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Summary

This thesis seeks to describe the development of an inexpensive
and efficient clustering technique for muitivariate data analysis.
The technique starts from a multivariate data matrix and ends with
graphical representation of the data and pattern recognition discriminant
function. The technique also results in distances frequency
distribution that might be useful in detecting clustering in the data
or for the estimation of parameters useful in the discrimination
between the different populations in the data. The technique can also
be used in feature selection. The technique is essentially for the
discovery of data structure by revealing the component parts of the data.

The thesis offers three distinct contributions for cluster analysis
and pattern recognition techniques. The first contribution is the
introduction of transformation function in the technique of nonlinear
mapping. The second contribution is the use. of distances frequency
distribution instead of distances time-sequence in nonlinear mapping,
The third contribution is the formulation of a new generalised and
normalised error function together with its optimal step size formula
for gradient method minimisation.

The thesis consists of five chapters. The first chapter is the
introduction. The second chapter describes multidimensional scaling
as an origin of nonlinear mapping technique, The third chapter
describes the first developing step in the technique of nonlinear
mapping that is the introduction of "transformation function". The
fourth chapter describes the second developing step of the nonlinear
mapping technique. This is the use of distances frequency distribution
instead of distances time-sequence. The chapter also includes the new
generalised and normalised error function formulation. Finally, the
fifth chapter, the conculsion, evaluates all developments and proposes
a new program for cluster analysis and pattern recognition by integrating

all the. new features,
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" Either we may neglect a part of the multiple
features which are found in the concrete thing
(by what is ca]1¢d.ana1ysis) and select only
one of them; or, neglecting their variety, we
may concentrate the multiple characters into

one,"

Hegel

Hegel's Logic
Page 166, .. ..
Oxford University Press, 1975
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INTRODUCTION



INTRODUCTION

~ The object of this work was to develop a computationally efficient
and inexpensive multivariate data analysis technique for users in the

different scientific fields.

The technique seeks to analyse multivariate data which is in the
form of a matrix of m rows and n columns. Each row corresponds to a
sample given by n numerical values. In order to have a meaningful
result there are some conditions to be met. First the data should
contain sufficient information content to be uncovered by the
technique. Second, although the technique can analyse multivariate
data without knowing the class-membership of the patterns, it is-
important to. know them in order to evaluate the result of using the
technique. Third and according to some studies, Gray (1976), the number
of samples to the number of measurements ratio should be greater or
equal to 3. However a smaller ratio does not necessarily mean that the

technique is not useful to apply.

In analysing multivariate data the technique seeks to isolate
the component parts of the data. If the data is composed ofa
concentration of patterns or points then the technique should reflect
this. The analysis of the data is carriedout inan objective manner,
That is the technique is intended not to enhance clustering in the

data although it can,

The technique results in the discrimination between the clusters
in the data if clustering does exist. In order to discriminate
between the clusters the technique seeks to find a hyperplane or

hyperplanes in the n-dimensional patterns space between the clusters.,



The position of the patterns with respect to the hyperplane is an
indication to their cluster membership, Furthermore cluster
membership can be quantitatively measured. This result is achieved
by mapping the patterns or points in their n-dimensional space to a
Tower dimensionality space andespecially to one-dimensional space.
This is why in order to discriminate between patterns and to reveal
clustering in data we resort to map the data from the higher to the

lower dimension space.

Meltivariate data originate from many scientific experiments., In
chememistry the nonlinear mapping of Sammon (1969) was used in general
applications, Koskinen (1975), Kowalski et al. (1975) and Kowalski et al.
(1972). The same technique was used in the study of pharmacological
activity of some organic compounds, Chu (1974) and Ting et al. (1973).
Also and as a chemical application in archaeology, Kowalski (1974) and

Boulle et al. (1979).

As it has been mentioned earlier the object of our work was the
development of an inexpensive mu1ti§ariate data analysis technique.
This is specially the case with storage requirvements. In addition
the technique offers exceptional advantage by supplying the user with
a simple linear function that can be used every time a knew unknown

pattern is to be recognised,

This thesis consists of five chapters. In the second chapter
we describe Shepard'smultidiménsional scaling technique and its
development by Kruskal. In the same chapter we describe

Sammon's nonlinear mapping technique and its developments.

Shepard's multidimensional technique was meant "for the discovery



and representation of structures underlying matrices of similarity
data", Shepard (1974). On the other hand Sammon's nonlinear mapping
technique was meant "to detect and identify 'structure' which may be
present in a list of N L-dimensional vectors", Sammon (1969),
Multidimensional scaling is the origin of nonlinear mapping, In fact
it has been demonstrated that nonlinear mapping is a special case of
multidimensional scaling, Kruskal (1971). One essential difference
between multidimensional scaling and nonlinear mapping is that the
first énalyses proximity (similarity) data and the second analyses

multivariate data.

In the third chapter we describe the first step in developing the
linear mapping method. The method has been developed by introducing
what we call "transformation function". The function transforms the
patterns in their higher n]-dimensional space to the lower
nz-dimensional space. Geometrically the function is a hyperplane in
the nl—dimensiona1 space, The transformation function mapping techniqué
seeks to isolate the clusters in the patterns ny-dimensional space by
one or more hyperplanes. In the case of two-dimensional mapping two
transformation functions havg to be employed. The chapter also describes
two important outcomes resulting from the introduction of transformation
function. The first outcome is a computationally more efficient method
and second the use of transformation function as a discriminant function
in recognising patterns. Three data sets have been described in chapter

three together with their results.

In the fourth chapter the second developing step is considered. The
second step is the use of distances frequency distribution instead of

distances time-sequence. The main target of this step was to minimise



the cost of data storage..The result of this was a radical reduction

in memoi'y requirement. The chapter then discusses the results of two
applications. In this chapter we also formulate a new error function
that is éeneralised and normalised. The error function is also
invariate against similarity transformations. The formulation is based
on simple difference of squares. In addition the chapter formulates
mathematical rodels for interpoints distances frequency distribution,
The model is meant for the study of distances frequency distributions.
It is useful to note here that the program described in chapter four
employs transformation function together with distances frequency

distribution,

Finally, the fifth chapter evaluates the theoretical and the
practical results from transformation function and distances frequency
distribution mapping. The chapter also includes the description of
some structural properties and function of a new program for
multivariate analysis technique. The program uses the generalised
error function and an optimal step size gradient minimisation method.,
The technique is expected to carryoutautomatic pattern classification

as well as providing graphical representation for data structure.



CHAPTER TWO

MULTIDIMENSIONAL SCALING
AND
NONLINEAR MAPPING



2.1

el

INTRODUCT ION

In this chapter we will consider the two methods of
Shepard (1962 a) and Sammon (1969) that analyse similarity
and multivariate data respectively. Also the important
developments: on Sammon's method will be closely considered.

Both methods attempt to provide a graphical
representation of a set of objects (or points) so as to
give information about the relationship between them or
their grouping. The graphical representation is in one, two
or three-dimensional Euclidean space.

Although the two methods are similar they do differ
in, first, the method of multidimensional scaling starts
from the similarities between a set of objects.

In contrast the non-linear mapping method starts
from a set of n]-dimensional space points given in the form
of multivariate data.

The two methods employ two different criteria that
Jjudge the progress andwhento terminate the process of
scaling or mapping. In multidimensional scaling the criterion
is the méasure of departure from monotonicity by the
similarity-distance relationship. In non-linear mapping
the criterion is the degree of difference between the

distances in the ny and nz-dimensionaT spaces.

SHEPARD

The multidimensional scaling method of Shepard (1962 a)
seeks to obtain a spatial representation for a number of
objects under consideration and their relationships. Normally

the relationships are given in the form of similarities and



serye as nput. The_simi]arities are extracted from the
objects by ccuparing every two of them. The similarities

can suitably be represented by a matrix form called the
similarity matrix. Normally the similarities occupy the upper
or Tower part of the matrix. Each element 843 of the
similarity matrix represents the similarity between the i-th
and j-th objects. The multidimensional scaling technique
takes the matrix of similarity as input, and yields a
configuration of points as output, in other words multidimensional
scaling transforms a similarity matrix into distances between
spatially represented points, Kiyskal (1977).

The other aspect of multidimensional scaling technique
is the monotic functional relationship between distance and
similarity. Multidimensional scaling assumes thattwoormore
similar objects have clese proximity in the n-dimensicnal pattern space.
Mathematically, the relationship between similarity and
distance is assumed monotonic. The technique does not require
that the form of the monotqnic function is known. Furthermore,
the technique can graphically extract the form of the monotonic
function from the similarity matrix data. There are a number
of fahiTiar monotonic functions that arise from the different
applications, Shepard (1962 b}. The conditidn of monotonicity
was further coupled with the condition of convexity,

Shepard (1974).

Ideally, the similarity-distance functional relationship
forms a perfectly monotonic relation. In such a case the
spatial representation of the objects and their distances
are a perfect reflection of the similarities between the

objects. Such a configuration iz regardedas gpimal and it

~
L9



has zeyo departure froi monotoricity. In contrast optimal
spatial configurations always have their respective
distance-dﬁﬁmihrity‘functions depart from monotonicity. The
obtaining of an optimal spatial configuration means that

the departure from monotonicity is minimal.

Shepard multidimensional scaling employs a governing
criterion. The criterion measures the degree of departure
from monotonicity by the similarity-distance relationship
formed by the data. The criterion used by Shepard (1962 a)

takes the following form:
criterion = 5(s,; - s(dij))zf(m(m - 1)/2) 2.1)

where m is the number of objects in the dataset and sij
is the similarity between i-th and j-th objects. The term
S(dij) stands for the similarity of rank R‘(dij),

Shepard (1962 a).

The computation of the spatial configuration, where
similarities between the objects are represented by distances
starts froma"guess" configuration and the above criterion
is employed to measure the degree of departure from
monotonicity. The process of approaching the optimal spatial
configuration is done iteratively and it stops when the
value of the criterion reaches a tolerated value. The
output from this process is a set of m points (usually one
or two dimensional points). In order to minimise the
criterion quantitative value, a steepest-descent method is
used haying the criterion as the objective function and

the coordinates of the spatial configuration points as the

independent variables.



2.2.1

2:3

RESULTS QF SHEPARD'S METHQD

Shepards mothod was tested on two tynes of data,
namely, artificially generated data and naturally occurring
data. Using given moiotonic similarity versus distance
relation to generate aptificial data, it was possible for
Shepard's method to recover the "intrinsic" dimensionality
of the data and its monotonic function. Using natural data
on the other hand, it was possible to extract the "intrinsic"
dimensionality of the data and the form of the monotonic
similarity versus distance function. One example of natural
data was the one describing facial expressions, Shepard
(1962 b). This data was mapped to a two-dimensional space,
where the relationship between different expressions were
revealed and the form of the monotonic similarity versus
distance function was recovered. Another set of natural
data consisted of fourteen colours of different hue,
Shepard (1962 b). The method attempted to obtain a
spatial representation of the infer-refationships between the colours.
exponential similarity versus distance relation was_obtained.
The fourteen colours formed a C-shape spatial configuration
suggesting one "intrinsic" dimension, Shépard (1962 b)

suggested two-dimensions.

KRUSKAL'S REFINEMENT OF SHEPARD'S METHOD

Kruskal (1964 a) refined the termination criterion of
Shepard and replaced it by another criterion called "stress".
Kruskal offered a more rigorous quantitative measure for

the ceparture from monotonicity.

10



It djj are a monotone sequence of numbers, D.. is the

J
dissintlurity hatizen the corresponding i-th and j-th
objccts under cunsideration. Then Kruskal defines
the criterion function, "stress", that measures the "goodness
of fit" between the distances of the points in the
resultant spatial configuration on one hand and the
corresponding dissimilarities between the objects on the other
hand.

The first step 1in constructing Kruskal's "stress"

function is to define the "raw stress", Kruskal (1964):

L

= &% = -
raw stress = s ;(Dij diJ (2.2)

The raw stress is invariant to transformations such as
translation, rotation and reflection of the spatial
configuration of the points. However, it is not invariant
to any uniform stretching and shrinking of the configuration.

If the "raw stress" is divided by the scaling expression:
™ = .5 (2.3)
i :

then the following expression becomes invariant against

shrinking and stretching transformations:

2
T* 202
iJ
and finally Kruskal (1964 a) defines the "stress" s by:
' 2
B(D.: =~ du) '
sim il My (2.5)
Dy .

The method seeks to obtain a spatial configuration of points
that have the set of their distances minimises the "stress"
function above. The method employs the same minimisation

technique used by Shepard (1962 a).
i



2.4

2:9

COMMENTS DN HULTIDIFENSIGNAL SCALING

It seems that multidimensional scaling to one-dimension

is the solution for the problem of dimensionality posed by

Shepard (1974).

Itwas originally thought, Kruskal (1964), that

‘dimensionality yersus stress relation exhibits an "elbow"

at a dimensionality between 1 and m - 1, where m is the
number of objects in the data set. This dimensionality is

n

assumed to be the "intrinsic" dimensionality.

However, there is evidence that the "intrinsic"
dimensionality and the "elbow" indicating it do not
really exist. Firstly, the Monte Carlo experiments,
Stenson (1968), Stenson and Knoll (1969) and Klahr (1969),
on the relation between stress and dimensionality in multi-
dimensional scaling have shown that this relation does not
exhibit the "elbow" reported by Kruskal (1964). Secondly,
Shepard (1974) noticed that many two-dimensional spatial

configurationswere'disguised" by shapes like the C and S.

SAMMON

The non-linear mapping technique of Sammon (1969) maps

a set of points in a metric n]~dimensiona1 space into another

set of points in a lower metric n2-d1mensiona1 space. The
two sets are on a one-to-one correspondence, that is each
point of either set is paired with exactly one point of the
other set. In effect the technique transforms multivariate
data into a spatially represented data. Suchatransformation
results in reducing the dimensionality of the multivariateé.

data.

12



The. essential matitcr about non-linear mapping is to
transfori the multivariate data irto a spatial configuration
normz11y in two-dimensional space, in order "to detect and
identify 'structupe'" which may be present", in the data,
Sammon (1969). Generally the coordinates of each point in
the ny-~dimensional space are non-linearly related to the
corresponding point in the nz—dimensiona1 space. The
relation is implicit.

Mapping in Sammon's technique is done such that the
distances between the points in the n,-space are as
similar as possible to those corresponding to them in the
n]-dimensionai space.

Sammon's technique employes a mathematical criterion
that measures the difference between the distances in the
n,-space and the corresponding distances in the n]—dimensional
space. The criterion is in the form of an error that sums
all the individual errors between the distances in the two
N, and n, spaces. A zero error means that every distance
in the n,-space is equal to its corresponding distance in the
n]-space; The error is a function of the distances in the
n,-space, that is a function of the coordinates of the points
in the nz-dimensiona1 space. The technique proceeds to
preserve the structure of points in the ny-space while mapping
them into the'nz-space. This is through the changing of
the coordinates in the n,-space so as to obtain an optimal
reflection of the structure of points in the n,-space. Thus
the cogrdinates are the independent variables of the error

function. The number of such variables is m X n2, where m

is the number of points.

13



2:5.1

2.5.2

SEUMON'S ERROR FUNCT LON

In Samwon's method the error function took the form:

2
(0, - d..)
E=i} _hliU__ﬂll*‘/ 5D

: (2.6)
1 RS F IS £

1J

-where DTj 1s the distance between the i-th and j-th points

in the ny-dimensional space; dij is the distance between the
i-th and j-th points in the n, dimensional space and

iand j are such that (i = 1, m - 1), (3 =1+ 1, m) and
371

The denominator of 2.6 is included tonormalissthe error. The
error, therefore, takes the value of unity when all dijls are
zero. This is the case when, for instance, the starting
configuration in the n,-space is merely m points superimposed
each on the other.

The error function is invariant to transformations such
as totétion of axes, reflection in the axes and translation
of axes. Generally the value of the error increases as the
number of points increases and as the difference between the

dimensionality of the hjgher‘and lower spaces increases.

DISTANCES IN THE n, AND n,-DIMENSIONAL SPACES

1 2

Generally, distances in the nl—dimensional space are

evaluated according to the Minkowski distance function:

Dij - (Z[qik - qjklr)1/r (2.7)

Sammon (1969) used the Euclidean distance function, that
is r = 2, but he also accepted the possibility of using other
distance measures. White (1972) reported the use ofadistance

measure with r = 1.

L



2.5 .3

Distahces in the n1 anc nz—dimensiona1 spaces must be
greater than zero. This implies that there must be no
repeated points in the data so asts ensure finite yalue
error function.

The distribution of distance values in the n, and n,
spaces assumes different forms depending on the number of
clusters and the distribution of points in the clusters. In
the case of two clusters that are sufficiently separate, two
sets of distances are identifiable. The distances between
the points of the same cluster and the distances between the
points belonging to different clusters. The first set of
distances consists of the smaller distances. and the second
set consists of the larger distances. It is possible
to set Sammon's error function so as to enhance the
discrimination between the clusters by preserying the smaller
distances on the expense of the larger distances, Kowalski

et al (1973).

COMPUTAT IONAL ASPECT

The structure of the non-linear mapping program
consists mainly of two parts, the error function procedure
together with its first and second derivatives and the steepest-
descent minimisation procedure.

The program starts by reading the m x n, multivariate
data matrix and the m x n, matrix for the solution estimate.
Then all the m(m - 1)/2 distances between the m points in

the n.-dimensional space are calculated and stored. Next

1
the steepest-descent minimisation procedure generates a

sequence of coordinates each set of them forms a configuration
of m points in the nz-dimensional space. The sequence of

15



generated coordinates starts frem the preytously given
estimate. Each tine a set of coordinates is generated the
error function procedure is called and it calculates all the
.m(m - 1)/2 distance between the m points in the nz-dimensiona]
space. The error function'compares the distances in both
spaces and measures the difference which is the error. The
steepest-descent iteration stops when one of the following
three criteria is met:
1. a minimum value for the error functibn is
obtained;
2. a predetermined number of iterations is reached,
or 3. the human observer is satisfied with the resultant
nz-dimensiona1 space configuration of points,

Chien (1976).

A.  STORAGE

Before minimization begins, Sammon's algorithm calculates
and stores the distances between the points in the n]-dimensiona1
space. Distances storage fdrms the major memory requirement
for the program. The storage size is directly related to
the number of distances and approximately directly related

to the square number of points in the data set:
Sdis = c.m(m - 1)/2 (2.8)

where ¢ is a constant depending on the computer, s .. is the
storage, m is the number of points in the data set and
m(m - 1)/2 is the number of distances.

In order to ayoid storing the distances White (1972) used

a Minkowski distance with r = 1. This distance is computationally

16



more efficient in storage and timing. The distance, however,
1s: not particularly better than the Euclidean distance

as far as clustering is concerned.

. B. TIMING

Sammon's program is relatively expensive as far as
execution time {s concerned. Tn an experiment, Gelsemaet al(1980)
foundthata one hundred points data set of six dimensions required
120 seconds per iteration. The execution t{me T is given

by the empirical formula:
T=al.m(m-1)/2 (2.9)

where a is a constant depending on the computer, L is the
number of iterations and m is the number of points. It can
be seen from 2.9 that the execution time 1s approximately
proportional to the square of the number of points in the

datd set.

C.” STARTING CONFIGURATION

As we have mentioned earlier, the error_function
minimisation requiresaninitial estimate for the coordinates
of the points in'the.nz-dimensiona1 space. The two n, and
n,-spaces must not be confused with the search space which
has m x no dimensionality. It is possible to start the
search from any point in the search space particularly when
there are few points in the datg set.

Sammon (1969) used three ways to start the minimisation.
The first was to randomly generate m x n, values for the
coordinates of the initial configuration. This method is
only practical when there is a small number of points, other-

wise the search can be very costly. The second way is called

17



(B

the fmaximum variance coordinate plane" where the

varience coordinates are taken as the m x n, coordinates

of the starting point. The third way is the method of the

eigenvector projection, Kowalski (197<4). In this method

the feature-by-feature covariance matrix c is diagonalised
cy = by (2.10)

where y is the eigenvector and b is the eigenvalue of

the matrix c¢. The covariance matrix is such that:

? (93¢ - q1 )(a5y - 4;) (2.11)

where q, 1s the i-thobject  of the k-th feature , ﬁi is the
mean of all the i~th feature coordinates, qij is the element
of the covariance matrix ¢ and m is the number of points.

If y1vand y, are the largest eigenvalues of matrix c and the
corresponding eigenvectors are Y and ?2, then it is possible

to obtain the coordinates of the m points through:

n
1

U, :k£1 Vi %% (i=1,m (2.12)
4

Vs =k£1 Tor (i=1,m (2.13)

where U, and Vi (it =1, m) are the estimates of the starting
point coordinates. The number of the largest eigenvalues
taken is equal to n,. The estimate obtained using the
eigenvector method gives the best initial estimate forthe starting valuesforthe non-lingar
mappingmethod. The method, however, becomes computationaly expensive

withalarge number of dimensions in the n,-space.

RESULTS OF SAMMON'S METHOD

To test and evaluate his method, Sammon used two types

of data, namely, artificially generated data and natural data.

18



Sorie of the artificial data were,
1. 9-dimensional space points distyibuted
on a line,
2 4—dimensiona] space points distributed
on the yertices of a simplex and
3. 3-dimensional space points distributed
on a helix.
A11 this data was mapped to two-dimensional space. The results
of these mappings reflected the geometry of the figures as
if they were projected to the two-dimensional space.
The natural data consisted of, first, the classical
Iris flower data which was first used by Fisher (1936). The
data composed of three c]aéses of Iris flowerswhere each
flower is described by four measurements relating to four
biological features in the flower. The sample size is of
150 points. The data separates into three clusters, where
two of them are more similar. Second, a set of data based
on "document retrieval by contentf using 188 17-dimensional
points, each point represents a document. The data was
mapped {nto two-dimensional space. Overlapping occured

between some of the clusters.

NTEMANN AND WEISS DEVELOPMENT

Niemann et al. (1979) made two developments to Sammon's
non-linear mapping technique. The first was the replacement
of the "magic factor" in the steepest-descent minimisation
by an optimal step size and the square of the Euclidean distance

instead of the distance itself.
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2.6.1

OPTI:AL STEP SIZE

Error function miniaisation in the search space 1is
carriedouteithier by an empirically predetermined and constant

step size value, Sammon (1969) or by a yariahle optimal

 step size that minimises the error function in each step

towards the solution.

Under certain conditions, Niemann et al, (1979) the optimal
step size is important in, first, conyergence is to the
solution is assured and second the error function decreases
monotonically. i< Consequently the optimal
path in the search space from the estimate point to the solution
point is obtained ., However, the step size analytical
formulation is not simple and owing to the lack of a
general error function form the derivation of its formula
has to be repeated every time the error function is changed.

The step size analytical formulation starts by
defining a step size function g which represents the functional
dependence of the error function on the step size b, Niemann
et al (1979). The final form of this function is a polynomial

of degree four:
T 4 3 2 '

9 4 ](b) = k4b + k3b + kob™ + k] b + ko (2.14)
The polynomial is then differentiated and the resultant
polynomial of degree three is set to zero:

g , 1(b) = akgb% + 3kgb® + 2k,b + kg = 0 (2.15)

The aboye equation is then solved for its roots. The
root that gives g its minimum value is taken to be the

valuec of step size in the next L + 1 iteration. The k's are

coefficients and their formulae are given by Niemann et al (1979).

cu



Two possihle search:dirgction tgchniques can be
employed with the opt{mal step size, namely, the steepest-
- descent end the coordinate-descent. The latter has been
found to have computational advantage oyer the former for
it is simpler to compute ki, (1 =1, 4).
Non-linear mapping with optimal step size has the

algorithm, Niemann (1987) as follows:

Step 1: a starting configuration for m
coordinates in the Tower dimensional
.space is randomly generated or by
some other means, eg, the eigenvector
projection;

Step 2: The coefficients ki (i =1, 4) are
computed;

Step 3: The root that gives a minimal error
value is taken as an optimal step size
value;

Step 4: If convergence is achieved then stop,

else go to step 2.

2062 NIEMANN'S ERROR FUNCTION

Niemann et al (1979) used the following error function:

B N S CEE N (2.16)
where Sjk and Sjk are the square Euclidean distances in the
™ and nz—dimensiona1 spaces respectiyvely, and p is an

.integer that can bhe set such that local distances are

preserved. Sammon's error function is a special case of the

aboye function when p is set to minus one.
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i contrasit  to Semmwon's error function, Niemann
used the square of the Euclidean distence, which is far

more efficient than the distance itself.

2.6.3 - REMAPPING

Niemann et al, 1979, used a set of 200 handwritten
characters to test the optimal step size program. Each
character was represented by a binary vector with 320 components.
Originally the handwritten characters were scanned with
40 x 30 raster points. The sample of the handwritten
characters was of 200 points and the following strategy was
followed: the first mapping to two-dimensional space
resulted in two groups of classes. The first (group 1)
contained the classes of the numerals 1, 4, Z and 9 and the
second group (group 2) contained the numerals 0, 2, 3, 5, 6 and
8. A1l points in group 1 were linearly separable from the
points of group 2. So the points in group 1 were isolated
and mapped into another two-dimensional space to form yet
another two Tinearly separéble groups: 1.1 and 1.2. From
the two-dimensional mapping it was clear that group 1.1
contained the two numerals 1 and 4. Group 1.2 on the other
hand contained the two numerals 9 and 7. Group 2 was also
mapped to form two new groups. The process was continued
until eventually all classes of numerals had been separated.
The method of remapping has shown that it is not necessary
to separate all clusters in the first mapping since

successiye remapping may eyentually separate all clusters.
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2.8

THE FRAVE METHOD

Chang et 3l (1933).c0nsidered the difficulty of dealing
with a large amount of data. Their method diyided a set
of m.points into two groups. The first group of points
were mapped according to the method of Sammon, and the
result was called a "frgme". The second group was then
mapped to the same plane containing the points of the first
group taking into account the distances between points in
the first and second group byconsideing onlyhe distances between the points
in thefirstand second group and by neglecting the inter-point distancesinthesecond groupcf
points. Depending upon the partiticnof the data set, substantial memory
savings can be achieved.

The method was applied to two sets of data. The
first set consisted of a collection of 40 handwritten
characters. The set consisted of the Iris data. In both

cases, separation of the clusters was achieved.

CONCLUSION ON NON-LINEAR MAPPING

Different aspects of éammon's and related methods haye
been considered. Although the method is powerful in
analysing and detecting data structures, it suffers from
three important drawbacks:

First : the technique cannot efficiently

classify new unknown patterns;

Second: the technique is not able to proyide

useful information about the relatiye
éffects of the different features on
classification;

Third : the technique requires a vast amount of
computer storage.
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In contrast to the digcrumyinant function in pattern
recognition Sammon's technique dessuotpreviéferfast pattern
“recognition. In patternrecognition it is possible to
citain @ Tinear discriminant function to classify patterns
with Tittle computation cost. In order to classify unknown
patterns, Sammon's technique requires the inclusion of the
unknown pattern in the original data set and remapping the
data set.

The non-Tinear mapping technique is not able to give
an indication of the importance of each feature in
classification. The method, in other words, does not include
feature selection or extraction. Pattern recognition and
cluster analysis methods use feature selection to extract the
most important features only, therehy, improving the
computational efficiency by reducing the amount of processed
data.

Finally, it has been reported by Sammon (1969) that a
data set of 250 patterns required a computer storage of
128 k. Furthermore, the increase is approximately
proportional to the square of the number of points. Thus
Sammon's method is found to be computationaly expensive hy
White (1972), Chang et al (1973), Schaeter (1978) and
Pykett (1978).

Thus Sammon's non-linear mapping method contains a number
of deficiencies. In the following chapters we describe

techniques which oyercome the deficiencies described above.
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CHAPTER THREE
TRANSFORMATION FUNCTION



34 1

3.2

INTRODUCTION

“ In this chapter we wish tc introduce a mapping technique
which incorporates a feature we have called the "Transformation
Function". The theory of Transformation Function is given in
the first part of the chapter, and its application is described
in the second part of the chapter, where experiments on
natural and artificial data are given together with an
assessment of the results. The chapter concludes within an

overall assessment of the mapping technique.

THEORY

The transformation function Xi is defined as:
X; = X5(Qps «ov 5 Gpy) (3 =1, 1)) (3.1)
where qij(j = T, n1) are the independent variables of the
function Xi(i =1, nz). The terms n, and n, are the sizes of
the higher and lower dimensional spaces, and are such that
ny>n,. Alternatively, qj(j =1, n]) are the coordinates of
the point Pn]in the higher space (the nl-space) of the data
set, and Xi(i = Hy n2) are the coordinates of the corresponding
point Pn2 in the lower space (the n2-space). If there arem
points in the nl-space, that is we have a (m x np matrix of
data then the n2 transformation functions can furnish us with

an output (m X nz) matrix data.

The set of n2 transformation functions above, defines a
transformation or mapping which establishes a correspondance
between points in the nl and n2 spaces. The transformation is
defined in terms of a one-to-one correspondance between the

two sets of points in the nl and n2-spaces. This is based
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on tho assumption that Xi(i 0 n2) are continuously

differentiab?e.

The transformation functions can take different forms,
e.g., a polynomial where the Tinear form is of special interest.
The transformation functions can include cross products as
independent variables.muitip1ied in a certain manner to ferm
the cross product terms. It is assumed that all transformation
functions are of the same order.

In contrast to the non-linear mapping method of Sanmon,
1969, transformation functions offer a direct functional
1ink between the two coordinate systems in the nl and n2
dimensional spaces. In schematic form, Sammon's algorithm can

be represented as:

. _ distance - _ _
Qj(J =1, nllm> Dk(K—'l, m(m - 1)/2)
¥
E(D, d)
t
. _ distance _ _
X;(1 =1, n2) transtorny k(K = 1, m(m - 1)/2)

where m is the number of points, E is the error function

employed by Sammon, 1969, Dk is the k~th distance in the

nl-space, d is the k-th distance in the n2-space and the term

m(m - 1)/2 is the number of distances between the m pdints.
The coordinates of the points Pnl and Pnz in the nl and

n2-spaces are q(j = 1, ny) and Xi(i = 1, n2) respectively.

The distance transform ie, the distance measure is generally

defined as:
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3.3

nl ™1/r
5 - . - ’ .
pq = oy lap - 0yl (3.2)

Where qu is the distance in the nl-space between points

P and q, and r is a non-negative integer usually taken as

~equal to 2. The distance qu between the points P and q in

the n2-space is evaluated through the Euclidean distance
measure.
With the introduction of the transformation functions in

Sammon's mapping scheme we have the following new scheme:

. dist
9;(3 = 1, ) Farsrorm> Ok(K = 1, m(m - 1)/2)
4
Transformation
Functions E(D,d)
.f.
%01 = 1, ng) BSEANCE o 4 e 9, mim = 1)/2)
i 2 transform k s

MATHEMATICAL ASPECTS

As we have mentioned earlier, the transformation function
can take the Tinear form in the polynomial expression. This
form has the advantage of béing very simple to compute. The
linear form is méthematica]ly easy to handle. In addition
the use of the Tinear form means that we are pursuing a
linear mapping. In this chapter we restrict all of our
interest to Tlinear transformation functions.

We start by giving the mathematical expression of the
linear transformation functions.

Xj =L 2y qj(i =1, n2) (3 =1, nl) (3.3)

the a's are the coefficients of the transformation functions.

Alternatively and in the matrix form the functions can be

written:
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X! = aq

where A is the matrix of the coefficients and has the size

1l (3.4)

(n2 x n1). Both matrices X and Q are row matrices, having
the sizes (1 x n2) and (1 x nl) respectively. If mapping
- 1s to be made to a two-dimensional space, then n, is set to
the value 2. Normally the nz-dimensional space is chosen
such that it is possible to give a visual representation to
the data, that is the n,-space is one, two or three-dimensional.
Mapping in general has asits goal the visual representation of

data.

3.3.1 TRANSFORMATION FUNCTIONS AS PLANES IN THE N1-DIMENSIONAL SPACE

In a general sense, transformation functions can be
viewed as hyperplanes (or plane 1in the 2-dimensional space),
a situation which can be achieved if we set function 3-3

equals to a constant C:

i)

X = B2 qi =C (=15 n2) {7 = 1. 01) (3.5)

1 1J J

0, equation 3-5 becomes the equation of

In the case where C
the hyperplane passing through the origin of the nl-space.
With respect to the hyperplane 3-5 the whole nl-dimensional

space is divided into two parts:- the region where the

inquality
.. q. -C>
a5 4 C>0 (3.6)
holds and the region where we have:
Eaij qj -C=<0 (3.7)

These regions are called half spaces.
Each point P in the nl-space has a location relative to

the hyperplane.lccan determine  whether this point is on the
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positive or negative side of the plane, or it lies in the
piane. The distance between any poirt P in the nl-space
and the hyperplane Xi is given by 3-8:

distance = — 5
23"

(Xaia

(3.8)

The hyperplane can take two positions relatiye to the
positions of the clusters in the nl-space. The hyperplane
either separates the clusters or they 1ie on one side of it.

In the first case,the signefiae distance inidicatesto what cluster Phelongs.

In the second case there can be one sign for the distance
value, and the resultant distances of all the m points in
the data set have to be normalised so as to have one group
of them (the first cluster) giving positive distances from the
hyperplane, and the other group (the second cluster) giving
negative distances. The distances are in fact the coordinates
resulting from using one transformation function, ie, one
hyperplane. If mapping is to be made to a 2-dimensional
space, then we have to use another hyperp]ané, ie, another
transformation function. Here each transformation function
supplies one set of coordinates (or distances from hyperplane)
to form, and in the case of mapping to 2-dimensional space,
the xy-plane plot. In other words the first hyperplane
furnishes us with m distances forming, say, the x-axis
coordinates and the second hyperplane givesthe y-axis
coordinates, see figure3.7.

In addition, each hyperplane offers a different angle

of "viewing" the clusters. If the clusters exhibit different
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distributions of points in the different dimensions, then

the use of more than one transformaztion function may reflect
the different distributions of points in different directions.
Naturally, not every hyperplane "views" the clusters in the
optimal way. It is possible that, using two transformation
functions, the hyperplane corresponding to the first function
“"views" the clusters from an optimal direction and the second
in contrast, offers no useful contribution to the separability
of the clusters. We speak of "optimal direction" meaning

the direction of "viewing" which gives maximum separability

of the clusters in the n2-space, and secondly, a distribution
of points in the n2-space that reflects the distribution in
the ni-space. Furthermore, we speak of optimal hyperplanes,
because there can be more than one set of them.

We have put a constant term C in equation 3—5.I The effect
of this constant is nil as far as mapping is concerned. We have
included the constant for the sake of generality. To clarify
the effect of the constant C on the resultant coordinates of
the n2-space we imagine that every coordinate has been
increased by C. The result is only a shift of the total
structure of points in the n2-space which does not have any
effect on the distances between the points.

In addition,the denominator in 3-8 heing a constant can
be taken as equal to unity without affecting the coordinates

in the n2-space because of the Tinear nature of this effect.



3.3.2

J

TRANSFORMATIOR FUNCTIONS AS VECTORS

Each transformation function has been viewed as a
hyperplane. They can also be considered as vectors
perpendicular to their corresponding hyperplanes. One
.implication of this is that the transformation functions are
orthogonal to each other, that is the angle between any
two corresponding vectors or, alternatively, between the
corresponding two hyperplanes, is equal to m/2. In this
case the dot product is equal to zero. Naturally if the
angle between the two vectors is zero then they are identical

and only one vector can be used.

Two vectors/transformation functions
can be made orthogonal to each other'by the adjustment of the
coefficients so that the dot product of the two veétors is
equal to zero. If AP and Az are two orthogonal vectors in

the nl-space then:

- 3.9)
Ay-A, o] (

s - 3.10)
that 1sj£1a]j ay; 0 (
It _ 3.11)
Ly 535 +any 3y =0 (
then n
I 0 B N & (3.12)
2nl a1

in this manner and in mapping 2-dimensional space, the number
of coefficients is reduced by one to become 2n1—1.

In vector form, the distance between the hyperplane A
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J:3.3

and the point P having the coordinate vector Q is given
by:
A.Q/ 1AL (3.13)

where the denominator is the length or the Euclidean norm of

vector A. In(3-13), the factor A/IAl is the unit vector of

A. In order to make an orthogonal system of transformation
functions an orthonormal one, we divide each vector
(transformation function) by its Euclidean norm.

Another implication of the vector representation of the
transformation functions is that the vector is in fact
pointing towards the same direction of the axis that lines
the centres of the two clusters. This happens when the
corresponding hyperplane takes an optimal direction and
gives maximum separability of clusters. In addition and
in special cases we can have the vector pointing to the centres
of the two clusters, thatisthevector passes through the two

clusters.

REDUCING THE NUMBER OF TRANSFORMATION FUNCTIONS

In certain cases the resultant mapping of points in
the n to the n,-space are two identifiable clusters that
are reasonably separated. In such a case the use of more than
N, transformation functions would not seem to be justified.
Further, it can be shown thatinthecase of a two-class
structure, all N, transformation functions are redundant
except one which is responsible for the cluster separation.
Normally the transformation functions are transformed
so as to have only one left. The transformation here is

1inear. One advantage of transformation functions is their
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readiness to be reduced in number thereby reducing the
dimensionality to a still Tower level.

The reduction it the number of transformation
functions can only be carriedoutatter mapping and when
mapping shows a reasonable degree of cluster separation.
Reducing the number of transformation functions eliminates
the need to re-map the data to still lower level. Normally
reduction is carried from 3 or 2-dimensional space to the
one-dimensional space.

There are two ways by which dimensionality reduction is
achieved, the first is reduction from the n,-space directly
to the one-dimensional space, and the second way is to reduce
the ny-space to the one-dimensional space. Both ways must
be carriedout after mapping the n,-space to the n,-space. The

first way is carried through the following function:

_ Z(A(Q - Qo))-(A(Q]C - ch))

Q) (3.14)
b Y |(A(Q]c = ch))l

G

where G, is a one-dimensional space transformation function,
QICE Q2C are the centroids of cluster 1 and 2 respectively,
QO is the half distance between Q]C and ch, Q is any point
in the nT—dimensiona1 space and A is the matrix of the n,
transformaticn functions with a size of (”2 X nl).

If reduction is to be made from the centroids of the
two clusters in the n,-space then the following function must

be used:
2((X - %) (Xy¢ - ¥p¢)) (3.15)

|(X]C - ch)l

an(X) =
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where | (X;. - X,c)| 1s the distance between the points
X1c and Xoe, X is any point in the n,-space, X 1is the
half distance between Xic and X,o and an is a one-dimensional
space transformation function that relates the n2-space with
'the 1-space.

The first function Grﬂ requires the use of transformation
function matrix A and the second function an does not require
A because 1t deals with the already transformed coordinates

Q of the n,-space to the coordinates X of the ny-space.
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3.3.4

TRANSFORATION FUNCTION AND DISCRIMINANT FUNCTION

As we have shown, it is possible to, either, map the Ny~
space to a one-dimensional n,-space, or to reduce a 3 or 2-
dimensional space to a one-dimensional transformation function.
And with the help of transformations 1ike rotation, translation
or scaling, it is possible to produce a one-dimensional
transformation function that ideally has the following
properties:

1. it gives a positive value to any point from oneof

two categories of points in the nl-space, and it

gives a negative value to any point from the

second category;

2. the points in the first and second categories

are normally distributed and G(Q) of their

respective meansare +1 and -1 respectively.

Mathematically if G is the discriminant/trans-

formation function then:

~ positive, if Q is a member of category 1
6(Q} = {negative, if Q is a member of category 2

- +#1, if Q is the centroid of category 1
2. G(Q = {-1, if Q is the centroid of category 2

In contrast to the Tinear discriminant function in pattern
recognition, G(Q) does not require that each member of

the data set be of known classification. The Tinear
discriminant function G(Q), which is a linear transformation

function at the samec time, is of the unsupervised kind.
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3.4 COMPUTATTONAL fSPECTS

The program of transformation functions consists of
five parts:
1. the main program;
2.  the function subroutine;
3.  the minimization subroutine;
4 the scaling subroutine, and
5.  the plotting subroutine.
The minimization subroutine {s either incorporated with the
program or is called from a library as is the case here.
The scaling and plotting subroutines are called from a

subroutine called FINAL.

3.4.1 THE MAIN PROGRAM

The main program i1s composed of the input part, the
normalization part, the generation of the nl-space distances
together with the elimination of repeated points and finally
the part which calls the minimization subroutine and the
"final" subroutine. The main program communicates with the
FUNCT 1 subroutine through COMMON variables.

A.  THE INPUT PART

The program reads three types of information, the
first type consists of the following items:

N, is an INTEGER which represents the size of the
higher space. N must be greater than one.

NPARAM is an INTEGER used in linear transformation
functions with normally NPARAM = 2*N. It represents the
number of coefficients employed by the transformation

functions.

37



M, is an INTEGER which represents the number of
points ir the data set. M is kept constant throughout the
program execution, 1t only changes when one of the points
is found to be repeated and is deleted.

IT, is an INTEGER variable which is initﬁal]y set to
zero and incremented by 1 on each iteration. On exit it
gives the number of function evaluations. Each iteration
requires N function evaluations.

KIND, is an INTEGER ,which contains the number of classes in
the total set. In case where the number of classes is not
known KIND is set to 1.

MM, is an INTEGER array which contains the number of
points in each ciass. In the case where the number of
classes is not known, then the first element of MM is given
the value of M and the rest of the array elementsare given the
value of zero. |

L, is an INTEGER array, which contains the symbols attached
to each class. When the number of classes is not known
then only one symbol 1is used.

TIME, is a real variable which contains the time Timit
allowed for program execution. This is useful when it 1is
expectéd that convergence will require a much Tonger time than
can be requested on the computer.

XTRAN and YTRAN, are real variables which contain the yalue
of the X and Y axes respectively in millimetres as plotted
on the graph paper.

The second reading stage is the one that inputs the
(m x n1) matrix (m is the number of points and nl is the size

of the higher space). The data matrix is the array Q which is
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read in a row-by-row manner. The reading is formatted
in a way that is appropriate to the particular data in use.
The third and final reading stage is the one that inputs

the initial estimate for the transformation functions.

B THE NORMALTZATION PART

The normalization is the second part of the main program.
It loads the first column of the Q array, then calls the
scaling subroutine to normalize the column. Finally the
normalized column is re-loaded in its original place iﬁ
array Q after being normalized. The normalization here is

to the domain |0, 1].

C GENERATION OF THE DISTANCES IN THE N1-SPACE

Distances of the nl-space are generated in a tertiary
nested DO loops. It is required to generate m(m - 1)/2
distances (m is the number of points). The generation employs

the following distance measure, whichisofa purelyempirical basis:

2,1/nl
) (3.16)

Dij = (E(qik - ij)
where Dij.is the distance between the i-th and the j-th
points in the nl-space. And 5k is the coordinate of the
i-th point and k-th dimension. The first loop (the 1-th
loop) starts from 1 =1 to ¥ =m - 1 (wherem is the number
of points), the j-th Toop starts from j=1+1toJj=m, and
the k-th loop starts from k = 1 to k = nl. Each time a

distance is evaluated there is a corresponding index to lable

it. The relation hetween i, j and the index INDEX 1is:

index = (I - 1) (2M-T1)/2 +j -1
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3.4.2

In this part of the main program, a procedure for
eliminating repeated points is also included. The repeated
points are the points that have a distance of zero value.

When such a distance is detected the program eliminates the

“second copy of the point oyerwriting it with a new point

taken from the last element of the Q array. The size of

‘the array is then decremented by one. This process {is

repeated until there are no repeated points left in the data
set. In order not to destroy the identity of each point, a
number 1is assigned to each one of them.

At the end of the main program, two CALL statements
are used to call the minimization subroutine and the FINAL

subroutine.

THE FUNCTION SUBROUTINE

This subroutine is im two parts. The first one is
responsible fortheevaluationefall (m x 2) coordinates of the
two dimensional space (n2 = 2). The second part is the error
function evaluation. In the first part two nested DO loops
are employed. The i{-th loop starts from 1 =1 to 1 =m
(m is the number of points) and the j-th loop starts from
j=1t0j-= ny- The j-th loop is a summation mechanism.
There are two such summations, the first summation evaluates
the x-coordinates and the second the y-coordinates.

The other part of the function subroutine is the one
responsible for evaluating the error function. This part is
of two nested Toops. The outer loop has i taking values
fromi=1to1=m-1 and the inner loop has j taking

values from j = 1 + 1 to j = m. This means that statements
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in the inner Tcop are used for calculating the m(m - 1)/2
distances of thz n2-dimensional space and comparing them with
the already couputed and stored distances of the nl-dimensional
space. The distraces of the n2-dimensional space are computed
using the (m x n2) coordinztes generated in the first part

of the function subroutine. The two'distances are related

mathematically in the following way:

2

= g _ 2,2 i
E=1X (Dij d'ij ) /D'ij (i<3) {3.17)

where Dij is the distance in the nl-space between the i-th and
J-th points, and dij is the distance in the n2-space between
the i-th and j-th points. For computational efficiency, the
above functicn is written in such a way that as dij is
calculated it is subtracted directly from Dij thus removing

the need to store the value and access it later.

2 2 22 ’
iz<J (D_-ij (x-[- XJ) (..Y-i ‘YJ) )/D'ij (32.18)

This is done purely to increase computational efficiency.

Also for computational efficiency the distances in the
nl-space are accessed according to an index in exactly the
same way as they have been stored.

In this part of the function subroutine, programming
optimizations play the most important role in decrementing
execution time. This is because of the above mentioned two
nested DO Toops having a frequency of m(m - 1)/2 per function
calling. In addition this frequency is proportional to the
square of the number of points.

Furthermore because of the frequency with which the
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inner loop is executed any inefficiencies here will
seriously affect the oyerall computational efficiency of the
program. OCne important step to prevent this inefficiency 1is
to eliminate the square root operation. This has been done
with Saminon's technique by Niemann, et al, 1979.

Theoretically, the following two error functions are
identical in that they both lead to the same solution but
G:. is more efficient for not requiring the use of the

L8]
square root operation:

Fq.o = E (Do o d-\-) /D-- 3.19

U g W76 L)
2 212 2

Ly = D..¢ - d., . (3.20)
G 1'E<j (O35 = dig 10y

notice if Dij = dij for all 1 less than j, then both
expressions giye the same minimal value of zero.

Before the function subroutine reaches the end, two
subroutines are called. The first subroutine is called to find
how much time has elapsed since the start of the execution.
This'subrdutfne called from a special system library. If the
time that has elapsed is less than a predefined limit then
control is RETURNED to the minimization subroutine to continue
the process of minimizing the error funciton. If the time

elapsed is greater than the given Timit, then the second

subroutine is called, that is, the FINAL subroutine.

3.4.3 THE MINIMIZATION TECHNIQUES

The prime target of the techniques is to minimize the
error function which is composed of a number of independent

variables. In contrast to Sammon's technique, the number of
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independent yariables 1is n] % Moy where n is the size of

the higher space and n, is the size of the lowsrspace, usually
n, = 2. The error function has the property of being positive
all over the intervals of variation in the ny X nz-dimensiona1
space which is aTso called the search spacc, (this space must
not be confused with the n1 and n2 dimensional spaces, ie,

the higher and Tower mapping spaces). Usually, and because of
the complex nature of the error function, the search space
consists of many minima, a global minimum and many local
minima. The reason behind this complexity is probably due to
the many ways in which it is possible to map a structure of
points in the nl-space to the n2-space. It is the goal of

the minimization technique to attain the global minimum,

that is to achieve the lowest value for the error function.

The global minimum is difficult to reach. Furthermore, is
complicated by the fact that "virtually all numerical methods
for unconstrained minimization are designed to obtain estimates
of local minimizers...." over the search space, Wolfe, pp 22
1978. The search for a miniﬁum starts from some chosen point
in the space. One way of starting the minimization for
example 1s to choose a point at random. In practice it may
require more than one trial in order to reach the global
minimum. For reasonsof symmetry, the choice of the nl x n2-
search space as a starting point is appropriate for transforma-
tion functions. This means that all nl x n2 coefficients

of the transformation functions are chosen to be zero's at

the start of the minimization process. The other implication
is that, all coordinates in the n2-space are initially set

equal to zero, ie, all m points in this space are
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superimposed an each otiis;* before iteration starts. With
. the progress of the mapping process, the m points start
to move to the different directions reflecting in a

~ gradual manner the structure in the nl-space and forming
the would be n2-space mapping. When such a start is used
ie, from the origin of the nl x n2-search space, it is
possible then to compare the different mapping results
obtained from different applications.

An alternative way for furnishing estimates for the
coefficients of the transformation functions, is to
apply the eigenvector projection technique. The eigenvectors
of the two highest (if n2 = 2) eigenvalues are taken, the
two vectors supply us with 2*nl values of the estimates for
the transformation functions coefficients. It is useful to
note that the eigenvector projectioﬁ is a kind of linear
transformation function. The use of the eigenvector
projection technique in providing estimates for the coefficients
of the transformation functions cauld be very useful in
directing the minimization process to a global minimum and
possibly also minimizing the execution time.

The other important aspect of minimization here is
the minimization of the error function without using its
first or second derivatiyes. Apart from simplicity and
convenience, .the use of a minimization subroutine without
derivatives eliminates the necessity of changing the form
of the derivative subroutine each time the transformation
function is changed or the error function form is changed.

On the other hand the use of minimization with derivatives
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1s computationally maore. efficient.

Three different techniques of minimization have
been considered to minimize the error function of nl x n2
variables. The techniques used were the Quasi-Newton
Imethod of Gill et al, 1976, the direct search minimization
as described by Rosenbrock, 1960 and the simplex method of
Nelder et al, 1965. The three techniques do not require first
or second derivativyes.

A THE QUAST-NEWTON METHOD

The method {s available as a routine in the NAG
(Numerical ~ Algorithm Group) 1ibrary (NAGFLIB: 1414/0: Mk5:
Mar 76). The purpose of this method is to minimize a
function F(X) of N independent variables X = (X{, X,, ..., XN)I
The method is easy to implement and parameters need to be
defined. The method was originally intended for users having
little knowledge of the behaviour of the function tb be

minimized. The subroutine is called from the NAG library by

a statement of the form:
CALL EP4CEF(N, X, F, W, LW, IFAIL)

The subroutine is based on the FORTRAN version UCNDQ1 by
Gill et al, 1972. The user must have a subroutine called
FUNCT1 to compute the function F(X) at any point X, and also
the user must supply an initial estimate of the minimum.
Then from the given estimate the subroutine generates a
sequence of points intended to converge to a minimum of
F(X). The points are generated by using estimates of the
gradient and curvature of the objective function. The

subroutine attcmpts to verify that the final point is a
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minimun. The subroutine EP?CEF employs a number of parameters
to cenmunicate with the fuiiction subroutine FUNCT1. The
rest of the parameters required by the method are set
~automatically. It is normally the case that the minimization
process is more efficient if the user can choose the para-
meters to suit the function being minimized. One example
of such a parameter is the step size. Below is the 1list
of parameters employed by the EQ4CEF subroutine together
with their description.

N, is an INTEGER, which on entry specifies the number
of variables, 1t remains unchanged on exit. N must be greater
than 0.

X, is a real array of DIMENSION greater than or equal
to N. On entry X takes the estimate of the starting point
in the search space. On exit, it contains the value
of X corresponding to the final in F.

F, is a real variable, on exit it contains the lowest
function value found by the minimization subroutine.

W, is a real array of DIMENSION at least (LW). W is
used as working space.

LW, is an INTEGER variable, on entry it specifies a
value greater than or equal to T10*N + N*(N - 1)/2, or
LW =11 if N = 1. IFAIL, is an INTEGER variable which must
be assigned a value of zero before entry to the procedure.
Unless the routine detects an error, IFAIL contains zero on
exit. In the case of an error IFAIL takes a value between 1

and 8 depending upon the type of error.,
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The FUKCT1 subroutine takes the form:
SUBROUTINE FUNCTT (N, XC, FC)
INTEGER N
real XC(N), FC
N, is an INTEGER wvariable which contains the number
of variables. TIts value must not be changed in FUNCTI.
XC, is a real array of DIMENSION, N. It contains
the value of the current point. TIts value must not be
changed in FUNCT1.
FC, 1s a real variable. On exit, FC contains the
value of the function at the current point XC. |

R ROSENBROCK FUNCTION MINIMIZATION

This method minimizes a function of N independent
variables for an unconstrained optimization. The routine
uses the method for direct search minimization due to
Rosenbrock, 1960. The minimum of a function is attained by
cyclic searches in parallel to each of the N orthogonal unit
vectors, the coordinate directions. Each stage of the
iteration process consists of N searches. For the next
stage, a new set of orthogonal unit vectors is generated, such
that the first vector of this set lies along the direction of
greatest advance for the previous stage. The Gram-Schmidt
orthogonalization procedure is used to calculate the new unit

vectors. The subroutine statement takes the form:
SUBRQUTINE ROMIN (N, X, F, STEP, MONITOR}

where N is the number of independent variables of the function
to be minimized, X(N) is an estimate of the solution. The
subroutine requires another subroutine FUNCT (N, X, F) for the
calculation of the value of F at any point X. STEP 1is an
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3.4.4

initial step length for all searches of the first stage.
NONITQR is a subroutine for printing intermediate results.
The algorithm was coded in FORTRAN and taken from Machura

et al, 1973.

" C THE SIMPLEX MINIMIZATION METHOD

This method is an iterative one. The estimate supplied
by the user 1s the first vertex of the N + 1 simplex. The
subroutine generates the rest of the N vertices. The
largest value vertex is reflected in the centre of grayity
of the remaining vertices and the function value at this
new point compared with the remaining function values.

The outcome of this test decides whether the new point 1is
accepted or rejected. A further expansion move may be made,
or a contraction may be carried out. When no further
progress can be made the sides of the simplex are reduced

in length and the method is repeated.

THE SCALING SUBROUTINE

The subroutine is used for two purposes. The first is
to normalize the coordinates of the nl-dimensional space
to the domain [0, 1|. The second purpose is.to scale the
n2-dimensional space such that it can be plotted when the
plotting subroutine is called.

The subroutine takes a one-dimensional array of
coordinates, their number and the scaling factor. The
subroutine finds the minimum and maximum values in the above
mentioned array, and scales the coordinates in a linear
manner having the maximum value coordinate equal to zero.

If Ui is the i-th element of the array U, and V. is the



3.4.5

1-th element of the array after normalization. then:

Vi = 505 = Upind/ Upax = Yngn (3.21)

where S is the scaling factor, in normalization, S is set to

1. In the case of scaling the values of the coordinates to
be plotted, S is set to the length of the U and/or y-axes
in millimetres. Umin and_Umax are the minimum and maximum
values in the U array. The subroutine finds the two values
by a simple sorting method. The subroutine can scale or
normalize one array at a time. The subroutine is therefore
called N times for normalization and n, times for scaling.
As it has been mentioned, the transformation performed

on the coordinates by the scaling subroutine is of a linear

form, and 1s given by:

Yyl kb (3.22)

- where

a = (Vpax ~ Vmin)/(umax = Uninl (3.23)
= - 3.24

b = Vm1‘n aUmin ( )

THE PLOTTING SUBROUTINE

This subroutine i1s employed to reproduce the n2-space
(n2 = 2 only) in a graphical form. The plotting is merely
an Xy-plane with two axes X and y subdiyided into intervals
and a number of symbolized points scattered in the plane.
The plotted axes are not important as far as separability
{s concerned. They simply provide a plane of reference

for yiewing the clusters.
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The plotting subroutine is called after calling the
scaling subroutine. The 2-dimensional space coordinates

| have to be scaled to a suitable level convenient for the
plotting subroutine.

The plotting subroutine consists of two parts. The
first part positions, scales and then draws the‘axes. The
second part plots the points. The subroutine can either plot
a single symbol when the points classification is unknown
or different symbols corresponding to the different classes
when classification is known beforehand. The PLOT subroutine
employs the following 1ist of parameters:

XPLOT, YPLOT are real arrays containing M coordinates of
the 2-space after being scaled by the scaling subroutine.

KIND, is an INTEGER defines the number of classes of
points. If the number is unknown, KIND is set to 1.

MM, is an INTEGER array containing the number of points
in each class of points. If the number of classes is unknown,
NN(1) is given the value of M.

L, is an INTEGER array containing the codes of the symbols
representing the different classes of points.

XTRAN, YTRAN, are real variables define the length in

millimetres of the X and y axes respectively.

3.4.6 THE FINAL SUBRQUTINE

The subroutine is the last part of the transformation

function program. This subroutine can be called from two
places in the program. It is either called from the main

program when the minimization process has converged before the
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3.5.1

the time Timit, or {t is called from the FUNCT1 subroutine
Just before the time limit.

The subroutine firstly prints the number of function
evaluations, the error function value, the Zn] coefficients
of the transformation functions and the coordinates of the
n,-space before and after scaling them. Secondly, the
subroutine calls the plotting subroutine to plot the

points of the 2-dimensional space.

THE RESULTS

The results of three data sets are reported here. The
sets are:
1.  the Iris Data taken from Chen, 1973;
2. the data set prepared from the experiments on
Adenorcarcinoma 755 (CA 755) taken from Goldin
et al, 1968, and
3. artificially generated data taken from
Jurs et al, 1975.
The same program was used throughout the three
experiments mentioned above. All parameters were kept the
same, except, the number of points and the dimension size

of each set, which are of course data-dependent.

IRIS DATA

This data has been used by many researchers to test
statistical techniques. The data is composed of150 samples
describing each of three species of Iris flowers. Four
measurements were made on each flower. From each species:
Setosa, Versicolor and Virginica, the sepal length and

width, and petal length and width were taken as four features
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from each flower.

A 11PUT DATA OF IRIS DATA

Number of points is 149

Number of Dimensions 1is 4

(149 x 4) matrix of the Iris Data
B QUTPUT DATA OF IRIS DATA |

Number of function evaluations is 519.
Final Error Function value is 0.127.
Coefficients of the transformation functions matrix

are:

-0.885 -0.972 0.766 -1.05
0.14 0.644 -1.099 -0.109

Execution time is 938 seconds Core is 50 K.

The Error Function used was:

(0 =
SR PRI e (3.25)
i<j

where qjis the distance in the nl-dimensional space between
points 1 and j and dij is the corresponding distance

in the n2-space. The distance Dij takes the form:

=

D.. = (¥ 2)1/n]

1= & (3.26)

lq'ik - q:}kl
where n, = 4.
C DISCUSSION

A two dimensional display of the Iris data using the
transformation function program is shown in Figure 3.1. The

result is very similar to that obtained by Sammon, 1969. In
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the display, the top cluster is the Iris Setosa flower
then comes Iris Versicolor and at the Bottom comes Iris
Virginica. The latter two clusters are obviously closer to
~each other. The display also shows that the y-axis trans-
formation function is the discriminating one. the X-axis
transformation function, however, shows very little
contribution to the discrimination betwéen the classes of
points. Consequently, the y-transformation
function, can be taken alone as a discriminant function. In
addition it seems that we can only discriminate between the
first class of flowers, that is the Iris Setosa, on classes
of Iris Versicolor and Virginica on the other hand, and
we cannot discriminate between the second and third classes

of Iris flowers,

3.5.2  ADENQCARCINOMA 755 DATA

The program of the transformation functions has been
applied to biologically active drugs, the Adenocarcinoma 755
data, Goldin et al, 1968. fhe mapping is from n, = 19 to
n, = 2-space. The final form of the data is a 251 x 19 size
matrix.

The data has been based on a list of molecular formulae
of biologically active drugs. The formulae were taken from
the previously tested drugs by the National Cancer Institute
for activity in the solid tumor Adenocarinoma 755 (CA 755)
screening system, Goldin et al, 1968. In the test, drugs
were administered to small animals with solid tumors, and tumor
growth was measured. A parameter called tumor weight inhibition

(TWI) defined as a percentage was calculated. A high percentage
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vaiug indicates that thg drug belongs to the carcinogenic
group, (a threshold of 70% was used by Kowalski, 1974).

Two hundred and fifty one molecular formulae were
taken to form the basis for the data set. From each
molecuiar formulae a set of nineteen features was formed.
The features were glmost all the features used by Kowalski,
1974. Originally, fifty structural features were extracted
from each molecular formula by Kowalski. Fourteen features
were eliminated because of their scarcity.

A INPUT DATA OF ADENOCARINOHM 755 DATA

Number of points is 251
Number of dimensions is 19
(251 x 19) matrix of the Adenocarinom Data.

B QUTPUT DATA OF ADENOCARINQMA 755 DATA

Number of function eyaluations is 2044
Error function value is 0.291
Coefficients of the transformation function

matrix transpose are:.

-0.401 0.249
0.447 0.007
-0.415 0.629
0.001 0.073
1.228 1.439
-0.514 -1.196
0.217 -0.264
0.541 0.924
0.425 0.495
0.962 -0.235
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-0.124 0.078

0.164 -0.111
-0.556 -0.372
0.889 ~0, 233
-0.381 0.332
0.294 -0.42
-0.007 -0.061
-0.212 -0.317
-0.726 -0.705

Execution time is 113 minutes
Core 100i:k

The Error Function used: same as in the Iris.

C DISCUSSION

The transformation program was then used to process the
new form of the data. The program eliminated 52 identical
points from the data set leaving 199 points to be mapped.
The details of the run are shown below. The graphical outputs
is also shown in Figures 3-2, 3.

In the graphical output, Figure 3-2, three clusters can
be identified. The top (c]ustef 1) cluster contains a
dominance of the biolocially inactive compounds, (total
membership of cluster 1 is 105 compounds), the bottom cluster
(cluster 2) contains a mixture of biologically active and
inactive compounds (the ratio is 39/27), and the circular
cluster (cluster 3) on the left of the map contains the
biologically active compounds, in this cluster one of the 41

compounds has been incorrectly classified.
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The category membership of every point in the aboye
data set used was known, and this enabled the success of the
technique to be determined. This information vas of course
not inputed to the program, that is our technique is of the
‘unsupervised form as opposed to Kowalski's (1974) supervised
method. The membership of each point was determined by
its THI (tumor weight inhibition) value. When the percentage
value of the TWI was greater than or equal to 70%, then the
membership was taken as positive. For values less than
50% the membership was taken as negative, values between 49
and 70% were ignored.

It can be shown that two groups of points can be identi-
fied in cluster 1, the top right part of cluster 1 is shown
magnified in Figure 3.3. The first group contains 95
points and the second contains 10 points. In the first
group, 13 errors were counted giving the group a classification
error of 14%. However in the second group, only one point
out of the 10 points was correctly classified. These 10
points constitute one class of drugs, the Halopurine nonsugAF
analogs, Goldin et al, 1968. The reason for these incorrect
classifications lies in the choice of nineteen features ﬁhich
failed to discriminate fhis class of compounds from the
remainder. In addition, ascluster 1 graphically shows two
parts, the first (top right) contains a mixture of the
correctly classified together with the incorrectly classified,
the second (bottom left) is totally composed of correctly
classified compounds. Those compounds are the least
carginogenic compounds and they are all having a hydroxyl or

amino group attached to C-6 position in the purine nucleus.
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In cluster two, there are 66 points, and again tuo
groups can be {dentified. The first contains 27 points and
the second 39 points. In the first group riisclassification
was 81%. On investigating this group, it was found that the
- members of this group were drawn from the Uracil class of
compounds which has been tested by the National Cancer
Institute. In the nineteen features that were chosen to
describe the molecules, only one feature was allocated to
differentiate between the purine and the pyrimidine
derivatives. In the second group of cluster 2, with 39
paints, 87% classification was obtained.

In cluster 3, the cluster is shown magnified in Figure 3.4
there are 41 points. On considerinj the classification, five
points out of the 41 were found to be misclassified. Further
investigation revealed taht fourcfthefive misclassified
points differed from the rest of the 41 points in having the
carbon-sulphur-carbon bonding located in the sugar part of
the molecule. The rest of the 41 points contain the sulphur
atom connected to carbon-6 in the purine part of the molecule.
Only one molecule out of the 37 strongly carcinogenic compounds
was misclassified. It had been noted by Kowalski, 1974, that
the carbon-sulphur bond is a most important feature with regard
to carcinogenic activity. Our results show more specifically,
that the sulphur atom must be connected to a carbon atom and
both 1inked to carbon-6 in the purine molecule for
carcinogenic activity.

In Figure 3.5 three symbols have beén used to mark the

following classes of molecules:
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3:5.3

1. an asterisk to each molecule haying sulphur-carbon
functional group at the carbon-6 in the purine
molecule;
2. acircle to each molecule having sulphur-hydrogen
functional group at the carbon-6 position in the
purine molecule, and
3. a triangle to the rest of the molecules.
The result is the same mapping as in Figure 2 only the symbols
are different, but 1t shows that the compounds being
classified tend to cluster on the basis of being purine-SH or
purine-SR on one hand and theremainderonthe other side.
Finally, the application of the transformation
functions program on the Adenocarcinom 755 data show a yery
high degree of stability. Through the running of the program
some points in the 2-dimensional map showed strange locations
relative to the clusters. The validity of the points were
checked and errors were found. On correcting the errors the
points joined the clusters and néither the transformation
functions coefficient nor the coordinates of the whole set of

point showed considerable change.

ARTIFICALLY GENERATED DATA

This data was taken from Jurs et al, 1975. The data was
generated in such a way that it contains two linearly
separable classes of points. Every class is of 50 points,
and the data has a dimensionality of five.

Mapping of the data by the transformation function
program.confirmed the existence of two linearly separable

classes of points, Figure 3.6.
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3.6

Jurs et al, 1975, vsed the same data but augmenting it
with an extra data column to define the membership of each
pattern. In our applicaticn no information was given to

the program about the class of membership of each point.

CONCLUSION

This study has shown that a direct and linear re1ation§hip
between the nl-space and n2-space can be practically
established. It has also shown that it {s possible to obtain
a form of discriminant function out of transformation
functions. The introduction of transformation functions leads
to increased computational efficiency because of the reduction
in the number of independent variables of the error function
from m x n2 to n1 x n2, where m is the number of points and
nl, n2 being the dimensionality of the higher and lower space
respectively. '

Although it is possihle to use non-linear transformation
functions between the higher and lower spaces, the linear form
proved to be efficient. In addition, the use of direct and
Jinear transformation functionsacquired the advantage of
discriminant functions known in pattern recognition for their
use in classifying new sample points after training a similar
set of data. A one-dimensional transformation function 1is,
in a certain sense, a form of discriminant function.
Furthermore, the transformation function does not require that
a known classified data set is used; since it is an example

of an unsupervised classification method.
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CHAPTER FOUR

DISTANCES FREQUENCY DISTRIBUTION



4.1 INTRODUCTION

In this chapter we introduce and consider ths theoretical
and practical aspects of the distances frequency distribution,
The chapter also discusses the results of two applications and

concludes with an appraisel of the mcitad. Carl Michael and Sneath (TAXMAP program).

4.2 THEORY

In Sammon's and similar methods, the interpoint distances
in the ny and Ny dimensional spaces are expressed in the form
of finite time-sequence of m{m-1)/2 terms, where m is the number
of points in the data set. The time-sequence is a function
whose domain is the set of integers {1,2,3500.om(m-1)/2}, If
d denotes the function, then cIk denotes the kth term, The kth

distance hetween the ith and the jth points is such that
k= (i-m)(2m~1)/2-i+]. (4.1)

The distances time-sequence is consecutively formed by

calculating the distances one by one.

Alternatively, the proposed distances frequency distribution

is defined as follows
F={fy = n(d,)| &= int((d=dpin)/W)+1} (4.2)

where w is the'class interval width such that wz(dmax_dmin)/p
n(dk) is the number of distances , p is the number of class-

intervals, i is such that

1gigm(m=1)/2 (4.3)

and d in’ dmax are the greaiest loveer bound and: least upper boundof distinces values
m o

rp_t:nr\(‘f'ivp']y_
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Replacing the distances time-sequence, the frequency distribution
results in first, a considerab]e reduction in the amount of
stored information, and second the frequency distribution curve
may be useful in detecting the existence of clusters by revealing
the inherent statistical trend in the data. The frequency
distribution curve has its ordinate axis as the frequency

and its abscissa as the distance value.

The distances time sequence is a special case of distances
frequency distribution. This is when the number of class-
intervals is equal to the number of distances and that each

class-frequency value is one.

4.2,1 NUMBER OF CLASS INTERVALS

In distances frequency distribution, the number of class-
intervals must be predetermined, and statistically its value
is usually taken between 5 and 20 depending on the data,
Spiegel (1972). The lower and upper bounds of the number are
1 and m(m-1)/2 respectively, where m is the number of points
in the data set. One factor that restricts the number of
class-intervals is the number of significant digits in the
distances values. If the number of class-intervals is
incremented then "gaps" start to appear in the distances
frequency distribution. The "gaps" are those class-intervals
that have zero frequency. The "gaps" disappear if the number
of class-intervals is decremented. The criterion for determining
the number is achievement of minimal degree of fluctuations in

the frequency distribution curve.
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4.2.2

4.2.3

TRANSFORHING THE FREQUENCY DISTRIBUTION

Two transformation categories are related to distances

frequency distribution. The first category consists of:

rotation of the axes, reflection in the axes and translation

of the axes, The second category consists of distances

shrinking and stretching.

The first category has no effect on distances values and
consequently it affgcts the co-ordinates only without affecting
the frequency dist!."ibut‘iono However, the second category
affects the frequency distribution though the change is linear

andisas if all distances are multiplied by a constant,

NORMALISATION OF CO-ORDINATES

The normalisation of the m co-ordinate values in each n,
dimension is such that (1) the co-ordinates are transformed
into the closed interval (-1,1), or (2) the co-ordinates mean
and standard deviation are zero and one respectively. Both

normalisation forms are linear transformations.

In the first normalisation form, the co-ordinate 9; of the

jth dimension is normalised to gi as follows:

gl =95 * ¢ (i=1,m) (4.4)
¢y = 2/(Ipax~Imin! (33
cy = -1-ag :.) (4.6)
where Gmin and Inax are the lower and upper bounds of the g

co-ordinate set of values,
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The secend form of normalisation is given by:
b - .= £ e
95 = (95-9;)/s5 (i=1,m) (4.7)

where éj and s; are the mean and standard deviation of gi(i=1,m)

respectively.

Computationally the first form of normalisation is less
expensive but it may result in reducing the number of
significant digits in the co-ordinates values. This is
particularly the case when the distribution of points exhibits

a value measure of skewness. However, this form of normalisation

is useful in providing a bounded frequency distribution - as
follows:
- 1M 1/r
T (z]a-b]") (4.8)
= /T |a-b|
where dmax is the maximum distance value, r is a positive integer,

a and b are the lower and upper bounds of the n]-dimensiona1
space normalised co-ordinates respectively. Dividing each element

in the distance set by d the upper bound of the distances

max?®
set becomes unity:

g = 1nt((di'dmin)/w) + 1 (i=1,m(m=1)/2) (4.9)
L C dmin)/'p (4.10)
dmin =4

dmax =1

therefore

g = int(pd;)+l (4.11)
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4.2.4

Multiplying each co-ordinate value by the number of intervals

p, the last formula is further reduced to

2 = int(d, )+, | (4.12)

If the second form of normalisation, called standardisation of
variable, is applied to two normally distributed clusters

having the properties

Vi=V,, (4.13)
Vy<<|ug-us | (4.14)
and

V2<<]u]"U2|: (4.]5)

where Vs and u; are the variance and mean of the ith cluster.

Then the two clusters have their means as

Up=-1 (4.16)
and
us=1. '

2 (4.17)

That is the two clusters and in all dimensions have the same

respective mean and variance values.

DISTANCES FREQUENCY DISTRIBUTION AND CLUSTERS

The frequency distribution of distances is related to the '
existence and number of clusters in the multivariate data. In

order to analyse this relation we consider two simple cases.

The first case is the existence in the multivariate data

of one normally distributed cluster:
NP. (x) = m,ex [—(x-u.)2/2v ]
i feod i i (4.18)
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4.2.5

in this cluster there is one set of distances only, that

is the inter-cluster set of distances.

The second case is the existence of two normally distributed

clusters is given by:

Npq (x) + Npy(x) | (4.19)

where mi, Vi and ui

the mean of the ith cluster, (i=1,2) respectively.

are the number of points, variance and

ANALYTICAL MODEL FOR THE DISTANCES FREQUENCY DISTRIBUTION

In order to use the distances frequency distribution and
to understand its properties an analytical model for the
distances frequency function is presented here. The formulation
of the function is one-dimensional and it is generated from

two normally distributed clusters. We start from the

following frequency function given by

f(x) = b]exp(fx2/2v])+b2exp@(x~a)2/2vz) (4.20)
where

by = my(2mvy)™'/? (.21)
by = mzcznvz)“1/2 (4.22)

Vi and v, are the variances of the first and second cluster
respectively. m and m, are the sizes of the first and

second clusters respectively. a is the distance between the
means of the first and second clusters. The means of the first
and second clusters are assumed to be zero and (a) respectively.

The distances frequency function is defined as:

g(d) = [ f(x).f(x+d) dx (4.23)
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The integration gives
g(d) = m?(an])-1/2
-1/2
) /

exp[-d2/2w]|

-d%/2u

+ m%(an2 exp

ol
+m]m2(2nw)"1/2 expl-(ﬂ+a)2/2w|

e exp|-(d—a)2/2w]

o mlmz(zﬂw)—I/
where
and

1
W = 2-(w1+w2) =Vt v,

The distances frequency function has been tested with the

following parameter values:

a==56t
Wy =Wy = 2
my =m, = 81

(4.24)

(4.25)
(4,26)

(4.27)

Table 4.1, shows both the function and actual frequency values.

d - -Function Actual
1 2886 2880
2 1396 1328
3 589 480
4 749 688
5 1449 1440
6 1891 1896
7 1441 1440
8 681 696
9 199 160
10 34 16
11 4 0
12 0
TABLE 4.1
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Ideally, the distances frequency function exhibits two maxima,
The first maximum is the sum of two normal functions and the
second maximum is merely a normal function. The first maximum
results from the shorter intra-cluster distances in the two
clusters and the second maximum results from the longer

inter-cluster distances.

In the distances frequency function the variance of the
second maximum is equal to the sum of the variances of the first
and second cluster. This is when the two clusters differ in
their variances. In the case of equal variances the distances
frequency function becomes such that its two maxima have their
variances equal and double the variances of the clusters,
Consequently distances frequency distributions exhibit Tower
power of resolution than the ciusters' themselves. This means
that if the distances freuquency distribution is of resolved peak

then stronger cluster separability is expected.

The distance frequency éan be useful in estimating the
variance and the population of the two ciusters in the data
set, Also the distance between the two clusters centroids is
available from the distances frequency distribution. The
estimation of the parameters is particularly simple when the
variances of the:two clusters are equal. In this case the

clusters populations My and m, are calculated from the following

equations:
m=my + M, (4.28)
A = mym, (4.29)
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4,2.6

where A is the area under the maximum of the inter-cluster
distaiices. The variance of the two clusters are calculated

from the standard deviation of the same maximum and which is

directly available. The constant (a) which represents the

distance between the centroids of the two clusters is the
distance between the two maxima in the distances frequency

distribution curve.

The estimation of parameters can be useful in the
determination of the point in the one-dimensional map which
optimally discriminates the two normal populations, The point

of optimal discrimination is such that
fl(_)()_ =0 O<x<a (4.30)

This is based on empirical tests. The above equation and after

rearrangement results in the following:
x = (v/a)in[(my/m,)/ (a/s-1)] + a/2 (4.31)

This expression has been tested and found to be efficient for the
method of direct iteration to solve for x. The best starting

value for the iteration is a/Z?

DISTANCE MEASURE AND FREQUENCY "DISTRIBUTION

The form of the frequency distribution is dependent on the
type of the distance measure employed in generating the

frequency distribution. Given the general distance measure

formula A
1 r 1/r

Do = (k§1 Igik g gjkl ) ral (4.32)

L
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4.2.8

the frequency distribution varies according to r. Depending
on the data, there exists a value of r such that the frequency

distribution exhibits maximum. degree of cluster separability

reflected by the width and separation of the peaks in the

distances frequency distribution curve,

FEATURE SELECTION AND FREQUENCY DISTRIBUTION

Beside the frequency distribution generated using the

distance
r

B r.d/r
Dij = (kil(gik - gjk) )

we can also generate " extra frequency distributions from the
co-ordinate values of one dimension at a time. The kth

dimension frequency distribution results from the distance

dij = lgg - 95l (4.33)
Each frequency distribution exhibits a different degree of cluster
separability. This is because of the random measurement errors.

Consequently, it is possible to select those dimensions that

maximally contribute to cluster separability.

FREQUENCY DISTRIBUTION AND THE ERROR FUNCTION

The frequency distribution error function measures the
difference between the fixed n; space frequency distribution
and the variable n, space frequency distribution. It follows
that the error is a function of the n, space distances frequency
distribution which itself depends on the co-ordinates of the

points in the n, dimensional space.

The frequency distribution error function is invariant
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against transformations such as rotation of axes, reflection

of the axes and tran§1ation of axes in the " and Ny
dimensional spaces, However, the error function is not
invariant against shrinking and stretching transformations where
the N and n, space distances change linearly by a constant.
There can be more than one form of function. The simplest form
is defined as

E (4.34)

p
17 2 ok ~foad

where fnlk and f o are the kth distance frequency in the n,
and n, space respectively and p is the number of class-intervals,

The other error function form is defined as

2 (4.35)

B = B (Fonk ™ Trakd

2 =

[

k

The frequencies fnlk and fn2k are defined as

£ = nid) (4.36)
and
Frok = (D) | (4.37)

where n(dk) and n(Dk) are the number of dk and Dy distances such

that
k = int (di) + 1 (4.38)
and

(4.39)

k = int (D) + 1

respectively.

The use of non-normalized frequency distribution error function such &s
4.34 and 4.35 mekes it difficult to measure the rate of success of mwepping.
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4.3

4.3.1

COMPUTATIOMAL ASPECTS

The distances frequency distribution program is similar
in many of its parts to the transformation functions program
described in the previous chapter. Both programs use linear
transformation functions and the main difference is the first
program uses distances time—sequence while the second uses
distances frequency distribution., The frequency distribution

can be regarded as a modification to the first program,

The frequency distribution program consists of the following
segments,
(1) the source program,
(2) the minimization subroutine,
(3) the error function subroutine,
(4) .the scaling subroutine, and

5) the n,-space frequency distribution generation subroutine,
17°P q

THE SOURCE PROGRAM.

The source program consists mainly of the following parts:
the input, the normalization of the multivariate data, the
initiation and calling of the minimisation subroutine, the output
and the 2-space points plotting. The input pgrt reads the number
and dimensionality of the multivariate data and the number of
class-intervals. The second input set is the mxn multivariate
data matrix and the final input is a set of m integers used as
plotting symbols. The normalisation part is similar to the one
described in chapter three and it is toaclosed irterval of (-1.1).

The initiation and calling of the minimisation subroutine is

described later in this chapter.

78



The output of thg - program takes the following

form . number of {iterations, error function value, the
coefficients estimates for the transformation functions, the no
space frequency distribution valugs and the ny-space m co-ordinates
values. The plotting procedure is incorporated in the source
program. The procedure is similar to that described in the
third chapter excent that it is more efficient in handling the

plotting symbols.

4.3.2 THE MINIMISATION SUBROUTINE

The minimisation subroutine by Gill et al. (1976) employed
in the distances frequency distribution program was of the
kind that requires no function derivatives and the independent

variables are of fixed upper and lower bounds.

4.3.3 THE ERROR FUNCTION SUBROUTINE

The component parts of the error function subroutine are:
the n,-space co-ordinates generation by the transformation
functions, the n,-space frequency distribution generation and

the error function final evaluation.

The generation of the ny~space points co-ordinates is

identical to that in the third chapter.

Distances frequency distribution of the nz-dimensional space
are generated by calculating all m(m-1)/2 distances from the
mxn, co-ordinate values. Frequency distribution generation is
accomplished by two nesting loops. The outer loop is the i Toop
and the inner loop is the j loop. The arguments of the i and j

loops are such that:
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i from 1 to m-1

j from I+1 tom

-The execution frequency of the instructions in the inner loop

is m(m-1)/2 per iteration and the kth execution is given by
k = (i-1)(2m=-1)/2-i4]

The inner loop consists of two instructions, the first is

the calculation of the kth n,-space distance and the second is
the classification of that distance in the frequency distribution.
The calculation of the kth n,-space distance is done by the one-

dimensional Euclidean distance

di; = abs(x; - X,

i 51 (4.40)

or the two dimensional Euclidean distance:

1/2

d'i.j = l(x-i - XJ)Z + (Yi' - .Y:j)zl (4.41)

The second instruction
L = int(dij) + 1

is for classifying the distance dij] where the 2th class-interval
"H2(2) 1is incremented by 1 for each dij such that 2 = int(dij) + 1
H2(2) = H2(R) + 1 (4.42)

or alternatively

H2(2) = H2(2) + dg5e (4.43)
The execution outcome of the outer and inner loops is the n,-space

frequency distribution. Each element of the n,-space frequency
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4.3.4

distribution is given by

fy = n(dy) (4.44)

for all i and j such that &= int(dij)+], or in the alternative

second case
fo = n(dy).dy (4.45)

where n(dl) symbolises the number of distances d£°

The final step in the error function subroutine is the
evaluation of the error. Here the two ny and n, space frequency

distributions are compared:

p
L abs(f . = Frok)

£
L

or

2

B2 = B (ot ™ Thak)

E; can be normalised and made bounded in the interval (0,1) by

dividing it by 2(m(m-1)/2).

THE SCALING SUBROUTINE

This subroutine is employed to normalise the multivariate
data such that the m co-ordinate values of each " dimension
are in the interval (-1,1). The normalisation is a linear

transformation and as follows;

g' =ag+b (4.46)
where

a = 2/(9pax ~ Ipin (4.47)
b=-1-2ag., (4.48)
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4.4

and g, g' are thz oricinal and the normalised co-ordinates

respectively.

THE HISTOGRAM SUBROUTINE

This subroutineisusedfor generating the fixed n,-space

frequency distribution,

The subroutine receives the mxn; multivariate data matrix
and the number of class-interyals from the source program. The
subroutine then results in the distances frequency distribution.
The subroutine calculates all m(m=1)/2 distances and classifies

each one into its class-interval,

The FORTRAN 1ist of the program is given at the end of the

thesis under "Program List 2".

RESULTS

Two data sets have been used to test the distances frequency
distr{bution program, The first set was the Iris flower data
and.the second is the Adenocdrcinom data set, Both sets are

described in chapter three,

The two-dimensional space mapping of the Iris data is shown

in Figure 4.1. In Figure.4.2 the two-dimensional map of the

CA755 data is shown..

As it is apparent from Figure 4.1 the Iris data result is
superior to that of the Adenocarcinuma data. Furthermore, the
Iris data result seems eyen.better than that obtained by the

distances time-sequence .program,
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One experiment on the Iris data produced what turnedouttohea
one-dimensional space solution, Figure 4.3, As is the case

with the two-dimensional space solution, the one-dimensional

mapping exhibits the complete separation of the first Iris flowers

class from the second and third classes of flowers. In the
solution each coefficignt of the first transformation function
is equal to corresponding one in the second transformation
function. Essentially the solution is identical to the one
obtained by the projection of the points on the two-dimensional

space mapping on the line passing through the three clusters,

THE PROBLEM OF LOCAL MINIMUM-

Throughout testing the frequency distribution program it
became evident that the problem of local minimum was more
pressing than that in the distances time-sequence program.

The problem was acute when the search started such that

a;; =0 (1=1np)(3=1,ny) | (4.49)

It was obvious that beside the global minima, which resulted in
solutions of maximum cluster separability, there existed trivial
and non-trivial local minima solutions.lisweverinthe trivial solution
the graphical output was of no apparent meaning. However, the
non-trivial solution was the one-dimensional result. In this
case the graphical output consists of mpoints clustered on the y=x line
in the xy plane, The coefficients of the transformation functions
in the trivial case were either all equal to the same value or
they alternate in value, In the non-trivial case each coefficient

value in one transformation function wosequal to thzcorresponding
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one in the secqnd transformation function. This suggests that
only one transformation function has contributed in the mapping.
It seems to us that one cause behind the existence of local
‘minima is the error function form. The error functions used

by Sammon (19&9} and in bath distances time-sequence and
frequency distribution programs have causedthe problem
of local minima in the search space. One solution to this
problem is to increase the number of global minima so as to

increase the probability of finding one.

In Sammon's error function and in both time-sequence and

frequency distribution programs the minimum is global when

D, =d; (i=1,m(m-1)/2) (4.50)

If instead we make the condition for global minimum when

-D; = k d; (i=1,m(m-1)R) _ (4.51)

\
where k is a positive quantity. Consequently, the number of

global minima is increased and every time the above relation
is satisfied a global solution is achieved. This kind of error
function can be regarded as invariant to distances shrinking

and stretching transformations.

4.4.2 INVARIANT ERROR FUNCTION -

In order to formulate the shrinking and stretching invariant

error function we proceed from the following expression:

£ =z (0 - 4;) (4.52)

and modify it into:
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_ ’ 2
E-l = Z(D_i - L1d'i) (4.53)

where k; is a positive quantity resulting either in shrinking
or stretching the configuration di (i=1,m(m=1)/2). Now we

wish to find k] such that E] is minimal. Hence,

dE - _ -
HET = —22|(Di—k1d1)d1| =0 (4.54)
and we have
zd.D.
k-‘-'-l-l
1 E;Er-— (4.55)

r
The same can be applied on
2

E, = E(kzDi - di) (4.56)
dE_ _ . z 4.57
a; 22 (kpD; - d{)D;]= 0 (4.57)
and we have
zdiDi
. ED; _
Substituting k] and k, in E; and E, respectively we get
£%4.D,
By & EDE e (4.59)
1 1 Zd. .
i
and
2
z
B, =3B0E = __E%Ei (4.60)
i

Dividing E] by zD? or E2 by}jd? we have the normalised error

function in the interval (0,1):

2
Lol (4.61)
54% 1pl

1 1

E=1-
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that is

£=1 =k ks (4.62)

and E 1s minimum when

Di = kcl,I

For the frequency distribution error function we have

2
ey - )
(4.63)

E=1-

"Mool T
—

2 \2
; (n;d;)° (N;D;)

where Ny and Ni are the ith class frequencies of the N and n,

space frequency distributions respectively.

The invariant and normalised error function has two main

properties

i
(2) E is bounded in the interval (0,1).

(1) E dis minimal if Di = kd., and

OPTIMAL STEP SIZE GRADJENT METHOD

Another practical problem that has faced both time-sequence
and frequency distribution programshasheentheexecution time,
Almost all the execution time is for the error function
minimisation. With the optimal step size the path towards the
minimum is the shortest. Here we follow Niemann (1979) in
constructing a formula for optimal step size, The formula
is based on the inyariant normalised error function of the
previous settion for both time-sequence and frequency

distribution programs. The /formula is also for one-dimensional

space mapping.



We start from the (I+1)th iteration error function which

is given by:

£p, . d,,(I*1)
15 PRI 2}3. s tilil_z SR (4764)
2Df; £(dg; M)
if we make the substitution
d%”) - d%) - (D) B, (4.65)
where
Bij = FA]Qi-Qj] (4.66)

Fp being the partial derivative vector and |Q1-Qj| being the

one-dimensional distance in the ny-space then the result is the

(I+1)th iteration function in terms of d(1) instead of d(I+])

Differentiating E(I+]) with respect to r, setting the
derivative to zero and then solving for r we have

2
ps (4.67)

- .
Zd;5055 ZBy; - Zdy5B4352043B;;

For distances frequency distribution the expression becomes

P b,
(n;d;)(N;D;)Z(nyd;)B; = E(n;d;)" I(N,D,)B.

p
: (4.68)
"Tp PYTIE TR PR '
Z (ngdi V00028, = Elngd, B R(N0.18;

where n, and Ni are the ith Ny and n, space class-frequencies

respectively.

For the above formulae there is one value of r only.
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CONCLUSTON

The tqrget of this chapter was to demonstrate the feasibility
of using distances frequency distribution instead of distances
‘time-sequence in mapping nultivariate data. Although the method
- has basically worked prob]emsstnfremauntnase will now be

considered.

The first problem is the frequent convergence to local
minimum, which suggests the existence of more than one solution
beside the global one and that noneof these solutions are as
good as the global one. It was thought that the form of the
error function is responsible for the appearance of local
minima. A generalised error function that is invariate against
shrinking and stretching transformations and is normalised in
the domain (0,1) was formulated as an answer to the problem of

Tocal minima.

The two most important computational aspects considered
in this chapter were the reduction in data storage and the

construction of an optimal step size gradient method.

With the introduction of distances frequency distribution
the n,-space distances storage requirement became insignificant,
In addition, while the storage is approximately proportional
to the number of points, the distances frequency distribution
storage requirement is almost independent from the number of

points in the data set.

The second important computational aspect is the mathematical

and computational feasibility of constructing a gradient method
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that employs optimal step size. The formula is single valued,
that is in evéry minimisation step there is a unique step size
value that minimises the error function. It is expected that
the optimal step size will result in reducing the execution

time by following an optimal path towards the minimum,

Finally, the distances frequency distribution offersamean
for estimating thg parametgrs of the one-dimensional space
clusters assuming their normal distribution. This is useful
in the determination of thg point at which maximum cluster

separation exists.
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Iris data 2-dimensional transformation
function and frequency distribution
mapping.

90



'
e

FIGURE 4.2 CA755 data 2-dimensional transformation
function and frequency distribution
mapping. S

D
}.J



S
o

P
—
—_
——

FIGURE 4.3 Iris data l-dimensional transformation
function and frequency distribution
mapping.

ye

)



CHAPTER FIVE

CONCLUSION



CONCLUSION

As it has been commented earlier in Chapter Two, two-dimensional scaling
data can be represented as one-dimensional, e.g. taking C- and S-1like
structures, Shepard (1974). Niemann et al. (1979) successive two-dimensional
mapping of a set of characters demonstrated that the clusters were linearly
separable allowing the use of one-dimensional mapping. This has been
strengthened by evidence from transformation function mapping where again
linearly separable clusters do appear. On the other hand, transformation
function mapping strengthens the possibility of using one-dimensional mapping
instead of two- or three-dimensional mapping. The acceptance of one-
dimensional mapping results in first, the bridging of mappiég and pattern
recognition, second, the possibility of having an automatic cluster
separation procedure and third, far less expensive computational procedures
in mapping especially in having lesser number of independent variables and
simpler one-dimensional Euclidean distance which excludes the expensive

square root calculation.

Based on the theoretical and practical results from multi-dimensional
scaling, nonlinear mapping and transformation function mapping, we shall
describe the aims of a new program together with its important structural
properties, The aims of the proposed program, which are meant to be
computationally inexpensive and easy to use in minicomputers, are: First,
as an efficient pattern recognition procedure and the automatic and exhaustive
isolation of clusters. The program is also expected to be useful in feature

selection and detecting clustering tendency.

One of the most impcrtant results of transformation function is its
possible use as a parametric discriminant functiop similar to that in
pattern recognition. For this aim first the data set must have two pattern
classes of sufficient separahility and the patterns must be known.

Second the patterns set is mapped to one-dimensional space and

a global solution must be found to ensure maximum pattern recognition.

94



The resultant transformation function is then standardised such that

the patterns of the first class are scatfered around minus one and the
patterns of the second class are scattered around plus one on the one
dimensional axis. In the ideal situation the mapping result is merely
two normally distributed patterns of small value standard deviations

and minus one and plus one means respectively. The resultant
discriminant function is negative when the pattern is from class one

and positive when the pattern is from class two. Also the class
membership of the patterns is quantitatively measured by the discriminant

function value.

The advantage of this discriminant function is in its ability
to offer, besides recognising patterns, graphical representation of
the patterns space confirming its ability or inability in recognising

the patterns.

The second aim of the proposed program is to have an automatic
and exhaustive cluster separation procedure. This means that if we
start with a number of clusters in tﬁe data set then the program should
be able to isolate all the clusters in a sequential manner. The
automatic cluster separation procedure is done by following Niemann
(1979) method of remapping. In order to automate the method we must have
the two clusters or groups of clusters in the one-dimensional space
centred on the -1 and +1 values respectively and to have a 'clear' area
separating them and centred on the origin of the one-dimensional space
axis. This is expected to be achieved by the standardisation of
co-ordinates before and possibly after each mapping. This might allow
the program to isolate all points on the positive side of the one-

dimensional axis regarding them as one cluster or group of clusters and
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mapping is repeated. The same is then done to the points of the negative
side of the one-dimensional axis. The procedure stops when the 'clear'

area shows signs indicating that what has been left is one cluster,

The other prospect of the proposed program is the direct use of
the transformation function coefficients for selecting features, This"
may be coupled by normalising the coefficients values in such a way so
that the most important feature takes the maximum absolute value. The
importance of a feature is measured by its misclassification rate and

its cluster separability.

The distances frequency distribution in the projected program is
expected to be useful in detecting clustering tendency. Dubes et al.
(1980). On the other hand, it is intended to exploit the distances
frequency distribution in a direct way so as to determine the point
in the one-dimensional space that splits the two clusters, paving the
way for the automatic clusters separation. It is hoped that an
easier procedure will be found which replaces the one described in

chapter four.

The new invariant normalised error function will be incorporated
in the projected program. This is expected to solve the problem
of local minimum and to offer global convergence which is expected to
result in a maximum cluster separability solution. Being normalised
the new error function offers a common objective measure of error
which results from the standardised closed range of variation which

is independent from the data used.

The new error function does not have preference to shorter or

longer distances. The error function is theoretically sound in being



founded on simple difference of squares expression similar to the well
known Teast square, The most important feature of the new error

function is its invariancy against shrinking and stretching transformations,

Finally, the program will employ a gradient minimisation method with
optimal step size. This is thought to decrement execution time and
strengthens the poscibility of global convergence. The optimal step

size formula is for the invariant normalised error function,
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PROGRAM LISTING 1

TRANSFORMATION FUNCTION
2-DIMENSIONAL MAPPING



-
OV NNV NN -

PO PR PN R PR PO owb o o ed emd ed ol o
W= VNS WAR 20O~ Nn) -

TRACE T -~
MASTER FAPPING

DIMENSION W(T0:),V(&) ,X«CRMAL(149)

COMMON/BT/0 ,MLESST,SUM2,0ON2CT102¢%) ,TIMNE KIND
COMMON/BI/CS(H) ,LCB) ,XTF AN, YTRAN,IT N
COMVYON/21/G (1462 ,4) , X164 ) ,Y(145) ,NU(14D)

RZADC3,10) N, NPARAM,M,IT,K1KD,
(CS 1), LCTY 251 . nEND) ,
% TIME ,ATRAN,YTF/N
10 FORGATC(111I0,2F0.0)

READ(R,20) ((e(1,J) ., )=1,N), 1=1,»)
20 FORMAT(LFO.O)

0O 60 1=1,M
00 40 J=1,n
XNORMAL (J)=GCJ,1)
40 CONTINUL

CALL SCALE(r , XNORMAL,1.0
ne S0 J=1,nm
Q(J, I)=xXxn0rMAL (J)

50 CONTINUE
60 CONTINUE

vy



29 POW=R=7.0/N i

20 SuUnZ2=0.0c+C

31 MLESST=i=1

32 INDF XY=y

33 NN=M

34 00 61 I=1,n

35 NUCI) =1

36 ¢1 CONTINUE

37 DO 130 I=1,ML7SS1T

35 IPLUSTI=] +1

29 DO 120 J=1PLUST,M

40 INDEZX=INDEX +1

41 70 SUM=0 .CE+C

L7 DO <0 K=1,N

43 DELTA=G(I , K)=-Q(CJ ,X)
L4 SUN=SUM+DeLTA*LELTA
45 &5( CONTIMNUEZ

Le D=SUM*+PQW K

47 IF ¢ » vz, CG.C ) f0TO 110
43 DO <0 Kn=1,N

4y & (J,kK)=6(¥ KK)

50 90 CONTINUE

51 NUCJ) = NUCNN)

5¢ MN O NN -1

53 M=M-=1

54 FMLESST=M-1

55 WRITECE,100) 1,0, NN, NUCL) nUCJ) NUCGWN)
56 100 FORATCIH ,6111)

57 GOTO 72

5& 11C DNZ2CINDEX)=D

59 SUMZ2=SUMZ2+D

60 120 CCNTINUE
61 130 CONTINUE

62

63 IFAIL=0

64 LU=10*NPARAM+NPARAM* (NPAKAM~=1) /2

65 CALL EO4LCEF (NPARAM,V ,F W, LW, IFAIL)

66 CALL FINALCIT,F,V, NPARAY X,V M,

67 XTKAN,YTRAN ,XIND N, LETTER KU)
6o STOP

69 END

AN
e v



TO Crsxxrkkahdaktdhhdhbdrk ok hhhdhd hhdhdA Kb dd bk k btk kA ak A & hddddil

71 TRACE O

72 SUBRQUTINZ FUNCT1(NPARAY ,V,F)

73

74 DIMEINSION V()

75

76 COMION/BY/E  MLZSST ,SUM2, UNS(11024) ,TINE K iND
77 CONAON/Bb1/CSCR) ,LCE) ,XTRAN,1TRAN,IT N
73 COMMOM/S1/Q(14%,L) ,XC147%),7(146) ,NU(C143)
79

c0 IT=1T+1

&1

&2 po ¢0 1=1,N

33 surx=0.

&4 sumy=0.

) DO 10 J=1,N

&6 QlJ=u (I, J)

&7 SUMX=SUMY + V(J) *GTJ

&& SUMY=SUNY + V(J+N)»*QIJ

% 10 CONTINUZ

S0 XC(I)=SUNX

91 Y(I)=SuryY

92 20 CONTINUE

93 SumMt=0.0

94 IND: X=U

G5



96

Y7

98

67
1CO
101
102
102
104
105
106
107
1038
109
110
T
112
113
114
115
116
117
118
119

50

*

Do 40

1=1,KkLESST

IFLUST=I +1
£1=x(1)

YI=Y(1)

0O 3G J=1PLUST, ¥

INLEX=INDEXY +1

DN=DHe(IKNDCX)

DELTAX=XI=-XC(J)

DELTAY=YI=-Y(I)

DNLDZ=CMN=DELTAX*D LTAX=DtLTAY*#DILTAY
SUMT=SUMT+DENLD22DiI,LDZ/DN

CONTINUZ
40 CONTINUEZ

F=Suri

[SUM¢g

CALL UAMILLTIMEC(A)

IF(s.L
CALLE. ‘F
STOP

RETURN
END

T.TIrmE) RETURN

INALCIT,F,V, NPARAN , X, ¥, I,
XTRAN,YTRAN ,“IND N, LETTEK,NU)

102



120 Chrhrhkhhdkhhhbddhkrhrthhhhhd Ak bk iAddhdihddkthhdhdhstrrd

Y 24 TRACE O

122 SUROUTINE SCALE (M, X, XT-AN)

123

124 DIMENSION X(14¥)

125

176 XMINIMUM=X(1)

127 XEAZIMUMSXMINIEURY

128

129 DO ¢ I=1,M

130 XI=X(1)

131 TF(XMININMUS (GT . X1) XMINIMUM=XI]
132 ITFCXMAXTIMUM LTLXI) XAXITUkR=41
133 2 CONTINUE

134

135 DO 7 I=1,M

136 XCI)=XTRANACXCI )Y =XWImIMUE )Y/ (" AXIMUM=X-T-IYur)
137 5 CONTINUE

138

139 RETURN

140 END

104



141 Chrhhdhhhdhh ks hdhdh Ahhkd ot hhkdththddrorrhrak ok Ao d® 4

142 TRACE C

143 SUBICUTINE PLOT(XPLOT,YFLOT KINL N,LETT S NTARAN,YTOW
144

145 DIMINSION XFLCT(146) ,YPLOT(149),0SC(:) ,L(7)
146 DIMENSICN UPLOT(1475) ,VPLOT (14%)
147

14& CALL OPENGINOGP

149 CALL SHIFT12(50.0,50.0)

150 INCX=XTRAN/10

151 INCY=YTKAN/10

152 CALL AXIPOS(1,0.0,0.C,XTRAN 1)

153 CALL AXIPO5(1,0.C,0.0,YTARN,2)

154 CALL AXISCACT,INCX,1.0,2TFAN,T)
155 CALL AXISCACT,INCY, 1.0,YT%AN,2)
156 CALL AXIDRF(1,0,1)

157 CALL AXIDRAC(-1,0,2)

158 NSU=«=0

159 DO 1 I=1,KIND

160 (sI=Ccs(1)

161 LET=L(1)

162 DO 2 J=1,NI

163 NSUMJ=NSUM+J

164 UPLOT(J)=XPLOT(NSUMJ)

165 VPLOT (J)=YPLOT(NSUMJID

166 2 CONTINUE

167 CALL SYMTO2CUPLOT,VPLOT , N, ,LET)
168 NSUM=NSUM+NI

169 1 CONTINUE

170 CALL DEVEND

171 RETURN

172 CND

104
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Chrhrtrrhhh kb hhhhhhkdddbh g A Ak hAh thhd bk hkksrhkrhdkhxsd

TRACE O
SUGS-OUTINE FINALCIT,F,V,NP&RAM, X, Y, 0,
XTRAN ,YTRr N, N, LEZTTFR,NL)

DIM=NSION V(&) ,XC14G),Y(145),C5C-),L(7 ), nUC147)

WRITECL,1) IT,F
FORFATCIH ,'F(*,15,%)="*,22C.11)

PO 3 1=1,NPARAN

WkITZ€6,2) 1,v(1)

FORMATCUIH ' AC*,12,%)=" ,£20,11%)
CONTINUZ

WRITECZ,4) (NUCI),XCI) , (1), 1=1,+)

CALL SCALEC(M, X, XTRAN)
CALL SCALZCNM,Y,YTRAN)
WRITE(Z,6) (NUCT) X CI), Y C1) , 1=1,%)
FORMATC(IH ,11C,2F12.2)

CALL PLCTCX,Y, KIND,N,LZTTER XTREN,YTRAN)
RETURN

END

FINISH

* ok Kk %k

105



PROGRAM LISTING 2

TRANSFORMATION FUNCTION
AND

FREQUENCY DISTRIBUTION

2-DIMENSIONAL MAPPING



N OONOWV BN - D

TRACE O
MASTcR MAPPI

NG

MININMIZATION BY "QUASI-NEWTON™ METHOD

DIMENSION W(124),1W(10),5L (&), BU(8),V{(8),XNGRFAL (145)

COmMLON/EBT/M,
COMMON/BI1/DATACI49 ,4) ,X(149) ,Y(149) ,HISTOD2 (2G0),

X HI

READ (3,100)
WRITE(6,110)

READ (3,120)
WRITE(6,130)

READ (2,140)

WRITE(6H,150)

INTERVAL,N,IT,NUMBER (147)

STODN(200)

e

N,M,INTERVAL
N,M,INTERVAL

C (DATACI,J) ,d=1,N),I=1,M)
C1, CORTRCT ;) ;3= 00 .11 ,16)

(NUMBER(I),I=1,M)
_ (NUMBER(I), I=1,1)

107



0

21 o 06 I=1,N

22 0 10 J=1,¥

23 ANORMALC(JI)=DATA(J,I)

24 10 CONTINUZ
25

26 CALL SCALEC(H ,XNORMAL,A,8,=1.0,1.0)
27

2% DG 20 J=1,M

¢S DATACJ,1) = A*XXNGFMALC(J) + B

30 20 CONTINUE

31 30 CONTINUE

32

33 vo 0 Jd=1,n

34 sur = 0.0

35 L¢ L3 I=1,N b

36 SumMm = SUM + DATACWJ,I1)

37 40 COCNTINUE

3 S5DCJ) = SUM

29 50 CONTINUE

40

61 WRITE (6,1350) (},(ﬁaTA(l,J),J:1,u),su(1>,l=1,r)
42

43 ChLL HISTOGRA® (1, N,DAT! , HIZTODN INTEFVAL)
L4



[‘ 5 C-—n-—-ﬂ-—-a—--—-u----—--t-' e it L Tk ko e ———

L6 CALL UAMILLTIME(TT)

47 WRITE(6,190) T1

L&

49 NXZ = N * 2

5GC

51 0O 60 1=1_,NX2

52 #sL(I) = =5.0

53 BUCEL) = 5.0

54 60 CONTINUE

55 WRITEC(6,16C) (BL(I),BUCI),I=1,NX2)

56

57 O 70 1=1,NX2

58 V(i) = 0.0

59 70 CONTINUE

60 WRITEC6,170) (V(I),V(N+I),1=1,N)

61

62 ET = 0

63 IFAIL = 1

64 IBOUND = O

65 LW = 12 * 2*N + 2xN x ( 2*N =1 )/2

66 LIw = 2N + 2

67 CALL EQ4LJAF (2%N,IBOUND AL ,B8U,V,FUNCTION, IW,LIW, W, Lk)

68

69 WRITE(6,250) IFAIL )

70

71 60 CALL UAMILLTIME (T2)

72 WRITE(6,200) T2

73 (= e e e e e e e e e e e e e e e e e —

74

75 WRITE(6,210) IT,FUNCTION

76

17 WRITE(6,220) (1,v(I), V(I+N),I=1,N)

78

79 INTER = 2 = INTERVAL

80 WRITEC(6,230) (HISTOD2(I),I=1,INTER)

81

82 CALL SCALE (MX,AX,BX,0.0,140.0)

83 CALL.SCALE (M,Y,AY,BY,0.0,140.0)
S - A N i

109



85 (mmmwrmmmmm— e e e

86 CALL OPENGINOGP
87 CALL SHIFT2(50.0,50.0)

&8 CALL AXIP0OS(1,0.0,0.0,14C.0,1)

89 CALL AXIPOS(1,0.0,0.0,140.G,2)

90 CALL AXISCAC1,14,1.0,140.0,1)

91 CALL AXISCA(1,14,1.0,140.0,2)

9¢ CALL AXIDKAC1,0,1)

93 CALL AXIDRA(-1,0,2)

94 O 90 I=1,0

95 XX = AX*X(I) + BX

96 YY = AY*Y(I) + BY

97 WRITECS 2600 I ,8K Y K€1) X CL)
98 CALL MOVTO2(XX,YY)

99 CALL SYMBOL (NUMBERCI))
100 9G CONTINUE

101 CALL. DEVEND B L



T s e S SR e T W e W R e S R e S e

100
110
120
130
140
150
160
170
10
150
200
210
220
230
240
250

FORMAT(31I0)
FORMAT(31I10)
FOKMAT (4F0.0)

FORMAT(I10,4F5.1)

FORMAT(1010)
FORMAT(10G12)
FORNAT(2F10.2)
FCRMAT(C(2E20.11) /1)
FORMATCI10,4F12.2,F12.2) °
TIME BEFORE MINIMIZATION IS

FORMAT ('
FORMAT ('
FORMATC(C?

FORMAT(®
STOP
END

TIME AFTER

MINIMIZATION

B

FUNCTIONC®  I5,%)=*,£20.11)
FORFMAT(L(/,16,2E20.11))
FORMATC10F7 .0)
FORMAT(IT0,4F1G.2)

IFAIL

Lk

'1,12)

'LFS.3)

"FC.

L

)
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123 TRACE G

124 SUSXOUTINE FUNCT1(NX2,V,FUNCTION)

1¢5

1¢6 DIMENSION V(£)

127

12% COMMOM/BT/M , INTERVAL ,h,1T,NUNBER (14%)
129 COM»ON/BI/DATE(TLD L) X (1467) ,Y(149) ,HISTCL2(200),
130 0 HISTOON( 200 )

131 IT=17T+1

152 INTER = 2 % INTRFVAL

153

134 FACTOR = FLOATC(INTZRVAL)/Z.C/SGRT(Z.C)/ZFLUCATIN)
335 bC 20 1=1,H

13¢ SUMX=0.,

147 spmy=0.

138 L0 10 J=1,N

143 CATAIJ=DATA(L ,J)

140 SUMX=SUMX + Vv (J) *DATATJ
141 SUMY=SUMY + V(J+N)ADATALY

142 10 CONTINUE

153 X(I)=FACTOR*SUMY

144 Y(I)=FACTOR*SUMY

145 20 CONTINUE

146

147 PO 110 1=1,INTER

1468 HISTODZ(I) = 0.0

145 110 CONTINUE

150

112



151
157
153
154
155
156
157
155
159
160
161
1¢7¢
143
To4
165
166
167
162
169
170
171
17¢
173
174
175
176
177
17¢&
1775
120

20

50

t.U
7Q

vy

PLESST = 8 = 1
DO 40 1=1,MLESSY

IPLUSTI=I+1
X1 = X(1)
Y1 == Y(1)

t0 30 J=IPLUST, K

L = INTOSSRTCCXI={(II)*re + (YI=-Y(J))=r42))

HISTCD2(L)=¥ISTODc(L)+1.0
CONTINUE
CONTINUE

Surt = 0.0
DO 50 I=1,INTEFR

SuM1 = SUMT + ALSC JISTUDNCI) = HISTIGD22(1)
CONTINUC

P10
NX2LESST = NX2 = 1
O 70 1=1,NX2LESST
IPLUST = 1 + 1
PO ¢0 J=IPLUST, NX?
PI = FPI * (V(I) = V(J))
CONTINUZ
CONTINUE

FUNCTION = SUMT/FLOAT(FA(M=1)/2)/2.
CALL UAMILLTIME(TIMED)

IF ( TIme .LT. S40.0 ) AeTUSN
WRITE(5,99) (V1) ,1=1,N42)
FORAT(EZD.TT)

115

)

+ 1



G0

CALL SCAL: (H,X,AX,8X,0.0,140.0)
CALL SCALEZ (F,Y,AY,bY,0.0,140.0)
CALL OFENGINOGF

CALL SHIFT2(50.C,50.0)

CRLL AKLYPOSCT,0.0,0.0, 1402,
CALL AXIPOS(C1,C.C,0.0,140.0,
CALL AXISCACT,14,1.0,14i .0,
CALL AXISCAC1,14,1.0,14C.0,2

1)
27)
)
)

CALL AXIDRA(1,0,1)
CALL AX1DRAC(=1,0,2)

DO

0 I=1,M

XX = AX*X(CI) + 2%

YY = AY*Y(I) + @Y

WRITE(6,26C) I,%X,YY,XCI),Y(I)
FORMAT(110,2F10.0,2F10.2)

CALL MOVTO2(XX,YY)

CALL SYMoCL (NUMZER(I))

CONTINUE
CALL DEVEND

RETURN

END



204

205

206 SUBROUTINE SCALE(M,X,A,B,XMIN2,XMAX2)
207

208 DIMENSION X(149)

209

210 DMIN1 = X(1)

211 DMAX1 = x(1)

212

213 DO 1 I=1,M

214 IF(XMINL1.GT.X(I)) XMIN1=X(I)

215 IF(XMAX1.LT.X(1)) XMAX1=x(I)

216 1 CONTINUE

217

18 A = ( XMAX2 - XMIN2 ) / ( XMAX1 - XMIN1 )
219 B = XMIN2 - A*XMIN1

220

221 RETURN

222 END

115
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224 TKACE O

225 SUEKOUTINE HISTOGRAN (M, N, ATA, HISTCODN,INTZRVAL)
226

227 DIMcNSION DATACILY,4) ,HISTCODN(20C)

Ze8

L2Y . ELESS I =M=1

c 30

31 DO & 1=1,MLESST

232 IPLUST=1+1

<33 DG 2 J=IPLUST M

£34 sum=0 .0

¢35 0o 1 K=1,N

236 SUM=SUN+C(DATACI ,K)X=DATAC(J K))/2.0)**¢
¢ 37 1 CONTINUZ

236 L=INTCFLOATCINTERVILD)*+SQRT(SULIA/FLIAT (D)) 41
2396

240 HISTODNCL)=HISTOODR(LY+1.0

241 3 (ONTINUCZ

Zu? 4 CONTINUE

243

L4 INT*R = 4 * INTERVAL

265 WRITE(E,2) (HISTODNCI) ,I=1,INTcH)

L6 2 FOR®ATCI0F7 .0

L7

ch RETURN

P END

250 FINISH

2571 *4r4k !



PROGRAM LISTING 3

TRANSFORMATION FUNCTION
AND

FREQUENCY DISTRIBUTION

1-DIMENSIONAL MAPPING



VWO NOWVSWN-0

10

22
.23

[}

TRACE O
MASTER MAPPING

MINIMIZATION BY "QUASI-NEWTON"™ HETHOD
DIMENSION W(54),IW(6),BLC4),BUCL), V(L) , XNCRFALCTL9),SD(149)
COMEON/BY/ M,IN,IT,DATAC149,4),X(149),F2(200),FN(200)

READ (3,90) L, M, IN
WRITE(6,11) N, M, IN

DO 55 I = 1,M
READ (3,20) (DATACI,J),J
WRITE(6,21) 1,(DATACI,d),J

55 CONTINUE

nn
-
=
~

DO 44 I = N

v(I) 0.0
BL(I) = ~5.0
BUCI) = 5.0

WRITE(6,45) v{I),BL(1),BU(CI)
44 CONTINUE

T e P p—
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24
25
26
27
28
29
30
31
32
335
34
35
36

38

39

40
41
42
43
44
45
46
47
48

40

50
60

33

22

DO 60 I = 1,N
DO 40 J = 1

oM

XNORMAL(J) = DATACJ,I)

CONTINUE

CALL SCALECM,XNORMAL,%.2,0.0)

Do 50 J =

M

1,
DATACJ,I) = XNORMEL(J)

CONTINUE
CONTINUE

DO 22 J = 1,¥
SuM = 0.0
DO 33 I =
SUM
CONTINUE
SD(J) = SUM
CONTINUE

1
Su

WRITE (6,111)

CALL HISTOGRAM

N
M+ DATAC(J, 1)

(I,(DATACI,J),J =

(+ ,N,DATA,FN,IN)

1,N),SDC(I),I

1,M)



LY
50
21
5¢
3
54
D
56
57
58
29
60
61
62
63
64
65
66

67

68
69
70
71
72
73
74
75
76
4
78
79
80
81
82
83

120

10
11
20
21
45
11
140
90
66
il
101
99

CALL URMILLTIME(TT)
URITE(6,140) T1

IT = 0

IFAIL = 1

IBOUKD = 0

LW = 12%*N + N*(N-1)/7
LIW = N + 2

CALL EJ4JAF (N,IBOUND,BL,BU,V,FUNCTION,IW,LIW,W,LW,IF&IL)

CALL UAMILLTIHME (T2)
WRITE(6,90) T2

WRITE(6,66) 1T ,FUNCTION

WRITEC(E6 ,77) (I,v(I),1 1,83
INTER = 3 » 1IN
WRITE(6,101) (F2(1),I = §,INTER)

WRITE(6,99) (X(I),I = 1,M)

FORMAT (310)

FORMAT(3110)

FORMAT(4F0.0)

FORMAT(I1C,4FS5 .12

FORMAT(3IF10.2)

FORMAT(I10,4F12.2,F12.2)

FORMATC(® TIME BEFORE MINIMIZATION IS ',FE&.3)
FORMAT(" TIME AFTER MINIMIZATION IS *,F3.3)
FORMAT(® FUNCTIONC®,IS5,*) = *',£20.11)
FORMAT(4(/ ,16,E20.91))

FORMATCT10F7.0)

FORMATC(F10.0)

STOP

END

120
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85 TRACE O

&6 SUBROUTINE FUNCTT1(N,V,FUNCTION)
87

88 DIMENSION V(4)

89

90 COMMON/B1/ M, IN,IT, DATAC149,4) ,X(149),F2(207) ,FN(2TT
91

92 T = T % 1

93 INTER = 4 » IN

94

95 FACTOR = FLOAT(CIN)/2.0/FLOAT(N)
96 po 201 = 1,M

97 Sumx = 0.

98 po 10 J = 1,N

99 SUMX = SUMX + V(J)*DATACI,J)
100 10 CONTINUE

101 X(1) = FACTOR*SUMX

102 20 CONTINUE

4032

104 DO 110 I = 1,INTER

105 F2(1) = 0.0

106 110 CONTINUE

107

108 MLESST = M - 1

109 DO 40 1 = 1,MLESS1

110 IPLUST = I+1

111 po0 30 J = IPLUST, M
112 L = INTC ABS(XCI)=X(J)) ) + 1
113 F2(L) = F2(L) + 1.0

114 30 CONTINUE

115 40 CONTINUE

114

121



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

50

g0
70

60

61

SUMT = 0.0
bO 50 I = 1,INTER
SUMT = SUMT + ABSCFN(I) = F2(I))
CONTINUE
PI = 1.0
NLESST = N - 1
0 70 1 = 1,NLESS1
IPLUST = 1 + 1
DO 80 J = IPLUS1T,N
P1 = PI « (V(I) - Vv(J))
CONTINUE
CONTINUE

FUNCTION = SUM1/FLOAT(M*x(M=-1)/2)/2.

WRITE(6,60) IT,FyUNCTION
FORMATC® FUNCTION(®,I5,') = ',E20.11)

WRITE(6,61) (V(I),I = 1,N)
FORMATC(4E20.11)

RETURN
END

——
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142 TRACE O

143 SUBROUTINE SCALE (M, X,XTRAN,C)

144

145 DIMENSION X(149)

146

147 XMIRIMUM = X(1)

148 XMAXIMUM = XMINIMUM

149

150 bo 21 = 1,M

151 XI = X(I)

i52 IFCXMININMUM GT.XI) XMINIMUM = XI
153 IFCXMAXIMUM LT XID) XMAXINMUM = XI
154 2 CONTINUE

155

156 XHEAN = ( XMAXINUM + XMINIMUM ) / 2.0
157 bO 3 I = 1,M

158 ¥(I) = XTRAN*(X(I)=XMEAN)/(XMPXIMUM=XMEAN) + C
159 3 CONTINUE :

160

161 A = XTRAN/(XMAXIMUM=XMEAN)

162 B = =~XTRAN*XMEAN/(XMAXIMUM-XMEAN)

163

164 WRITE(6,4) XMINIMNUM, XMAXIMUM,A,D

165 4 FORMAT(' Q@ MINIMUM = ' ,£20.91/

166 * * Q@ MAXIMUM = * _E20.11/

167 * ’ A= "'",E20.11/

168 * L B = °*,£20.11)

169

170 RETURN

171 __END B v -

125
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173 TRACE O

174 SUBROUTINE HISTOGRAM (M, N,DATA,FN,IN)
i75

176 DIMENSION DATAC149,4) ,FH(223)

177

178 MLESST = M-1

179 00 4 1 = §,MLESSY

180 IPLUST = 1I+1

181 PO 3 J = IPLUSHY, M

182 SuMm = 0.0

183 b0 1 K = §,N

184 SUM = SUM+((DATACI _ K)=DATA(J , K))/2.0)x#*2
185 i CONTINUE

186 L = INTCFLOATCIN)*SQRT(SUM/FLOAT(N)))+1
187 FNCL) = FN(L)+1.C

188 3 CONTINUE

189 4 CONTIHNUE

190

191 INTER = 3 *= IN

192 WRITE(6,2) (FN(CI),I = 1,INTER)

193 2 FORMAT(10F7.0)

194 ;

195 RETURN

196 END

197 FINISH

198 *x%xx%
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