Based Learning (CBL) is falling
significantly short of its potential.

Experience of a small, but highly successful CBL system within a large,
geographically distributed industry (the National Coal Board) prompted

an investigation into currently available packages, the original intention
being to purchase the most suitable software and run it on existing computer
hardware, alongside existing software systems. It became apparent that

none of the available CBL packages were suitable, and a decision was taken
to develop an in-house Computer-Assisted Instruction system according to

the following criteria:

- cheap to run;
- easy to author course material;
- easy to usej;

- requires no computing knowledge to use (as either an author
or student);

- efficient in the use of computer resources;

- has a comprehensive range of facilities at all levels,

This thesis describes the initial investigation, resultant observations and
the design, development and implementation of the SCHOOL system. One of
the principal characteristics cf SCHOCL is that it uses a hierarchical
database structure for the storage of course material - thereby providing
inherently a great deal of the power, flexibility and efficiency originally
required.

Trials using the SCHOOL system on IBM 303X series equipment are also
detailed, along with proposed and current development work on what is
essentially an operational CBL system within a large-scale Industrial
environment.

Keywords: Computer-Assisted Instruction; National Coal Board;
Computer-Based Learning; Database.

chapter one

- PROJECT OVERVIEK

1.2

INTRODUCTION

It is important to define at the outset the environment within
which this' projectideveloped simply because these 'environmental
considerations' have had a fundamental effect on the design
philosophy and direction of the system. Typical of these con-
straints were:

- the system should be entirely commercially viable;

- it should be capable of being used by both authors and
students from a wide range of backgrounds, without the
requirement of DP experience;

- it should be capable of using existing hardware, and being
extended in line with likely/expected hardware develop-
ments;

- it will not have dedicated mainframe resources, and
consequently should have minimum impact on its cohabitant
subsystems;

These factors are in some respects unusual, in that many Computer

Based Learning (CBL) systems have concentrated solely on

sophisticated teaching mechanisms, often at the expense of

viability.

COMPOWER

This project was developed at, and sponsored by Compower Limited,
Cannock, Staffordshire. Compower is the wholly-owned computer
subsidiary of the National Coal Board, and is one of the largest

computer users in the U.K.

Processing is carried out on a range of equipment primarily
from IBM, ICL and DEC, installed across 6 Regional Computer

Centres - as Fig 1.1 below illustrates.

Comp ower Computer

Centres

EDINBURGH

OR sATeEsHEAD

LONTON :
" o 3 DONCASTER

CANNOCK

pd

Q" TREDOMEN

. v

The main processing centres are Doncaster and Cannock, the

latter being the company Headquarters. Whilst all centres

process batch-orientated work, only Cannock and Doncaster

have significant on-line systems, based primarily on IBM

equipment as the following table indicates:

CENTRE

MACHINE

ON-LINE SYSTEM(S)

CANNOCK

IBM 3081

IMS (Information Management
System) IBM

- database enquiry/update

STAIRS (Storage and information
Retrieval) IBM

- text enquiry

VSPC (Virtual Storage Personal
Computing) IBM

~ program development

- conversational programming

(2)

(3)

IBM 3033

CMS (Conversational Monitoring
System) I3M

~ program development

- conversational programming

DONCASTER

IBM 370/158
(two)

IMS

- database enguiry/update

Table

1.1

(Number in brackets refers to
Reference section entry number)

|
(OF]
t

1.

Around 70% of all processing work is for the National Coal

Board, the remainder being the 'External Market'.

TELEPROCESSING NETWORK AND TERMINALS

The systems listed in Table 1.1 represent an installed base

in excess of 400 terminals, with a considerable increase
planned over the next few years. With the advent of IBM's
Systems Network Architecture IBM (5), (6), (7))and compatible
releases of systems software, it will become possible to

access any on-line system from any terminal on the network.

The effect of this technology can be seen by reference to

Fig 1.2:
Mainframe A B C Fig. 1.2 Mainframe
Networking
D E F Mainframe

Both terminals 1 and 2 when connected to an SNA Network can
access all of the teleprocessing subsystems A, B, C, D, E or F,
any of which could represent a Computer-Based Learning system.

This has enormous implications for the design of any such

system:
(i) the potential CBL audience is massive;
(ii) the training requirements are bound to be diverse;

(iii) implementation can be done at marginal cost (assuming
terminals installed for other higher priority purposes) ;

(iv) processing resources are being shared, therefore software
and storage utilisation must be efficient;

Point (iii) above is of paramount impo}tance - the major barrier

to the expansion of CBL, whether in industry or education, is

cost (Fielden, 9). Usually the most significant cost factor

(for the user) is the purchase/rental of the necessary terminal

and telecommunications equipment - this has been evaluated as

being capable of approaching 56% (Bitzer & Skaperdas, 10) of

the cost of implementing a large CBL system. Whilst recent

findings show a shift in emphasis towards a predominance of

people-cost, the existence of a terminal which is:

(a) already installed

(b) less than 100% employed

(c) capable of accessing a parallel CBL system

represents an enormous re-adjustment to the CBL cost equation,

and it is only the advent of truly multi-functional terminals

{e.g. via SNA) that have made this possible.

1.

HISTORY OF COMPUTER BASED LEARNING AT COMPOWER

During the latter half of the 1960's, Compower (at that time
National Coal Board Computer Services) created at its Cannock
Headquarters a purpose-built Training School with permanent
lecturing and tutorial facilities. The function of this new
venture was to provide computer-related training for:

(a) NCB Computer Services DP staff;

(b) NCB personnel as appropriate;

(c) the external (i.e. non-NCB) market,

Initially, this training was biased almost totally towards the
‘batch' type of Data Processing including systems analysis,
programming fundamentals, languages etc. During 1969, the first
significant evolution took place, with the installation of IBM's
Conversational Programming System (CPS) on the Cannock mainframe,
designed to provide relatively simple on-line programming for
remote users - the majority non-computing departments within the
NCB, with little DP experience.

Within a year, the installed terminal base exceeced 50 (each
used by a number of people/departments) and with it came a major
training requirement - only partially solved via regular one-
week CPS Courses. It became obvious that this could not keep
pace with demand, and alternative solutions were considered (film,
PI text, audio cassette, terminal-based training).

Terminal-based training was eventually adopted in Summer 1971
following a trip to USA by the then Head of Training, Mr. Edgar
Wille. One of the establishments visited was Dartmouth College,
New Hampshire, where Dr. T. E. Kurtz, Head of the Computer
Facility, demonstrated sevegal operational terminal-based

teaching systems, including BASIC programming, Climatology and

State geography. Whilst crude by current standards, these
systems were the first indication of Computer-Based Training's
potential, and a major project was commissioned immediately

afterwards.

This task was given to the author and the design remit was
fairly wide, in that any suitable CBL technique could be employed
to replace the l-week CPS Course. The first version of this
(system CPS/CAI 1.1) became operational in March 1972, 8 on-line
lessons supplemented by a Programmed Instruction Text. Among
the various characteristics of CPS/CAI 1.1 were:
- automatic student registration;
- full control of student progress;
- a range of performance analysis facilities;
- various tutorial techniques;
- random message generation (i.e. selecting from a list
of similar messages) to avoid student tedium;
Further alterations were made to CPS/CAI as follows:-
- September 1972 -~ wversion 1.1 (revisions to lesson
control, extra lesson added) ;
December 1973 - version 2.1 (more elegant control
software, revised lesson material,

better answer checking).

This system has been fully operational since this date, and

almost 400 people have used it.

1.5 THE CONVERSATIONAL MONITORING SYSTEM

(o)}

In June 1974, after intensive investigation, Compower obtained
from IBM a new teleprocessing system - CMS (Conversational
Monitoring System). With this came a new host operating
system - VM/370 (Virtual Machine facility/System 370) . This
system was installed on a dedicated IBM 370/145 mainframe
(since upgraded to an IBM 3031) and was intended to provide a
powerful program development facility for Compower staff, as
well as a replacement for CPS.

The author was involved in the investigation of CMS, and its
potential as a vehicle for Computer-Based Learning soon became
apparent. Towards the end of 1974 therefore, a preliminary
paper was produced outlining the desired characteristics of a
Compower CMS/CBL system, heavily influenced by experience of

CPS/CAI, and investigations into other contemporary CBL packages.

PLANNED CBL SYSTEM - PROPOSED CHARACTERISTICS

When the preliminary definition of the planned CMS/CBL system
was produced, the following characteristics were listed (even
though the exact software mechanisms required were unknown) :
(a) language-free Course Authoring:
- i.e. no need for Authors to learn any form
of computer language
(o) subject structuring:
- i.e. the ability to subdivide a course into
several (possibly independent) component levels;
(c) no restriction on subject matter:
- i.e. courses of any subject type (not necessarily

related to Data Processing) .

(d) comprehensive student facilities:

- i.e. students should have a wide range of available
facilities including:-

(i) hint/answer reguest

(ii) suspend/resume session

(1ii) request information (e.g. current score,

lesson details, range of available subjects).

(iv) message/comment entry

(vi) glossary word/phrase explanation

(e) minimal system management:

- 1i.e. as far as possible, the system should be self-
supporting (automatic student sign-on, space
management, performance monitoring etc).

(£) full performance monitoring:

- i.e. student and system:

(1) Student -~ name, dates, marks obtained,
durations, etc.

(ii) Lessons - no. times used, completion types,
individual frames details (times
used, number of attempts, times
incorrect/hint requested etc).

(iii) Space - Database space utilisation/
fragmentation.

(g) host system independence:

- i.e. as far as possible, the CBL system software

should be written in such a way as to have no

independence on its host Operating System;

(h) efficiency:

- 1.e. impact on cohabitant systems should be

minimal:

(1) Processing - software is written to be
very efficient;

(1i) Storage - all course text should be

compressed to use minimum
N on-line storage;
(i) device independence/optimisation:
- 1i.e. the CBL system will optimise output format
and control to use each type of user terminal to
best effect. This should be transparent to all

users.

(i) expansion potential:

- i.e. implementation limits (number of subjects,
lessons, etc) should not be permanent, and
continuing expansion should be possible;

These preliminary characteristics may be compared to those of

other CBL projects, see Chapter 2.

chapter two

- COMPUTERS IN EDUCATION

COMPUTERS IN EDUCATION

Computers have been used in teaching for over 20 years -
essentially for as long as they have represented viable
information processing devices. Diversification has been
considerable, and virtually all aspects of education, training,
instruction, course administration and curriculum management
have been tackled. Various attempts have been made to
summarise these (Silvern & Silvern (14), Lippert (11),

Hooper (12), Beech (13)) but no standard range of definitions

currently exists.

For the purposes of this thesis, an attempt has been made by
the author to rationalise and standardise the terminology

applied to the use of Computers in Education.

2.1.1 COMPUTERS IN EDUCATION - TERMINOLOGY

(1) CBL/CBE - COMPUTER BASED LEARNING/EDUCATION:
- teaching with a computer;
the machine is used as an educating
mechanism, may (once set-up) be
entirely self-sufficient, and will
in all instances be the major

component of the education;

(i1) CBT - COMPUTER BASED TRAINING:
- as for CBL & CBE but generally more

applicable to industry (i.e. training);

(1ii) CAL -~ COMPUTER ASSISTED LEARNING:
- a main component of CBL (the other

being CML) ;

(vi)

(vii)

CAT

CML

CMT

the computer is used to teach in
either tutorial sense (information,
question/answer etc) or laboratory
sense (simulation, problem-solving,
experimentation) ;

the computer will possibly be
augmented by other media, and some
external form of control will be
required (e.g. course administrator,
CML system) ;

COMPUTER ASSISTED TRAINING:

as for CAL but generally more
applicable to industrial applications;

a main component of CBT;

COMPUTER ASSISTED INSTRUCTION:
essentially the tutorial component of
CAL or CAT, i.e. a software structure
designed to inform, guide and possibly
test students to a prescribed level of

competence;

COMPUTER-MANAGED LEARNING:

the administration and management of
a teaching function, (typically test
marking, progress analysis/control,

recording keeping, scheduling,etc);

COMPUTER-MANAGED TRAINING:

as for CML, but related to the management

and administration of teaching within

Industry;

- 12 -

A hierarchy becomes apparent, see Fig. 2.1:

Fig 2.1 Hierarchy of

terminology

CBL

|
|

CAL (Teaching)

CML (Administration)

CAI

instruction [| .
. . 'Black box! Problem Instructional
information simulation solving Dialogue

testing

2.1.

The official title for this thesis includes
the term 'Computer-Assisted Instruction'.

As the project has evolved and in particular,
since the above hierarchy was produced, it
now appears to the author to be more correct

to consider the title as being:

'The development of a multi-function Computer-based

Learning system using a hierarchial database structure

as the teaching and administrative control mechanism’.

HISTORY OF USING COMPUTERS IN EDUCATION

(a)

Prior to 1965

Computer-Based Learning began as a spin-off from
the development of remote computer access in the
late 1950's. These first tentative steps towards
Interactive Processing utilised converted electric
typewriters and teletypes linked to systems which

provided and controlled user programming.

- 13 -

The educational potential of these early
conversational systems was soon recognised,

and simple tutorials were implemented. These
were effected using existing programming
languages, but by 1960 sufficient interest had
accumulated to produce the first purpose-built
CBL Author Language - IBM Coursewriter

(Suppes & Macken, 15), representing the first
serious attempt to make the generation of CBL
tutorials less dependent on computer professional

expertise.

Stanford University, California in 1963 began
the development of the first viable school CAI
system and by 1965 teletype terminals were
installed on school premises giving daily

elementary arithmetic and reading lessons.

Also at this time development of system PLATQ®
(Programmed Logic for Automatic Teaching Operations)
was started at the University of Illinois (Hooper,
16) , and this has subsequently evolved into the
world's largest, most comprehensive and commercially

successful CBL system.

1965 to 1970

This was a period of contradictions - first a
widespread expansion of CBL to many new fields and
then a contraction of development as implementation

costs started to become prohibitive.

The Stanford University system continued to

grow: by 1966 three schools had installed
terminal equipment, and by 1967 wvisual display
devices and multi-media University level

teaching (e.g. Russian, Mathematics) had been
implemented - in the instance of Russian, special
Cyrillic keyboards were being used and all

normal classroom activity had been replaced.

PLAT@ continued to evolve and computer-controlled
graphics, animation etc. were incorporated to

excellent effect.

Throughout the computing fraternity, CBL blossomed
and tutorials over a wide spectrum of topics were
produced. It was however a lengthy and complex
task to generate this software, and with the
exception of IBM Coursewriter and PLAT@, specific
systems were written for specific topics - and this

was expensive.

Consequently the envisaged low CBL session costs
were not realised and this, plus lack of authoring
flexibility slowed investment, research and

development to walking pace.

1970 to 1975

The Seventies began, from a CBL standpoint, with
very little work being done, and for very

sound reasons:

- course and software development costs
were prohibitive;

- processing and storage requirements were
too large for most installations;

- teaching techniques available via CBL
were very limited, especially using standard
terminals;

- companies could fill their computers quite
comfortably with more pressing (and
profitable) tasks;

- computers were as yet not academically

respectable;

Realism began to creep into what development was
being done, best illustrated by the MITRE
Corporation/Brigham Young University TICCIT (Time
shared Interactive Computer-Controlled Information
Television) system. Begun in 1972, TICCIT was the
first CAI system to use the then recently developed
mini-computer (Suppes & Macken (15), Flockhart (17),
Alderman et al (18)). Standard colour TV

receivers were linked to twin Nova 800 mini-
computers to provide a small, local CAI capability -
the major aim being to maintain low cost. Each
TICCIT system was self-contained and capable of
supporting up to 128 TV terminals, and several
colleges still use TICCIT 'courseware' as an

integral part of their curricula.

As hardware became cheaper and more powerful,
computers became more widespread. Computer Science

began to be taught academically, and the machines

- 16 -

(d)

were used in many other subject areas.

This new found respectability, and spare machine
capacity brought about a gradual resurgence of
interest in CBL, spreading to industry, where
the first viable on-line systems were in use

(typified by Compower's CPS/CAI System) .

1975 to the Present

The key to CBL development over the last few
years has been machine power - i.e. the specific
abilities to support large numbers of students/
authors simultaneously (possibly alongside other
systems) , provide wide ranging facilities and
support more than 1 concurrent subject. CBL
software has consequently tended to become more
generalised and several computer corporations
have taken to it commercially during this period,

as the following list (Baker, 19) shows:

CDC PLAT®
Sperry Univac ASET
Hewlett-Packard IDF

IBM IIS and ITS
DEC DECAL

ICL LJRA

Some of these appear to be enhanced BASIC language
programming, but others are significant enough to

warrant separate case studies - see section 2.4.
‘

2.2 CAL - PRINCIPLES AND STRUCTURES

Any CAL system consists of two fundamental components:
(1) CONTENT - the substance of the material to

be presented;

(1i) PROCEDURES - the vehicle which controls and

delivers the Content;

Traditionally, this dichotomy has resulted in two separate skills
requirements (Zinn, 20, 21). Firstly organising and constructing
the CONTENT; obviously this requires subject matter expertise

and an understanding of the teaching commitment (i.e. objectives
and means of achieving these objectives), but will also involve
knowledge of the specific characteristics of a host computer

system.

Secondly, transposing the content into an appropriate form for
computer hardware - i.e. PROCEDURE preparation. The skill
requirement here is some form of programming. Fig. .2.2 gives

an overview of these components and skill requirements.

TEACHING DEFINITION OF
CONTENT/SUBSTANCE DELIVERY

SUBJECT MATTER
ZXPERTISE

PROGRAMMING
SKILLS

DELIVERY
PRCCEDURE \

CAL SYSTEM

Fig. 2.2 PRINCIPLES AND STRUCTURE OF A
TRADITIONAL CAL SYSTEIM.

Early CAL systems depended therefore on at least two types of

skills availability:

- the discipline or subject matter expert

- the procedure definition expert, or programmer

and normally this implied at least two individuals.

To simplify this procedure, three approaches became apparent:
(1) the subject matter expert becomes proficient in

computer programming;

(ii) the programming expert becomes conversant with the

subject matter;

(iii) the procedure definition process is simplified to
allow CAL construction without recourse to

conventional programming skills;

Of these 3, the last one is obviously the most preferable, and
several attempts have been made to achieve this end - typically

via the production of CAL Author Languages.

2.2.1 CAL - Author Languages

A large proportion of instructional programming is done
using conventional languages - typically, high-level

examples such as ALG@L, APL, BASIC, FORTRAN, PL/1.

Whilst these are not necessarily inadequate (APL and
PL/1 for instance being extremely powerful), the
production of a non-trivial CAL system requires
considerable programming expertise and other limitations
may be encountered (e.g. text handling, upper and lower
case characters, answer definition/recognition, etc).

On the other hand, standard data processing languages

- 20 -

usually have some favourable characteristics which will

continue to make them attractive:

- good documentation;
- well tried compiler/interpreter;
- good debugging facilities;

- portability;

Nonetheless, these are generalised languages designed and
produced for other purposes and consequently a number of

custom-built CAL Author Languages have evolved over the

last 20 years.

Zinn (21), categories these in 3 groups:

(a) successive frame languages:

- 1in essence computerised programmed instruction;

- languages of this type generally have good
text display facilities, accept/ analyse
simple student responses, record performance
and provide explicit or implicit branching
capabilities;

- best known languages within this categoxry are
COURSEWRITER (IBM) and TUTOR (Computer-based

Education Research Lab, University of Illinois);

(b) languages which provide conversation (albeit strictly
limited) :
- typically this means extensions to category
(a) to facilitate condition testing, text

processing, storing replies, etc.;

(c)

languages within this category normally have
the ability to record a sequence of replies
(or 'conversation') and to make decisions
based on both the most immediate reply and the
history of the conversation so far;

MENTPR (Department of Educational Technology,
Cambridge, Mass) 1s an example of such a

language;

framework or strategy languages:

effectively a standard delivery procedure is
defined without embedded course material; .
once a strategy (or 'framework') has been
defined, the author identifies the information
to be used by it and the appropriate teaching
sequence can take place;

the most notable author language in this
category is CAT@ (Compiler for Automatic
Teaching Operation - part of the PLATY system).
Other examples are C@MBAT (Mills & Allen, 22),
ITS (Interactive Training System - IBM), ASET

(Sperry Univac) ;

All of the above categories represent languages, and

whilst they are significantly more tailored than the

general purpose languages, they still incorporate the

usual

language-related characteristics:

learning a syntax;

coding;
compilation/interpretation;
testing and debugging;

alterations/editing;

- 22 =

From the above it is apparent that CAL Author Languages
still require significant skill levels - in fact the

more complex examples approach normal high-level languages.

Recent work has evolved the generative CAL Author System -

an attempt to address the programming skill problem.

CAL - Author Systems

The basic principle of an Author System is that no language
is regquired at all. The Author still has control over the
procedure by which his instructional material is delivered,
but this is defined via.simple parameters rather than

language statements.

Different mechanisms exist for parameter definition,
including:

- prompt and response;

- macro statements, e.g. ITS (IBM, 23);

- author documents (i.e. specially designed
data entry forms defining both structure
parameters and text); ACATS (Flockhart, 17)
uses this approach, as does the Extended

Course Structuring Facility of ITS;

A computer-Assisted Learning System employing this
approach can now be represented as 3 related logical

subsystems, as Fig. 2.3 illustrates:

AUTHCR 3U3BSYSTIM JOURST JEMZRATION 3U3SYSTEM

?ARAMETERS

-

Fig. 2.3

CAL Logical Subsystems

9
a
3
ol

y
<

o
ol
a
i

'
<

A spin-off advantage of this structure is that the

various components need noﬁ necessarily be cohabitant -

COMBAT (Mills & Allen, 22) for instance, is designed to

run with Authoring and Generation subsystems on one machine, and

the Courseware Delivery subsystem on several others.

CML - PRINCIPLES AND STRUCTURE

Computer Managed Learning (CML) is sub-divided into major 3

components:
(1) TESTING
(ii) ROUTING

(1ii) RECORD KEEPING

- 24 -

These can be applied in various forms to both conventional and
CAL processes. Few successful examples of the former exist,
although the Hertfordshire Computer Managed Mathematics Project
(Tagg, 24) and CML systems implemented within military training

(Miles, 25), are worthy of note.

Application of CML to computer-assisted learning systems can

be done in a variety of ways, typically via interface datasets,
or calls between parallel CAL and CML software. Very complex
systems may in fact be subdi&ided into functional sub-components,
one controlling the learning processes, the other the management

functions, as Fig. 2.4 illustrates:

- 25 -

Pig. 2.4
B LN

CAL/CML INTZRACTICN

AUTHOR ING
COURSZWARE
GENERATION
———— — -
é ~
DELIVERY

INTERACSTICN \
TESTING \
|
> \
> TEST
ROUTING ~ - RESULTS
INFORMATION -~

S — —

ROUTING
2ROGRESS
INFORMATION
AUTHOR AFORMATION 2ECORD
XEZDING
CML FUNCTION

N.B. (Relative to Fig. 2.4)

(1) the CML Testing component may (in part)
be resident in the Delivery component of
the CAL function;

(1i) the algorithms used to control student
Routing may get fairly complex, and may
incorporate some degree of manual control
(student, or teacher/author) and/or

historical information;

2.3.1 CML - the Testing Function

An enormous range of techniques have been applied to

proficiency assessment.

Examples are:

(a) simple question/answer:
- producing a score which permits further

progress or otherwise;

(b) diagnostic aszessment:
- the student is tested and a 'profile' of
his performance is built up; this is then
used to select subsequent learning

materials; examples may be found in Compower's

CPS/CAI System and IBM's ITS (IBM, 23);

(c) mastery learning:
- often used in operational simulation
(e.g. process simulators, technical fault

finding, etc) .

Some attempts have also been made to produce CML
systems which generate test material automatically,
either selecting from a (lengthy) list of predefined
questions, or building material up according to
various student criteria. Information on this

approach is thin on the ground.

CML - the Routing Function

Routing refers to the direction and control of students
through a particular course of study. At its simplest,
this will be more or less a straightforward monitored
sequence, but at its most complex, routing can involve
intricate branching algorithms that attempt to emulate

the intuition and adaptability of a human teacher.

Almost invariably, CML routing and CML testing are

related in some way, with decisions being made at a

number of stages - ranging from immediate to deferred

(i.e. performance within one part of the subject influences

another part).

CML - the Record Keeping Function

Performance recording can range from a simple sequence

cf marks obtained on examinations/tests to sophisticated
monitoring procedures which will capture many details of
student performance at the individual questions level,
including the number of times assistance has been requested,
the number of incorrect attempts and even details of how

long the student took to answer.

The advantages of using a computer system for record
keeping become more attractive as student numbers
increase and as the data required becomes more
difficult to obtain. It is also possible to append
statistical analysis, result sorting and reporting

procedures quite easily.

CBL SYSTEMS - CASE STUDIES

The generally disappointing impact of Computer-Based Learning
has already been discussed, but it is nonetheless important to
acknowledge that some systems have survived long enough, and

been used widely enough, to warrant specific examination. Two

systems have been chosen:

(1) PLATO (University of Illinois/Control Data Corporation)

(i) ITIS (IBM)

Both have marked similarities (in existence for many years;

large user base; have evolved through many versions) and marked
differences (dedicated v. shared mainframes; academic v. industrial
background; specialised v. general purpose hardware) and a great
deal of valuable information is to be gleaned from studying them

in detail.

2.4.1 PLATO - An Overview

First started at the University of Illinois around 1960,
PLATO (Programmed Logic for Automatic Teaching Operations)
has evolved through many versions thanks mainly to
considerable funding from the US Government and Control
Data Corporation. Versions of PLATO have normally been

significantly different from one another, (Bitzer & Skaperdas,

10), and two representative versions will be described:

(a) PLATO III:

- the most significant characteristic of this
version (and subsequent University of
Illinois releases) was that it used special
display stations, comprising TV monitor
(used to display a conglomerate of slides,
diagrams and computer-generated alphanumeric
text, all under PLATO control) and a keyboard
used for student replies. Fig. 2.5 illustrates

the PLATO III hardware organisation:

(Etectronic Book)
Slide ¢ »
Selector
Y
(Electronic Blackboard)
Storage .
) < Device ¢
TV Display
P Computer
Student
Fig. 2.5 PLATO III Hardware

Course authoring was via the CATO author
language, instructions being incorporated

into each 'program' to select and display
elements from a large sheet of transparencies
held in the Slide Selector. These had to be
photographically produced and pre-loaded into
the device - the result being high quality
displays (better than any contemporary computer
produced equivalent) but expensive course
preparation, expensive student equipment and

limited author flexibility.

(b) PLATO 1IV:

- similar in concept to version III, special
student station hardware was again used - in
this instance plasma-display screens with the
Slide Selector mechanism now using microfiche
and built into the terminal itself

(see Fig. 2.6):

IMAGE SELEGTOR

Fig. 2.6 PLATO IV Terminal

- 31 -

The major advantages were cost and a much
greater level of software control over the
display layout. The plasma display technique
has other advantages - it does not require
regeneration, is bright and has very good

definition.

- A higher level author language (TUTOR) was also
introduced, and a range of other facilities
such as comment files, inter-student
communication and games were incorporated
(Denenberg, 26). As with all PLATO systems,
versions IV was run on a very large, dedicated
CDC mainframe computer, and towards the late
70's, several such Computer Centres had been

set up in the U.S.A.

During 1977, an important split in the development of

PLATO took place, producing:

(1) Academic PLATO:
- University of Illinois;
- specific emphasis on research, CAI hardware
and providing a service for educational

establishments;

(ii) Industrial PLATO:
- Control Data Corporation;
- specific emphasis on using and developing
those aspects of the original system which

were commercially viable;

The latter version is now probably the best known CBL
system in the world. The commercial philosophy of

CDC has been to set up Learning Centres, where clients
can go to study, as well as leasing terminal equipment.
Over sixty such centres have been set up throughout
North America and U.K. with up to 12,000 hours of study
available (Box, 27). Briefly, the current CDC PLATO

system has the following characteristics:

- simplified VDU hardware (i.e. no slide or
microfiche capability) although full monochrome

graphics (both static and dynamic) can be used;

- terminals dedicated to the PLATO system and
on-line to a very large, dedicated CDC Cyber
7600 mainframe. One particular attractive
aspect of the PLATO screens (especially to
children) is that they have touch response -
i.e. areas of the screen can be activated so
that if touched by the student an appropriate

response is generated;

- text generation and display can be done in a
variety of character fonts and be paced
(i.e. rather than instantaneous display, the

student can watch the text being written);

- authoring is via the TUTOR Author Language and
a comprehensive, but not necessarily easy to use

range of facilities is provided.

PLATO - An Appraisal

There is no doubting the power and impact of a
professionally produced PLATO course. They have,
however, been produced by a team structure,
comprising both subject matter and PLATO programm-
ing experts - the courses are simply too complex
and the TUTOR language too difficult for it to be
otherwise. Denenburg (26) confirms this, and
emphasises that whilst simple CAI programs can be
produced gquite easily, '.... the more useful
lessons require a degree of expertise not commonly

found even in many professional programmers'.

The use of dedicated hardware - both terminal and
mainframe - is also a major drawback, resulting in
the PLATO system being inordinately expensive if
using equipment installed on user premises. This

is only justifiable given a very high level of CBL
usage. It 1s felt therefore that the main success
area for CDC PLATO will be the Learning Centre
concept (i.e. off-the-shelf non-specific courses,
professionally authored and marketed to industry)
rather than locally installed, user-driven Computer-

Based Learning.

- 34 -

IIS - An Overview

The IBM Corporation software product IIS (Interactive
Instructional System) represents20 years of CBL system
development, during which time three distinct phases

have evolved:-

(1) 1960 - present COURSEWRITER author language
(1i1) 1971 - 1977 ITS (Interactive Training System)
(1iii) 1977 - present IIS.

The largest user of IIS (or its predecessors) is the IBM
Corporation itself - it is claimed for instance that the
world's largest CBT system is IBM's internal Field
Instructional System (FIS). This is based on a combination
of the above products and is used to train technical,
engineering, marketing and management staff via several
thousand terminals throughout the Western hemisphere

(Baker, 19).

The COURSEWRITER language, developed at IBM software
laboratories in New York during 1959-60 represented the
first purpose-built CBL Author Language. Considerably
enhanced over the years, COURSEWRITER is still available

to authors as part of IIS, and also forms the 'low level!
base of the complete system (IBM, 23). Language statements

are separated into three groups:-—

(1) PROBLEM - deliver a guesticn or frame to
the student, await and read in the

response;

(1i1i)

Statements are coded sequentially and a CAI 'program’

MAJOR - classify the response (e.g.
correct, anticipated but incorrect,
unanticipated) ;

MINOR - processing to be carried out as

a result of response classification;

results, as the following example illustrates:

1 qu When added together, what numbers = 47?
2 ca 2 and 2
3 ty Very gooa.
4 cb 1 and 3
5 co 3 and 1
6 ty That 1is correct.
7 wa O and 4
8 w 4 and 0
9 ty Do not use the digit 0. Try again.
10 wb 4 and 4
11 ty This results in 8. We want 4.
12 un I do not understand. Try a different answer.
13 un I do not understand. Try again.
14 qu What is the result of 4 times 4?
The operation codes used in the above example only
represent a small part of the available repertoire,
see below:
Problem Meaning Minor Meaning
qu Question ep Enter and proceed
rd. Read Continue (2 spaces
" pr Problem ty Type
st Set format: ad Add
sb Subtract
Major Meaning mp Multiply
' dv Divide
ca Correct answer 14 Load
cb Alternate correct answer ed Edit
wa Wrong answer br Branch .
wb Alternate wrong answer fn Function
un Unanticipated answer pa Pause
aa Anticipated answer de Display erase
ab Alternate anticipated pt pPut field
answer pPC Put continue
nx No match pe Put end
ea End of answer
gt Get field

- 36 -

The basic philosophy of COURSEWRITER revolves around
implicit conditional branch operations (e.g. ca, wa,

ab, etc.), making it easier for the author to define
courseware logic, but it still retains the major
disadvantages of all Author Languages - i.e. programming

skill requirements, language syntax, debugging problems.

As an attempt to produce a 'higher-level' authoring

facility, IBM evolved the ITS vackage.

ITS (Interactive Training System) was an attempt to
package COURSEWRITER into a more complete CAI system.

These enhancements produced the following range of

facilities:
(1) the COURSEWRITER Language:
(i1) FUNCTIONS:

- the ability to extend basic ITS features

with user-written Assembler coding;

(1ii) VDU FIELD CONTROL:
- full control over the layout and character-
istics of the Visual Display Unit Screen

contents;

(iv) AUTHOR FACILITIES:

- a wide range of services for course creation
and control, text editing and performance
monitoring;

(v) EXTENDED COURSE STRUCTURING FEATURE (XCSF) :

- a mechanism for defining the organisation,
structure and contents of a course without
using an Author Language.

- 37 -

XCSF is possibly the most unusual facet of ITS, whereby

a course is subdivided into sessions, each of which may

comprise:

(1) Pretest - to determine initial level of
knowledge;

(ii) Tutorial - to present required material;

(1ii) Posttest Lo establish level of knowledge

after instruction;

(iv) Review - further testing/instruction if

required;

Short segments of text may also be delivered by way of
session introduction/summary, and it is also possible to
break-down a session level into topics, each with an

individual pretest/tutorial/posttest/review structure.

The delivery of the various components is defined to the
Expanded Course Structuring Feature via a series of

author Macros (possibly coded on ITS Worksheets) each of
which is interpreted into COURSEWRITER statements. One of
the options available to the Author is whether tutorial

presentation is to be delayed or immediate, i.e.

Delayed - all pretest question are presented in
a sequence followed by tutorial components

for all gquestions answered incorrectly.

Immediate - the related tutorial is presented
immediately after an incorrect pretest

question;

The final evolution from ITS into IIS (Interactive
Instructional System) was, of minimal CBL significance
- most of the alterations being to the software
internals (e.g. access methods, compatibility with

host systems etc).

2.4.4 1IIS - An Appraisal

Whilst not in the same leagque as PLATO as regards
presentation techniques, IIS has certain significant
attractions - it can run alongside other applications
in a mainframe, use conventional terminal equipment

and is widely available from, and supported by, IBM.

It is however undeniably complex, and a 2% day Course
and 200-page manual are, in the Author's opinion,
minimum requirements for use. Certainly the likelihood
of a non-programmer getting to grips with ITS Course

generation seems remote.

Obviously the range of Author facilities has been
restricted to facilitate the use of conventional terminal
equipment, but with the ability to use these devices and
run on standard IBM computer$, plus the product’'s low cost,

the potential market-place for IIS is enormous.

The relatively low intrusion into this market-place is

probably a testimony to its complexity.

2.5 CONCLUSIONS

Investigation into available Computer-Based Learning systems was

triggered off within Compower by two related considerations:

- 39 -

(1) successful experience of using similar, albeit

limited, software in-house;

(ii} a need to train a widely-dispersed terminal user

population;

It was surprising to discover the lack of impact that CBL
had achieved, particularly within commerce/industry, and a

variety of reasons for this became apparent:

- Expense. The most common complaint and it appears
to be largely vindicated. Certainly the favourable
forecasts of Bitzer & Skapperdas (10) have not proved

realistic;

- Special purpose hardware. This ties in with the
previous category in that only massive and complex
requirements can justify the kind of expenditure
typified by dedicated systems such as PLATO. Most
potential CBL users already have normal computer

hardware that they wish to exploit fully;

- Inefficiency. Those systems which can cohabit with
other applications (e.g. IIS) are generally relatively

inefficient;

- Authoring complexity. Most author languages appear
to have been produced by DP professionals rather than
educationalists. As a consequence a considerable
leaning towards programming becomes evident and attempts

to alleviate this via authoring systems have also largely

failed;

-~ 40 -

- Distrust. Effectively the combined product of the
previous reasons, a significant level of distrust
exists towards CBL software (particularly on
centralised mainframe computers). Contributing
towards this is the common trade-off between
presentation and cost - i.e. those systems with the
greatest presentation impact. (e.g. PLATO) tend to
be expensive, and those systems which are cheap tend

to be mundane.

Based on the above, it was concluded that no available CBL
product suited Compower's overall requirements. It was decided
therefore to design and develop an in-house system with the

following basic philosophy:

(1) the package should be 'lightweight'. (i.e. efficient

software, optimum utilisation of data storage etc) ;

(ii) existing terminal and telecommunications equipment

should be used;

(iii) courseware authoring should be straight-forward, and

no Author language shoudd be involved;

(iv) the entire system should be easy, attractive and

interesting to use;

The remainder of this thesis describes the evolution of the Compower
system SCHOOL: (System Controlling Hierarchical Organisation of

Online Egssons).

- 41 -

chapter three

- SCHOOL DATABASE STRUCTURE
AND [70 HANDLING

INTRODUCTION

Conventional education svllabi follow very similar outlines - they
have a start point, a connecting structure (topics, sub-topics
and items of information put together in a progressive sequence)
and a desired end point. Occasionally, other approaches occur -
less formalised, Socratic' forms, whereby only the limits of the
subject are defined, the means of achieving these limits being

completely fluid.

Research CAI systems now exist which belong to either camp - those
which provide structured education and those which demonstrate
intelligence and a 'Socratic' capability. Of these two options,
the very nature of the subjectgthat SCHOOL was designed for
dictated that it should provide education of the structured and
controlled form , and it became one of the most fundamental con-
siderations in the development of SCHOOL to tailor Course data

storage to assist towards this end.

CONCEPTS OF DATABASE STRUCTURE

As with all Data Base Management Systems (DBMS), the SCHOOL data-
base appears to be different things from different viewpoints:
- to the user (either Author or student) it appears to be a

hierarchy of subjects, lessons, frames, etc.

- to the database handling software it appears to be a fluid

collection of data blocks linked together via complex system

of pointers.

The terminoclogy that has been adopted to describe these apparent
structures is similar to that employed by IBM in describing

Information Management System (IMS) databases, i.e.

- 42 -

LOGICAL Database -

PHYSICAL Database -

user or application

the internal data structure (blocks,

software.

Fig. 3.1 illustrates this dual structure:

the data structure as it appears to the

pointers etc.) as it appears to the I/0

USER

/0
SOFTWARE

FIG. 3.1 - LOGICAL & PHYSICAL DATABASES

LOGICAL D/B

PHYSICAL D/B

- 43 -

LOGICAL DATABASE STRUCTURE - General Notes

The SCHOOL Database appears to the user as a hierarchy of
Subjects, Lessons, Frames, etc. There are 4 levels to this

hierarchy, termed Logical Segments:

Fig. 3.2
CONTROL
(root)
* N.B, '"#!' signifies
SUBJECTS 'one or more!
*
LESSONS
*
FRAMES

Each logical segment expands laterally into a series

of Components, or Logical Records.

- 44 -

For instance, the Control Segment expands into:-

Fig. 3.3

MASTER
CONTROL
RECORD

BIT S S cLoBAL
MAP SUBJECT MESSAGE
TABLE //// 77 / /// RECORDS

Within this structure all the boxes represent Logical
Records, with the exception of the shaded 'Subject' box,
which signifies an entire Logical Segment, the next level

down the hierarchy.

Relationships between logical records within segments

are defined using the terms PARENT, CHILD, SIBLING and

TWIN:
CHILD - a dependant of a logical segment or
record higher up the hierarchy,
e.g. 1in the above, the Bit Map Table
is a logical child of the Master
Control Record.
PARENT - the logical segment or record to which

a logical child is dependent,
e.g. 1in the above, the Master Control
record is the logical parent of all

Global Message Records.

- 45 -

SIBLING - logical records which have the same
logical parent, although they themselves
are not of the same type,

@.g. in the above, the Bit Map Table
and any Global Message Record are

logical siblings of one another.

TWIN - logical records of the same type which
have a common logical parent,

e.g. 1in the above, all Global Message

Records are logical twins of one

another.

3.4 SCHOOL DATABASE LOGICAL SEGMENTS

3.4.1 Control Segment

The basic function of this is to define current

database status, including:

- system version number

- passwords

- system messages

- subjects.on system

- error hamdling information

- database free space handling

- 46 -

Components within the Control Segment are

organised as in Fig. 3.4:

MASTER
CONTROL

RECORD | (MCR) Fig. 3.4

BIT /////;C;jf; GLoBAL

MAP subjects MESSAGE

TABLE (BMT /ff/i/}é/i/ RECORDS | (GMR)

~—

Note: The exact logical record formats may be

found by reference to Appendix 3.1 -
this applies to all components discussed

within this chapter.

Each of the logical records within the Control
Segment contributes some part of the overall

control function:

(1) Master Control Record (MCR) :
The initial database 'root', this
defines:
- current system software version number
- system passwords (held on the Database
to facilitate frequent alterations
without the need for any program

recompilation) ;

- 47 -

- numbercﬁfsubjectscxisystem, and pointers
to the Subject Control Records that
head each Subject segment: ;

~ error handling information. Whenever
a non-recoverable error is encountered,
SCHOOL intercepts the normal abend
procedure and builds an Error Data
Block, the contents of which are
written to the Database MCR. Details
include abend code, location of abend
(instruction and module). This enables
the System Supervisor to re-trace the
events which caused the problem and
subsequently debug the system;

- Global Time Switch. This is used to
suspend system operations (for priority
maintenance or recovery work) until a
particular date and time, to either
students or authors or both. After the
defined point in time the system is
automatically reactivated;

(11) Bit Map Table (BMT) :

- defines space utilisation within the
SCHOOL database. Full details of how
this is used will be discussed in

Section 3.5;

- 48 -

(iii)

Global Message Records (GMR) :

- & series of up to 10 messages (each

up to 16 screen lines), which are

displayed in sequence to all users as

they sign-on to the system.

Each

message has an expiry date attached

to it, after which it is no longer

active.

Subject segment

The basic function of this is to define the

status of an individual subject, including:

subject identification

no. lessons within subject

pointers to individual lesson segments

subject messages

student identification and performance details

Components within a Subject Segment are organised

as in Fig. 3.5:

SUBJECT
CONTROL
RECORD (SCR)
- ey
SUBJECT lesson STUDENT
MESSAGE segments REFERENCE
RECORDS | (SMR) [/ 1/’ // TABLE
STUDENT
PERFORMANCE
RECCORDS |

{SRT

—

(SPR)

- 49 -

The functional responsibility of each of the
logical records within the Subject segment is
as detailed below:
(1) Subject Control Record (SCR):
Defines - subject name and reference no. ;
~ <creation date;
- subject manager name and location;
- number and location of the
various lesson segments;
- location and expiry date of
the various Subject Message
records;
- location of the Student Reference
Table;
-~ a block of introductory text to
be delivered whenever a subject

session is started.

(1i) Subject Message Records (SMR) :

- a series of up to 10 messages (each up
to 16 screen lines) delivered as appropriate
to students as they start each subject
session. Each student has recorded, as part
of his performance statistics, a message
status identifying which subject message he
has already received and which is next.

- each message has an expiry date attached

after which the message becomes defunct.

- 50 -

(11i) Student Reference Table (SRT) :
- a list of all students signed-on to
this particular subject. Information
recorded for each comprises:
- name
- location
~ 1identification no. (unique within
entire SCHOOL system)
- a link to the corresponding
student performance record;
- a maximum of 100 students may be
registered on any one subject at any one
time;
- note that no performance data is held
within the SRT, this being the function
of each student's SPR. The main advantage
of using this 2-level technique arises
whenever a student signs-on. The identification
details that he submits must be compared to
those entries already stored. If this
information was only held within individual
performance records, a lengthy sequence of
read operations would be necessary to find
either:
(a) the required record

or (b) the fact that it does not exist.

Retaining all student identifications within
one table, means only 2 read operations are

required - one to access the Studert Reference

- 51 -

3.4.3

Table and one to read the corresponding

Student Performance Record.

(iv) Student Performance Record (SPR) :

— a definition of the performance of a

particular student within this subject.

Each student has a unique SPR allocated

to him,

Lesson segment

and the information stored includes:
subject message status;

dates (original sign-on to subject
and latest session) ;

total session time;

last session status (i.e. stage
reached and type of termination -
system abend, normal lesson end
etc.) ;

individual lesson statistics,
including mark achieved, scoring

mode (hard/easy), lesson duration.

Subordinate to a particular subject segment, one

Lesson Segment is used to define the characteristics

and structure of each lesson within that subject,

including:

- lesson title, author, etc.

- lesson analysis data;

- a glossary of terms peculiar to the lesson;

i
- a definition of required syntax processing

to be applied to incoming replies ;

- pointers to, and a definition of the structure

of all incorporated frame segments.

£y _

Components within a Lesson Segment are organised

as in Fig. 3.6

LESSON
CONTROL | (LCR)
RECORD Fig. 3.5
LESSON SYNTAX l HZ22%. GLOSSARY
ANALYSTS INFORMATION tzame /| | REroRENcE
RECORD BLOCK l segments TABLE
/]
(LAR) (SIB) (GRT)
«
GLOSSARY
DEFINTTI ON

RECORD f’”oq)
L eI

The purpose of each logical record is as follows:

(1)

Lesson Control Record (LCR):

basically the lesson 'root', the ILCR

controls and defines the lesson

structure.

Information held includes:

- lesson title and author;

- a security password restricting

author access to the lesson contents;

- the location of Lesson Analysis,

Syntax and Glossary reference

information records;

= current scoring mode and passmark
options;

- hardcopy status;

- the number of frames within this lesson
and pointers to all frame segment
logical records;

- 1introductory text (max. 5 lines) to
be displayed to students whenever

this lesson is activated.

(i1) Lesson Analysis Record (LAR) :

- a facility has been built into SCHOOL
whereby Lessons can be made to monitor
their own performance, in terms of:

- how often used and under what
conditions it was terminated;

- the average session duration;

- the difficulty of each question,
i.e. how often attempted, how often
correct, how often hints or the

answer has been requested.

(iii) Syntax Information Block (SIB):

- 1f present, a Syntax Information Block
defines the lexical and syntactic
preprocessing to be carried out on all
incoming student's answer strings;

- the definitions included within the SIB

encompass: -

- 54 -

- significance of space characters
=~ significance of punctuation
-~ redundant characters
- character substitutions
- words to be ignored
(stop words)
—- answer keywords
- max. no. words allowable in answer
and, if required, the max. length

of each.

(iv) Glossary Reference Table (GRT):

- each lesson within the SCHOOI database
can have appended to it a Glossary
facility, used to explain or monitor
words/phrases that the students do not
understand. The function of the GRT
is to define:

- words/phrases requested
or explained;

- whether an explanation exists
(if so, a pointer to the explanatory
Glossary Definition Record is
included);

- how often this word or phrase has

been requested.

(v) Glossary Definition Record (GDR) :
- one GDR is created for every Glossary
explanation associated with a particular

Lesson, and this is linked back to the

corresponding GRT entry.

- 55 -

Frame segment

The lowest level within the SCHOOL database are

Frame Segments, these being definitions of:

- the question or frame text to be displayed
to the student;

- hints that may be of assistance in arriving
at an answer;

- correct and anticipated incorrect replies;

- comments to be delivered on receiving a

particular reply.

Components within a Frame Segment are organised

as in Fig. 3.7.

Fig. 3.7
PRIMARY HINT PRIMARY COMMENT
QUESTION INFORMATION ANSWER INFORMATION
RECORD ECORD RECORD RECORD
(PQR) (HIR) (PAR) (CIR)

- 56 -

The purpose of each logical record is as
follows:
(1) Primary Question Record (PQR) :

- defines the Student-display including:

- frame display (maximum of 16 screen
lines). The format of this is
exactly as originally defined by
the Author;

— associated marks and penalties for
requesting hints;

- next step(s) in the tutorial sequence
(i.e. which frame to advance to if
this one is answered correctly/

incorrectly) .

(i1) Hint Information Record (HIR):

- a Hint facility has been incorporated
whereby it is possible for a student to
request addition supportive information.
The HIR defines these hints - up to a
maximum of 3 Hints, each up to 4 lines

in length.

(1ii) Primary Answer Record (PAR) :
- the Author may define 2 types of answer:
(a) those considered correct;
(b) those which the student is likely
to enter but which are incorrect,

i.e. anticipated errors.

- 57 -

The PAR stores these definitions (up to

8 correct answers, up to 4 incorrect) plus

associated control information, i.e.:

- maximum number of attempts allowed at
this question;

- trivial answer string pre-processing
(before final analysis) ;

- the type of replies that are to be
returned to the student after answer
analysis.

N.B. (a) It is perfectly feasible for
the Author to specify that
frame display is informative
only - i.e. no student replies
are expected or necessary.

In this instance no PAR would

be created.

(b) Processing of incoming replies
against defined answers can be
extremely complex - full details
of answer processing may be found

in Chapter 9.

(iv) Comment Information Record (CIR):
- defines to the system the exact replies
the Author requires to be generated on
matching an answer string with a PAR
entry. A maximum of 7 2-line comments
may be created, each being cross-referenced

to one PAR entry.

- 58 -

4.

N.B. This logical record is optional,
and if not defined simple 'Correct/

Incorrect' messages will be generated.

Overall Structure

To summarise the overall logical structure of the

SCHOOL database, refer to Fig. 3.8 overleaf:

- 59 -

auooay ayoday aquooay
NOTILYWIOJINY NOT.LYWMOJNT NOILLINIJIHA
. INIWWOD INTH
* * I g AUVSSOTO
pfeloyits adooad lebifelelati 149yl et feloictl!
NOLLVWHOANI YAMSNY NOILSAND AONIYTIAT SISATYNY
XVENAS § RIVHINd % AYUWING AYYSSOTO NOS ST
ayooy
ADNVRAOAUITF
) LNFIANTS
*
A7EVL Rt {elelots aygooay
FONTHA JFY TOYLNOD AOVSSAW
INAANLS g NOSSTT g Lodarans
A'19VL ad00ay ayooId
avw 11d TOYLNOD A9VSSINW
10ar4ns "TYEOTO
* *k
o e DT Quo03y
8¢ rd TTOYLNOD
VALSVW a2Inj3oniIls eijed oT3RWIYDS -

,J0 fuewm, sayyrudrse sk

‘4N

3Svdvivd 100HIS

60

PHYSICAL DATABASE STRUCTURE - General Notes

It is now necessary to define the internal organisation
of the database as it appears to the associated Input/

Output software - i.e. the Physical Database.

The first, and most important aspect governing the
physical organisation of any database is what
techniques are available for the Input and Output of the

information in that database - i.e. the Access Method.

The optimum solution is:
(1) devise a completely new Access Method, tailor-

made to the database protocol;

(i1) develop all required software, and incorporate

this as necessary into the host operating system;

(1ii) introduce a new series of application/supervisor
interfaces to activate this Access Method on

demand.

This is the approach normally adopted by machine manufacturers,
or specialist software houses, and it works very well -

a typical example is IBM's Information Management System

(IMS) which has a range of available access methods, from

which can be chosen one to best suit the required application.

A variety of factars preclude this approach for SCHOOL:
- 1t would not be possible to alter the host operating
system(s) to suit (this would be immensely complex and
would have to be repeated for each new release of the

operating system) ;

- 61 -

- SCHOOL is intended to run under a wide range of IBM

host systens;

- often there are hardware limitations to purpose-built
access methods (e.g. certain machine instructions may
not be available, similar machines may not support the
particular disk-device required, etc.)

It was necessary therefore to use standard access methods,

and refine their use to suit the SCHOOL Database.

3.5.1 Choice of Access Method

The main considerations influencing choice of
physical database access method are as follows:-

(a) record sizes will vary considerably;

(b) the database will be volatile, any may become

fragmented - this must not affect performance;

(c) available database space will be limited, and

efficient storage control will be imperative;
(d) data access must be very fast;

(e) whilst initial space will be limited, the
technique chosen must be flexible enough to

cater for a possible database expansion.

-

Several approaches were evaluated, taking into con-
sideration read/write techniqgues (sequential,
indexed, direct, relative), and record organisation,
i.e.

- Fixed length physical records:;

- vVariable length physical records;

- Spanned physical records;

- 62 -

3.5.1.1 Fixed Length Records

3.5.1.2

- actual (physical) record size being dictated

by the largest logical record. This has

several advantages:-

(1) Flexibility - processing can be via
sequential, relative, indexed or direct
access;

(ii) Speed =~ 'direct' access can be achieved
(without the use of algorithms) using
relative record numbers - this being
faster than indexed or direct access;

(iii)Simplicity - relative record I/0 is

extremely easy and Database fragmentation
could be easily controlled via a 'pool'

of available record numbers.

The major disadvantage of this approach is of

course the large waste of storage, especially

if there is a considerable discrepancy between

largest and smallest physical records, and if

the largest occurs relatively infrequently.

Variable Length Records:

- the actual size of the physical record is set

to that of the logical record (plus the

mandatory record size information). This method

has one enormous advantage - space wastage is

minimised. There are however some important

disadvantages:

(1) 'random' access can only be achieved by

direct or indexed access methods (these

being significantly slower than the

- 63 -

relative approach).

Under some host

Systems simulation overheads may be

involved;
(ii) free space management can be ver complex.
g P
A typical approach is to use several
levels of free space table, each one
responsible for records within a particular
size range. See Fig. 3.9 below:
FILE AREA A
[———— _._._._.__...._7
| 1
] ///' RECORD I FREE SPACE TABLE A
| ¢ SIZE 1 |
I . | START SIZE
| /// //// SIZE 2. i
| Z !
| |
' I
' SIZE 3. |
| i !
Fig. 3.9 Multi-level file areas
SPACE
SPACE REQUEST
CONTROLLER
FILE AREA B
—— e —

RECORD
SIZE 4

7{ SIZE 5

FREE SPACE TABLE 3

SIZE

START
K\—h

e

- 64 -

3.5.1.3 Spanned Records:

- the logical record occupies more than 1

fixed size physical record, or 'transfer

block'. i.e.

Block 1

Fig. 3.10

Block 2

"1l logical record

There are two important disadvantages with this

approach:

(1)

Space wastage - there will normally be

some unused space in the last block of
the spanned record (i.e. the unshaded
portion in Fig 3.10).

Multiple I/0 - it may be necessary to

read several blocks before an entire

logical record has been accessed.

Alternatively, the spanned record technique has

several attributes to recommend it:-

(1)

Flexibility - records may be read
sequentially, or randomly (via relative
record no. as individual blocks are of
fixed size). It will be necessary to know

which block represents the start of a record.

- 65 -

(ii) Speed - relative record access is
generally fast. However this must be
offset against the possible need for
multiple I/O.
(1ii)Simplicity - control of I/0 and data-
base free space is straightforward via
the use of relative record (or block) numbers

and tables of available units.

3.5.1.4 SCHOOL Database Access Method

None of.the above, 'ready-made' access methods
is immediately indentifiable as being the most
suitable solution, even though they all have
something to recommend them. However if it
were possible to combine the various goed points
of each a very acceptable solution could be
achieved. This is in fact the approach adopted.
The start point is the Spanned Record approach -
this has advantages of flexibility, speed and
ease of free space control. Furthermore, if
blocks are chained via a pointer system,

logical records need not span physically
adjacent blocks. By using relatively small

I/0 block sizes it is also possible to reduce
space wastage - although this can result in

an increase in I/O operations necessary to

read any particular logical record. The
outstanding problem therefore is that of
multiple I/0, and as SCHOOL is to run (initially
at least) on IBM machines there is a method of

getting round this.

- 66 -

Within IBM Operating Systems (e.g. MVS, CMS)
all Input/Output is controlled by a linked
sequence of Control Blocks. One of these
(the Data Control Block (DCB) in MVS or the
File System Control Block (FSCB) in CMS) has
the specific purpose of defining the character-
istics of the file being processed - e.g.
logical record length, block size, filename
etc. Furthermore, some of these blocks are
normally defined within the program area and
as such are capable of dynamic alteration.

Fig 3.11 overleaf illustrates the approach) .

- 67 -

APPLICATION
PROGRAM

Alter file
characteristics

Read/Write
operation

DYNAMIC
ALTERATION
ROUTINE

(Assembler)

Fig.

3.1 Dynamic alteration
of control block
information.

CONTROL

BLOCKS
r—————— ——— 1
| [
| !
| |
| |
! !
| I
I |
| |
| |
l l
| |
g |
|
i |
| \l |
| (DCB) :
L(FSCB)_ e _]

68 -

It is possible therefore (via Assembler Coding)
to alter the number of bytes actually trans-
ferred in any one Read or Write process -
although obviously the organisation of the

file must be such that contiguous storage can

represent logically contiguous data.

The physical database access method chosen can
be summarised as follows:-
- database storage is divided into relatively

small fixed-length blocks;

- logical records span these blocks (as many
as necessary) and whenever possible, a
multi-block logical record is written to
the database with the maximum possible
number of blocks physically adjacent; data
base I/0O Control Blocks are then dynamically
altered to process this amount of storage

in one operation;

- relative block pointers are used so that
although desirable, it is not imperative
for one logical record to span physically

contiguous blocks;

- free space is controlled at the block
level, i.e. each block has a flag associated

with it to identify whether it is in use

or not.

- 69 -

3.6 IMPLEMENTATION

3.6.1. Database Transfer Units (DBTU's):

(a)

DBTU's are the blocks from which spanned logical

records within the SCHOOL D/B are built up.

in the initial version of SCHOOL, the size chosen
for DBTU's is 200 bytes. There are a variety of
reasons for this:
CMS (under which the development version of
SCHOOL runs) imposes a protocol of 800-byte
blocks on all files used under its control -
hence any dataset with a record/block size
which is a factor or multiple of 800 is very

efficient.

Whilst SCHOOL D/B logical records will vary in
size, 200 bytes represents a reasonable comp-
romise between wasted space and multiple I/O
operations - especially important in the light

of sub-section 3.6.3 below.

I/0 software associated with DBTU processing has
been designed in such a way that DBTU size can
be very easily altered - typically if 200 bytes
under CMS should prove inefficient, or when

running under other operating systems.

- 70 -

3

.6.

2

DBTU allocation and control:

this is controlled entirely via the Bit Map Table
(BMT) . Each DBTU within the database has an
associated bit in the BMT, the settings being: -

0 - corresponding DBTU free

1 - corresponding DBTU in use

—- the Bit Map Table resides within the SCHOOL
Database, in a fixed position i&ﬁediately after
the Master Control Record. As DBTU's are
allocated to logical records, the corresponding
bit(s) are set within the BMT, and as DBTU's

become free, the BMT bits are Zeroised.

- the initial size of the BMT is 4000 bytes (again
easily altered). This is structured as a sequence
of DBTU's in the normal way (although in this
instance occupying contiguous storage in a fixed

physical position.)

N.B. The size of the Bit Map Table defines the

maximum size of the SCHOOL Database.

The initial allocation of 4000 bytes gives:
4000 x 8 = 32000 allocation bits

32000 DBTU's

6400000 bytes

=
D
A~~~

6 Mb approximately

- 71 -

3.6.3 Adjacency

- a technique was discussed in sub-section 3.5.1.4
whereby dynamic alteration of dataset control
blocks can be used to alter the 'apparent'
characteristics of a file. Using this approach
it is possible to transfer any number of
physically adjacent DBTU's to or from disk in
one operation, and so when Ccreating logical
records, the SCHOOL D/B Management software
attempts to put as many related DBTU's as
possible in contiguous positions.

For example:
A Lesson Control Record (LCR) is to be written
to the databa$e in a form which will require
5 DBTU's. The logic involved is as follows:-

N = required no. DBTU's (i.e. 5 for this LCR)

M =N
R =0
(found)
Search BMT for
N adjacent zeros
(not found)
Write corresponding
A 4 N DBTU's from next
PN : 1 = part of logical record
#
*Exrroxr:
D/B full
N=N-1 , v =
R=R+1 R =0
M=N
#
Finished
N = Min (R,M)
R = Max (0.(R-N))
- J

The sequence of contiguous DBTU allocations that

will be attempted is:

5

4 1

3 2

31 1

2 2 1

2 1 1 1

Non-adjacent DBTU's are chained, as the next

sub-section describes.

3.6.4 Pointers and Identification codes

- each DBTU within the database (except the Master
Control Record and the Bit Map Table) has as its
first 10 bytes a fixed control area, the purpose
of which is threefold:

(1) to identify the logical record type;

(ii) to chain this DBTU forwards and backwards
to other DBTU's (if any) within the logical
record;

(iii) to chain the logical record 'upwards' to

its logical parent.

The structure of this control area is as per Fig 3.12.

Fig 3.12 DBTU Control Area

logical parent
backward pointer

DBTU pointer‘“‘\\\\\\\
0 1 4 7

7
7

1 H I L

\
\‘ forward DBTU

pointer

i

_.73...

(a) Id. code - a1 byte hexadecimal code ident-~
ifying the logical record type.
Refer to Appendix 3.3 for all

allocated values;

(b) Forward - Dpoints to next DBTU in logical
DBTU
pointer record chain. This value may be
one of:

(1) a valid non-zero DBTU Number

(i1) binary zeros - i.e. next DBRTU
in chain is that physically
following this one;

(iii)binary ones - i.e. end of

logical record chain.

(c) Backward =~ points to previous DBTU in logical
DBTU
pointer record chain. This value may be
one of:-

(i) a valid non-zero DBTU No.

(ii) binary zeros - i.e. previous
DBTU in chain is that physically
immediately prior to this one;

(iii) binary ones - i.e. start of

logical record chain.

(d) Logical - points to the first DBTU in the chain
Parent
pointer of the logical record that constitutes

the parent of the current one.

N.B. To illustrate permutations of pointer values,

refer to Fig 3.13 overleaf.

- 74 -

Fig. 3.13 DBTU chaining example

126
a logical
parent
287 chained logical record

1111 /

3 476 1111 126

0000 %
126 5o ///1 3| 823 | 0000 | 126

823
" 7
3 | 1111 477 126 ////

end

byte:

Each pointer hag also a definite structure within

its allocated 3 bytes. This is:

XXX

adjacent physical DBTU No.
block length - 1

Fig. 3.14 Pointer structure

N.B. Adjacent Block Length (bits 0-2, byte 0).

- identified how many related DBTU's are
physically adjacent. This value is used to
alter the appropriate File control blocks in
I/0 operations (the value is held as 1
less than actu?l, i.e.

000 - 1 DBTU
101 - 6 DBTU's

giving a maximum single transfer of 8 DBTU's)

The remaining pointer structure of 21 bits determines

the physical size limit of the SCHOOL Database. This

is:

- 76 -

21
2°°- 1 DBTU's

- i.e. 2,097,151 DBTU's
= 419,430,200 bytes
(400 megabytes) .

(Should there ever be a requirement to exceed this

parallel SCHOOL databases can be easily configured).

3.6.5 Physical/Logical Transformations:

- under normal circumstances, whenever information
is transferred to or from the SCHCOOL database, a
transformation between logical and physical
formats is involved. The exact nature of this
transformation depends on the characteristics of
the data and the direction of transfer:

(a) Writing a new logical record:
1. logical record is built up in a buffer;
2. DBTU requirement is assessed via

(logical record size)
No. DBTU's = CEILING (190)

3. A request is issued to the database free
space manager for the identified no. DBTU's;

4. using the Bit Map Table, and the optimis-
ation algorithm described earlier, a table
of allocated DBTU no(s), 1is returned; -

S. logical record is then written to the

database using the allocated DBTU(s), plus

forward and backward chaining as required.

Fig. 3.15 1illustrates the processing sequence

described above.

- 77 -

Fig. 3.15 Ariting logical records to the SCHOOL Database

@ 3uild up logical record

) et
- ,,

5 E
.

space P
request = T
T -
=
IR i T]
Y | 4' i1

MANAGER

allocated
2BTU's

WS

@ Write WRITER
appropriate
DBTU's

SCHOOL D/3

MAN
N

- 78 -

(b) Reading existing logical records:

L. start DBTU pointer is extracted (usually
from the logical parent) ;

2. specified DBTU(s) are read into a buffer
- the actual number of transfer operations
may vary depending on DBTU adjacency;

3. as the DBTU chain is read, the control
areas within each DBTU are extracted and
stored in a pointer table for possible
further use. The data part of the DBTU

is then added to the logical record buffer.

Fig. 3.16 illustrates the above sequence:

- 79 -

Reading logical records from the SCHOOL Database

<:> read

request

DA

e

start DBTU
read DBTU's; no.
follow chain

READER

axtract
control aresas

build up
logical record

extracted
DBTU pointer
table

7

logical record

- 80 -~

3.6.6

(c) Rewriting existing logical records:
- if the logical record has not changed

its DBTU requirements, then:

1. the required DBTU locations are
identified from the extracted pointer
table built up at the original read
phase;

2. the logical record is then written
to the identified location(s);

- if the logical record has altered suff-
iciently to require a different number

of DBTU's. then:

1. the procedure for creating a new
logical record (steps a(2) to a(5)
inclusive) is executed;

2. the originally-occupied DBTU's
(defined by the extracted DBTU pointer
table created at the read phase) are
flagged as now being available;

Transparency

- this ability to present requesting SCHOOL software
with logical records, devoid of control information,
has been termed TRANSPARENCY, and it can be actioned
complexity of the physical DBTU

irrespective of the

chain. It is not mandatory however that the physical/

logical transformation be actioned - in some instances

(e.g. MCR and BMT handling) physical DRTU's need to be

processed intact.

- 81 -

3

3

.6.7

.6.8

SCHOOL Database I/0O Macros

It will by now be appreciated that SCHOOL database I/O
processing can be an extremely complex procedure.

Associated program modules (READER and WRITER) have

therefore a variety of modus operandi, and consequently

a range of parameters which may be passed into them.
In order to facilitate the use of these modules, a
simple macro language has been developed, the basic

functions of which are:

SDBREAD - read from the SCHOOL Database

SDBRITE - write a new record to the SCHOOL
Database

SDBBACK - rewrite a record in its original

position in the SCHOOL Database
It would be inappropriate at this point to document
these macros in detail, but the following examples
are representative of how they are used:
(a) SDBREAD LARPOINT, CHAIN=NO, FORMAT=PHYSICAL
(b) SDBRITE FLRADDR, BUFSIZE=FLRLEN, PARENT=SUBDBTU,

RECID=05

(c) SDBACK LARPOINT, BUFFER=(R1), BUFSIZE=RTOTAL

A full definition of SCHOOL Database I/0 Macros may

be found in the SCHOOL rro%ron«. re/GC(eN:e Mmool .

Head of Database Organisation

The philosophy benind the SCHOOL database access
method is based around a multiplicity of small fixed-

length blocks, chained togetner to form logical

records, in effectively random locations. This is

however not true of the 2 logical record types which

form the Head of the Database. These are:-

(1)

(i1)

Master Control Record (MCR) :

always occupies the first 6 physical
DBTU's on the database;
Bit Map Table (BMT) :
- immediately follows the MCR, and currently
Occupies 20 DBTU's;
Having these 2 logical records fixed, both in
size and location has a r;nge of important
advantages:
- the database 'root' can always be located;
- the description of database status is
always available;
- the BMT can be processed very efficiently
(no DBTU - chain following is necessary) ;
- the BMT (and by implication the upper
limit for the database size) can be
easily extended;
- a security mechanism can be easily built
into Write/Rewrite modules to prevent
accidental corruption of the MCR or BMT;

- recovery and reset utility programs become

structurally simple.

- 83 -

chapter four

- TEXT COMPRESSION/EXPANSION TECHNISUES

INTRODUCTION

It may initially seem incongruous to develop sohpisticated

techniques for text data Compression in the present climate of

declining storage costs.

SCHOOL however cohabits a large, complex Multi-Access system

with many other tasks and as such is designed to have the minimum

impactcnfthetotalSystemenvironmentboth in terms of dataset
st?rage and CPU time., To illustrate the advantages of
saving disk space, consider an operational lesson database of
2 megabytes in size - a saving of only 10% represents 200,000
bytes (sufficient space to hold five 500-line COBOL source
programs or allow one extra small user onto the service.)
Another significant advantage is the associated saving in
Database/Machine transfer time. A possible reduction of 10%
here in what is essentially an I/O-bound environment is too

important to be dismissed without further examination.

INTENDED IMPLEMENTATION

The logical relationship between the author, lesson text,

database and student can be seen at Fig. 4.1 overleaf:

|
)
e

|

AUTHOR

ig. 4.1 Taxt Compression/
Ixpansion

CONTENT
(i.e. Text)

TEXT
COMPRESSION

SCHOOL
DATABASE

PROCEDURE

STUDENT

TEXT

ZXPANSION

4.3

To summari .
S€, the Text Compression/Expansion mechanism

should satisfy certain minimum criteria:

(2) Storage requirement reduction of approximately 10%;

(b) Extremely fast expansion of text from compressed state,
(this will always be part of an interactive student
session);

(c) Efficient compression of input text to reduced database
format. Speed of performance here is not as critical -

text creation being done relatively infrequently (it
could in fact be a Batch activity);

INVESTIGATIONS

Several techniques for text compression already exist and
these can be split roughly into two groups:
(1) methods whereby characters are coded in less bits than

the manufacturers character code (e.g. ASCII,EBCDIC);

(2) methods whereby common character sequences are replaced

by a unique abbreviated code;

Various compression algorithms were therefore investigated,
with special consideration of the specific performance

criteria laid down at the end of Section 4.2:

4.3.1 Variable Length Character Code

Wwith this technique the number of bits used to encode text
characters varies, i.e.
Most common symbols - few Dbits

Less frequent symbols - more bits

Using this mechanism it is possible to develop

minimum redundancy codes which have the property of

reguiring (generally) the minimum number of bits.for

encoding any particular message.

- 6 - :

Binary Huffman codes (Huffman, 32) are examples of

1
MRC's and they approach the lower limit &f bits per

symbol at least ags closely as any other code.

Results obtained by Wells (33) illustrate that such a
code Operating on approximately 130 symbols reguires

a2 minimum average ('entropy') of 4.45 to 5.58 bits per
symbol, depending on the data used (compared to the
original 8 bits per symbol). Informally this could

produce a file compression in the region of 30 - 45%.

However, each set of data used had an optimum code
created for it, and a generalised code would give less

favourable results, estimated around 20%.

The decisive disadvantage of this methed is that of
speed. Wells in fact discussed two hardware-driven
methods and states:

"The transformation from a variable-length to a fixed-
length encoding is not straightforward and if
implemented entirely by software may be disastrously

slow".

Within SCHOOL all processes are software-driven, and

as such a variable/fixed transftrmation is likely to

be prohibitively slow.

Furthermore, a 20% compression factor is, as we shall

see, not particularly unusual - of course the definition
!

of a 'symbol' could be extended beyond single characters

to include say, common English words such as THE, OF,
AND, TO etc This would then improve compression but
, .

not, unfortunately speed.

- 87 -

o

Fixed-length Shortened Character Code

The common EBCDIC symbol code uses 8 bits per character,

giving a possible range of 256 entries.

In practice only 99 of these codes represent printable
characters and it is possible to encode these characters
into only 7 bits (max. no. combinations = 128). This
method however has little to recommend it, as it renders
only 12.5% compression and would be clumsy to implement.
If however the code is reduced to 6 bits (64 combin-
ations) a better technique can be devised, omitting
certain obscure special characters and lower-case alpha-

betic.

Also, the use of an "8-bit/6-bit" code shortening brings
about a guaranteed 25% compression, and the mapping

process involved is conceptually quite simple.

Expansion is a direct reversal of compression, and this
is one of the drawbacks of this technique, as it proved
to be significantly slower than the Table-driven methods

that will be examined in following sub-sections.

Dictionary Tree

With this method, a "dictionary" is created from the

text as it is inserted into the Database.

This dictionary takes the form of a tree structure, words
being overlapped according to the letters they contain.

To illustrate the basic principles of this technique,

consider the words:

TAP TEA TERM THAT THE THESE THIN THIS

- 88 -

The ass ;
OClated segment of the Dictionary tree would

appear:

Fig 4.2. Dictionary
Tree Structure

To demonstrate the effectiveness of this method,
consider the 8 words in the earlier example:
No. characters in text = 30

No. characters in trees

(1) representing a ‘branch' end with a special

character: 24
(2) representing a 'branch' end with a special bit
setting in the last character: 16

- 89 -

Percentage compression (using bit-setting as

(terminator) = 46.67%

These figures do not however allow for the coding
flecessary to represent the 'route' through the tree

for a particular word - this will be discussed later.

The main advantage of this technique (which has been
employed in machine translation of natural languages)
is that as the text vocabulary widens, then so does
the scope for text compression, e.qg.

COMPLETE COMPLETED COMPLETENESS COMPLETELY

There are two major disadvantages of the Dictionary Tree
technique. Firstly, to be truly effective it needs

very large volumes of text so that every Dictionary
entry is statistically likely to occur several times.

If a word is only encountered once it will require more
storage than the text original (i.e. Dictionary entry

+ coded representation).

Secondly, the code used to substitute text words and

cross-reference them to the Dictionary will be complex.
A typical format could be:

Fig. 4.3

ROOT Tree Branching information
| | | }] 1

The Root would normally be one character (although IBM
i

STATRS (40)uses 2 for its text Dictionary). Ip

o ent text character would need
addition, each subsequ

5 bits to represent: associated tree branching (5 bits

gives 32 branch options) .

- 90 -

An estimate of the approximate compression available
With this method can be calculated using data derived

From West (34), Dewey, (35) and Thorndike & Lorge (36).

Assuming the following: -

Sample size: 100,000 words
Average length: 5 characters
Average occurence: 10 times

Compression could be calculated as follows:-

Total free text size No. words x average length

li

500,000 (ignoring spaces,
punctuation) .
No. different words = No. words =+ average frequency

10,000

Dictionary size (estimated)

10,000 characters %

(Av. length-1) x 5 bits per

Encoded word length
Character + I character for root.

20 bits + 1 character

il

4 bytes

No. words x encoded word length

Encoded text size

400,000 (ignoring spaces,

punctuation)

Possible compression therefore is:

original text size - (encoded size + dictionary size))

original size

(500,000 - (400,000 + 19,000))

500,000

= 18%

Other dictionary overheads would reduce this further.

- 91 =

4,

3

.4

This r i ;
eduction js no better than other methads investigated.

Compression also could become prohibitively slow as

the Dictionary becomes large, and expansion back into
normal text, although relatively simple, could not
achieve the high speeds obtained by more straightforward

Table-driven methods. It was not therefore adopted.

Common Word Removal

Incoming text is scanned for "common" words, as defined
by a pre-created Common Word Dictionary. Any located
word is then replaced in the text by a unique code,
significantly shorter than itself.

Fig 4.4 illustrates the technique:

Input text

BN/, vz) }7/4////{5

!

Common Word

Dictionary

WORD | CODE

Compressed text

|87 % %! ZE

1 2 3 4

Fig 4.4

- 92 -

Expansion is achieved by scanning compressed text for
embedded word codes; once found, the code is replaced

by the corresponding word, as extracted from the

Common Word Dictionary.

One significant disadvantage of this technique is that
of the Dictionary Table overhead. No matter what
storage reduction is achieved, this will be eroded by
the size of the resident Dictionary. Any implementation
of a Common Word compression method must therefore
compromise between the number of Dictionary entries,

their maximum length and the achievable Text compression.

This method has, however, one important advantage - it
can be made to work extremely quickly (one of the
original design criteria). If the Dictionary Search
algorithm is carefully organised and if the Table entry
number is used to replace the common word, then both

compression and expansion functions will be extremely

fast.

The achievable degree of compression is not easy to
assess theoretically, but would seem (on the basis of

informal examination) to be potentially of the same order

as other techniques discussed

It was decided therefore to test Common Word Replacement
experimentally, carried out in a series of stages:

(i) Dictionary creation:

compressible text within SCHOOL will mostly be
normal English prose, and as such the Dictionary

was created from the commonest words in written

English;
- 93 -

(ii) Evaluation of Table look-up algoriths:

to ensure the fastest possible Table searching during
text Compression. (The same algorithm is also used to
insert common words initially into the Dictionary

Table) .

(iii) Performance testing the finalised method:

to identify the compression performance of this method

against typical text streams.

4.3.4.1 Creation of a "Common Word" Dictionary

Two steps were involved:

(a) Establish a list of the commonest words in the
English Language;

(b) Devise an efficient hashing function and use this

to create a Dictionary Table;

Step (a) - evaluating the commonest words in the

English Language.

The required information was gleaned from three sources:

West (34), Dewey (35), Thorndike & Lorge (36).

Theoretically one source should have been adequate, but
the discrepancies between the three were so large
(petween 10 and 24%) that it was felt that a compound

1ist was necessary to give a true representation.

The compound word list was fixed at approximately 500
entries - it was felt that this would give adequate
coverage of common words for good compression without

prohibitive dictionary overheads.

- 94 -

The compound word list was produced as follows:-

(1)

the most frequent 500 words and their frequency
(in a 100,000 sample) were taken from Dewey as the
"Master" list. This source was chosen in pref-
erence to the others (although oldest) as it
accurately represents all word derivatives instead

of only including the root form.

Similar lists were extracted from:
West - words occuring more than

1000 times in a sample of

5 million (441 entries)
Thorndike & Lorge - most frequent 500 words (no

frequency information defined)

including some Proper nouns:;

later discarded.

(1ii)The above three lists were then merged with certain

special considerations being made:
- frequencies were taken from Dewey where the

same word occurred in more than 1 list;

- words unique to Thorndike & Lorge were added

to the compound list with minimum frequency
(i.e. 20/100000) :

words unique to West were added to the compound
list with their frequency adjusted to the same
scale;

Root/derivative conflicts were identified and

appropriate action taken. Both Thorndike & Lorge

and West list words in "root" form only, e.g. SAY

- 95 -

(SAID/SAYS/SAYING etc. would be omitted), and a

quoted frequency refers to this root and all

derivatives.,

The merged list was examined therefore and any
words taken from either Thorndike & Lorge or West
were studied in relation to any Dewey - included
derivatives. 1If the condition

fr - EE >
- fdi - 20

i

where fr - frequency of root
fd - frequency of a derivative
was found to be true, then the root was retained,

otherwise it was discarded.

Note: On completion of the above a compound word

list of some 679 entries was produced. This
list may be found at Appendix 4.1,
All words outside the required experimental limits
were then deleted;
- maximum lengths 5 and 6 characters;
- minimum length 2;

Two lists resulted (see Appendix 4.2):

2 - 5 characters - 472 entries
2 - 6 characters - 572 entries
Step (b) - creating the Dictionary Table.

The Dictionary Table was created by running both < 5

and < 6 character compound word lists against a special

Hashing program which created a Dictionary Table,

- 96 -

4.3.4.2

moni -
nitored the efficiency of the access algorithm, and

printed out details of the generated Table.

Under normal circumstances the most important consider-

ation of Table access algorithmes is speed of identif-

ication of the relevant table entry, normally

represented by the average search length (Hopgood, 37) .

This was used as the major performance benchmark.

Examination of Zashing Algorithms

The usual Table access methods as summarised in
Hopgood (37) were examined, and those which involve
chain pointers to resolve synonyms were discarded

because of associated pointer storage overheads:

The most favourable method to eliminate chaining. is that

known as the open hash or linear search method. Synonyms

are resolved by examining successive entries after the
calculated one until an empty slot (for insertion) or a
match (for retrieval) is found. Chaining is therefore

implicit and requires no storage overhead.

This can however produce a "clustering effect" whereby
two sequences starting at positions k; and k, can come
together(at ki1 or k2, whichever is the later) and

subsequently remain together resulting in excessive

search lengths.

- 97 -

This method may be represented algorithmically as:

? TABLE (k) : X or empty

+ 1 EXIT

where I(X) is a mapping function applied to word X.

Hopgood and Davenport (38) have shown that this clustering
effect may be eliminated by replacing k = k + 1 with

k =k + ai + bi?
for the ith position in the sequence, with a and b arbitrary

constants.

This technigue is termed the Quadratic Hash method and it can
be implemented very efficiently using a table size M (where
M is a power of 2), R (an arbitrary constant), and altering

the algorithms to:-

k = I (X)
j = R
?TABLE (k) : X or empty ‘
EXIT
k = k + 3
(modulo M)
v
j =] + 1

This was the HaShingalgOritmnadopted for the creation of

the Common Word Dictionary, and subsequently employed

in Text compression testing.

Evaluation of a suitable Mapping Function

Mapping function I(X) was also carefully chosen to give a
wide spectrum of values within the range O to M-1, based on
the following steps:-

(1) Place text word in an 8-byte field, right aligned and

padded to the left with leading zeros, e.g.

WOULD 00|00 OO‘W lO UlL|D

(11) Treat the resultant EBCDIC code as a binary value,

e.g. (in hexadecimal) :

WOULD OO!OO\OO\E6\D6\E4‘D3 c4

and then divide by M-1 (i.e. 511 or 1023 depending on
current table size). The remainder then gives k, the

initial table position. e.g.

WOULD - 208(511) / 515 (1023)

N.B.

The divisor is chosen as M-1 (where M 1is the table size

and a power of 2) to eliminate dependence on the trailing
characters of individual words - for example, if M = 1024
and was taken as the divisor, this is equivalent to
masking off the last 10 bits of the EBCDIC pattern and

would generate an unacceptably high synonym level.

This mapping function was therefore incorporated into the

Hashing algorithm described earlier and the complete

entity was coded into two Common Word Dictionary Creation/

evaluation programs, (CATCOMP1/2) .

- 99 -

Full details of these may be found at Appendix 4.3.

Experimentation and Results:

Programs CATCOMP1/2 were run several times varying:

(1) input data - i.e. <5 or <6 - character word lists

(ii) sorted order of the input data - i.e. ascending/

descending order of frequency.
(1ii) R, the quadratic constant
(iv) M, the table size.

The best results obtained are tabulated in Fig. 4.5;
comparative results obtained by other sources may be found
in Fig. 4.6. A complete breakdown of results may be found

at Appendix 4.3.

Fig. 4.5: CATCOMP1/2 best results.

Qg;;. FREQUENCY TABLE SIZE/ R N A
LENGTH ORDER FULLNESS
5 Ascending 512/0.9219 15 1349 2.8580
1024/0.4609 9or 11 674 1.4279
Descending | 512/0.9219 16 1330 2.8177
1024/0.4609 7 677 1.4343
6 Ascending 1024/0.5586 9 887 1.5506
Descending | 1024/0.5586 3 893 1.5611
where R - search constant
N - total no. insertion attempts
A - average search length
and 472 words <5 characters in length

572 words <6 characters in length

- 100 -

Fig. 4.6 .
—+3-2:® Comparative results for average search

length, as obtained from other sources.

Fullness

Source

1.Schay & Spruth(1962){l 1.500 | 1.750 5.500

- linear search;

predicted values

2.Peterson (1957) 1.541 1.823 5.526

- linear search;

random data

3 .Hopgood & Davenport
(1972)

linear search; 1.492 1.733 5.579

random data

- linear search: 2.748 3.762 16.674
non-random data

- modified linear
search; 2.689 3.199 8.927

non-random data

- quadratic search; 1.441 1.605 2.818

random data

- quadratic search; 2.234 2.648 4,542

non-random data

- 101 -

Conclusions:
(1) The results by other researchers confirm the

superiority of the quadratic search method over normal

and modified linear techniques;

(11) The best figures obtained by the Common Word
Dictionary creation programs compare very favourably
with the best obtained by others, for example:

CWD creation:

Table 0.9219 full/descending f - 2.8177
Hopgood & Davenport:

Table 0.9 full/random data - 2.818

/non-random data - 4.542

The fact that the common word data is not completely
random indicates the relative efficiency of this
implementation of the Quadratic Search technique, b

especially the adopted mapping function.

(1iii) Table storage overheads Using a table size
(M)of 1024 may not be acceptable (although searching
is very fast):
For words <5 characters:
- 472 entries used out of 1024

- wastage: 0552 x 5 = 2750 bytes

For words {6 characters:

- 572 entries used out of 1024

- wastage: 452 x 6 = 2712 bytes

For a Common Word Dictionary with words <6 characters

long, a modification was developed as detailed in

the following Extension sub-section.

- 102 -

It is important to take into consideration the
relative frequencies of common words when deciding

which method of Dictionary creation to adopt.

To maintain a satisfactory practical performance the
more common words should be inserted into the

Dictionary Table first, thus ensuring a minimal

search length.

Only Dictionaries created from descending frequency

word lists will be used in performance tests therefore.

Extension:

As previously detailed, using a table size of 1024 for 572
words gives an unacceptably large amount of wasted storage.
Two alternatives were considered:

(a) reduce the words to approximately 470-480 énd‘reset

M, the table size, to 512.

(b) adopt an earlier type of quadratic search using a prime
value of M, (instead of a power of 2) in the region of

638 - to retain a 0.9 table utilisation figure.

The former was rejected as it negates one of the advantages
of having an 'up to 6 - character' word list - i.e. a wider

word spectrum to justify the extra character per table entry.

The latter was implemented with M = 631 (table utilisation
0.9065) and another derivative of the test program was

produced and run - CATCOMP3 (see Appendix 4.3). This produced

a best result of:

N = 1475
A = 2.5786
R = 8 (with descending frequency order)

4.3.4.3 Performance Testi

0g the Common #Word Dictionary #ethod

Step 1: The two most efficient algorithms as prev-

lously established were taken and using descending
frequency word lists two CMS disk files containing

the generated Dictionary Tableswere created, i.e.

NUMBER

CHARACTERS TABLE TABLE

PER WORD UTILISATION SIZE R A
<5 0.9219 512 16 2.8177
<6 0.9065 631 8 2.5786

Fig. 4.7 Compression test parameters

N.B.

The Tables generated may be seen at Appendix 4.4

Step 2: - These files were then converted into

program arrays, in standard Assembler language format.

To resolve the problem of determining when the end of
a search sequence is reached, Hopgood & Davenport {38)
state that with the quadratic hash method a search end
is readily identified when the ith and i+lth entries in
the sequence both map onto the same Table position.
This may be suitable for the general case, but in a
specific applicaticn, a tailor-made sequence end
identification can be devised which is immensely more
efficient. The following technique was therefore
produced:

(i) From the generated Dictionary Tables the hash

value sequences were evaluated;

The last entry in the sequence was established,

21lowing for twrap-round' (sometimes more than

once) ;

- 104 -

(iii)

The first character of the sequence-end word

was complemented, and program arrays altered

to reflect this;

This alone does not uniquely define search

sequence terminators, as the following example

illustrates:

Fig. 4.8

Input (hash value in brackets)

Dictionary Table (R=16)

entry no.

10

Word 1 (10)
Word 2 (26)
Word 3 (43)
Word 4 (10)

To accommodate this 'false end' problem,

algorithm was extended as follows:-—

- 105 -

Sequence
word end.

Word 1

Word 2 v

Word 3 v

the Search

)

ig. 4.9

I Revised search
1 algorithm

Examine defined Table entry

l

? first character complemented

l'ms

Set switch -

|

Uncomplement first character

NO

(temporarily)

|
{i

? Table entry same as YES

text word

ho

O ? Switch set
YES A
FOUND: Exit and replace
text word with
Reset, switch
YES ? Has max.search i Tablea entry no.
length been reached

Hash entry in Table
NO

NOT FOUND: l
i.e, not a

common word . .
? same value as input YES

text word

‘iNo

Get next Table END OF SEQUENCE :
entry in sequerlce

not a common word

- 106 -

Some points of special significance:

(1)

(iii)

The maximum search sequence length with the established

values for R was 37;

The overhead incurred Dy the extra Hash operations can

be shown to be more than offset by the shortened

search length;

Some calculations were carried out (using the
Dictionary Table for words <5 characters, Table size
= 512, R = 16) to examine the effectiveness of this
method and on average the no. extra hash operations

for a word that is present in the CWD is:

pLEn
average no. matches (2.8177) x 305 _ 679

anPE2T V.
(g
N.B. 305 is the number of different Hash values

in the Table, i.e. the no. different search

paths.

Step 3: Two analysis programs were then written

incorporating the above Common Word arrays:

CATCOMP4 - words <5 characters)

)
CATCOMP5 - WORDS <6 characters)
Briefly, CATCOMP4/5 follow the following pattern:

See Appendix 4.5
for full details

(i) Read in text:
the text chosen for testing was the entire
instructional text from Compower's existing CPS/
CAI system, comprising Introductions, questions,

responses, sample CPS routines etc.

(ii) Search for common words:
using the evolved CWD Table, Hashing algorithm

and search sequence termination techniques;

- 107 -

(1ii) Replace any matched word with a 2-byte code

indicating its Table position;

Examine the character following a commen word. If
non-blank, set bit 3/byte 1 of the compression
code. If the character is a space, delete it

from the compressed text altogether.

Examples:

THIS (Table entry 499, i.e. x 'IF3')
THIS .. =~ 01 F3

- 0000 0001 1111 0011
THIS. - 11 F 3 4 B

- 0001 0001 1111 0011 Ol.ug;

!

bit 3 set to indicate that no space
is to be inserted after the word

during expansion.

(v) Print out the original text line and equivalent

compressed line (representing the 2-byte compression

code by ’!IW;
(vi) Finally, print an analysis of the compression
achieved;
Step 4: Test runs of CATCOMP4/5 were then carried out
on:

(i) The complete CPS/CAI System text

(ii) The Introduction to the above (nearer free

English text with no pL/I statements incorporated.)

- 108 -

Output from some of the above tests may be found at

Appendix 4.6,

follow: -

and tabular analyses of the results

Fig. 4.10 Results from CATCOMP4 (common words

<5 characters long).

Introduction
Full Text Text.
No. characters input 22331 2605
Total no. words 3958 463
Average word length 4.131 chars 4.434 chars
No. common words 2122 285
Hit rate 53.613% 61.555%
Overall storage 4434 bytes 583 bytes
reduction
Compression factor 19.856% 22.380%
Process time * 5.00 0.78

* yirtual machine CPU

and returned by the VM/370 System, run on IBM 370/148;

time (in seconds)

- 109 -

as evaluated

Fig. 4.11 Results from car

‘COMP5 (common words

<6 characters long)

Introduction
Full Text Text
No. characters input 22331 2605
Total no. words 3958 463
Average word length 4.131 chars 4.434 chars
No. common words 2268 312
Hit rate 57.302% 67.387%
Overall storage 5126 bytes 714 bytes
reduction

Compression factor 22.954% 27.408%
Process time * 5.29 0.87

* Virtual CPU time.

Common String Removal

Similar in concept to Common Word Removal, this involves
the identification and replacement of common character

strings within the source text.

Two approaches for identification of common strings are

possible:

(1) preprocess the original text to assess its contents

and generate a Specific Common String Dictionary (CSD);

(ii) use a Standard CSD as evaluated independently from

general text samples.

Mayne and James (39) have produced a technique within the

first category, broken down into four phases:

- 110 -

i .
(1) Preprocess - establish string frequencies (these

May vary in length);

(1i) Generate CSD;
(1ii) Compress input text and store;

(iv) Decode compressed text for display as required.

Compressian factors between 40.6% (special format data)

and 37% . (normal English) were obtained. This however is at
the expense of extremely slow text compression (phases

(1), (ii) and (iii)) and is not suitable for volatile text -
each alteration should theoretically be accompanied by a

regeneration of the CSD. This is acknowledged by Mayne

& James.

The use of a standard Common String Dictionary is much
better suited to text which is subject to change. Two
formats for this standard CSD are available:

(1) fixed length strings;

(1i) wvariable length strings.

In either instance, 2 bytes will be required for a compress-

ion code (as evolved for Common Word Removal) .

4.3.5.1 Fixed length:

(a) 3-character .strings (e.g. THE, ING, ERE, BLE):

- these would reduce to 2 bytes, giving a
maximum compression of 33%. Actual results
would probably be much less than this, as
not all 3-character seguences will occur

in a CSD of convenient size;

- 111 -

(b) 4-character strings (e.g. MENT, @ULD, RING, TI®N.

these would also reduce to 2 bytes, giving
a theoretical maximum compression of 50%,
but practical results using an acceptable
CSD size would be significantly less
(particularly as many 3-character words

would not be compressed) .

4.3.5.2 Variable length:

- common strings within a range of 3 to ©
characters in length would be compressed. Whilst
this would initially appear to be more flexible and
capable of greater compressions than Fixed-length
approaches, actual results would not exceed 37%,

as achieved by Mayne & James using a specific CSD.
Brief experiments using this technigue have failed
to achieve 20% compression (see Appendix 4.7) and

proved slower than the Common Word Removal approach.

ACTUAL IMPLEMENTATION

The objectives of database text compression were laid down at the

start of this Chapter (p.86), and based on these and the nature

.

of CBL text and its volatility, the Text Compression method
adopted was that of Common Word Removal. (words up to 6 characters

long, table size: 631). Whilst actual text reductions will vary,
14

it is expected that these will normally exceed 25% with very
rapid expansion and compression processing. Further 'format

. . ve been introduced - see Chapter 8,
compression' improvements ha

Section 8.6 - which enhance compressions to over 50%.

N.B For a discussion of Text Compression modules, refer

to C. ~rter 7, Section 7.4.3. B

- 112 -

Corollary

Words longer than & characters (which are currently not

compressed) can have their leading 6, 5 or 4 characters

compared to the Common Word Dictionary entries and be com-

pressed appropriately, (e .g.BECOMES, HAPPENING, TRUTHFUL,

MOMENTOUS, THATCHER). Whilst this has not been incorporated

as yet, useful further reductions would be achieved with

only minor processing overheads.

- 113 -

chapter five

- SCHOOL SYSTEM STRUCTURE
AND CONTROL LOGIC

INTRODUCTION
-

As with most complex software, SCHOOL has been organised

as a series of individual functional components, each with

a particular respohsibility towards the whole. However,
what is not necessarily true of other systems, is the degree
of formalisation that has been applied to this structure and
the techniques used during software development. This

chapter describes these approaches.

SCHOOL SYSTEM ORGANISATION

The software of SCHOOL is designed and organised on a number

of levels:
(1) System Control Manager:

= overall control of processing

(ii) Subsystems:

- the various procedural function of the system

(1iii) Modules:
- 1individual programs which together constitute

any subsystem

Hence, in keeping with the SCHOOL database, the SCHOOL software

can be represented as a hierarchy, as Fig. 5.1 illustrates:

SUSTEN Fig, 3.3

CONTROL

“ANAGER 3CHO0L SGFTWARE
3TAUCTURE

- | |

1
) IRER 1
!smwwa 1 SURSYSTEM 3 SESTSTENS lﬂ
' | l
l THER ML
“O0ULE 1 ¥CDULE 2 COLE 3 “O5ULES } %!
— |

- 114 -

Not all flow is strj
rictly 'top-down' however, and inter-subsystem

communication is possible - facilitated by the definition of two

types of subsystem, Major Function and Service Function.

This subdivision into multiple Separate components does however

introduce a problem when considering subsystem and module inter-

communication - normal parameter interchange techniques would

involve a considerable processing overhead as data (or addresses)

are moved from module to module. To alleviate this the concept

of Data Nuclei has been introduced, the basis of which is that
each subsystem has as part of its structure an area of storage

used as a communications 'mailbox' between itself and the remainder

of the SCHOOL environment.

SYSTEM CONTROL MANAGER

The function of the System Control Manager is to activate SCHOOQOL,
decide on the type of use (including appropriate security checks)
and then pass control to the requisite Major Function Subsystem.
Once the user has finished his work, the System Control Manager

resumes control and closes the system down. This is all controlled

by a single module (CYBER) and the exact sequence of events is .as

follows: -
(1) establish all internal run time addresses;
(ii) open the SCHOOL Database and read in the Master Control

Record (MCR);

read in the current Bit Map Table (BMT) ;

(iii)

(iv) request details of the current terminal type from the host
Operating System (these are used for Output optimisation
purposes by the Display Format Subsystem) ;

(v) generate SCHOOL logo on user rerminal (exact format is

device-dependent) .

- 115 -

(vi) request and identify Operator Mode - i.e. type of user

(Student, Author or System Supervisor). Note that in
the instance of the latter two, passwords are requested
- should the user not enter this correctly within 4

attempts CYBER will automatically terminate the system;

(vii) delegate control to the requested Major Function

Subsystem;

On completion of processing within the Major Function Sub-

system, CYBER once more takes charge and the following sequence

ensues:

(viii)request and identify whether or not the user wishes to
continue the session. If the answer is affirmative

proceed as per (vi) above, otherwise as below;

(ix) close down the SCHOOL database, deliver a closedown

message and exit;

An organisation diagram of the System Control Manager is as in

Fig 5.2:
7
2
CYEER Fi16. 5.2 |
// —— ‘
% SysTzm ConTROL
//////A /////j;; MANAGER
Z 7
STUDENT AUTHOR SUPERVISORY
OPERATIONS QPERATIONS QPERATIONS

- 116 -

tn Flg. 5.2 the shaded boxes represent the 3 Data Nuclei that

CYBER uses. These are concerned with:

overall system operation (i.e. the master Data Nucleus)

database free space management (i.e. the Bit Map Table) .

- error handling.

SUBSYSTEMS

All of the remaining software of SCHOOL is organised into
discreet subsystems, each comprising dne or more program

modules.

These subsystems are further subdivided into 2 categories:
(1) Major Function Subsystems:
- l.e. one subsystem for each of the operational

modes of SCHOOL (student, author and supervisor).

(1i) Service Function Subsystems:
- i.e. a subsystem for each operational function
within SCHOOL (e.g. monitoring keyboard input,

handling database I/0O etc.).

Major Function Subsystems can only be called from CYBER,
whereas Service Function Subsystems can be called from any
source (recursion excluded). Communication between subsystems

is effected via mutually visible Data Nuclei - which may vary

considerably in size and complexity.

5.4.1 MAJOR FUNCTION SUBSYSTEMS

The three primary operating modes of SCHOOL are each

controlled and organised by a Major Function Subsystem.

These are:

- 117 -

(1) Tutorial Logic Control Subsystem (TLCS) :

controls all student-related activities

(fully described in Chapter 9).

(11) Author Control Subsystem (ACS) :

- responsible for all author-related activities

(fully described in Chapter 5).

L) Sub
(1ii) Supervisor Controlh§ystem (8C8)

- used by the SCHOOL Svstem Supervisor to control,

monitor and tune the performance of the system

(fully described in Chapter 12).
5.4.2 SERVICE FUNCTION SUBSYSTEMS

The more mundane functions of SCHOOL are handled by
Service Function Subsystems. These are obviously more
numerous than Major Function Subsystems and tend to be
smaller. Subsystems within this category are:-
(1) Data Input Subsystem (DIS):
- creation of courseware by SCHOOL authors. This
has a major relationship to the Author Control

Subsystem (ACS) and is fully described in

Chapter 7.
(1i) Keyboard Response Evaluation Subsystem (KRES):

- responsible for monitoring all keyboard activity,
accepting input and performing any required
lexical analysis prior to passing the input an
to the requesting subsystem. See Chapter 10.

(1ii) Immediate Command Execution Subsystem (ICES):

subordinate to KRES, this subsystem intercepts

special user commands returned instead of the

These result in some immediate

expected response.

- 118 -

function being carried out prior to returning
to await the Lesponse originally requested.

See Chapter 11 for full details.

(iv) Display Format Subsystem (DFS) :

control of all terminal output. This involves
the expansion of data extracted from the SCHOOL
Database, conversion into optimum device format

and display. Chapter 8 gives full details.

(v) Database Input/Output Subsystem (DI@S):

- as has been described in Chapter 3, SCHOOL
courseware is stored in a complex hierarchial
structure and as such, input/output operations
are far from simple. DI@S is provided therefore
to manage the SCHOOL Database and all

associated I/0O processing.

(vi) Error Management Subsystem (EMS):

- responsible for handling non-recoverable system
errors. Details are passed into EMS from the
appropriate point of system execution and all
relevant debugging information is then generated

for the benefits of the SCHOOL System Supervisor.

5.4.3 SUBSYSTEM STRUCTURE

Subsystems are organised as a hierarchy of program
modules, the number and complexity of which obviously
This produces a typical structure as in

vary.

Fig 5.3 overleaf.

- 119 -

ENTRY

CONTROL
Y0DuULE

SUBORDINATE [MopuLzs

SUBSYSTEM X

Fig 5.3 Subsvstem structure

N.B. Whenever control is passed into a particular
subsystem, it is always done via the subsysﬁem
control module - this is in keeping with the
top-down structured design/programming philosophy

described in subsection 5.7

5.4.4 SUBSYSTEM RELATIONSHIPS

Within any Major Function Subsystem, a complicated
interaction can build up petween its own modules and
various Service Function Subsystems. It is not possible

to generalise this, but as a fairly representative

- 120 -

e 1 . . .
Xample, consider the Course creation function provided

as part of the Author Control Subsystem, illustrated
by Fig. 5.4.

Fie. 5.4 Exampis oz SuUBSYSTEM
INTER-RELATIONSHI? .

AUTHOR CONTROL
SUBSYSTEM
@)
Data Input S g (REATE
T NPUT OSUBSYSTEM, FUNCTION
/“/// L D18S
oL

Y0DULE 3/3 SPACE MANAGEMENT
ARITE LOGICAL XECCRDS

@ \@ TO D/3.
FORMAT

M0DULES
TEXT

COMPRESS [ON

SCHooL
DATABASE

TEIMINAL

Messages/

PROMPTS INPUT

To ScreE=N

=

FROM
XKEYBOARD

AuTHOR
TERMINAL

- 121 -

.5

Notes on Fig. 5.4
——= 28 rig. 5.4

The typical sequence of events is:

1 = a CREATE function request is intercepted by

the Author Control Subsystem (ACS) and the

Data Input Subsystem (DIS) is immediately

invoked;

2,3 — DIS requests (via DFS, the Display Format
Subsystem) and reads in (via KRES, the Keyboard
Response Evaluation Subsystem) details of the

course data to be created;

4,5,6 -~ once identified, the corresponding DIS Format
Module is called. This then uses DFS/KRES to
request/read tutorial text and control param-

eters;

7 - text input may be compressed prior to being
written to the SCHOOL database. This is

optional;

8 - once all required data has been received, the
formatted logical record is passed back from

the DIS Format Module to the Control Module;

9 - the Database Input/Output Subsystem (DI@S) is
then invoked and the logical record is written

to the SCHOOL database as a physical record.

MODULES

SCHOOL modules are written in one of two programming languages:-

(i) Assembler - standard IBM System 370 Assembly language

(IBM, 28).

- 122 -

(11) cCgBgL - American National Standard Version 4

Commercial Business Oriented Language

(IBM, 29).

Anything that is used infrequently and involves a lot of data

manipulation or decision making is written in C@BPL, everything
else (normally heavily used, needs to be efficient and control

hardware functions not accessible from high-level) is written

in Assembler.
Other languages were considered:

PL/1 - rejected because of limited experience on the
Author's behalf (and within Compower) ; however,
the resultant software, if compiled using the
PL/1 Optimising Compiler (IBM, 30), would no doubt

have been fairly efficient;

FORTRAN =~ - rejected because of limitations in text handling

and slightly worse machine performance than C@B@L;

APL - this would have been probably the best language
for speed of development, but operational perform-
ance would have been poor (it is interpretive)
software security would be restricted and there are

-

problems in interfacing with Assembler modules;

The marriage of Assembler and C@BPL has proved very satisfactory,
from both development and operational standpoints. Module inter-

facing is very straightforward via standard CALL statements and

poth use the normal IBM Register 1 linkage convention.

- 123 -

5.

DATA NUCLEI

SCHOOL has as part of its Structure special areas of storage

(maximum 4096 bytes) termed Data Nuclei , which are used by

sybsystems when communicating with one another.

Consider Fig. 5.5:

DATA
NUCLEUS X

SuBsysTem X

CONTROL
MODULE

7
2
-1

82

- ol

F16. 5.5 SUBSYSTEM STRUCTURE
(1ncLuninG Data Nucrzus)

The shaded areas represent "local' data - i1.e. used by, and

pertinent to, only a single subsystem module. The Data

. 1 : 1Y t
Nucleus for Subsystem X 1S however 'visible' from all subsystem

modules (which can therefore use and modify data within it as

required) . Furthermore, external subsystems which are used by,

- 124 -

or ¢ i -
cmmunicate with Subsystem X also have access to its

Data N 1 i
a Nucleus. Thig technique provides rapid and straight-

forward inter-subsysten communications and saves a great
deal of parameter and address manipulation. The Data
Nucleus associated with a subsystem need not however be
physically contiguous with the subsystem software itself -
this can be particularly beneficial when considering host
operating system paging (i.e. only the Data Nucleus, not the
subsystem coding need be resident in real storage whilst
being used by other subsystems). This has also proved
invaluable during software debugging (i.e. all relevant data
is available in one large adjacent block).

N.B. For specific details of SCHOOIL software structure,

refer to Appendices:-

5.1 - list of subsystems/modules
5.2 - structure chart
5.3 - data nucleus/subsystem cross-reference

SCHOOL PROGRAMMING AND TESTING

Wherever possible, Structured design, programming and testing
techniques have been applied during the development of SCHOOL.

The range of techniques used includes:

(1) Top-down system and program design:

hierarchical structure and step-wise refinement

of system functions.

(ii) Top-down coding:

coding modularised, extensive use of 'perform' and
‘call' concepts to execute subordinate levels. This
technique is most effective within the C@BJL

segments of the software.

- 125 -

(1ii) Top-down testing,

major interfaces between programs/modules tested
first, then sequence of major functions and so on

down to the lowest level of coding.

(iv) Structured pProgramming:

only relevant to COROL segments of the software and
signifies that 'GP T¥' statements are eliminated
as far as possible, and coding is built up from
sequential statements, 'do-while' constructs and

binary 'if-than-else' decisions.

(v) Program annotation:
- comprehensive documentation built into coding,
meaningful data names, sequences of coding kept

short.

These techniques can be seen by reference to any part of

the SCHOOL coding, and earlier parts of this Chapter.

SYSTEM HABITATS

As far as practical, SCHOOL has been constructed to be
independent of the Operating System which hosts it. However,
as is true of almost all software products, it isnot completely
portable and more than one version will need to be produced
should it be intended to run under different host systems.

The development version of SCHOOL has been evolved within

IBM Conversational Monitoring System, CMS, which itself is

part of vM/370 - Virtual Machine Facility/System 370 (IBM, 4).

It is important also to address the other equivalent and

planned environment, VSPC (Virtual Storage Personal Computing -

IBM, 3).

- 126 -

5.8.1 Virtual Machine Facility System 370 (vM/370)

Within VM/370, the reésources of a single real machine

are subdivided to emulate the resources of multiple

lmaginary, or Virtual machines, each of which supports
a single conventional Operating system. Each virtual

machine must therefore emulate all aspects of a normal

computing environment, as Fig. 5.6 illustrates:

"VirRTUAL STORAGE' “Y1irTUAL Deviczs’
—
// SYSTEN/ /
ConsoLs 2
————
PUNCH
USTR AREA
PRINTER
\/
<3

\/

Fig, 5.6 YM/370 VIRTUAL J

MACHINE

The various components are emulated by VM/370 as follows:

(1) Operating Console - functions provided at the user's
i

terminal;

(ii) Main Storage - paged virtual storage;
11 L

- 127 -

(1ii) I/@ Devices - reader/punch/printer (generically

termed 'unit record' devices) all
simulated by areas of disk storage,
which can interface to real devices

if required;

- user disk storage provided by small

allocated sections of real disks.

Most normal IBM operating systems can run within a vM/370

virtual machine, but of particular relevance here is the

provision of CMS. This is a single-user single.task Supervisor which
will manage the resources of one virtual machine. The

development version of SCHOOL runs under CMS, as shown in

Fig. 5.7

Fre, 5.7 SCHOOL 1N tHE VM/370 -
CMS SNVIRONMENT,

VIRTUAL MACHINE

HARD COPY
FUNCTICN

cMs

e

T=amINAL

N4

SCHOOL

{SOFTWARE PAGED
IN AS REQUIRED).

UNUSED
SCHO0L
DATABASE
OTHER
CMS/SCHo0L
SERS

- 128 -

.8.2

Both the ScHOOI, Database and software disks are

shared by all users, but any active SCHOOL software

1s unique within each user's virtual machine - i.e.
1t is not necessary under CMS to have SCHOOL capable

of multi-tasking in its own right, or to be formally

re-entrant.

Virtual Storage Personal Computing (VSPC)

A recent addition to Compower's Teleprocessing
facilities is that of vspC (Virtual Storage Personal
Computing). This is similar to CMS insofar as it
offers remote program development access to large IBM
mainframe equipment, but it is angled towards a
generally less expert type of user - who typically

will use BASIC, APL or FORTRAN. Each user is allocated

an ACCOUNT under VSPC, which consist of 2 fundamental

parts:
(1) User Library - an area of disk storage
o
where user progrms and data
are retained;
(ii) Active Workspace - an allocation of machine

(virtual) storage used to
create, edit and execute

programs.

Note that unlike the much more powerful CMS, no 'virtual

devices' are provided under VSPC.

It is hoped to produce a VSPC version of SCHOOL, and to

do this the approach will be as per Fig. 5.8 (IBM, 31).

See overleaf.

- 129 -

VSPC

User WorksPacs

SCHOOL . Ez;rv
ROOT éf 7

ANNOYIN VY]

OTHERS m
USER b 7 2
W/S's V//// m

, | -

!
— |
I

/;ShHOOL

AUXTLIARY PRUCES}OR/
o

SCHOOL
DATABASE

F15.5.8, ORGANISATICN OF
YSPC veaston oF SCACOL,

- 130 -

Notes on Fig. 5.8

(1)

(1i1)

(v)

(vi)

Each SCHOOL user will have resident in his workspace

a SCHOOL Root. This would orobably be written in APL;

Each user's SCHOOL Root will contain 'local processing
logic (e.g. entire subsystems such as XRES and DFS,
parts of others such as DIS and TLCS) and temporary
data (e.g. status and performance within a tutorial
session, working version of a frame as it is being

authored) ;

Communication with the main body of SCHOOL (the SCHOOL

AP) is via Shared Storage Management (SSM). This, and

the VSPC Background Interface, enable Background
Auxiliary Processors to communicate with VSPC and
user programs running within it (BASIC, APL or FORTRAN) .

These programs are termed Foreground Processors, FP's);

Each SCHOOL Root calls the SCHOOL AP via SSM, passing
blocks of data (termed Shared Variables - maximum size
currently 4K) into the AP as reguired. A similar

process applies in reverse;

SCHOOL AP coding will need to be serially reusable

(most current coding already is);

Macros used to handle SCEOOL Database I/¢ will require

alteration to those compatible with the AP host

environment;

- 131 -

chapter six

- AUTHOR CONTROL SUBSYSTEM

6.

1

INTRODUCTION

A maj is i :
major emphasis in the design of SCHOOL is towards the courseware

Author, as has been discussed in earlier Chapters. The Author is

considered to have 3 major functional responsibilities:

(1) COURSEWARE CREATION
- new material, or extending existing data;
(ii) MONITORING

who is using the course, and how well both students

4

and course are performing;

(1ii) MAINTENANCE

- altering course procedure and content as required,
deleting redundant information and using other special

facilities (e.g. user messages) ;

The above functions are provided within SCHOOL by the Author Control

Subsystem (ACS), as the remainder of this Chapter will describe.

AUTHOR CONTROL SUBSYSTEM - ORGANISATION

ACS is organised in two levels, as Fig. 6.1 illustrates:

Fig. 6.1 ACS Organisation

CONTROL
LEVEL

COMMAND

- 132 -

Entry is always at the control level, being achieved by invoking

SCHOOL, specifying AUTHOR as the Operation mode and supplying the

r
correct (and current) 'aAuthor mode' password (4 attempts allowed).

Once ACS Control level is entered successfully, the Author is

prompted to enter an 'Author Command', plus the name and Subject

Reference Number of the SCHOOL subject being manipulated. This

latter 2-digit value is assigned by the SCHOOL, System manager and

is unique throughout the System. Furthermore it is not capable of

being interrogated by Authors.

ACS COMMAND GROUPS

Author commands, which are usually in near normal English form, are
subdivided into 6 groups:-

6.3.1 Courseware Creation Commands

- only one ACS command is in this group:

CREATE

- the effect is to switch the Author into the Data Input
System, DIS. This has its own organisation/subcommands

etc., and is fully described in Chapter 7.

6.3.2 Course Monitoring Commands

- designed to interrogate current course structure and status,
along with the built-in Course Analysis aids (Lesson

analysis, Glossary requests). Commands within this group

are:
ANALYSIS
CONTENTS
DESCRIBE
GLOSSARY
RESETLAR

ROUTE

- 133 -

.4

6.3.3 Student Control Commands
——————"20° C(ommands

these provide full interrogation and control facilities

over the students registered for a particular subject.

Commands are-:

HISTORY
REMOVE

STUDENTS

6.3.4 Courseware Maintenance Commands

- provide the ability to alter existing course data
(either Procedure of Content), or deletelunwanted
material. Two commands exist:

ALTER

DELETE

6.3.5 Subject Message Maintenance Commands

- a unique facility within ACS is the creation and maint-
enance of Subject Messages. These are displayed to each
subject user on invocation, and the following commands
are used by the Author to control this feature:

MSGALTER
MSGBUILD
MSGSCRUB

MSGSHOW

6.3.6 Miscellaneous commands:

commands not otherwise classified. Only one command

currently exists:-

END

ACS COMMANDS

This Section defines the functions of all Author Commands, listed

alphabetically.

- 134 -

Fig. 6.2 a.c.s.

Commands.

COMMAND

FUNCTION

OTHER
DATA ?

ALTER

Provides g Ccourseware edit facility,
the exact approach to which varies:

depending on Author requirements.

See Note (ii)

ANALYSIS

Returns lesson analysis data detailing
the performance of the defined lesson
(e.g. times used, completion character-

istics, length of time needed)

S, L

See Note (1)

CONTENTS

Produces a full definition of the current
status and structure of the chosen
part(s) of the named subject. This data
may be displayed at the terminal or

printer.

CREATE

Enters the Data Input Subsystem.

See
Chapter 7.

DELETE

Used to remove all or part of the
specified lesson. The exact scope of

deletion is defined via a menu display.

S,L

DESCRIBE

Returns an overview of the subject/
lesson structure. This is effectively

a precis of the CONTENTS command.

S, (L)

END

Leaves AUTHOR mode.

GLOSSARY

Gives the current glossary status for
the defined lesson (both supported and
unsupported/requested entries). This

data may be displayed or printed or

both.

HISTORY

Provides an analysis of the current

status of the named student(s) (e.g.

progress so far, performance details.)

This data may be displayed or printed

or both - normally printed if a complete

course's students are being analysed.

- 135 -

COMMAND

FUNCTION

OTHER
DATA?

MSGALTER

Enables the examination andg alteration
of an existing Subject Message (both

text and expiry date information) .

MSGBUILD

Provides an interactive facility for
the author to create a new Subject Mess-

age (data and text information) .

MSGSCRUB

Used to delete existing Subject Messages.
This can be done either explicitly by
specifying the Message number or by

expiry date.

MSGSHOW

Returns a display giving the current
contents of the identified Subject
Message. Both text and expiry date

information is displayed.

REMOVE

Deletes the record(s) pertinent to one
or more registered students. This
may be by = student name/number or by

"date-last-active'.

RESETLAR

Resets all fields in the defined Lesson
Analysis record to their initial value

(mostly zeros).

STUDENTS

Returns a list of currently registered
students within the defined subject.
This may be either displayed at the

terminal or printed or both.

Notes on Fig. 6.2:

Subject Reference Number, and/or Subject Name;

These

(1) s -
L Lesson number (brackets denotes
optional, typically if a complete subject is being
manipulated) ;
(i1) Other data reguirements for ALTER command can vary consid-
ii 1
bly according to the intended scope of alteration.
era
See Section 6.8.1.

are selected by menu.

- 136 -

All of the above commands are described in detail in the
SCHOOL Author Manual, but the following sections outline

some of the more important facilities:

COURSE CREATION PROCEDURES

This is handled entirely by DIS, the Data Input Subsystem,and is

invoked by the CREATE command. A comprehensive range of courseware

creaticn subcommands is then available to the Author - see

Chapter 7.

COURSE MONITORING FACILITIES

There are two aspects available to the Author:

(a) peruse current courseware content and procedure
definitions;
(b) check status of monitoring aids (lesson analysis and

glossary) .

6.6.1 Current Course Definition

- courses can get very complex and it can be most useful
to scan the current status of a course structure. Some
of the available commands and the information returned
follow:

(1) DESCRIBE - produces an overview of subject/lesson

structure (as requested), e.g.

SCREEN 23
SCHOOL SYSTEM AUTOMATIC CONSOLE LOG

303 3 36 3 2 2 3 26360 26 3 36 3 06 36 36 2 0 0636 36 36 30 06 3 3 3 VE 36 36 06 I NN M I M N M 0636 M0 I D 00630 36 300 0 K VK3 X M
k228 253 b b b -

¥

. X
0 ¥ x
1ox :
2 X SUBJECT: LOTUS CARS :
;o MANAGER * MIKE LITTLE :
5 REF. NO.: 17 :
6 NO. LESSONS: 3 :
L. MESSAGES: 00 ACTIVE 02 EXPIRED :

9 X
9 % :
S /PRESS ENTER TO CONTINUE :
11 x
12 % :
13 % :
lg * :
l " X
16 % :
17 % :
18 «x :
19 x :
20
“ ‘ x*xt&xrXX¥KKKXU¥KXXX¥XX¥¥K:

33036000000 0OOEE 306X OO) ; "
. !xx!xxx“***!!**xx*xx*xx
*XXxKXX!‘X*KXKXXXXKXXXKKKK

- 137 -

HOWVBNOUMAUN-OWRNOUDWN —O

) 4 bt 1t b 4 s 1 e e e

SCHDOL SYSTEM AUTOMATIC CONSOLE Log
SCREEN 24

bR 233 2 82237

XX¥¥KX%XXl!XXXXX(X!!XiXX%XixXX%%%&XXX!!XXXK%%%%%X%Kx¥xXXX¥x¥k¥\XX¥X(K‘***
¥ SUB : |
; JECT: LOTUS cARS LESSON OETAILS: :
X NO. 1 .
x TITLE AUTHOR :
* 1 H
x {ISTGRY COLIN CHAPMAN :
: NO. FRAMES: 12 ANALYSIS: v .
¢ SYHTAX: N X
x GLOSSARY: vy X
* 2
X ELANS & EUROPAS MIKE LITTLE :
: NO. FRAMES: 18 ANALYSIS: v .
X SYNTAX: N x
x GLOSSARY: v X
* 3 x
x CURRENT RANGE MIKE KIMBERLEY X
: NO. FRAMES: 9 ANALYSIS: v x
x SYNTAX:] X
X GLOSSARY: X
o /PRESS ENTER TO CONTINUE. .. x
xxxxxxxxxxxxXxxxxxxxxxxxxxxxxxxxxxxxxx¥K*xxxxxxvxxxxxxvxy¥xxxxxxxxx*Kxxxxxxxxxxnxﬁxkx:

(ii) CONTENTS - produces a display giving details of the

chosen part of a course. For exanmple:

HFOQURNIUNOUN~QOR NPT DUN —~O

[Y Y S N

SCHOOL SYSTEM AUTOMATIC CONSOLE L0G SCREEN 29

xxxlxxxxxxxxxxxxxxxxxxxx

* x
X SUBJECT: LOTUS CARS ¥
o *
* LESSON NO.2 TITLE: ELANS % EUROPAS *
* AUTHOR: MIKE LITTLE *
* %
* ANALYSIS: Y SYNTAX: N GLOSSARY: Y *
¥ ¥
* PASSMARKS: SO0CEASY) &0(HARD) MODE: EASY *
b ¥
* HARDCOPY: OFF ¥
¥ 3
* INTRODUCTORY TEXT: *
* *
* 1962 SAW THE INRODUCTION OF WHAT WAS TO BECOME ONE OF THE *
¥ MOST RESPECTED SPORTS CARS OF ALL TIME - THE LOTUS ELAN. *
¥ %
* THIS SEGMENT OF THE COURSE DISCUSSES THE EVOLUTION OF *
* THIS MODEL, ITS '+2' DERIYATIVES, AND THE MID-ENGINED EUROPA. *

¥
X
% /PRESS ENTER FOR FRAME BREAKDOWH *

%
X x
30060 3 3 36 563 3 26 36360 3 36 36 26 3 36 36 36 X636 3 3066 X656 3 6 260 06 X 0 X 3030 DK 0 36 X656 206 36 3 006 X 36 X 2 0600 0 3K 3 3 06 0 3) X

-

HOWVWINAUDUNFOVRNIU D UWN -~

TN b bt s b ot s s e

~
SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 30

XXKlXXXXXXX¥¥KXlXXXXXXKKXXXXK!XKXXXXXX!XXXKXXXXX!XXXXX!XX!XX!!K%nX!‘X&!XXXKXXXK!‘!!!XX

*
: ¥
* SUBJECT: LOTUS CARS . x
¥* LESSON NO. 2 NO. FRAMES 18 x
. ¥
* FRAME DETAILS:- x
‘ *
* NO. Q A H c x
; - %
N 1 X - - : x
X 2 X - - - ;
* 3 X - - - :
X x - *
: ; X X h X x
¥ 6 X X X >f x
* X - - x
* 9 X - - - :
X X X *
: }.g X X X >_(X
¥ 12 X - N N x
¥ 13 X - . :
: /PRESS ENTER FOR FURTHER FRAME :
330 36 0 6 3 3 4 0K X 36 N X 2%

» 330 36 06 06 M6 X KK N OEHEN KX X

S0 X 6 6 M X 6 0 0 M I X NN KX M

- 138 -

(i1) ROUTE - generates a table of possible frame

Seéquences within the named lesson, e.g.

HOWRNOUMD LN OV UL W —O

[T N NP

SCHOOL SYSTEM AUTGMATIC CONSOLE LOG SCREEN 33

X ¥ X
ixxxxAxxxx!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxlxxxxixl%!lxx

x
* sU :
x BJECT SCHOOL TEST LESSON NO. 01 X
¥ : "
X FRAME SEQUENCE: HORMAL REMEDIAL *
X
: ! : : :
* 3 ; : ‘
* 4 : 5 "
* 5 ; : :
*) ; ; ‘
* 7 : : .
* 8 ; H ‘
X 9 : 0 :
x 2 15 10 o
* 1o 11 11 X
x 14 12 x
x 12 14 13 *
x 1 14 14 X
x 1% 15 15 X
x 15 END .
b 7ENTER TO CONTINUE *
X
*
. x
xxxxxxxnxxxxxxxxxxxxxxxuxxxuxxxxxxxxxxxnnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx*x*“*"""-“”"

6.6.2 Monitoring aid status checks

- designated to provide the Author with an insight into
how well his work is performing, typically in terms of
Lesson Analysis and the use of Lesson Glossaries. Two
commands are available:

(1) ANALYSIS - returns lesson analysis information at

2 distinct levels. Firstly, overall

status:

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 35
2323338323232 022232232333 3323322228223 822283223288 322333 332333227
3 3 x
* -
¥ T: SCHOOL TEST ¥
g * Eggggg NO. 01 HO. FRAMES: 15 %
.,(
2 % *

X OVERALL:® NO. TIMES USED: 23
Z * NO. TIMES COMPLETED: 15 *
5 % HO. TIMES SUSPEMDED: 4 %
6 % NO. TIMES ABANDOMNED:® 4 :
* . 3
g * TOTAL DURATION: 2:34 (H:M) :
g o
10 ¥ :
}é : /CONTINUED...... PRESS ENTER.... :
13 % o
16 x x
15 % X
16 * X
17 % :
13 % X
19 x x
20 % x
21 X
x xxxxyxxxxxx%x%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx;x&x&xkx¥xxxyxxxxxxxxxxxxxxx

L2 8.3 ‘ ¥

- 9 -
L3 l-iiJ

= and secondly frame analysis information:

HOWRINOURUNFHFOORNAUIDLN —O

NN = = 1t bt s s bt e s

SCHOOL SYSTEM AUTOMATIC CONSOLE LoG
SCREEN 36

MO0 KOO0 E XN N XK N %
%X ,.xmxxxxxumwxmh(xxxxxxxmxxxxxxmxmxxxmxxww-xvx'wxwi‘xﬂ

¥
K SUBJECT: SCHOOL TES

T X
X LESSON NO. ;
A o1 AHALYSIS REPORT b
X FRA
x E USED ATTEMPTS INCORRECT HINT REQ ANS REQ MARKS PERCENT x
X 1 23 31 #
* 2 23 28 3 12 4 126,230 54.8 «
x 3 2 47 1o 1 0 218/230 94.3 *
* 4 10 10 3 25 7 80,230 34.8 *
X 5 10 16 5 6 1 58/100 58.0 %
x 6 5 6 ; 11 4 287100 28.0 *
* 7 23 25 1 2 0 367 50 72.0 *
* 8 23 53 s 2 0 216,230 93.9 *
¥ 9 23 51 3 12 2 1567230 47.8 *
* 10 11 12 0 8 2 1047230 45.2 *
* 11 11 20 h L 0 1087110 98.2 ¥
X 1z 6 e 7 3 367110 32,7 X
X 13 3 3 : § 1 227760 3.7 x
x 14 11 15) 0 0 30/ 30 100.0 *
* 15 23 23 5 4 1 827110 74.5 %
x 0 0 230,230 100.0 ¥
¥ *
X /CONTINUED...... X
xxvxxxxxxxxxxxxxxxxxxxxx%xxxxx%xxxxxxxxx!x%xxxxxxnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx&xxxx:

ﬂ

(ii) GLOSSARY - produces a report on the current
Glossary contents for the defined

lesson, e.g.

BNPOUV LA UNFDORNIUN L WA~

bt et bt bt bttt s

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 42

32 X M 2 0 2 M X3 X IE K 3 I I M I I I HE K I 20 XXM MEHE I3 H I DI D I XM MMM NN NN R

/PRESS ENTER TO CONTINUE...

* M
* SUBJECT: LOTUS CARS LESSON NO. 2 :
X)
X GLOSSARY ANALYSIS: :
x

% ENTRY WORD/PHRASE SUPPORTED USED/REQ :
*

* 1 WISHBONE Y 3 *
* 2 BACKBONE CHASSIS Y 0 *
% 3 T.0.H.C. Y 11 *
* 4 TOKC N 4 *
¥ 5 GRP N 2 :
* 6 K.0. Y] :
* 7 TWINCAM N .
¥ 8 CHAPMAN STRUT Y 2 x
X

¥ TOTALS: 8 ENTRIES 5 SUPPORTED :
x x
x %
. %
x %
x *
ol x
. %

;xxxxxxxxxxx*;xxx!*xK!!XXX!XNX*XXX!X!*!!!!!!!XXX!!!!X!X¥!X!KKKXX%XXNK*!%XXXXXNXX!KXN!

- 140 -

6.7

Not ; . C e
(Note that thisg ldentifies both words /phrases that have

an explanation on the Database (i.e. ‘supported') and

t
hose that have been requested but have no entry as yet.)

STUDENT CONTROL FACILITIES

These facilities divide conveniently into two types:-

(a)

lnterrogating the SCHOOL Database for student status

information;

deleting student registrations from the Database. This is

achieved very simply via the REMOVE command - see

Appendix 6.1.

Two commands make up the first category:

(1)

STUDENTS - 1lists all students currently registered to

a particular subject. For example:

HOVBNAUILUNHOVR LAV L WN S

[N N S

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 11

y;xx
X

’ X
% SUBJECT: SAMPLE 82 £
X x
* REGISTERED STUDENTS: (TOTAL: 23) ¥
X M
* ID. NAME LOCATION *
* X
X 3101 MIXE LITTLE CANHOCK %
¥ 3102 J.SHITH 0.R.E. X
* 3103 F.BLOGGS .R.E. X
* 3104 L.WILKINS EDINBURGH *
* 3105 F J SMITH GATESHEAD *
X 3106 BILL HARRIS DONCASTER %
* 3107 L.J.X.SETRIGHT PUBLICITY *
b 3108 A.HOBBS HQ [HD.RELS. %
* 3109 P WILSOH MINING %
* 3110 A.ROBINSON T.SCHOOL *
* 3111 A.GREEHWELL ACCOUNTS %
¥ 3112 ROBERT REID PROD.DEV. %
* 3113 E.WILLE STAFF DEPT. %
* 3114 M.DOUBLEDAY ASTON UNIV. X
* 3115 J.B.DUNNING HQ TRAINIHG x
b /PRESS ENTER FOR PMORE DATA %
x x

%

P 2ttt 1123322232038 2322208022 e a s s s s ssssssstssdessssssssy

(ii)

HISTORY - returns a detailed Student Performance Report for
the defined student(s). These may be defined
individually by name or via an 'ALL' option which
will give details of all students registered to

the defined subject. A sample follows:

- 141 -

SCHOOL SYSTEM AUTOMATIC CONSOLE Log SCREEN 14

SUBJECT: SAMPLE 82 STUDENT PERFORMANCE(1)
ID. 3185 NAME: F J sMrTH LOCATION: GATESHEAD
MESSAGE STATYS: 02
DATES: START: 82,033 LATEST: 32,069
TOTAL DURATION: 2:14 (HH:MM)
CURRENT STATUS: LESSON: 5 FRAME: 12 COMP. CODE: H

/ENTER TO CONTINUE cen

r—o~a®~qﬂwﬁ&camr—o~o®~qmuhbmhuuc

NI P\ bt bt st ot s s ot s

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 15

X¥!¥XXX%XX*XXXXKKNXXXXK!!XXKXXKXXXKKKX!X!X!N!XXﬁX%¥!XXXX§XXNKKKXXXXX*XX!XXNK!!¥%XXN¥KK

* *

0 % SUBJECT: SAMPLE 82 STUDENT PERFORMANCE(2) *

1 % . . ID. 3185 ¥

2 X b

3 % LESSON MARK MODE DURATION(HH:MM) ¥

G % ¥

5 % 1 23 H 9:24 ¥

& 2 74 £ 0:31 *

7 % 3 87 E g:21 X

3 x 4 71 E 0:25 ¥

7 % 5 57 E 0:33 X

10 x *
11 x ¥¥X¥% STUDENT DETAILS CDMPLETE -~ PRESS ENTER TO PROCEED %xXx *
12 % ¥
13 « X
14 % X
15 x *
16 % b
17 % *
18 X *
19 x :
20 * »4
21 % x
:xxxxxmxxxxxxxxxxxxxxxxxxuxxxxxxuxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxwxxxxmnmxxxxx

COURSEWARE MAINTENANCE

Three specific considerations are involved here:

physical alteration of the appropriate course information.

(a)
This may be either course content (i.e. tutorial text) or
procedure (i.e. parameters controlling the processing of
the course content);

(b) rewriting the altered data back to the SCHOOL database;

- 142 -

d ing inf i i
eleting informatiop entirely from a Database Subject

structure,

6.8.1 Courseware Alteration - the ALTER command

Only certain parts of a SCHoOL subject are capable of

direct alteration, as defined in Fig. 6.3:

Fig. 6.3
LEVEL FIELDS ALTERABLE MNEMONIC o
SUBJECT Subject Manager details SDEF
DEFINITION
=~ name
- location
Introductory text
LESSON Lesson title LDEF
DEFINITION
Author name
Introductory text
Passmarks - easy
- hard
Current scoring mode
Hardcopy setting
GLOSSARY Existing word/phrase entry GDEF
DEF
EFINITION Explanatory text
SYNTAX Space removal - leading SINF
INFORM- - trailing
ATION
- non-delimiting
- all
Removal of - punctuation
- leading zeros
- redundant brackets
List of redundant characters
Substitutions -~ to upper case
- to lower case
- characters
143 -

LEVEL
FIELDS ALTERABLE MNEMONIC
QUESTION Frame text
DEFINITION | | QDEF
Hints - thresholds
- penalities
Screen erase settings
Tutorial Sequence - normal
- remedial
Maximum scores - easy
- hard
HINT Hint text - A HINF
INFORMATION]
- B
- C
ANSWER Correct answers - 01 ADEF
INFORMATION
- 02
(text and comment - 03
cross-reference) - 04
- 05
- 06
- 07
- 08
Incorrect answers - 01
- 02
(text and cross - 03
reference) - 04
Max. no. attempts
Standard reply reguirement
Answer display requirement
punctuation significance
Space significance
COMMENT Comment text - A CDEF
DEFINITION _ B
- C
- D
- E
- F
- G

I I 2 .

Sh i
ould an Author wish to alter part of his courseware, the
séquence of events that he will use is as follows:-

(1) enter ALTER command;

(i1) ent ‘ 3
eér Subject name and reference number as requested

(1f these do not match current D/B entries, the ALTER

request is refused);

(1ii) specify the alteration level Mnemonic (as defined in
Fig. 6.3). This in turn may result in prerequisite

information being prompted, as shown in Fig. 6.4:

Fig. 6.4

MNEMONIC PREREQUISITE INFORMATION
SDEF
LDEF Lesson number

(+ password if the Author has password -

protected this particular lesson).
GDEF as for LDEF
SINF as for LDEF
QDEF i. as for LDEF

2. question number

HINF as for QDEF
ADEF as for QDEF
CDEF as for QDEF
(iv) once all prerequisites are specified and accepted,

the Author is presented with a "menu’ of items

which can be altered at the defined level, for

example:

- 145 -

PUNHOORNAUI L LN —D

bt bt s s

SCHOOL SYSTEM AUTOMATIC CoNsOLE Lo SCREEN 23

UMM I MM OO XX XM X
X xxxxxxxxxxxnn(nxxnxnxnxxxxxnxxxxxxxuxuxnxuxxxxxx!xxx’(lx*"*"”

ALTERATION LEVEL: QDEF LESSON: ¢ QUESTION: 8

ALTERABLE DATA:

Sga?E TEXT
THRESHOLDS
HINT PENALTIES
§S$SEN ERASE
TAL SEQUENCE -~ RORMAL
TUTORIAL SEQUENCE -
MAX. SCORE =~ EASY REMEDIAL
MAX. SCORE =~ HARD

[RNE- NV Yy S

1

> SELECT OPTION(S):

N

¥
X *
* *
% *
% *
% *
X ¥
% X
X ¥
" *
% ¥
% *
x ¥
% *
x *
" *
x *
X *
x *
x *
x *
X *
! %
X *
*

XXXXXN!!XXXXN*XXNNXNXXXXXXXXXXKKXKXXNXK!X*NNKK!XKKNI*!KKKKxNNXKNNXNNNXKNNXNKXNKKNN!*

(v) the items to be changed are then specified in the

format

X1['X2['X3""']]

e.g. 2,5,6 would flag:
- Hint Thresholds
- Tutorial sequences (normal and remedial)

in the above menu.

(vi) the next stage depends on the type of data being

altered:

Non-text fields:

- a revised version of the previous display is presented,

for example:

HOWVWRNAUIDUNHDOINPUID N — O

O N et bt b s bt bt s bt s et

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SEREEHE2S

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxnunxnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

3 3 K M MK x
" : STION: 8 b
* ALTERATION LEVEL: QDEF LESSON: 6 QUE .
x

X SELECTED DATA: :
*

* 1. FRAME_TEXT :
X ==> 2. HINT THRESHOLDS :
* 3. HINT PENALTIES :

4. SCREEN ER

. 5. TUTORIAL SEQUENCE = NORMAL :
x . TUTORIAL SEQUENCE - REMEDIAL :
x 7. MAX. SCORE - EASY :
" 3. MAX. SCORE =~ HARD :
‘ *
. *
x %xx CURRENT DATA VALUE(S) 1 2 & :
* X x
x =3> ENTER NEW VALUE(S)! :
X 1,2,3 ;
x ¥
. *
. %
. *
X xxxxxxuxnxxxxxxxxxxxxxxxxxxxxxnxxxxxlxxxxxxxxxxxxxxxxxxxxx
xxlxxxxxxnxnxnxnxxnxxxxxlxxx

e i 51 : .
ach revision 1ls entered in turn, with the above

display being updated each time.

N.B. If (as on the above display) a text field

can be selected, this is reguested last, in
the format described below:

Text fields

these are displayed on a revised screen with

line numbers added, e.q.

HOOVRNPAVNDLUNI~DOR AT UL AN I~ D

PO b bt bt bt bt b e e s it

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 25

xxxxxxxxxxxxxxxxnmxxnxxxnnxxxxxwmxxxxnxxxxxxxxxxxmxxxxnxnxxxxmxxxxxxxnxxxxx
ALTERATION LEVEL: QDEF LESSON: 6 QUESTION: 8

*
*
X
X LINE TEXT

SCHOOL USERS CAN BE GROUPED IKTO 3 CLASSES:

1) PUPILS
2) COURSE AUTHORS
AND 3) THE SYSTEM SUPERVISOR

*
*
*
Ed
*
X
*
*
*
*
*
THE FUNCTION OF THE SYSTEM ADMINSTRATOR IS TO MONITOR *
AND CONTROL THE ENTIRE SYSTEM TO ENSURE THAT EVERYTHING *
WORKS SATISFACTORILY. AS THIS IS A VERY TECHNICAL bad
PROCEDURE, IT WILL NOT BE DISCUSSED FURTHER WITHIN THIS *
COURSE, *
*

*

*

X

b

*

%

*

*

TO PROCEED TO A DISCUSSION ON THE ROLE OF
SCHOOL STUDENTS PRESS ENTER

[Ty
PNHUNFOORAO D LN —

[Py

==> ENTER LINE NOS. TO BE ALTERED:

X
*
*
*
¥
¥
%
X
X
*
¥
X
*
L3
*
*
*
*
*
*
36T 2O DI H MM HE I I I I KKK I T I I I 32 IE I3 I M I3 I 30X 33 I 3 00N 22 3 M X

a sequence of one or more line numbers, or the keyword
'aATI', is then input (e.g. 1,3,7);

if using an IBM 3270-type VDU, each selected line is
placed in the terminal input area, and the built-in

3270 features (cursor movement, insert, character

delete, delete to end-of-line) may be used to edit
!

the text. Pressing ENTER completes alteration to this

line, and the screen is redisplayed with the new data;
ine,

1f using a Teletype terminal each selected line is

prompted and must be retyped in full:

the operation above is repeated (either 3270 or

Teletype) for all selected line(s);

T once complete, the revised text is displayed at the

terminal in full, e.qg.

HOWVWWNRrRUNLUNHOOVOP YT VNS LN I~O

PO RS 1 bt bt ot s et s et et s

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 30

IXX‘H‘Ki()ﬂ(i(i()(lXX?4XK!!XXKXXKKIX!XXX!%X!XX%)UU(XXIX%?(M!KXXXX*!!)(l)()()ﬁl)l)()lllllllllllllllll)ﬂ'
* *

ALTERATION LEVEL: QDEF LESSON: 6 QUESTION: 8
LINE TEXT

=> SCHOOL USERS CAN BE GROUPED INTO 3 CATEGORIES:

u

=> 1) STUDENTS
2) COURSE AUTHORS

AND 3) THE SYSTEM SUPERVISGR

*
*
¥
*
*
»*
*
*
x
*
THE FUNCTION OF THE SYSTEM SUPERVISOR IS TO MONITGR *
AND CONTROL THE ENTIRE SYSTEM TO ENSURE THAT EVERYTHING *
*
¥
*
*
*
*
*
*
*
¥
*
*

"
"
v

WORKS SATISFACTORILY. AS THIS IS A VERY TECHNICAL
PROCEDURE, IT WILL NOT BE DISCUSSED FURTHER WITHIN THIS
COURSE.

TO PROCEED TO A DISCUSSION ON THE ROLE OF
SCHOQL STUDENTS0 PRESS ENTER

CULRUNHO OO U 2NN —

bt bt bt ot ok et s

/ (e,\)»e,r'i'\\t] Nowe fﬂf""“'\c‘l‘“
==> ENTER LINE NOS. TO BE ALTERED: text alfem}'bm)

»*
»*
*
¥
¥
*
*
¥
¥
*
*
¥
*
*
4
4
¥
*
»*
*
»*
4
*
36336 N 32X M I DI DI NI I I 3 I I I I MM I I I NI I IEHON XD IEEIE 22 HIEHIEIEIH MMM MM RN NN

(note that altered lines are highlighted)

the author is then given the option of applying

further alterations to this block of text or

proceeding. If he opts for further alterations,

. 1
control return to the 'enter Line Numbers stage,

otherwise the text alterations are retained.

- 148 -

.8.2

.8.

3

Not : i £ : .
Notes: (i) for major alterations to courseware, it is

recommended that Authors use DELETE and CREATE;

@ more powerful and easier-to-use full-screen
text editor is under development - see

'Conclusions' chapter.

Updating Database logical records

Once the ALTER command sequence has been completed, ACS will
update the appropriate part(s) of the SCHOOL database. This
may be done in one of two ways, depending on which alterations
the Author has effected.

(1) Non-text fields:

- D/B logical records will be the same size and so
existing physical records (DBTU's) are rewritten
in-situ;

(1i) Text fields:

- text data is now almost guaranteed to be a
different length from the original, and so the
procedure followed is:

(a) delete current D/B phsyical records(s);

(b) create a new logical record (including text

compression etc.) and have this written to

the database;

Courseware Deletion - the DELETE command

This i's used to remove those parts of a subject which are either

redundant or are to undergo major Surgery. Once the DELETE

command is entered, an options menu 1S5 displayed:

- 149 -

SCHOOL SYSTEM AUTOMATIC CONSOLE Log SCREEN 37
1333338328
o * winxxnxnnxxxxnxxxxx*lxxxxxxxxxxxxxxxxxxxxxnxxuxwuxxxxxxxxxxﬁn‘xx!*
Q0 »*
1 x SUBJECT: .
1 ox ECT THE EYE :
30 D :
3o ELETE OPTIONS X
5 % 1. LESSON »
6 x 2. LESSON ANALYSIS X
7 3. GLOSSARY - ALL o
a 4. GLOSSARY - SPECIFIC .
9 % 5. SYNTAX INFORMATION *
10 x 6. FRAME -~ ALL X
11 x 7. HINT * |
12 x 8. ANSWER x
13 x 9. COMMENT X |
14 x . |
15 x x |
16 * ==> ENTER SELECTION: o
17 % 7 *
18 % *
19 * *
20 % *
21« x
* . X
)()()()()0()()()()()()()()()()()()()(K)()()()()()()()()()()()()()()()()()0()000()0()(3()()(X)()(XXX)(XXXX)(X)()()()()()U()()()()UUU(!)(XX*XXXXX

and the Author may specify his requirements (only one at a

time) . Note that there are some restrictions imposed’

by the above list:

(1) QUESTION (signifying the Question part of a frame)
is not an option as deleting this will render void

dependent parts of the frame;

(11) ALL (signifying an entire Subject) is not available -
only the System Supervisor can delete a complete

subject (see Chapter 12);

Depending on the DELETE option selected, further information

will be requested as illustrated by Fig. 6.5:

Fig. 6.5
ETE
gg;IQN ASSOCIATED INFORMATION REQUIREMENTS
LESSON Lesson number
LESSON Lesson number
" ANALYSIS

- 150 -

DELETE

OPTION
ASSOCIATED INFORMATION REQUIREMENTS

GLOSSARY
- ALL Lesson number
GLOSSARY Lesson number
- SPECIFIC

Glossary entry (word/phrase)
SYNTAX

INFORMATION Lesson number

FRAME Lesson number

-ALL .
Question (frame) number

HINT Lesson number
Question number

Hint letter

ANSWER Lesson number
Question number
Answer type (correct/incorrect)

Answer number

COMMENT Lesson number
Question number

Comment letter

N.B. The ‘associated information' is always reguested

in full - no defualts are assumed.

Consider the following example:

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 38
mxxxxxxmxxmmmnmmxxxmxux“xxxxxxxxxxxxxxxxxnxx!xxxnxn!xxxxnxxxxnxuxuux:

SUBJECT: THE EYE
DELETE: ¥ HINT 00k

ENTER LESSON NO.

9

ENTER FRAME NO.

X .
ILLEGAL FRAME NO. -~ RE-ENTER:

¥x%% PROCESS COMPLETE: 9/18/HINT B REMOVED

/PRESS ENTER TO CONTINUE

HOVRNOUSWUNFOOR NIV NN—O

*
*
¥
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
]
*
*

N TN e s 5 5t bt st ot Pt ot st

1233838333383 8383 33 Rttt

*

»*

*

»

*

*

*

*

»

»

*

* 18
% ENTER HINT LETTER:
* B
»

*

*

*

*

*

*

4

*
:xnxxxxxxxxxxxxxxxxxxxxxxnnnnx%x%%n%nxxxxxxx

- 151 -

[O)}

the e : .
ffect of this Sequence is that Hint B within the

defined Subject/Lesson/Question structure, and all

references to it, are deleted.

SUBJECT MESSAGE MAINTENANCE

Each SCHOOL subject can have appended to it a maximum of 10 date-

controlled Subject Messages, and the Author has a series of commands

available to manipulate these:

MSGBUILD - interactive message creation (similar to some
aspects of DIS - see Chapter 7);
MSGALTER - interactive message alteration (similar to ALTER

command with text data);

MSGSCRUB - delete named or time - expired messages (similar
to REMOVE commands) ;
MSGSHOW - display current contents of defined message, e.g.
SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 26

36 36363 3 3 6 06 36 3 26 56 36 06 2 3 2 3 2 36 26 36 36 3 36 3 203 2 203 003N M 3O 3 K I 6 3 H IO KK MO I M I KM 2 I M MMM K 3NN M MM
*

ENTER AUTHOR COMMAND:
MSGSHOW

ENTER MESSAGE NO.
1

HXNMXNHNNN SUBJECT: TESTRUN MESSAGE: 01 DOEXMMXNMNKK

: X
*
. *
" *
. *
. *
. *
. :
* PLEASE NOTE THE FOLLOWING: :
*
SUBJECT TESTRUN WILL BE SUSPENDED FOR MAINTENANCE %
: WORK ON TUESDAY 16TH MARCH 1982 FROM 2.30 PM FOR :
* APPROXIMATELY 3 HOURS. o
*
X APOLOGIES FOR ANY INCONVENIENCE CAUSED. :
X *
x *
x %
X *
x X
x *
% X
x *
¥

MJL 1173782
MRMMNXXNNN MESSAGE EXPIRES: 82/076 KA NN HN KN

HOWVANTVMADUNHOVWRNIUIDLWNH-HO

N) 5 bt bt et et et Dt pt et s

xx%xxxxxxxxxxxxxxxxxxxnxxxxxxxxxxxxxxxxxxxxxinxxxxxxnxxnxxxxkxxxxxxxxxxxxxxxxxxxxxxx

- 152 -

6.10 AUTHOR CONTROL SUBSYSTEM =~ SOFTWARE

The control level of Acs (see Fig, 6.1) is coded as module AUTHOR.

This handles the initial operations of aACS, i.e.

- command entry and recognition;

entry and validation of subject name and reference number;

branching to the appropriate ACS command coding,

AUTHOR also contains coding to provide some of the more trivial

SCS functions (DESCRIRBE, END, MSGSHOW, RESETLAR) as these involve

minimal logical record processing.

All other ACS functions are supported by separate program modules,
named ACS..... For a detailed description of these, see

Appendix 6.2.

- 153 -

chapter seven

- DATA INPUT SUBSYSTEM

INTRODUCTION

The Data Input Subsystem (DIS) is the major method of creating

1 1
course material ('courseware') ang inserting it on the SCHOOL

database.

DIS may be used to:

(1) Create new courseware;

(11) extend existing material;

and is invoked from the Author Control Subsystem (ACS) via the
CREATE Author subcommand. It is by definition a Service Function

Subsystem, but is a little unusual in that it can only be invoked

from one source.

DIS - RELATIONSHIP TO OTHER SUBSYSTEMS

The Data Input subsystem interfaces with a number of other

subsystems, as Fig 7.1 illustrates. (See overleaf)

- 154 -

fig 7.1 D.I.S. relationship

To other subsystems

ACs

call

CATA INPUT
SUBSYSTEM

output

Dessages

ors author formatted
input/replies logical record

RES

SCEOOL
DATABASE

oFs - Display Format Subsystem

RES -~ Xevboard Reponse Evaluation Subsystam
DIOS -~ Database Input/Output Subsystem

ACS - Author Control Subsystem

- 155 -

7

.3

The sequence of events described in Fig. 7.1 is as follows:-

(1) DIS is called from ACS;

(11) a formatted logical record is built up from a dialogue

with the Author (DFs displays prompts and messages, KRES

accepts input). Note that Text Compression (part of DIS)

may be involved here;

(1ii) the created logical record is passed to DI@S for writing

to the database;

COURSE AUTHORING

One of the original and fundamental aims of SCHOCL is that course-
ware creation should not involve Author Language programming. An
alternative approach has been devised therefore, revolving around

the use of DIS and Author Documents - specially designed work-

sheets used by the author to:-

- plan his course;

- design display layouts;.

- specify control parameters;

- submit input to data preparation if large volumes of course-
ware are involved;

- use as reference material when creating courseware inter-

actively.

Initially, authors will rely quite heavily on Author Documents,

but this will tend to decrease as expertise is gained.

An overview of the course creation sequence is as per Fig. 7.2:

- 156 -

COURSE
AUTHOR

7.2 Course creation

Fig.

overview

? &
1999 4
=0
~w

DATA INPUT

SUB-SYSTEM!

PREPLRATORY
WORK
PREPARATORY
TEXTS
v.
-TO-DISX
GIPMENT.
INPUT
S200L
VOLGME
AUTOMATIC
MCDE

157 -

The sequence of events ig basically as follows:

(a) the Author becomes fully conversant with the necessary
subject matter, and adequately knowledgeable on the workings
of SCHOOL. He then prepares a rough outline of the Course
to be created, according to his teaching aims;

(b)

The Author then defines his Course content and procedure

on SCHOOL Author Documents;

(c) the Author Document data is then submitted to SCHOOL in one

of two ways:

(i) Interactively on a prompt/reply basis via a terminal;

(ii) Automatically after suitable data preparation and
transfer to an intermediate spool volume (via punched

card, key-to-disk etc);

(d) once read in, the Author Document data is formatted and
inserted into the SCHOOL Database by the Data Input Sub-

system (DIS).

Each type of Author Document has a direct responsibility towards

one or more database logical records. Consider Fig. 7.3:

N.B. % significs ‘meny of’

SCHOOL _ DATABASE

S 7
'/MASTER
- Schematic Data Structure ¢//CONTROL é
/.
"/ 7

RECORD

7

[7
T, SUBJECT * // /’/
/ (,LOBALF // CONTROL BIT AP /
// MESSAG // RECORD 'r;\/n/r r///

ECORD ///

|
.__—-—‘[:—-1 * 7//51'01)5»41' / /

*
SUBJECT a0t //REFERENCE
MESSAGE RECORD /T“’LE///

RECORD

/ ///////
7/ STUDENT ////

/PERFORMANCE /

7 RECOR /
Fig. 7.3 /7
L PRIMARY pRIMARY ¥ SYNTAX
LESSON GLOSSARY QUESTION ANSWER INFORMATION
ANALYS IS REFERENCE RECORD RECORD BLOCK
RECORD

HINT * COMMENT
INFORMATION INFORMATION
RECORD RECORD

GLOSSARY
DEFINITION
RECORD

- 158 -

Within Fig. 7.3, the EEEEEQgg_boxes represent those components

of the database that are within an Author's 'sphere of influence'.

These may be created in different ways:

(1) Explicitly - aone-to-one correlation between Author

Document and Logical record;
(1i) Implicitly - a particular parameter setting on one Author
Document generates an extra logical record;
(iii) Interactively - no Author Document equivalent exists, and an

Author Control Subsystem sequence is involved

in the component's creation.

7.3.1 Author Documents

To correlate Author Documents, database logical records and

methods of creation, consider Fig. 7.4.
Fig. 7.4

CREATION

METHOD LOGICAL RECORD AUTHOR DOCUMENT

EXPLICIT Subject Control Record (SCR) | Subject Definition
Lesson Control Record (LCR) | Lesson Definition
Glossary Definition Record Glossary Definition

(GDR)
Syntax Informatiom Block(SIB)| Syntax Information
Primary Question Record(PQR) Question Definition
Hint Information Record(HIR) | Hint Information
Primary Answer Record (PAR) | Answer Definition
Comment Information Record Comment Definition
(CIR)

IMPLICIT Lesson Analysis Record (LAR) | Lesson Definition

syntax Information Block (SIB)| Lesson Definition
(+ syntax Info.
as above)
Glossary Reference Table(?ff\ Lesson Definition
(+ Glossary Defn.
as above) .
INTERACTIVE| Subject Message Record (SMR) -

- 159 -

For the creation of any particular course, a sequence of

Author Documents builds up:

SUBJECT DEFINITION

LESSON DEFINITION

GLOSSARY DEFINITION)
) (optional)
SYNTAX INFORMATION)

QUESTION DEFINITION

repeat .
repeat for HINT INFORMATION (optional)
for each each

' . ANSWER DEFINITION
frame
lesson

COMMENT DEFINITION (optional)

N.B. Within any subject there may be a maximum of
40 lessons, and within any lesson a maximum of

40 frames.

Samples ©of each type of Author Document follow:

Aston University

Content has been removed for copyright reasons

- 16l -

e re—————— A T St

Aston University

Content has been removed for copyright reasons

- 162 -

v

Aston University

Content has been removed for copyright reasons

- 163 -

Aston University

Content has been removed for copyright reasons

- 164 - l

Aston University

Content has been removed for copyright reasons

- 165 -

Aston University

Content has been removed for copyright reasons

—_—

- 166 -

Aston University

Content has been removed for copyright reasons

- 167 - l

Aston University

Content has been removed for copyright reasons

- 168 -

(1ii)

preceding Author Document examples have been

re i
duced to fit a4 paper. Normal dimensions are

13" X B%U;

what has not been described (for brevity) is the
range of parameter options and defaults available
on the various document types. This is described
in considerable detail (along with all other

aspects of courseware creation) in the SCHOOL Author
Manual. Relevant extracts are reproduced at

Appendix 7.1;

three of the options on the Lesson Definition
document are of particular note:
SYNTAX CHECK REQUIRED?
AUTO ANALYSIS REQUIRED?
GLOSSARY REQUIRED?
- these imply the generation of Syntax,
Lesson Analysis and Glossary logical

records (SIB, LAR and GRT);

7.3.2 Courseware Creation Procedures

Two alternative approaches are ava

(1)

ilable:

Interactive

invoked via specific Data Input subcommands.

A sequence of prompts 1is issued by DIS and

the author reponds as appropriate, using the

data prepared on his Author Documents. Once

this sequence 1is completed, the corresponding

logical record is built up and written to the

database.

- 169 -

The following session hardcopies demonstrate typical

approaches:

—HFO UM~ NDUN =D OB APURPA NN~

N I 4t bt et bt dd 3t bt ot 1t

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG
SCREEHN 5

SYSTEM SCHOOL: AUTHOR CONTROL FacILity.
XREMENMHERNN NN K
ESLFE AUTHOR FUNCTIQON:
1AND COM : -
commant PLETE REPLY TO ORIGINAL REQUEST
ENTER DATA CREATION TYPE:
SUBJECT

AUTHOR CONTROL FACILITY.

response from #LIST |
I}“ﬂ~(l£9EELF€L, (2)A44»~CL¢.£; g
(P«ﬁhzes ouwbput on |

Screen ;5 taf

w;wea Aere)

390033 0K M OO0 IO K XK KKK X600 000K OO0 XXX

KKK KK KKK KK KKK KKK KK KKK KKK KX
x

HOYWRNINLUEUN~OOVR NN AN~

0 B 4 b b bt s bt et it bt

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 4

xxxx!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxlxnxxxx!xxxxuxxxxxxxxx!x3¥x&xxxx*xxxxxxxﬂ(l!#xxxxxvx
»*
X AUTHOR FACILITY: SUBJECT DEFINITION *
* OO0OOOEE OO *
¥ ENTER SUBJECT HAME: %
¥ SAMPLE 82 *
% ENTER ALLOCATED SUBJECT REFERENCE NO. %
* 31 *
¥ ENTER SUBJECT MANAGER DETAILS: *
* NAME? *
¥ MIKE LITTLE *
¥ LOCATION? b
% BLANK ANSWER UNACCEPTABLE: RE-ENTER:- ¥
% COMPOWER CANNOCK X b
* ENTER INTRODUCTORY TEXT - TYPE A COLON (:) WHEN A BLANK LINE IS REQUIRED: :
%
¥ SAMPLE INTERACTIVE COURSEWARE CREATION SESSION :
X
X RUN DATE: 27701782 TIME: 13:646 :
x x
X *
X ¥
*
. ¥
b x

xixxxxxxxxxxxxxxxxx&x;xxxxxxxxxlxxxxx!xuxxxxxxxxxlx

.!XXXXXX!XX!X!X!KX!KKX!!!!XX!XX!X!

A sequence of operations to create a lesson subordinate

to the above subject, and carried out in another (later)

session may be seen overleaf:

- 170 -

HOOURNOAOUVMINIWN-O OOV NN O

RO 1t bt e bt e s s 2t s

SCHOOL SYSTEM AUTOMATIC CONSOLE tog
SCREEN 5

XX OO K ¥ AUTHOR CONTROL FACILITY.
Eg;EENAUTHOR FUNCTION:
h :
CREATED COMPLETE REPLY TO ORIGINAL REQUEST
ENTER DATA CREATION TYPE:
LESSON
ENTER SUBJECT NAME:
SAMPLE 82
%NTER LESSON NO:

%
%
*
X
X
X
X
X
%
4
X
¥
X
*
*
¥
X
*
¥
X
X
X
X
¥
*

3)()()()()(!XXXX!X!!XXK)(XXXXXXXXXXKXXKKXX?()(X)()(XX!!XXX!XXXXXXXXKKK%XXXXXXXKXXKKXXX!!XXX*NKNv'

B e 1t b s b st s e
COBNAUIALNN O ORTPUL B LN~

~N
—

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 6

hRb R LR EEEEEELLEEEEES SRR RT3 R I T I T I I I I I I I I M M ™D

AUTHOR FACILITY: LESSON DEFINITION
HHAOOOOCNNXNXXNNK

ENTER LESSON TITLE:

LESSON QONE

ENTER LESSON AUTHOR:

MIKE

ENTER PASSMARK - EASY:

ENTER PASSMARK =~ HARD:

X %
X *
X x
X %
X *
¥ *
* *
¥ *
* ¥
* ¥
* %
¥ ENTER INITIAL SCORING MODE: X
% DIFF %
¥ UNRECOGNISED SCORING MODE - REENTER: *
¥ EASY X
¥ IS AUTOMATIC LESSON ANALYSIS REQUIRED? :
*

X A X
* X
% x
" *
* X
X b4
'] *
x ¥

ANSWER YES OR NO:
NO
IS A HARD-COPY REQUIRED?

YE
ANSWER YES OR NO:
YES

30606 3 3 36 06 M 30 3 M MMM M X 3NN X M N I3 6K 30N MM XK I M2 M MMM XM M XN K

HOOVBNAUID UM~ O OB NN DLW~ D

PRI e b bt bt bt s s 0t s s

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 7

"’“4X)l)()()l’(’()l)l)()()()()(’(?(X’(!XX“J(XXXXXX)(!?(?(?1)(KX!}{KXXX!X!XXXXXXXXXNX!ﬁﬂ(x!!!!!lx!X?(N?(*XXNXXXNXK

ENTER INTRODUCTORY TEXT - TYPE A COLON () WHEN A BLANK LINE IS REQUIRED

CONTIMUATION OF DEMO. CREATION SEQUEHCE

¥
X
*
X
X
¥
*
L1
*
*
X
*
*
X
X
¥
*
¥
X
X
X
¥
by
*
X

X
*
¥
¥
L]
*
*
¥
X
%
g
*
¥
¥
X
¥
¥
%
*
¥
*
X
: ¥
b (’()()(‘)(l'!X¥¥X’(¥X¥¥X(XK.’(XXXKK!XXX.‘(X!KK!¥XKX)(!,

¥

XX
)()(l)(?l)(?(\(\(XNXXXXIKXX)‘XKXK#K!K!!)()U(K!)(

- 171 -

(

Several i i
other interactive Courseware creation sessions are

documented at Appendix 7.2).

This current prompt/response approach is applicable to all

= 4 L .
types of terminal, but as most exlsting SCHOOL authors have

access to IBM 3270-type devices, a screen-oriented equivalent

is under development, as discussed in 'Conclusions and

Proposed Extensions’.

(ii) Automatic
the Author Documents are treated as formal coding
sheets and are submitted for conventional Data
Preparation. Normal procedures are then followed,
the end product being an input disk dataset which

can be read into SCHOOL automatically.

By using a rigid naming convention for these datasets,
(i.e. SUBxxXx CONTROL, where xxX is an allocated subject
reference no.), any set of courseware data may be prepared
off-line and processed by DIS automatically. The actual
generation of database records from this off-line data is
done as an interactive session (using the AUTO subcommand) ,
with appropriate messages being generated and (normally) a

hardcopy print being taken. Typical examples follow:

- 172 -

HOWVRINTVPAUNIFROR YTV D WUN~D

PO P bt et 3t bt bt ot ek ek et pd

SCHOOL SYSTEM AUTOMATIC CONSOLE LoG
SCREEN

ENTER DATA CREATION TYPE:
AUTO
ETTER ALLOCATED SUBJECT REFERENCE NO.

E : SUBJEC EFINITI - SE WAIT

PROCESSING U DEFIN ON PLEA

SUBJEC NAME SYSTE CHECKOU ALREAD ALLOCATED - N
U ENTER A DIFFEREN NAME

DEFAULT ASSUMED: No.
PROCESS COMPLETED gK 0: LESSONS ()

AUTOMATIC INPUT COMPLETE - PRESS ENTER TO CONTINUE

)()(XXXMXKK)(XKK!X?(?(X?(!)U‘K)(KK)(KK)U(!)()()()()()U(VK)(%!XXX!!*XXXX)‘XXXXX?)(XX,’(XXKXXXX)&!!XXKK\(Xl*x

HFOUVURPNIUVILUNIHFRAOVRNAUVTIRUN~O

PO TN e bt b e e it et

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEHN 9

ENTER DATA CREATION TYPE:

AUTO

ENTER ALLOCATED SUBJECT REFERENCE NO.
02

X *
X %
y ¥
* ¥
X %
¥ PROCESSING: SUBJECT DEFINITION - PLEASE WAIT %
¥ SUBJECT NAME 'CMS EDITING ' ALREADY ALLOCATED - EHTER A DIFFERENT NAME: 3
¥ CMS EDITOR ’ %
X PROCESS COMPLETED OK X
¥ PROCESSING: LESSON DEFINITION - PLEASE WAIT ¥
* DEFAULT ASSUMED: SCORING MODE (EASY) %
¥ DEFAULT ASSUMED: SYNTAX REQUEST (NO) *
¥ DEFAULT ASSUMED: AUTO ANALYSIS (YES) *
o DEFAULT ASSUMED: HARD-COPY (NO) X
" DEFAULT ASSUMED: GLOSSARY REQD. (HO) %
¥ PROCESS COMPLETED 0K *
X PROCESSING: LESSON DEFINITION - PLEASE WAIT %
¥ PROCESS COMPLETED 0K X
* PROCESSING: LESSON DEFINITION - PLEASE WAIT *
¥ DEFAULT ASSUMED: NO. QUESTIONS (0) *
¥ PROCESS COMPLETED 0K %
X AUTOMATIC INPUT COMPLETE - PRESS ENTER TO CONTIHNUE :
b 3
. *
¥

’uxxxxxxxxxxxxxxxxxxxwxxxxxxxxx.x.xxm!‘nxxxxxxxxxxxxxxxxxxxxlxxxxxx%w%xx!xxxxxxxxxxx

HOURNAUVQDRUNO ORI NIV RWEN—O

3 N 1t 1 et bt 3t bt bt ot bt st

SCREEN 11
SCHOOL SYSTEM AUTOMATIC CONSOLE LOG

?4?4?4.\4’4xxxxxxxxxxxxxxxxxxx’(!xx!xxxxx!xx!xxxxxx

EHTER DATA CREATION TYPE:
END

P
*
b
X
¥
¥
%
X
b
X
X
*
X
*
*
*
*
¥
X
X
X
*
X
*
X

xxnxnxxxxxxxx&xxxxxxxxxxxxxxxxxxxxxxxx!xxxxxxyxxx
%3 00006 XHHN

MK KKK K KKK K KKK KKK KKK KK KK KR

T T T LLALEE L L E L b b

7.4 DATA INPUT SUBSYSTEM STRUCTURE

The organisation of DIS is shown diagrammatically in Fig. 7.5:

Fig: 7.5 DIS structure
ACS
\ DATA INPUT SUBSYSTEM
CREATOR
Courseware COMPRESSH
source data TON
modules
TORMAT
zodules
Formatted Logical Record g
to
A -
DIOS —_—

As shown by Fig. 7.5, the modules which go together to provide

DIS facilities are in 3 groups:
(1) module CREATOR

- overall control of DIS processing;

- 174 -

(1i1) FORMAT modules:

take Author Document data (either interactive or
automatic) and produce a formatted SCHOOL database
logical record;

(iii) COMPRESSION modules:

- called by the FORMAT modules, the effect is to take
display text and produce Frame Data Block output (see

later notes), with all embedded text compressed;

7.4.1 Module CREATOR

The logic associated with module CREATOR breaks down
conveniently into three functions:

(1) requesting and handling Data Creation subcommands;

(ii) control of FORMAT modules;

(iii) cross-reference maintenance (i.e. creating any
'implied' logical records, inserting pointers and
data values into any associated logical records);

The processing within these functions breaks down as per

Fig. 7.6 overleaf.

- 175 -

1

Request and read "END'
Data creation
Subcommand
No ‘+
? Valid EXIT
v ¢ Yes
EFError message Is all associated
and prerequisite
information known? ies
(e.g. subject,
lesson no. etc.)
No
Request, read and
validate appropriate
data
-}
Returns B May involve
formatted | ________ call corresponding ________________| significant
logical FORMAT module system/author
record (FILR) dialogue
FLR passed
Write FLR to SCHOOL _ .over to DIOS
database for physical
write
e.g. ol
Lesson Analysis Build and write any
;ecord, §yntax _____ implied FIR'S
Information
nlock.

Insert cross-reference
information into
associated p/B records
(including logical
parent/child pointers)

Fig. 7.6 CREATOR
outline logic

- 176 -

Notes on Fig. 7.6:

(1) the available Data i
Creation subcommands and the correspond-
ing database logical records are as follows:-
Fig. 7.7
RELATED LOGICAL
SUBCOMMAND RECORD (8) COMMENTS
AUTO Multiple Actual database logical records
created operands on contents of the
defined Author Document file.
END - Terminates data creation sequence.
GLOBMSG Global Message Always created interactively (no

Record (GMR). AUTO equivalent) .

GLOSDEFN Glossary Definition | Requires a previously created
Glossary Reference Table (GRT) and

Lesson Control Record (LCR)

GLOSSARY Glossary Refer- Requires a previously defined Lesson
ence Table (GRT) control Record (LCR) and results in
o ' an empty Glossary Reference Table

being set up.

LESANAL Lesson Analysis Requires a previously defined LCR
Record (LAR) and results in a zeroised Lesson

Analysis Record.

LESSON Lesson Control Requires an already defined subject
Record (LCR) Ccontrol Record (SCR). May imply
creation of LAR and Syntax

Information Block (SIB) .

QUESTION Primary Question The actual range of logical records

Record (PQR) created within the Frame segment

Hint Information depends on the Author's require-

Record (HIR) ments (e.g. HIR and CIR are optional)}

Primary Answer ynder all circumstances however,

Record (PAR) an associated Lesson Control Record

-t - must already exist.
Cgﬁkentlnformatlon

Record (CIR)

(i.e. complete

Frame StructureJ

/continued

- 177 -

RELATED LOGICAL

SUBCOMMAND RECORD (S) COMMENTS

RESET - i
Provides the ability to reset
current subject name, lesson no.
and question no.

SUBJECT Subject Control

Also creates an empty Student

Record (SCR) Reference Table (SRT).

SUBMSG Subject Message Always created interactively (no
Record (SMR) AUTO equivalent). An associated
SCR must have been previously
defined.
SYNTAX Syntax Inform- Requires a previously defined

action Block (SIB)| Lesson Control Record (LCR).

(1i) as described above, several Data Creation subcommands cannot
be actioned until certain prerequisite definitions have been
completed (e.g. a Lesson cannot be defined until its parent
subject is initialised). These prerequisites are normally self-
evident and are defined to DIS by the Current Segment Block

(CSB). This defines:

- current subject name
- current lesson number
- current guestion number.

As any Data Creation subcommand is issued, the CSB is checked

to ensure that all prerequisite information is known - if not

appropriate definitions will be requested pefore proceeding;

g i i ' ta Creation subcommands
(iii) given 'prerequisite considerations', Da

can be activated in almost any order - although the RESET

subcommand may be required to ensure that lessons and questions

parent(s) . Consider the

are subordinate to the appropriate

following subcommand sequences:

- 178 -

Example A: SUBJECT
LESSON (1)

QUESTION (repeat for 1,2,3,4,5)

LESSON (2)

QUESTION (1,2,3,4)
LESSON (3)

QUESTION (1,2,3,4;5,6)

END

Example B: SUBJECT

LESSON (1)
LESSON (2)
LESSON (3)

RESET (to lesson 1)
QUESTION (1,2,3,4,5)

RESET (to lesson 3)
QUESTION (1,2,3,4,5,6)

RESET (to lesson 2)
QUESTION (1,2,3,4)

END

These sequences have an identical effect, and this concept,

provides the courseware Author with considerable session

flexibility - even to the extent of creating different parts

of his material at different times.

(iv) a final Jand often complex) responsibility of module

CREATOR is that of maintaining database cross-reference

takes two forms:

information. Typically this

- 179 -

inserti
rting a reference eéntry (e.g. lesson no.) in a

D/B logical record;

establishing logical parent/child relationships,

normally in terms of physical DBTU numbers.

FORMAT modules

DIS FORMAT modules have the simple function of convert-
ing Author Document material into SCHOOL Database
logical records. This is achieved in 3 stages:

(a) read in courseware data, either:

(1) interactively on a prompt/response basis

(or with the latest version of SCHOOL, via

a full-screen input facility);

(i1i) automatically from an Author Document file
as discussed in subsection 7.3.2, with
messages being directed to the Author's

terminal as processing is carried out;

(b) call Compression modules tO Process text.

Subsequent processing is in two parts:
(1) build Frame Data Block(s) i.e. encoded

screen format definitions - see Chapter 8;

(ii) compress display text;

(c) build a formatted logical record from the created

Frame Data Blocks (FDB's) and other course control

information. Once this is complete, control is

passed pback to CREATOR;

4.

N.B. Data .
base logical records are constructed within

the
FORMAT module Data Nucleus - visible to all

FORMAT modules ang CREATOR.

The range of FORMAT modules and associated logical

records are as per Fig. 7.8:

Fig. 7.8

MODULE CORRESPONDING LOGICAL RECORD(s)

FORMSDEF SCR (Subject Control Record)

FORMLDEF LCR (Lesson Control Record)
FORMLAR LAR (Lesson Analysis Record)
FORMSMR SMR (Subject Message Record)
FORMGDR GDR (Glossary Definition Record)
FORMQDEF POR (Primary Question Record)

FORMHINT HIR (dint Information Record)
FORMADEF PAR (Primary Answer Record)
FORMCOMM CIR (Comment Information Record)

FORMSYN SIB (Syntax Information Block)

Text Compression modules

Each block of text held on the SCHOOL Database is

encoded to:

(1) remove blank lines;

(ii) remove leading and trailing spaces from each line;

(1ii) compress text within each line;

This is known as Frame nata Block (FDB) format, and

conversion from author-input to FDB data is carried out

within DIS by 2 modules, viz:

BUILDFDB -~ constructs FDB'S from incoming text

(see Fig. 8.3s Chapter 8 for a full

definition of FDB structure) ;

- 181 -

COMPRESS - compresses text Strings within each FDB

(as per algorithm described in Chapter 4)

FDB data assembled by BUILDFDB and COMPRESS is passed

back to the calling FORMAT module, which then inserts

this into the appropriate part of the logical record

being processed.

N.B. Two complementary expansion modules (BREAKFDB

and EXPAND) exist as part of DFS, the Display

Format Subsystem - see Chapter 8.

- 182 -

i

chapter eight

- DISPLAY FORMAT SUBSYSTEM

INTRODUCTION

jor .
A maj area of neglect in many previous CAI Systems has been

that of presentation flexibility. Aall too often the poor
7 - &

visual interface between System and Student has resulted in

badly formatted instructional output, unprofessional appearance

and rapid loss of student interest.

To a limited extent, this has been a result of the restrictions
of the available hardware - teletypes, slow lines etc. Recent
hardware advances have removed most of these but only a few
CAI systems have utilised this extra freedom (e.g. IBM Inter-

active Training System), and often not as far as they might.

It was laid down therefore, that current terminal hardware -
e.g. VDU's, high speed lines, satellite printers etc. should
be used to the full within SCHOOL, placing as few constraints

as possible on the creation of instructional material.

COMPOWER TERMINAL HARDWARE

As of August 1981 the major terminal Hardware implemented with

Compower is as follows:-
vDU's - IBM 3270 range; .

Mellordata; ITT 3280 range;

DEC VT100; IBM 8775.

Teletypes - IBM 2741,
IBM 3767;
Anderson-Jacopson 832;

DEC Decwriter;

Itel 1051;

- 183 -

.3

These are ' i
online to a variety of host Systems running on a

variety of mainframes:-

Systems: VM/370 CMS (IBM)
IMS/DC (IBM)
VSPC (IBM)
TSO (IBM)
RSX-11M (DEC)

Processors: IBM 3081
IBM 3033
IBM 370/158
PDP 11/70
PDP 11/45 (several)

IBM 8100 ()

It is eventually intended to employ a wideband network (using
appropriate data communications protocols) whereby it will be

possible to access any system on any mainframe from any

physical terminal.

The projected number of terminals is in the region of one

thousand, the majority being IBM 3270 VDU's (or equivalent).

DISPLAY FORMAT SUBSYSTEM DESIGN PHILOSOPHY

-

The design philosophy of SCHOOL's Display Format Subsystem

(DFS) was established along the following lines:-

(1) DFS should be device dependent:

SCHOOL will communicate with each user in the optimum

manner for his type of terminal;

(ii) Author constraints should be minimised:

supject authors should pbe able to use terminal devices

to their full capabilities:

- 184 -

(111) DES should pe extremely efficient

- points (i) and (ii) should be implemented in such

& way that terminal display is as rapid as possible;

DFS DEVICE OPTIMISATION

Although there is a wide variety of terminal types online to
Compower 's Teleprocessing Systems, these are essentially split
into two groups:

(1) 'Graphics devices' - a misnomer: this is IBM term-

inology for VDU's similar to the
3270 family. Most are not graphics

VDU's in the normal sense;

(ii) '"Terminal devices' - all devices not in the former
group, including some types of

VDU and all Teletypes.

As soon as SCHOOL is invoked the Device Class is evaluated.
This is done by module CYBER, which requests the information

from the Real Device Block (RDEVBLOK) as held by the vM/370

Control Program.
Device Class codes returnable are:
X140’ - Graphics device

X'80" - Terminal device

N.B. Within each Device Class there are further Device
characteristics (e.g. number of screen lines, device
status, model number, etc.) but these are not currently

3

of significance to DFS, as all operational terminals

adhere to the descriptions given in Section 8.4.1.

. D i o the remainder of
CYBER then communicates this information t

SCHOOL by setting a flag (DEVTYPE) resident within CYBER's

. 1 ER_M'.
Data Nucleus of either rgraF' or 'T

- 185 -

Whenever SCHOOL subsequently displays information to the user,

it uses the DEVTYPE setting to determine the Display technique

required.

8.4.1 Device Characteristics:

Certain individual device characteristics are of

significance:

3270 VDU's (i.e. 'Graphics' Devices)

(1) Screen size: 24 lines of 80 characters;

(ii) Under VM/370 the bottom 2 lines are designated the

User Input Area, and as such should not be written

to by program;

(1ii) Under other systems, input may be in any screen

position;

(iv) Current screen contents may be erased (either by

programs or the user) prior to any write operation;

(v) Multiple lines may be written in one operation
(only marginally slower than writing one line) and
writing can begin at any screen line. This is
applicable up to a maximum of 22 lines (1760 bytes)

for VM/370 cMS, and 24 lines (1920 bytes) for other
systems;

(vi) Extra (optional)facilities which can be supported

are:-—

Selector (light) pens

audio alarm

Function buttons

- 186 -

Non - 3270 devices (i.e.

'Terminal’ devices)

(1) Variable line sizes:
Mellordata vpy - 72 (22 lines)
Anderson Jacobson - 130 or 155
IBM 2741 - 130
Itel 1051 - 130

(i1) 1Input is always at the bottom line, the paper
moving up accordingly, or in the instance of the
Mellordata VDU, the complete screen contents

move upwards (the top line being lost).

(iii) With hard copy terminals obviously no erase
operation is possible, but with the Mellordata
screen erase as for IBM 3270's is available.

New input then starts at the bottom of the blank

sCreen.

(iv) Only one line may be written at a time, although

blank lines may be generated by imbedded Newline

(NL) characters;

8.4.2 Display techniques

The process of displaying SCHOOL data at any terminal

is split into two parts:

construction of Screen Buffer from the message data;

(a)

(b) display (device optimised) of the Screen Buffer

contents at the terminal.

erall organisation.

Fig. 8.1 overleaf illustrates the ov

- 187 -

butssenoxg Kerdstd sdaa

caojuaedos oseuao j

‘spurpmaN poppoquil ~Sessout
‘suonipaodo drram N

poivaauad - weadoad
0.2 ~uou

—+- ¥344N9
NEERR:N

oo - S~ |35va
CELS &R vivda
vonerado aylam |

1’8 "614

188 -

Th i

€ Screen Buffer is currently 1760 bytes in size,
representing 22 lines of 80 characters. This is a
, .
compromise' between the restrictions imposed by the

various host systems under which SCHOOL can run. It

can easily be altered.

Message display (handled entirely by module SCREEN)

now depends on the characteristics of the active

terminal device. The algorithm below (Fig. 8.2)

illustrates the logic:

1
Get required message

Y

Build up temporary image buffer

V

? Terminal type normal
3270 l
? Is erase required No
____.X?f—- ? Is erase raquired '
Yes
No
No ? Wwill this message Tit Type multiple NL's
r"‘““""“ on the current screen and separator line
, |
Srase screen l
contents, 2mpLy Yes

Convert blank lines in

screen buffer buffer into NL characters

r
Move temporary image

Type buffer contents

into screen burfer

Display screen bufrer
on required line(s)

|
-

Exit

Fig. 8.2

Displayv lcgic

- 189 -

Notes on the preceding algorithm:

(1) All 3270 display operations are carried out via
CALL's to IBM routine DMSGIO (Release 2). This
requires the following parameter table:

Address of Screen Buffer

Start screen line number

Number of bytes to be displayed

Erase/Cancel flag (normally 0 - no erase)
(ii) 3270 erase operations are also carried out via

DMSGIO, with the Erase/Cancel flag set to 2.

Current screen contents are immediately cleared.

Whenever an erase operation is executed, the
existing screen contents are stored imr a backup
puffer for subsequent recall (if requested via

*RESCREEN Immediate Command - see Chapter 11).

(iii) Frase operations on non-3270 devices are simulated
by typing 10 blank lines, a line of 50 asterisks

and another 10 blank lines.

Wwhenever the Screen Buffer contents are to be

typed at a non-3270 terminal, embedded blank lines

within the buffer are generated on the device using
NI characters.

No lines of spaces are typed.

8.4.3 Hard - Copy facility

Each VM/370 user has configured within his Vvirtual Machine
ac

2 Virtual Line Printer which can be used to take a hard-

copy of all terminal I/0, normally unformatted.

- 190 -

DFS 1 i i i

S has built into it a mechanism to make use of this.
At the discretion of the System Controller or Subject
Manager/Author, a flag can be set by which all Terminal

Input/Output is simultaneously printed on the virtual

line printer.

The production of this hard-copy is controlled by the
current setting of HCFLAG, a l-byte field resident in
module CYBER Data Nucleus. Settings are:-

00 - no hard-copy

01 - hard-copy produced

The HCFLAG setting may be defined at any level above

that of student, i.e.

ALL LESSONS PARTICULAR
ALL WITHIN LESSON WITHIN
SUBJECTS SUBJECT SUBJECT

SYSTEM J/ J J
CONTROLLER

SUBJECT J J/
MANAGER

LESSON /
AUTHOR

The exact format of the generated print depends on the

type of terminal being monitored;

(1) 3270 devices:
output 1is sormatted into 'screen boxes',
simulating the original appearance of each

VDU screenful. These are generated whenever

a screen erase is executed.

Examples overleaf:

Sample Hardcopy screen 'boxes':

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG
SCREZIN 2
1’33 2.3 3832832333323 .
’(!i!iﬁ(iﬂ**i*!*!%x*!*?“!%!i!!!!**!x!l!!!i**xxx!&)‘&x;‘*l‘(lx!x!t(\(
0 % b
1 % :
2 % COMPUTER POW - . b
. ER TRAINING SCHOOL CAT SYSTEM (VERSION ML/1.91) .
4 % *
5 % .-
6 X 232323 222333 22 x
7 % 23222232 53232233 33 gg aggaaaa 233333 a3 *
8 * a2 Aa A3 33 33 22323 333232333 23 %
g 233 22 B3 R 323 A "
LA a23aa 22 22222223 23 23 3 33 .
11 : 23333 A3 22223233 23 32 a3 33 2 x
12 " 2 a2 22 A3 FERT 2 FERFF) x
1 13330503 33323003 33 W3 I F L p
is x aaafmaa agggggga gg 32 22222333 222232233 23333333 x
16 a3 223323 323333 22222223 <
17 :
18 % ENTER OPERATION MODE:- <
19 % AUTHOR :
20 % ENTER PASSWORD: M
21 % ELANS3 x
L
llili‘!?‘.)ﬂll!i!i)‘,)ﬂ(“.!!!(!)ﬂ(!!!!.\(l!!!!l%!il*!l!!‘lll%!%%!!l?‘X!*)‘!!."(“!’()‘,?‘,!(KKK‘!¥K!¥¥_“_¥_¥:
c
SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 6
l)()()‘!i!lil)()()()U(!x)(!)(llx!l!!lll!l)ﬂ‘!)(Kl)(l!)()()il)(lllll)(l!l!!!X!!!!K!X‘X!l*!l!!!ll**l‘(lll:
o .
0 % AUTHOR FACILITY: SUBJECT DEFINITICH *
1 » !l!ll!llllll*)‘)ﬂl M
2 % ENTER SUBJECT NAME: x
3 % TESTRUN x
% % ENTER ALLOCATED SUBJECT REFERENCE NO. x
5 % 964 .
& % ENTER SUBJECT MANAGER DETAILS: :
7 % NAME? <
8 % MIKE LITTLE x
9 % LOCATION? o
DM *
}g : ggi‘;g“%ﬁmonucmm TEXT - TYPE A COLON (:) WHEN A BLANK LINE IS REQUIRED o
12 * N *
13 % DEMONSTRATION TEST suaé;c%j o
ig x pESt® (1) SHOW SUBJECT DEFINTTION SERUENCE X
15 ¢3) ILLUSTRATE HARD=COPY FACILITY b
17 % %
13 o
19 « p
20 x -
& X »uxmu:
:“***l*‘)ﬂ“*‘,‘l**,‘)““**;‘(-‘x‘(!xlllll*l!!l‘lxill)‘!i()(!?ﬂ‘!i&!ll%l*!*!l!l‘ll!!)ﬂ(lx. 3

(ii) Non-3270 devices: ‘
Non-3270 devices:

each terminal lipe is output to the virtual line

printer as it is Created;

Newline characters are replaced by special

printer control characters:

0 NL's - x'40! (next line)
1 NL - X'FO! (one blank line)
> 2 NL's - x'60" (2 blank lines)

N.B. Many other examples of hard-copy facility
output may be found ‘throughout this thesis

and various Appendices.

DF'S AUTHOR CONTROL

The majority of devices on-line to Compower Teleprocessing
Systems are VDU's, usually IBM 3270 type. For this reason the
Author considerations within DFS have been orientated towards

screen terminals.

as detailed in Chapter 7, SCHOOL courseware is created on
special Authcr documents designed to provide much better layout

control than would be possible using an Author Language.

Various Author documents can define 'plocks' of text:
Number of lines

Document . (of 70 characters)
Question definition 16
Subject definition 5
Lesson definition 5
Hint Information 4
comment definition 2

3

Glossary definition

- 193 -

and whatever is coded in the appropriate block is displayed
by DFS in exactly the defined format - although it may be

stored by the System differently. This gives Authors

virtually complete control over the format in which data is

presented to students, as the following examples show:

/see the following 2 pages

- 194 -

= = FORM NO. $/001
Will“l“l!! 1-10 ..ﬁ 1120 _ 21-30 31--10 AT-50 51..60 or-70 =
== [b 3 5 AT e D e A G e e P e e el b A W el W R B R A G B G e B U E T

ot

IH

e T T _NESTRERPM BELBW 1y, MUAT, ILS _THE MASIT_COMMAN FRERVEMCY 1 |t

Ii‘
|

= 07 2 s
== e lias ;n. ANGEL (2 L.,,.i_ RIS S .r._ e e e b .I_-.rrv_L!r N R ._x W B T vl
=== 03 M“nﬂl.ll.“'..

|

NN AR _ el .!.Ll..,_i.L b _...!r(.l_r_,:. I PN e _1.;_(7.-i_ b, | Y

ii{

|

o1

|

SN . _._..-i.r.—:_l— AL .—!IPLI-.I.-I_.\...‘—lL[-l,—llulnlr- .»~ RS B W) (—[| I SN n.l\—[_l\r‘—,lr-lr.— ..—Isl-,.s—l -..._I.P:ri.l_. :_L[r—lrl—[-l.rl.'_f

L

05

== v Do e ddaos e Ao oo e o e e oo Lo, === I A
== 06 ===
== N R I_L.u.n_L-—..LI_I.I_L-..LL- ovecea o does e s Lo b e doeaoac b L, et (W RTR AR

= 1, PRI ARYPYPININ FYRTATIN SPRATITTS AU SIS I S AATUN IUR SR OO IR ok 3. 17.:v.. 1.1 3.5 o IR VAT NI I == DR ST
= on ==

= b oo oo e bosase e Lo qw._i_l.i.r_lh!r.i.x_.‘.LL.LI._I.I..L.FI_L!F.-. Lo EEe= e,
MHI”|I|1H ” ...l.l.,L.‘._‘..l.:......_ L,L;,elpl‘l-lplh.d.l_w_x.u.ma‘mh.m—&.W—*f.ﬂﬂ._l.\lf«r.4..—1.].[,)_.. %%Li-l_l. Llu«tiﬂ«hﬁ?%uﬂﬁﬂﬂ.%.&—gﬁlhlrr.r»_lbl.;...)—l [W TS O R O T D N |

|

I

FET TSI BRI TSN T S S —W\.,LI.{LI_!‘:.:..‘.&_ﬁrm&.ﬁ..w_m.*_%&.w #.1.!..L4r_|.lr-’.*— ,..Ll;i.!—(.).l..bu.—,.,_(.l.. o A

!
|

e

NN I B _ [D T

[} Llnf—v._!-(11

Lo, —.._{.v 1.t

s b | I

W " ST .{_...\.LLl_I.ibLl.L,»n!.l.LLi.n-LlhfLn.l_!_i_.._:..._....w,n BRI AT ETITO AU AR v b

= B P TR L A X Y T2 7.7 A I | I Y. O . TR T, L v Ve

= i R T ST I TP BT | I ... P IR TAM SN I DO I _

= " A SRR R AP E OG0 NS AT R ISR [RE XA ANt = b ¥

= I L PPN PPN PSP IPEPIPUY - SN IRSURON . SYSPIE IPEREPITIE = SRUPPE IR |- SOTIPSE IRUPRNPIR r AT BT W“MMM) e -
il ISP WP PPN EPPIP PR WIS BAPIIP I TP IS I SRS B B = R _

71-80

WIRIAER]71RRLO

PEFEETE W

HINT
PENALTIES

= QUESTION wft HINT ‘%,.‘\: ok
== No. THRESHOLDS 7
A B C

SCHOOL

3

Autnho¥r Joculellt = nXample A

SYSTEM

11 11 FEPETETES AP

=\ easy hard - -question
== definition

71 -80 o ==
SCREEN sz SEQUENCE: pav Y MAXIMUM DEEY RN izl [el T 1A)5]0 E—
ERASE REQD. Normal Remedial SCORES e

[. J

NB: Only punch lines coded within columns 1-70 AUTHOR:

Always punch cards 17and 10

il ndb S e K

FORM NO. S/001

== [P B i 11 2 20 3 A G G e A e S o I R o o 0 o £ B R R B I B
= T TN TN e FRLL B RG, SRR, CRPEN Gyl WML STMNTEMENT, | i L
— L L 1SANTRIAS A ERRR 1 E e | L Lo Lo o
= “f -_- NI IR T IR INNPIPE IUPUTIT BUPIPET I IR I
= o~ et s e Laao oo oo b e oo o oo e cn e as i

=== o5

013,699 0 e koo el s b o Vs e Laooa e,

L

|

ar

L
2

i

= JURTIPRTIN TSN RYSN BYATETEES BYS ST RSN NS SEN NSURE SN MR RTSUN [N SRR (SRR SY T I
o oo Do Do o s foase s Lacaca s oo o o s
= o ENTER] THE, SEQUEINCE NUMBER LOF, TIHE, STRTEMSINT, WAESH & 1 o faa
=== X 1.l.y...\...._|_|-|_i.¢— L!.‘\r.i_Mmﬁ-{yr%.ﬁh_—m1~ﬁmr-ﬂz_.LM@?@?EL}—L{.{PL 1_.‘—.1[!.!_ sl K.,l.n.r— N

L

Py 1-10 1-20 21-20 31-490 A1-50 — 5160 61--70

- (_([S U b
- _'r.-l.-iL =

..-.:_ R DU O W W

O PO 5 | EE LN SN LIS, BRENTER TR, AT PEREBRM,_DImHE ADIINGS «| o
13200 | PERFPRM_BIZRITENLING | Ll o Lo e occ e b s
P3300 i | SSERFRRM L& FINAMLLINE Sy i U s | Lo d oottt o e Lo,
=] LA e | ST LROMNG i oo o focaca s fas—ce A s e Lo e

- .—.t-.an- —b

FICETECE I .!_f., s oo oo s e caec s ac oo Locieass o e

UL EL

t _l—.A-rl_n L

_|—|—|»l-.l—.

-.I—.LL!»L..

A —l..Li.l.‘
U _l-Ab-i-\u
ol aaa

1 »—..-l_ N

I

e

[) J.J_ Aty

.i_.v_iu.x_..-yv | I S
I Iy _.y., RN}

3o -:_!.i_ I N S I
IS L B -l— IS DR S o |

I I
FREERATE ISR
o s
oo b s
SA) v_]»!_i.,...- nl
1.1 -.1-.‘—\— T

1.2 -L‘.—_Iww_:-.

.‘._‘b‘_‘. vt
RTUTIET ARSI

veaaa b

TN

MWH. " e e e b oo e e e Joeasac oo e Lo Do e e s :

.|l|.|.“.|.‘|||h. had~._~.h.-r-—_..._._.._uP-.—.u-.__..._...._...._....—..n.—F..._... m
= , i ==
== QUESTION [olf] HINT e HINT JEEUR DRI ===
= No. THRESHOLDS w 7 PENALTIES oy =
= A B C —
== g0 =
==l SCREEN o 1fiz SEQUENCE: [z Pl MAXIMUM PR hsehs 1713]3 1546 7151010 =
=\ ERASE REQD. |, | Normal Remediial SCORLS A L =
=\ easy hard e

NB: Only punch lines coded within coltinins 170 AUTHOR: _

SCHOOL
SYSTEM

- Qcmmzo:
definition

4

_J

Always punch cards 17and 18

- 196 -

DFS EFFICIENCY CONSIDERATIONS

SCHOOL's Di
isplay Format Subsystem is designed in such a way

to ensure that P e o
the flexibility of display offered has minimal

impact on the efficiency of the system - typically in terms

of text storage.

Consider the screen definition as at Example A. In the format
defined, 15 lines of 70 characters are used, i.e. 1050 bytes.
Certain steps can be taken to reduce this:

(a) Compress text;

(b) Remove blank lines;

(c) Remove leading spaces;

(d) Remove trailing spaces.

Carrying out all of the above processing has a marked effect
on the storage reguirements:-
(a) Compressing text:

- text occupies 65 bytes (including punctuation and

embedded blanks) .

- assuming a 25% reduction, this could be held in

49 pytes (saving 16 bytes) .

(b) Removing blank lines:

-

- 4 of the 15 lines of screen display are completely

blank and can be removed - a saving of 280 bytes.

(¢) Removing leading spaces:

- this can be carried out on lines 1, 2, 7, 8, 9, 10,

11, 12, 13 and represents a saving of 175 bytes.

(d) Removing trailing spaces:

this can be carried out on lines 1, 2, 7, 8, 9, 10,

30 bytes.

11 and represents a saving of 1

- 197 -

The total amount of storage that could be saved therefore is

601 bytes - representing a Compression Factor of 57.24%.

Applying the same process to Example B, reveals an even larger

Compression factor of 695 bytes over 13 lines, i.e. 76.3%:

(Operationally, control information will erode this slightly).

Although the two calculations above constitute only a small
sample, they serve to illustrate the effectiveness of the four
storage reduction techniques in respect of screen displays.

These have been implemented within DFS via the concept of

FRAME DATA BLOCKS.

8.6.1 Frame Data Blocks

All displayable data resident.on'.the SCHOOL Database,
irrespective of function, is held in FRAME DATA BLOCK
(FDB) form. This is a device whereby any screen display
can bestored with all previously discussed compression
techniques applied, and a typical FDB structure is as per

Fig. 8.3 overleaf:

- 198 -

£°8 ‘bra
!
viep aury yud V!“
1
!
|
|
'
XX XX
9DU0 5andd0
I | \
>t)p 2ul] 1S Ean) 1
eiep duly pug i eiRp 2ul] 1S] i |
| 1 |
] 1 GBI
) Vosoury !
i ‘ou 1 cou ¥
1 ‘1ed 1xes | i
i ! |
H ! !
[" _
| (possoardulodun /posssadwod) 1x91 H !

LR N NN N N
W(\./,xxxx

XXX X~ T XXX

X N4

f1X21 ur s214q cou

TOU DUl URLAJdOSs

‘ou ‘pr dWwed,|

a1monns ga4d

199

Notes on Fig. 8.3

(1) Frame identification No:
—=201° ldentification No:

for Question text this will contain the question

no. (e.g. for question 7, it will contain FO F7);

for other types of data:
bytel contains X'FF'

byte2 contains a numeric text identific-

ation code:

00 - Subject Introduction

01 - Lesson Introduction

02 - Hint Information

03 - Answer Comment

04 - Global message

05 - Subject message

06 - Special Category 1 (e.g. SCHOOL header)

(ii) No. lines (p):

- the number of non-blank lines in the display,

- bit 0 is the 'Erase Bit', with settings:
0 - no screen erase

1 - erase current screen prior to

displaying this frame.

N.B The effect of the Erase Bit may be overidden

py the System if necessary.
, binary)
(iii) Screen line number: (1 byte v

1i number on screen (0-21) on which the following
- ine

text line is to be inserted - as defined on the
ex

nor document. This may pbe altered by the System
Author :

. i 3 . E] .
’f ee ey ase 1S quues te an 1 1s Inessage
1 o SCX

will fit on partially used screen;

- 200 -

(1v) §E§£E_EEEE§E_EE§93£: (1 byte, binary)

character position (1-70) on the defined linme

of the first non-blank character;

(v) No. bytes in text (N) : (1 byte, binary)

number of bytes in the line text (either normal
Or compressed form). This will normally be no
more than 70 characters, although certain special
function messages may be up to 128 characters

long (resulting in screen "wrap-round") ;

- bit 0 is the 'Compression bit', with settings
0 - text in normal form

1 - text compressed:

(vi) Text: (N bytes, EBCDIC)

- screen line text in either normal or compressed

form (see Chapter 4).

N.B. Items (iii), (iv), (v) and (vi) are repeated

for each text- containing line in the display.

8.6.2 Frame Data Block Encoding/Decoding:

To create FDB's from Author-provided text, and to break
them back down, two interface modules are involved:
BUILDFDB - create FDB's from formatted text;

BREAKFDB - Dbreaks down FDB's into screen buffer

form.

Fig. 8.4 illustrates the relationship between these

modules:

- 201 -

SeTNpoWl UOTSIADAUOD

ISVavlvd
TTOOHIS

78 bra

ANvVd X3

ddINv3dd

ga4daing

A
¥

GSIAJWOD

. ,.i._..i._.—,._,,_u..._w._‘.w a

A444Nd
NA3405 4~

1X34
INIWNDO0A JOHLNY

- 202 -

N.B. Modules COMPRESS and EXPAND (Text Compression

and expansion) are not always utilised - this is

dependent on the type of text being processed.

DISPLAY FORMAT SUBSYSTEM STRUCTURE

It now remains to define the overall DFS structure, its

relationship teo the Data Input Subsystem (DIS) and the function
of individual subsystem modules. Figure 8.5 should satisfy

the first two points: see overleaf.

- 203 -

R R e T

hip and component modules.

DFS/DIS relations

Fig 8.5

WILSASENS

AP_S panty)
JVYIWHOL AV1dSIa

JILMNIAA

IVYMIWAFL

i
REVRR RNV ENEN

AIDITE e ley B

Kopdsip NATHD
44395 (s

wapuoadap - an1AD()

ANVAXT | | ——>1 | 9a3AVIdD

AOLINOW “BOLNL AFUAAD "9

sampou apdnynur vro.y paggmd

204 -

1.1 Sunwrodaodur -

SSTANNOD __
Ll ﬂvw [w003 g/a | M/

K 1

|
Sajnpow

LVNAOS /
: HOLYIND

da-saind
(wonidung

UOTIND.D parsanbod)

Y

3IGAO
WSINVHO3IN
1NdNI V1LVa

Notes on Fig 8.5:

(i) Database interface modules (i.e. WRITER, READER
and MANAGER) are detailed in Chapter 3;

(ii) Full details of the Data Input Sybsystem (DIS) may
be found in Chapter 7;

(iii)

The organisation of modules EXPAND and COMPRESS,
although part of both DFS and DIS, are discussed
within Database Text compression/expansion

techniques, Chapter 4.

8.7.1 DFS Modules:
The constituent modules of DFS, and their functions are
as follows:-
(a) SCREEN
Function: To output information to the terminal,
optimised according to device type and
to provide a simultaneous printer hard-

copy if required.

Input-parameters:

(1) A(DISPLAY) - address of data to be displayed,

held in eother:

) FDB format

[%

(

non-FDB format - termed 'Information Block
format' - This has the form:
Bytes 1/2 - length of text (max 1760)

Bytes 3... - text (uncompressed)

This latter form is commonly used for

System messages as it involves no FDB-

decoding, and is therefore slightly faster.

- 205 -

(2)

DISPCODE

bit 0

bit 1

pit 2

display code. This controls the way

in which SCREEN interprets and displays
the data. DISPCODE is a l-byte binary
field, individual bits being used as
separate switches:

Erase Bit.

0 - no screen erase. display data

on current screen.

1 - erase current screen contents
(& store in backup buffer) prior

to screening defined display.

N.B. The use of this bit is only

necessary when displaying in non-

FDB format.

FDB Bit. This may be set as follows:

0 - data in standard FDB format
1 - data in Information Block (non-FDB)
format

Rescreen bit. Although this will work
on printer terminals, it is only strictly
useful on VDU's. The settings are:-

0 - normal SCREEN operation

1 - rescreen contents of backup, i.e.

screen contents before last erase.

The rescreen function involves the use of
packup and temporary screen buffers, and

the current screen can be reinvoked. (See

Fig 8.6 overleaf) .

Fig. 8.6

Rescreen function

TEMP 1
CURRENT
3
BACKUP 2
bits 3 thru 7 - not as yet used.
(3) HCFLAG - hard copy;
1 - Dbyte field with settings;
00 - no hard-copy required
01 - produce hard-copy of all terminal I/0
(4) DEVTYPE - device type code; a 4 pyte field set according

to the active terminal type:
'GRAF' - VDU devices, typically IBM 3270's.

'TERM' - start/stop terminals.

Output parameters None

rher information on module SCREEN is

Notes: Fur

detailed at Appendix 8.1

(b) BREAKFDB:

se Frame Data Block into a

Function: To decode a databa

terminal image puffer

- 207 -

Input parameters

A (FDB) = address of the FDB to be decoded.

OQutput parameters:

A(IMBUF) - address of the puffer containing the generated
terminal image; normally returned via Register 1;
L - No. lines in generated display, including
embedded blank lines.
X - Start line number of display. This is the

line no. of the first non-blank line generated.

Logic BREAKFDB's logic hinges around the use of a Dope Vector
to convert a line number L and column no. C (extracted
£rom the FDB) into a relative displacement from the start

of a Terminal Image Buffer.

Assuming that screen line numbers are in the range O - 21 and that
column numbers are in the range 1 - 80, the displacement D of

column C, line L may be calculated as:

D L * 80 + (C - 1)

80 * L +C -1

For further details on BREAKFDB, see Appendix 8.2

Appendix 8.3 illustrates SCHOOL session extracts on a non-3270

terminal.

- 208 -

chapter nine

- TUTORIAL LOGIC CONTROL SUBSYSTEM

INTRODUCTION

The purpose i)
purp of this Chapter is to discuss that part of SCHOOL

which controls the 'tutorial dialogue'; Fig. 9.1 gives an

overview of this:

Fig. 9.1 Tutorial component overview

Control parameters
(PROCEDURE)

Instructional text

(CONTENT)

COURSEWARE

SCHOOL Database

Tutorial \
Dialogue \
Control A 8

Student
Audience

led by the Tutorial Logic

Within SCHOOL this function 1is hand

Control Subsystem, O TLCS .

- 209 -

9.2 TLCS FUNCTIONS

u CC.LOHS:

(i) handling student registration;
f
(i1) processing SCHOOL Database courseware

controlling t i i
g the delivery of instructional text as prescribed

by the Author;
(iv) processing student reponses;
’
{(v) rovidi i ini
o) iding and maintaining tutorial monitoring facilities;

(vi) controlling special student facilities;

The inter-relationship of these components is shown in Fig. 9.2:

Fig. 9.2 TLCS FTunctional 3reakdown
Courseware
Zxtract/
Update
Monitoring
Facilities

Tutorial Manager e — Student
Registration

TEXT Delivery
control

STUDENT A

REPLY A

(In) Response o
orocessing 42// i STUDENT

SPECIAL

ACTION % ‘

(In)

‘ Special
request /

nandling

- 210 -

Notes on Fig. 9.2:

(a) the Monitoring Facilities are effectively 'parallel' to
the main processing of the Tutorial Manager, and are called
as appropriate, depending on the monitoring features
selected by the Lesson Author;

(b) several Service Functian Subsystems are invoked by the
various components of TLCS, i.e.
Courseware Extraction - DIOS
Delivery Control - DFS
Response Processing - KRES
Special Requests - ICES
(refer to Chapter 5, section 5.4.2 for an explanation of
the above).

{c) Special Requests can be either:
(1) temporary interrupt - normally a request for information
or

(ii) permanent interrupt - a request for action which will

have some effect on the session progress/sequence.

9.3 TLCS ORGANISATION AND LOGIC

The overall logic of TLCS can be summarised as in Fig. 9.3:

- 211 -

from System Manager

l

Fig. 9.3 Tutorial logic
roc Control Subsystem
ess organisation.
stuaent
registration
9.3.1
Extract END
relevant
courseware l
9.3.2
Closedown tutorial
1 session
Display
text

Return to System
9.3.3 Manager

Wait for, and accept

response
NO
?Normal
Yes 1
Execute
special
Process student
response response
9.3.5
1
NO

?temporary interrupt

l YES

Update
Monitor
statistics

9.3.06

Tdentify next part
of tutorial
sequence

|

- 212 -

Within Fig. . i
g. 9.3 the boxed ltems represent the six main functional

components described in Section 9.2, annotated with the

associated subsection number,

9.3.1 Student Registration

All students identify themselves to SCHOOL via 3 parameters:
(1) subject being studied;
(i1) name)

) both 15 characters long.

(1ii) location)

-

These are interpreted by the system into a unique 4-digit
student id. XXYY (where XX is the subject reference
number, and YY is the student number) which is used for
internal identification purposes - in particular accessing
student performance data, namely:

SRT - Student Reference Table

SPR - Student Performance Record
The outline logic of Student registration is illustrated

by Fig. 9.4:

- 213 -

Fig. 9.4 Student
Registration logic

Display Student mode header

Request & accept Subject name

L

? Valid entry :
YES 1
Clear screen, display Error message
Subject Header l
Subject 1
Control |=======—=-- Read SCR
Record
\]
Display introductory text
Student f
Reference |—— — - —Read corresponding SRT
Table
i
Reguest & accept student
name & location
l . . NO
? Student details in SRT
|
Student v ‘
Reference |—-——- —Read corresponding SPR Check with user
Record that entries NO
correct
' .
Extract status information vES
\ 4
Create SRT entry
| |
Create new SPR
Y
Set status to 'start’
values
b=

Return to TUTOR

- 214 -

Notes on Fig. 9.4:
i .

(Student status information (as extracted from the

appropriate SPR, or newly-created) is held within

the Student Status Block (SSBLOK) . The format of

this is identical to the SPR, plus Subject, Student

and Location names;

(i1) Full details of SRT and SPR contents may be found

at Appendix 3.1;

(iii) Some aspects of registration logic (e.g. checking
for a full complement of students) have, for clarity,

been omitted;

(iv) A typical registration sequence is as follows:-

HOWVWRNPUIDUNFOVR LTV RULUN D

[y Y e

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 11

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxvxxxxxyxxxxxxxxxxxxnxxxxxxxxxxxxxxxxxxxxxxxxxnxxxxnxxx
*

X

SYSTEM SCHOOL - VERSION 1.02 *

(33333333510 X 260006 2 MK MK R

3331333333383 000
* % DATE: 95/04/82
% STUDENT MODE *
* * TIME: 13:31:05
X6 6 3 0606 06 X XK

*
%
* x
¥ %
* *
* ¥
® *
* *
% *
* *
* *
% ENTER SUBJECT NAME: *
%X FUNDAMENTALS :
*

%
x o

*
x *
X ¥
x %
x %
x %
x ¥
x x

llel!lelXlllllXl!llll!XllXXlllll!HXKKKKIXxil!Xl!!%xililliﬁkKﬁl!Xlll*!!lxxlx!xll!xx

- 215 -

AW NAUVLWUNNHODORI NIV PR UN-S

PO N e et et e bt b bt bt bt

SCHIDL SYSTEM AUTOMATIC CONSOLE LDG
SCREEN 12

36000066 KM M M0 MK M N MM N
b > L2 3.8.3.3 3 ¢ 4
. XKX!K!Xl!lXXXXXXXX!!XXXXXXXKXKKKKKKXXKKx!XXXXXXNN‘

SYSTEM SCHOOL b v
236 360 06K K K % K ﬂsziigzxiigi

MODE: STUDENT
SUBJECT: FUMDAMENTALS

THIS SUBJECT IS A SERIES DF 6 SHORT LESSONS, EACH AROUND

15 MINS. LONG, DESIGNED TO IN
ety ;0 TR o TRODUCE THE COMPUTER AND ITS

ENTER IDENTIFICATION:
MAME?

MIKE LITTLE
LOCATION?

*
*
*
*
®
*
*
]
*
*
*
*
*
*
X
*
]
¥ COMPOMWER
X

*

*

*

*

*

*
%
*
b
*
»
¥
X
¥
¥
X
%
*
*
L3
*
*
*
¥
*
*
*
*
%
*

P62 HHE DT T 0 0 233206 2 I 263K H 06 266 I 26 2 2 26 3K 06260 36 36 306 36 06 06 0 26 D660 X600 0606 M 60 K K X MR MK KN NN ¥

YUV PUWUN—T

B3 N bt b bt it et e bt et bt b
—HOWVWENOUDWN D

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 13
36 3603 3 36 0626 36X M 6 266 6 3 066 K6 2606 26K 3 36 KK 3 I I X6 363 36K MM K M0 3 I D0 X0 203 M08
%

*
SYSTEM SCHOOL/1.02 SUBJECT: FUHDAMENTALS *
XK KKK KKK NN N *
*
¥
*

SUBJECT RECORDS SHOW THAT YOUR STATUS IS:

L3

*

*

*

*

*

*

* NAME: MIKE LITTLE X
* LOCATION: COMPOWER x
* LESSON: 2 P
* FRAME: 6 X
* TOTAL DURATIODN: 0:26 (HH:MM) *
* COMPLETION TYPE: XSUSPEND "
»* X
X PRESS ENTER TO RESTART LESSON 2 x
% OR ENTER 'RESUME' TO CONTINUE FROM FRAME 6: x
¥ ==>

¥ XRESUME x
x *
. b3
. h.d
x ¥
x *
% L3
¥

¥X*XX!KKXX*X!XNKKXXXXXXKKKKKXXXXK!XXKKXKX!XXKKXXXXXXXXX*XXKK*KKKKKKX*XXKKXKXKXXXXXXX

9.3.2 Courseware Extraction

The mechanics of extracting course material from the SCHOOL

database are fairly standard, i.e.

- estahlish the database address of the required logical

record;

- pass this to pDIOS, the Database Input/Output Subsystem;

- 216 -

the i .
appropriate contiguous logical record is then

returned to the calling subsystem.

The i ; . ,
& lmportant consideration is how these operations are

controlled and sequenced. This is achieved via several

tables resident in the Tutorial Status Control Block (TSCB) .

This contains:
(a) General status information:
- lesson number
- active scoring mode and passmark
- numpber of frames
- current frame number

- tutorial frame sequence (normal and remedial)

(b) Pointers for all relevant logical records:
- held as the Tutorial Pointer Table (TPT) and
Frame Records Table (FRT). The TPT holds

pointers to:

Subject Control Record (SCR)
Student Reference Table (SRT) *
Student Performance Record (SPR) *
Lesson Control Record (LCR)
syntax Information Block (SIB)
Lesson Analysis Record (LAR) *
Glossary Reference Table (GRT) *

N.B.* indicates those records which may be updated

during a student session.

The FRT holds pointers to all frame logical records

(i.e. Question, Hint, Answer and Comment) within

the active lesson. This information is extracted

from the corresponding Lesson Control Record.

- 217 -

(c) Frame Analysis Table (FAT):

stores information on the performance of each
frame within the lesson (if lesson analysis has

been invoked). This information is extracted

from the corresponding LAR.

(d) Syntax Definition Table (SDT):
defines the syntax processing to be carried
out on incoming student replies. This is a

complete copy of the corresponding SIB logical

record, if this exists.

The Tutorial Status Control Block is part of the TLCS

Data Nucleus, along with an area used as the Frame Record
Buffer. Logical records extracted by DIOS are transferred
into this area for subsequent display and processing.

N.B. For an accurate definition of TSCB structure,

see Appendix 9.1.

9.3.3 Text Display

Text displayed to a student during a tutorial session

includes:
- guestion or frame text;

- additicnal (hint) information;

- comments on a student responser

- information returned in answer to a special request.

Actual display is under the control of DFS (Display

Format Subsystem) in the normal way. although certain

further considerations can apply:

(i) the author can force & screen clear for each frame;

(ii) TLCS will subsequently attempt to fit all related

material on the same ScCIreen;

- 218 -

iii .
(1ii) special request responses can be either:
- on i
the same screen if appropriate (e.g. hint

information);

- Oon a separate screen to avoid breaking

session 'flow'.

Fig. 9.5 shows the sequence of events producing a display

at the student's terminal:

Tutorial text display sequence

rig. 9.5
SCHOOL
Database
TSC3
DI@S
TRT g
\ TLCS
2 Read request
(+ pointer)
Frame Record buffer ///
Get DBTU

pointer for
required record

text e 3 Logical record
returned

4 pass display text
(in Frame Data block

format) across.

./(/’/’zﬁjiii:;j\\\\\\N
DFS

text

- 219 -

Some s .
amples of text displayed during test sessions

follow:

HOWRNANADUNTHOOVR ARV R UN D

Y N L S e L e

SCHOOL SYSTEM AUTOMATIC CONSOLE LO0G SCREEN 31

26 32 2026 300X X MM %X
!NNXXNXX!!X!KK&XXXllXXX!XX!XXXX!XXXkXXXXXXXK!XXXXNX!!!&!X!X!!*XX¥XKX!

SUBJECT: SCHOOL TESTING LESSON: 2/SCHOCL DATABASE FRAME: 8

THE STRUCTURE OF THE SCHOOL DATABASE ROOT SEGMENT IS AS BELQW:
309 2633 23 X 3 3% 00X X
¥ MASTER COHTROL x

b} RECORD *
LEEEEEEEEEEEEEEE S E T

:xxx;n?xxxxxxxxx LEEESTEEEEETEEL T 0003 30063063 X XN
X %ABT%P : : gUBJECT % * GLOBAL X

EGMENTS % X *
32056 3 33 30 34 3 X X % BT EEEEELEEL L xxxxgggiigsixxxxx

*
*
x
x
*
*
L
*
x
*
X
*
*
*
x
*
*
%
*
%
; /PRESS ENTER TO CONTIHNUE
b

%

*

«
*
%
%
X
*
*
*
*
*
¥
*
¥
<
%
X
*
X
X
*
%
Ed
*
%
*

30320 K063 20200063 I D3I MO HOE I N IO 3 HOH IO YO0 NI I IO X I I3 3 0 3 X %

OOV NAUNLUNHOOR NIV RARUN—O

N R0 4t b 1t s e et et et Bt s

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 35

nxxxxxxxxxxxxnxxxnxxxxxxxxxxxnxx

SUBJECT: FIRST AID LESSON: 1/TYPES OF INJURY FRAME: 2

BURNS AND SCALDS

x *
o *
* *
* *
* *
* *
o %
¥ *
* *
X 2 TYPES OF INJURY: . *
* E
* (1) SUPERFICIAL - ONLY THE OUTER LAYERS OF SKIN %
* ARE DAMAGED; *
* (2) DEEP - THE WHOLE THICKNESS OF THE SKIN, INCLUDING *
* THE NERVE ENDINGS, IS DESTROYED. *

*
x x
% *
* *
% *

%
o x
X *
X *
¥ *

AN EXTENSIVE SUPERFICIAL BURN OR SCALD IS MORE
PAINFUL THAN A SMALL DEEP BURN.

/PRESS ENTER TO CONTINUE

xxxxxxxaxxxxxxxlnxxxlnxxxxxxxx%xxxxxxxxxxxxxxxxxxxxxkxxxlxxxxxxxlxxxxxxxxxxxxxxxxxxx

XXKKﬂ!KKKKXXK x
0 X SUBJECT: FIRST AID LESSON: 2/SIGNS & SYMPTOMS FRAME: 2 .
1 x .
% X BURNS AND SCALDS: SIGNS AND SYMPTOMS :
2 X mmmmmmmmmmmTTTITTTT x
e x PAIN - MAY BE INTENSE, ESPECTALLY WITH SUPERFICIAL .
? x BURNS ; x
EO - AND LATER SWELLING AND SOMETIMES BLISTERING, *
13 i RED?ESZEVERE CASES, EVEN CHARRING; .
11X ; A GREAT DANGER FROM SHOCK WHICH IS x
2 - SHoCKs E?Eggtii RELATED TO THE EXTENT OF THE INJURY X
15 DR NCREASES RAPIDLY WITH THE LOSS OF FLUID x
o ANDING FROM THE BURNT SURFACE, AND THE ESCAPE %
15 X 002IN00D OR PLASMA INTO THE TISSUES CAUSING x
i; X SWELLING. “
18 % /PRESS ENTER TO PROCEED "
19 x :
20 % :
2 . 36 36 X 3 3 26 26 3 36 3 K 2 20 MM 3 3N K MK M
X nnnxnxxxxxixxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxlxuxxx

4
SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 46

xxxnwxxxxxxxxxxxxxnxxxxxxxxxxxxxxxxuxxxuxxxxxxxlxxxlxxxnxxxxxxxxxxxxwxxvx

- 220 -

Response Processing

Stud i
ent input at any stage after registration can be

either:
(a) a normal reply to a prompt or question;

or

(b) a special facility request (see subsection 9.3.5).

Normal replies can vary in format depending on the
Author's requirements - e.g. a null entry (where no
actual data is needed to proceed) or a character string

(to be matched against author - defined entries).

To facilitate matching, a system of answer-string pre-
processing is available to the author at 2 distinct levels.
(1) Trivial formatting:
- delete common punctuation;
- remove leading, trailing and non-significant
blanks;
(this does not require the presence of a Syntax

Information Block (SIB) within the database Lesson

segment) .

(ii) Lexical analysis:

as defined by the corresponding SIB. This includes:

Removing leading, trailing, non-significant
or all spaces;

- common punctuation;

- leading zeros;

- redundant brackets;

- 1listed unwanted characters;

_ listed unwanted words.

- 221 -

Conve i
rting ~ upper case to lower;

lower case to upper;

Substituting - defined characters for

others,

These preprocessing steps are built-in features of KRES,

the Keyboard Response Evaluation subsystem, and are
activated via a system of Lexical Analysis Flags (LEXFLAGS)
~ this is fully described in Chapter 10, subsection 10.3.1.
The active requirements for the current session are held

in the TSCB Syntax Definition Table (SDT), created from

the corresponding SIB when the lesson is invoked.

The lexically processed character string returned by KRES
is then matched against an author-defined range of answers,
within three distinct categories:

(1) most commonly expected correct reply:

- 'Prime' answer;

(i1) seven. other valid, but less common correct replies:

- 'Acceptable' answers;

(iii) four expected, common, but incorrect replies:

- 'Non-acceptable' answers.

Anything other than these is considered 'Unrecognised'.

The twelve 'Recognised' answers can be cross-matched to a

selection of suitable comments, and the complete procedure

then becomes as shown in Fig. 9.6:

- 222 -

Fig. 9.6 Response

Processing
Normal response received
Perform done in KRES
lexical | _ _ o _ _ — _ _ _ as defined by
preprocessing] LEXFLAGS
MATCH
? Prime answer
NO MATCH
MATCH
g
? Acceptable answer
Y
Display NO MATCH
corresponding
comment

MATCH

‘ ? Unacceptable answer

NO MATCH
Display unacceptable
answer comment
Flag answer Display unrecognised
as correct answer comment

Flag answer
as incorrect

Update statistics
as appropriate

Continue

N.B If the author has not explicitly defined a range of comments,

SCHOOL will automatically generate suitable alternatives, selected

randomly from a 1ist of similar phrases.

- 223 -

Ans i i
wer matching can itself he done in different ways:

(1) character-string matching:

lexically processed student input is compared
character-by-character with author entries (as

extracted from the appropriate database Primary

Answer Record (PAR)).

(1ii) keyboard structure matching:

student input is compared to a 'structure' of
keywords and variable words. This allows the

Author to define:

(a) a range of answer-string keywords

and

(b) the relationships between them without
having to explicitly state all valid
combinations.

Keywords are defined by the Author on a Syntax Information
author document and subsequently within an SIB logical
record, relationships between them being defined on each
corresponding Answer Definition author document and
database PAR. Fig. 9.7 illustrates the types of

relational definitions available:

rig. 9.7 Keyword relational operators

OPERATOR | SYMBOL EXAMPLES COMMENTS

AND + LONDON + EDINBURGH | Any oxrder acceptable.

ADJACENT NATIONALVCOAL-BQARE Must be in order spec-
ified separated by only
spaces.

SYNCNYM = CAR=AUTOMOBILE Either acceptable.

OR THIS | THAT Either acceptable, can
apply to phrases

- 224 -

OPERATOR | SYMBOL EXAMPLES COMMENTS

NOT -
TSECTION Answer will be incorrect

if defined word present.

Exclusive # CATH#DOGH#PIG

OR Only one is acceptable.

THEN s .
i JAN; FEB; MAR Words must appear in

defined order, can have

text between keywords

which will be ignored.

Consider the following examples:
Example 1
Q: Name the capitals of the 4 countries of the
United Kingdom.
answer - definition:
KW/LONDON+EDINBURGH+CARDIFF+BELFAST
where KW/indicates that the answer definition is
in keyword notation.

N.B. This answer can have 24 valid combinations.

Example 2

Q: Name the 4 largest countries in the world in
descending orcder.

answer definition:

KW/USSR=RUSSIA; CANADA; CHINA; USA=US=UNITED STATES

Example 3

Q: In COBOL: how could a variable WSUB be set to zero

(other than by using the VALUE clause)?

Keywords (on Syntax Information document):

ZERO ZEROS 7EROES 0 +0

- 225 -

Answer definitions:

Prime: KW/MOVE.KW*.TO.WSUB.

Acceptable: KW/COMPUTE.WSUB.==.KW*

N.B. KW* means ‘any keyword entry'

Duplicate operators signify that the specific

h = .
character (. or =) appears in the answer string.

For a full description of the use of keyword Notation and its

possibilities, refer to the SCHOOL Author Manual.

9.3.5 Special Request Handling

Because of difficulty indifferentiating between normal
student responses and special requests, the convention

adopted has been to use the Immediate Command concept, whereby

any input string preceded by an asterisk is interpreted as
a special requirement and is processed immediately. A full

description of this can be found at Chapter 11.

The interruption to the normal sequence of events can be

one of two types:
(1) transient - the student's request is satisfied,

and TLCS then returns to awalt the

original response;

(ii) permanent - the student's request is satisfied and

has some effect on the session sequence;

The facilities available to the student are as listed in

Fig. 9.8:

.

Fig. 9.8
Type Command 5;33 ?giii?iizzudent

Transient *AUTHOR 10
*COMMENT 11

*CURRENT 12

i *DETAILS 13
*GLOSSARY 14

*LIST 15

*REPEAT 16

*RESCREEN 17

*SCORE 18

Permanent *ABANDON 41
*ANSWER 42

*FINISH 43

*HINT 44

*MESSAGES 45

*RESUME 46

*SUSPEND 47

A full description of the function of each of the
above may be found in Chapter 11, Section 11.4,

In the interests of brevity, these have not been

included here.

Module PLEASIR and the Immediate Command Execution
Subsystem (ICES) are responsible for processing
these requests, and Fig. 9.9 illustrates the

associated logic:

- 227 -

Fig. 9.9 Student special
request logic.

TLCS

- student response

expected

Keyboard
Pass control to KRES - = = = = = - - = Response
Evaluation
Subsystem
KRES
Function Return code = 0
Read student response
? Normal reply YES
NO Pass character string
back to TLCS
(i.e. Immediate
command)
ICES
v
i NO
> yalid at this level
YES i
Error message
A 4
YES > *FINISH
NO
Terminate | YES
SCHOOL 2 *RESCREEN
immediately
NO Execute normal
RESCREEN operation

3 6

- 228 -

? Is this command handled
within ICES

NO

Y
Function Return code =
command code

Y

Pass control back to
TLCS

TLCS

Carry out
appropriate Task(s)
i.e. *AUTHOR
*COMMENT
*CURRENT

*LIST
*SCORE

: 2 Function Return code: O

#

Carry out appropriate
request processing

!

TRANSIENT > Command type

DERMANENT

Y
Proceed to appropriate
part of Tutorial sequence

etc.

- 229 -

Treat as normal
reply

!

Proceed with
response processing

etc.

9.3.6 Statistics Monitoring and Update

Two types of statistics are monitored by TLCS:
(1) student performance;

(1i) courseware performance, this being further broken
down into 2 optional components:

lesson frame analysis;

- glossary request analysis.

Student performance statistics are maintained within the

Student Status Block (SSBLOK) plus other variables, and
are subdivided into 2 types of information:

(1) ACTIVE

session start time;

- time of last student entry;

- current position (lesson/frame numbers) ;
- active hint number;

- number of attempts at answerj;

- marks obtainable on this frame;

- total marks obtained in session so far.

(ii) HISTORICAL subject message status;

- start and latest dates;
ed]]
- accumulatﬁgn session durations
(including the current one) ;

marks/duratiohs etc. for all previous

sessions.

This information is being constantly updated as the session

proceeds, for instance:

each time a student response is received, the time

of day (HH:MM:SS) is stored;

each time a Hint is requested, the maximum mark

obtainable on this frame is adjusted and the active

gint number re—assigned;

- 230 -

at the e
nd of each Frame, the Historical data is updated

fro i
m the Active values (total duration, completion code,

lesson/fra umb
/frame numbers, marks, duration, active scoring

mo -
de) and the appropriate SPR (Student Performance Record)

i : .
S rewritten. Active values are then reset and control

passes to the appropriate part of the session, as

defined by TSCB parameters.

Lesson Analysis statistics are only collected if the author

has requested this - notified to TLCS by having a valid
Lesson Analysis Record (LAR) pointer. All relevant data is
held and maintained within the Frame Analysis Table (FAT)

part of the TSCB. Each frame is monitored according to:

number of times used;

- number of attempts at an answer;
- number of incorrect attempts;

- number of hint requests;

- number of answer requests;

- total marks obtained.

As a frame is completed, all FAT values are updated, and

the appropriate database LAR is then rewritten.

N.B. Rewriting both SPR and LAR logical records at the

end of each frame ensures that any host system

failure does not involve the student repeating a

complete lesson.

- 231 -

Glos is i
sary Analysis is also an author-option, and any glossary

request emanating from a student is processed as in Fig 9.10:

Fig. 9.10 Glossary Request

Processing.

*GLOSSARY request received

Y
? 1s this facility active NO
YES
Y Apologetic
Read GRT message
Request & read word/phrase
YES . V .
Iﬁ ? is this in GRT
Extract NO
Glossary Definition V YES
Record ? is GRT full ,
NO 1
ﬁ Appropriate
message

Insert request

Display text
entry into GRT

add 1 to No.times
requested

Rewrite GRT

P
]

Return to ori
session status

ginal

- 232 -

A .
typical Glossary request sequence is shown below:

BNV PR UWN—~D

PR e el
HOWVININDUHUND 0

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG REEN 7
SCREE 2

HOHH MM 3N MM X X P
FEH MM NI KM A I A DM XK H KON N K 3K MK XM XN KM IO M X MO ¥ ¢

SUBJECT: LOTUS CARS LESSON: 2/ELANS & EUROPAS FRAME: 3 v
BASEngNEbQEQG:E Eg:g?ﬁ S?ngSNUSED A FRONT SUSPENSION SYSTEM :
DA ERS ES, COIL SPRINGS AND TELESCOPIC o

*

THIS WAS MANUFACTURED BY ALFORD
AN
A COMMON BRITISH SALOON CAR OF THE SAgEAég§§Dg?D HAS USED OX

*
¥
*
*
X
»
*
x
*
*
* -

X XGLOSSARY WHICH CAR WAS THIS?
*

*

*

*

*

®

*

*

*

*

*

*

¥

%
%
*
*
X
*
¥
*
*
]
*
*
X
*
x
*
*
]
*

nxxxxxxxxxx!xxx!x!xx!xx!!!xxxiixxwx%xxiixxxxxx*!xxxxxxxxxxxxxxxxxxxx!xxxvxxxxx!xxxxx

LLUN—O

O ORNPTUNDUN—DOR N

3 N s 1 e 1 1t s A

SCHOOL SYSTEM AUTOMATIC CONSOLE LOG SCREEN 28

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxuxxxxxxxxxxxxxxxxuxxxn!!xXx&xxxxxxx

*
¥ SUBJECT: LOTUS CARS LESSON: 2/ELANS & EUROFPAS *
b *
X OO0 G L 0O SSARY FACI LI TY XEOOOOOOOOON X
b *
¥ ENTER REQUIRED WORD/PHRASE: *
¥ WISHBONE :
* A
¥ EXPLANATION: WISHBONE :
* E
X A SUSPENSION LOCATION SYSTEM WHEREBY THE WHEEL HUB UPRIGHT IS *
% LOCATED BY TWIN CONVERGING (USUALLY HORIZONTAL) S5TRUTS. :
x x
* *

%
: /PRESS ENTER TO CONTINUE b3

*
x .
X X

*
x *
X x

X
:xxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxxyuxxxxyxxx;xxxxxxxxxxxxxxxxxxxxxxxxxuxxxxx;xxxxxxx

- 233 -

9.4 TUTORIAL LOGIC CONTROL SUBSYSTEM - SOFTWARE

TLCS consists of seven modules, with responsibilities as

described in Fig. 9.11:

Module Function

TUTOR Overall subsystem control
REGISTER Student sign-on and registration
LOOKUP Courseware access and extraction

BLAKBORD Text display control
CHECKER Student Response processing

PLEASIR Processing special requests not capable of being
handled by ICES.

MARKER Performance monitoring control (student and
courseware) .

Fig. 9.11 TLCS Modules

For further details of the above, refer to Appendix 9.2.

- 234 -

chapter ten

- KEYBOARD RESPONSE EVALUATION SUBSYSTEM

10.1

INTRODUCTION

all -1
complex on-line systems have many different instances

where information is read from the Terminal keyboard; often

using entirely different components in the System coding.

The situation is further complicated when each Read is
extended and enhanced with special functions:
- intercept non-standard replies;

- perform lexical analysis on the input stream;

To alleviate this situation, SCHOOL was structured to provide
a standard Keyboard/System interface; termed the Keyboard

Response Evaluation Subsystem (KRES) . This provides:

(a) a single, standard method of reading information from
the keyboard and delivering the input data to any

module of the SCHOOL system;

(p) the ability to perform a wide range of lexical analysis

functions on the input character string;

(c) the ability to intercept non-standard messages, react

accordingly and then return to satisfying the original

pending request;

Incorporating a Keyboard Monitor of this type permits a

wider range of input control facilities than is normally found

within existing CAI Systems.

For instance:

(a) Authors can select from a spectrum of lexical analysis
procedures:

remove leading spaces

remove trailing spaces

remove all spaces

- 235 -

- r 7
€move all common punctuation

convert answer to upper or lower case
rémove non-significant leading zeros
remove redundant parentheses

- remove specified characters

The coding to achieve the above can be standardised
and then held within 1 module, as opposed to being

duplicated wherever required;

As all normal System input goes through‘the KRES
interface, all stages of system execution may use the
Lexical Analysis facilities provided - e.g. replies
to System requests, Author/Supervisor control

commands,etc;

Again, as KRES constitutes the only 'door' into
SCHOOL, non-standard input messages are immediately
interceptable. Typical of the facilities that this
can provide are:

- requests for assistance/answers

- requests for information

- execution suspension/resumption

- ability to revise earlier work without losing the

current 'place'

requests for glossary definitions.

This facility 1is termed the Immediate Command Execution

subsysten (ICES) and complete details of its scope may
subsystem ‘--=22

ve found in Chapter 11.

10.2

KEY30ARD RESPONSE EVALUATION SUBSYSTEM - STRUCTURE

All normal SCHOOL terminal

input, no matter what its function

or module/subsysten initiating the request, is processed via the

Keyboard Response Evaluation Subsystem (KRES)

The relation-—

ship between KRES and the Display Format Subsystem (DFS) can

be seen at Fig 10.1:

Output
Display

DES
Main
SCHOOL TERMINAL
Function
normal
r2spons
KRES Input
data
immediate
command
Fig. 10.1

KRES/DFS/ICES relationship.

KRES has in fact two functions, depending on the incoming

information:

(1)

Normal replies -

Immediate -
commands

(ii)

returned (after lexical analysis) to the

calling module;

identified and passed intact to the
Immediate command Execution Subsystem.
This decodes and executes the command.
control returns to KRES

Once completed,

which then re-awaits the originally

requested reply;

237 -

The convention adopted to differentiate between normal

replies and immediate commands is that the latter are

always prefixed with an asterisk, e.g.

REPEAT - normal reply

*REPEAT - immediate command to repeat an earlier

frame.

- 238 -

10.3 MODULE MONITOR

One module, MONITOR, performs all functions of KRES plus the
main control function of the Immediate Command Execution
Subsystems. It can be called from any point within SCHOOL

and its outline logic is as follows:

Fig. 10.2 KRES

functional components

START

—p

Read in keyboard line

v
?first non-blank character: '*' NO
YES

v

submit command to ICES Perform requested

Return to ‘ lexical analysis
original {
request |
status |
|

ICES Return processead

character string

to calling module

- 239 -

In certai i i
in instances Immediate commands terminate

syst]
ystem execution, and as such no return to KRES takes

place.

10.3.1 Module MONITOR Input parameters

MONITOR has in fact 5 input parameters, all of which are

resident in module CYBER's Data Nucleus (see Chapter 5).

These are:

ANSWER -

LANSL -

FALEVEL -

SPLEVEL -

LEXFLAGS -

an initially blank field into which the
incoming reply is inserted (after lexical

analysis) . Maximum length 130 characters.

logical answer length (1 byte, binary).

This can have two initial values:

0 - take length from processed
character string

non 0 - truncate processed answer string

at this length.

. : i 1
function authorisation level) see ICES,

Chapter 11
system progress level)

lexical analysis flags. (2 bytes, binary)
Each of the 16 bits in this field initiate

a particular analysis function if set to 1.

Bit allocations are:=

BRit No. significance when set
eL-
0 Remove leading spaces
1 Remove non-delimiting spaces, €.g.

THEL.oCATeen SATuG - uu

,'THEHCATHSATU.H

- 240 -

2 Remove all spaces
Remove trailing spaces

Remove all common punctuation, i.e.

5 Suppress automatic conversion of
input into upper case (i.e. a
'mixture' such as 'The Answer..... !
will remain unaltered)

6 Conveft all alphabetic characters
to lower case

7 Switch off Immediate Command
facility (i.e. '*' as the first
non-blank character is treated as
normal input)

8 Remove non-significant leading zeros
in any numeric string, €.g.

0010.03 - 10.03
0.004 - unaffected
0 - unaffected

9 Remove redundant parentheses in any

algebraic expression, e.g.
v o=~x + (3) + ((¥)))
becomes
y =X+ 3 +¥X
10 Ignore characters specified by the

author in the Redundancy Table

11-15 Notas vet in use.

- 241 -

10.

An example of a LEXFLAGS setting is

X'8180"

1l

1000 0001 1000 0000

It

Bits 0, 7, 8 set;
- remove leading spaces;
- suppress ICE facility;

- remove non-significant leading zeros.

10.3.2 Module MONITOR OQutput parameters

MONITOR does not normally return any output parameters,
but in the instance where ICES has been invoked 2
parameters may be utilised. They are:-—

FNRETCDE - Function return code

See
Chapter 11.

)
(1 - byte, binary) ;

RRADDR - Recall Return address ;
(1 fullword))

KRES LEXICAL ANALYSIS PROCEDURES

Lexical Analysis in its simplest form (Hopgood , 37) 1is the
removal of redundant information from any data stream prior
to further processing - i.e. it is a formative procedure,

the meaning of individual data items being of no significance,
only the overall 'appearance’.

The lexical analysis phase of KRES attempts therefore to put

any incoming keyboard line in a suitable base form, tailored

to suit individual author's requirements-

i KRES:
This is akin to the author stating to KR

'Tncoming messages for my lessons ought to have no leading

¥ n words and contain no common
S space petwee
bpaces, Ol’lly one &

tuation characters. Furthermore, all characters should
punctu

11 messages into this format
i . Please convert a
be capitals \]

for me'.

- 242 -

10.4.1 General approach

fRES lexical analysis procedures are split into 2 main

groups:
(1) those which remove characters;

(ii1) those which convert characters .,

10.4.2 Character removal technigues

Nearly all character removals are carried out using a
'"Mark/Sweep' technique. Individual searches are
carried out and whenever the appropriate character is
encountered, it is marked - the convention adopted
within SCHOOL is to replace it with X'FF'. Once all
searches have been completed, the entire input string
is scanned and all marks (X'FF) deleted with the string
being compacted accordingly.
N.B. There are two departures from this technique;
(1) removal of redundant parentheses - see
Appendix 10,1
(ii) removal of trailing spaces - this being
done by reducing the string length as

appropriate.
The 'marking' of redundant characters may be done at

different stages depending on the range of removal

required:

(a) Local removals (e.g. leading zeros, leading spaces)

these are searched for individually and marked

when found;

(p) Global removals (e.g. all spaces, all common

punctuation characters, all of particular
characters specified by the author)

- 243 -

these are removed using the Redundancy Table.

The Redundancy Table consists of up to 30 single -

ch ;
aracter entries. If all occurrences of a particular

character are to be deleted, the character is inserted
into the Redundancy Table. When all Local removal
searches are complete, each input string character

is compared with all entries in the Redundancy Table.

If any match is found, a mark is inserted.

10.4 .3 Character conversion techniques

It is often useful to the Author to have the ability
to 'standardise' input into either upper or lower
case (typically for answer matching). Normally all
alphabetic input is immediately converted to upper”
case, butthe author has the ability to suppress this

or convert to lower case as desired.

N.B. Full details of the logic associated with

all lexical analysis techniques may be found

at Appendix 10.1.

- 244 -

chapter eleven

-~ IMMEDIATE COMMAND EXECUTION. SUBSYSTEM

11.1

11.2

INTRODUCTION

ALl in .
interactive computing systems have a mechanism whereby

processing can be interrupted by the user. This can be

erman - .
p ent, or (as in more sophisticated systems) temporary -

the original task being re-invoked after another task has

been completed.

This facility has been designed into SCHOOL at two distinct
levels:
(i) Host system - adherence to the convention(s) of
the software under which SCHOOL runs,
i.e. normal ATTENTION or BREAK key

actions are not altered:

(ii) SCHOOL software - a user can interrupt SCHOOL, carry
out a particular function and then

resume or stop, as required.

This latter facility is termed the Immediate command Execution

Subsystem (ICES) and it is available to any SCHOOL user at any

point during system execution although the scope and range of

options obviously vary.

INVOKING ICES

-

The mechanism for this has already been described in Chapter 10,

but briefly any reply which has as its first non-blank char-

acter an asterisk, is treated as a call to ICES. The remainder

of the entered line is then translated and the appropriate

action (one of two types) taken:

- the Immediate command is executed and

(1) transient

control returns to the original point;

- 245 -

ii er - .
(ii) permanent the Immediate Command is executed and

control is then transferred elsewhere;

Fig. 11.1 below illustrates the associated logic:

Fig. 11.1 Immediate

command Identification
START

Read in keyboard line

?first non-blank character: '*' NO
YES
submit command to ICES Performed requested
Return to i lexical analysis
original '
request !
status l

A

Return processed
ICES character string
to calling module

permanent

transient

-t ot @ P s o o
-,y S wa S e

5

d into module MONITOR, as 1is the

This logic is empedde
he ICE subsystem.

control function of t

- 246 -

11.3

IMMEDIATE COMMAND EXECUTION AND CONTROL

Two 1
mportant parameters control the processing of Immediate

Commands. These are:
(1) Function Authorisation Level (FALEVEL)

i.e. who is allowed to do what;

(1i) System Progress Level (SPLEVEL)

i.e. when it can be carried out.

The first of these is established as the user logs on, and is

set to:
0 - Student
1 - Author/Subject Manager
! J : a password will be
2 - System Manager requested.

Each Immediate Command has an FALEVEL threshold associated
with it, and is then available to any user with an individual

FALEVEL > the Command FALEVEL.

A similar technique is used to control the stages of SCHOOL
progress at which particular Immediate Commands can be
actioned. SPLEVEL is the device used to achieve this, and it

can take the following values:

0 - 1Introductory phase, no Immediate Commands available;

1 - Overall control level; mode of execution known (i.e.
author/student/etc.), put not subject or user identif-
ication;

2 - Subject level; Current subject has been requested but

user identification still pending;

3 - Subject level; user identification ccmplete;

4 - Lesson level; required 1esson has been defined and

execution 1is in progressi:

- 247 -

[— i,

SPLEVEL 1s then set and reset as execution proceeds. Each

Immediate Command has an equivalent SPLEVEL threshold

associated with it, and becomes actionable when:

System SPLEVEL > = Immediate Command SPLEVEL

Identification and control of all components within ICES is

achieved via the Control Command Table (CCT), organised as

per Fig. 11.2:

Threshold Module
Command Name FALEVEL SPLEVEL Address
RESUME 0 2 A (RESUME)
SCORE 0 3 A (SCORE)

etc.

Eig;_li;%

control command Table

- 248 -

ccT control logic is as follows:-

Fig. 11.3 Centrol command
table processing

logic.
Branch into ICES
from KRES
NOT
FOUND v
! ? Command in CCT
FOUND
? User FALEVELS <
Error Message FALEVEL threshold +
>, 1 : [
Return to KRES 4 Unauthorised
_ < ? Current SPLEVEL: message
r SPLEVEL threshold
; b
'Unavailable' Return to
message KRES

Return to KRES

Branch to defined

module address

(i.e. execute Immediate
command)

Entries within the cCT are ordered:
(1) gtudent commands

(ii) Author commands

(iii) System Manager commands

This saves search time as gtudent Commands will be used most

frequently - 1t will also be possible to poth add new CCT entries

and 'tune' the look-up facility (by putting the more frequently

used commands at the front of thelr category) -

d h b 1 i .l e(l and eX@Cution Sanctioned, it

Y B! ' rmation
i ignificant amounts of info
may be necessary to display si9

o that this is done

to the user. ICES has beenl designed S

without spoiling session 'flow' - immediately relevant
information (e.g. current score) will be displayed on the same
screen if there is sufficient room but more general information
(e.g. list of subjects) will be displayedAon a new screenful,

the original display being reactivated once the user has

assimilated the data returned.

11.4 IMMEDIATE COMMANDS

The following table lists the facilities provided by ICES as

at SCHOOL Release 1.1 (June 1981):

Fig. 11.4
Command FALEVEL | SPLEVEL Effect
* ABANDON 0 4 Current lesson abandoned. All

records of the attempt are erased,

and control returns to SPLEVEL 1.

*ANSWER 0 4 Answer to current frame (if any)
is supplied. No score is awarded
and control passes to the next

remedial seguence.

*AUTHOR 0 4 Details of lesson Author and
System Supervisor (names, addresses
etc.), are output. Normal progress

then continues

*COMMENT 0 3 The user may enter up to 50 lines
of comment which is subsequently
printed, prefixed by the name of the
originator + address of therelevant
Subject Manager (to whom it is then

forwarded) .

i £ tem progress level
*CURRENT 0 2 petails oI SYS prog
are returned, e.g. user type,
subject name, lesson no., frame

within lesson (if known),

- 250 -

Command FALEVEL | SPLEVEL Effect

*DETAILS 0] i
3 Details of the currently activesubject

are returned. Includes subject name,
subject Manager details, no. subord-
inate lessons. For each lesson
details are given of author, no. frames

and score obtained by the user (if any) .

*
FINISH 0 1 System execution is immediately term-

inated; all current progress levels,
scores, etc. are saved. anything
created or altered during the session

is retained.

*GLOSSARY 0 4 Glossary Enquiry Mode is entered. The
user is prompted to define the word or
phrase requiring explanation. Once
entered, the appropriate glossary
definition is returned, or, if none
exists, a 'Glossary Request' entry is
created on the Database and a suitable

message displayed.

*HINT 0] 4 Next allowable Hint (if any) is

displayed and user's score is adjusted

accordingly-

* LIST 0 1 A list of the currently active and
available subjects on SCHOOL is returned.

*MESSAGES 0 3 All of the currently active Subject
Messages are displayed to the user, one
at a time. The user is subsequently
registered as naving seen all Subject

Messages.

b]

*REPEAT 0 4 The user is prompted to define an

earlier frame number. The current
frame is then suspended and the defined
frame reinvoked. Once completed,

execution returns to the normal sequence.

Command FALEVEL | SPLEVEL Effect

*RESCREEN :
0 1 Current screen contents are stored

and the previous display re-screened.
To return to the current display:

another *RESCREEN is required.

*RESUME i
0 3 A previously suspended session (see

*SUSPEND) is re-invoked, all status
and progress parameters being

restored.

*

SCORE 0 4 Full details of the user's performance
within the current lesson are displayed,
including no. questions attempted,

score on each and total score.

*SUSPEND 0 4 The current session is suspended, and
progress so far recorded (for a sub-
sequent *RESUME) . Control then passes

back to SPLEVEL 1.

*ANALYSIS 1 2 A performance analysis of the complete
Subject or selected Lessons is dis-
played and/or printed. It is advis-
able to use the print option for
complete Subject analysis, or for

multiple lessons.

*COPYON 1 1 The hard copy flag is switched ON, and
all subsequent screen contents
(including the current one) are
printed. This will continue until

session end or an *COPYOFF command 1is

executed.

__________/__________‘-—

*COPYOFF 1 1 The hard copy flag is switched OFF.

_____,___————-,__———-""—'

*HISTORY 1 2 A performance history of the defined

student (s) within the current subject

is produced. This may Pe displayed or

printed or both.

- 252 -

1.5

Command FALEVEL | SPLEVEL Effect

*PROCEE 1
D 1 4 Used by Authors when testing course-

ware. The current frame is abandoned
and the system proceeds to the next in

the Lesson sequence (either normal or

remedial, as specified).

ICES SOFTWARE

In order to provide this 'Immediate Command' facility in a
controlled manner, a rigid protocol for software construction was
defined, enccmpassing:

- coding of ICES modules internal or external to keyboard

monitoring software;
- register utilisation conventions;

- data and system progress integrity;

Pull details of the protocols adopted within ICES software may be

found in Appendix 11l.

- 253 -

chapter twelve

- SUPERVISOR CONTROL SUBSYSTEM

12.1 INTRODUCTION

SCHOOL can be accessed in 3 discreet modes:

(1) Student - TLCS (Tutorial Logic Control Subsystem) ;
(1ii) Author - ACS (Author Control Subsystem);
(iii) Control - SCS

(Supervisor Control Subsystem) ;

of which TLCS and ACS have already been described.

The philosophy of SCS is to provide an on-line facility for

the control, monitoring and maintenance of the SCHOOL System,
at a level higher than that of Author. Most other CBL
systems (e.g. IIS, IBM) provide something similar but generally
the on-line components have less power than SCHOOL sCS, and

the important functions need to be done as off-line batch jobs,

often requiring systems programming staff.

12.2 SUPERVISOR CONTROL SUBSYSTEM - ORGANISATION

SCS is organised at two levels; as Fig. 12.1 illustrates:

Fig. 12.1 SCS
Organisation

CONTROL
LEVEL

COMMAND
) 5 3 4 etc.

- 254 -

12.

Ent i

ntry 1s always at the control level, and is achieved by
n . e

invoking SCHOOL, specifying CONTROL as the Operation mode

and supplying the correct primary password (4 attempts

allowed).

CONTROL mode is a high security enviromment, and as such two
important considerations apply:
(i) only one or two people should be capable of invoking

it (frequent password changes help here);

(ii) certain commands have further individual password

protection;

Once the control level of SCS is entered successfully, the
user (termed the 'System Supervisor') 1is prompted to enter
an SCS Command, the associated secondary password (if any)
and an appropriate range of parameters - the number and type

of which vary from command to command.

SCS COMMAND GROUPS

control mode commands have peen subdivided into 6 groups:-

12.3.1 Database Control Commands

- designed to interrogate the status of the physical

SCHOOL database, packup and restore its contents and

reorganise physical plock allocations (DBTU's - see

Chapter 3) to avoid excessive fragmentation. Commands

within this group are:-

BACKUP *
DBPRINT
DBTUMAP
REORG *
RESTORE ¥

(asterisk signifies secondary passworc< orotection)

- 255 -

12.3.3

12.3.4

To car
ry out any of the above, the System Supervisor

must]
temporarily suspend SCHOOL operations (via the

TIMESET command - see below)

System Control commands:

provide the ability to suspend (and resume) SCHOOL
processing until a particular time and date, alter
passwords, system version no. and System Supervisor
details. Also included within this group is the error
recovery procedure, used to checkout system abend
information. Commands within this group are:-

ERRORS
PASSWORD *

SYSBOSS *
TIMESET *
VERSION *

Monitoring Commands

- essentially interrogation commands, this group
gives the System Supervisor the facility of listing
currently active users (at any point in time), and all

registered students, authors and subject managers,

Commands are:-

ACTIVE
AUTHORS
MANAGERS

STUDENTS

Global Message Control commands:

- System Global Messages may only be manipulated

by the Systen Supervisor. Facilities encompass creation,

deletion, listing and editing, and are provided by the

following commands: -~

- 256 -

12

.4

12.3.5

12.3.6

GMRDEL X

GMREDIT N
GMRGEN .
GMRLIST

Subject Control commands:

whilst subject registration is an automatic
procedure (under the jurisdiction of a Subject

Manager), the System Supervisor is responsible for the
allocation of subject reference nos. (each of which must
be unique within the SCHOOL system). The following
commands enable the Supervisor to cross-reference
allocated reference nos. with subject titles, interrogate
the status of any subject and delete any unwanted ones:

SCRDEL *
SUBJECTS
SUBREFNO

Miscellaneocus commands:

- commands not otherwise classified. Only one command
currently exists:

END

The next section gives further details of the use and

function of all SCS commands, listed alphabetically:

SCS COMMANDS

Fig. 12.2
Secondary
Command Password? Function

ACTIVE N Returns a list of students within each
current subject, active at the instant
the command 1s issued.

AUTHORS N Returns a list of registered lesson
authors, listed by subject and lesson

within subject. This data may be displayed

at the Supervisor terminal or printer.

- 257 -

Command

Secondary
Password?

Function

BACKUP

Y

A backup copy of the SCHOOL database is
dumped to the file defined. As at the

current release of SCHOOL (1.1), this must
be a CMS disk file.

DBPRINT

Produces a formatted print (hexadecimal
and character equivalent) of the SCHOOL
Database contents. The Supervisor has

the option of the range of physical DBTU's
scanned, and the output can be directed to

the terminal or printed.

DBTUMAP

Produces a definition of physical DBTU
allocation within the SCHOOL database.

This is extracted from the Bit Map Table
(BMT) at the instant the command is issued,
and may be displayed at the supervisor
terminal or printed. The main uses of this
command are in pre-empting excessive data-
base fragmentation, and checking on

current database size.

END

Leave CONTROL mode.

ERRORS

Displays current system error status (held

in the database Master Control Record. MCR}.

GMRDEL

Deletes one, several or all Global
Message Records from the database. AN
option "pIMEUP" exists whereby all GMR's

with overdue expiry dates will be deleted.

GMREDIT

GMRGEN

Alters the status of a GMR. This may be
in terms of expiry dateé or message text
(both are displayed in full prior to

Supervisor alteration) .

Creates a new Global Message. Details

required are expiry date and message text

(max. 16 lines) .

i

- 258 -

Command

Secondary
Password?

Function

GMRLIST

N

Displays one, several or all current Global
Messages. Details produced are message no.,
expiry date and message text (one per screen).
The data may be displayed at the terminal or

printed.

MANAGERS

Returns a list of registered subject managers,

either at the terminal or printed.

PASSWORD

The current system control and author control
passwords are displayed. The Supervisor is
then given the option of changing either or

both.

REORG

The current SCHOOL database contents are
reorganised to eliminate as much fragmentation
as possible. Each logical record is read from
the database in turn and written (as a
physically contiguous block) to the defined
copy database with Control statistics being
displayed for the Supervisor as the processing
is done. It is recommended that prior to this

operation a datapase BACKUP is taken.

RESTORE

The current SCHOOL database is overwritten
with the contents of the defined file. This
file will have been previously created via a

BACKUP or REORG operation.

SCRDEL

STUDENTS

Deletes a Jdefined subject in 1its entirety. The

subject name is requested, and.the subject

control record plus all subordinate logical

records are deleted from the database (this 1is

done via bit reset at the BMT level) .

Returns a list of all registered students,

t the terminal or printed. The list

either a

is in subject order.

- 259 -

Command

Secondary
Password?

Function

SUBJECTS

N

A list of all registered SCHOOL subjects is
produced, including a structural breakdown
of each. This is in terms of lessons within
the subject, frames within each lesson plus

other control information. Information may

be either displayed or printed.

SUBREFNO

Produces a cross-reference list of all
allocated subject reference nos. and
corresponding titles, either at the terminal

or printed.

SYSBOSS

The current System Supervisor (or Manager)

definition is returned, in terms of name,
address and telephone no. The Supervisor
then has the option of altering all or any

part of this.

TIMESET

Provides the Supervisor with the ability
to suspend SCHOOL operations at student or
author levels (or both), until a specified
date and time. This is used typically as
a prerequisite1x>databasecontrol functions,

and the same command can be used with an

option 'OFF' to resume activity.

VERSION

The current system version no. (format
9.99) is displayed, and the Supervisor may

then update this if required.

A SCHOOL Sup

ution)

above commands in mor

to describ

Appendix 12.1.

e detail.

ervisor Guide is available (on a restricted distrib-

e the processing and operand requirements of the

Extracts of this are included at

- 260 -

12.5 SCHOOL SYSTEM UTILITIES

In addition to the above SCS commands, the system Supervisor
has at his disposal a small range of SCHOOL System Utilities.
These are controlled externally to the main SCHOOL system via
a control module named SCHUTL. Great care must be taken when
using these (even though they are heavily password protected)

as they incorporate operations such as:

- delete the entire SCHOOL database;

- reset the database, leaving only an initial Master

Control Record and Bit Map Table;

- access (and deletion) by relative record no. of

physical database records;

Details may be found in the SCHOOL Supervisor Guide (and Appendix 12.1),

12.6 SUPERVISOR CONTROL SUBSYSTEM - SOFTWARE

The control level of SCS (see Fig. 12.1) is coded as module
SUPERVYS. This handles the initial operations of SCS, i.e.:

- command entry and recognition;
- password request (if necessary) and matching;
- branching to the appropriate scs command coding;

SUPERVYS also contains coding to provide some of the more

trivial SCS functions (i.e. END, ERRORS) as these either

involve no logical record processing, or only reference the

Master Control Record.

All other SCS functions are supported DY separate program

modules, named SCS...-- For a detailed description of these,
’

see Appendix 12.2.

- 2061 -

chapter thirteen

- THE SCHOOL SYSTEM IN OPERATION

13.1

13.2

INTRODUCTION

A major] ' ']
3 objective in the design and development of the Compower

I .
CBL system was that the final product should be as efficient

as possible. This Chapter assesses the effectiveness of the

SCHOOL system towards this end.

CURRENT HARDWARE /SOFTWARE ENVIRONMENT

The current release of the system (as at March 1982) runs on an
IBM 3033 mainframe at Compower's Cannock Computer Centre. The
characteristics of this machine are:-

Real storage size: 8 megabytes

Processing performance rating: 5 mips

(where mips = million instructions per second).

The machine operating system is vM/370 (Virtual Machine FPacilitv/

System 370 - (IBM,4)), the installed release level being VM/SP
service level 0101.

As described in Chapter 5, VM/370 provides within a single real
machine an emulation of multiple 'virtual' machines, each with
a single conventional Operating System. A typical breakdown of

the Cannock 3033 is shown in Fig. 13.1:

Fig. 13.1 Compower 3033 System

VM

CMS CMS CMS CMS MVS

subsystems

i e

- 262 -

13.

MVS (M i i
(Multiple Virtual Storage; (IBM,41)) is a conventional

multi-task operating system which can run several application

systems concurrently (including on-line facilities, each

supporting several users). CMS (Conversational Monitoring

System; " (IBM,4)) is a single-task supervisor controlling the

resources of one virtual machine

A typical breakdown of 3033 user level is:
55 CMS virtual machines

1 MVS virtual machine

normally running batch work and interfacing

with other mainframes

5 miscellaneous virtual machines

An average CMS machine's virtual storage requirements are

200-300K (Max. 768K), of which 128K is reserved for system use.

N.B. As described in Chapter 5, each SCHOOL user, irrespective
of type, occupies a separatéHCMS virtual machine. The

following sections will discuss the resource reguirements

of such a user.

SCHOOL SYSTEM STATUS

The SCHOOL system software currently comprises 70+ program

modules, grouped into the various subsystems already discussed.

A breakdown of this structure is shown in Fig. 13.2

Fig. 13.2 SCEOOL Software breakdown

Data
ubsystem No. Total Nuclei
SR Modules| size. sizes.
1 3081 1424
SYSTEM CONTROL MANAGER
18026 2473
SUPERVISOR CONTROL SUBSYSTEM 21
12462 1268
AUTHOR CONTROL SUBSYSTEM 13
cont.

- 263 -

13.

I Data
Subsys E
ystem No. | Total Nuclei
o Modules! size | sizes
TUTORIAL LOGIC CONTROL SUBSYSTEM 7 % 14008 E 3376
DATA INPUT SUBSYTEM 13, 33301 | 3779
KEYBOARD RESPONSE EVALUATION SUBSYSTEM 1 | 5044 E -
IMMEDIATE COMMAND EXECUTION SUBSYSTEM 12 6820 % -
&
DISPLAY FORMAT SUBSYSTEM 3 9765 -
DATABASE INPUT/OUTPUT SUBSYSTEM 3 7305 (4000
(4216
ERROR MANAGEMENT SUBSYSTEM 1 1656 102
TOTAL 75 111468 20638

N.B. These statistics refer to the testing version of SCHOOL

active as at l4th March 1982. They are likely to change.
It is reasonable to compare SCHOOL in these terms with the IBM
Interactive Instructional System (IIS). A typical IIS configuration
running under VM/CMS requires 280K (286720 bytes) virtual storage
for each transaction type (i.e. author, student or system admin-
istrator - (IBM,42)) compared to the SCHOOL maximum requirement

of 132106 bytes (129K) per user (i.e.111468 +20638)

SCHOOL SYSTEM PERFORMANCE

The performance of the system has been considered from 3 specific

viewpoints:

(1) reponse times;

(ii) machine resource utilisation.
(iii) cost.

13.4.1 Response times

t aspects of SCHOOL system operation (except some of the

Mos
more complex Supervisor control operations) produce
almost instantaneous response - the majority of test

13.4.2

sessio ‘
DS 1nvolved response times of between 0.5 and 2

seconds even at the busiest times of a normal working
day. ti
% The longest operation monitored during testing was

the automatic i .
generation of a 'medium-sized' course

from an Author Document file, taking 3 mins. 38 secs.

from start to finish. However, this is still a very

[: . . -
interactive' operation with several messages appearing
at the terminal as processing proceeds.

N.B. All formal monitoring sessions were conducted

using IBM 3270 VDU equipment. These use much
faster telecommunications lines than conventional
terminals, with corresponding benefits to response
times. For instance an Anderson Jacobson 'daisy-
wheel' terminal can take up to 12 times as long
for identical operations, depending on the amount

of text being transmitted.

Machine Resource Utilisation

This was measured in terms of 4 components across a
variety of terminal sessions:

(1) Session durations;

(ii) CPU utilisation;

Input/Output traffic (both terminal and disk) ;

(iv) Courseware disk storage.

It should be noted that items (i), (ii) and (iii) are

applicable to one individual user, but that courseware

i 1 users.
disk storage 1S shared between al

Fig. 13.3 overleaf rabulates some typical session

statistics.

- 265 -

3 SCHOOL session

statistics
I/0
DURATION CPU (ITEM
NO. | DATE (HH:MM: .
MM:5S) (MM:SS) & DISK) COMMENTS
1.1 18. 6.81 0: 8:48 0:06 264)
Auth i
5 1 18. 6.81 0:10: 35 0:10 e ; uthor sessions
3. 2. 9.81 0:10:50 0:13 736 Supervisor mode
4.1 11. 9.81 0: 7:22 0:32 895 Supervisor mode (BACKUP operation)
5.1 20.10.81 0: 6:03 0:03 202)
)
6.1 19.12.81 0:11:47 0:01 639) Various Author sessions
)
7.1 27. 1.82 0: 8:10 0:01 610)
8.1 10. 2.82 1:15:49 0:10 1253)
)
9. 1] 16. 2.82 0:11:50 0:01 299)
) Student sessions
10. | 20. 3.82 1: 0:44 0:05 1253)
)
11.] 20. 3.82 2:39:15 0:01 245)
12.] 20. 3.82 0: 5:31 0:01 270 Supervisor (TIMESET)
13.] 24. 3.82 0:20:42 0:01 482)
)
14.1 25. 3.82 0:27:48 0:03 587)
) Student sessions
15.1 25. 3.82 0: 9:40 0:01 389)
)
16.] 25. 3.82 0:12:52 0:02 453)
TOTALS : 7:27:46 1:31 10051

Whil i

1lst no directly comparable CBL system in a similar
hardware environment has been benchmarked, the statistics
tabled in Fig 13.3 bear comparison with almost any type

of on-li Lvi i
n-line activity (as will be discussed in greaterxr

detail in section 13.4.3).

Disk storage requirements for the SCHOOL database will of
course vary with the number and complexity of subjects
stored. The effective maximum is dictated by the number

of bits in the Bit Map Table (BMT). Two considerations

apply:
(1) test system BMT allocation:
- set at 4000 bytes;
- limits D/B to 32000 DBTU's (Data Base Transfer
Units), or 6,400,000 bytes (6.1 megabytes) ;
(ii) absolute limit of database:

- determined by chain pointer system;

- limited to 221 - 1 DBTU's (i.e. 419,430,200

bytes, or 400 megabytes) ;

N.B For a detailed discussion on the above, see

Chapter 3, section 3.6).

The test system database has supported up to 25 subjects

concurrently, albeit of limited size, but has also been

used with fewer, much larger subjects. It is for instance
capable of holding:
5 Subjects;, each with:
SUbJEE=
- 20 students

- 4 subject messages

- 10 lessons:, each with:

- 267 -

Lesson Analysis
Syntax Information

10 Glossary entries

- 20 Frames, each with:
= Question
- Hints

- Answers

)
)
)
) all max. size
)
)
)

- Comments

(plus overheads such as BMT, 3 Global messages) .

This structure (5 subjects, 100 registered students,

1000 frames) requires 25417 DBTU's (4.848Mb).

An absolute maximum Database would involve the following:
50 Subjects, each with
- 100 students
- 10 subject messages
- 40 Lessons, each with

Lesson Analysis

Syntax Information

- 40 Glossary entries
- 40 Frames, each with
- Question
- Hints
- Answers

)
)
)
) all max. size
)
)
)

- Comments

(plus overheads such as BMT, 10 Global messages) .

This represents 50 supjects, 5000 registered students,

80000 frames and would require 2058012 DBTU's (392.5 Mb).

Using existing disk hardware (IBM 3350), it
would probably be convenient to restrict the
above to 316Mb, the Ccapacity of 1 disk volume.

Planned devices (IBM 3380) will have no such

restriction.

In comparison to the above, the IIS system has an overhead

of 8.3 Mb disk storage as delivered (for Messages, student
history file, formats etc.), plus 13 Mb for sample
courseware, (IBM,42). User developed material is

additional to this, and would tyvically require 0.63Mb for
a course of similar dimensions to each subject of the SCHOOL
10 lessons/20 frames example quoted earlier. Total disk

requirements (not including sample courseware) are therefcre:

5 courses @ 0.63Mb = 3.15 Mb
Overheads (for above with 20 students

max. per course) = 8.3 Mb

11.45 Mb

(Sources: IBM(47,48)) (Comparative SCHOOL size: 4.848Mb)

13.4.3 Costs - Processing

Processing at Compower is charged out to clients on the
basis of Computer Resource Unit (CRU) utilisation,

these being calculated from a combination of:

CPU time,

I/0 (disk and terminal) ,
yirtual storage,

Connect time.

Different algorithms are then applied to these

components (depending on host environment) to produce

2 CRU value for the job or session, and a charge is

de to the user at the appropriate rate of £x per CRU.
ma e

Using the same test sessions as Fig. 13.3, typical SCHOOL costs

are as follows:-

Fig. 13.4 SCHOOL Session costs

DURATION COST
No. (HH:MM:SS) CRU's @ 65p/CRU | COST/HOUR
1. A 0: 8:48 4.12 2.80 19.09
2. A 0:10:35 6.78 4.61 26.14
3. 0:10:50 7.60 5.17 28.63
4. 0: 7:22 13.47 9.16 74.61
5. A 0: 6:03 2.40 1.63 16.17
6. A 0:11:47 5.10 3.32 16.91
7. A 0: 8:10 4.34 2.82 20.72
8. S 1:15:49 29:11 18:92 14:97
3 S 0:11:50 4.35 2.83 14.35
10. S 1: 0:44 18.55 12.06 11.91
11. S 2:39:15 27.86 18.11 6.82
12. 0: 5:31 2.22 1.44 15.66
13. S 0:20:42 6.01 3.91 11.33
14. S 0:27:48 9.11 5.92 12.78
15. S 0: 9:40 3.89 2.53 15.70
16. s 0:12:52 5.31 3.45 16.09
TOTAL 7:27:46 150.22 98.68 13.22 %
* gverall
(N.B. 'A' in Column 1 indicates an Author session, average

'g' indicates & student gession)

- 270 -

Aver '
age cost/hour figures for the test SCHOOL sessions

as derived from the previous tables are therefore:
Author £20.07
Student £1Q.73
N.B. System Supervisor operations have not been included in

the above cost assessment. Such a wide range of functions

is available within this mode (most of which are used

infrequently) that it is difficult to be representative.

Equivalent costs for other systems are:-

PLATO - £10 per hour at a CDC Learning

Centre (Box,27) November 1980;
| - To carry out user authoring and

study in-house, cost of £22,000 per
annum (or £22 per hour for 4 hours
use per day, 250 working days per annum);

IIS - not benchmarked at Compower, but likely
to be between £18:and £24 per hour,
based on existing evidence;

CMS (Compower) - normal on-line development work
averages £15 to £25 per hour, APL work
£29 to £49 (averaged over 8 months) ;

VSPC (Compower) - normal on-line work averages £11.26

per hour, APL £17.51;

Costs evaluated for SCHOOL sessions are therefore most

favourable, and very much in keeping with other commercially
14

available on-line systems (CBL or otherwise). Theyare not

e near the forecasts of Bitzer & Skaperdas (10)

however anywher

7

ur cor the claims of Flockhart (17) of 4

H

o]

of a few cents per No

£ hardware 1s included) . These figures

per student hour (15p 1
imply not realistic if formal commercial accounting
are sim

procedures are adhered to.

13.4.4 Costs -~ Hardware

Within Compower and the National Coal Board SCHOOL
hardware costs will be negligible as it is intended

to run the system alongside existing facilities using
existing terminal equipment. Should a client wish to
install a dedicated terminal however, entirely standard

devices will be suitable with appropriate costs as

follows:
£.
IBM 3278 VDU 55 per month
rental
(will require access to
appropriate control unit)
Teletype terminals 1000-2500 purchase

(e.g. AJB32, Mellordata,

DECscope etc.)

Specialised CBL terminals similar to those used on the

PLATO system, whilst having many extra functions, tend
to be very much more expensive - PLATO terminals

currently cost £960 per month.

- 272 -

Conclusions

- AND PROPOSED EXTENSIONS

14.1

14.2

INTRODUCTION

The pu : . .
purpose of this final Chapter is to assess and review the

prototype SCHOOL system £rom a number of viewpoints:

- firstly, to what extent the original objectives were

achieved and how simple the system is to use;

secondly, to highlight some of the specific techniques

which have been evolved;

- thirdly, to address the continued development and extension

of the system.

It 1is not proposed to discuss the effectiveness of Computer-Based
Learning in general within this Chapter. Considerable space was
devoted to this in Chapter 2 and the current limited success of
the concept is seen not as a result of CBL being an inherently
and irreversibly poor teaching medium, but of having failed to
reach its full potential for a variety of reasons:

- expense and inefficiency;

- difficulty of courseware authoring;

- special hardware requirements;

- inflexibility and complexity.

SCHOOL has attempted to address all o

to produce a much more usable form of Computer-Based Learning.

ORIGINAL SYSTEM OBJECTIVES

The basic philosophy of SCHOOL. outlined in Chapter 2 should now

be restated:

(1) the package should have efficient system software and

optimum data storage utilisation;

(ii) existing terminal and telecommunications equipment should
ii i

be used;

f these problem areas in order

course authoring should be straight—forward, and no

Author language should be involved;

(iv) the entire system should be €asy, attractive and interesting

to use.
As the project has developed, two further Oobjectives have been
added to this list:

() the software should be portable;
(vi) Dboth software and database should be readily capable of

expansion;

14.3 ACHIEVEMENT OF ORIGINAL OBJECTIVES

14.3.1 Efficiency
Considerations within this area have been discussed in
some detail in Chapter 13, and it appears that SCHOOL
is significantly more efficient thah similar existing
systems, e.g. comparing SCHOOL and IBM's IIS:

Ratio (SCHOOL : IIS)

Software size 1 2.17
Course Storage 1 2.36
Processing costs 1 1.58

14.3.2 Use Existing Hardware

Entirely standard terminal and telecommunications equip-
ment is used to access SCHOOL. Also 'device optimisation'

i ed as efficiently as
techniques ensure that these are us v

possible.

14.3.3 Easv and Flexible Authoring

The removal of any devendency on a CBL Author Language

was considered most important, and this has been entirely

g most, if not all of a

achieved whilst still retainin

language' PR
guage's flexibility and power. Certainly an important

trend in :
camputing has gaot te be towards more flexible and

agre ni i
greeable man/machine interfaces, as many current

commentators agree (Peltu, 46). Computing languages as we

understand them now do not fit well into this conceot.
N.B.

An even £ i i
more powerful author interface is currently

being examined for SCHOOL - see 14.5.3.

Within the small sample of Authors who have produced
SCHOOL Courseware (none with CBL experience and one with
no computing experience at all), favourable reaction was
aroused by:

(1) the 'structuring' of courses;

(i1) use of Author documents, particularly for planning;

(1iii) clarity of prompts and error messages;

(iv) screen layout control;
(v) the hardcopy facility;
(vi) autcomatic input of course material;

(vii) the glossary concept;

(viii) author monitoring aids (lesson analysis, student

performance) ;

- oaa . 1
(ix) general 'user-friendliness .

Criticisms were expressed however ol the following:

(1) syntax Information facility. Some aspects of this

were considered too complex, and doubts were

expressed on its usefulness;

(ii) Author Document volume.
and it was

a considerable aumber of input documents,

felt (by one author) that this could be intimidating;
e

(1ii) Graphics some authors felt constrained by the lack
111 .

f graphics within SCHOOL/ although a student handout
or g

- 275 -

Complex courses could involve

14.3.4

14.3.5

containi i
alning related diagrams was considered an
acceptable alternative;
(iv)

ngh.brightness/underscoring. Two authors noted

that they would have found it useful if they could
have highlighted parts of their text;

(v) Text width. The restriction to 70 characters
(caused by Author Document control fields) caused
some irritation;

(vi) Size of glossary text. All authors who.used the
glossary facility noted that sometimes they felt

constrained by having only 3 lines for a glossary

explanation.

User-friendliness

Considerable effort has been put into making SCHOOL
attractive and straightforward, as can be appreciated
from the many session extracts used in this text. It is
certainly more usable than a system such as 1IS, although .
it must be acknowledged that some aspects of of PLATO
(e.g. dynamic graphics, touch activated VDU screen) are
most impressive, albeit involving special CBL hardware.

Planned extensions to the SCHOOL user interface will be

discussed in Section 14.5

Portability

Tt was hoped that SCHOOL would be capable of running

without modification on different machines. This has not

peen achieved, although €MS host environment dependence

has been kept to a minimum (even though using specific

s was at times very attractive and could

yM/CcMS facilitie

have saved considerable design and development). True

portability would inevitably compromise efficlency =

probably more than would ©e acceptable.

T

14.3.6 Expandability

Th
ere are two aspects to consider in thig context:

(1) D/B size = current limit 6.1 mb;
can be extended to 400 mb very simply;

multiple databases could also be configured.

t

(ii) Software

the hierarchical subsvst
] . e
Sortware ystem/module structure

lends itself particularly well to the

addition of new functions.

14.4 SPECIFIC TECHNIQUES EVOLVED

In addressing the objectives of this project it has become necessary
to develop and apply a variety of new software techniques, in particular:

14.4.1 Using a Hiérarchical Database for Courseware

This has not been encountered by the author in any other
CBL context, but the benefits that have resulted from the
SCHOOL implementation are many:

(1) rapid access to any part of any course;

(ii) one database maintains and controls all system
information (course contents, procedure, messages,
performance data etc.);

(iii)flexible and efficient storage control, without
constant manual manipulation;

(iv) expandability;

(v#) database logical record structure makes update/

deletion easy and efficient (all course components

are effectively separate entities within the overall

course structure) .

14.4.2 Text Compression

. . £
Any CBL system will involve consideraple volumes oL text,

i i jecline
and even though hardware costs will continue to ce .

14.4.3

there a ignifi
re significant benefits to pe gained from concise

text sto -
rage especially where compression of the text

1S augmented by compression of jitg layout.

The investigations carried out on this within the SCHOOL

pProject may not necessarily represent the best possible

co i i
mpression, but the reductions achieved are certainly

most useful and, in conjunction with the rapid table
searching algorithms evolved, efficiency of storage has

been achieved without introducing noticeable processing

overheads.

Author Language Elimination

Whilst the absence of an authoring language is not
entirely unique within CBL systems, SCHOOL has taken this
philosophy much further than previous products - e.g.
ACATS (Flockhart,17).. The comprehensive range of features
within SCHOOL's Author Control Subsystem include:
(1) Author Document facility;
(ii) Two input protocols: - automatic

- interactive;
(iii) Course performance monitoring;
(iv) Interactive coursewart maintenance;
(v) Interactive student control

N.B Tt should be noted that the implementations of

i 1 ‘made much of
many of the above have been

easier by the hierarchical organisation of the

SCHOOL Database.

14.5

of different types of terminal - although the majority

will be IBM 3270~Series VDU's.

The Display Format Subsystem (DFS) was designed to use these

different devices inp different ways, taking into account

the optimum characteristics of each.

Furthermore, it ig almost certain that new terminal types

will come into use in the future - possibly implying

further unique characteristics. The organisation of

SCHOOL is eminently suited to handle these as and when

they are introduced.

PLANNED ENHANCEMENTS

For any software product to have a significant lifetime, it must
be flexible and able to 'change with the times'. These changees
can be provoked in a number of ways:

(1) a recognition of current shortfalls;

(ii) new ideas producing major or minor system enhancements;

(11i) the exploitation of new technolagy.

Items from each of the above categories have been identified, and
it is appropriate to add some brief notes about them at this point:

14.5.1 Current Shortfalls and consequent Revisions

(a) Data and time on Hardcopy boxes:

could prove useful for administrative purposes,

and is simple to implement.

(b) Hardcopy switching for students:

currently this is available only at Author and

. <or levels, but test session students have noted
Supervis -

h ful it could be. Tt would be extremely easy
ow use

Lo activate via *COPY@N ang *COPYZFF immediate

Commands (reset command FALEVEL - see Chapter 11,

section 11.3),

More back sCreens:

test user reaction to this facility (activated

via *RESCREEN) has been most favourable, but it was

often felt that having more than one previous

screenful would be useful. Implementation of this

concept would involve the creation of several

'backscreen! buffers, as shown in Fig. 14.1:

erase
request

Fig. 14.1 multiple back screen
facility.

\

CURRENT C)
SCREEN

i (aXe

1

"

2
3
each screen erase ‘—‘,,/”/27'
loses ‘oldest' back

screen (BS4)

N

The numbef of buffers manipulated would

i 1 ireb
d are.tul COHSldeLa tion as eacn req\l
nee C

- 280 -

approximately 2K bytes. A new *RETURN command

would be required for returning to the current

SCreen,

14.5.2 Minor Enhancements

(a) Use of Program Function (PF) keys:

Many current terminals (including 3270
screens) have PF key facilities, whereby various
host system/application commands can be activated
by a single key depression. This could be applied
to great effect within SCHOOL by assigning

various common Immediate commands to PF keys -

a typical list would be:

PF Key Associated command

1 *RESCREEN EEE;E&JE
PF ke

2 *LIST assigi—
ments.

3 *GL@SSARY

4 *HINT

5 *ANSWER

6 *SCPRE

7 *CURRENT

8 *DETAILS

9 *C@MMENT

10 *MESSAGES

11 *C@PYPN

12 *CPPYPFF

i W 14
N inz i d sucn as AEANDON wou

not be allocated to safeguard against

accidental key depression.

Command abbreviations-
2

as user i i
€xpertise lnCreases, eéntering system

COH]]IlaIldS iIl full I eC
can O i i i er—
Oome lrrltatlng’ and 'US r

friendlinesg! would benefit frop being able to
abbreviate these commands down to a minimum unique

character string. For example:

Fig. 14.3 Command abbreviations:

MIN.
COMMAND TYPE COMMAND ABBREVIATION.
AUTHOR ALTER AL
ANALYSIS AN
REMOVE REM
RESETLAR RES
SUPERVISOR SCRDEL sC
STUDENTS ST
SUBJECTS SUBJ
SUBREFNO SUBR
IMMEDIATE *ABANDON *AB
*AUTHOR *AU
*ANSWER *AND
*ANALYSIS *ANA

14.5.3 Major Enhancements

(a) 'Black box' simulations:

some CBL applications can be significantly

. 1A :
improved 1f some form of dynamic model (or 'Black

is i o into the courseware, &.9.
box') 1is incorporated int

sical ess medel. A
mathematical formulae, physical process m

his ween devised for
possible approach for this has 2eé

SCHOOL, along the following lines:
’

i g i i on Of
1 1

i l in terms O
hib 'Black BOX' 7 tVOlca].V E

Procedure/Output;

~NODY

(i1) a '
N emulation Program is produced for it,

writ i i
ten in a Compatihle Programming language

(e.g. cogor, ASSEMBLER, FORTRAN) , possibly

DY a professiona] programmer;
(1ii) a 1link between the Black BOox program and the
corresponding part of the SCHOOL course is
set up by specifying

BLACKBOX (....programname....)

as the appropriate Prime Answer entry;

(b) Help facility:

a further improvement to SCHOOL's man/machine
interface would be the introduction of a Help
facility, implemented at various levels:

(1) *HELP Immediate command

- would temporarily enter Help mode, whereby
the user could list commands, regquest
explanations, etc.;

(ii) "?2command’:

- available on an 'Immediate' basis, this
would return an explanation of the specified
command;

(1ii) '?°":

_ would return an explanation of what is
raquired from the user at this point of
system progress.

I i £f the
Various techniques would be required to effect

i vsSTem
above but almost certalnly a new SCHOOL subsvs
’

would be involved.

(c)

Full s

== Screen Management.

(1)

re i
cent lhprovements tgo CMS and vspc systems

have i
made available a facility whereby a complete

scr i i
eenful of 1nformation can now be read as

wel] i
1l as written. This product is the Full Screen

Manager (Fsm) and it will have major implications

within the ScrOOL Author and Supervisor Control

Subsystems. For eéxample, instead of prompt/

response interactive input, consider the

following sequence:

display 'Author Document' screen format;

(11) position cursor at start of first input field;

(iii) the user then enters information into each

field as required, tabbing from one field

to the next;

(iv) ENTER is pressed on completion of the last

around, making

Pressing ENTER

The use of FSM

improvement to

field, and the complete screen is then trans-

mitted.

This technique is also applicable to courseware
alteration - existing material can be displayed on

the screen and the user simply moves the cursor

whatever alterations that are required.

then freezes these glterations.

could represent a significant

SCHOOL's user interface, as well as

reducing terminal I/O operations.

14.5.4 New Technology

During the de
technological advance

to be incorporated in th

below:

I
S have ta}\en vlace \Vh.lch are eXDeCted

e near future. These are discussed

(a) Multiple screen sizeg:.
2

I - .
BM 3270 type devices are now available with

different SCreen sizes,

e.g.
IBM 3278 vpy.
MOdel Rows COlu_mns
2 24 80
’ 32 80
4 43 80
> 27 132

SCHOOL Display Format Subsystem (DFS) was originally

tailored to 24 x 80 screens, but could gquite readily

cater for more rows. Note that:

(1) the terminal model number can be extracted
automatically from the host system (as is
already done for terminal type) ;

(1i) most operational screens will continue to be

24 x 80,

(b) Upper and lower case;

- when development work on SCHOOL started, terminals
capable of accessing the system were upper case only,
and whilst allowance for upper and lower case I/0
was made, no special emphasis was put on its use.

Modern terminal devices now handle mixed case, and

this is much more suited to CBL applications than

all capitals. SCHOOL is capable of processing

.) s]
i i in minor considerations:
upper/lower case miX with certain I

(1) 1terations to the text compression algorithm
i a]

i jefiniti of
will be necessary to retain a definition

original word format:

285 -

all lower case

E' .
.LISt Character (:ap la 1 re ia' (Ie[ower case

(

co . .
mpression code bit settings could be used to

define the above combinations)

compression/expansion will be slightly slower;
’
hardcopy control software will require modification

to use upper and lower Case character fonts on

the mainframe printer.

Colour graphics:

the use of graphics within CBL, whilst a major enhance-
ment,has normally involved the use of special purpose
terminals (e.g. PLAT@) or been microprocessor based

(e.g. APPLE II PILOT system), with the associated
storage restrictions. Recently however examples of
general purpose ¥RU's with high-resolution graphics
capabilities (sometimes in colour) have become available.
Typical of these is the IBM 3279, a 32 x 80 character
screen with 7 base colours and with associated software

GDDM (Graphical Data Display Manager - IBM,43). A
function within GDDM is the Interactive Chart Utility

(IBM,44) which provides an ability to create graphs,

charts, histograms, etc. totally interactively - no

user programming being involved. Once created,a display
A

led either inter-

can be saved and subsequently recal

actively or by program.

. , e neors ced
This interface could quite readily be incorporatc

into SCHOOL although courseware authors would need to
into , al

i ility (a
be familiar with the Interactive Chart Utility |

More Sophisticated graphics are also possible, but

these need to be program-driven and an interface

along the lines of the 'Black Box' concept described

earlier would be involved.

(d) Distributed data processing - minis and micros;

- in the mid 1970's, a project was started at Compower

to implement a network of Digital Equipment Corp-
pration PDP minicomputers which would link into the

central IBM mainframe (s), as shown in Fig. 14.4:

terminal

PDP
11/45

PDP
11/45

PDP
11/70
v
Fig. 14.4 Compower
/ DEC/IBM Network

IBM
Mainframe

[§)

w

w
!

The linicomputers were to be installed in a number

of NCB locations, withvprocessing being broken down

into local ang central components, and certain aspects

of SCHOOL were designed to reflect this.

For a variety of reasons, this concept has had only
limited success and the network has been restricted

to NCB Scientific installations.

Since March 1981 however a more powerful approach has
been under development using multiple IBM 8100
processors and System Network Architecture protocols

(IBM , 5, 7, 8), as shown by Fig. 14.5:

communications
"loop’ terminal
8100
8100
Fig. 14.5 8100 Network
IBM
Mainframe

Withj i
n this structure | any terminal on an 8100 loop

can i
dccess systems resident locally, or centrally

on i
the mainframe. Furthermore under DPPX, the 8100

Ope i :
Perating system (IBM, 45), locally-resident software

can interface automatically with central on-line

s .
ystems. Thig could be used within the SCHOOL context

as follows:-

Local 8100 would support:

Keyboard Respohse Evaluation Subsystem

some immediate commands

(e.qg. *RESCREEN, *CURRENT)
- text compression (for local authoring)
- Display Format Subsystem
(text transmitted compressed, expanded,
formatted and displayed locally. This would
produce large transmission reductions).

- some aspects of Tutorial Logic Control Subsystem.

Central Mainframe would support:

- a full SCHOOL system which would provide the
facilities not supported locally for 8100-based

users, but would cater for normal access also.

A conceptually similar approach could he applied to

communicating microprocessors, and experiments iave

AR

shown that VM/C¥3 and SCHOGL cal
remote APPLE T@ svstem, and that central files

be down-loaded to APPLE diskettes. This could be

applied as follows:-—

~ infr .
(1) log microprocessor on to IBM mainframe;

(ii) access SCHOQL;

- 290 -

(1ii) s i
Pecify down-loag OPeration plug appropriate
Parameters;

(iv - : .
) once down loading ig complete, exit SCHOOL ang

loggoff mainframe;

study courseware locally under micro-based

Tutorial Logic Control Subsysten.

There are certain reservations associated with this approach

r

not least of which isg the higher skill requirement on the

part of the user. Balso the microprocessor will need to

have an 80-column display, but the possibilities seem most

attractive.
14.6 CONCLUSION
"Civilisation is not a collection of finished artefacts, it

is the elaboration of processes'.

Jacob Bronowski.

- 291 -

Glossary

- OF ABBREVIATIONS

ACATS Aston Computer—Assisted Teaching System

ACS Author Control Subsysten

AP Auxiliary Processor

APL A Programming Language

ASCII American National Standard Code for Information Interchange
BASIC Beginners All-purpose Symbolic Instruction Code
BMT Bit Map Table

CAI Computer Assisted Instruction

CAL Computer Assisted Learning: .

CAT Computer Assisted Training

CBE Computer Based Education

CBL Computer Based Learning

CBT Computer Based Training

ccT Control Command Table

CDC Control Data Corporation

CIR Comment Information Record

CML Computer Managed Learning

CMS Conversational Monitoring System

CMT Computer Managed Traluing

COBOL Commercial Business 2riented Language
CPS Conversational Progremming &

CpPU Central Processin: unil

CRU Computer Resource Uil

CsB Current Segment Block

CWD Common Word Dictionary

b/B Database

DBTU Data Base Transfer Unit

DCB

DEC

DECAL

DFS

DIOS

DIS

DP

DPPX

EBCDIC

EMS

FAT

FDB

FIS

FLR

FP

FRT

FSM

FSCB

GDDM

GDR

GMR

GRT

HIR

IBM

ICES

Data Control Block

Digitial Equipment Corporation
Digital Equipment Corporation Author Language
Display Format Subsystem

Database Input/Output Subsysten

Data Input Subsystem

Data Processing

Distributed Processing Program Executive

Extended Binary Coded Decimal Interchange Code

Error Management Subsystem

Frame Analysis Table

Frame Data Block

Field Instructional System
Formatted Logical Record
Foreground Processor

Frame Records Table

Full Screen Manager

File System Control Block

Graphical Data Display Manager
Glossary Definition Recprd
Globhai Mossage Record

Glossary Raference Table

Hint Information Record

International Business Machlnes

Tmmediate Command Execution Subsystem

]
(3]
O
(O8]

|

ICL International Computers Limited

IIS Interactive Instructional System

IMS Information Management Systen

I/0 Input/Output

ITS Interactive Training System

ITT International Telephone & Telegraph
KRES Keyboard Response Evaluation Subsystem
LAR Lesson Analysis Record

LCR Lesson Control Record

MCR Master Control Record

MVS Multiple virtual Storage

NCB Natiocnal Coal Board

PAR Primary Answer Record

PDP Programmable Data Processor

PF Program Function

PL/1 Program Language 1

PLATO Programmed Logic for Automatic Tsaching Opawations
POR Primary Question Reccrd

RDEVBLOK Real Device Block

RSX Real-time System Executive

: i i of line Lessons
SCHOOL, System Controlling Hierarchical Organisation ot Onlin

SCR Subject Control Record

SO

SCS
SDT
SIB
SMR
SNA
SPR
SRT
SSBLOK
SSM

STAIRS

TICCIT

TLCS
TPT
TSCB

TSO

VDU
VM
VM/SP

VsSPC

XSCF

Supervisor Control Subsysten
Syntax Definition Table
Syntax Information Block
Subject Message Record
System Network Architecture
Student Performance Record
Student Reference Table
Student Status Block

Shared Storage Management

Storage and Information Retrieval System

Time-shared Interactive Computer-Controlled Information
Televisicn

Tutorial Logic Control Subsystem
Tutorial Pointer Table
Tutorial Status Control Block

Time-Sharing Option

Visual Display Unit
Virtual Machine
Virtual Machine/System Product

~

Virtual Storage Fersonal Computing

S g e - 1Y aF t e
Extended Courss Fixucturing Featurx

references

B

REFERENCES
—_—

. .
Information Management System - General Information

IBM Systems Library, No. GH20-1260,

1
Storage and Information Retrieval System - General Information!

IBM Systems Library, No. GH12-5114.

Virs
Virtual Storage, Personal Computing - General Information',

IBM Systems Library, No. GH20-9070.

'Virtual Machine Facility/System 370 - General Information'.

IBM Systems Library, No. GC20-1800.

J. H. McFadyen.

'Systems Network Architecture: an Overview'.

IBM Systems Journal 15, No.1, 4-23 (1976) .

C. R. Blair and J. p. Gray.
"IBM Systems Network Architecture’.

Datamation 21, No. 3, 51-56 (April 1975).

'Systems Network Architecture - General Information'.

IBM Systems Library, No. GA27-3102.

H. Lorin.
'Distributed processing : an assessment'.

IBM Systems Journal 18,.No.4. 582=-602 (1979)

J. Fielden.
'The Financial Evaluation of NDPCAL'.

British Journal of Educational Technology,
vol. 8. No.3. October 1977.

D. Bitzer and D. Skaperdas.

'The Economics of a large-scale Computer-based Educatio; Syatem:
PLATO IV' Computer-Assisted Instruction, Testing and Guic
(Editor W. H. Holtzman) Harper & Row, 1970.

H. T. Lippert.
'Computer support of instruction and student services 1n a
college or university'.

Educational Technology, 11, 5, May 1971.

12.

13.

14.

15.

16.

17.

18.

19.

20,

R, Hooper.

'An Introduction to the Natio

nal Dev .
Computer Aasisted Learning'_ elopment Programme in

British Journal of Educatio

nal Tecj
October 1977. echnology, vol.8, No.3.

G. Beech.
'Training Computers to Train',

Business Computing, November 1980.

G. M. Silvern and L. C. Silvern.

'Computer-assisted instruction

specification of attributes
for CAI programs and Programmers'

Proceedings of ACM National Conference, 1966.

P. Suppes and E. Macken.

'"The Historical Path from Research and Development to Operations
Use of CAI'.

Educational Technology, April 1978.

R. Hooper.
'"The Learn Machine'

Personal Computer World, April 1979.

A. D. Flockhart.

‘The Design and Implementation of a Computer-Assisted
Instruction system in a University environment'.

University of Aston in Birmingham, M. Phil Thesis, November 1273.

D. L. Alderman, L. R. Appel and R. T. Murphy.
'PLAT¢ and TICCIT : An evaluaticn of CAI in the Community Cellege’

Educational Technology, April 1978. _

J. C. Baker.

O
'Corporate Involvement i TAJL
e G768
Educational Technology. i «il 1976.
Zinn K. L.

P vamming Interactive
'Comparative Study of Languages for Prograrn g

; : '
Use of Computers in Education

- ™ 1969.
EDUCOM (microfiche), Boston, Mass. , February

21.

22.

23.

24.

25.

26.

27.

28.

29,

30.

31.

'Requirem
q ents for Pr0gramming Languages in CAT Systems*

Ed i
ucational Yearbook 1971/2, British Computer Society

Mills & Allen Communications Ltd.

'Compute L
puter Based Training - coMBAT System Overview' Spring 1980.

IBM Systems Library, No. SH20-1472.

Tagg, W.
'Computer Managed Learning in Hertfordshire'

British Journal of Educational Technology, Vol. 8. No.3.
October 1977.

Miles, R.
'Computers in Military Training'

British Journal of Educational Technology, Vol. 8. No.3.
October 1977.

Denenberg, S. A.
'A Personal Evaluation of the PLATO System’

ACM Sigcue Bulletin, Volume 12, No.2. April 1978.

Box, C.
'Evaluating PLATO'

Business Computing, November 1980.

"IBM System/370 - Principles of Operation'

IBM Systems Library, No. GA22-7000.

"IBM OS Full American National Standard C@B@L'

IBM Systems Library, No. GC28-6396.

'0S PL/1 Checkout and Optimizing Compilers : Language Referernce
Manual'

IBM Systems Library, No. Gec33-0009.

'yS Personal Computing (VSPC) :Writing Processors'.

IBM Systems Library, No .SH20-9074.

Minimum—Redundancy Codes'!

33. M. Wells.

'File i i i
compression uUsing variable length string encodings'

T
he Computer Journal, Vol.15, No.4. Novermber 19772.

34, M. P. West

'A General Service

List of English wo i i
Frequencies' g rds with Semantic

Longmans, 1953,

35. G. Dewey.

'Relative Frequency of English Speech Sounds'’

Oxford University Press, 1923,

36. Thorndike & Lorge.

'"The Teacher's word book of 30000 words'
Columbia Press, 1944,

37. F.R.A. Hopgocd.
'Compiling Techniques'

London : Macdonald, 1969,

38, F.R.A. Hopgood & J. Davenport.
'The Quadratic Hash method when the table size is a power of 2'

The Computer Journal, Vol.l15, No.4. November 1972.

39. A. Mayne & E. B. James
'Information Compression by Factorising Common Strings'

The. Computer Journal, Vol.18, No.2. May 1975.
40, 'Storage and Information Retrieval System/Virtual Storage
(STAIRS/VS): Program Reference Manual'

IBM Systems Library, No. SE12-5400

41. '0S/VS2 MVS Supervisor Services and Maciyc ins

. e E_AER3
IBM Systems Library, No. GC2S 0683
; : General Infc tion Manual'.
42 ' i t tional systen @ Generda. A_urmag I
) Interactive Instructica Y
GH20-2440

IBM Systems Library, Nc¢.

43.

44

45.

46.

47.

48.

49,

‘Graphical Data Display Man

dger ang
Feature : Genera] Informati Pre

se i "
on' ftation Graphicg

IBM Systems Library No, GC33-0100

'Pfesentation Graphics Feature
= : Inte i .
Introductory Course: Factive Chart Utility ,

IBM Systems Library, No. SC33-0111

'Distributed Processin

Information! g PrOgramming Executive (DPPX

): Genera]

IBM Systems Library, No. GC27-0400

M. Peltu.
'Artificial Intelligence the Key to the fifth Generation!
Datamation, January 1982,

'"Interactive Instructional Presentation System
Interactive Instructional Authoring Systep

: Operations Guide
(VM/370 - cMs) !

IBM Systems Library, No. SH20-2459,

"Interactive Instructional Presentation System:

Interactive Instructional Authoring System - Administrators
Guide'

IBM Systems Library, No. SH20-2449,

J. Bronowski.
'The Ascent of Man'

Book Club Associates, 1976.

IN) —

